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Nomenclature 

 
 

g              degraded image 

f              original image 

h              point-spread function 

a              AR model coefficients 

e              AR model error 

n              Gaussian noise 

2

e             variance of AR model error 

2

n             variance of Gaussian noise 

)(L          log-likelihood function 

);( gp        probability density function of g 

P            covariance matrix of g 

V            covariance of f  

ffR           conditional autocorrelation matrix 

fgR           cross-correlation matrix 
L              length of motion 

             angle of motion direction 

R              radius of uniform blur 

2

G            Gaussian blur variance 
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mH              homogeneity measure 

rBPSNR          reference PSNR 

ijBPSNR          PSNR of a certain block 

PSNRt             threshold for homogeneous block selection  

2

rB              reference variance 

2

ijB              variance of a certain block 

Dt               threshold for homogeneous block selection 

PSNRR            average of the estimation results 

PSNRR            noise variance estimation result 

PSNRT             true value of PSNR 

N               the number of images 
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xxf               second-order derivatives of xx directions 
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yyf               second-order derivatives of yy directions 
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2              minimum local variation 

)( fI              difference eigenvalue edge indicator 

)),(( yxfw         weighting parameter 

                 constant 
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sB                 variance of the selected homogeneous blocks 
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sB
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Abstract 
 

Many image restoration algorithms have been proposed over the last few decades. But 

in early work on image restoration, it was nearly always assumed that all the 

information required to restore an image is known previously. Unfortunately, this is not 

possible in most real-life situations. Thus, the technique of blind image restoration 

estimating both the true image and the blur from a degraded image has been researched. 

However, when taking noise into account, the estimation problem becomes more 

challenging. Estimating the blue and noise parameters simultaneously may cause a large 

estimation error. 

   To minimize the estimation error, we propose a Maximum-Likelihood Estimation 

Algorithm based on noise variance estimation. This method estimates the noise variance 

only using the information from the known degraded image. This improves the 

estimation accuracy significantly. 

   For better results for noise variance estimation from the degraded image, we 

propose a structure-based method. This method separates an image into blocks. 

Rejecting the edge included blocks, only the homogenous blocks are selected for the 

noise estimation process. Since image details can be better revealed by second-order 

operators, for better estimation, we further propose a difference eigenvalue edge 

indicator with threshold for more accurate block selection. 

   After combining the noise estimation method, better estimation results of blur and 

noise are derived, leading to the better restoration results. Experiments show that the 

structure-based method is good for light noisy condition, while the difference 

eigenvalue based method is effective for fine texture images.  
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1  Introduction 
 

 

The goal of image restoration is to reconstruct the original scene from a degraded 

observation [1]. This recovery process is critical to many image processing applications. 

Although classical linear image restoration has been thoroughly studied [2], [3], the 

more difficult problem of blind image restoration has numerous research possibilities. 

   Blind image restoration is the process of estimating both the true image and the blur 

from the degraded image characteristics, using partial information about the imaging 

system. In classical linear image restoration, the blurring function is given, and the 

degradation process is inverted using one of the many known restoration algorithms. 

The various approaches that have appeared in the literature depend upon the particular 

degradation and image models [2], [3]. 

   Deconvolution is performed for image restoration in many applications such as 

astronomical speckle imaging [4], remote sensing [5], and medical imaging [6]-[9], 

among others. In most situations, the point-spread function (PSF) is assumed to be 

known explicitly prior to the deconvolution procedure. This problem is known as the 

classical linear image restoration problem. The long list of deconvolution methods for 

this situation includes a variety of well known techniques, such as inverse filtering, 

Wiener filtering, least-squares filtering, recursive Kalman filtering, and constrained 

iterative deconvolution methods [2], [10]-[13]. 

   Unfortunately, in many practical situations, the blur is often unknown, and little 

information is available about the true image. Therefore, the true image must be 

identified directly from the degraded image by using partial or no information about the 

blurring process and the true image. Such an estimation problem, assuming the linear 

degradation model is called blind deconvolution. Experience shows that in practice 

Chapter 1 
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some information is needed to successfully restore the image. 

   There are several motivating factors behind the use of blind deconvolution for image 

processing applications. In practice, it is often costly, dangerous, or physically 

impossible to obtain a priori information about the imaged scene. For example, in 

applications like remote sensing and astronomy, it is difficult to statistically model the 

original image or even know specific information about scenes never imaged before [4], 

[5]. In addition, the degradation from blurring cannot be accurately specified. In aerial 

imaging and astronomy, the blurring cannot be accurately modeled as a random process, 

since fluctuations in the PSF are difficult to characterize [14]. In real-time image 

processing, such as medical video-conferencing, the parameters of the PSF cannot be 

pre-determined to instantaneously deblur images [15]. Moreover, on-line identification 

techniques used to estimate the degradation may result in significant error, which can 

create artifacts in the restored image [16]. 

   In other applications, the physical requirements for improved image quality are 

unrealizable. For instance, in space exploration, the physical weight of a high resolution 

camera exceeds practical constraints. Similarly, in x-ray imaging, improved image 

quality occurs with increased incident x-ray beam intensity, which is hazardous to a 

patient’s health [6]. Thus, blurring is unavoidable. In such situations, the hardware 

available to measure the PSF of an imaging system is often difficult to use. Although 

these methods work well to identify the PSF, they are esoteric, which limits their wide 

use [9], [14]. Blind deconvolution is a viable alternative for improving image quality 

without requiring complicated calibration methods. 

   Finally, for applications such as astronomy, adaptive-optics systems may be used to 

compensate for blurring degradations, although the high cost of these systems makes 

imaging impractical for some observational facilities. Use of less expensive, partially 

compensating systems may result in phase errors. In either situation, post-processing 

such as blind deconvolution is required for improved image quality [17], [18]. 

   It is clear that classical image restoration methods that assume a known PSF are not 

suitable for many real image processing situations. In these cases, an algorithmic 

approach to combine blur identification and image restoration is required. In this sense, 

blind deconvolution is a practical method for image restoration. Indeed, existing 

research in the area [9], [14], [16], has shown its worth. 
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1.1  Problem Formulation 

 

In many imaging applications, an observed image g(x,y), neglecting additive noise, can 

be assumed to be the two-dimensional convolution of the true image f(x,y) with a linear 

shift-invariant blur, also known as the PSF, h(x,y). That is, 

 

                         



),(

),,(),(

),(),(),(

mn

mynxhmnf

yxhyxfyxg

                   (1.1)        

 mnyx ,,,  

 

In which * denotes the two-dimensional linear convolution operator, and Z is the set of 

integer numbers. The problem of recovering the true image f(x,y) requires the 

deconvolution of the PSF h(x,y), from the degraded image g(x,y). 

   The general blind deconvolution problem refers to the task of separating two 

convolved signals, f and h, when both the signals are either unknown or partially known. 

This important problem occurs in many applications in addition to image restoration, 

such as seismic data analysis, blind equalization of communication channels, 

transmission monitoring, and echo cancellation in wireless telephony [19]-[22]. The 

basic approach for all cases involves using the partial information available about the 

scheme as a reference to deconvolve the received signal components. The partial 

information can be in the form of physical properties of the true signal, such as finite 

support and nonnegativity found in image processing, or it can be in the form of 

statistical information such as entropy used for seismic data analysis, or the probability 

density function (PDF) of the true signal used for equalization of communication 

channels. In most blind deconvolution techniques, the partial information is 

incorporated into an optimality criterion, which is minimized (or maximized) to find 

estimates of the components (or their inverses). Figure 1.1 depicts the general blind 

deconvolution scenario. 
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Figure 1.1:  Blind deconvolution process 

 

1.2  Important Characteristics of Blind 

Deconvolution 

 

There are some important characteristics and practical constraints for the problem of 

blind deconvolution process. These include: 

1. The true image and PSF must be irreducible for an unambiguous deconvolution. An 

irreducible signal is one which cannot be exactly expressed as the convolution of 

two or more component signals, on the understanding that the two-dimensional 

delta function is not a component signal. This is an important property of the 

system because if either the true image or the PSF are reducible then the solution to 

the problem is ambiguous. 

2. The image restoration problem is, in general, ill-conditioned; a small perturbation 

of the given data produces large deviations in the resulting solution. 

3. Exact deconvolution is impossible as a result of the presence of additive noise in 

the imaging system. 

