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The low energy behavior of the S = 1/2 antiferromagnetic XY-like XXZ chains with precious
mean quasiperiodic exchange modulation is studied by the density matrix renormalization group
method. It is found that the energy gap of the chain with length N scales as exp(−cNω) with
nonuniversal exponent ω if the Ising component of the exhange coupling is antiferromagnetic.
This behavior is expected to be the characteristic feature of the quantum spin chains with
relevant aperiodicity. This is in contrast to the XY chain for which the precious mean exchange
modulation is marginal and the gap scales as N−z. On the contrary, it is also verified that the
energy gap scales as N−1 if the Ising component of the exhange coupling is ferromagnetic. Our
results are not only consistent with the recent bosonization analysis of Vidal, Mouhanna and
Giamarchi11) but also clarify the nature of the strong coupling regime which is inaccesssible by
the bosonization approach.
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§1. Introduction

The low energy properties of the quantum spin sys-
tems with modulated spatial structure have been attract-
ing broad interest in recent studies of quantum many
body problem. Although the periodic and the random
chains are studied in detail, the quasiperiodic chains,
which has an intermediate character between the reg-
ular and random chains, are less studied except for the
XY-case which is equivalent to the spinless free fermion
chains.1, 2, 3, 4, 5, 6) In the fermionic language, the Ising
component of the exchange coupling corresponds to the
fermion-fermion interaction leading to the strong corre-
lation effect which is the most important subject of the
recent condensed matter physics.

Although the XY chain can be mapped onto the free
fermion chain, the problem is not trivial on the quasiperi-
odic lattice. For the Fibonacci lattice, Kohmoto and
coworkers4, 5) clarified the Cantor-set structure of the sin-
gle particle spectrum and the wave function by means
of the renormalization group (RG) method. Especially
the dynamical exponents are found analytically at the
band center and the band edge. Recently, this approach
has been extended to include other types of quasiperi-
odic lattices and the anisotropy between the x and y
component of exchange couplings.6) It should be noted
that the criticality of the Fibonacci XY chain stems from
the marginal nature of the Fibonacci and other precious
mean aperiodicity. For the relevant aperiodicity, more
singular behavior with divergent dynamical exponent is
realized even for the XY chain.6)

As another example of spin chains which can be

∗ E-mail: hida@riron.ged.saitama-u.ac.jp

mapped onto the free fermion systems, the aperiodic
transverse field Ising chains have been studied exten-
sively.7, 8, 9) It is known that the aperiodic modula-
tion of the exchange and/or transverse field can be rel-
evant, marginal or irrelevant depending on the substi-
tution rules which generate the aperiodic sequence. In
numerical works, such scaling properties are reflected on
the energy gap distribution among the subsequences of
the infinite aperiodic chains.8, 9)

Although these works have revealed a beautiful math-
ematical structure of quasiperiodic chains, almost no at-
tempts to include the interaction effect are carried out
so far except for the mean field approach10, 5) and recent
bosonization approach.11) In the present work, we em-
ploy the density matrix renormalization group (DMRG)
method12, 13) to take full account of the correlation effect
in the S = 1/2 precious mean antiferromagnetic XXZ
chains which include the Fibonacci chains.

This paper is organized as follows. In the next section,
the model Hamiltonian is presented. The results of the
analytical approaches such as the exact renormaliztion
group method for the XY chain and the bosonization ar-
gument by Vidal et al.11) for the XXZ chain are breifly
reviewed in section 3. The possible candidates of the
scaling properties of the energy gap distribution is pre-
sented in section 4 based on the previouly known results
for the qusaiperiodic XY chains and random chains. The
numerical results are presented and analyzed in section
5. The last section is devoted to summary and discus-
sion. Some of the present results are already reported in
ref. 14.
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§2. Model Hamiltonian

We consider the quasiperiodic XXZ model given by
the Hamiltonian,

H =
N−1
∑

i=1

2Jαi

[

Sx
i Sx

i+1 + Sy
i Sy

i+1 + ∆Sz
i Sz

i+1

]

, (Jαi
> 0),

(2.1)
where Si’s are the spin 1/2 operators and the open
boundary condition is assumed. The exchange couplings
Jαi

’s (= JA or JB) follow the precious mean sequence
generated by the substitution rule,

A → AkB, B → A. (2.2)

The cases k = 1 and k = 2 correspond to the Fibonacci
(golden mean) and silver mean chains, respectively. In
the following, we take JA = 1 to fix the energy unit.

