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Abstract: This manuscript addresses the issue of interaction between a surface step and an edge dislocation.
It represents the first step in an investigation that will examine dislocation egress in the presence of surface
steps. The geometric step introduces an elastic field that is altered by the presence of a dislocation in its
vicinity. The complete elastic field is first determined, followed by explicit expressions for the Peach—
Koehler force of the interaction. A discussion follows focusing on the possibility that an edge dislocation
can be prevented from reaching the surface as a result of the field generated by the surface step. If such
an outcome is possible, surface steps may be responsible for a new mechanism of strain hardening. Such a
possibility has been recently suggested in the literature.

Key Words: Surface step, dislocation, Peach—Koehler force

1. INTRODUCTION

The nucleation and egress of dislocations near metallic surfaces is a topic that has received
considerable attention among researchers in the field of crystal plasticity. An interesting
question, first considered by Nabarro [1], is under what circumstances a dislocation can be
prevented from reaching the free surface of a metal.

Nabarro concluded that, in general, the required step energy is less than the energy of
the dislocation. Therefore, a clean surface will not present a barrier to dislocation egress.

A recent study by Sieradzki et al. [2] raised an intriguing issue: can existing steps on the
surface prevent a dislocation from reaching it? If this is possible, a free surface can provide
a new mechanism from strain hardening.
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Figure 1. Surface step and edge dislocation with a Burgers vector (by, by), /b2 + b2 = b.

A number of studies during the recent past have established the fact that surface steps
interact elastically. A closed-form expression for such interaction has been recently obtained
by Kukta et al. [3]. A simple calculation using this formulation appeared in [2], suggesting
that the step formation required for dislocation egress might be prevented by existing steps
or a vicinal surface.

In this paper, we begin an in-depth investigation of this issue by addressing first the
problem of interaction between a surface step and an edge dislocation located near the sur-
face. The geometric discontinuity due to the presence of the physical step complicates the
mathematical formulation significantly. An additional complication comes from the fact that
we cannot use the well-known solution of the edge dislocation in an half-plane as a part of a
superposition scheme [4-9]; the physical step changes the reference geometry.

The solution we developed is expressed in the form of displacement potentials and uti-
lizes an appropriate perturbation procedure. We first obtain the local elastic field and then
determine the Peach—Koehler force, which acts on the dislocation. The sign of this force
indicates whether the dislocation is attracted or repelled by the stepped surface. Our results
indicate that a combination of external remote tension and appropriate material parameters
allow for the existence of a region under the step where the dislocation is repelled. Specific
calculations were carried out for the case of tungsten, since it can be considered isotropic.
The formulation needs to be generalized if it were to address a material with cubic symmetry.

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM

Let us consider an edge dislocation in the vicinity of a surface step. The step has a height &
and is parallel to the dislocation line, as shown in Figure 1. Its location coincides with the
center of the x, y coordinate system, while a local x;, y; system refers to the position of the
dislocation.

The geometric step introduces an elastic field that depends on the dipole, Aw, and a
concentrated moment, At [10, 11], where 7 refers to the surface stress and o to a dipole
strength that is best determined through atomistics [12].

Traction-free conditions along the stepped surface, x = 0,y < Oandx = h,y > 0
require that
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Figure 2. Geometry of a surface step with height equal to 4.

(J.xx)x:(),y<() = 0’ (ny)x:(),y<0 = 05 (Jxx)x:h,y>0 = 0,
(O-xy)x:h,y>() = 0. (1)

There is a uniform tension far from the step and dislocation, py, and a net moment, equal
to —ht. This moment is present as a result of the surface stress. Consequently, the resultant
force over any closed surface should vanish.

