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Summary
In this paper we consider approximating random wave phenomenon in terms of heat conduc-

tive model. As a matter of fact, random wave phenomenon is described by a hyperbolic type PDE 
driven by noise and a heat conductive model is expressed by a parabolic type PDE driven by noise. 
We prove that a solution to a type of stochastic evolution equation corresponding to the former 
PDE converges in probability to a solution to another type of stochastic evolution equation associ-
ated with the latter PDE. Moreover, the existence and uniqueness of solutions to those stochastic 
evolution equations are also derived.
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1. Introduction
We are very interested in random wave phenomena, especially when they are formulated by 

some stochastic wave equations [5], [6]. On the other hand, mathematical physical phenomena in-
volving heat conduction also do interest us so much, and we have been studied several types of 
physical models related to stochastic parabolic partial differential equations [7], [9], [11]. In this 
article we consider a certain approximation method of random wave phenomenon in terms of heat 
conductive model. As a matter of fact, in the case we have treated here, a random wave phenome-
non is described by a hyperbolic type partial differential equation (PDE) driven by some noise [4], 
[19], [21], and a heat conductive model is expressed by a parabolic type PDE driven by some noise 
[22], [23], [24]. Our goal of this paper is to establish some approximation results of stochastic 
wave equations by a stochastic heat equation. In fact we prove that a solution to a type of stochas-
tic evolution equation corresponding to the former hyperbolic PDE converges in probability to a 
solution to another type of stochastic evolution equation associated with the latter parabolic PDE 
[1], [2], [3]. In particular, [1] and [3] treat stochastic equations with the Laplacian ∆, while in this 
article we deal with stochastic partial differential equations with a general second order differential 
operator L instead of ∆, so that the approximation result obtained in this paper is a generalization 
of the results of [1] and [3]. Moreover, the existence and uniqueness results of solutions to those 
related stochastic evolution equations are proven as well.

Let Let (Ω,F , (Ft)t≥0,P) be a filtered basic complete probability space with filtration (Ft)

satisfying the usual conditions [20]. The element ω taken from Ω is called a sample, and as

for a stochastic process X = {Xt}, t ∈ R+ = [0,∞), the symbol Xt(ω) ≡ X(t, ω) indicates

a sample path or its realization [17]. Let D be a bounded regular domain in Rd, and we set

H = L2(D).

Let us consider the following mixed problem for stochastic wave equation driven by a

random noise:

ε
∂2uε

∂t2
(t, x, ω) = Luε(t, x, ω)− ∂uε

∂t
(t, x, ω) +G(uε)(t, x, ω) +

∂W

∂t
(t, x, ω), a.a.-ω ∈ Ω (1)

for t > 0, x ∈ D,

uε(0, x, ω) = u0(x),
∂uε

∂t
(0, x, ω) = u1(x), a.e. for x ∈ D, (2)

and uε(t, ξ, ω) = 0, a.e. for t > 0, ξ ∈ ∂D, (3)

where 0 < ε ≪ 1, L is the second order differential operator, and Wt(x, ω) ≡ W (t, x, ω) is a

cylindrical Wiener process [18] which is a white noise in time and is a colored noise in space,

with covariance operator Q2 for some Q ∈ L(H). While, G is defined by

G(x) := −Q2 ·DF (x), for x ∈ H (4)

for some function F : H → R satisfying suitable conditions with derivative DF of F [23].

More precisely, we assume the following gradient structure for the non-linearity of G: there

exists F : H → R of class C1, with F (0) = 0, F (x) ≥ 0 and

⟨DF (x), x⟩ ≥ 0 for all x ∈ H,

such that G(x) = −Q2 ·DF (x) holds for any x ∈ H. Moreover, there exists a positive constant

C > 0 such that

∥DF (x)−DF (y)∥H � C∥x− y∥H , for ∀x, y ∈ H. (5)

On the other hand, we consider the heat conductive model with a random noise:

∂w

∂t2
(t, x, ω) = Lwε(t, x, ω) +G(w)(t, x, ω) +

∂W

∂t
(t, x, ω), a.a.-ω ∈ Ω (6)

for t > 0, x ∈ D,

w(0, x, ω) = u0(x), a.e. for x ∈ D, (7)

and w(t, ξ, ω) = 0, a.e. for t > 0, ξ ∈ ∂D. (8)

Let A be the realization of L with Dirichlet boundary condition in a Hilbert space H. Let

(ek), k ∈ N, be the complete orthonormal basis of eigenfunctions of A, and let (−αk), k ∈ N,
be the corresponding sequence of positive eigenvalues αk > 0, with monotone property

αk � αk+1, for any k ∈ N. (9)
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chastic process 
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where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk (t)} ≡ 
{Bk (t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17] defined 
on the same complete stochastic basis (Ω, F, (Ft) t≥0, P). In addition, we assume that the linear 
operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N, which diagonalizes 
A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues, we are supposed to 
have

� (11)

We denote by the symbol 

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

 the totality of all infinitely times differentiable functions defined 
on D with compact support. For any p ∈ R, we denote by Hp the completion of 

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

 in the 
norm

� (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

� (13)

In what follows, we shall use the symbol

� (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation
For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is defined 

by

� (15)

for all element (u, v) ∈ Dom (Aε) = Hp+1 = Hp+1 × Hp, and Sε (t) denotes the semigroup on H = 

H0, that is generated by the infinitesimal generator Aε. That is to say, for such an operator Aε, the 
operator etAε is defined as a formal Taylor expansion

� (16)

with the n-th power An
ε = Aε × Aε × · · · (n times) · · · × Aε. If we put Sε (t) = etAε for t > 0, 

then Sε (0) = I (the identity) and Sε (t) Sε (s) = Sε (t + s) holds for any pair (t, s) ∈ R+ × R+. 

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)

It is interesting to note that the cylindrical Wiener process Wt(x, ω) has a more explicit

representation

Wt(x, ω) =

∞∑
k=1

Qek(x)B
k(t, ω), (10)

where (ek), k ∈ N, is the complete orthonormal basis in H which diagonalizes A, and {Bk(t)}
≡ {Bk(t, ω)}, k ∈ N, is a sequence of mutually independent standard Brownian motions [17]

defined on the same complete stochastic basis (Ω,F , (Ft)t≥0,P). In addition, we assume that

the linear operator Q is bounded in H, and diagonal with respect to the basis (ek), k ∈ N,
which diagonalizes A. Moreover, if (λk), k ∈ N, is the corresponding sequence of eigenvalues,

we are supposed to have
λk+1

λk
<

√
αk+1

αk
for ∀k. (11)

We denote by the symbol C∞
0 (D) the totality of all infinitely times differentiable functions

defined on D with compact support. For any p ∈ R, we denote by Hp the completion of

C∞
0 (D) in the norm

∥u∥Hp :=

{ ∞∑
k=1

αp
k⟨u, ek⟩H

}1/2

. (12)

Notice that this Hp is nothing but a Hilbert space with the scalar product

⟨u, v⟩Hp :=
∞∑
k=1

αp
k⟨u, ek⟩H · ⟨v, ek⟩H . (13)

In what follows, we shall use the symbol

Hp := Hp ×Hp−1, (14)

and we set H := H0 for simplicity.