The cases ∆ = 1 and 0 correspond to the antiferro-
magnetic Heisenberg and XY chains, respectively. For
∆ ≤ −1, it is obvious that the ground state of this
model is the fully polarized ferromagnetic state because
each bond prefers the ferromagnetic configuration. On
the other hand, for ∆ > 1, the Néel type antiferromag-
netic order is expected, beacuse each bond has antifer-
romagnetic Ising type anisotropy. In the following, we
therefore concentrate ourselves on the XY-like regime
(1 ≥ ∆ > −1).

§3. Analytical Approach

3.1 Exact Renormalization Group Approach for the XY
Chains

For the Fibonacci XY chains, Kohmoto and cowork-
ers3, 4) formulated the exact renormalization group for
the transfer matrices and calculated the scaling prop-
erties of the energy spectrum. Recently, this approach
has been extended to include the case of general aperi-
odic chains by Hermisson.6) It was found that the energy
scale ∆E of the finite size aperiodic XY chain scales with
the system size N as

∆E ∼ N−1, (3.1)

∆E ∼ N−z, (3.2)

or

∆E ∼ exp(−cNω), (3.3)

according as whether the aperiodic modulation of the
exchange coupling is irrelevant, marginal or relevant un-
der the renormalization group transformation. The con-
stants z and ω are non-universal exponents.

Among them, the precious mean XY chain belongs to
the marginal case and the exponent z is given by,3, 4, 5, 6)

z =
ln(f2 +

√

1 + f2)

3lnφ
, (3.4)

with

f =
1√
2

(

JA
JB

+
JB
JA

)

, φ =
1 +

√
5

2
.

for the Fibonacci chains.

3.2 Bosonization and Renormalization Group Ap-
proach for the XXZ Chains

The interacting spinless fermion chain with Fibonacci
potential has been studied by Vidal et al.11) by means
of the bosonization and RG technique. This model can
be mapped onto the XXZ chain in the Fibonacci mag-
netic field by the Jordan-Wigner transformation. After
bosonization, this model can be described by the boson
Hamiltonian

H = H0 + Hh
W , (3.5)

H0 =
1

2π

∫

dx
[

(uK)(πΠ)2 +
( u

K

)

(∂xφ)2
]

, (3.6)

Hh
W =

1

2πα

∫

dxW (x) cos
[

2kF x +
√

2φ(x)
]

, (3.7)

where φ is the boson field defined in the interval [0,
√

2π],
Π, the momentum field conjugate to φ, α, the ultra-
violet cut-off, u, the spin wave velocity, kF , the fermi
wave number of the spinless fermions and K, the Lut-
tinger liquid parameter. The function W (x) represents
the spatially varying magnetic field. For the Fibonacci
type modulation, the function W (x) is defined via its
Fourier components given in ref. 11. Using the stan-
dard bosonization scheme, the spatial modulation of the
exchange coupling is similarly expressed as,

HJ
W =

1

2πα

∫

dxW (x) sin
[

2kF x +
√

2φ(x)
]

, (3.8)

which coincides with eq. (3.7) by the shift of the origin of
φ. Therefore the conclusion obtained by Vidal et al. also
holds for the case of Fibonacci type exchange modulation
given by the Hamiltonian (2.1).

The Luttinger liquid parameter K can be calculated
by the Bethe’s hypothesis16, 15) for the uniform chain as

K =
π

π − arccos∆
. (3.9)

The case K = 1 corresponds to the SU(2) invariant
isotropic Heisenberg chain (∆ = 1) and K = 2 to the
XY chain (∆ = 0). (Note that our definition of K differs
from that of ref. 11 by a factor of 2.)