Equilibrium requirements around the step yield two conditions, one for the resultant
force and one for the resultant moment:

cos~ h/r
/ aijqudﬁ = O, (2)
- /2
cos~Lh/r
fzik/ rqwoijq;rdd = —ht, 3)
- /2

where ¢g; is a unit vector in the direction of r, as shown in Figure 2, and ¢, is the permutation
tensor. The summation convention is followed for repeated indices.
Around the dislocation, equilibrium requires that

2
/ oijq;r1dd; =0, )
0

where g, is a unit vector in the direction of r;.
The displacement discontinuity associated with the dislocation is described by

(”rl) 5 — (url)a 3 = b;, )

O=—n

2

o

where b; denotes the Burgers vector, with components normal or parallel to the free sur-
face.
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3. METHOD OF SOLUTION

3.1. The Perturbation Methodology

The presence of the geometric step introduces a considerable complication when one at-
tempts to determine the elastic field. The well-known solutions for the surface forces/
moments and the dislocation cannot be superimposed. The problem can be solved using
a perturbation method very similar to the one described in [11]. According to this approach,
the total stress field due to the actual (geometric) surface step and the edge dislocation can
be expressed through a summation which incorporates the stress of the corresponding plane
free surface (no geometric step) and the perturbations introduced by the step

0 1 2

In this expression, 0 9 refers to the superposition of the stress fields due to the edge dislo-
cation, the far-field unlform tension, as well as the dipole and the concentrated moment rep-
resenting the self-stress of the step (an approximation introduced in [10]), in a semi-infinite
body with a plane free surface The perturbations are assumed small when compared to the
field corresponding to a . Followmg this methodology, the total stress can be expressed
as

2
70,0) = 0.0)+ 150,00+ (2 ) 59000+ 0

where 53 (r,0) = T\ (r,0) + In— L(k)(r 0), T\'(r,0) and LY (r,0) (k = 1,2, ...) are
, j
analytlcal function of » and @ as described in [11]. This expansion converges for values of
h/r < 1.
Enforcing the traction-free boundary condition along the stepped surface, x = h,y > 0
yields

h
oiilx = hy)mj—o' (x—h y)m]—{— 0 (x—h ym;

; (%) GO = hyyymy 4+ = 0, ®)

where m is the outward normal to the stepped surface, x = h, as shown in Figure 2.
The stress a(k) (x = h, y) can be expressed in polar coordinates (r, 8) and expanded in a
Taylor series around n=0:

055 (r,m) 10%5(r, m)
(k)(r n)—a(k)(r,nzO)—I— n+ — ", 9
- op . 2 oy 0
n= n=

Downloaded from http://mms.sagepub.com at UNIV HOUSTON on April 18, 2008
© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://mms.sagepub.com

340 D. KOURIS, Y. ARAIL T. YAMAGUCHI and E. TSUCHIDA

where k = 1,2, ..., n = /2 — 6 as shown in Figure 2. Substituting the expanded a(k) (x =
h, y) into the boundary condition along the stepped surface, x = #, y > 0 and cons1dering

h
~! = = — Equation (8) yields
roor

© 2
( (0)(r ]7)) Omj + ﬁ { (30‘ (r, 77)) —(1)(,, n —O)} <ﬁ>
r on =0 r
2 _(0) (1
« Q1m0 G, ) = 0. (10)
2 on? 1o 8;7 1o

As a result of this identity, the following relations are deduced:

that # is small, so that # = sin

o (r,n=0m; =0, (11)

2000, a0 (r, ) +600,n=0)ym; =0, (12)
o 1o ‘
10%09(r, n) a5 (r,n) 50
{<2T ,,:o+ on n=0 (r =0 " v

The first relation corresponds to the traction free condition along x = 0, y # 0. This
condition has already been met, since the zeroth-order solution corresponds to a semi-infinite
body with a plane free surface including an edge dislocation, remote tension, a dipole, and a
concentrated moment, as shown in Figures 3(a—c).

