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Abstract

Symmetry breaking by perturbations in the AdS/CFT correspon-
dence is discussed. Perturbations of vector fields to the AdSs x S? so-
lution of the six-dimensional N' = (4,4) supergravity are considered.
These perturbations are identified as descendents of chiral primary oper-
ators of a two-dimensional NV = (4,4) CFT with conformal weight (2, 2)

r (1,1). We examine unbroken symmetries by the perturbations in the
CFT side as well as in the supergravity side and find the same result:
the N = (4,2) or N = (2,4) Poincaré supersymmetry for the (2,2) per-
turbation and the NV = (0,4) or N' = (4,0) superconformal symmetry
for the (1,1) perturbation.
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1. Introduction

In the original context of the AdS/CFT correspondence [1, 2, 3| string theories
or supergravities in the AdS space describe field theories on the boundary with the
conformal symmetry and a large extended supersymmetry. (For a review, see ref.
[4].) To apply it to more realistic models one has to consider theories with lower
supersymmetries. One should understand supersymmetry breaking in both of the
supergravity side and the field theory side.

One of the approaches to obtain the AdS/CFT correspondence for lower super-
symmetric cases is to modify AdS solutions of supergravities by adding a perturba-
tion. In ref. [5], for instance, a perturbation of the three-form flux was added to the
AdSs x S° solution, which breaks N = 4 supersymmetry to N’ = 1. The perturba-
tion is a solution of the linearized field equation around the AdSs x S° background.
This perturbation corresponds to fermion mass terms of the three NV = 1 chiral
multiplets in the N’ = 4 super Yang-Mills theory and polarizes D3-branes into 5-
branes [6, 7]. It is easy to see how these mass terms break the supersymmetry in
the field theory side. Furthermore, supersymmetry breaking by the perturbation
was also studied in the supergravity side [8, 9] by examining supertransformations
of the fermionic fields. The results of supersymmetry breaking are consistent in the
field theory side and in the supergravity side.

A similar supersymmetry breaking by a perturbation was discussed for a two-
dimensional CFT and its dual supergravity solution. In ref. [10] solutions of the
linearized field equations of vector fields around the AdS; x S? solution of the
six-dimensional N = (4,4) supergravity were obtained. This six-dimensional super-
gravity is an effective theory of the type IIB superstring compactified on T* with
the size of T* much smaller than those of AdS; and S3. By adding these solutions of
vector fields as a perturbation the N' = (4,4) superconformal symmetry of the two-
dimensional dual field theory is broken. A preliminary analysis in the supergravity
side showed that there are cases in which it is broken to N/ = (4,0). In contrast
to the above AdSs x S° case the physical meaning of the perturbations in the field
theory side is not clear in this case. By this reason supersymmetry breaking in the
field theory side was not studied in ref. [10].

The purpose of the present paper is to study supersymmetry breaking by the
perturbations in this model in more detail. We first identify operators of the two-
dimensional CFT corresponding to the perturbations of the supergravity solution.



The relation between operators of the CFT and linearized solutions of the super-
gravity was studied in refs. [11, 12, 13, 14]. We use these results to find that the
perturbations correspond to certain descendents of chiral primary operators of the
N = (4,4) superconformal field theory, which have conformal weight (h, h) = (2, 2)
or (1,1). We then examine breaking of supersymmetry as as well as of bosonic
symmetries by perturbations of these operators in the CFT side. We find that the
unbroken symmetry is the N' = (4,2) or N = (2,4) Poincaré supersymmetry for
the (2,2) perturbation, while it is the A" = (0,4) or N' = (4,0) superconformal
symmetry for the (1,1) perturbation. Finally, we examine symmetry breaking in
the supergravity side by studying supertransformations of the fermionic fields. The
unbroken symmetries are in complete agreement with those in the CFT side. The

result in this paper may be regarded as another non-trivial evidence in support of
the AdS/CFT correspondence.

In the next section we review the AdS; x S? solution of the six-dimensional
N = (4,4) supergravity and its symmetries. In sect. 3 we give the perturbations
around this solution obtained in ref. [10]. In sect. 4 we first identify operators in the
CF'T corresponding to these perturbations. Then, we examine unbroken symmetries
by the perturbations in the CFT side. In sect. 5 we examine unbroken symmetries in
the supergravity side and show that they precisely coincide with those in the CFT
side. In Appendix we give our conventions of SO(4) and SO(5) gamma matrices
used in the text.