Vidal et al.11) derived the RG equation within the
weak coupling approximation. Based on the numerical
solution of the RG equation, they obtained the follow-
ing results. For K > Kc ≃ 2, the Fibonacci modulation
is irrelevant and the ground state is the usual Luttinger
liquid. On the other hand, the Fibonacci modulation
is relevant for K < Kc and the ground state is renor-
malized to the strong coupling regime. In this case, the
weak coupling theory cannnot predict the ground states
properties. For K = Kc, the Fibonacci modulation be-
comes marginal and the ground state is critical with
nonuniversal dynamical exponent z. This is consistent
with the well-known case of the free spinless fermions in
the Fibonacci potential if Kc exactly equals 2, because
K = 2 corresponds to ∆ = 0 by eq. (3.9). We there-
fore assume Kc = 2 exactly in what follows. Thus the
XY-like XXZ chain with antiferromagnetic Ising coupling
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(1 ≤ K < 2; 0 < ∆ ≤ 1) is renormalized to the strong
coupling regime while that with ferromagnetic Ising cou-
pling (2 < K;−1 < ∆ < 0) is renormalized to the normal
Luttinger liquid. In what follows, we mainly aim to clar-
ify the nature of the ground state in the strong coupling
regime 0 < ∆ ≤ 1, which is inaccessible by the weak cou-
pling approximation, with the help of numerical DMRG
method. At the same time, we also intend to verify the
prediction of the RG calculation11) by numerical calcu-
lation.

3 4 5 6
0

5

10

<ln(1/∆E)>

lnN

σ[ln∆E]

r

1.5
1.2

5.0
3.0
2.0

Fig. 1. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the Fibonacci XY chain by the exact diagonalization method.
The length of the horizontal bar is 3ln((1 +

√
5)/2).In this

and following figures 3, 4, 6, 7, 8, 9, 11, 13 and 14, r ≡
Max{JB/JA, JA/JB} and the filled (open) symbols represent
the case JB > JA(JB < JA). The filled symbols for σ almost
overlap with open symbols.

–2 0 2
1

2

3

ln(JB/JA)

z
Exact
Numerical Diagonalization

Fig. 2. The dynamical exponent z for the XY chain. The filled
circle represent the present numerical calculation and solid line
is the analytical results by Kohmoto et al.3, 4)

§4. Scaling Properties of Energy Gap Distribu-

tion

In order to clarify the bulk properties of the infinite
precious mean chains from the finite size calculation, it
is not sufficient to investigate the properties of a single

series of precious mean chains generated by the substi-
tution rule (2.2). The precious mean sequence of length
n (ABA for n = 3 or ABAAB for n = 5 in the Fi-
bonacci case) is always the n-membered subsequence
at the beginning of the infinite precious mean sequence
(ABAABABAABAAB.... in the Fibonacci case). The
properties of the finite length precious mean chains there-
fore correspond to the surface properties of the infi-
nite precious mean chains rather than its bulk proper-
ties. Hence, it is necessary to consider all possible n-
membered subsequences of the infinite precious mean
chain and investigate the distribution of their physi-
cal properties, such as energy gaps, to reveal the bulk
properties of the infinite precious mean chains. This
method has been successfully applied to the quasiperi-
odic transverse field Ising chains.9) It should be noted
that the number of the n-membered subsequence is equal
to n + 1.17)

The scaling property of the energy gap distribution is
determined by the system size dependence of the charac-
teristic energy scale. In the XY case, the precious mean
aperiodicity in the exchange coupling is marginal and the
energy gap ∆E scales with the system size as ∆E ∼ N−z

where z is the dynamical exponent6) as discussed in the
preceding section. Therefore the gap distribution func-
tion scales as

P (∆E)d∆E = Nzf(Nz∆E)d∆E. (4.1)

Consequently, the average and flucutation of ln(1/∆E)
scale as,

< ln(1/∆E) > ≃ C1 − zlnN, (4.2)

σ[ln(∆E)] ≡
√

< (ln(∆E)− < ln(∆E) >)2 >,

≃
√

C2 − C2
1 = const., (4.3)

where

Cn =

∫

∞

−∞

tng(t)dt, g(t) = f(et).

