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Abstract
Cryptographic protocols are protocols which perform some security-related func-

tions using cryptography. Flaws of cryptographic protocols will bring serious security
problems to the cyberspace application, and even cause the immeasurable loss. There-
fore, security analysis of the cryptographic protocols become an indispensable process.

Formal analysis method is used to security analysis method for cryptographic proto-
cols. Until now, theorem proving method and model checking method are widely used
for formal analysis of cryptographic protocols. These methods are proving methods
because analysts should enumerate the concrete security specifications in advance, then
prove or check whether the target cryptographic protocol satisfies the enumerated secu-
rity specifications or not, thereby verifying whether flaws exist or not. Therefore, when
using the formal analysis method with proving to verify the security of a cryptographic
protocol, all the concrete security specifications must be enumerated. However, it is
generally difficult for analysts to enumerate the security specifications completely.

As an alternative way, a concept of formal analysis method with reasoning has been
proposed. Analysts do not need to enumerate all the security specifications in advance
but take the behaviors explicitly and implicitly included in the specifications of cryp-
tographic protocols as premises to perform forward reasoning. By forward reasoning,
formulas related to flaws can be deduced and it is possible to deduce the formulas that
point to some unknown flaws in principle. Wagatsuma et. al proposed the concrete tasks
of formal analysis method with reasoning for key exchange protocols. In the method,
analysts formalize the participant’s behaviors and an intruder’s behaviors to perform
forward reasoning, and then analysts analyze the deduced formulas whether success-
ful attacks exist. However, there are still some limitations and problems in the method.
First, it cannot analyze the cryptographic protocols except key exchange protocols. Sec-
ond, there are no clear flaw analysis criteria to accurately analyze whether the deduced
formulas are related to the flaws. Third, due to the limitations of the participants’ be-
haviors, some flaws cannot be detected. Fourth, many tasks in formal analysis need to
perform manually that lead to the time-consuming and error-prone problems.

This thesis proposes the improving formal analysis method with reasoning for cryp-
tographic protocols and the supporting environment for formal analysis to solve the
above limitations and problems. First, we extended the formal analysis method with
reasoning to apply to various cryptographic protocols. Second, we proposed the fine-
grained flaw analysis criteria to analyze the deduced formulas. Third, we extended the
formalization tasks and forward reasoning tasks to detect more types of flaws. Fourth,
we proposed the supporting environment for formal analysis. This thesis describes the
findings and results obtained through our research on demonstrating the effectiveness of
the extended method and the support environment and is composed of 8 Chapters.

We described the extended formal analysis method with reasoning which can be ap-
plied to various cryptographic protocols in chapter 3. As the first step of expansion, we
compared 19 representative cryptographic protocols based on participants’number and
behaviors and summarized five features. Then, we extended the participants’behaviors



corresponding to the summarized features. We also proposed a specific procedure to
decided how falsified data that an intruder would send. After extending, we performed
case studies to verify the extended method can be used to detect various cryptographic
protocols. By succeeding detecting the known flaws of secret splitting protocols, it can
be said that the extended method is effective to apply to various cryptographic protocols.

We proposed the flaw analysis criteria have been proposed in chapter 4. We defined
what is a flaw in a cryptographic protocol and considered the security properties of
cryptographic protocols can be used as criteria for testing the security of cryptographic
protocols. We have organized six fine-grained security properties of confidentiality, au-
thentication, fairness, non-repudiation, anonymity, and atomicity, and used them as flaw
analysis criteria to analyze flaws in cryptographic protocols. We also verified the flaw
analysis criteria are capable by analyzing Needham Schroeder protocol and anonymous
atomic transaction protocols.

To detect more types of cryptographic protocol flaws, we proposed a new method
to perform forward reasoning to test the flaws related to non-repudiation and fairness
caused by participants’ deception in Chapter 5. We also took the ISI protocol and CMP1
protocol as cases to perform security analysis. By the result of analyzing, it is proved
that the improved formal analysis method with reasoning is effective to detect the flaws
related to non-repudiation and fairness.