2. AdS; x S? background

We first recall the AdS; x S? solution of the six-dimensional supergravity. The
six-dimensional N' = (4, 4) supergravity [15, 16] has a rigid SO(5,5) symmetry and
a local SO(5) x SO(5) symmetry. The field content of the theory is a vielbein ey,
i’
eight Rarita-Schwinger fields v, prq, ¥_nq and 40 spinor fields Xiea, X—aa- The

five antisymmetric tensor fields Bjjy, 16 vector fields Aﬁ/’} , 25 scalar fields ¢

indices M, N, --- and M, N, are six-dimensional world and local Lorentz indices,
respectively. Other indices take values m,a,a =1,---,5and i, i,, & = 1,---,4. A
pair of indices fiji represent a spinor index of SO(5,5), while a,a and «, & represent
vector and spinor indices of SO(5) x SO(5), respectively. The field strengths of the
antisymmetric tensor fields and their duals belong to 10 of SO(5,5). The fermionic



fields are SO(5)-symplectic Majorana-Weyl spinors and the signs on the fields denote
the chiralities. The scalar fields take values on the coset space SO(5,5)/(SO(5) x
SO(5)).

We are only interested in the fields ey, By y and A’ﬁ‘ and set other fields to
zero except qﬁgg = 5352‘. By this scalar field background the rigid SO(5,5) and local
SO(5) x SO(5) symmetries are broken to a rigid SO(5) x SO(5) symmetry, and the
indices i and «, fi and & are identified, respectively. The local supertransformation
of the fermionic fields [16]* in this background becomes

1. 3 ;1 -
0ipra = Dyr€ia + fHJrMNP(%)aBFNqu + ZGMNaﬁ'FN& — fGNPa/@-FMNpeé,

4 8
1 . ; 3 1
0Y_ne = Due_g — ZHfMNp(%)aﬁTNPE,B + ZGMNﬁdFNEf- - gGNP,BdFMNPEE-a
1 | .
OX+aa = —EHJraMNPFMNP&a — ZGMNﬁdFMN€+<7a)a67
1 1 . ;
OX—ta = EH—aMNPFMNPE-&-Oz - EGMNO{BFMN& (va)a”, (2.1)

where the transformation parameter e, and e_, are SO(5)-symplectic Majorana-
Weyl spinors. '™ are gamma matrices of the six-dimensional Lorentz group SO(1,5),
while 7%, 4% are those of SO(5) x SO(5). The field strengths of the tensor and vector
fields are defined as

m m 3 ad m 3 ad m 3
Hyinp :38[MBNP]+§G[MNAP]M(7 )aﬂ_§ [MNAP]aB(V )c‘vﬂv

T = 200 A%, (22)
H¢ and H? are self-dual and anti self-dual part of H™ with m = a or m = ¢, and

transform as (5,1) and (1,5) under the rigid SO(5) x SO(5) respectively. GS%y
satisfies a doubly-symplectic reality condition

(G3)" = (2 Dag(Q s Gty (2.3)

where Q% and Q% are antisymmetric SO(5) charge conjugation matrices (See Ap-
pendix.).

* There are several misprints in ref. [16]. The left-hand sides of eq. (17) should be H}" ,,  p- The

right-hand side of the first equation of eq. (24) should be F'™ —H 1y —H{" . There should be a minus
sign on the right-hand side of the third equation of eq. (24). The coefficient of the fifth term of eq.
(21) should not be —4i but —3i. The eighth term of eq. (21) should be —1(F¢ - H§, + F* - H{ ).
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The AdS; x S? solution has a metric

ds® = Z(r) 'da"dx"n,, + Z(r)dx'dz’ 5,
= Z(r) " 'datda¥n,, + Z(r)dr* + R*dQ; (2.4)

and a self-dual field strength with non-vanishing components

Ha

%

= R’QS“ewxi, HYy = —7"’4R28“6ijklxl, (2.5)

where 72 = 2'z’, Z(r) = & and dQ} is the metric of $* of unit radius. We have

split the six-dimensional world index as M = (u,i) (u = 0,1; i = 2,3,4,5). The
antisymmetric €, and €;;,; are chosen as €y = +1 = €g345. S* is a constant vector
of unit length §°S% = 1. We choose S = 1 and §* = 0 (a = 1,2,3,4) without
losing generality. The constant parameter R denotes the radius of AdSs; and S3.
The metric (2.4) gives a vielbein and a spin connection as

e#’l = 552757 ei% = 5§Z%,
ﬁ’: x’L o o A7 xl So7 ron
Wy t= ﬁéuézlv Wi]k = _ﬁ(éiélk - 5555)7 (26)
where f1, 7, - - - and 7, }, -+ - denote local Lorentz indices. It is convenient to decompose

the six-dimensional gamma matrices I'V as

Fﬂ = ﬁﬂ®’74D7
' = 184, (2.7)

where 4% and 4 are gamma matrices of SO(1,1) and SO(4) respectively, and we
have defined

Jap = A%, b = YA Y. (2.8)
We use the explicit representations of the SO(4) gamma matrices given in Appendix.

