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Abstract

Let G be a finite group and H a subgroup. We give an algebraic proof of Mislin’s
theorem which states that the restriction map from G to H on mod-p cohomology is
an isomorphism if and only if H controls p-fusion in G. We follow the approach of P.
Symonds (Bull. London Math. Soc. 36 (2004) 623-632) and consider the cohomology
of trivial source modules.
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1 Introduction

Let G be a finite group and k an algebraically closed field of characteristic
p > 0. In [13], P. Symonds proved the following.

Theorem 1.1 ([13, Theorem 4.1]) As an inflation functor, the cohomol-
ogy H∗(−, k) contains every simple cohomological inflation functor as a com-
position factor.

Using this result, he proved the following theorem of G. Mislin [7] for finite
groups.

Theorem 1.2 ([7, Theorem], [11, Theorem 1.1], [13, Theorem 1.1]) Let
H be a subgroup of G containing a Sylow p-subgroup of G. Then the following
are equivalent.
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(1) The restriction

resG,H : H∗(G, k) −→ H∗(H, k)

is an isomorphism.
(2) If xQ ⊆ H then x ∈ HCG(Q), for any x ∈ G and p-subgroup Q ≤ H.

The original result of Mislin is proved for compact Lie groups. The proof
in [11] and Symonds’ proof of Theorem 1.1 use also results from topology.
The purpose of this paper is to give an algebraic proof of Theorem 1.2 using
modular representation theory of finite groups.

Let G be a finite group. Then Hn(−, k) is a cohomological Mackey functor
for G. The simple cohomological Mackey functors are classified in [15], [16].
They are parametrized by pairs (P, V ), where P is a p-subgroup of G and V
is a simple k(NG(P )/P )-module (up to conjugation and isomorphism). The
following result is obtained from Theorem 1.1 immediately. The “ only if ” part
comes from the fact that if SG

P,V appears as a compostion factor of Hn(−, k) for
some n, then CG(P ) acts trivially on SG

P,V (P ) = V since CG(P ) acts trivially
on Hn(P, k).

Theorem 1.3 ([13, Corollary 4.2]) Let P be a p-subgroup of G and V a
simple k(NG(P )/P )-module. Then the simple Mackey functor SG

P,V appears in
Hn(−, k) as a composition factor for some n ≥ 0 if and only if CG(P ) acts
trivially on V .

Actually we can prove Theorem 1.2 using only Theorem 1.3, see section 2. On
the other hand, Theorem 1.3 is equivalent to a condition on the cohomology of
a trivial source module. Let M be an indecomposable trivial source kG-module
with vertex P . Then the Green correspondent of M in NG(P ) is a projective
cover of some simple kNG(P )-module V as a k(NG(P )/P )-module. We denote
the trivial source module M by MG

P,V . Then Theorem 1.3 is equivalent to the
following.

Theorem 1.4 ([13, Theorem 5.3]) Let P be a p-subgroup of G and V a
simple k(NG(P )/P )-module. Then H∗(G, MG

P,V ) �= 0 if and only if CG(P )
acts on trivially on V .

We prove Theorem 1.4 in section 4. To reduce the problem to some local
subgroup of G, we need a result of Benson [3], which says that every periodic
module is induced from some subgroup. In [8], T. Okuyama gives an algebraic
proof of Theorem 1.4 independently. Some related results are obtained in [1],
[10].

Let H be a subgroup of G and M a kG-module. We denote by M ↓H the
restriction of M to H . If N is a kH-module, we denote by N ↑G the induced
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kG-module. Let M and N be kG-modules. Let

Êxt n
kG(M, N) = Extn

kG(M, N)

for n > 0 and

Êxt0
kG(M, N) = HomkG(M, N)/PHomkG(M, N)

where PHomkG(M, N) is the set of all kG-homomorphisms which factor through
projective modules. Let

Êxt∗kG(M, N) =
⊕
n≥0

Êxtn
kG(M, N).

It is possible to consider Êxtn
kG(M, N) for n < 0, but we need only the non-

negative part.