This type of behavior is also observed in the Griffith
phase of the random quantum spin chains such as S =
1/2 random dimerized Heisenberg chains18, 19) or S = 1
random Heisenberg chains20, 21, 22, 23, 24, 25, 26)

On the other hand, for the XY chain with relevant ex-
change aperiodicity, the gap scales as ln(1/∆E) ∼ Nω6)

and the gap distribution function scales as,

P (ln∆E)dln∆E = N−ωf(N−ωln∆E)dln∆E, (4.4)

which gives

< ln(1/∆E) > ≃ D1N
ω, (4.5)

σ[ln(∆E)] ≃
√

D2 − D2
1N

ω, (4.6)

where

Dn =

∫

∞

−∞

xnf(x)dx.

It should be remarked that σ tends to a constant value for
the marginal aperiodicity while it grows with the same
exponent as < ln(1/∆E) > for the relevant aperiodicity.
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This type of behavior with ω = 1/2 is observed also in
the random singlet phase of the S = 1/2 random anti-
ferromagnetic XXZ chain.13, 27, 28)

§5. Numerical Results

5.1 XY chains (∆ = 0)

In the XY chain, the energy spectrum can be calcu-
lated by numerical diagonalization of N × N matrices.
The average < ln(1/∆E) > and fluctuation σ[ln∆E] of
the logarithm of the energy gap for all possible (N − 1)-
membered subsequence is calculated for 14 ≤ N ≤ 378
and various values of JB/JA between 1/5 and 5. These
are plotted against lnN in Fig. 1. The linearity of
< ln(1/∆E) > to lnN is fairly good and the flucutation
σ also tends to a constant value except for the oscilla-
tion with period 3ln{(1 +

√
5)/2} which is inherent to

the Fibonacci chain spectrum.29, 6) The facter 3 comes
from the fact that the single step of the RG transforma-
tion for the precious mean chains with odd k corresponds
to three inflation steps.6) We further calculated the dy-
namical exponent z by fitting ln(1/∆E)-lnN curve by
a straight line. The obtained values of z are shown in
Fig. 2 by open circles. The solid line is the exact expres-
sion (3.4). Again we find a good agreement. This result
also confirms that the energy gap distribution of the fi-
nite length subsequences of the Fibonacci chain correctly
reflects scaling properties of the ground state.

3 4 5
0

2

4

6

<ln(1/∆E)>

lnN

r

1.3

1.1
1.2

1.5

σ[ln∆E]

Fig. 3. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the Fibonacci Heisenberg chain by the DMRG method plotted
against lnN .

5.2 Isotropic Heisenberg Chains (∆ = 1)

The energy gap distribution for the Fibonacci Heisen-
berg chain (∆ = 1) is calculated by the DMRG method
for 14 ≤ N ≤ 234 and various values of JB/JA be-
tween 2/3 and 3/2 using the algorithm developed for
the random chains.13) The number m of the states kept
at each step of DMRG iteration is 60 and only infinite
size iterations are carried out. We have checked that

100 200
0

2

4

6

<ln(1/∆E)>

N

r

1.3

1.1
1.2

1.5

Fig. 4. The N-dependence of < ln(1/∆E) > for the Fibonacci
Heisenberg chain by the DMRG method plotted against N . The
solid surve is the fitting by the formula < ln(1/∆E) >= D1Nω+
const.

0 0.2 0.4
0

0.1

0.2

0.3

ω

ln r

Silver Mean

Fibonacci

Fig. 5. The exponent ω for the Fibonacci and silver mean Heisen-
berg chains.

m-dependence is negligible by increasing m up to 80 for
JB/JA = 3/2 which is the most dangerous case stud-
ied here. For the further check of the accuracy of the
DMRG scheme, we have also calculated the energy spec-
trum of the XY chain with 14 ≤ N ≤ 234 using DMRG
and found that the results coincide with the exact diag-
onalization results within the size of the symbols of Fig.
1.