The AdS; x S? solution (2.4), (2.5) has bosonic and fermionic symmetries. The
rigid SO(5) x SO(5) symmetry is broken to a rigid SO(4) x SO(5) by the non-
vanishing value of H{ oc §* in (5,1). The first factor SO(4) ~ SU(2) x SU(2)
corresponds to the automorphism group of the N' = (4,4) superconformal algebra
to be discussed in sect. 4, while the second factor SO(5) will not play important
role in the following discussion. The solution is also invariant under the isometry
of AdS3 x S?. The isometry of S* is SO(4) ~ SU(2) x SU(2), which acts on z' as
SO(4) rotations. This symmetry corresponds to the SU(2) x SU(2) generators J{,
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JI' in the N' = (4,4) superconformal algebra in sect. 4. The isometry of AdSs is
SO(2,2) ~ SO(2,1) x SO(2,1). It is generated by Killing vectors &M

1 R4 v 7 1 A
6= (= 00, € = —aig,, (29)
where (¥#(x") is an arbitrary vector satisfying
0,C Ny + 0uC N = 0,C N, 0,,0,0,¢” = 0. (2.10)

Thus, ¢* is a two-dimensional conformal Killing vector which is quadratic in z*.
This symmetry corresponds to Virasoro generators L, L, (m = =£1,0) in the
superconformal algebra.

Finally, supersymmetries preserved by this solution are given by the parameters
e_ = 0 and €, satisfying
1
Dyréra + ZHiMNP(%)aﬁFNP@rB = 0. (2.11)

This condition comes from the vanishing of the supertransformations of the fermionic
fields (2.1). Substituting eqs. (2.5), (2.6) into eq. (2.11) it becomes

I _
[au — ﬁ%ﬂ Yap(1 — Y2pVs) | €4 = 0,
[@' - LZ%D% - Lj?‘“(l - 721775)] € =0 (2.12)
212 2r2 ’

where 4" = %Zﬁ%, and 5 is the fifth matrix of the SO(5) gamma matrices 7,. The
general e, satisfying these equations is a sum of

() = o),

) _;T;;}/fpy,uaunﬁﬂr)’

e =rm),

e(j‘) = ;r%&f&”a,m(“), (2.13)

where the suffix (+) on e, and 7 denotes eigenvalues of 4p and 5. n&+) are
two-dimensional conformal Killing spinors

2
Nt @) = T+ —\/_e§++)x+,
V2
’]7(77) (:gi) = 6(() ) + 7\/_65 )xi, (214)



where % = %(mo + 21), and ;7 and **) are arbitrary constant spinors with

given 44p and s eigenvalues. Note that n**) must be linear in z*.

The boundary of AdS; at infinity, on which the CFT is defined, is a cylinder.
We will use the coordinates of the cylinder when we discuss the CF'T in sect. 4. To
compare the supergravity side and the CFT side we need a relation between the
coordinates z* in eq. (2.4) and the coordinates of the cylinder 7, 0 (—oo < 7 < 00,
0 < o < 27), which is given by (see, e.g. ref. [4])

ei(Tﬂ:O') R + Z(:UO + 93'1)

= ) 2.15
R — (20 £+ 21) (2.15)

Going to the Euclidean signature this relation becomes

1+w
= 2.16
Tiow (2.16)
where 1

z =BT, w = E(tE +ixt), (2.17)

and 7p = i7, tgp = iz" are Euclidean time coordinates. In terms of the coordinate z
the conformal Killing spinors (2.14) become

1

() = =1+ 2)el™ + —=i(1 — 2)el ™,

1
\/§Z
nE) = (14 2)el ) 4 (1 — 2)el ), (2.18)

V2 V2

where we have used the fact that n**) transforms as a primary field of weight —1

-5

under the conformal transformation (2.16) in the same way as for superconformal

ghosts in the superstring [17]. From the expression (2.18) we see that the parameters

e(()++) and eg++) correspond to combinations of the supercharges G_ 1+ G 1 and

G_ 1— G 1 in the superconformal algebra in sect. 4 respectively. Similarly, e(()__)

=) correspond to C;'_% + G% and CNT’_% — é% respectively.

and

3. Perturbations in supergravity

In ref. [10] perturbations of the vector fields were obtained which satisfy the
linearized field equations around the AdS; x S? solution (2.4), (2.5). We consider

7



the linear order in these perturbations. There is no back reaction to other fields to
this order.