To resolve the time-consuming and error-prone problems, we explained the first
supporting environment for formal analysis of cryptographic protocols in chapter 6. The
supporting environment integrates various supporting tools and it can support analysts
to perform formal analysis of cryptographic protocols through the whole processes.

In chapter 7, we discussed soundness of the method proposed in this research and
the limitations of the extended method.

Finally, Chapter 8 summarizes the results obtained in this study and shows the future
works.
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Chapter 1

Introduction

1.1 Background and Motivation
In the highly informative society, cryptographic protocols are necessary techniques to
ensure the security and fairness of many applications in cyberspace. Cryptographic pro-
tocols are protocols which perform some security-related functions using cryptography.
Cryptographic protocols are protocols which perform some security-related functions
using cryptography. Flaws of cryptographic protocols will bring serious security prob-
lems to the cyberspace application, and even cause the immeasurable loss. Therefore,
security analysis of the cryptographic protocols become an indispensable process.

Formal analysis method is used for security analysis of cryptographic protocols[23][41]
[43]. Until now, as formal analysis methods with proving, theorem proving method
and the model checking method [6][8][21][50] are widely used for formal analysis of
cryptographic protocols. These methods can be regarded as proving methods because
analysts should enumerate the security properties that a protocol should satisfy and ac-
curately describe these properties as formulas in advance, then prove or check whether
the target cryptographic protocol satisfies the formulas or not, thereby verifying whether
flaws exist or not. Theoretical limitation of such proving methods is that analysts should
enumerate all formulas accurately describe the security properties before they start to
verify target cryptographic protocols with the methods and the methods only can verify
the security through the enumerated formulas. If the enumeration is not enough, some
flaws cannot be detected. However, it is generally difficult for analysts to enumerate the
formulas completely.

As an alternative way, a concept of formal analysis method with reasoning has been
proposed by Cheng [19]. In the method, it is not necessary to enumerate all the formulas
that accurately describe the properties in advance but takes the behaviors of participants
and the behaviors of an intruder as premises to perform forward reasoning. By forward
reasoning, formulas related to flaws can be deduced and it is possible to deduce some
formulas that point to some unknown flaws in principle. Wagatsuma et. al [55] pro-
posed the concrete procedures in formal analysis method with reasoning to detect key
exchange protocols. By using this method, flaws of Otway-Rees protocol [46] can be
detected. However, there are still some limitations and problems in the method. First, it
cannot be used to detect flaws of various cryptographic protocols except key exchange
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protocols. Second, there are no clear flaw analysis criteria to accurately analyze whether
the deduced formulas are related to flaws of the target protocols. Third, due to the limita-
tions of the behaviors, some flaws cannot be detected. Fourth, many tasks in the method
need to perform manually that lead to time-consuming and error-prone problems.

1.2 Purpose and Objectives
Purpose of the research is to improve the formal analysis method with reasoning for
key exchange protocols by solving the above limitations and problems. At first, we ex-
tended the formal analysis method with reasoning for key exchange protocols to make
it possible to apply to various cryptographic protocols. Then we defined what is a flaw
in a cryptographic protocol and propose the security properties of cryptographic pro-
tocols can be used as criteria for testing the security of cryptographic protocols. After
that, to detect more kinds of flaws, we proposed a new method to perform forward rea-
soning to find out flaws related to non-repudiation and fairness caused by participants’
deception. At last, we proposed the first supporting environment for formal analysis of
cryptographic protocols.