2. Main results: Smoluchowski-Kramers approximation

For a sufficiently small positive parameter ε > 0, the operator Aε : Dom(Aε) → Hp is

defined by

Aε(u, v) := (v,
1

ε
Au− 1

ε
v) (15)

for all element (u, v) ∈ Dom(Aε) = Hp+1 = Hp+1 × Hp, and Sε(t) denotes the semigroup

on H = H0, that is generated by the infinitesimal generator Aε. That is to say, for such an

operator Aε, the operator etAε is defined as a formal Taylor expansion

etAε =
∞∑

n=1

tn

n!
An

ε (16)



‒ 228 ‒

Suggested by the argument in [1] and taking discussion in [3] into account, we suppose that the 
semigroup Sε(t) forms a class of bounded semigroup. Indeed, we suppose that Sε (t) is a C0-semi-
group of negative type: namely, there exist positive constants Mε > 0 and β (ε) > 0 such that

� (17)

Then it is easy to see that

� (18)

where D(Aε) is determined as a subspace of Hp such that the limit in the right-hand side of (18) 
exists. On this account, for u ∈ D(Aε), Sε(t)u ∈ D(Aε) holds for any t > 0, and Sε(t)Aεu= 

AεSε(t)u also holds for t ≥ 0. Moreover, since Sε(t)u is continuously differentiable, we have 

with the n-th power An
ε = Aε × Aε × · · · (n times) · · · × Aε. If we put Sε(t) = etAε for t > 0,

then Sε(0) = I (the identity) and Sε(t)Sε(s) = Sε(t+ s) holds for any pair (t, s) ∈ R+ × R+.
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C0-semigroup of negative type: namely, there exist positive constants Mε > 0 and β(ε) > 0

such that
∥|Sε(t)|∥L(Hp×Hp−1) � Mε · e−β(ε)t for t ≥ 0. (17)

Then it is easy to see that

Aεu = lim
h↓0

Sε(h)u− u

h
for u ∈ D(Aε) (18)

where D(Aε) is determined as a subspace of Hp such that the limit in the right-hand side of

(18) exists. On this account, for u ∈ D(Aε), Sε(t)u ∈ D(Aε) holds for any t > 0, and Sε(t)Aεu

= AεSε(t)u also holds for t ≥ 0. Moreover, since Sε(t)u is continuously differentiable, we have
d
dtSε(t)u = AεSε(t)u for any t > 0. Especially, note that A is a closed operator.

Lemma 1. (Stochastic evolution equation equivalent to (1)) For any ε > 0, the operator

Qε : H
p−1 → Hp is defined by

Qεv :=
1

ε
(0, Qv) for v ∈ Hp−1. (19)

Moreover, if we put

F̂ (u, v) = F (u), Q̂(u, v) = Qu for (u, v) ∈ H, (20)

then (1) can be rewritten into a stochastic partial differential equation of evolution type in the

space H. As a matter of fact, when we set

zεt (ω) = zε(t) = (uε(t), vε(t)) =

(
uε(t),

d

dt
uε(t)

)
= (uε(t), u̇ε(t)), (21)

then we have the following stochastic evolution equation :

dzεt (ω) = {Aεz
ε
t (ω)−QεQ̂DF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (22)

Proof. The stochastic evolution equation (22) should be interpreted naturally as the

following integral equation

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds−

∫ t

0

QεQ̂DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃t(ω),

where the last term is a stochastic integral of Itô type. It is quite easy to see the following
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with the n-th power An
ε = Aε × Aε × · · · (n times) · · · × Aε. If we put Sε(t) = etAε for t > 0,

then Sε(0) = I (the identity) and Sε(t)Sε(s) = Sε(t+ s) holds for any pair (t, s) ∈ R+ × R+.

Suggested by the argument in [1] and taking discussion in [3] into account, we suppose that

the semigroup Sε(t) forms a class of bounded semigroup. Indeed, we suppose that Sε(t) is a

C0-semigroup of negative type: namely, there exist positive constants Mε > 0 and β(ε) > 0

such that
∥|Sε(t)|∥L(Hp×Hp−1) � Mε · e−β(ε)t for t ≥ 0. (17)

Then it is easy to see that

Aεu = lim
h↓0

Sε(h)u− u

h
for u ∈ D(Aε) (18)

where D(Aε) is determined as a subspace of Hp such that the limit in the right-hand side of

(18) exists. On this account, for u ∈ D(Aε), Sε(t)u ∈ D(Aε) holds for any t > 0, and Sε(t)Aεu

= AεSε(t)u also holds for t ≥ 0. Moreover, since Sε(t)u is continuously differentiable, we have
d
dtSε(t)u = AεSε(t)u for any t > 0. Especially, note that A is a closed operator.

Lemma 1. (Stochastic evolution equation equivalent to (1)) For any ε > 0, the operator

Qε : H
p−1 → Hp is defined by

Qεv :=
1

ε
(0, Qv) for v ∈ Hp−1. (19)

Moreover, if we put

F̂ (u, v) = F (u), Q̂(u, v) = Qu for (u, v) ∈ H, (20)

then (1) can be rewritten into a stochastic partial differential equation of evolution type in the

space H. As a matter of fact, when we set

zεt (ω) = zε(t) = (uε(t), vε(t)) =

(
uε(t),

d

dt
uε(t)

)
= (uε(t), u̇ε(t)), (21)

then we have the following stochastic evolution equation :

dzεt (ω) = {Aεz
ε
t (ω)−QεQ̂DF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (22)

Proof. The stochastic evolution equation (22) should be interpreted naturally as the

following integral equation

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds−

∫ t

0

QεQ̂DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃t(ω),

where the last term is a stochastic integral of Itô type. It is quite easy to see the following
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equalities.

dzεt = d(uε(t), vε(t)) = d(uε(t), u̇ε(t)),
∫ t

0

Aεz
ε
sds =

∫ t

0

(u̇ε(s),
1

ε
Auε(s)− 1

ε
u̇ε(s))ds,

F̂ (zεt ) = F̂ (uε(t), u̇ε(t)) = F (uε(t)), and Q̂DF̂ (zεt ) = QDF (uε(t)).

Furthermore, we can get

QεQ̂DF̂ (zεt ) =
1

ε
(0, Q(Q̂DF̂ (zεt ))) =

1

ε
(0, Q2DF (uε(t)))

and QεdW̃t = 1
ε (0, QdW̃t). When we decompose the stochastic evolution equation (22) and

regard it as a simultaneous equation, then the first component of (22) leads to a trivial identity:

duε(t, ω) = u̇ε(t, ω)dt =
d

dt
uε(t, ω)dt, a.s.