Figure 3 shows the average < ln(1/∆E) > and fluctua-
tion σ[∆E] plotted against lnN for the Fibonacci Heisen-
berg chain. The curves of < ln(1/∆E) > show an evident
upturn as N increases. Further, the fluctuation σ does
not tend to a constant value. We have fitted the data for
< ln(1/∆E) > by the power law

< ln(1/∆E) >= D1N
ω + const., (5.1)

as shown in Fig. 4. The constant term is added to (4.5)
to account for the arbitrariness of the energy scale. The
exponent ω turned out to be non-universal depending
on the ratio JB/JA as ω = ω(JB/JA). We have fur-
ther assumed that ω(JB/JA) = ω(JA/JB) because the
RG equation of ref. 11 is invariant under the exchange
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2 4
0

2

4

6

<ln(1/∆E)>

Nω

r

1.3

σ[ln∆E]

0.074

0.234

ω
1.1

0.1631.2

0.3011.5

Fig. 6. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the Fibonacci Heisenberg chain by the DMRG method plotted
against Nω .

3 4 5
0

2

4

6

<ln(1/∆E)>

lnN

r

1.3

1.1
1.2

1.5

σ[ln∆E]

Fig. 7. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the silver mean Heisenberg chain by the DMRG method plotted
against lnN .

JA ↔ JB. It should be also noted that the dynam-
ical exponent for the precious mean XY chain is also
invariant under the exchange JA ↔ JB. In addition,
the numerically obtained values of ω for the silver mean
chains also satisfiy the relation ω(JB/JA) ≃ ω(JA/JB)
as explained below. So we assume that this relation also
holds for the Fibonacci Heisenberg chains and use the
average of the numerically obtained values of ω(JB/JA)
and ω(JA/JB) as ω. The values of ω are depicted against
lnr (r ≡ Max(JB/JA, JA/JB)) in Fig. 5 by filled sym-
bols. The error bars in Fig. 5 are estimated from the dif-
ference between ω(JB/JA) and ω(JA/JB). Using thus
obtained values of ω, < ln(1/∆E) > and σ[ln∆E] are
plotted against Nω in Fig. 6. It is clearly seen that both
< ln(1/∆E) > and σ[ln∆E] grow linearly with Nω.

The same analysis is made for the silver mean chain
in Fig. 7, Fig. 8 and Fig. 9 for 18 ≤ N ≤ 240. In this
case, the oscillation period in lnN is ln(1+

√
2), because

100 200
0

2

4

6

<ln(1/∆E)>

N

r

1.3

1.1
1.2

1.5

Fig. 8. The N-dependence of < ln(1/∆E) > for the silver mean
Heisenberg chain by the DMRG method plotted against N . The
solid surve is the fitting by the formula < ln(1/∆E) >= D1Nω+
const.

1 2 3
0

2

4

6

<ln(1/∆E)>

Nω

r

1.3

σ[ln∆E]

0.046

0.154

ω
1.1

0.0981.2

0.2321.5

Fig. 9. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the silver mean Heisenberg chain by the DMRG method plotted
against Nω.

the single step of the RG transformation for the precious
mean chains with even k corresponds to a single infla-
tion step.6) The numerically obtained values of ω satisfy
ω(JA/JB) ≃ ω(JB/JA) with better accuracy than the
Fibonacci case. The values of ω are plotted against lnr
in Fig. 5 by open symbols.

The analysis in this section clearly indicates that the
universality class of the precious mean isotropic Heisen-
berg chain is different from that of the corresponding XY
chain. To further clarify the origin of the difference be-
tween these two types of behavior, we next investigate
the case of XXZ chain which interpolates between these
two limiting cases.

5.3 XY-like XXZ chains (−1 < ∆ ≤ 1)

The same analysis is carried out for the Fibonacci XXZ
chain with −1 < ∆ ≤ 1 for r = 1.2. The energy gap is
estimated from the difference between the ground state
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energies with Sz
tot = 0 and 1. The number of the states

kept in each DMRG step was 70.
Let us first discuss the antiferromagnetic XXZ regime