2 Mackey functor and fusion

In this section, we review the results of Symonds [13, section 3 and section 5].
Here we consider only Mackey functors for a finite group G though Symonds
considered inflation functors and global Mackey functors. Fix a p-subgroup Q
of G. Let

MQ = IndG
NG(Q)Inf

NG(Q)
NG(Q)/QFQk(NG(Q)/QCG(Q))

where FQk(NG(Q)/QCG(Q)) is the fixed quotient functor for the k(NG(Q)/Q)-
module k(NG(Q)/QCG(Q)). Then MQ is a cohomological Mackey functor,
since the fixed quotient functor FQk(NG(Q)/QCG(Q)) is, and the subsequent op-
erations used to construct MQ preserve cohomological Mackey functors [16,
(16.2) Lemma, (16.6) Corollary, (16.13) Lemma].

Theorem 2.1 Let P be a p-subgroup of G and V a simple k(NG(P )/P )-
module.
(1) If the Mackey functor MQ contains the simple Mackey functor SG

P,V as a
composition factor, then CG(P ) acts trivially on V .
(2) If CG(P ) acts trivially on V then MP contains the simple Mackey functor
SG

P,V .

PROOF. (1) Let N = NG(Q), N̄ = N/Q and C = CG(Q). Suppose that
the Mackey functor MQ contains SG

P,V as a composition factor. Let W be the
projective cover of V as a k(NG(P )/P )-module. Then the injective hull of
SG

P,V as a cohomological Mackey functor is a direct summand of FQW↑G by
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[16, (16.12) Corollary]. Then

0 �= HomMackk(G)(IndG
N InfN

N̄FQk(N/QC), FQW↑G)

∼= HomMackk(N)(InfN
N̄FQk(N/QC), FQW↑G↓N

)

∼= HomMackk(N̄)(FQk(N/QC), (FQW↑G↓N
)−)

∼= HomkN̄(k(N/QC), (FQW↑G↓N
)−(Q/Q))

by [15, (4.2) Proposition, (5.1) Proposition, (6.1) Proposition], where − is the
right adjoint of the inflation functor. By the Mackey decomposition formula,

W ↑G↓N
∼=

⊕
g∈NG(P )\G/N

U(g)

where U(g) = gW ↓NG(gP )∩N↑N . If Q �⊆ gP , then (FQU(g))
−(Q/Q) = 0. On

the other hand, if Q ⊆ gP then (FQU(g))
−(Q/Q) = U(g). So there exists

g ∈ G such that Q ⊆ gP and

HomkN(k(N/QC), U(g)) �= 0.

Then
Homk(NG(gP )∩QC)(k, gW ↓(NG(gP )∩QC)) �= 0

and

HomkNG(P )(k(NG(P )/CG(P )), W ) ∼= HomkCG(P )(k, W ↓CG(P )) �= 0

since CG(gP ) ⊆ C. Hence CG(P ) acts trivially on V .
(2) Let N = NG(P ) and C = CG(P ). Since C acts trivally on V , there exists a
non-zero k(N/P )-morphism from k(N/PC) to V . By [15, (6.1) Proposition],
this gives a non-zero morphism of N/P -Mackey functors

FQk(N/PC) −→ FPV

whose image contains the socle S
N/P
1,V of FPV . Now applying the exact functor

IndG
N InfN

N/P shows that SG
P,V = IndG

N InfN
N/P S

N/P
1,V appears as a composition

factor of MP .

Let TG(Q, H) = {x ∈ G | xQ ⊆ H} for H ≤ G. Then the following result is
clear from the definition of MQ and [15, (4.3) Proposition].

Proposition 2.2 Let Q be a p-subgroup of G and Q ≤ H ≤ G. Then

dim MQ(H) = 1

if and only if
TG(Q, H) = HCG(Q).
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Now let explain how we can obtain Theorem 1.2 from Theorem 1.3 following
[13]. Assume that H ≤ G and H contains a Sylow p-subgroup of G. Then

resG,H : H∗(G, k) −→ H∗(H, k)

is an isomorphism if and only if

rG
H : SG

P,V (G) −→ SG
P,V (H)

is an isomorphism for any p-subgroup P and simple k(NG(P )/PCG(P ))-module
V by Theorem 1.3. On the other hand, these maps are isomorphisms if and
only if rG

H : MQ(G) −→ MQ(H) is an isomorphism for any p-subgroup Q by
Theorem 2.1. By Proposition 2.2, these maps are isomorphisms if and only if
TG(Q, H) = HCG(Q) for any p-subgroup Q of H .