On the other hand, comparison of the second components in both hand sides provides with a

stochastic evolution equation

dvε(t, ω) =

{
1

ε
Auε(t, ω)− 1

ε
u̇ε(t, ω)− 1

ε
Q2DF (uε(t, ω))

}
dt+

1

ε
QdW̃t(ω).

On this account, we can easily rewrite it into another form in a natural way

ε
d

dt

(
d

dt
uε(t, ω)

)
= Auε(t, ω)− d

dt
uε(t, ω)−Q2DF (uε(t, ω)) +Q

dW̃t

dt
(ω).

Then, taking the definition G(x) = −Q2DF (x) into consideration, it is clear that the above

expression is nothing but the reinterpretation of the original hyperbolic stochastic partial

differential equation (1):

ε
∂2uε

∂t2
(t, x, ω) = Auε(t, x, ω)− ∂uε

∂t
(t, x, ω) +G(uε)(t, x, ω) +

∂W

∂t
(t, x, ω), a.a.-ω. �

Lemme 2. (Stochastic evolution equation equivalent to (6)) The stochastic heat conductive

model (6) can be rewritten into a stochastic partial differential equation of evolution type in

H, namely,

dwt(ω) = {Awt(ω)−Q2DF (wt(ω))}dt+QdW̃t(ω) with w(0) = u0. (23)

Proof. We have only to consider the first component this time. It goes almost similarly

as in the proof of Lemma 1. �
Now we are in a position to state the notion of mild solution to the evolution type equation.
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Now we are in a position to state the notion of mild solution to the evolution type equation.
Definition 3. A predictable process Definition 3. A predictable process zεt = zεt (ω) = zε(t, ω) in the Hilbert space L2C0,T

t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (22) if zεt (ω)

satisfies, for ∀t ∈ [0, T ]

zεt (ω) = Sε(t)(u0, u1)−
∫ t

0

Sε(t−s)QεQ̂DF̂ (zεs(ω))ds+

∫ t

0

Sε(t−s)QεdW̃s(ω), P−a.s. (24)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Definition 4. A predictable process wt = wt(ω) = w(t, ω) in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (23) if wt(ω)

satisfies, for ∀t ∈ [0, T ]

wt(ω) = etAu0 −
∫ t

0

e(t−s)AQ2DF (ws(ω))ds+

∫ t

0

e(t−s)AQdW̃s(ω), P− a.s. (25)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Remark 5. In the above Definition 4, the operator etA is defined as a Taylor expansion

etA :=

∞∑
n=1

tn

n!
An (26)

with the n-th power An := A · An−1 (∀n ∈ N) and n ≥ 2. Moreover, it follows that e0A = I

(the identity) and etAesA = e(t+s)A holds for any pair (t, s) ∈ R+ × R+, and we assume that

the semigroup etA forms a class of bounded semigroup, and also that etA is a C0-semigroup

of negative type, and there exist some positive constants C0 > 0 and β0 > 0 such that

∥|etA|∥L(H) � C0e
−β0t for t ≥ 0. (27)

Then it is easy to see that Au = limh↓0
1
h (e

hAu− u) holds for any u ∈ Dom(A). �
Now we shall introduce our main results in this paper. The first result (Theorem 6) treats

the existence and uniqueness of solutions to the stochastic evolution equation (22), which just

corresponds to the original stochastic hyperbolic partial differential equation (1) describing

the random wave phenomenon. The second result (Theorem 7) deals with the existence and

uniqueness theorem for solutions to the stochastic evolution equation (23), which is associated

with the stochastic parabolic partial differential equation (6) expressing the so-called heat

conductive model with a random noise. The last main result (Theorem 8) is devoted to

a Smoluchowski-Kramers approximation problem, where the random function expressing a

random wave phenomenon converges in probability sense to the random function associated

with a heat conductive model.
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dzεt = d(uε(t), vε(t)) = d(uε(t), u̇ε(t)),
∫ t
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Aεz
ε
sds =

∫ t

0

(u̇ε(s),
1

ε
Auε(s)− 1

ε
u̇ε(s))ds,

F̂ (zεt ) = F̂ (uε(t), u̇ε(t)) = F (uε(t)), and Q̂DF̂ (zεt ) = QDF (uε(t)).

Furthermore, we can get

QεQ̂DF̂ (zεt ) =
1

ε
(0, Q(Q̂DF̂ (zεt ))) =

1

ε
(0, Q2DF (uε(t)))

and QεdW̃t = 1
ε (0, QdW̃t). When we decompose the stochastic evolution equation (22) and

regard it as a simultaneous equation, then the first component of (22) leads to a trivial identity:

duε(t, ω) = u̇ε(t, ω)dt =
d

dt
uε(t, ω)dt, a.s.

On the other hand, comparison of the second components in both hand sides provides with a

stochastic evolution equation

dvε(t, ω) =

{
1

ε
Auε(t, ω)− 1

ε
u̇ε(t, ω)− 1

ε
Q2DF (uε(t, ω))

}
dt+

1

ε
QdW̃t(ω).

On this account, we can easily rewrite it into another form in a natural way

ε
d

dt

(
d

dt
uε(t, ω)

)
= Auε(t, ω)− d

dt
uε(t, ω)−Q2DF (uε(t, ω)) +Q

dW̃t

dt
(ω).

Then, taking the definition G(x) = −Q2DF (x) into consideration, it is clear that the above

expression is nothing but the reinterpretation of the original hyperbolic stochastic partial

differential equation (1):

ε
∂2uε

∂t2
(t, x, ω) = Auε(t, x, ω)− ∂uε

∂t
(t, x, ω) +G(uε)(t, x, ω) +

∂W

∂t
(t, x, ω), a.a.-ω. �

Lemme 2. (Stochastic evolution equation equivalent to (6)) The stochastic heat conductive

model (6) can be rewritten into a stochastic partial differential equation of evolution type in

H, namely,

dwt(ω) = {Awt(ω)−Q2DF (wt(ω))}dt+QdW̃t(ω) with w(0) = u0. (23)

Proof. We have only to consider the first component this time. It goes almost similarly

as in the proof of Lemma 1. �
Now we are in a position to state the notion of mild solution to the evolution type equation.
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Now we are in a position to state the notion of mild solution to the evolution type equation.