To show the perturbations we introduce self-dual and anti self-dual two-forms

Ty = 5T;dx' A da? satisfying
>|<4T2 = :i:TQ, (31)
where *, is the Hodge dual for the flat metric d,;. The general forms of these

two-forms are

Ty = mydz' A dz* + madz' A d2? + ms(dzt A dz' — d2? A dZ?) (3.2)
for the self-dual case and

Ty = mydz A dz? + modz' A dZ? + mg(dz' A dz' + d2? A dZ?). (3.3)

for the anti self-dual case, where m, mo, mg are constant coefficients and we have
introduced the complex coordinates

1 1
2= — (2 +izh), 22 = — (23 4 ixP). 3.4
7t ) 7 ) (3.4)
Under the isometry SU(2) x SU(2) of S* these two-forms transform as (3, 1) and (1,
3) respectively. In particular, the m; terms in eqgs. (3.2), (3.3) represent the highest

weight state of each SU(2). We also define a two-form V3 from 75 with components

l’k

Vij = ﬁ(xiTkj + 2 Ti). (3.5)
The perturbations satisfying the field equations were given in terms of 75 and
Vy in ref. [10]. We give the field strengths Go of the vector fields in eq. (2.2). For

the self-dual case x4T5 = T5 there are two pairs of solutions

1
Gy = 5 12(1 =),
_ 1
Gy = Jr®(Ty = 3Va)(1 — 75) (3.6)

and

1
G = 57f4(T2 —2V3) (1 4 7). (3.7)



Similarly, for the anti self-dual case x,T5 = —T5, there are two pairs of solutions
Gyt = ;TQ(l +7s),
G5 = (T, — 3V)(1 4 75) (3.8)
and

1
G = §T72(T2 —Va)(1 =),

_ 1
G = o7 (T = 2V)(1 = %), (3.9)

By the reality condition of G;; (2.3) the coefficients of T, must satisfy
(M) = (Q Dap(Q Nagma”, (M%) = —(Q as(@ azms”.  (3.10)

For each pair Ggﬂ represents a perturbation in the CFT by a operator, while Gg_)
represents the vacuum expectation value of the operator [18, 19]. We will examine
symmetries preserved by Gg”.

4. Perturbations in CFT

The AdS3; x S* x T, supergravity background corresponds to a two-dimensional
N = (4,4) superconformal field theory [1]. This CFT is described as a deformation
of the supersymmetric sigma model with a target space T, /Sy [20, 21]. For details
of this theory see, e.g. ref. [22]. The perturbations of the supergravity solution
discussed in the previous section correspond to certain operators in the CFT. In
this section we identify these operators and examine unbroken symmetries by these
operators. We do not need the detailed properties of the operators but the fact that
they are operators corresponding to descendents of chiral primary states.

N = (4,4) superconformal field theories have two copies of the N' = 4 super
Virasoro algebra for the holomorphic and the anti-holomorphic parts. The N' = 4
super Virasoro algebra for the holomorphic part consists of Virasoro generators L,,,
SU(2) currents J! (I = 1,2,3) and supercharges GA4 (A = 1,2; A = 1,2). The
mode indices take values n € Z and r € Z + % corresponding to the anti-periodic



boundary condition on fermionic fields. The (anti-)commutation relations of this
algebra are

Ly, L) = (m —n)Lpyn + %m(m 1)dmtn.0,
(G4 GPBY = ABABL | (p ) AB(g1)AB T 4 % (7,2 B i) ABABg
L, g = e 7K K+ %ma”ammo,
LG = (gm =) G
(L, JE) = —nJ) o0,
T4, G = —;(UI)ABG%T, (4.1)
B y

where €42 and e? are antisymmetric in the indices with €!2 = 1 = €2, and (¢7)"p
are components of the Pauli matrices. We use €’s to raise and lower indices, e.g.
(01)AB = BC (o)A 4. For unitary representations the generators satisfy hermiticity

conditions

(L)) =L_,, (JOf=J (G2 = e4pe,,GPE. (4.2)

—n>

The NV = 4 super Virasoro algebra for the anti-holomorphic part has generators Ly,
JI"and GAA (A" =1,2"; A’ = 1',2), which satisfy the similar (anti-)commutation

relations and hermiticity conditions.