1.3 Structure of This Thesis
The rest of this thesis is organized as follows. Chapter 2 explains formal analysis of
cryptographic protocols. Chapter 3 shows the improvement of applying formal analy-
sis method with reasoning to various cryptographic protocols. Chapter 4 describes the
improvement of flaw analysis criteria. Chapter 5 presents the improvement of detecting
more flaws of cryptographic protocols. Chapter 6 proposes the first supporting envi-
ronment for formal analysis. Chapter 7 discuss the problems of the extended method.
Finally, contributions and future works are given in Chapter 8.
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Chapter 2

Formal Analysis of Cryptographic
protocols

2.1 Basic Notions of Cryptographic Protocols

2.1.1 Cryptographic Protocols and Classification
A protocol is a series of steps, involving two or more entities, designed to accomplish
a task. A “series of steps” means that the protocol has a sequence, from start to finish.
Every step must be executed in turn, and no step can be taken before the previous step
is finished. “Involving two or more entities” means that at least two people are required
to complete the protocol [3]. A cryptographic algorithm, also called a cipher, is the
mathematical function used for encryption and decryption. A cryptographic protocol is
a protocol that uses cryptography.

A cryptographic protocol is a protocol which performs a security-related function
using cryptography [37]. Security-related function means prevention of or protection
against (a) access to information by an unauthorized entity or (b) the intentional but
unauthorized destruction or alteration of that information [15].

Until now, no one has classified the cryptographic protocol in detail. In fact, strict
classification of cryptographic protocols is very difficult. From different perspectives,
there are different classification methods. For example, according to the ISO refer-
ence model, the cryptographic protocol can be divided into a high-level protocol and
a low-level protocol; according to the encryption algorithms to be used, cryptographic
protocols can be divided into public key protocol, symmetric key protocol, and hybrid
protocol. In this thesis, we divide the cryptographic protocols into the following four
types according to the function of the cryptographic protocol.

1. Key exchange protocol

In order to achieve communication between entities, the key exchange protocol
shares a secret session key between two or more entities through a series of mes-
sage interactions [12].

2. Authenticated protocol
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The authenticated protocol realizes the authentication of the entities’ identity or
the data source through the interaction of the message, preventing the intruder
from impersonating or tampering with the data attack [22].

3. Authenticated key exchange protocol

The authenticated key exchange protocol is to implement entity authentication or
data source authentication while sharing a secret session key [30].

4. E-commence protocol

E-commerce protocol is a cryptographic protocol to ensure normal, reliable, and
secure transactions between participants (customers, banks, merchants, and other
entities) in e-commerce activities [37].

2.1.2 Composition of Cryptographic Protocols
According to the definition of Cryptographic protocols, Ishibashi et.al [34] proposed
the primitive constituent elements of cryptographic protocols. Here, we consider that a
cryptographic protocol consists of participants and the message they exchange.

Entity is an independent unit which performs one or more operations in a crypto-
graphic protocol. There are two types of entity, Agent and S ever. Agent is an indepen-
dent unit which actively performs each operation. S ever is an independent system which
passively returns an answer to the request. Participant is an authorized entity who exe-
cutes the cryptographic protocols. Participant includes a variety of roles, such as spon-
sors and responders in authentication protocols; trusted servers in arbitrated protocols;
prover and verifier in zero-knowledge protocols; merchants, banks and customers in E-
commerce protocols. Intruder is an unauthorized entity who participates in or interfere
with the execution of cryptographic protocols.

In a cryptographic protocol, Message consists of Data and Item. Data is a primitive
and independent unit. Item is a package that includes some Data and Item. S ecretData
is the independent unit represent secret information. S ecretItem is the Item which in-
cludes secret information. S ecretData and S ecretItem are secret information. In gen-
eral, a cryptographic protocol is described as the following format.

1. A→ S : A, B,Na

2. S → A : {Na, B, S K, {S K, A}Kb}Ka

In the protocol, A, B, Na, S K, these four are all Data, where S K is S ecretData.
{S K, A}Kb , {Na, B, S K, {S K, A}Kb}Ka , both are Item. S K, {S K, A}Kb are the S ecretItem.
The sentence “A, B, Na” and “{Na, B, S K, {S K, A}Kb}Ka” are both Message.