If we multiply the second equation by //r and the third equation by (/r)?, we arrive at

5 (0)( h _
{r < . anr '7)) G (r, ’7—0)}’"1 =0, (14)
n=0
(ﬁ) 1820 (0)(,. 77) N (ﬁ) 60'(1)(1’ 77)
r 2 on? 10 r 617 10

+.<§) 5O =0) $m, = 0. (15)

These expressions for the first- and the second-order perturbations on x = 0, y > 0 lead
to the equivalent tractions p(l) and p(z) which can be applied at the semi-infinite body with
a plane surface. These tractions are given by
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Figure 3. (a) An edge dislocation near a plane surface, with a Burgers vector b, = b, b, = 0. (b) An
edge dislocation near a plane surface, with a Burgers vector b, = 0, b, = b. (c) The simplified model: a
surface step represented by a dipole and a concentrated moment on a plane surface.

60'(0)(r n)
pl(l) — (l)(r " _O)m, = _r ( 5 mj, (16)
n =0
h 82 (0)(',. 77)
@ — GO =0y, =— (= .
pi F(rym=0)m; <r> (2 o Omj
7’]:

1
_ (ﬁ) (5" e, ’”) m, a7
r on =0

Transforming the variable # to x and y and considering # = 0 and m; = (-1, 0), we

obtain
60(0)
pf”—+h< ) : (18)
0x
x=0
or
09
pD = h(—y> . (19)
oy -

This represents the traction condition for the first-order perturbation. A similar approach can
be followed for the derivation of the second-order perturbation, leading to
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n (o6 h_ o0 0%c©
(2) ix ) ix h ix ) 20
Pr 2y ( oy S + 2 ox + ox? » 20)

Equilibrium requires that

T T sin~' h/r
/ o1 (r Mayrdy = / 045(ry iy — / 0. (r. Mardn = 0, (21)
S 0 0

in~' h/r

fzki/ V(Ikﬂijq;rdﬂ = fzki/ rC]kUijCIjrdﬂ
s 0

sin~' h/r
sin” " h/r
— élk,-/ rqroijq;rdy = —hrt. (22)
0

After applying the perturbation method with small #, the Taylor expansion around # = 0
yields

" h
/ o\ (r, m)q,rdn + = {/ D@, mgrdn — oD (r n = O)n; r}
0 0

n\’ a ) (r,
+ <—) {/ G (r, maq;rdn — ( D)
r 0 on
n=0
- P n=0m r} = 0. (23)
" (0) h (1 (0)
€wi [ raro;; (r,mgqrdn + — € qua,, (r, Mg rdn +r’c O (r, n = 0)
0 0
n\’ g 1 1
+ (-) {flki/ ’”CIkUz] (r, mq;rdn — 5" U(O)(’” n=20)+ 5" 200 (r,n=0)
r 0
1 0«)) r,
+ =r 005y 1) r’g ) (r,n =0) = —hr. (24)
2 611
n=0
Each term proportional to zeroth, first, and second power of //r should be zero:
L0 rdn =0 25
o;; (r,nq,rdn , (25)
0
/ 0'1] (r n)qud;y—a (r n=0n;r =0, (26)
0
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e (0)(” ’I) = (1)
/ ai],)(r, nmq;rdn — e n;r —o; (r,n =0n;r = 0. 27
0o n ‘
n=0

Multiplying the second equation by 4 /r and the third equation by (k/r)? yields

/ (r n)gqrdy — ha(o)(r n=0mn; =0, (28)
0

60(0)(}’ 17) M
/ (r n)gjrdy — — on nj—ho;’(r,n=0mn; =0. (29)
0
n=0

The resultant force due to a(k) (k=1,2,...)acting on the face of a half circle of radius

r = a can be substituted by a concentrated force ﬁ(k) acting anywhere along the region
r < a. As a approached 0, the resultant force due to o-ff), acting on the face of a half-
cylinder of radius a can be represented by a concentrated force fi(k) applied at the origin. We
can determine the magnitude of the concentrated forces f,-(l) and fi(z), for the first and the
second-order perturbations at x = 0, y = 0 of the semi-infinite body with a plane surface,

by utilizing the zeroth and first-order solutions:

= —111_{1(1) A (l)(r—a n)qjadn——hmha M =a,n=0n, (30)
4 1/h
7 = ~lim | o mg;ady = lim [—5 (;) ho ) (x =0,y = a)
1, (009
L (% —heV(x =0,y =a)|. 31)
x=0,y=a