4. The solution may not be unique. Since only partial information about the imaging 

process is used to formulate an optimality criterion, many different estimates of the 

true image and PSF may lead to an optimal solution. 

h(x,y) 

LSI 
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Model 

Blind Deconvolution 

Algorithm 
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5. There exists a poor compromise among computational complexity, convergence 

properties, and portability of the algorithm for the existing blind deconvolution 

methods. 

 

1.3  Existing Approaches in Blind Deconvolution 

 

There are two main approaches to blind deconvolution of images: 

1. Identifying the PSF separately from the true image, in order to use it later with one 

of the known classical image restoration methods. Estimating the PSF and the true 

image are disjoint procedures. This approach leads to computationally simple 

algorithms. 

2. Incorporating the identification procedure with the restoration algorithm. This 

merge involves simultaneously estimating the PSF and the true image, which leads 

to the development of more complex algorithms. 

This Section discusses every class of algorithms. Among them, a priori blur 

identification methods fall under the first approach, and the remaining methods are the 

second. 

1.3.1  Zero Sheet Separation 

The method of zero sheets has received attention because it provides valuable insight 

into the blind deconvolution problem in multiple dimensions. Lane and Bates [23] have 

shown that any degraded image, formed by convolving several individual components, 

having compact support, is automatically deconvolvable provided its dimension is 

greater than one. Their argument rests on the analytic properties of the Z-Transform (ZT) 

in multiple dimensions. The zeros of the ZT of a K-dimensional component is almost 

always continuous and lies on a (2K-2)-dimensional hyper-surface. The zero sheets can 

very rarely possess singularities; the relevant details are provided in [24]. By separating 

these hyper-surfaces, we can recognize the individual components up to a complex scale 

factor. 

1.3.2  A Priori Blur Identification Methods 

A priori blur identification methods perform blind deconvolution by identifying the PSF 

prior to restoration. This general class of techniques makes assumptions on the 

characteristics of the PSFs resulting from linear camera motion or an out-of-focus lens 

system. Based on these assumptions, an attempt is made to completely characterize the 
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PSF using special features of the true and blur image [25]-[28]. 

   A priori blur identification techniques are the simplest class of blind deconvolution 

methods to implement and have low computational requirements. They are applicable to 

situations in which the true image is known to possess special features, or when the PSF 

is known to be of a special parametric form. For more general situations or when less 

information is available, other deconvolution algorithms must be used. 

1.3.3  ARMA Parameter Estimation Methods 

Blind deconvolution using ARMA parameter estimation methods involves modeling the 

true image as a two-dimensional autoregressive (AR) process and the PSF as a 

two-dimensional moving average (MA) process. Based on these models, the resulting 

blurred image is represented as an autoregressive moving average (ARMA) process. 

Identifying the ARMA parameters allows us to identify the true image and PSF. 

   The existing methods of this class differ in how the ARMA parameters are estimated. 

Techniques based on second-order statistics, such as maximum-likelihood (ML) 

estimation [29]-[32], generalized cross-validation (GCV) [33], and neural networks [34] 

have been proposed. High order statistics (HOS) methods have also been used for 

ARMA estimation [35]. The ML and GCV methods are the most successful for image 

processing applications. 

1.3.4  Nonparametric Deterministic Image Constraints Restoration Techniques 

In contrast to the methods discussed in the previous Sections, the algorithms of this 

class do not assume parametric models for either the image or the blur. Deterministic 

constraints such as nonnegativity, known finite supports and existence of blur invariant 

edges are assumed for the true image. A number of blind deconvolution techniques for 

images fall into this class, such as the nonnegativity and support constraints recursive 

inverse filtering (NAS-RIF) algorithm [36], [37], among others. 

   The methods are iterative and simultaneously estimate the pixels of the true image 

and PSF. The constraints on the true image and PSF are incorporated into an optimality 

criterion which is minimized using numerical techniques. 

1.3.5  Nonparametric Methods Based on High Order Statistics 

This class of techniques is structurally similar to the NAS-RIF algorithm, and is useful 

for restoring texture images [38], [39]. They are based on minimizing the given cost 

function that accounts for the probabilistic non-Gaussian nature of the true image. The 

degraded image is passed through an FIR inverse filter, yielding an estimate of the true 

image. The FIR filter parameters are updated in order to optimize a function that 
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incorporates the HOS model of the true image. 

   A well-known technique in this class is minimum entropy deconvolution (MED) 

[19], which attempts to find the FIR inverse filter of the PSF that yields the smallest 

output entropy then applied to the degraded image. This technique maximizes the 

simple “spike-like” character of the true image estimate. This is useful for applications 

like astronomy, in which the true image is composed of bright spots against a dark 

background; and geophysics, where teleseismic signals have a spike-like nature. MED 

has also been proposed for restoring two-tone images [38]. 

 

1.4  Related Works 

 

Image noise is generally of the following types: Gaussian noise, salt-and-pepper noise, 

shot noise, quantization noise (uniform noise), film grain and non-isotropic noise. The 

noise signal can be modeled as a random signal which is additive or multiplicative, 

signal-dependent or signal-independent, white or colored to an image signal. And most 

noise variance estimation methods assume that the noise signal is additive Gaussian 

white noise. Thus, in this paper, we also use this noise model. 

   The techniques of noise variance estimation are also utilized in the thesis. The 

related methods and comparisons are introduced in detail in Chapters 3 and 4. 

 

1.5  Thesis Organization 

 

The rest of the thesis is organized as follows. Improved maximum-likelihood estimation 

algorithm for image restoration is presented in Chapter 2. In Chapter 3, improved 

structure-based Gaussian variance estimation method is presented. This method 

improves the noise estimation process of the image restoration in Chapter 2. Further 

more, Chapter 4 derives image noise estimation based on difference eigenvalue, which 

provides the better choice for the homogenous blocks selection compared with that in 

Chapter 3. More accurate image restoration results can be expected if utilizing the 

method in Chapter 4 for the noise estimation process. Finally, Chapter 5 gives 

conclusion and future works. 
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2  Improved Maximum-Likelihood 

Estimation Algorithm for Blind Image 

Deconvolution Based on Noise 

Variance Estimation 
 

 

Restoring an observed image suffering from blur and noise simultaneously is a 

challenging problem that may cause a large estimation error of blur and noise 

parameters. In this Chapter, a novel blind image deconvolution approach based on noise 

variance estimation is presented. This method first performs noise variance estimation 

from a noisy blurred image. Then, using the property that a certain type of blur may lead 

to a specific frequency component distortion of the image Fourier spectrum, the blur 

type can be reorganized. After this, according to the reorganized blur type, the image 

and blur model coefficients can be computed more efficiently by minimizing an 

objective function based on the ARMA model. The ML method is the most successful 

for estimating the ARMA parameters among the existing methods of this class. Because 

the Exception-Maximization (EM) technique is popular for solving the nonlinear 

optimization problem in the ML objective function. It converts the original nonlinear 

optimization problem of several variables into a linear iterative procedure. The restored 

image is obtained with a least-squares filter. Experiments on images are presented 

which show that the proposed method is capable of yielding good restoration results. 

 

Chapter 2 
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2.1  Related Works 

 

Image restoration is one of the most important research issues in digital image 

processing. It has been widely applied for medical imaging, astronomical imaging, 

remote sensing, microscopy imaging, photography deblurring, and so forth [40]. In 

early work on image restoration, it was nearly always assumed that all the information 

required to restore an image is known a priori. Unfortunately, this is not possible in 

most real-life situations. Thus, the technique of blind image restoration has been 

researched.  

Blind image restoration is the process of estimating both the true image and the blur 

from degraded image characteristics using partial information about the imaging system 

[1]. Most blur is one of three types [41]:  

(a) Motion blur, which is the apparent streak of rapidly moving objects in a still 

image. Liu et al. [42] presented a new approach to motion blur identification based on 

the Bayesian paradigm and the maximum a posteriori method. Sun et al. [43] estimated 

the parameters of motion blur (orientation and extension) from the observed image 

gradients. 

(b) Defocus blur, which is generated because of lens defocus. Cui et al. [44] 

proposed a novel approach to defocus blur image restoration, which is based on global 

phase coherence. Lee et al. [45] showed how a cellular neural network can be used to 

estimate defocus blur parameters. 

(c) Gaussian blur. Chen and Ma [46] proposed an empirical identification method of 

the Gaussian blur parameter for image deblurring, in which the estimated parameters are 

chosen from a collection of candidate parameters. Orieux et al. [47] found the solution 

of Gaussian blur parameter estimation by inferring a global a posteriori law for the 

unknown object and parameters. 