Cryptographic protocols deal with several kinds of keys. Long-term key (it is also
called private key) and public key are the asymmetric key pairs that are used by public
key algorithms. Long-term key is with possible long-term implications. It is deliberately
stored somewhere, either on a computer disk, flash memory, or even printed on paper.
The key is intended to be used at multiple points in time. Symmetric key and session
key are used by symmetric algorithms. Symmetric key is generally agreed by the par-
ticipants of a protocol before communication and can be reused for a long time. Session
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key is a single-use symmetric key used for encrypting all messages in one communica-
tion session. It is not intentionally stored and is not re-creatable. Session keys are used
to encrypt the message only as long as the conversation of cryptographic protocols.

Fresh identifier is the unique identifier generated for the execution of a protocol. It
can be a random number, a timestamp, a session key, or a component that generates a
new session key. If an identifier or a message is generated by a participant specifically
for this protocol or is transformed with this specially generated content in a one-way
transmission, and the composite message involves the cryptographic operation corre-
sponding to the responder, then participant can confirm that the identifier or message is
fresh.

2.1.3 Security of Cryptographic Protocols
When analyzing the security of cryptographic protocols, a common idea is to use vari-
ous possible attacks to test the cryptographic protocol’s security. There are usually three
targets for attacks, one is the cryptographic algorithm used by the cryptographic proto-
col, the other is the cryptographic technique used in the algorithm and protocol, and
the third is the cryptographic protocol itself. In this thesis, we mainly study the attack
on the protocol itself and assume that the cryptographic algorithms and cryptographic
techniques used in the protocol are all secure.

Attacks on the cryptographic protocol itself can be divided into active attacks and
passive attacks. Passive attack refers to an entity outside the protocol that eavesdrops on
part or the whole process of protocol execution. We call the outside entity an intruder.
The intruder’s eavesdropping on the protocol does not strictly enforce the implemen-
tation of that protocol. What an intruder can do is to observe the information of the
cryptographic protocol and try to get some information from the participants. The char-
acteristics of passive attacks are difficult to detect. Active attacks are more dangerous
for cryptographic protocols. In this type of attacks, an intruder attempts to change cer-
tain messages in the execution of the protocol, destroy the system, or gain unauthorized
access to the resource. They may introduce new messages in the protocol, delete mes-
sages, replace messages, and resend old ones.

In the communication process of a cryptographic protocol, an attack is a sequence
of actions by participants and an intruder. A successful attack is that an intruder can
do the last action of the attack. In this thesis, we call the last action of an attack “a
fatal action of an attack”. If successful attacks occurred in the communication process
of the cryptographic protocol, we say that the cryptographic protocol has flaws. A
behavior is a set of rules among events and/or actions in the communication processes
of cryptographic protocols.

About the attacks, Dolev and Yao proposed the Dolev-Yao intruder model [29].
They proposed to separate the cryptographic protocol itself from the cryptographic al-
gorithm specifically adopted by the cryptographic protocol, and analyze the correctness,
security, and redundancy of the security protocol itself on the assumption of a perfect
cryptosystem. They also built an intruder model that accurately portrays the intruder’s
behaviors. It defines that

1. The intruder can obtain any message passing through the network.
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2. The intruder is a legitimate user of the network, and thus, in particular, can initiate
a conversation with any other user.

3. The intruder will have the opportunity to be a receiver to any user A. (More
generally, we allow the possibility that any user B may become a receiver to any
other user A.)

2.2 Formal Analysis Method with Proving
Model checking and theorem proving are formal analysis method with proving.

In model checking method, a cryptographic protocol is described by the state transi-
tion system and the security properties that the protocols should satisfied are described
as temporal logic formulas, then analysts verify whether the target cryptographic pro-
tocol satisfies the security specifications [6][8][21]. Temporal logic can assert how the
behavior of the system evolves over time [7]. For example, in NSSK protocol, one of the
security properties is “When A and B complete the protocol, both participants correctly
record the identity of the other”, and the temporal logic formula is represented by

(A.success, B.success)implyA.myNonece == B.yourNonce ∧ A.yourNonce ==
B.myNonce

Also its supporting tool such as Scyther [24], ProVerif [9] have been proposed.
Theorem proving is also based on proving. A cryptographic protocol is constructed

into as formal theorems and the security properties are formalized as model theorem.
Then analysts should prove whether the formal theorems hold or not by using inference
rules and model theorem [49]. CafeOBJ [31] and Isabelle [50] are proposed and applied
as typical supporting tools.