0 < ∆ ≤ 1. Figure 10 shows the plot of the average <
ln(1/∆E) > and fluctuation σ[∆E] against lnN . In spite
of the apparently linear behavior for small ∆, the upturn
becomes evident as ∆ approached unity. Figure 11 shows
the fitting procedure and Fig. 12, the ∆ dependence of
ω. Although the precise numerical estimation of ω for
small ∆ is rather difficult, it is clearly seen that ω takes
finite values for nonzero ∆ and decreases almost linearly
with ∆. The quantities < ln(1/∆E) > and σ[ln∆E] are
plotted against Nω in Fig. 13. This behavior of the
energy gap clearly indicates that the gap distribution
of the type (4.4) with finite ω is generated as soon as
the correlation effect is switched on. The precious mean
XXZ antiferromagnetic chains with 1 ≥ ∆ > 0 therefore
belongs to the same universality class as the precious
mean isotropic Heisenberg chain studied in the preceding
subsection. The precious mean aperiodicity is therefore
relevant in this regime.

On the contrary, for −1 < ∆ < 0, the data of
< ln(1/∆E) > are well fitted by the straight line <
ln(1/∆E) >≃ lnN + const. as shown in Fig. 14 with
∆ = −0.2,−0.4 and −0.6 for r = 1.2. In all cases, the
slope is equal to unity within the accuracy ±0.02. There-
fore the energy gap scales as N−1 and the ground state is
a normal Luttinger liquid in which the conformal invari-
ance is recovered. This implies that the precious mean
aperiodicity is irrelevant in this regime.

The above behavior is consistent with the conclusion
of the RG calculation11) that the XY chain is on the
critical point which separates the strong coupling regime
∆ > 0 where the precious mean aperiodicity is relevant
and weak coupling regime ∆ < 0 where the precious
mean aperiodicity is irrelevant.11) In addition, our nu-
merical calculation has revealed that the gap distribu-
tion in the strong coupling regime is characterized by
the scaling form (4.4) which is similar to that of the XY
chain with relevant aperiodic modulation.6) From these
observations, the ground state phase diagram of the pre-
cious mean XXZ chains are speculated as summarized in
Fig. 15. It should be remarked in the random exhange
case, S = 1/2 XXZ chains belong to the strong coupling
regime for −1/2 < ∆ ≤ 111, 30, 31) including the antifer-
romagnetic Heisenberg and XY points. For these mod-
els, the ground state is known to be the random singlet
state which is also characterized by the gap distribution
of the type (4.4) with ω = 1/2.13, 27, 28) Presumably, the
gap distribution of type (4.4) is the generic nature of the
aperiodic exchange spin chains in the strong coupling
regime.

§6. Summary and Discussion

The DMRG calculation is carried out for the S = 1/2
precious mean XY-like XXZ chains. The energy gap
distribution of the chains corresponding to all possible

3 4 5
0

2

4

<ln(1/∆E)>

lnN

∆

0.6

0.2
0.4

0.8

σ[ln∆E] x 3

Fig. 10. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the Fibonacci XXZ chain by the DMRG method plotted against
lnN .

100 200
0

2

4

6

<ln(1/∆E)>

N

∆

0.6

0.2
0.4

0.8

Fig. 11. The N-dependence of < ln(1/∆E) > for the Fibonacci
XXZ chain by the DMRG method plotted against N . The solid
surve is the fitting by the formula < ln(1/∆E) >= D1Nω +
const.

0 0.5 1
0

0.1

0.2

∆

ω

Fig. 12. The anisotropy dependence of the exponent ω for the
Fibonacci XXZ chains with r = 1.2.
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Table I. Energy scale of S = 1/2 aperiodic spin chains.

Random XXZ Random Dimerized XXZ Precious Mean XY Precious Mean XXZ
(−1/2 < ∆ ≤ 1) (−1/2 < ∆ ≤ 1) (0 < ∆ ≤ 1)

Energy Scale exp(−cN1/2) N−z N−z exp(−cNω)
z ∝ 1/δ z : (3.4) for Fibonacci ω ∝ ∆, lnr

1 1.5 2
0

2

4

6

<ln(1/∆E)>

Nω

∆

0.6

σ[ln∆E] x 3

0.0352

0.101

ω
0.2

0.06480.4

0.1340.8

Fig. 13. The N-dependence of < ln(1/∆E) > and σ[ln∆E] for
the Fibonacci XXZ chain with 0 ≤ ∆ ≤ 1 by the DMRG method
plotted against Nω .