At present, there are three main classes of methods for blind image restoration: the 

ARMA parametric approach, the iterative blind deconvolution approach [48], [49], and 

the multichannel blind restoration approach [50]. In the ARMA model, the AR 

coefficients determine the image model coefficients, and the MA part determines the 

PSF of the blurring system. Next, the identification problem can be formulated as an 

ML problem. Lagendijk et al. [32] presented an ML approach to the blur identification 

problem and proposed the employment of the EM algorithm to optimize the nonlinear 
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likelihood function in an efficient way. Tekalp et al. [29] presented a technique of 

estimating the optimal statistical parameters for the identification of an unknown image 

and blur model parameters. Deng and Xia [51] developed a neural network algorithm 

for fast blind image restoration.  

When taking noise into account, however, the estimation problem becomes more 

challenging. Estimating the blur and noise parameters simultaneously may cause a large 

estimation error. Moreover, some blur identification methods even require that the 

amount of noise in the observed blurred image is negligible, which is uncommon for 

practical images of interest. Since there are already efficient algorithms for estimating 

the noise variance from a noisy image [52]-[54], it is reasonable to pre estimate the 

noise variance from a noisy blurred image as a pretreatment for the blur identification 

method. In this Chapter, a novel blind image deconvolution approach based on noise 

variance estimation and blur type reorganization is presented. 

This Chapter is organized as follows. An overview of the parametric blur 

identification problem is provided in Section 2.2. Noise variance estimation and blur 

parameter calculation are presented in Section 2.3. Experiments and a summary are 

given in Section 2.4 and Section 2.5, respectively. 

 

2.2  Image Model and Estimation 

 

2.2.1  ARMA model 

Generally, blind image deconvolution using ARMA parameter estimation methods 

involves modeling the true image as a two-dimensional (2-D) AR process and the PSF 

as a 2-D MA process [1]. Based on these models, the resulting blurred image is 

represented as an ARMA process. Identifying the ARMA parameters allows us to 

identify the true image and PSF.  

The true image is modeled as a 2-D AR process represented by 

 


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where ),( yxf  is the true image and ),( yxe  is the modeling error, which is assumed 
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to be a zero-mean homogeneous noise process with covariance matrix 
eQ , which is 

statistically independent of ),( yxf . )},({ lka  are the AR model coefficients of support 

aR , which are chosen to minimize the variance of ),( yxe , denoted by 
2

e .  

In most practical situations, the PSF is of finite extent and its effect on the true image 

can be modeled as that of a 2-D FIR filter. The MA model of a degraded image ),( yxg  

can be expressed as 








hRnm

yxnnymxfnmh

yxnyxfyxhyxg

),(

),(),(),(

),(),(),(),(

              (2.2) 

where hR  is the finite support of the PSF ),( nmh  and ),( yxn  is the additive noise 

of the imaging system, assumed to be a zero-mean Gaussian with covariance 
nQ .  

   A more compact version of (2.4) and (2.5) can be derived by lexicographically 

ordering the two-dimensional signals and using matrix-vector notation [55]: 

 eAff  

nHfg  

Rearranging (2.4), substituting into (2.5), and rearranging yields 

neAIHg  1)( 

where I  is the identity matrix. Therefore, we can define the unknown parameter set θ  

as a concatenation of four components: }),,(,),,({ 22

ne nmhlka  . 

2.2.2  ML Estimation Algorithm 

In this Section, we choose the ML approach for ARMA parameter estimation, which is 

the most successful for image processing applications and also has a long history of use 

with ARMA modeling. 

The ML method attempts to derive an estimate of the parameters such that the 

probability of receiving the observed image, given the parameter set  , is maximized. 

The ML estimator [32] is given by 
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}|)|{log(detminargˆ 1
gPgP




 T

ml


 

where )(L  denotes the log-likelihood function of  ,   specifies the range of 

elements of  , and );( gp  is the PDF of g  for a given  . 

   Since e  and n  are independent Gaussian processes, g  is also zero-mean and 

Gaussian because it is a linearly filtered version of both e  and n  (see (2.6)). Also, 

);( gp  is given by 

)
2

1
exp(

||det)2(

1
);( 1

2
gPg

P

 T

N
gp


               (2.8)

where P  is the covariance matrix of g , given by 

n

TT

e QHAIQAIHP   )()( 1                  (2.9) 

By substituting (2.8) into (2.7), the ML blur identification problem can be expressed as 

follows: 

}|)|{log(detminargˆ 1
gPgP




 T

ml


                 (2.10) 

Thus, the ML method becomes a method of minimizing this nonlinear objective 

function with respect to the parameter set θ .  

Several implementations exist to solve this nonlinear optimization problem. In this 

Section, the EM algorithm is used because it converts the nonlinear optimization 

problem into a linear iterative procedure and is straightforward to implement. 

2.2.3  EM Algorithm 

The EM iterative procedure involves solving linear equations only. The structure is 

shown in Figure 2.1. 
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Figure 2.1:  Structure of EM blur identification algorithm 

 

 

As can be seen from Figure 2.1, for the first step, the initial values of the parameter set 

)0(̂  is used to calculate f̂  and V̂ , which denote the conditional mean and covariance 

of f , respectively. f̂  and V̂  can be expressed as 

gQHVf
1)( ˆ)ˆ;/(ˆ  n

tkgfE                      (2.11) 


111)( ])()[()ˆ;/cov(ˆ   HQHAIQAIV n

t

e

tkgf  

And then, the conditional autocorrelation matrix ffR̂  and cross-correlation matrix fgR̂ , 

which are defined by (2.13) and (2.14) are evaluated using f̂  and V̂ .  

ffVR  ˆˆˆ)ˆ;/(ˆ gffE t

ff                      (2.13) 


tt

fg gfgE gfR ˆ)ˆ;/(ˆ   

 

)()( ˆ,ˆ k

fg

k

ff rr

)1(ˆ k

)0(̂

Solve f̂  and V̂  

Evaluate ffr̂  and fgr̂  

Solve â  and ĥ  

Evaluate 
2ˆ
e  and 

2ˆ
n  



 

 26 

Last, AR model coefficients â  and model error 
2ˆ
e  are updated, and PSF values ĥ  

and noise variance 
2ˆ
n  are estimated by (2.15) and (2.16). 






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 ),(ˆ),(ˆ),(
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2 nmrnmhjig
N

fg

Snm

N

ji

n

d

 


  (2.16)

Thus, 
)1(̂  is obtained after the first iteration. The iteration process can be repeated 

many times until the reliable values of 
(k)f̂  are derived. 

 

2.3  Blind Image Deconvolution Based on Noise  

Variance Estimation 

 

Blind image restoration methods can restore a blurred image without knowledge of the 

PSF, but they also have some defects, such as the large number of calculations and the 

large estimation error of the PSF [41]. The proposed method is to reduce the calculation 

and estimation error. In this Section, noise variance estimation and blur type 

reorganization are first introduced as image pretreatment. Then, according to the 

reorganized blur type, different approaches are implemented for estimating the image 

and blur model parameters. 

2.3.1  Estimating the Noise Variance from the Observed Image                              

When taking the presence of noise into account, the estimation problem becomes more 

complicated because estimating the blur and noise parameters simultaneously may 

cause a large error. For the conventional EM method, the noise variance can be 

estimated using (2.16). We can see from (2.16) that in each iteration step, noise variance 
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is estimated on the basis of the estimated blur value which tends to cause a larger error. 

Therefore, the estimation error of noise variance 2ˆ
n  becomes larger. In other words, 

the estimation of noise variance is influenced by blur estimation. Experimental results 

[32] show that the precise noise variance can only be obtained when the blur is of 

intermediate size and that a large estimation error results from blur a small or large size. 

   In order to improve this situation, we estimate the noise variance directly from the 

observed image. From the MA model (see (2.2)) we can see that image noise is 

independent of blur and is added after the image is blurred. Therefore, we can estimate 

the image noise from the observed image, assuming that the blurred image 

),(),( yxfyxh   in (2.2) is the true image. Since the blurred image has less detail, it is 

easy to find smooth blocks; block-based methods can thus be used for estimating the 

noise variance. In this Section, the method of Amer and Dubois [52] is used to estimate 

the noise variance from the observed image. The method first selects 

intensity-homogeneous blocks in an image by rejecting blocks with a line structure 

using second-derivative masks to detect line structures. Then the global image noise 

variance is estimated from these selected homogeneous blocks. In this way, a stable 

noise variance value can be derived that is unrelated to the amount of blur. The 

estimated noise variance can be treated as a constant parameter during the next blur 

estimation process. 