Next we consider the cohomology of some trivial source modules. Let P be a p-
subgroup of G and V a simple k(NG(P )/P )-module. Let PV be the projective
cover of V as a k(NG(P )/P )-module. Let MG

P,V be the Green correspondent of
PV with respect to (G, NG(P ), P ). Then by [13, section 5], the simple Mackey
functor SG

P,V is a composition factor of Hn(−, k) if and only if Hn(G, MG
P,V ∗) �=

0 where V ∗ = Homk(V, k). Hence Theorem 1.3 is equivalent to Theorem 1.4.

3 Periodic modules

In this section we state some results on the cohomology and the variety of
kG-modules. If ζ ∈ Hn(G, k), then ζ is considered as a kG-homomorphism
Ωn(k) −→ k. Let Lζ be the kernel of this map if ζ �= 0. Set Lζ = Ωn(k)⊕Ω(k)
if ζ = 0. Then there exists a short exact sequence

0 −→ Lζ −→ Ωn(k) ⊕ (projective) −→ k −→ 0.

Let VG(k) be the maximal ideal spectrum of H∗(G, k). Let M be a finitely
generated kG-module. Let VG(M) be the homogeneous closed subset of VG(k)
defined by the annihilator of Ext∗kG(M, M) in H∗(G, k). This closed subset is
called the variety of M . Let ζ1, . . . , ζm be homogeneous elements in H∗(G, k).
We denote by VG(ζ1, . . . , ζm) the closed subset defined by the ideal (ζ1, . . . , ζm).
It is known that VG(⊗m

i=1Lζi
) = VG(ζ1, . . . , ζm). For details, see [2, Chapter 5].

We need the following result in the next section. Note that the proof of this
Proposition in [3] uses Rickard’s idempotent module [9] which is not finitely
generated.

Proposition 3.1 ([3, Corollary 3.2]) Let E be a subgroup of order p in G
and H = NG(E). Let l̃ = res∗G,E(VE(k)) and l = res∗H,E(VE(k)). Let M be
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a kG-module with VG(M) = l̃. If M ↓H= X ⊕ Y where VH(X) = l and
VH(Y ) ∩ l = {0}, then

X ↑G∼= M ⊕ Z

for some projective module Z.

4 Cohomology of trivial source modules

In this section we prove Theorem 1.4. We prove the “ if ” part since the “ only
if ” part follows from the fact that CG(P ) acts trivially on Hn(P, k).

Lemma 4.1 Let P be a p-subgroup of G and V a simple k(NG(P )/PCG(P ))-
module. If G ≥ H ≥ P , then there exists a simple k(NH(P )/PCH(P ))-module
V ′ such that MH

P,V ′ is a direct summand of MG
P,V as a kH-module.

PROOF. Let PV be a projective cover of V as a k(NG(P )/P )-module. There
exists a composition factor V ′ of V ↓NH(P ) such that

HomNH(P )((PV ) ↓NH(P ), V
′) �= 0.

Then V ′ is a k(NH(P )/PCH(P ))-module and PV ′ is a direct summand of
PV ↓NH(P ), where PV ′ is a projective cover of V ′ as a k(NH(P )/P )-module.
So, PV ′ is a direct summand of U ↓NH(P ) for some indecomposable direct
summand U of MG

P,V ↓H . Then U ∼= MH
P,V ′ by Burry-Carlson-Puig theorem

[14, Exercise (20.5)].

Next we prove some results on the module Lζ .

Lemma 4.2 Let X and Y be kG-modules. Let ζ ∈ Hn(G, k).
(1) If Êxt∗kG(X, Y ) = 0, then Êxt∗kG(X ⊗ Lζ , Y ) = 0.

(2) Let I be a prime ideal of H∗(G, k) and ζ ∈ I. If ann Êxt∗kG(X, Y ), the
annihilator of Êxt∗kG(X, Y ) in H∗(G, k), is contained in I, then

ann Êxt∗kG(X ⊗ Lζ , Y ) ⊆ I.

