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The problem of automated theorem finding is one of the 33 basic research problems in automated reasoning which
was originally proposed by Wos in 1988. The problem of automated theorem finding is “What properties can be
identified to permit an automated reasoning program to find new and interesting theorems, as opposed to proving
conjectured theorems?” The most important and difficult requirement of the problem is that, in contrast to proving
conjectured theorems supplied by the user, it asks for the criteria that an automated reasoning program can use to
find some theorems in a field that must be evaluated by theorists of the field as new and interesting theorems. The
significance of solving the problem is obvious because an automated reasoning program satisfying the requirement can
provide great assistance for scientists in various fields.

The problem of automated theorem finding is still an open problem. Although there have been valuable works on the
research of automated theorem proving, those works cannot be applied to the problem of automated theorem finding.
On the other hand, a few works aimed to automated theorem discovery and automated theorem generation have been
done. However, the problem of automated theorem finding which is to pursue properties to find new and interesting
theorems is different from the automated theorem discovery and automated theorem generation. In fact, Wos's problem
can be regarded as an attempt to find a systematic methodology in automated reasoning area, but the works on
automated theorem discovery and automated theorem generation are not. The works on automated theorem discovery
and automated theorem generation almost aimed to one certain mathematical field and current results of those works
are only rediscovery of some simple known theorems in some certain fields, rather than finding new and interesting
theorems.

Cheng proposed that forward reasoning based on strong relevant logic is a hopeful approach to solve the automated
theorem finding problem. Reasoning is the process of drawing new conclusions from some premises which are already

known facts and/or previously assumed hypotheses. Because reasoning is the only way to draw new, previously



unknown conclusions from given premises, there is no discovery process that does not invoke reasoning. On the other
hand, by using strong relevant logic as the fundamental logic to underlie reasoning for automated theorem finding,
one can avoid paradoxical theorems in using classical mathematical logic, various conservative extensions of classical
mathematical logic, and traditional relevant logics. However, no one showed how to use a systematic method by forward
reasoning based on strong relevant logic to do automated theorem finding.

This thesis proposed a systematic methodology for automated theorem finding by forward reasoning based on
strong relevant logic. The methodology consists of five phases. The first phase is to prepare logical fragments of strong
relevant logic for various empirical theories. The second phase is to prepare empirical premises of a target empirical
theory. The third phase is to reason out empirical theorems in the target empirical theory. The fourth phase is to abstract
these empirical theorems. The fifth phase is to find interesting theorems from the empirical theorems. The methodology
holds generality so that we can use it to do automated theorem finding in various fields.

In order to show the effectiveness of our methodology, we did three case studies of automated theorem finding in
three different mathematical fields by using our methodology. The first mathematical field is NBG set theory, the
second one is Peano's arithmetic and the third one is graph theory. For each case study, we elaborated how to apply
our methodology, showed the results and gave an evaluation. After we presented three case studies, we evaluated the
methodology from viewpoint of generality.

This work has following contributions. The first contribution is that we proposed a systematic methodology for
automated theorem finding based on the semi-lattice model of formal theories in which the core is strong relevant
logic, and the minimum element is the formal theory of axiomatic set theory, above it other formal theories can be
established like number theory, graph theory, and lattice theory, so the methodology holds generality for various
mathematical fields. The second contribution is that we proposed a method to do automated theorem finding based on
the abstraction process of mathematical concept such that we can systematically find theorems from simple theorems
to complex theorems. The third contribution is that we proposed a method to generate hypothesis by using forward
reasoning approach by strong relevant logic and then combine automated theorem proving approach to systematically
find those theorems proved by mathematical induction. The fourth contribution is that we performed three case studies
of automated theorem finding in three different mathematical fields by using our methodology and clearly showed our
method and results. Before our works, it is only in theory to use forward reasoning approach based on strong relevant
logic to perform automated theorem finding in different mathematical fields, but our works showed the detail and
systematic procedure of automated theorem finding clearly.

This thesis is organized as follows. Chapter 1 presents the background and purpose of this research. Chapter 2
explains the basis of the strong relevant logic and the terminology of automated theorem finding. Chapter 3 presents
our systematic methodology for automated theorem finding. Chapter 4 presents the case study of preparation of logical
fragments. Chapter 5 presents the case study of automated theorem finding in NBG set theory. Chapter 6 presents the
case study of automated theorem finding in Peano's arithmetic. Chapter 7 presents the case study of automated theorem
finding in graph theory. Chapter 8 gives a discussion about our methodology. Finally, concluding remarks are given in

Chapter 9.
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