However, there is a limitation of formal analysis method with proving, that is, an-
alysts should enumerate all formulas accurately describe the security properties before
they start to verify target cryptographic protocols with the methods and the methods
only can verify the security through the enumerated formulas. If the enumeration is not
enough or incorrect, some flaws cannot be detected. However, it is generally difficult
for analysts to enumerate the formulas completely.

2.3 Formal Analysis Method with Reasoning
As an alternative way, a method of formal analysis method with reasoning for cryp-
tographic protocols has been proposed by Cheng [19]. In this method, analysts take
formalized explicitly and implicitly behaviors included in the specifications of a proto-
col as premises to perform forward reasoning. By forward reasoning, formulas related
to flaws can be deduced and it is possible to deduce the formulas that point to some
unknown flaws in principle. Wagatsuma et. al [55] proposed the concrete procedures
of formal analysis method with reasoning for key exchange protocols. In the method,
analysts formalize the participant’s behaviors and an intruder’s behaviors to perform
forward reasoning, and Then analyze the results of forward reasoning whether fatal ac-
tions exist. If fatal actions exist, attacks succeed in the target cryptographic protocol.
By forward reasoning, all the possibility of the formulas that represent fatal actions of
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attacks can be deduced in principle. In other words, we can detect all the successful
attacks so that we can find out all the flaws of the protocol in principle.

In the method, strong relevant logics [17][18] are appropriate logic systems for un-
derlying forward reasoning because conclusions not related to premises cannot be de-
duced. Furthermore, forward reasoning engine FreeEnCal [20] that can automatically
perform forward reasoning has been proposed and developed. A support tool for spiral
model of cryptographic protocol design also proposed [56].

However, there are some limitations and problems in Wagatsuma’s method. First,
the target of this method is limited to only key exchange protocols. Second, there are
no clear flaw analysis criteria to accurately analyze whether the deduced formulas are
related to flaws of the target protocol. Third, due to the limitations of the behaviors,
some flaws cannot be detected. Fourth, many tasks in the method need to perform
manually that lead to time-consuming and error-prone problems. Therefore, the method
should be improved in the above three aspects, and an automated support environment
is needed.
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Chapter 3

Improvement of Applying to Various
Cryptographic Protocols

To apply the formal analysis method with reasoning to various cryptographic protocols,
we compared 19 representative cryptographic protocols based on participants’ number
and behaviors and summarized five features of these protocols. Then, we extended the
participants’behaviors by adding new rules corresponding to the summarized features.
We also proposed a specific procedure to decided how falsified data that an intruder
would send. After extending, we performed case studies to verify whether the extended
method can be used to detect flaws of various cryptographic protocols.

3.1 Features of Cryptographic Protocols
We compiled 19 representative cryptographic protocols [45], compared the differences
based on participants’ number and behaviors and summarized five features of these
protocols. Table 3.1 shows the features that different protocols have.

F1: There are three or more participants in a cryptographic protocol.

F2: There is one or more trusted server in a cryptographic protocol.

F3: Participants send data selectively to another in a cryptographic protocol.

F4: One participant sends data to multiple participants in a cryptographic protocol.

F5: Participants get another data by calculation from collected data in a cryptographic
protocol.