Definition 3. A predictable process zεt = zεt (ω) = zε(t, ω) in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (22) if zεt (ω)

satisfies, for ∀t ∈ [0, T ]

zεt (ω) = Sε(t)(u0, u1)−
∫ t

0

Sε(t−s)QεQ̂DF̂ (zεs(ω))ds+

∫ t

0

Sε(t−s)QεdW̃s(ω), P−a.s. (24)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Definition 4. A predictable process wt = wt(ω) = w(t, ω) in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (23) if wt(ω)

satisfies, for ∀t ∈ [0, T ]

wt(ω) = etAu0 −
∫ t

0

e(t−s)AQ2DF (ws(ω))ds+

∫ t

0

e(t−s)AQdW̃s(ω), P− a.s. (25)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Remark 5. In the above Definition 4, the operator etA is defined as a Taylor expansion

etA :=

∞∑
n=1

tn

n!
An (26)

with the n-th power An := A · An−1 (∀n ∈ N) and n ≥ 2. Moreover, it follows that e0A = I

(the identity) and etAesA = e(t+s)A holds for any pair (t, s) ∈ R+ × R+, and we assume that

the semigroup etA forms a class of bounded semigroup, and also that etA is a C0-semigroup

of negative type, and there exist some positive constants C0 > 0 and β0 > 0 such that

∥|etA|∥L(H) � C0e
−β0t for t ≥ 0. (27)

Then it is easy to see that Au = limh↓0
1
h (e

hAu− u) holds for any u ∈ Dom(A). �
Now we shall introduce our main results in this paper. The first result (Theorem 6) treats

the existence and uniqueness of solutions to the stochastic evolution equation (22), which just

corresponds to the original stochastic hyperbolic partial differential equation (1) describing

the random wave phenomenon. The second result (Theorem 7) deals with the existence and

uniqueness theorem for solutions to the stochastic evolution equation (23), which is associated

with the stochastic parabolic partial differential equation (6) expressing the so-called heat

conductive model with a random noise. The last main result (Theorem 8) is devoted to

a Smoluchowski-Kramers approximation problem, where the random function expressing a

random wave phenomenon converges in probability sense to the random function associated

with a heat conductive model.
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Theorem 8. (Smoluchowski-Kramers approximation) Let uε(t, x, ω) be the solution to

the stochastic partial differential equation (1), and let w(t, x, ω) be the solution to the stochas-

tic partial differential equation (6) respectively. Then, as ε tends to zero, the L2C0,T
t (H)-

valued predictable process uε(t, x, ω) satisfying the random wave phenomenon (1) converges in

probability to the L2C0,T
t (H)-valued predictable process w(t, x, ω) satisfying the random heat

conductive model (6), namely, for any T > 0 and η > 0

lim
ε→0

P
(

sup
0�t�T

∥uε(t, ω)− w(t, ω)∥H > η

)
= 0 (28)

holds, where uε(t, ω) = Π1z
ε(t, ω) and Π1 is the projection operator of (u, v) ∈ H ×H−1 into

the first component.

Remark. If the stochastic equation (22) has a unique solution in L2C0,T
t (H), then it is

easily proven that the stochastic equation (22) has a unique mild solution in the same function

space L2C0,T
t (H). That is to say, Corollary 6 yields directly from Theorem 6. Likewise, a

similar situation is true about the relation between Theorem 7 and Corollary 7.

3. Sketch of proofs

First of all, we shall consider proving Theorem 6. By virtue of the fundamental theory

on resolvent and spectrum of the linear operator in Functional Analysis, when A is a linear

operator of negative type on a Banach space, i.e., A ∈ L(X), ρ(A) denotes the resolvent set of

A (where the operator zI −A is a one-to-one mapping and ∃ (zI −A)−1 is a linear bounded

operator for z ∈ ρ(A)), and RA(z) = (zI −A)−1 is the resolvent of A, then we have

1

λ−A
=

∫ ∞

0

e−λtetAdt.

Hence, it follows immediately that the expression

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt (29)

.
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Definition 3. A predictable process zεt = zεt (ω) = zε(t, ω) in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (22) if zεt (ω)

satisfies, for ∀t ∈ [0, T ]

zεt (ω) = Sε(t)(u0, u1)−
∫ t

0

Sε(t−s)QεQ̂DF̂ (zεs(ω))ds+

∫ t

0

Sε(t−s)QεdW̃s(ω), P−a.s. (24)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Definition 4. A predictable process wt = wt(ω) = w(t, ω) in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)) is a mild solution to the stochastic evolution equation (23) if wt(ω)

satisfies, for ∀t ∈ [0, T ]

wt(ω) = etAu0 −
∫ t

0

e(t−s)AQ2DF (ws(ω))ds+

∫ t

0

e(t−s)AQdW̃s(ω), P− a.s. (25)

where the space L2C0,T
t (H) is the totality of all square integrable random functions consisting

of Hilbert space H-valued continuous paths.

Remark 5. In the above Definition 4, the operator etA is defined as a Taylor expansion

etA :=

∞∑
n=1

tn

n!
An (26)

with the n-th power An := A · An−1 (∀n ∈ N) and n ≥ 2. Moreover, it follows that e0A = I

(the identity) and etAesA = e(t+s)A holds for any pair (t, s) ∈ R+ × R+, and we assume that

the semigroup etA forms a class of bounded semigroup, and also that etA is a C0-semigroup

of negative type, and there exist some positive constants C0 > 0 and β0 > 0 such that

∥|etA|∥L(H) � C0e
−β0t for t ≥ 0. (27)

Then it is easy to see that Au = limh↓0
1
h (e

hAu− u) holds for any u ∈ Dom(A). �
Now we shall introduce our main results in this paper. The first result (Theorem 6) treats

the existence and uniqueness of solutions to the stochastic evolution equation (22), which just

corresponds to the original stochastic hyperbolic partial differential equation (1) describing

the random wave phenomenon. The second result (Theorem 7) deals with the existence and

uniqueness theorem for solutions to the stochastic evolution equation (23), which is associated

with the stochastic parabolic partial differential equation (6) expressing the so-called heat

conductive model with a random noise. The last main result (Theorem 8) is devoted to

a Smoluchowski-Kramers approximation problem, where the random function expressing a

random wave phenomenon converges in probability sense to the random function associated

with a heat conductive model.
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εAu − 1
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Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

, it is easy to see that Aε can be ex-
pressed formally as
is valid. Moreover, since we have Aε(u, v) = (v, 1

εAu − 1
εv), it is easy to see that Aε can be

expressed formally as
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(
0 I
1
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εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

consequently, we can have

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

Noting that (AB)* = B*A* holds for operators A and B, we have 
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εAu − 1

εv), it is easy to see that Aε can be

expressed formally as
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(
0 I
1
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)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
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)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)
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is valid. Moreover, since we have Aε(u, v) = (v, 1
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εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
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1
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)
,

consequently, we can have

(−Aε)
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∫ ∞

0
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Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
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εAu − 1
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expressed formally as
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(
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1
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)
,

consequently, we can have

(−Aε)
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0

Sε(t)dt =

(
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)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.
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equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)
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∗
εS

∗
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0
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∗
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∗
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then we have Cε(u, v) =
1
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ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
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Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols
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,
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.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t
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Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols
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√
∥u∥2H + ∥v∥2H−1 =
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. Therefore, we get a new 
expression

� (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22) can 

Theorem 6. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (22) of gradient type has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Corollary 6. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (22) of gradient type has a unique mild solution zε(t, x, ω) in L2C0,T
t (H).

Theorem 7. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (23) of gradient type has a unique solution w(t, x, ω) in L2C0,T
t (H).

Corollary 7. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (23) of gradient type has a unique mild solution w(t, x, ω) in L2C0,T
t (H).