2.3.2  Estimating Blur Parameters for Different Blur Types 

Many papers have proposed methods of parameter estimation for a particular blur type. 

However, they do not mention how to identify the blur type, which is also an important 

issue. Therefore, it is necessary to apply blur type reorganization as a pretreatment 

process. The three main types of blur are motion blur, defocus blur, and Gaussian blur, 

and their Fourier transforms have obvious differences. Thus, blur identification methods 

based on the Fourier transform [41], [56]-[58] can provide good results.  

Blur estimation is much simpler when the blur type of the degraded image is 

classified. Different methods can be implemented on the basis of the different properties 

of the particular blur type. 

 

 

 

 



 

 28 

2.3.2.1  Linear Motion Blur 







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CLyxh

0

tan
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1

),;,(
22 

    (2.17)

where L is the length of motion and   is the angle of motion direction. For linear 

motion blur, all the blur values are common and only determined by the length L. For the 

original EM method in [32], the blur parameter L is estimated together with other ARMA 

model parameters, which tends to cause estimation error. In this Section, we propose a 

more efficient and straightforward method to obtain the precise blur values. Since the 

objective function (see (2.10)) is much more sensitive to the blur and noise parameters 

than the image model, and the blur pattern is discrete, we first compute the blur values 

under every blur size, and substitute them into the objective function, using the initial 

values of AR model coefficients. Then, these function values under every blur size are 

compared and the blur whose values lead to the lowest function value is chosen as the 

true blur. This iteration process can be started from the least blur size and stops when the 

minimum objective function value is obtained. For light blur, we can find the blur size 

within only several iterations; for heavy blur, the blur size can be obtained after dozens 

of iterations. At this stage, only the AR model parameters remain unknown, which are 

then estimated by the EM algorithm. 

2.3.2.2  Uniform Defocus Blur 
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Ryxif
CRyxh
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1

);,(
22

         (2.18)

where each value of this blur is also a constant, thus it is similar to motion blur and its 

approximate 2-D lifting. Therefore, we can use the same method to find the true blur 

size.  
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2.3.2.3  Gaussian Blur 
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yx
Cyxh


            (2.19)

where 2

G  is the Gaussian blur variance. For this kind of blur, it is still not necessary to 

identify the extent of the PSF because the blur size is directly derived from the identified 

value of 2

G  by truncation of the PSF at coefficients smaller than 0.1% of )0,0(h . The 

relationship between blur variance 2

G  and blur size is given in Table 2.1. We have only 

one blur parameter 2

G  to estimate. For this case, the EM algorithm is implemented to 

estimate the AR model parameters and 2

G  simultaneously. 

2.3.2.4  Other Blur 

For other unusual kinds of blur, no good method is available. We have to identify the 

blur size [59] first and then use nonparametric blur identification. Based on the 

symmetry pattern of blur, we must identify 4 unknown parameters for 33  blur and 

12 parameters for 55  blur. For a larger size, the situation becomes more complicated. 

 

 

Table 2.1  Relationship between Gaussian blur variance and blur size 

 

Gaussian blur variance Blur size 

0.0724-0.2895 3×3 

0.2895-0.6514 5×5 

0.6514-1.1581 7×7 

1.1581-1.8096 9×9 
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2.4  Experimental Results 

 

In this Section, we report some experiments to validate the improved ML estimation 

algorithm based on noise variance estimation. 

   In order to reflect the advantages of the ARMA model, we use the texture image 

“leaf”, which has low edge information, for the experiments (see Figure. 2.2). The 

image size is 128×128 pixels. Blur of different types and Gaussian noise with zero mean 

and a variance of 10 are added to the true image. First, we choose the block-based 

method [52] to estimate the noise variance and use the blur-type reorganization method 

based on the Fourier transform spectrum [41]. After we derive the noise variance and 

blur type, parameter estimation and image restoration for different blur types are 

implemented. In this paper, the initial conditions of the image model are chosen as 

7.0
)0(

01 a , 7.0
)0(

10 a , 49.0
)0(

11 a , 100
)0(2 e . 

As we know, selection of the initial values is a major problem. An accurate 

estimation result is only obtained when suitable initial conditions are selected. A large 

error appears when the initial values are not close to the true values for the original 

method. Our method, however, has improved this situation to some extent. Since in 

image restoration, the MA model values (blur and noise values) are more critical, they 

decide the restoration result directly. Since AR models are merely used to stabilize the 

inversion of PSFs, it is not necessary to have the exact AR model coefficients [32].   

 

 

 

 

Figure 2.2  True “leaf” texture image 
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For the case of linear motion blur and uniform defocus blur, in our method, accurate 

values of blur and noise variance are identified in the first two steps; thus, a good 

restoration result can be obtained even for random AR initial conditions. Notably, for 

the case of Gaussian blur, the blur values must be estimated together with the AR model 

coefficients, but in our method the noise variance can be identified in advance, which 

can still lead to a better result than the original one. 

2.4.1  Linear Motion Blur 

For this blur, we choose an observed image with blur size 1×7. We substitute blur values 

for different blur sizes into the objective function, where the AR model coefficients are 

set as initial values, and find the minimum objective function value. The data are shown 

in Table 2.2, where the objective function value has been normalized to avoid the ‘out of 

memory’ problem. 

   We can see that the objective function value is extremely different for different blur 

sizes, and the minimum is obtained when the true size of 1×7 is used. Through this 

method, we can obtain the true blur size and precise blur values with no error. After this, 

the EM method is performed to estimate the remaining AR model coefficients (see 

Table 2.3). Then, the restored image is obtained by a least-squares filter [32] using all 

the estimated ARMA model coefficients (see Figure 2.3). 

 

 

Table 2.2  Objective function values for different blur sizes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blur size Blur value Objective function value 

1×3 0.333 18.468 

1×5 0.200 7.3511 

1×7 0.143 1.0000 

1×9 0.111 14057 

1×11 0.091 15874 
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Table 2.3  Estimated AR model coefficients and noise variance 

 

 01a  10a  
11a  

2

e  
2

n  

True value 0.652 0.657 -0.310 136.84 10 

Estimated value 0.704 0.630 -0.303 142.05 10.207 

 

 

 

                  

                     (a)                        (b)                

                     

Figure 2.3  Restoration result of motion-blurred noisy image                                       

h       (a) motion-blurred noisy image (blur size 1×7) 

                     (b) restored image (ISNR = 5.4832 dB) 

 

 

2.4.2  Uniform Defocus Blur 

Uniform defocus blur is similar to motion blur and its approximate 2-D lifting. 

Therefore, we can use the same method as that in 2.5.1 to find the true blur values. The 

imposed blur size is 5×5 with blur radius R 2.236 (see (2.20)). 
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
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












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







00476.00476.00476.00

0476.00476.00476.00476.00476.0

0476.00476.00476.00476.00476.0

0476.00476.00476.00476.00476.0

00476.00476.00476.00

h (2.20) 

The obtained objective function values for different blur radius and the image restored 

from the imposed blur are shown in Table 2.4 and Figure 2.4, respectively. 

 

 

 

Table 2.4 Objective function values for different blur sizes 

 

Blur size Blur radius Blur value Objective function value 

3×3 1.414 0.111 11.538 

5×5 2.000 0.077 55.096 

5×5 2.236 0.0476 1.0000 

5×5 2.828 0.040 105.44 

7×7 3.000 0.0345 32.445 
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       (a)                        (b)        

 

Figure 2.4  Restoration result of defocus-blurred noisy image 

(a)          (a) defocus-blurred noisy image (blurred by (2.20)) 

                     (b) restored image (ISNR = 4.5687 dB) 

 

 

2.4.3  Gaussian Blur 

For Gaussian blur, we use the EM method to estimate the AR model and MA model 

coefficients simultaneously. In order to verify our method, we use different Gaussian 

blur variances and compare the estimated noise variance between the original method 

[33] and our method. The initial value of blur variance is set as 0.5. 

First, we repeat the experiments of [32]. Whereas the results in [48] are based on 

quite low noise, we added larger noise with a variance of 10 to obtain a better 

comparison (See Table 2.5). 