The magnitude of the concentrated moments elk,-m,g) and elkim,(j), for the first and the
second-order perturbations at x = 0, y = 0 (semi-infinite body with a plane surface) are
obtained through a procedure similar to the one described above:

Euam/g) = —11_1}(1)611(1‘/ aqka (Cl ngq;adn = hm ahU(O)(x =0,y =a). (32
a 0

T

. 2

Elklm](a) = —ll_l)l})flki/ a(ZkU,(j)(aaﬂ)qJ‘ad’?
0

a—0

1 1
= lim [_Ehz Ox=0y=a) + 2h2 cQx =0,y =a)

1 80O (x
+ —ah? & + ahaf(l;)(x =0,y=a)|. (33)
2 0x X Y

x=0,y=a
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3.2. Displacement Potentials
3.2.1. The zeroth-order perturbation field

The displacement potentials representing the elastic field around an edge dislocation in a
semi-infinite body with a plane, traction-free surface (Figures 3(a) and (b)) are given in
[4-14].

For an edge dislocation having the Burgers vector, b, = b, b, =0,

1 _
0o = dCh, T an-1 2=°
K x—d
—101 1
—ecn, AL {— logl((x —d)? + (y — &)%) + —} ,
K 2 K
[I—Db,] | (34)
(pl:—Cbe—i_ tan‘ly_e,
K x—d
xk—1][1 1
9, = Cb, [— log{(x —d)* + (y — e)’} + —],
K 2 K

9o = Cby [y (2) — dAy,(A)}e D sinfA(y — e)}dA,
[II — by] (35)
9, = Cb, [ Ay, (De D sin{A(y — e)}d4,

where C = G/(n (k + 1)), k is equal to 3 — 4v, G is the shear modulus and v is Poisson’s
ratio, and

424> = 2(k — DAd — (k = 1)
l//l (l) = lzend )

(36)

2Q22d + 1
ya() = W~ (37

For an edge dislocation having the Burgers vector, b, =0, b, = b,

k—1

(0() = dva

S 1oEl(r =47+ = o)+ 7]
Kk |2 K

1 -
+ eryK : tan™! i)_ 2,

[I— by] (38)
k—111 1
¢, =—Cb, {5 log{(x —d)*+ (y —e)*} + ;} )

1 _
0, = —valC + tan=! 2 e’
Tk x—d
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T b] { 9o = —Cby [y (2) — dAy,(A)}e™ D cos{A(y — e)}dA,

01 = —Cb, [;° 2y (2)e™ = cos{i(y — €)}d2.

where
—422d* +2(k + DAd — (k + 1)
l//l(j') = ),2 2d 5
o2/
—-224d - 1)
wo(4) = T 2ed
The far-field uniform tension is represented by
K+ 1
0o = po—g— (3* = %),
[T = po] )
b= —POEX-

3.2.2. The first-order perturbation field

345

(39)

(40)

(41)

(42)

The displacement potentials corresponding to a dipole ([III]) and a concentrated moment
([IV]) on a semi-infinite body (Figure 3(c)) are given in [11, 12]:

_ha)
¢1_27Z'X2+y2,
[1I1]
_ hw
P2 = 2m x2 4+ y?’
ht
9, = —tan
T
v _hr
[ ] (p1_27l'_x2+y2,
_hr
(02_27rx2—|—y2'

(43)

(44)

and the ones corresponding to the distributed traction, pfl) and the concentrated force ﬁ(l)

are given by [V] and [VI], respectively:

_ x+1
o= Az k
k—1

\Y = —
VI o 2mK
k+1

Py =

Ak

Joo A iV -log{x? + (y — A)*}dA,
. -2
Jo© PtV - tan™! y—d/l,
i X

I PV - log{x? + (v — 2)*}dA.
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1
oy =———f0 . tan1 L
2K X
[VI] 41 (46)
K
2=~ f“’ log(x? + y?).