A chiral primary state |¢g) of the N’ = 4 superconformal algebra by definition
satisfies

where we have defined Ji* = J! +iJ2. Lo and J3 must have the same eigenvalue
1 1 3

J=0,5,1,5,---. One can construct descendent states by applying other generators
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on |¢o). A chiral primary state and its descendent states are grouped into highest
weight representations of the Virasoro and SU(2) Kac-Moody algebras. For j > 1
the corresponding highest weight states are

60)
1) = 6™ 160),

|p2) = (G?;Gl}; + ;leJ()) o) - (4.4)

The second term in |¢s) is needed so that |¢s) becomes a highest weight state of the
Virasoro and SU(2) Kac-Moody algebras. The eigenvalues of Ly and J3 for these
states are

L B
|0 J J
o) ity i
62) G+l -1

(4.5)

For j = 5 there exist only |¢) and ‘¢f>, and no |¢s).

In refs. [11, 12, 13, 14] the Kaluza-Klein spectrum of six-dimensional supergrav-
ities for the compactification on AdS; x S* was obtained and compared to the
spectrum of chiral primary states of two-dimensional superconformal field theories.
We can identify the perturbations (3.6)—(3.9) in this spectrum. The Kaluza-Klein
spectrum of the six-dimensional N' = (4,4) supergravity on AdS; x S? obtained in
ref. [13] is

P (m,m+2)s+ (m+2,m)g+4(m,m+ 1)g +4(m + 1, m)g]
m=2

+ P [6 s] +5(2,2)s. (4.6)

m=3
Here, (m, m’)g represents a short representation of the superalgebra SU(2|1,1) x
SU(2|1,1). It is a product representation of two short representations mg and
my for each SU(2|1,1). The superalgebra SU(2|1,1) is a subalgebra of the N' =
4 superconformal algebra (4.1) consisting of the SO(2,1) generators Ly, Lij, the
SU(2) generators J¢ and the supersymmetry generators Gi‘f. The representation

mg consists of four irreducible representations of SO(2,1) X SU(2) whose highest
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perturbation || (h,h) | SU(2) x SU(2) | multiplicity | supermultiplet
ca 36) | 22| @1 s (3.4)5
eq. (3.7) (1,1) (3,1) 8 (3,2)s
eq. (3.8) | (2,2) (1,3) 8 (4,3)s
eq. (3.9) (1,1) (1,3) 8 (2,3)s

Table 1: Perturbations.

weight states are given in eq. (4.4) with j = $(m — 1). Namely, there is a one-to-
one correspondence between a representation mg and a chiral primary state with
j=3(m—1).

The conformal weights (h, h) of the perturbations Ggﬂ are determined by their

spins and r-dependences. Since the perturbations (3.6)—(3.9) are spin 0 scalars on
the two-dimensional boundary of AdS3 we have h = h. When GZ(;-F) ~ 7% in the

coordinate frame, we have G( ~ X (Z ’%>2 ~ 7572 in the inertial (local Lorentz)
frame. We obtain a relation h +h=d+(s+2) =s+4 (d=2). Under the isometry
SO(4) = SU(2) x SU(2) of S? the self-dual and the anti self-dual two-forms in egs.
(3.2) and (3.3) transform as (3,1) and (1,3). Therefore, the perturbations Gs+
in egs. (3.6)—(3.9) have the quantum numbers in Table 1. The multiplicity is 8
since Géﬂad has two internal indices a = 1,...,4, & = 1,...,4 and the projections
%(1 + ;) reduce the 16 components by half. Looking for short supermultiplets in
eq. (4.6) which contain states having these quantum numbers we find that only
supermultiplets shown in the last column of Table 1 contain those states. Explicitly,

the perturbations correspond to the following states in the CFT

eq. 36):  |of(i=2))®|hl=1),
eq. 3.7): ot =1)®|d(G=1)),
eq. 38): |e(i=1))@ |6 (1 =12)),
eq. 39): ool =1)@ |61 (G =1)). (4.7)

To examine unbroken symmetries in the CFT side we need to know the action
of supercharges on these states. From eqgs. (4.4), (4.3), (4.1) we obtain

G o) = G1*[60) = G4 o) = 0,

12



4 1g0) = |of).
G2A > = —2je AB ‘QSO)
GlA > _ ABJO |¢0>
GQA > _ ABL ‘¢0> :
G [gh) = <r¢>—1jL i |¢o>>,

G [g2) = (;j - 2j> 1)
G (1 + 22) Ty |o1').
6o = (1- 5. ) s o).

" 16) = ;lejo 6. (4.8)

We can express these relations in terms of local operators and currents. For each

state we introduce a local operator ¢(z) which create the state as

) = ¢(0)10), (4.9)

where |0) is the SU(2|1,1) invariant vacuum. We also introduce currents for the
N = 4 superconformal generators

— Z Z_n_2Ln,

neZz

GAA Z ZfrffGAA

r€Z+2

=y "L (4.10)

neZ

Then, the relations (4.8) lead to the OPEs
G*A(21)0(23) ~ regular,

GM<Z1)¢0(Z2) ~ ! (bf‘(Z?)?