PROOF. (1) By the long exact sequence of cohomology, we have the following
exact sequence,

Êxti
kG(Ωn(X), Y ) −→ Êxti

kG(X ⊗ Lζ , Y ) −→ Êxti+1
kG (X, Y )

for any i ≥ 0. Then the result follows since Êxti
kG(Ωn(X), Y ) ∼= Êxti+n

kG (X, Y ).
(2) Let A = H∗(G, k) and B = Êxt∗kG(X, Y ). Since there exists an exact
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sequence,

Êxti
kG(X, Y ) −→ Êxti+n

kG (X, Y ) −→ Êxti
kG(X ⊗ Lζ , Y )

we have ann Êxt∗kG(X⊗Lζ , Y ) ⊆
√

annAB/ζB. If annAB/ζB is not contained

in I, then BI = (ζB)I and BI = IBI since ζ ∈ I, where BI is the localization
of B with respect to I. Hence BI = 0 but this contradicts the assumption that
annAB ⊆ I.

Let A be a k-algebra and B an A-module. We say an element a ∈ A is B-
regular if B �= 0 and ab �= 0 for any nonzero element b ∈ B.

Lemma 4.3 Let E be a subgroup of order p in the center of G and ζ ∈
Hm(G, k). Let M be a k(G/E)-module. Suppose that H∗(G, M) �= 0. If resG,E(ζ)
is not nilpotent, then ζ is H∗(G, M)-regular.

PROOF. This lemma is proved using the argument in [6, Proof of Theorem
10.3.1]. It is also proved in [5, Proposition 4] for M = k. We include the proof
using the method in [5, Proposition 4].

Let v ∈ Hn(G, M). Assume that v �= 0 and ζv = 0. Let

µ∗
1 : H∗(G, k) −→ H∗(E, k) ⊗ H∗(G, k)

µ∗
2 : H∗(G, M) −→ H∗(E, k) ⊗ H∗(G, M)

be the homomorphisms induced by the multiplication µ : E × G −→ G in G.
Then

µ∗
1(ζ) = resG,E(ζ) ⊗ 1 + ζ̃

µ∗
2(v) =

∑
vj

where ζ̃ ∈ ∑m
i=1 Hm−i(E, k)⊗H i(G, k) and vj ∈ Hn−j(E, k)⊗Hj(G, M). Take

a minimal k such that vk �= 0. Then

0 = µ∗
2(ζv) = (resG,E(ζ) ⊗ 1)vk + w

with w ∈ H∗(E, k) ⊗ (⊕j>kH
j(G, M)). Hence resG,E(ζ) is a divisor of 0 in

H∗(E, k). This is a contradiction since E is a cyclic group.

Corollary 4.4 Let P be a p-subgroup of G and E a subgroup of order p in
the center of P . Let M be a P -projective kG-module. Suppose that E acts on
M trivially and H∗(G, M) �= 0. Let ζ ∈ H∗(G, k). If resG,E(ζ) is not nilpotent,

then ζ is H∗(G, M)-regular. In particular, ann H∗(G, M) ⊆
√

Ker resG,E.
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PROOF. Since M is P -projective, the restriction

resG,E : H∗(G, M) −→ H∗(P, M)

is injective. Hence the result follows from Lemma 4.3.

Now we prove Theorem 1.4 by induction on the order of G. Let P be a
p-subgroup of G and V a simple k(NG(P )/PCG(P ))-module. Note that if
P = 1, then MG

P,V is the projective cover of the simple kG-module V . Then
H∗(G, MG

P,V ) = H0(G, MG
P,V ). This is non-zero if and only if V is the trivial

module. In the rest of this section, we assume that P �= 1. Let E be a subgroup
of order p in the center of P . First, we consider the case G = CG(E).

Proposition 4.5 If G = CG(E), then H∗(G, MG
P,V ) �= 0.

PROOF. The following argument is based on the idea of [12]. Let M =

MG
P,V . Then M ∼= M

G/E
P/E,V as k(G/E)-modules since E is central in G. By

induction, we may assume that H∗(G/E, M) �= 0. Take minimal n ≥ 0 such
that Hn(G/E, M) �= 0. Consider the spectral sequence,

Epq
2 = Hp(G/E, Hq(E, M)) ∼= Hp(G/E, M) ⊗ Hq(E, k) ⇒ Hp+q(G, M).

If p < n then Epq
2 = 0 for any q ≥ 0 since Hp(G/E, M) = 0. Hence En0

∞ ∼=
En0

2 = Hn(G/E, M) �= 0.

Let H = NG(E) and C = CG(E). Then H/C is a cyclic group of order prime to
p and H/C acts on H∗(C, k). We have the following result which is analogous
to [4, Lemma 6.7].