It is observed that for the original method, the estimated noise variance depends on 

the blur size. From the experimental result of [32], when the blur variance is 0.2 or 1.0, a 

large estimation error of the noise variance is obtained. The true noise variance is 10, but 

the estimated values of noise variance for the two blur variances are 12.5698 and 8.7308, 

respectively. Precise values can only be obtained for the case of intermediate blur sizes 

and a large error is obtained for the case of small and large blur sizes. However, from the 

results obtained by our method (see Table 2.6), the estimated noise values are stable and 

fluctuate around the true value for every blur size. In other words, the estimated noise 

variance is independent of the blur size. Precise results for the noise variance lead to 

better image restoration results. Here, we restore the blurred image with a blur variance  
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Table 2.5  Estimated Gaussian blur and noise variances using original method 

 

Blur size True blur variance 
Estimated blur 

variance 

Estimated noise 

variance 

3×3 0.2 0.2088 12.5698 

5×5 0.3 0.2651 12.9831 

5×5 0.4 0.3704 11.5174 

5×5 0.5 0.4759 11.6016 

5×5 0.6 0.5700 10.5001 

7×7 0.7 0.7114 10.3204 

7×7 0.8 0.7939 9.5884 

7×7 0.9 0.8631 9.2956 

7×7 1.0 1.0126 8.7308 
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Table 2.6  Estimated Gaussian blur and noise variances using our method 

 

Blur size True blur variance 
Estimated blur 

variance 

Estimated noise 

variance 

3×3 0.2 0.2075 10.2831 

5×5 0.3 0.2654 10.2492 

5×5 0.4 0.3895 9.5736 

5×5 0.5 0.4989 10.6274 

5×5 0.6 0.5820 10.1970 

7×7 0.7 0.6897 9.9375 

7×7 0.8 0.7977 9.8048 

7×7 0.9 0.9055 10.0382 

7×7 1.0 1.0160 9.8943 
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                    (a)                            (b)                

 

Figure 2.5  Restoration result of Gaussian blurred noisy image 

                  (a) Gaussian blurred noisy image (blur variance 0.6)                 

                  (b) restored image (ISNR = 4.4732 dB) 

 

 

of 0.6 as an example (see Figure 2.5). 

2.4.4  Other Blur 

As an example of another type of blur, we choose an unusual type of 3×3 blur. The blur 

parameters are  



















0540.01244.00540.0

1244.02864.01244.0

0540.01244.00540.0

h                    (2.21) 

Using the symmetry property of blur, four free coefficients are needed for this blur. The 

total number of free parameters in   is therefore equal to 9. The identified results of 

blur and noise are expressed as 

          



















0746.01244.00539.0

1240.03208.01240.0

0539.01244.00746.0

ĥ                    (2.22) 

            155.10ˆ 2 n  

and restoration result is shown in Figure 2.6. 
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                    (a)                          (b)               

 

Figure 2.6   Restoration result of unknown blurred noisy image 

                     (a) blurred noisy image (blurred by (2.21))                             

                     (b) restored image (ISNR = 4.5301 dB)h 

 

 

2.5  Summary 

 

We have described a novel blind image restoration method based on noise variance 

estimation. A noise variance estimation method and blur type reorganization process are 

implemented first. Then, according to the reorganized blur type, different methods are 

used to obtain the parameter values. Images are restored by the least-squares filter using 

the estimated parameters in each iteration step. Experiments with observed images 

suffering from three common types of blur and an unknown blur were performed to 

validate our method.  

 

 

 

 

 

 

 

 

 



 

 39 

 

 

 

 

3  Improved Structure-Based Gaussian 

Noise Variance Estimation Method 
 

 

Noise can significantly impact the effectiveness of digital image processing. In this 

Chapter, an improved structure-based Gaussian noise variance estimation algorithm is 

presented. This method first separates the image into blocks and calculates homogeneity 

measures of every block through the proposed masks, taking the image structure into 

account. Then, the most homogeneous blocks are selected using a new threshold. 

Finally, pixel value variances of all selected blocks are averaged to estimate the global 

noise variance for one image. Comparative experiments with a variety of images using 

the proposed method and original structure-oriented method are described, and the 

experimental results show that the proposed method is feasible and effective, especially 

for good-quality images. 

 

3.1  Related Works 

 

Image noise comprises random variations in brightness or color, and can be produced by 

the sensor and circuitry of a scanner or camera. When information on such noise 

becomes available, an image processing algorithm, such as filtering [60]-[62], edge 

detection [63]-[65], image segmentation [66]-[68], or image compression [69]-[71], can 

be adapted to the amount of noise to provide significantly improved performance [52]. 

Therefore, noise variance estimation has been a fundamental and important task in 

image processing systems.  

Chapter 3 
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Noise can be estimated within one image or between multiple images. In this 

Chapter, we only focus on the estimation from one image, which requires less memory 

and less computational demand. The one-image estimation methods can, in general, be 

classified into the following two types. 

(a) Filtering-based approach, in which the image is first filtered to suppress the 

influence of the original image, and then the variance of the filtered image is assumed to 

be the noise variance. Rank et al. [72] first filtered a noisy image using a horizontal and 

vertical difference operator, and then obtained the desired estimation value using the 

histogram of local signal variances. Pei et al. [53] processed a noisy image using a 

group of high-pass digital filters constructed of several finite difference operators with 

different orders. A low-pass filter such as an averaging filter, has also been used to 

preprocess images (smooth-based approach). The filtering approach requires much 

computation and encounters difficulties with images having fine texture. 

   (b) Block-based approach, in which the variance over a set of blocks of the image is 

calculated and the average of the smallest block variances is taken as an estimate of the 

global noise variance [73]. Liu et al. [74] presented a fast and efficient noise variance 

estimation algorithm through a window and the corresponding operation of computing 

variance. Shin et al. [75] computed the standard deviation of selected blocks from the 

difference between the noisy input and the filtered input. The block-based approach is 

several times faster than the filtering-based approach, but the main difficulties are how 

to select the threshold for the variance averaging process, and that the smallest variances 

do not always lead to a good homogeneity measure. 

Recently, a novel structure-oriented noise variance method has been proposed [52]. 

This method is also based on blocks, but it takes the image structure into account and 

uses a measure other than the variance to determine if a block is homogeneous. This 

technique gives more reliable estimates than the block-based methods in their basic 

form, but tends to overestimate the amount of noise, especially in the case of 

good-quality images. In this study, this structure-oriented method is improved by using 

a new homogeneity measure and a different threshold. The overestimation problem with 

good-quality images has also been solved.  

Most noise variance estimation methods assume that the noise signal is additive 

Gaussian white noise. Thus, in this Chapter, we also use this noise model, which is 

represented by blur and noise are expressed as 
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 ),(),(),( yxnyxfyxg                          (3.1) 

where ),( yxf  is the original image signal, ),( yxg  is the noisy image signal, and 

),( yxn  is the noise signal at coordinate ),( yx . Generally, an image is defined as a 

YX   matrix, in which each element is a pixel value between 0 and 255. 

The structure of this Chapter is as follows. In Section 3.1, previous works on this 

topic are described. The new masks used for homogeneity measurement are first 

discussed, and the proposed threshold for variance averaging is then presented in 

Section 3.2. Experimental results for images with homogeneous areas and fine textures 

are shown in Section 3.3, and a summary is given in Section 3.4. 

 

3.2  Proposed Image Noise Variance Estimation 

Method 

 

In order to alleviate the overestimation of the amount of noise in [52], the proposed 

method in this Section presents new masks for homogeneity measurement and a more 

accurate threshold for the averaging process. 

3.2.1  Homogeneity Measure 

As described in Section 2.1, the observed image suffers from additive noise. When 

calculating the noise variance directly from the degraded image, a large error arises 

owing to the structure of the true image, which leads to the extra variance. Therefore, if 

we estimate the noise variance from the relatively homogeneous areas in an image, the 

result is reliable. As we know, an image usually comprises homogeneous areas and 

sharp areas. Thus, it can be divided into many blocks, of which only homogeneous ones 

are used for noise variance estimation. 

In [52] the authors showed that the dividing pattern of 5×5 blocks is a good 

compromise between efficiency and effectiveness. Thus, the same dividing pattern is 

used in this Section. For example, an image of 256 × 256 size can be separated into 51 × 

51 blocks. Then the homogeneity for every block is checked. In [52], a uniformity  
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mask-1          mask-2          mask-3          mask-4 

 

 
 

mask-5          mask-6          mask-7          mask-8 

 

Figure 3.1  The homogeneity analyzer for 55 blocks 

 

 

analyzer based on 8 masks and high-pass operators was used to measure homogeneity, 

as is shown in Figure 3.1. In Figure 3.1, the colored pixels indicate the eight different 

directions for homogeneity measurement. The first four directions respond well for line, 

step, and shoulder edges, and the last four corner directions are used for detecting the 

center edges. For each block, high-pass operators are applied on the colored pixels 

along the eight directions. The coefficients of the high-pass operators are 

}1,1,4,1,1{                                (3.2) 

Then, eight homogeneity values along the eight directions are calculated, i.e., 
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8,2,1

)2()1()(4)1()2(





j

ifififififH j
          (3.3) 

where i  is the coordinate of the center pixel along one direction, f  is the pixel value, 

and jH  is the homogeneity value for one direction. Lastly, the absolute values of all 

eight quantities are added to give the homogeneity value for one block. 