8



Kind of Protocol F1 F2 F3 F4 F5
Key Exchange ◦ ◦ ◦
Authentication ◦ ◦ ◦
Secret Splitting ◦ ◦ ◦ ◦

Timestamp ◦
Subliminal Channel ◦ ◦

Undeniable Digital Signatures ◦
Bit Commitment ◦

Coin Flips ◦
Mental Poker ◦ ◦

Anonymous Key Distribution ◦ ◦
Key Escrow ◦ ◦ ◦

Zero Knowledge Proofs ◦
Blind Signatures ◦

Oblivious Transfer ◦
Simultaneous Contact Signing ◦

Digital Certified Mail ◦ ◦ ◦
Secure Elections

Secure Multiparty Computation ◦
Digital Cash ◦

Table 3.1: Features of cryptographic protocols

3.2 Formalization

3.2.1 Overview of Formalization
Analysts formulate “behaviors of participants”, “behaviors of an intruder” and “com-
mon behaviors among participants and an intruder” as targets of formalization. “Behav-
iors of participants” means a set of rules of participants.” “Behaviors of an intruder”
means a set of rules what actions an intruder performs. “Common behaviors among
participants and an intruder” represents rules except the behavior about sending and
receiving data by participants and an intruder.

In this method, analysts formalize the above behavior rules based on first order pred-
icate strong relevant logics [17][18]. In order to be applied to various cryptographic
protocols, we defined following predicates, functions, and individual constants that rep-
resents participants’ behavior or data in cryptographic protocols. We defined following
predicates, functions and individual constants.

Predicates

• Parti(p): p is a participant of a protocol.

• Eq(x1, x2): x1 and x2 are equal.

• Get(p, x): p gets x.
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• Recv(p, x): p receives x.

• S end(p1, p2, x): p1 sends x to p2.

• S tart(p1, p2): p1 and p2 start a communication process.

Functions

• data(x1, · · · , xn) (n ∈ N): A data set that consists of sent and received x1, . . . , and
xn.

• enc(k, x1, · · · , xn): A data set that consists of encrypted x1,· · · , and xn by k.

• id(p): Identifier of p.

• nonce(p): Nonce of p.

• old(x): Old data of x.

• pk(p): Public key of p.

• plus(x): Incremented data of x.

• sig(p, x1, · · · , xn): A data set that consists of x1, · · · , and xn with p’s signature.

• symk(p1, p2): Symmetric key of p1 and p2.

• tstamp(p): Timestamp of p.

Individual constants

• a, b, . . . , h, a1, . . . , an (n ∈ N): Persons

• i: An intruder.

• s1, . . . , sn (n ∈ N): Trusted servers.
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In addition, there are uniquely defined functions and constants that are assigned to
uniquely defined data in a protocol.

In the proposed method, we assumed following premises about participants’ and
an intruder’s behavior. At first, if received data that participants have is falsified, the
participants can recognize falsification. Second, an intruder does not forge sending data
if participants can recognize falsification. Finally, participants know what kinds of data
are derived to them as the next data.

In order to extend the formalization procedure, we add a case that there are three or
more participants to corresponding to F1, a case that there are multiple trusted servers to
corresponding to F2, and a case that a participant selectively sends data to corresponding
to F3 in section 3.2.2. we add a case that a participant sends data to multiple participants
to corresponding to F4 in section 3.2.5. we add a task of generating logical formulas
that participants get new data by calculating got multiple data to corresponding to F4 in
section 3.2.4.

In the formalization progress, three sets of formulas are generated, Normal Path
(NPm

n ), Irregular Path (IPm
n ), and Common Input (CO). NPm

n represents that a partici-
pant correctly sends data in step n. n represents the number of steps. m represents the
number of branch in case that participants send data selectively to another in step n. IPm

n
represents that an intruder sends data in step n. m represents the number of branch by
falsification. CO is a set of logical formulas that represents implicit participants’ and an
intruder’s behavior.

