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We calculate the effective potential of ),.4>4 theory at finite temperature in the super-daisy
approximation, after expressing its derivative with respect to the mass square in terms of
the full propagator. This expression becomes a self-consistent equation for the derivative of
the effective potential. We find the phase transition is first order in this approximation. We
compare our result with those of previous studies.

§l. Introduction

The symmetry restoration, or the phase transition, at high temperature is to­
day regarded as playing an important role in particle physics and cosmology. 1) The
investigation of the phase transition, however, is quite often found to be difficult
because of the unreliability of the perturbation theory at high temperature. In case
of the electroweak phase transition, which may be important for baryogenesis, 2) for
example, such a breakdown of the ordinary perturbative expansion occurs when the
Higgs boson mass mH is equal to or larger than the weak boson mass M w . 3) Experi­
mental evidence, 4) in fact, suggests that mH is not smaller than M w , indicating that
we cannot examine the electroweak phase transition using the perturbation theory.

The difficulty is caused by Bose condensation in the thermal bath. This is a
well-known feature inherent to finite temperature field theory. 5), 6) The traditional
method to improve the perturbation theory is to re-sum the daisy diagrams 3),7) - 13)

and use the mass m~, the sum of the thermal mass and the zero temperature mass,
instead of the latter only. But this improvement is not sufficient. When one uses
the loop expansion, one can estimate the size of a contribution of a loop at a given
order in comparison with that of the previous order loop. 3), 9) The ratio of these
is called a 'loop expansion parameter'. After re-summing the daisy diagrams, we
find the loop expansion parameter is >.T in the A¢4 theory for the temperature T.

mT
This is 0(1) near the critical temperature, and the analysis with the daisy diagram
indicates that the phase transition is first order, though it is well known to be of
second order. 3), 14) This shows the perturbation theory breaks down near the critical
temperature and is not reliable. Many non-perturbative approaches, such as lattice
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Monte Carlo calculation, 15) epsilon expansion, 16) the CJT method, 17) - 19) effective
three-dimensional theory,20) the gap equation method,21) etc., have been used to
investigate the phase transition at high temperature. However, these approaches
have not reached a consensus in predicting the parameter region of mH and M w in
which the phase transition is first order.

Recently, two of the present authors (K. O. and J. S.) proposed a new non­
perturbative method to calculate the effective potential V. 22) We express its deriva­
tive with respect to the mass square, 8Vj8m2 , in terms of the full propagator. We
calculate the effective potential by integrating the derivative of the effective poten­
tial with an initial condition at m 2 = m~ given in the region where the perturbation
theory is reliable:

(1)

Here _JL2 is the mass parameter of the theory and mo is the mass scale at which
we give the initial condition V(m2 = m~). In principle we can obtain the effective
potential non-perturbatively with this procedure. The main problem in this context
is to determine how to approximate the full propagator in this method. In our
previous paper we ignored the momentum dependence of the self-energy graphs and
replaced it by the second derivative of the effective potential with respect to the
expectation value of the field. In this paper we try another approximation of the
full propagator. We can sum up all the super-daisy diagram contributions correctly
in this method:) We then evaluate the effective potential numerically with this
approximation.

The paper is organized as follows. In §2 we discuss the structure of the evolution
equation that we must solve. In §3 we introduce the new approximation. In §4 we
give the numerical result. In §5 we summarize and discuss our result, comparing our
method with those of previous works.

§2. The structure of the evolution equation

In this section we discuss the evolution of the effective potential with respect to
the mass. We consider the >..eI>4 theory which is defined by the Lagrangian density

1 (8e1» 2 1 )2 1 2 2 >.. 4LE = -- - - -(Vel> + -JL eI> - -eI> + JeI> + c.t.
2 8T 2 2 41

(2)

In a previous paper 22) we derived the evolution equation of the effective potential,

.) One can also do this using the CJT method. 17) We will discuss this point in §5.
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(3)
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where II = II(p2, -p~, ¢, m2, r) is the sum of all the one particle irreducible (lPI)
self-energy graphs.