821 HHHHm                           (3.4) 

For a homogeneous block, the homogeneity measure for a certain direction jH  is 

close to 0, and the global homogeneity measure mH  is low.  

The masks described in [52] lead to reliable results; however, there are still eight 

pixels remaining unchecked within one block. Combining all the eight masks into one 

block, we have the masks shown in Figure 3.2. In Figure 3.2, we can see that eight 

pixels are not covered by the eight masks, which is a considerable problem. It causes 

difficulties when the pixel values undergo extreme changes in uncovered places. Four 

novel masks are proposed in this Section, which are shown in Figure 3.3. The four 

proposed directions are used to compensate for the eight noncovered pixels.  

The four proposed masks can detect the curved edges around the border in one block, 

which cannot be achieved using the previous eight masks. As is well known, all of the 

masks are used to detect the edge information along a certain direction. As discussed 

concerning the original method, masks 1-4 can detect the line, step, and shoulder edges, 

and masks 5-8 can detect the center edges. Similarly, the proposed masks 9-12 can 

detect the curved edges. Thus, the proposed masks can compensate for not only the 

unchecked pixels but also the unchecked curved edges and lead to better homogeneity  
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Figure 3.2  Combined mask of all eight directions 

  

 

mask-9         mask-10         mask-11         mask-12 

 

Figure 3.3  Four proposed compensation masks 

 

 

measurement. 

Here, we note that the ‘reference pixels’ (in the center of one direction multiplied 

with element {4}) for the new masks differ from those for the conventional masks. This 

is because the idea for edge detection is different. For the proposed method, we do not 

set the reference pixels because we consider one block to be a whole target. Thus, the 

homogeneity value of the proposed method is not for the center pixel but for the whole 

block. We can detect all of the possible edges using the eight original and four proposed 

masks. We need not overlap these blocks, unlike in [52]. (For example, the proposed 

method uses only 51×51 blocks for a 256×256 image ( 256/5 = 51 ) ). In other words, 

we use fewer blocks but obtain more accurate estimation results. Therefore, a more 

reliable result can be achieved in this way without problems. 

In this work, the original eight masks and the four proposed masks are all used for 

computing the homogeneity value. Thus, the global homogeneity value for one block is 
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the absolute sum of those for all twelve directions. 

3.2.2  Threshold for Variance Averaging 

Using the above twelve masks and high-pass operators, homogeneity values for every 

block are calculated. However, only the variances of the most homogeneous blocks, 

which can be taken to represent noise in the whole image, are used for the variance 

averaging process. Thus, an accurate threshold for rejecting the blocks with a large 

estimation error is needed. Amer and Dubois [52] used the following equation: 

PSNRBB tPSNRPSNR
ijr
                        (3.5) 

or     

PSNRBBPSNRB tPSNRPSNRtPSNR
rijr
                 (3.6) 

where PSNR (dB) is a standard criterion for the objective measurement of image noise, 

and the transform between PSNR and variance is defined by 

2

2

10

255
log10


PSNR                           (3.7) 

In (3.5) and (3.6), 
rBPSNR  is the reference PSNR, which is chosen as the median of 

the PSNR of the three most homogeneous blocks. Here, 
rBPSNR  is assumed to be a 

rough noise variance estimation of the whole image. 
ijBPSNR  is the PSNR of a certain 

block, and 
rBPSNR  is the threshold set to 3 dB. We must use this threshold to select 

the blocks with similar variance to PSNRt . 

However, the function of PSNR in (3.7) changes exponentially, which causes 
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different selection ranges between the two sides of 
rBPSNR  in (3.6). Here the selection 

range is from PSNRB tPSNR
r
  to PSNRB tPSNR

r
 . This tends to cause the overestimation 

of noise variance. For example, we set the reference PSNR, PSNRBr, to 30 dB; then we 

can obtain the selection range of 27-33 dB using (3.5) or (3.6). Then we select the 

blocks with PSNR of 27-33 dB and average the pixel variance of these blocks. As 

PSNR of 27-33 dB indicates a variance of 33-130, we obtain the averaging result of 

about 81.5. However, we know that the reference variance is 65 (PSNRBr 30); thus, we 

have overestimated the noise variance. As the reference PSNR increases, the 

overestimation problem will become more critical. This is also the reason why the 

algorithm in [52] has difficulties with good-quality images.  

In this paper, a new threshold is proposed: 

22

22

minBBD

DBB

r

ijr

t

t








                             (3.8) 

or  

DBBDB tt
rijr
 222                           (3.9) 

where 
2

rB  is the reference variance, which is the median of the variances of the three 

most homogeneous blocks, 2

ijB  is the variance of a certain block, and Dt  is the 

proposed threshold, which is chosen as the difference between the reference variance 

and the minimum variance. This new equation for block selection is similar to (3.5) (or 

(3.6)) but it can improve the overestimation situation because it has the same selection 

ranges between the two sides of 2

ijB  in (3.9). Also, the new variable threshold is 

reliable over a wide range of noise conditions. 

After selecting the homogeneous blocks using (3.8), the variances of the selected 
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blocks are averaged to give the estimated global variance. 

 

3.3  Experimental Results 

 

In this Section, ten images of 256 × 256 size (see Figure 3.4) are used to validate the 

proposed method for noise variance estimation. The first five images have some 

homogeneous areas and the latter five images have fine textures. Comparisons of masks 

and thresholds between the proposed method and the original method addressed in [52] 

are reported.  

To evaluate the performance of the proposed algorithm, the averages of estimation 

results are first calculated to indicate the accuracy of the estimation (3.10), and then, the 

averages of estimation errors are computed to check the stability (3.11) of every noise 

level: 

 

 

     

(a)                                 (b) 
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(c)                                 (d) 

 

      

(e)                                 (f) 
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(g)                                 (h) 

                                                             

     

(i)                                 (j) 

 

 

Figure 3.4  Images used for experiments: (a) Uniform, (b) Cameraman, (c) Boat,  

(d) Couple, (e) Lena, (f) Cabinet, (g) Synthetic, (h) Baboon, (i) Bridge, and (j) Arial 
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MN

R
N M

PSNR

RPSNR 



                          (3.10) 

where PSNRR  is the noise variance estimation result of a certain image in one estimation, 

PSNRR  is the average of the estimation results, M  is the number of estimations, and 

N  is the number of images. 

MN

TR
N M

PSNRPSNR

EPSNR 






                       (3.11) 

Here, PSNRT  is the true PSNR and 
PSNRE  is the average estimation error. In this 

experiment, one hundred repetitions of estimation are processed for every noise level, 

thus N  is 10 and M  is 100. 

3.3.1  Comparison of Masks 

First, comparison results when only the masks were changed are shown in Figure 3.5. 

The black line ‘true’ corresponds to the true data of the PSNR of noise, that is, 

estimation without error. This is used to describe the distance between the estimated 

results and true data. As shown in Figure 3.5, the estimated results for the proposed 

masks outperform the original ones for all noise levels and the estimation at 20 dB is 

similar to the true data (Figure 3.5(a)). The estimation error is lower for most noise 

levels other than the similar result at 20 dB (Figure 3.5(b)). 

3.3.2  Comparison of Threshold 

In Figure 3.6, the results of an evaluation of the proposed threshold are given. The 

comparison suggests better performance with the proposed threshold. It alleviates the 

overestimation problem at every noise level (Figure 3.6(a)). For 20 dB and 25 dB, the 

estimation results are similar to the true data. 

3.3.3  Combining the masks and threshold 

Lastly, for a more reliable evaluation, the proposed masks and threshold are combined. 