Theorem 8. (Smoluchowski-Kramers approximation) Let uε(t, x, ω) be the solution to

the stochastic partial differential equation (1), and let w(t, x, ω) be the solution to the stochas-

tic partial differential equation (6) respectively. Then, as ε tends to zero, the L2C0,T
t (H)-

valued predictable process uε(t, x, ω) satisfying the random wave phenomenon (1) converges in

probability to the L2C0,T
t (H)-valued predictable process w(t, x, ω) satisfying the random heat
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is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)
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Next we shall estimate below each integrand term in the above (37). In so doing, we shall use the 
notation

We may apply the triangular inequality together with the Minkowskii inequality to obtain

∥zn+1
t − znt ∥H

�
∫ t

0

∥Aε(z
n
s − zn−1

s )∥Hds+ 2

∫ t

0

∥AεCε(DF̂ (zns )−DF̂ (zn−1
s ))∥Hds. (37)

Next we shall estimate below each integrand term in the above (37). In so doing, we shall use

the notation

znt (ω) = zn(t, ω) = (un(t, ω), vn(t, ω)) = (un(t, ω), u̇n(t, ω)) ∈ H = H ×H−1

just for convention to proceed computing. To estimate the integrand ∥Aε(z
n
s − zn−1

s )∥H in

the first integral of (37), it suffices to estimate the operator norm ∥|Aε|∥L(H). And also the

second integrand in (37) can be estimated dominantly by

∥|Aε|∥L(H)∥|Cε|∥L(H)∥DF̂ (zns − zn−1
s )∥H. (38)

As a matter of fact, it follows immediately that

∥|Aε|∥L(H) = sup
∥(u,v)∥H ̸=0

∥Aε(u, v)∥H
∥(u, v)∥H

= sup
∥(u,v)∥H=1

∥Aε(u, v)∥H

= sup

����
(
v,

1

ε
Au− 1

ε
v

)����
H×H−1

= sup

√
∥v∥2H +

����
1

ε
Au− 1

ε
v

����
2

H−1

� sup

√
C0∥v∥2H−1 +

(
∥1
ε
Au∥H−1 + ∥1

ε
v∥H−1

)2

. (39)

While, since we have

∥1
ε
Au∥H−1 � 1

ε
∥|A|∥L(H;H−1)∥u∥H � 1

ε
M∥u∥0

by the boundedness of the operator A, we would estimate (39) further and can get easily

∥Aε(u, v)∥H �
√

2M2

ε2
∥u∥20 +

(
C0 +

2

ε2

)
∥v∥2−1

�
√
K ·

√
∥u∥20 + ∥v∥2−1 =

√
K∥(u, v)∥H, (40)

where we made use of a trivial inequality : (a+ b)2 � 2(a2 + b2) and put K := max(2M2/ε2,

C0+2/ε2). Next we are going to estimate the operator norm of Cε. To do so, we need several

lemmas.

Lemma 10. There exists some positive constant Mq > 0 such that

∥(−A)−1Q2u∥0 �
C0M

2
q

β0
∥u∥0 < ∞ (41)

holds as long as u lies in the space H.
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grand in (37) can be estimated dominantly by

� (38)

As a matter of fact, it follows immediately that

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

is valid. Moreover, since we have Aε(u, v) = (v, 1
εAu − 1

εv), it is easy to see that Aε can be

expressed formally as

Aε =

(
0 I
1
εA − 1

εI

)
,

consequently, we can have

(−Aε)
−1 =

∫ ∞

0

Sε(t)dt =

(
(−A)−1 ε(−A)−1

−I 0

)
.

Noting that (AB)∗ = B∗A∗ holds for operators A and B, we have Sε(t)QεQ
∗
εS

∗
ε (t) =

Sε(t)Qε(Sε(t)Qε)
∗. Suggested by [1], when we define

Cε :=

∫ ∞

0

Sε(t)QεQ
∗
εS

∗
ε (t)dt, (30)

then we have Cε(u, v) =
1
2 ((−A)−1Q2u, 1

ε (−A)−1Q2v) for (u, v) ∈ H. Therefore, we get a new

expression

2AεCεDF̂ (u, v) = (0,−1

ε
Q2DF (u)) = −QεQ̂DF̂ (u, v) for (u, v) ∈ H. (31)

When we employ the above-mentioned expression, then our stochastic evolution equation (22)

can be rewritten into another form

dzεt (ω) = {Aεz
ε
t (ω) + 2AεCεDF̂ (zεt (ω))}dt+QεdW̃t(ω) with zε(0) = (u0, u1). (32)

Consequently, it suffices to verify the following proposition, in order to prove Theorem 6.

Proposition 9. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (32) has a unique solution zε(t, x, ω) in L2C0,T
t (H).

Proof. The stochastic evolution equation (32) should be interpreted as an integral equation

like this:

zεt (ω) = zε(0) +

∫ t

0

Aεz
ε
s(ω)ds+ 2

∫ t

0

AεCε ·DF̂ (zεs(ω))ds+

∫ t

0

QεdW̃s(ω). (33)

We are going to make use of the Picard iteration method and resort to the fixed point theorem

in order to show the existence of the solution to (33). So we consider the following iteration

scheme: that is to say, in what follows, as abuse of notation, we shall omit the superscript ε

for simplicity, and define
zε0(ω) := zε(0) = (u0, u1) ∈ H (34)

and

zn+1
t := zε(0) +

∫ t

0

Aεz
n
s ds+ 2

∫ t

0

AεCε ·DF̂ (zns )ds+

∫ t

0

QεdW̃s(ω) (35)

for n ∈ N0 := N ∪ {0}. For z = (u, v) ∈ H, we use the norm and symbols

∥z∥H := ∥z∥0,−1 = ∥(u, v)∥H×H−1 =
√
∥u∥2H + ∥v∥2H−1 =

{
∥u∥20 + ∥v∥2−1

}1/2
. (36)

We may apply the triangular inequality together with the Minkowskii inequality to obtain

∥zn+1
t − znt ∥H

�
∫ t

0

∥Aε(z
n
s − zn−1

s )∥Hds+ 2

∫ t

0

∥AεCε(DF̂ (zns )−DF̂ (zn−1
s ))∥Hds. (37)

Next we shall estimate below each integrand term in the above (37). In so doing, we shall use

the notation

znt (ω) = zn(t, ω) = (un(t, ω), vn(t, ω)) = (un(t, ω), u̇n(t, ω)) ∈ H = H ×H−1

just for convention to proceed computing. To estimate the integrand ∥Aε(z
n
s − zn−1

s )∥H in

the first integral of (37), it suffices to estimate the operator norm ∥|Aε|∥L(H). And also the

second integrand in (37) can be estimated dominantly by

∥|Aε|∥L(H)∥|Cε|∥L(H)∥DF̂ (zns − zn−1
s )∥H. (38)