3 4 5

2

3

4

5
<ln(1/∆E)>

ln N

∆

–0.6

–0.2
–0.4

Fig. 14. The N-dependence of < ln(1/∆E) > for the Fibonacci
XXZ chain with −1 < ∆ < 0 by the DMRG method plotted
against lnN .

(N − 1)-membered subsequences of the infinite precious
mean chains is calculated to clarify the bulk properties
of the latter. It is found that the logarithm of the en-
ergy gap of the finite size precious mean XXZ chains
with 0 < ∆ ≤ 1 scales with a nonuniversal power of
the system size as eq. (4.4). The exponent ω is found
to increase almost linearly with ∆ and | ln(JB/JA) |.
This is distinct from the critical gap distribution de-

–1 0 1

Strong couplingNormal Luttinger
liquid

∆

Critical
∆E ~ N–z

∆E ~ exp(–cNω)∆E ~ N–1

ln r

ω ∆, ln r

XY Heisen
–berg

Fig. 15. The speculated phase diagram of the precious mean XXZ
chain with −1 < ∆ ≤ 1. The line lnr = 0(r = 1) corresponds
to the uniform XXZ chain whose ground state is the normal
Luttinger liquid obviously.

scribed by eq. (4.1) in the XY case. Our results are not
only consistent with the RG calculation by Vidal et al.11)

but also clarify the characteristic features of the low en-
ergy spectrum in the strong coupling regime which was
unreachable by the weak coupling renormaliation group
theory.11) Taking the results for other kinds of aperiodic
spin chains6, 13, 27, 28, 31) into account, we expect that the
energy gap distribution of the type (4.4) is characteris-
tic to the aperiodic spin chains in the strong coupling
regime where the aperiodicity is relevant. It is remark-
able that the well-known critical spectrum of the precious
mean XY chain is extremely fragile against the correla-
tion effects. We have also verified that the precious mean
aperiodicity is irrelevant for −1 < ∆ < 0.

On the other hand, in the studies of the random quan-
tum spin chains, it is known that the effect of dimeriza-
tion drives the random singlet phase in the random XXZ
antiferromagnet, in which the randomness is relevant and
has the gap distribution (4.4) with ω = 1/2, to the ran-
dom dimer phase which has the critical gap distribution
given by (4.1)18, 19, 28) where 1/z is proportional to the
strength of dimerization δ. This implies that the effect
of aperiodic exchange modulation is suppressed by the
dimerization while it is enhanced by the antiferromag-
netic Ising coupling which induces the correlation effects.
This situation is summarized in Table I. Thus the com-
petition among the correlation effects, the periodic and
aperiodic spatial modulations would produce wide vari-
ety of exotic ground states of the aperiodic spin chains
which remain to be explored.

In this paper, we concentrated on the case without
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magnetic field. The effect of the magnetic field is inter-
esting from two different points of view. First, in the
presence of the uniform magnetic field, the multifrac-
tal Cantor-set structure of the single particle excitation
spectrum of the free spinless fermion chain4, 29) manifests
itself as the devil’s staircase structure of the magnetiza-
tion curve of the XY chain in the spin language. This can
be regarded as the magnetization plateau problem32, 33)

in the quasiperiodic spatial structure. It is worth inves-
tigating if such structure survives in the XXZ case which
has stronger quantum fluctuation than the XY case.

Another interesting problem is the effect of the pre-
cious mean modulation of magnetic field. For the ran-
dom field XY chain, the ground stat is known to be
localized while it is the random singlet state with di-
vergent spin correlation length for the random exchange
XY chain although the randomness is relevant in both
cases.31, 28) This difference comes from the perfect spin
inversion symmetry of the random exchange problem.31)

From this point of view, the precious mean modulation
of the magnetic field would have effects different from
that of the exchange coupling in the XXZ chain. This
problem is also left for future studies.
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[8] F. Iglói, L. Turban, D. Karevski and F. Szalma: Phys. Rev.

B56, (1997) 11031.
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