As can be seen in Figure 3.7, the estimated results and estimation error are improved 

more significantly than in Figures 3.5 and 3.6. Note that the noise variance between 20 

dB and 25 dB tends to be under-estimated but the accuracy is still similar to the original 
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accuracy. Figure 3.7(b) reveals that the estimation error of the proposed method is 

higher at 20 dB. This is reasonable since 20 dB is a very high noise level and the 

variance of noise is much larger than that of the image structures. In this case, the 

influence of the image structure on noise variance estimation is not significant. Thus, 

the proposed masks with greater accuracy of edge detection do not provide an improved 

performance. At the same time, the new threshold tends to provide a smaller selection 

range from the simulation results. However, in the case of 20 dB, the noise between 

different blocks exhibits much more deviation than in the cases of other noise levels, 

whereby a larger selection range is needed for good stability of estimation. 

3.3.4  Comparison of Images with Homogeneous Areas and Images with Fine 

Texture 

In order to check the different effects of the proposed method on two different kinds of 

images, separate results are shown in Figures 3.8 and 3.9. As can be seen, since the 

proposed method is more sensitive to the image structure and more effective in 

detecting the edge information, the results for fine texture images, Figures 3.4 (f)-(j), for 

every noise level are outstanding compared with the original accuracy (Figure 3.9). For 

images (a)-(e) in Figure 3.4, with homogeneous areas, the proposed method also 

provides a significant improvement (Figure 3.8) with the estimation error being higher 

at 20 dB, similar to the case of Figure 3.7(b). The reason for this is as described in 

Section 3.3.3; the performance of the proposed method is poor at extremely high noise 

levels for images with homogeneous areas. 

 

 

 

 

 

 

 

 



 

 52 

20 25 30 35 40 45 50 55
15

20

25

30

35

40

45

50

55

true PSNR of noise

es
ti
m

at
ed

 P
S
N

R
 o

f 
no

is
e

 

 

original

proposed

true

 

(a) 

20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10

true PSNR of noise

av
er

ag
e 

of
 e

st
im

at
io

n 
er

ro
r

 

 

original

proposed

 
(b) 

 

Figure 3.5  Comparison of original masks and proposed masks:                                                                                                                                                                                              

(a) Average of estimation results, (b) Average of estimation error 
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Figure 3.6  Comparison of original threshold and proposed threshold: 

(a) Average of estimation results, (b) Average of estimation error 
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Figure 3.7  Results for combining the masks and threshold: 

(a) Average of estimation results, (b) Average of estimation error 
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Figure 3.8  Results for images (a)-(e) in Figure 3.4, combining the masks and threshold: 

(a) Average of estimation results, (b) Average of estimation error 
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Figure 3.9  Results for images (f)-(j) in Figure 3.4, combining the masks and threshold: 

 (a) Average of estimation results, (b) Average of estimation error 
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3.4  Summary 

 

We proposed a novel and reliable method for noise variance estimation in noisy images. 

This method requires a 5×5 mask and averages the noise variances of homogeneous 

image blocks, where only blocks showing similar homogeneities are included in the 

averaging process. New masks covering every pixel in one block and a variable 

threshold for the variance averaging process were proposed. The proposed method 

alleviates the overestimation problem significantly and reveals better robustness for 

estimation at most noise levels. Experiments with images including homogeneous areas 

and fine textures were described. Experimental results demonstrated that our method is 

feasible and effective for noise variance estimation, especially for good-quality images. 
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4  Difference Eigenvalue Based 

Gaussian Noise Variance Estimation 

Method  
 

 

Noise can significantly impact the effectiveness of digital image processing. In this 

Chapter, a difference eigenvalue based noise variance estimation algorithm is presented. 

This method first calculates the difference eigenvalue edge indicator values of every 

pixel in an image. Then, according to the indicator values, proper threshold is set to 

determine that a pixel is homogeneous or texture pixel. Next, the image is separate into 

many blocks and only the blocks including only homogeneous blocks are selected for 

the next averaging step. Last, pixel value variances of every homogeneous block are 

averaged leading to the global estimation result. 

 

4.1  Related Works 

 

Digital images usually suffer from added noise from various sources, such as 

acquisition, compression, transmission and reconstruction. When information on such 

noise becomes available, an image processing algorithm, such as filtering [60]-[62], 

edge detection [63]-[65], image segmentation [66]-[68], or image compression [69]-[71], 

can be adapted to the amount of noise to provide significantly improved performance 

[52]. Therefore, noise variance estimation has been a fundamental and important task in 

image processing systems.  

Chapter 4 
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   Many noise variance estimation methods have been developed over years. Among 

them, Amer et al. [52] proposed a structure-oriented white-noise variance estimation 

algorithm. This method finds intensity-homogeneous blocks using a new structure 

analyzer for rejecting blocks with structure. However, it tends to overestimate the noise 

level for the case of good-quality images. Liu et al. [76] proposed an iteration method 

to estimate the noise level using principal component analysis if an image comprises 

only weak textured patches, which are selected using the gradients of the patches and 

their statistics. However, as well known, for this iteration method, an initial noise 

variance is needed and it can only be determined using the degraded image first. Zhai et 

al. [77] developed a framework for estimating noises of natural images using two 

important properties of natural images statistics: high kurtosis and scale invariance. 

They proposed an objective function for noise estimation assuming that skewness and 

kurtosis can be considered as a constant in certain transform domains such as discrete 

cosine transform. However, this property is not quite proper for some images whose 

kurtosis has some changes through different frequency. 

   Recently, a novel image noise removal method based on difference eigenvalue has 

been proposed [78]. It showed that the value of the difference eigenvalue edge indicator 

changes obviously corresponding to the homogeneous blocks or the fine texture blocks. 

Thus, in this Chapter, we focus on the noise variance estimation using this difference 

eigenvalue edge indicator. We determine a proper threshold to this filter and select the 

homogeneous blocks which are used for the global noise estimation. 

   The structure of this Chapter is as follows. In Section 4.1, previous works on this 

topic have been described. The Hessian matrix and difference eigenvalue edge indicator 

are first discussed, and then the proposed threshold for selection of homogeneous blocks 

is then presented in Section 4.2. Experimental results for images with fine textures are 

shown in Section 4.3, and a summary is given in Section 4.4. 

 

4.2  Proposed Image Noise Variance Estimation 

Method 

 

In order to estimate the image noise variance using the difference eigenvalue based 

edge indicator in [78], a new threshold for the selection of homogeneous blocks is 
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proposed in the proposed method.   

4.2.1  Hessian Matrix 

The difference eigenvalue edge indicator is calculated from the Hessian matrix of 

second-order derivatives of an image. And it has been shown that image details can be 

better revealed by second-order operators [79]-[81]. 

   For a certain pixel value in one image, ),( yxf , the Hessian matrix is defined as 











yyxy

xyxx

ff

ff
H                           (4.1) 

where xxf , xyf , yyf  is the second-order derivatives of difference directions which can 

be calculated by 

),(),1(2),2(

)],(),1([),1(),2(

),(),1(

yxfyxfyxf

yxfyxfyxfyxf

yxfyxff xxxx







          (4.2) 

Similarly, 

),()1,(),1()1,1( yxfyxfyxfyxff xy           (4.3) 

),()1,(2)2,( yxfyxfyxff yy                      (4.4) 

Matrix H is positive semidefinite with two eigenvalues 1  and 2 , which is 

 22

1 4)()(
2

1
xyyyxxyyxx fffff                  (4.5) 

 22

2 4)()(
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1
xyyyxxyyxx fffff                  (4.6) 
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where 1  corresponds to the maximum local variation at a pixel and 2  corresponds 

to the minimum local variation.  

4.2.2  Difference Eigenvalue Edge Indicator 

Using the calculated eigenvalues 1  and 2 , the difference eigenvalue edge indicator 

is defined as  

)),(()()( 121 yxfwfI                       (4.7) 

where )),(( yxfw  is weighting parameter, which is used to achieve a balance between 

detail enhancement and noise suppression, defined by  

)min()max(

)min(),(
)),((

22

22











yx
yxfw                  (4.8) 

2  is the average gray-level variance of ),( yxf , which can be calculated from its 

3×3 neighborhood 


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i i

yxfjyixfyx              (4.9) 

Among the nine values, the maximum and minimum values are defined as )max( 2  

and )min( 2 , respectively.   is a constant. 

   In edge areas, 1  is large and 2  is small, thus 21    is large, giving a large 

)( fI ; while in homogeneous areas, the values of 1  and 2  are both small and 

similar, thus giving a small )( fI . As can be seen from the behavior analysis of the 

difference eigenvalue edge indicator, edge information and homogeneous area could be 

distinguished effectively. 