As a matter of fact, it follows immediately that

∥|Aε|∥L(H) = sup
∥(u,v)∥H ̸=0

∥Aε(u, v)∥H
∥(u, v)∥H

= sup
∥(u,v)∥H=1

∥Aε(u, v)∥H

= sup

����
(
v,

1

ε
Au− 1

ε
v

)����
H×H−1

= sup

√
∥v∥2H +

����
1

ε
Au− 1

ε
v

����
2

H−1

� sup

√
C0∥v∥2H−1 +

(
∥1
ε
Au∥H−1 + ∥1

ε
v∥H−1

)2

. (39)

While, since we have

∥1
ε
Au∥H−1 � 1

ε
∥|A|∥L(H;H−1)∥u∥H � 1

ε
M∥u∥0

by the boundedness of the operator A, we would estimate (39) further and can get easily

∥Aε(u, v)∥H �
√

2M2

ε2
∥u∥20 +

(
C0 +

2

ε2

)
∥v∥2−1

�
√
K ·

√
∥u∥20 + ∥v∥2−1 =

√
K∥(u, v)∥H, (40)

where we made use of a trivial inequality : (a+ b)2 � 2(a2 + b2) and put K := max(2M2/ε2,

C0+2/ε2). Next we are going to estimate the operator norm of Cε. To do so, we need several

lemmas.

Lemma 10. There exists some positive constant Mq > 0 such that

∥(−A)−1Q2u∥0 �
C0M

2
q

β0
∥u∥0 < ∞ (41)

holds as long as u lies in the space H.

We may apply the triangular inequality together with the Minkowskii inequality to obtain

∥zn+1
t − znt ∥H

�
∫ t

0

∥Aε(z
n
s − zn−1

s )∥Hds+ 2

∫ t

0

∥AεCε(DF̂ (zns )−DF̂ (zn−1
s ))∥Hds. (37)

Next we shall estimate below each integrand term in the above (37). In so doing, we shall use

the notation

znt (ω) = zn(t, ω) = (un(t, ω), vn(t, ω)) = (un(t, ω), u̇n(t, ω)) ∈ H = H ×H−1

just for convention to proceed computing. To estimate the integrand ∥Aε(z
n
s − zn−1

s )∥H in

the first integral of (37), it suffices to estimate the operator norm ∥|Aε|∥L(H). And also the

second integrand in (37) can be estimated dominantly by

∥|Aε|∥L(H)∥|Cε|∥L(H)∥DF̂ (zns − zn−1
s )∥H. (38)

As a matter of fact, it follows immediately that

∥|Aε|∥L(H) = sup
∥(u,v)∥H ̸=0

∥Aε(u, v)∥H
∥(u, v)∥H

= sup
∥(u,v)∥H=1

∥Aε(u, v)∥H

= sup

����
(
v,

1

ε
Au− 1

ε
v

)����
H×H−1

= sup

√
∥v∥2H +

����
1

ε
Au− 1

ε
v

����
2

H−1

� sup

√
C0∥v∥2H−1 +

(
∥1
ε
Au∥H−1 + ∥1

ε
v∥H−1

)2

. (39)

While, since we have

∥1
ε
Au∥H−1 � 1

ε
∥|A|∥L(H;H−1)∥u∥H � 1

ε
M∥u∥0

by the boundedness of the operator A, we would estimate (39) further and can get easily

∥Aε(u, v)∥H �
√

2M2

ε2
∥u∥20 +

(
C0 +

2

ε2

)
∥v∥2−1

�
√
K ·

√
∥u∥20 + ∥v∥2−1 =

√
K∥(u, v)∥H, (40)

where we made use of a trivial inequality : (a+ b)2 � 2(a2 + b2) and put K := max(2M2/ε2,

C0+2/ε2). Next we are going to estimate the operator norm of Cε. To do so, we need several

lemmas.

Lemma 10. There exists some positive constant Mq > 0 such that

∥(−A)−1Q2u∥0 �
C0M

2
q

β0
∥u∥0 < ∞ (41)

holds as long as u lies in the space H.
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(39)

While, since we have

We may apply the triangular inequality together with the Minkowskii inequality to obtain

∥zn+1
t − znt ∥H

�
∫ t

0

∥Aε(z
n
s − zn−1

s )∥Hds+ 2

∫ t

0

∥AεCε(DF̂ (zns )−DF̂ (zn−1
s ))∥Hds. (37)

Next we shall estimate below each integrand term in the above (37). In so doing, we shall use

the notation

znt (ω) = zn(t, ω) = (un(t, ω), vn(t, ω)) = (un(t, ω), u̇n(t, ω)) ∈ H = H ×H−1

just for convention to proceed computing. To estimate the integrand ∥Aε(z
n
s − zn−1

s )∥H in

the first integral of (37), it suffices to estimate the operator norm ∥|Aε|∥L(H). And also the

second integrand in (37) can be estimated dominantly by

∥|Aε|∥L(H)∥|Cε|∥L(H)∥DF̂ (zns − zn−1
s )∥H. (38)

As a matter of fact, it follows immediately that

∥|Aε|∥L(H) = sup
∥(u,v)∥H ̸=0

∥Aε(u, v)∥H
∥(u, v)∥H

= sup
∥(u,v)∥H=1

∥Aε(u, v)∥H

= sup

����
(
v,

1

ε
Au− 1

ε
v

)����
H×H−1

= sup

√
∥v∥2H +

����
1

ε
Au− 1

ε
v

����
2

H−1

� sup

√
C0∥v∥2H−1 +

(
∥1
ε
Au∥H−1 + ∥1

ε
v∥H−1

)2

. (39)

While, since we have

∥1
ε
Au∥H−1 � 1

ε
∥|A|∥L(H;H−1)∥u∥H � 1

ε
M∥u∥0

by the boundedness of the operator A, we would estimate (39) further and can get easily

∥Aε(u, v)∥H �
√

2M2

ε2
∥u∥20 +

(
C0 +

2

ε2

)
∥v∥2−1

�
√
K ·

√
∥u∥20 + ∥v∥2−1 =

√
K∥(u, v)∥H, (40)

where we made use of a trivial inequality : (a+ b)2 � 2(a2 + b2) and put K := max(2M2/ε2,

C0+2/ε2). Next we are going to estimate the operator norm of Cε. To do so, we need several

lemmas.