1AL V6B (2) 1 ABLI= 60 (29)] — 1 s 2_i = ool (2
GHe)0b (o) ~ U ()] - et (o 50U o) )
24 SO YRS DU S v SR B Af,

G enonten) ~ = (2 - o) ) = (1 o) o0t
G eonten) ~ (14 3 ) (ot ol el 5o 0l ol (1)

From these OPEs one can obtain commutators of the generators L, JI, G‘T“A and

the local operators ¢o(z), (bf‘(z), ¢2(2) by computing contour integrals of z; around
z9.

The operators corresponding to the perturbations in the supergravity solution
are integrated operators. There is an arbitrariness in the choice of the integration
measure. Since the perturbation in the supergravity side is invariant under transla-
tions of z#, we choose the measure invariant under the translation of w in eq. (2.17)
(Euclidean version of x#). Thus, we consider the integrated operators

2‘2@—1)

@ = [ dwon()o(@) = [dz |5+ 17 60(2)60)
v = [dtuoiw)inm = [ a4+ 0777 o 20000)
@y = [ dPwoa(w)d(@) = [ d*z [3(z + 127 oa(2)5(2), (412

where we have used the transformation property of the Virasoro primary field of
conformal weight h: ¢(w) = (g—i))h(b(z) In eq. (4.12) we have specified only the
holomorphic part of the local operators. The anti-holomorphic part gz~5 can be QNSO,
~’f", gz~52 with the same conformal weight as the holomorphic part. Using the fact
that the local operators ¢y, gb‘f‘, ¢5 and ¢ are primary fields of the Virasoro algebra

it is easy to see that these integrated operators indeed commute with the translation
generators of w, w

P=L_+2Lg+L,, P=L_+2Lo+ L. (4.13)

By integrating the commutation relations between the generators and the local op-
erators we obtain

[GzAa Q)O] = 07
64,00] = [ [+ 1007 R0,
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@001 = 2 (5~ [l 0P I [ De el

z+1
xd0(2)9(2),
1A 7B Lo 9N s 2. |1 2[2—3) 2" 3 1 1
(G, 3B :}(3—5)& /dz‘g(z+1) =D+ b))
X[ 00(2)(2) — e [ =[5z + 17 2 s(2)d2),
@400 = =2 (j—3) [ @[5+ 12 [ = Dt (4 D] 6(20509),

(G4, ®,) = /d2z ‘%(2 + 1)2‘2j pore [(r —3)z+ (r+ %)} [y 61 (2)]6(2).  (4.14)

Let us find unbroken supersymmetries by the perturbations. The (h, h) = (2,2)
operators corresponding to the first and third states in eq. (4.7) are

P, = /dzw ¢ i(w; 5 = 3) da(w;

O = [ dwn(wsj = 1)@ = 3) (4.15)

-1,

.

Here, we have lowered the indices A, A’ by using € 5, € 4. From eq. (4.14) we find
that the supercharges which commute with @ 4, for a given A are

GPP+GhB, &P+ GRY, ahY (4.16)

2 2 2 2 2

where B, B', B are arbitrary and B’ # A’. The bosonic generators which commute
with @ ;, are P, P and J!. To add these operators to the CFT Hamiltonian as a
perturbation we should make a hermitian combination m® ;, + m*@&,,
a complex constant. The supersymmetries preserved by this perturbation are those

where m is

preserved by both of ® 4, and CIDEV. Remembering the hermiticity condition (4.2) we
find that the unbroken supercharges are
QW =a"+att, Q="+, (4.17)
2 2 2 2
where B, B are arbitrary and B’ # A’. These supercharges together with the
translation generators (4.13) satisfy the N" = (4, 2) Poincaré supersymmetry algebra

{QM, QPP = ABABP {Q,Q1) = P. (4.18)

The supersymmetries preserved by ® 4 in eq. (4.15) and its hermitian conjugate are
similarly obtained and form the N' = (2,4) Poincaré supersymmetry algebra.
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The (h,h) = (1,1) operators corresponding to the second and fourth states in
eq. (4.7) are

0y = [dwonwij =1)6 (w7 =) (4.19)
From eq. (4.14) the supercharges which commute with ® 4, for a given A’ are
G, GPF, (4.20)

where B', B, B’ are arbitrary. The bosonic generators which commute with ® J/ are
P, Ly, Loand J{ '. The supercharges which commute with a hermitian perturbation
m® ;i + m*(I)Z, are

Ghy, (4.21)

which together with L_q, Lo, Ly and j({ " form the N = (0, 4) superconformal algebra.
The supersymmetries preserved by ®, and its hermitian conjugate are similarly
obtained and form the N' = (4, 0) superconformal algebra.