Lemma 4.6 There exists ζ ∈ H∗(C, k) such that resC,E(ζ) is not nilpotent
and the one dimensional subspace kζ affords a faithful representation of H/C.

PROOF. Let ξ(�= 0) ∈ H2(E, k). We can construct, using Evens norm map,
a homogeneous element ζ0 ∈ Hm(C, k) such that resC,E(ζ0) = ξpa

for some
a ≥ 0 ([2, Lemma 5.6.2]). Let Jm = Ker resC,E ∩ Hm(C, k). Then H/C acts
on Hm(C, k)/Jm = k(ζ0 + Jm) faithfully. The short exact sequence

0 −→ Jm −→ Hm(C, k) −→ k(ζ0 + Jm) −→ 0

splits as a sequence of k(H/C)-modules. So there exists ζ ∈ Hm(C, k) such
that ζ /∈ Jm and kζ affords a faithful representation of (H/C).

Proposition 4.7 If G = NG(E), then H∗(G, MG
P,V ) �= 0.
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PROOF. Let M = MG
P,V and C = CG(E). By Lemma 4.1, there exists a

simple k(NC(P )/PCC(P ))-module V ′ such that MC
P,V ′ is a direct summand

of M ↓C . By Proposition 4.5, we have H∗(C, M) �= 0. There exists v(�= 0) ∈
H∗(C, M) such that the one dimensional subspace kv is G/C invariant. Let
ζ ∈ H∗(C, k) as in Lemma 4.6. Then ζ is H∗(C, M)-regular by Lemma 4.3 and
ζbv is G/C invariant for some b ≥ 0. Hence H∗(G, M) ∼= H∗(C, M)G/C �= 0.

Finally we consider the general case. Let H = NG(E) and C = CG(E).

Let ζ1, . . . , ζm be a homogeneous generating set of
√

Ker resG,E. Let l̃ =

res∗G,E(VE(k)) and l = res∗H,E(VE(k)). Consider the tensor product L = ⊗m
i=1Lζi

.

Then VG(L) = l̃. We can decompose L ↓H as L ↓H
∼= X ⊕ Y where VH(X) = l

and VH(Y ) ∩ l = {0}. Then by Proposition 3.1,

L ⊕ (projective) ∼= X ↑G .

Let ηi = resG,H(ζi). There exists η0 ∈ H∗(H, k) such that VH(η0, η1, . . . , ηm) =
l and VH(Y ) ∩ VH(η0) = {0}. Then Y ⊗ Lη0 is projective since

VH(Y ⊗ Lη0) = VH(Y ) ∩ VH(Lη0) = {0}

(see [2, Theorem 5.1.1]). We may assume that η0Ext∗kH(X, X) = 0 since some
power of η0 annihilates Ext∗kH(X, X). Then, modulo projectives,

⊗
i≥0

Lηi
∼= (X ⊕ Y ) ⊗ Lη0

∼= X ⊗ Lη0
∼= Ω(X) ⊕ Ωn(X)

for some n ≥ 0 by [2, Proposition 5.9.5].

Proposition 4.8 H∗(G, MG
P,V ) �= 0.

PROOF. By Lemma 4.1, there exists a simple k(NH(P )/PCH(P ))-module
V ′ such that MH

P,V ′ is a direct summand of MG
P,V ↓H . Let M = MG

P,V and

M ′ = MH
P,V ′. Then H∗(H, M ′) �= 0 by Proposition 4.7. Let I =

√
Ker resH,E =√

(η0, η1, . . . , ηm). Then annH∗(H,k)H
∗(H, M ′) ⊆ I by Corollary 4.4. So

annH∗(H,k)Êxt∗kH(X, M ′) ⊆ annH∗(H,k)Êxt
∗
kH(

⊗
i≥0

Lηi
, M ′) ⊆ I

by Lemma 4.2 (2). In particular Êxt∗kH(X, M ′) �= 0 thus

Êxt∗kG(L, M) ∼= Êxt∗kG(X ↑G, M) ∼= Êxt∗kH(X, M) �= 0.

Then H∗(G, M) �= 0 by repeated application of Lemma 4.2 (1) for Y = M ,
starting with X = k, since L = Lζ1 ⊗ · · · ⊗ Lζm . This completes the proof.
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