The form of distributed traction, p{", and the concentrated force, f,", depends on the
direction of the Burgers vector.
For an edge dislocation with a Burgers vector (b,, 0), these quantities are

d*> —3(A —e)?
W = —16Chhd*————— 47
P @1 G—er) @7
PO = 16Cbxhdze‘ 48)
' (d> + 62)2
For an edge dislocation with a Burgers vector (0, b,), they become
g g y y
A —e)d® — (1 —e)?}
O~ 30hhat 49
py ) POt (49)
FO 16Cb,hde? . (50)
y (dz + 62)2

In the case of a far field, uniform tension, the corresponding traction and force are
P’ =0, (51)
1

—hpy. (52)

3.2.3. The second-order perturbation field

The second-order representation of the tractions ([VII]), concentrated force ([VIII]) and con-
centrated moment ([IX]) are

k+1

9o =— 4M Jo AP log{x? 4+ (v — A)*}d,
y—2
[VIII{ o, - fo p{? - tan™ lez, (53)
K+ 1
=7 Jo PP loglx® + (v — 2)%)d2,
(/)1:_162 2 - tan™ lzy
[VIIT] +”1 . (54)
K
2= f(z) log(x? + y%),
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kx—1 Yy
Qg = > 'leiml(j) . tan~! -,
TK X
K+ 1 y
IXT§{ 1 =52 eimyy - POy (55)
k—1 X
_ 2)
@y = i C €My - xz + yz'
For a dipole and a concentrated moment,
4h’w
Py o= (56)
@ 2h*w
L= 2 (57
ewmi = 0, (58)
ki
and for the far-field, uniform tension,
2h%p
P o= (59)
) 2h2p0
L= e (60)
@ 1o
EiiMy; = _Eh Po, (61)

where a is the radius of a semi-circle around the origin, as mentioned above. In order to
examine convergence, the range in the integration of [V] and [VII] is assumed as (a, 00).

The integration includes terms proportional to 1/a, 1/a* and log a. By adding adequate
dipole and quadrupoles, the limit a — 0 can be determined in a manner similar to the one
described by Kukta [11].

The solution is obtained by superposition of all the fields represented by the displace-
ment potentials [I] to [IX]. It is a very lengthy and tedious procedure; it does not involve,
however, any significant mathematical difficulties.

4. RESULTS AND DISCUSSION

After developing the complete solution for the step-dislocation interaction, the investigation
focused on the Peach—Koehler force. The sign of this force dictates whether the dislocation
is attracted or repelled by the surface. To simplify the calculation, the Peach—Koehler force,
the material parameters for the dipole and concentrated moment, and the remote load are
normalized as follows:
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7 (1 + l)hF,-, Q- x+ Do _(k+ Dz _ (x+ 1)hpo

E = 2 - > - > - >
b2G b;G b;G b;G

(62)

where i and j may assume the values x or y. The complete expressions of the Peach—Koehler
force are given in Appendix B.

In the discussion that follows, we attempt to clarify whether or not an edge dislocation
can be prevented from reaching the surface, as a result of the field generated by the surface
step. Mathematically, this is done by identifying regions where the Peach—Koehler force is
greater or equal to zero. If such regions exist, they will correspond to stationary locations of
the dislocation.

In the expression for the Peach—Koehler force, the self-stress of the actual geometric
2

h -
step is represented by the term <—> f4(0) (see equation for F, in Appendix B). This con-
r

tribution always results in attraction of the edge dislocation. The presence of remote tension,
however, leads to locations of repulsive interaction, depending on the magnitude and sign
of the load. The contribution of the remote tension, represented by P, is greater than the
one due to surface stress, because its leading term is of order 4 /r, while that of the surface
stress is (h/r)?. As a first approximation, if we neglect terms of order higher than h/r, the
normalized Peach—Koehler force F, on the b, dislocation is given by

- h o1 h
F.=—— + 2P —sin’ 6 cosé. (63)
r cosd r

It is important to note that the second term in the equation above is present as a result
of the applied load “acting” on the real, geometric step. If the geometric step is not present,
this term does not appear and, as a result, the Peach—Koehler force is always attractive.