The first term of Eq. (3) is the simple background field contribution. The sec­
ond term gives the finite temperature contribution. The third term expresses the
effect which remains finite at zero temperature. The last term is the counter term
contribution.

§3. Super-daisy approximation

The main problem encountered in the application of our method is how to ap­
proximate II in Eq. (3). The function II is expressed by the full propagator, the full
three- and the full four-point functions (Fig. 1) according to the Schwinger-Dyson
equation. The Schwinger-Dyson equation expresses the inverse of the full propaga­
tor by the relation expressed by Fig. 2. On the right-hand side of Fig. 1, the first
and the fourth terms are independent of the external momentum, and the second
and the third terms depend on them. In this paper we assume the simplest case,

Fig. 1. 1 PI self-energy graphs of II. The line with the striped blob represents the full propagator.
The circle with a net expresses the full 4-point vertex (the second term on the RHS). The
circle with bricks represents the full3-point vertex (the third term on the RHS). The black blob
represents the counter term (the fourth term on the RHS).

Fig. 2. Schwinger-Dyson equation for the full propagator in >'4>4 theory. The symbols are the same
as in Fig. 1 .
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Fig. 3. Examples of super-daisy diagrams.
The graph (a) is often simply referred to
as a 'daisy diagram'.

(a) (b)

that the momentum-independent term
(the first term in Fig. 1) is domi­
nant. This corresponds to the well­
known super-daisy approximation 7)

which sums up all the graphs like Fig. 3.
We stress that the effective potential
consists of all the super-daisy diagrams
without overcounting by this approxi­
mation.

In this approximation we have rela­
tion (see Fig. 4)

II = A(::2 - ~¢)2). (4)

Fig. 4. The relation between the self-energy II
and the derivative of the effective potential
V with respect to the mass square. (See
the first two terms of Eq. (3).)

In the following we ignore the third
and fourth terms in Eq. (3), assuming
that only the first two terms are impor­
tant in regard to the phase transition. 22)
Due to this approximation, we neglect
the loop contribution remaining finite at
T = O. Using relation (4) and integrat­
ing Eq. (3) over Po, 10), 11),24) we obtain
the approximate evolution equation,

p2 1

8V (1 J 8V)p2 + m 2 + A-- exp - p2 + m 2 + A--
8m2 T 8m2

§4. Numerical result

-1

(5)

In the previous section we obtained the evolution equation for ::::2 within the
super-daisy approximation. In this section we explain the details of the numerical
calculation and present its result.

4.1. Details of the numerical calculation

We can calculate the effective potential by solving Eq. (5) and integrating it
according to Eq. (1) numerically.

In Eq. (1) we set the initial scale mo as large as T so that we can evaluate the
effective potential very well by the loop expansion. We use the same initial condition
as was used in our previous paper, 22)
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(6)

The integral in the evolution equation, (5), is well-defined when the effective mass
square, m 2 +>"::2' is real and positive. Below the critical temperature, however, the
effective mass square can be negative or complex. We need an analytic continuation
of the integral in Eq. (5). This can be done by rewriting Eq. (5) as in the previous
paper, 22)

(7)

where M = ~Jm2 + >"::2' To find 8Vj8m2 we solve Eq. (7).

As is well-known, the effective potential becomes complex at small ¢ below the
critical temperature. This indicates the instability of the state, and the imaginary
part of the effective potential is interpreted as being related to the decay rate of the
state. 23) The imaginary part arises from the integral of the evolution equation in
our method (see Eq. (7)). It is natural to suppose that the imaginary part of the
effective potential is negative in order to interpret it as representing the decay rate.
In order for the imaginary part of the effective potential be negative, the imaginary
part of ::2 must be positive (see Eq. (1)). We find that there are two solutions
for Eq. (7) and that their imaginary parts are of the opposite sign. We choose the
solution of ::2 with positive imaginary part.

4.2. Result

Let us explain the numerical result. For the graphs Figs. (5) rv (7) we set*) the
four-point coupling as >.. = l.