3.2.2 Behaviors of Participants
1. Represent participants’ behavior in each step of the protocol by formulas.

a. As step 1 of the protocol,

S tart(p1, p2)⇒ S end(p1, p2, data(x1, . . . , xn)) (3.1)

means “if a communication process starts with p1 and p2, p1 sends data x1, . . . , xn

to p2”.

b. As step 2 of the protocol,

Recv(p1, data(x1, . . . , xm))⇒ (Parti(p1)⇒
S end(p1, p2, data(x1, . . . , xn))) (3.2)

means “if a participant p1 receives data, p1 sends next data to p2.” But pi, xi

are individual variables, and n,m are the number of sent or received data. If
a participant selectively sends data in a corresponding step, logical formulas
about corresponding step are generated in section 3.2.5.

2. Replace individual variables p1 and p2 of formulas (3.1) and (3.2) with sn or pi

respectively in the previous task. For example, if sender of corresponding step is a
trusted server S 1, S 2, . . . , or S n, individual variable p1 is replaced with s1, s2, . . . ,
or sn, respectively.

11



3. Replace individual variables x1, · · · , xn of formulas (3.1) and (3.2) with terms
according to following rules corresponding step of the specification.

a. If sent data Yi is not encrypted, substitute a function f (pi) or f (sn) respectively
or an individual variable that is uniquely defined.

b. If Yi is incremented data, substitute plus(x′i). x′i is replaced as well as previous
task 3-a.

c. If Yi is encrypted data, substitute enc(k, x′1, · · · , x′n) and replace k depending on
key types such as public key or symmetric key.

4. In part of formulas A1 ⇒ A2 (A1, A2 is formulas), if a variable is included only in
A1 or A2, define an individual constant and replace the variable into the constant.

5. Add quantifier ∀ corresponded to individual variables k, xi, and pi in those formu-
las.

6. Add generated logical formulas that represent the behavior of step i in NP1
i .

7. Add a formula S tart(p1, p2) in NP1
1 with substituting an individual constant of

participants or an intruder to p1 and p2.

3.2.3 Behaviors of An Intruder
The behavior of an intruder in the proposed method is based on Dolev-Yao model [29].

Therefore, formalization of tasks are as follows.

1. Enumerate all functions data(x1, . . . , xn) in predicate S end that is generated based
on formulas (4.1) and (4.2). Then, Generate S tart(p1, p2) ⇒ Get(i,Tm) where
Ti is enumerated data(x1, . . . , xn) and 1 ≤ i ≤ n. m is number of enumerated
data(x1, . . . , xn).

2. If Tm includes function nonce or tstamp or any individual constants, those terms
y are replaced into old(y).

3. Add generated formulas and a formula ∀p1∀p2∀x(S end(p1, p2, x) ⇒ Get(i, x))
which represents “if a participant sends x, an intruder gets it (by eavesdrop-
ping)”in CO.

3.2.4 Common Behavior among Participants and An Intruder
Analysts add following formulas in CO depending on number of participants and used
key.

1. Add ∀p((Get(p, getdata1)∧· · ·∧Get(p, getdatan)⇒ Get(p, getdata′))) represents
if p gets multiple data, it gets another data.
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2. Add the formula that means if p gets data encrypted by p’s symmetric key or
public key, p1 gets original data. ∀p1∀p2∀x1 . . .∀xn(Get(p1, enc(symk(p1, p2),
x1,· · · , xn))⇒ Get(p1, data(x1, · · · , xn))), and

∀p∀x1 . . .∀xn(Get(p, enc(pk(p), x1, · · · , xn))⇒ Get
(p, data(x1, · · · , xn)))

3. ∀p∀x(Recv(p, x)⇒ Get(p, x)) represents if p receives x, p gets it.

4. ∀p1∀p2(Eq(symk(p1, p2), symk(p2, p1))) represents symk(p1, p2) and symk(p2, p1)
are equal.

5. Parti(α) where α represents a person or a trusted server and intruder is not a
participant: ¬Parti(i).

3.2.5 Irregular Case
In following tasks, it is assumed that the case of falsification in each kind of data is
unique because participants check only whether received data is same as that of partici-
pants’.