The condition for repulsion, F, > 0, for the minimum normalized load P gives,

P >2, at&::l:%. (64)

This result indicates that when P > 2, there is a region below the step where an edge
dislocation is repelled, regardless of the values of {2 and 7. In other words, for a high
enough remote tension, the value of the surface stress and the strength of the dipole §2 do not
effect the sign of the Peach—Koehler force. The depth of the stationary location is similar in
magnitude to the horizontal distance between step and dislocation.

As an illustration of this result, Figure 4 shows the distribution of the normalized Peach—
Koehler force, F, on an edge dislocation with a Burgers vector perpendicular to the free
surface, for P = 2, 2 = 0.335, T = 0.197 (tungsten), & = 1. For completeness, the figure

h -
includes the contributions from higher-order terms of { — ). The repulsive region (F, > 0)
r

is located under the lower terrace of the step around & = 7z /4. An alternate representation
of the result is shown in Figure 5. The repulsive zone between the step and dislocation is
located near d/h = e/h = 10.

Without restricting the value of P, stationary locations for the edge dislocation can be
identified through the condition:
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d/h

Figure 4. The normalized Peach—Koehler force, Fx, on a (b,, 0) dislocation, when P = 2, Q = 0.335,
T = 0.197 (tungsten), o = 1. A repulsive region exists under the lower terrace of the step.
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Figure 5. The normalized Peach—Koehler force, I:"X, acting on a (b,, 0) dislocation, as a function of the
normalized distance from the surface.

F.=A+A,Q+AT=0 (65)

where Ay, A, and A,, are given in Appendix B.

Figure 6 shows the resulting contour plot of F,, for an edge dislocation (b,,0), as a
function of the normalized dipole, €2, and the normalized concentrated moment, 7. Here
P=2,r/h=5,0 =37 a = 1. Materials with larger positive {2 and T tend to show the
repulsive characteristics (F, > 0) for an edge dislocation under the lower terrace of the step
@ > 0).
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Figure 6. The normalized Peach—Koehler force, F., acting on a (b,, 0) dislocation, when P =2,r/h =5,
0 = 37°, a = 1. A repulsive region (F, > 0) exists for Q > 0.3, T > 0.3, under the lower terrace of the

step.

The values of the parameter set (€2, 7') which correspond to F, = 0 and the smallest
value of Q2 + T2 can be found using the Lagrange multiplier 4,

oF,

20+ 2 = 0,

o9
oF,

2T 4+ 2
+6T

which leads to the following values:

AOAT

T = ————,
A2 + A2

AoA,,

0 = ——=.
A2 + A2

(66)

(67)

(68)

(69)

(70)

If we choose a moderate value of r/ i, say 5.0, and P = 2 then we can draw the relation
between (€2, T) and € that correspond to a Peach—Koehler force equal to zero, as shown
in Figure 7. The value of the polar coordinate 6 has a significant effect on the minimum
combination of 2 and 7. Around § = £z /4, Q) and T tend to be relatively small (smaller

than 1) compared with other locations.
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Figure 7. Relation between the normalized material parameters, (2, T) and § when F, = 0, P = 2; the
Burgers vector is perpendicular to the free surface, (b,, 0).
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Figure 8. Relation between the normalized material parameters, (€2, T) and § when Fx =0, P =0.01;
the Burgers vector is perpendicular to the free surface, (b,, 0).

This calculation can be repeated for any values of P and r/h. Figure 8 illustrates the
possible values of (€2, T') as functions of ¢ that lead to zero force, for P = 0.01. For any
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angle 6, drawing a line parallel to the (€2, T') axis, yields the values of (2, T') that correspond
to a Peach—Koehler equal to zero. An edge dislocation in these regions is no longer attracted
by the surface.