In the next section we will show that the perturbations in the supergravity
solution preserve the same supersymmetries as above.

5. Unbroken symmetries by perturbations in supergravity

Let us start from the bosonic symmetries, i.e., the isometry of AdS; x S®. The
coordinate transformation of the perturbation Gy for 6z = ¢M is

0GyN = fPaPGMN + aprGPN + 3N§PGMP- (5.1)

Our perturbations (3.6)—(3.9) have only non-vanishing components G;; and are in-
dependent of z*.

In the case of the Killing vectors (2.9) of AdS; this transformation gives
G =0,
1 )
5G#i = _igugpgpijﬁ?

1
5Gij = —5 pCP (7’& + 2) Gl] (52)
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For Poincaré transformations, for which d,(” = 0, they automatically vanish. How-
ever, the invariance under all of the Killing vectors (2.9) requires

.TZGZJ = 0, (T’&r + 2) Gij = 0, (53)

namely, G;; should lie along the S* directions and have r-dependence r~2. These
conditions are satisfied by the perturbations G5 in egs. (3.7), (3.9) but not by
those in egs. (3.6), (3.8). This is consistent with the result in the CFT side that
local operators corresponding to (3.7), (3.9) have conformal weight (1,1) and the
integrated operators are invariant under the conformal transformations while those
corresponding to (3.6), (3.8) are only invariant under the translations.

The Killing vectors for the isometry SO(3) ~ SU(2) x SU(2) of S* are £ = \;z7,
where \;; = —\j;. The net effect of the transformation (5.1) in this case is that the
components T;; in G, are changed according to the SO(3) transformation. Since T;;
belong to a representation (3,1) or (1,3), SU(2) x SU(2) symmetry is broken to 1
x SU(2) or SU(2) x 1.

Finally, let us obtain supersymmetries preserved by the perturbations. We con-
sider the case in which only the m; terms in eqgs. (3.2), (3.3) are present. These
terms represent the highest weight state of (3,1) or (1,3) of SU(2) x SU(2), and
corresponds to the CFT operator in egs. (4.15), (4.19). Therefore, we should recover
unbroken supersymmetries in eqs. (4.16), (4.20).

We shall obtain transformation parameter € for which the supertransformations
of the fermionic fields (2.1) vanish to the first order in Go. First, the condition
0X+aa = 0 require

1 iy 1 ~ij B a
OX+aq = ES” V2D€-a — ZGijao‘ﬁ €1 (7a)s" = 0. (5.4)

Multiplying S® to this equation we can express e_ in terms of €, as
1 AT 2] < «

€_a = ER Gijoa Y ’VJ%DE?F(’VS)ﬁ : (5.5)
We see that e_ is non-vanishing and of order G5. The condition §v, 5, = 0 gives
the same condition as the unperturbed background (2.11) to the first order in Gs,
whose solution is eq. (2.13). The condition dx_q = 0 is also automatically satisfied.
Substituting eq. (5.5) into 01_pzs and dx4qs and using the differential equation on
€+ (2.12) we obtain

& — Lads = 1af 4 5
0P~ = gsz Auwvan i, A (55 - 74D(75)aﬁ) €485

17



St = G (3 = %) (3 = Tan(1)e”) evs
R

4 2
5X+ad = ZGijad:}/Zj (7a>aﬁ€+5 (a = 17 27 37 4)' (56)

— 0, (r*Gu )V 4 Y4p (15)a €45 — Gt 4 e1a,

Supersymmetry parameters for which these transformations vanish correspond to
unbroken supersymmetries. We examine the conditions (5.6) for each of the pertur-
bations (3.6)-(3.9).

First, let us consider the perturbations Ggﬂ in eq. (3.6). In this case ng) is
constant and self-dual. The self-duality implies

Gl 4y =0 (5.7)
when 4p1) = 9. We first consider OXx+. When €, satisfies y56, = —€y or Yupey =
€., it vanishes because of G2 V5 = Géﬂ or the identity (5.7). When qype, = —ey

and ~5e, = €4, it is proportional to

(m1)**42 (Ya)a 5. (5.8)

By substituting eS:Jr) in eq. (2.13) into this equation and using the explicit form of

gamma matrices 4 and v* in Appendix we find that it does not vanish. Therefore,
(++)

0x+ = Orequires € +* = 0. As for 0¢b,, it vanishes when Y4pe; = —€, or y56; = €
as seen from eq. (5.6). When qypey = ey and y564 = —e, 61P4,, is proportional to
(m1)°* (2147 = 2%4") €4a (5.9)