Lemma 10. There exists some positive constant Mq > 0 such that

∥(−A)−1Q2u∥0 �
C0M

2
q

β0
∥u∥0 < ∞ (41)

holds as long as u lies in the space H.

by the boundedness of the operator A, we would estimate (39) further and can get easily

� (40)
where we made use of a trivial inequality : (a + b)2 

We may apply the triangular inequality together with the Minkowskii inequality to obtain

∥zn+1
t − znt ∥H

�
∫ t

0

∥Aε(z
n
s − zn−1

s )∥Hds+ 2

∫ t

0

∥AεCε(DF̂ (zns )−DF̂ (zn−1
s ))∥Hds. (37)

Next we shall estimate below each integrand term in the above (37). In so doing, we shall use

the notation

znt (ω) = zn(t, ω) = (un(t, ω), vn(t, ω)) = (un(t, ω), u̇n(t, ω)) ∈ H = H ×H−1

just for convention to proceed computing. To estimate the integrand ∥Aε(z
n
s − zn−1

s )∥H in

the first integral of (37), it suffices to estimate the operator norm ∥|Aε|∥L(H). And also the

second integrand in (37) can be estimated dominantly by

∥|Aε|∥L(H)∥|Cε|∥L(H)∥DF̂ (zns − zn−1
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and taking Itô’s isometry [18] into consideration in

E
����
∫ t

0

QεdW̃s

����
2

H
= E

∫ t

0

∥QεQ
∗
ε∥ds, (55)

we can verify

E[ sup
0�t�T

∥zn+1
t (ω)− znt (ω)∥2H] � C1E[ sup

0�t�T
∥znt (ω)− zn−1

t (ω)∥2H] (56)

and

E[ sup
0�s�t

∥zs(ω)− z̃s(ω)∥2H] � C2

∫ t

0

E[ sup
0�q�s

∥zq(ω)− z̃q(ω)∥2H]ds

+ C3E
∫ t

0

sup
0�q�s

∥zq(ω)− z̃q(ω)∥2Hds, (57)

where we have employed the Cauchy-Schwarz inequality in deriving (53) and (54). Conse-

quently, we conclude from (56) that the solution zt(ω) exists in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)), and also from (57) that the uniqueness of solutions zt(ω) is valid, by

making use of the Gronwall inequality [17] for (57). This finishes the proof of Proposition 9.

On this account, this also completes the proof of Theorem 6.

As for the proof of Theorem 7, likewise as in the above proof of Theorem 6, we shall

consider rewriting our stochastic evolution equation (23). If we define an operator C as

C :=

∫ ∞

0

etAQQ∗etA
∗
dt =

1

2
(−A)−1Q2, (58)

then we have 2ACDF (wt(ω)) = −Q2DF (wt(ω)). An application of the above newly-derived

expression for the evolution equation (23) leads to

dwt(ω) = {Awt(ω) + 2AC ·DF (wt(ω))}dt+QdW̃t(ω) with w(0) = u0. (59)

In addition, noting that

E
����
∫ t

0

Aεzsds

����
2

H
� E

(∫ t

0

∥Aεzs∥Hds

)2

� T 2 · E
∫ t

0

∥|Aε|∥2L(H)∥zs∥
2
Hds

� T 2K · E
∫ t

0

∥zs∥2Hds � T 2K · E[ sup
0�t�T

∥zt∥2H], (53)

E
����
∫ t

0

2AεCεDF̂ (zs)ds

����
2

H
� 4E

(∫ t

0

∥AεCε ·DF̂ (zs)∥Hds

)2

� 4E
(∫ t

0

∥|Aε|∥ · ∥|Cε|∥ · ∥DF̂ (zs)∥Hds

)2

� 4K

(
K0C0M

2
q

2β0

)2

M2
1C

2 · E
(∫ t

0

∥zs∥Hds

)2

� K

(
K0C0M

2
qM1CT

2β0

)2

E[ sup
0�t�T

∥zt∥2H], (54)
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We need the following lemma.
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process defined by the stochastic differential equation in infinite dimensions dXt = A(Xt)dt +

G(Xt)dW
Q
t . If we set F (x) = ∥x∥2H for any x ∈ H, then we can get

dF (Xt) ≡ d∥Xt∥2H = 2⟨Xt, A(Xt)⟩Hdt+ 2⟨Xt, G(Xt)dW
Q
t ⟩H + ⟨G(Xt), G(Xt)⟩Htr(QQ∗)dt.

(64)
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and taking Itô’s isometry [18] into consideration in

E
����
∫ t

0

QεdW̃s

����
2

H
= E

∫ t

0

∥QεQ
∗
ε∥ds, (55)

we can verify

E[ sup
0�t�T

∥zn+1
t (ω)− znt (ω)∥2H] � C1E[ sup

0�t�T
∥znt (ω)− zn−1

t (ω)∥2H] (56)

and

E[ sup
0�s�t

∥zs(ω)− z̃s(ω)∥2H] � C2

∫ t

0

E[ sup
0�q�s

∥zq(ω)− z̃q(ω)∥2H]ds

+ C3E
∫ t

0

sup
0�q�s

∥zq(ω)− z̃q(ω)∥2Hds, (57)

where we have employed the Cauchy-Schwarz inequality in deriving (53) and (54). Conse-

quently, we conclude from (56) that the solution zt(ω) exists in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)), and also from (57) that the uniqueness of solutions zt(ω) is valid, by

making use of the Gronwall inequality [17] for (57). This finishes the proof of Proposition 9.

On this account, this also completes the proof of Theorem 6.

As for the proof of Theorem 7, likewise as in the above proof of Theorem 6, we shall

consider rewriting our stochastic evolution equation (23). If we define an operator C as

C :=

∫ ∞

0

etAQQ∗etA
∗
dt =

1

2
(−A)−1Q2, (58)

then we have 2ACDF (wt(ω)) = −Q2DF (wt(ω)). An application of the above newly-derived

expression for the evolution equation (23) leads to

dwt(ω) = {Awt(ω) + 2AC ·DF (wt(ω))}dt+QdW̃t(ω) with w(0) = u0. (59)

In addition, noting that

E
����
∫ t

0

Aεzsds

����
2

H
� E

(∫ t

0

∥Aεzs∥Hds

)2

� T 2 · E
∫ t

0

∥|Aε|∥2L(H)∥zs∥
2
Hds

� T 2K · E
∫ t

0

∥zs∥2Hds � T 2K · E[ sup
0�t�T

∥zt∥2H], (53)

E
����
∫ t

0

2AεCεDF̂ (zs)ds

����
2

H
� 4E

(∫ t

0

∥AεCε ·DF̂ (zs)∥Hds

)2

� 4E
(∫ t

0

∥|Aε|∥ · ∥|Cε|∥ · ∥DF̂ (zs)∥Hds

)2

� 4K

(
K0C0M

2
q

2β0

)2

M2
1C

2 · E
(∫ t

0

∥zs∥Hds

)2

� K

(
K0C0M

2
qM1CT

2β0

)2

E[ sup
0�t�T

∥zt∥2H], (54)

and taking Itô’s isometry [18] into consideration in

E
����
∫ t

0

QεdW̃s

����
2

H
= E

∫ t

0

∥QεQ
∗
ε∥ds, (55)

we can verify

E[ sup
0�t�T

∥zn+1
t (ω)− znt (ω)∥2H] � C1E[ sup

0�t�T
∥znt (ω)− zn−1

t (ω)∥2H] (56)

and

E[ sup
0�s�t

∥zs(ω)− z̃s(ω)∥2H] � C2

∫ t

0

E[ sup
0�q�s

∥zq(ω)− z̃q(ω)∥2H]ds

+ C3E
∫ t

0

sup
0�q�s

∥zq(ω)− z̃q(ω)∥2Hds, (57)

where we have employed the Cauchy-Schwarz inequality in deriving (53) and (54). Conse-

quently, we conclude from (56) that the solution zt(ω) exists in the Hilbert space L2C0,T
t (H)

= L2(Ω, C([0, T ];H)), and also from (57) that the uniqueness of solutions zt(ω) is valid, by

making use of the Gronwall inequality [17] for (57). This finishes the proof of Proposition 9.