5. CONCLUSIONS

This work addresses the problem of the elastic interaction between a surface step and an edge
dislocation. The results of our investigation suggest that an edge dislocation can be repelled
in certain regions near a geometric step at the surface. In the case of tungsten that we used
as the template material, we found that repulsion is associated with values of P around 1 or
2. For such values of P and a remote load p, in the range of 100M Pa, the height & of the
step must be in the order of 100 nanometers. So, it is clear that a single step on a tungsten
surface will usually not stop the dislocation from approaching the surface.

The approach described here is not limited to tungsten. For smaller values of P, say in
the order of 0.1 or 0.01, one can calculate {2 and T that correspond to stationary values of
the Peach—Koehler force. Such calculations were performed and are illustrated in Figure 8.
It is probably safe to argue, however, that a single step is an unlikely barrier to dislocation
egress, at least in the case of isotropic materials.

In the introduction, we discussed that a dislocation needs enough energy not only to
reach the surface but also to provide for the energy required by the corresponding step,
which will be created by the dislocation egress. If this step location is near a train of existing
steps, the step will be repelled. The magnitude of the interaction can be estimated using
equation (8) in [3]. It can also be determined exactly using an analytical form that has not
been published yet. In any case, this additional energetic requirement may be sufficient to
stop the dislocation from exiting the bulk, as suggested by Sieradzki and his co-workers [2].
This will be almost certainly true if the system is subjected to a remote tension field. The
next step of our investigation will attempt to provide the quantitative evidence, which will
help us answer this question.

APPENDIX A. DISPLACEMENT POTENTIAL METHOD

The Papcovich—Neuber displacement potentials ¢,, ¢, and ¢, are given by

o

2Gu, = a—x(¢o+xc01 +y9p,) — (k + Do, (71)
o

2Gu, = 5(% +x01 +yp,) — (k + 1o, (72)

Vz% = Vz% = Vz% =0 (73)
02 02

Vi = —+4+—. 74

0x? + oy? 74
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Here, (u,, u,) are the displacements in the x, y directions, respectively. The Kolosov
constant assumes the values x = (3 —v)/(1 + v) for plane stress and ¥ = 3 — 4v for plane
strain. G denotes the shear modulus and v the Poisson’s ratio.

APPENDIX B. THE PEACH-KOEHLER FORCE ON AN EDGE DISLOCATION
NEAR A SURFACE STEP

For an edge dislocation with a Burgers vector (b,, 0), the components of the Peach—Koehler
force are

7 b’G 1 h 1 1 tan-! [e}
y = ————q—= —— — —tan | —
T(x+1) d 2d*  d’zm d
e (—=3d°® + 53d*e® + 11d%¢* + 3¢°) P L d? (d* — 3¢?)
3d (&2 +e2)'n T (@+e)
4ho de(d® —e*)  h? 1 h
+ dho deld” — ) ‘33 bl |8d(—d* + 8d%* — 3e*) log —m
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For an edge dislocation with a Burgers vector (0, b,), the components of the Peach—
Koehler force are
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In polar coordinates, the position of a dislocation is described by d = r cos 6, e = r sin6.
The expression for the x-component of the Peach—Koehler force, F,, acting on an edge
dislocation (b,, 0) is given by

F.=Ao+AQ + AT, (79)
where
h h\* h h\* h\?>  ah
AO = __fs + (_> fd + P_fpl + P (_> fp2+ P <_> 10g_fp3: (80)
r r r r r r
h\? n\’ R\’  ah
r r r r
1\ 2
A, = <—> Seus (82)
r
1
O = —, (33)
cos 6
1 —12(m + 26 + 2sin26) + 8 sin 66 + 3 sin 86
f10) = ( ) , (84)
247 cos? 4
cos @ — cos 30
fn@) = — (85)
1
@) = o {r cos20 — (r + 460) cos 46 — 2 sin 20 — 2 sin 46} (86)
T
2sin46
f3@) = - (87)
T
Jfor1(0) = sindd, (83)
f:(@) = —cos20 —cosdd, (89)
1
fn@) = —{=3co0s30 —5cos50 + (20 + 7 )(sin36 + 3sin560)}, (90)
T
2
fuw3(0) = ——(cos30 + 3 cos50). oD
T
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