We display the real part of the effective potential near the critical temperature
in Fig. 5. We see a small barrier between the symmetric vacuum (¢ = 0) and
the symmetry-broken vacuum (¢ i- 0). This clearly shows that a first order phase
transition occurs here.

The presence of a first order phase transition is also indicated by the behavior
of the field expectation value at the stable point, since Fig. 6 shows it possesses a
finite jump.

We obtain a negative imaginary part of the effective potential below the critical
temperature. It is shown in Fig. 7. We can see that the magnitude of the imaginary
part increases as the field expectation value decreases. This implies that as the field
expectation value approaches the origin, the state below the critical temperature
becomes less stable.

In the above discussion we used the initial condition m = ma = T. It is required
that ma be the same order as the temperature in order to allow for the initial
condition to be evaluated by the perturbation. We have calculated the effective

*) We varied the value of.x and found no qualitative change.
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Fig. 5. Real part of the effective potential at T = j.tt. We see a small barrier to indicate a first
order phase transition.
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Fig. 6. The field expectation value near the critical temperature at the stable point. We see a finite
jump of 4>1 j.t at t = 4.93j.t to indicate a first order phase transition.
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Fig. 7. Imaginary part of the effective potential at T = J-tt. We see that as (fJ/ J-t becomes smaller,
the imaginary part becomes larger.

potential with other initial conditions, mo = 2T and mo = ~, but have not found
any appreciable change of the effective potential. This ensures the consistency of our
calculation.

§5. Summary and discussion

In this paper we have proposed a new method to calculate the effective potential
of >'ljJ4 theory in the super-daisy approximation without overcounting. We have
numerically evaluated the real part and imaginary part of the effective potential
without using a high temperature expansion. The real part indicates a first order
phase transition, though this should actually be second order. The imaginary part
indicates that the instability is larger for smaller expectation value of the field below
the critical temperature.

Now we compare our method with other approaches. First we compare it with
the CJT method. 17) One can also gather up the super-daisy graphs without over­
counting. It is carried out by truncating the CJT expansion at 0(>'), that is, tak­
ing into account only Fig. 8(a). A first order phase transition is also indicated in
this model with the CJT method. 19) This is naturally consistent with our result.
Though both methods can correct super-daisy diagrams without overcounting, there



Fig. 8. Two-loop diagrams that contribute to
the effective potential. (a) is daisy-like and
(b) is not daisy-like.
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are several points on which they differ.
First, we do not use a high-temperature
approximation. Second, we calculate
both the imaginary and real parts of
the effective potential below the criti­
cal temperature. Third, we can make
another approximation which cannot be
made by the CJT method. 22)

Next let us compare our method
with the daisy-improved perturbation

theory. In this method the effective potential indicates a first order phase transition
at the one-loop level. 13) There are two graphs at the two-loop level (see Fig. 8). If
one includes the contribution of Fig. 8(a) alone,13) the phase transition is still first
order:) A second order phase transition is indicated when the contributions of both
Figs. 8(a) and (b) are included.··) This indicates that the contribution of Fig. 8(b),
which is not daisy-like, seems to play an important role in determining the effective
potential.

Finally we compare our result with our approximation of our previous paper. 22)

In the previous paper we obtained an effective potential that indicates a second
order phase transition. The contributions of the second and third terms of Fig. 1 with
zero external momentum are taken into account by the previous approximation. The
difference between the two approximations is whether we include the contributions of
the daisy-like diagrams only or not. This also indicates that non-daisy-like diagrams
are important for the second order phase transition to be derived correctly.

According to the above comparisons, the diagrams which are not daisy like
seem to give important contributions. We must take into account the contribution
of the second and third terms in Fig. 1. On the other hand, these graphs are
negligible at zero temperature because they appear in higher order in perturbative
expansions. By comparing the results of the previous and the current paper, we
confirm that thermal effects destroy the perturbation theory. This method with ::::2
seems attractive because it may present a chance to step into the region where the
perturbation theory breaks down.

We finally express our thanks to A. Niegawa and T. Inagaki for valuable discus­
sions and communications. J. S is supported by JSPS Research Fellowships.
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