On this account, this also completes the proof of Theorem 6.

As for the proof of Theorem 7, likewise as in the above proof of Theorem 6, we shall

consider rewriting our stochastic evolution equation (23). If we define an operator C as

C :=

∫ ∞

0

etAQQ∗etA
∗
dt =

1

2
(−A)−1Q2, (58)

then we have 2ACDF (wt(ω)) = −Q2DF (wt(ω)). An application of the above newly-derived

expression for the evolution equation (23) leads to

dwt(ω) = {Awt(ω) + 2AC ·DF (wt(ω))}dt+QdW̃t(ω) with w(0) = u0. (59)

Hence it suffices to verify the following proposition, in order to prove Theorem 7.

Proposition 13. If DF : H → H is Lipschitz continuous, then the stochastic evolution

equation (59) has a unique solution w(t, x, ω) in L2C0,T
t (H).
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Hence it suffices to verify the following proposition, in order to prove Theorem 7.
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That’s why we need to estimate the term ∥uε
t −wt∥2H . We may apply Lemma 15 for the term

to obtain

∥uε
t − wt∥2H = 2

∫ t

0

⟨uε
s − ws,

1

ε
(A− d

dt
)uε

s −Aws⟩ds

+ 2

∫ t

0

⟨uε
s − ws, Q

2DF (ws)−
1

ε
Q2DF (uε

s)⟩ds

+
2(1− ε)

ε

∫ t

0

⟨uε
s − ws, QdW̃t⟩+

(
1− ε

ε

)2 ∫ t

0

tr(QQ∗)dt. (66)

Each integral term will be estimated by the following series of lemmas.

Lemma 16. There exist some constants C1 ≡ C1(ε), C2 ≡ C2(ε, T ) and C3 ≡ C3(ε, T )

such that
∫ t

0

⟨uε
s − ws,

1

ε
(A− d

dt
)uε

s −Aws⟩ds

� C1

∫ t

0

∥uε
s − ws∥2Hds+ C2 sup

0�t�T
∥vεt ∥2−1 + C3 sup

0�t�T
∥wt∥2H . (67)

Proof. A direct computation leads to the desired result. Actually, by employing the

Cauchy-Schwarz-Bunyakovskii type inequality and the triangular inequality we can estimate

the integral term dominantly by
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d

dt
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0�t�T
∥wt∥2H ,

where we made use of a trivial inequality ab � 1
2 (a

2 + b2), took advantage of an estimate

∥|A|∥L(H−1) � M1, and put

C1 :=
3M1 + 1

2ε
− M1

2
, C2 :=

T

2ε
and C3 :=

M1T (1− ε)

2ε
.

�
Lemma 17. There exist some constants C4 ≡ C4(ε) and C5 ≡ C5(ε, T ) such that
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, took advantage of an estimate 
|A|L(H−1)  M1, and put

� □
Lemma 17. There exist some constants C4 ≡ C4(ε) and C5 ≡ C5(ε, T ) such that

� (68)

Proof. We may apply the Schwarz inequality for the integrand to obtain

� (69)

While, we decompose the second norm of the integrand in (69) and rewrite it into another form by 
using the Lipschitz continuity (5):

� (70)

By substituting (70) for (69), an application of the easy inequality ab  

Proof. We may apply the Schwarz inequality for the integrand to obtain

∫ t

0

⟨uε
s − ws, Q

2DF (ws)−
1

ε
Q2DF (uε

s)⟩ds

�
∫ t

0

∥uε
s − ws∥H · ∥Q2DF (ws)−

1

ε
Q2DF (uε

s)∥Hds. (69)

While, we decompose the second norm of the integrand in (69) and rewrite it into another

form by using the Lipschitz continuity (5):

∥Q2DF (ws)−
1

ε
Q2DF (uε

s)∥H

� ∥Q2DF (ws)−Q2DF (uε
s)∥H + ∥Q2DF (uε

s)−
1

ε
Q2DF (uε

s)∥H

� ∥|Q|∥2 · ∥DF (ws)−DF (uε
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����
(
1− 1

ε

)
Q2DF (uε

s)

����
H

� MC · ∥uε
s − ws∥H +

(
1

ε
− 1

)
MC · ∥uε

s∥H . (70)

By substituting (70) for (69), an application of the easy inequality ab � 1
2 (a

2 + b2) provides

with the desired inequality (68), where we have only to put

C4 :=
MC

2

(
1 +

1

ε

)
, C5 :=

(1− ε)MCT

2ε
with M := M2

q .

�
We apply Lemma 16 and Lemma 17 to the equality (66) and rearrange those terms. After

all, summing up, we readily obtain

∥uε
t − wt∥2H � K1(ε)

∫ t

0

∥uε
s − ws∥2Hds+K2(ε) · sup

0�t�T
∥vεt ∥2−1 +K3(ε) · sup

0�t�T
∥wt∥2H

+K4(ε) · sup
0�t�

∥uε
t∥2H +

(
1− ε

ε

)2 ∫ t

0

tr(QQ∗)ds+
2(1− ε)

ε

∫ t

0

⟨uε
s − ws, QdW̃s⟩. (71)

Then, taking the supremum over the interval [0, T ] and also taking the expectation E[·] over
the probability space (Ω,F ,P), we can finally get

E
[

sup
0�t�T

∥uε
t − wt∥2H

]
� K5(ε)

∫ T

0

E
[
sup

0�t�s
∥uε

t − wt∥2H
]
ds+K6(ε) (72)

where the stochastic integral term vanishes under the expectation because the stochastic

integral of Itô type is a (Ft)-martingale and the expectation of martingale becomes null by

the theory of martingales. Hence it follow immediately that

E
[

sup
0�t�T

∥uε
t − wt∥2H

]
� K6(ε)e

K5(ε)T , for ∀T > 0. (73)
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� □

We apply Lemma 16 and Lemma 17 to the equality (66) and rearrange those terms. After all, 
summing up, we readily obtain

� (71)

Then, taking the supremum over the interval [0, T ] and also taking the expectation E[·] over the 
probability space (Ω, F , P), we can finally get

� (72)

where the stochastic integral term vanishes under the expectation because the stochastic integral of 
Itô type is a (Ft)-martingale and the expectation of martingale becomes null by the theory of mar-
tingales. Hence it follow immediately that

� (73)

There may be two cases: one is the case where the constant K5(ε) diverges to minus infinity as the 
parameter ε tends to zero, and the other is the case where K6(ε) vanishes by the passage to the 
limit ε → 0. However, here the first case is impossible, and the second case is possible. This im-
plies that the assertion of Theorem 8 is established and the expression (28) is valid. This finishes 
the proof of Theorem 8.
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