4.2.3  Threshold for Selection of Homogeneous Blocks 

Based on the behavior analysis of the difference eigenvalue edge indicator, a threshold 

is further needed which is used to distinguish that where is homogeneous and where is 

edge information. Experiment results show that the value 20 is a good choice, 

especially for the fine texture images. Thus, the pixels, of which the indicator value 

)( fI  is larger than 20, are considered as the edge information (see (4.10)). 
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
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


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rejected,20)(

fI

fI
                       (4.10) 

For the general noise estimation process, we first separate an image into many 

overlapping blocks with 5×5 pixels (For example, for an image with the size 256×256, 

there are 252×252 overlapping blocks with 5×5 pixels.), and then using the proposed 

threshold, only the blocks without edge information are selected. Last, variances of the 

pixel values in the selected blocks are averaged to estimate the global noise variance 

(see (4.11)). 
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                      (4.11) 

where, 
2

sB  is the variance of the selected homogeneous blocks, and m is the number 

of the selected blocks. 

 

4.3  Experimental Results 

 

As well known, the most challenging part for the structure-based noise estimation is 

how to distinguish where is the noise information and where is the image structure 

information. When the original image is relatively simple without much edge 

information, most algorithms perform similarly, estimating the noise variance well for 

range of noise levels [82]. However, when using a more complex image, with a lot of 

textured areas, the results change. For the most common case, part of edge information 

is also organized as the noise information. And the noise variance tends to be 

overestimated. Thus, in this Chapter, we only select the fine texture images (see Figure  
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(a)                                  (b)  

 

 

(c) 

 

 

Figure 4.1  Fine texture images used for experiments 

(a) Bridge, (b) Baboon, (c) Arial 
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4.1) for results comparison in order to show the significant improvement of the 

proposed method on rejecting the edge information. The original method in [52] is used 

for the comparison since it is also a structure-based method similar with the proposed 

method using different filter for block selection process. 

To evaluate the performance of the proposed algorithm, the averages of noise 

standard deviation are first calculated to indicate the accuracy of the estimation (see 

(4.12)), and then, the averages of estimation errors are computed to check the stability 

(see (4.13)) of every noise level: 

n

n








ˆ

ˆ                               (4.12) 

where ̂  is the noise standard estimation result of a certain image and one estimation, 

n is the number of estimations. 

n

n

T

E

 








ˆˆ

                          (4.13) 

where T̂  is the true noise standard deviation value and 


E  is the average 

estimation error. 

4.3.1  Results of Homogeneous Pixels Selection 

First, Experiment results of homogeneous pixels selection are shown in Figures 4.2, 4.3 

and 4.4. We take the noise level 20  as an example (see Figures 4.2(a), 4.3(a) and 

4.4(a)). We select the homogeneous area from the noisy images using the threshold 

based difference eigenvalue edge detector. And the corresponding results are shown in 

Figures 4.2(b), 4.3(b) and 4.4(b), respectively. As can be seen, the performance is 

effective and only the homogeneous pixels are selected (white color pixels) with the 

edge information well rejected. And this leads to the more accuracy estimation results 

reported in Section 4.3.2. 
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(a) 

 

 
(b) 

 

 

Figure 4.2  Noisy image - Bridge ( 20 ) and the selected pixels for noise estimation:      

(a) Noisy image: Bridge (b) Selected homogeneous pixels (white pixels) 
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(a) 

 

 
(b) 

 

 

Figure 4.3 Noisy image - Baboon ( 20 ) and the selected pixels for noise estimation:      

(a) Noisy image: Baboon (b) Selected homogeneous pixels (white pixels) 
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(a) 

 

 
(b) 

 

 

Figure 4.4  Noisy image - Arial ( 20 ) and the selected pixels for noise estimation:           

(a) Noisy image: Arial (b) Selected homogeneous pixels (white pixels) 



 

 68 

4.3.2  Comparison Results 

Comparison results using three images are shown in Figures 4.5, 4.6 and 4.7, 

respectively.  

In Figures 4.5(a), 4.6(a) and 4.7(a), the black line ‘true’ corresponds to the true data 

of the noise standard deviation, that is, estimation without error. This is used to describe 

the distance between the estimated results and true data. As shown in Figures 4.5(a), 

4.6(a) and 4.7(a), the estimated results for the proposed masks outperform the original 

ones for most noise levels and the estimation results of ‘Arial’ from 15 to 30 is quite 

similar to the true data (see Figure 4.7(a)).  

   The estimation error for the proposed method is lower significantly for most noise 

levels other than the similar result at 20 dB (see Figures 4.5(b), 4.6(b) and 4.7(b)). 

 

4.4  Summary 

 

We proposed a reliable method for noise variance estimation in noisy images. This 

method utilized the difference eigenvalue edge indicator adding a proper threshold to 

select the homogeneous areas in the noisy image. Only the blocks including only 

homogeneous pixels were used for the next averaging step. The proposed method 

outstood the original method significantly and reveals better stability for estimation at 

most noise levels. Experiments with fine texture images were described. Experimental 

results demonstrated that our method is feasible and effective for noise variance 

estimation, especially for fine texture images. 
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Figure 4.5  Comparison of original method and proposed method using ‘Bridge’ 

(a) Average of estimation results, (b) Average of estimation error 
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Figure 4.6  Comparison of original method and proposed method using ‘Baboon’: 

(a) Average of estimation results, (b) Average of estimation error 
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Figure 4.7  Comparison of original method and proposed method using ‘Arial’: 

(a) Average of estimation results, (b) Average of estimation error 
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5  Conclusions 
 

 

This Chapter concludes the thesis with a summary of our work. The future research is 

also stated in this Chapter. 

 

5.1  Summary of the Research 

 

The technique of blind image restoration estimating both the true image and the blur 

from degraded image has been researched in recent years. However, when taking noise 

into account, the estimation problem becomes more challenging. Estimating the blue 

and noise parameters simultaneously may cause a large estimation error. 

Thus, in order to minimize the estimation error, we proposed a Maximum- 

Likelihood Estimation Algorithm based on noise variance estimation. Different from the 

original method, this method separates the estimation parameters into three parts, and 

estimates the noise variance not using the estimated blur coefficients but using the 

known degraded image. This improves the estimation accuracy significantly and leads 

to the higher PSNR of the final restoration results. 

   Since the noise estimation process is a very important task for the previous 

restoration method of this thesis, we further proposed a structure-based method from the 

degraded image for better results of noise variance estimation. This method separates an 

image into blocks. Rejecting the edge included block, only homogenous blocks are 

selected for the noise estimation process. 

Comparing several filters for the homogenous blocks selection in one image, we 

finally find that image details can be better revealed by second-order operators. Thus, 

Chapter 5 
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for better results of noise estimation, we further proposed a difference eigenvalue based 

edge indicator with threshold for more accurate block selection, which leads to the 

better noise estimation results. 

   After embedding the proposed noise variance estimation into the image restoration, 

we can see some improvements. Firstly, the original ML method can only provide the 

accurate estimation results of blur and noise parameters for the case of middle size of 

blur. As described in the Chapter 2, noise variance is calculated using the estimated blur 

parameters. Thus, the error of noise estimation tends to be amplified by the error of blur 

estimation. But the embedded noise estimation methods estimating the noise variance 

only using the degraded image in Chapters 3 and 4 change this situation. As a result, the 

noise estimation is robust for both heavy and light blur conditions. Better estimations 

lead to the better restoration results obviously. Secondly, we have better choice for 

restoration of different kinds of images. For example, for the homogenous or lightly 

noisy images, we can select the proposed ML method embedding the noise estimation 

method in Chapter 3; else, for the fine texture or heavily noisy image, we can select the 

ML method embedding the noise estimation method in Chapter 4, respectively.  

   Furthermore, we notice that the noise estimation methods shown in Chapters 3 and 4 

can also be used independently. Since noise estimation is also an important issue for 

image processing and can be used as an essential preprocessing in many image 

processing systems, it is expected that the noise estimation methods in Chapters 3 and 4 

play an important role to improve the performance of image processing systems. 

 

5.2  Future Works 

 

The research in this thesis has led to some interesting developments in blind image 

deconvolution and noise estimation. However, some problems still exist. The image 

restoration method in Chapter 2 is an iteration method, which depends on proper initial 

values. The two noise estimation methods in Chapters 3 and 4 have different property. 

The method in Chapter 3 is more effective to the good quality images, while the method 

in Chapter 4 is more effective to the fine texture images. Therefore, we believe that a 

well engineered solution of these problems will most likely be formed in the future.  
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