Substituting e(j‘) in eq. (2.13) we ﬁnd that 014, = 0 requires egl,Q/) = 0 when

(my)V% = 0, and 611,1,) — 0 when (m1)¥% = 0. Here, we have used two-component
spinor index A’ = 1’,2 instead of the four-component one a = 1,2, 3,4 for the first
index of (m;)® (See Appendix.). Finally, let us consider d1_;. When ~yse, = €, it
automatically vanishes. When ~se, = —e,, the condition d1_; = 0 is shown to be

equivalent to GH)WW% +a =0, ie.,

(m1)* 4 era =0, (m1)**FPesa =0. (5.10)
Substituting e(f‘) in eq. (2.13) we find that di; =0 requlres 681,2,) 0, egA,;, =0
when (ml)1 ¢ =0, and 601,1,) =0, egA,l), = 0 when (ml) = 0. To summarize, the

unbroken supersymmetries by the perturbation, for which all of the transformations
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in eq. (5.6) vanish are given as follows. When only G§+)Aa is non-vanishing for a
given A’, the transformation parameters of the unbroken supersymmetries are

) () ) (=) (5.11)

o Sovir  Commr CimBo

where B, B', B are arbitrary and B’ # A’. Remembering the correspondence be-
tween the supersymmetry parameters and the supercharges discussed at the end of
sect. 2 we see that this result is in complete agreement with the unbroken super-
symmetries in the CFT (4.16).

Next, let us consider the perturbations Ggﬂ in eq. (3.9). In this case G’gﬂ satisfies
eq. (5.3). We easily find that dy_, = 0 for an arbitrary e, since

A 4
AP, = Lakafps 512
vanishes because of eq. (5.3). As for §¢)_; we need a formula for derivative of G,(;lr).
From the explicit form of G;;lr) in eq. (3.9) we find
ik

5 ) 2 (1, GH) i — (k= 1), (5.13)

ai(r2Gy)) = —a Gl + (5% -

Substituting this into d¢_; in eq. (5.6) and doing some algebra we find that d¢_; = 0
for an arbitrary e,. Non-trivial conditions on €, only come from dy, = 0. When
V564 = —€4, Ox. automatically vanishes. When ~v5¢,. = €, we find that dy,
vanishes only if Gg;r)ﬁijar = 0. Substituting € *™ in eq. (2.13) into this equation

and using the explicit form

1.2 212
ERY7 R - Lo 227 a1 o3 (2%)° . ~12
Gij 7]—5047“ mi(1—7s) 57 —7(7 —57) - 2 T 2T (5.14)
we find that oy, = 0 requires e(();{) =0, eg;{) = 0. Thus, the unbroken supersym-
metries for the perturbation (3.9) are
(++) (++) (=) (=)
o8 “us- Compr CpBo (5‘15)

where B', B, B’ are arbitrary. This result is again in complete agreement with the
unbroken supersymmetries in the CFT (4.20).
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Appendix: SO(4) and SO(5) gamma matrices

Our representation of the SO(4) gamma matrices is
5 0 —1 3 0 —o?
22 £3
7= < i 0 > ) Y= ( _0.2 0 > )
i 0 -0 5 0 of
~d N
i () () (A1)

where 0!, 02, 0% are the 2 x 2 Pauli matrices. The chirality matrix in eq. (2.8) then

becomes
_ 523,425 1 0
Tap = V455 = ( 0 —1 ) : (A.2)
An SO(4) spinor # has components
= ¥ A=1,2; A =12 A
v={ ) @a-Lza-ry) (A3)

Our representation of the SO(5) gamma matrices (v%),” is
. (0 of s (0 o? 5 (0 o°
7= 0.1 0 ) Y= 0_2 0 ) Y= 0.3 0 )
4 [0 —i 5 (1 0

A four-component SO(5) spinor 1, (o = 1,2,3,4) is decomposed into two two-

component spinors

b= ( Vi ) (A=1,3 A'=i %) (A.5)
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The SO(5) charge conjugation matrix Q0 satisfies

Q™ = (y)" (A.6)
and is given by
eAB
o - ( o ) , (A7)
where antisymmetric AB and eA'B’ are chosen as €2 = +1 = ¥, We also use

antisymmetric € ;5 and € 4,5 With €5 = +1 = €5,
In eq. (2.13) the supertransformation parameter €, is decomposed according to

eigenvalues of 44p and 75. Each of the components has indices as

€ €

(++) (+-) (=+) (=)
+AA’ €+AA” €+A’A’ —i—A’A'/. (AS)
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