1. Add S end(p1, p2, x1), . . . , S end(p1, p2, xn) in NP1
j , . . . ,NPn

j , respectively if a par-
ticipant sends data selectively to another.

2. If S end(i, p, x) is deduced, analysts add Recv(p, x) in NPi
j.

3. If S end(p1, p2, x) is deduced, analysts add Recv(p2, x) in NP1
j and the logical for-

mulas generated in task 5.

4. If S end(p, i, x) is deduced, analysts add logical formulas that are generated in task
5.

5. In order to generate logical formulas that represents an intruder sends data with
falsification, analysts do three tasks.

a. Enumerate participants that receive any data after step j If there is no partici-
pant, tasks of forward reasoning is over.

b. Generate logical formulas which data is sent in the step by replacing individual
variable pi into individual constant and then replace each data of falsification
(The data that participants don’t have can be falsified). If any data cannot be
replaced, continue to next participant.

c. Generate logical formulas S end(i, p′, data1), . . . , S end(i, p′, datan), and add
those formulas with Recv(i, x) in IP1

j , . . . , IPn
j , respectively.

Figure 3.1 shows an overview of branches by cases that participants and an intruder
sends data. In the above conditions of falsification, the complexity of the tasks is in-
creased by the number of logical formulas IPm

n . If there is a case that a participant
sends data selectively to another, the number of logical formulas NPm

n also increase the
complexity. However, the task of forward reasoning can be finished by the finite time
because the case of falsification in each kind of data is unique.
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Figure 3.1: Branches by cases that participants and an intruder sends data.

3.3 Forward Reasoning
Analysts use FreeEnCal [20] to perform forward reasoning automatically. Analysts use
generated logical formulas such as NP j

i , IP j′

i , CO and deduced logical formulas until
this step (DF) as input of FreeEnCal. As the result, new logical formulas (DFnew)
deduced, and DFnew is added in DF.

Therefore, if IP j′

i does not include data that participants get (represented as Get(p, x)),
and should be received in step i, IP j′

i cannot be used as input of FreeEnCal. If DF is the
result of forward reasoning about the last step of the target protocol, NP j

i cannot be used
as input of FreeEnCal. If neither NP j

i or IP j′

i cannot be inputted, forward reasoning in
the case is completed. If all cases of forward reasoning are completed, analysts perform
tasks of analysis for each DF.

3.4 Analysis
Analysts check whether formulas that represent successful attacks are included in DF.

If formulas that represent successful completion of the protocol, and an intruder gets
secret data, or any participant received falsified data are included in deduced logical
formulas, it can be said that attacks by an intruder succeed in the target cryptographic
protocol.

3.5 Case Studies
To confirm the effectiveness of the extended method, we select secret splitting protocols
[3] as cases because secret splitting protocols have feature F1, F2, F4, and F5, and coin

14



flips protocols which has F3 [13] as Table 3.1 shown in chapter 3.
Secret splitting protocols are steps to split secret information into several parts of

data, and prevent restoring secret information without collecting each split data. The
protocol can prevent leakage of secret information because each split data do not have
meaning, and secret data cannot be restored by only split data. In the protocol, a trusted
server previously has secret information.

At first, we formalized the specification of each protocol. After that, we performed
forward reasoning as the premises. Finally, we detect fatal action of attacks from de-
duced logical formulas by forward reasoning. If formal analysis based on the extended
method can deduce logical formulas that represent successful attacks in protocols it can
be said that formal analysis method with reasoning is effective for various cryptographic
protocols.

we prepared two secret splitting protocols as the case of formal analysis. In these
specification of secret splitting protocols, data1 and data2 are split data to send partici-
pants of protocol. Specification of first protocol is below.

Specification of the first protocol

Step 1 A→ S : A, B

Step 2 S → A : {data1, B}KAS

Step 3 S → B : {data2, A}KBS

The first protocol has a flaw. When a trusted server S checks two identifiers, there
are two conditions, S checks individually whether each identifier is correct, or checks
whether two identifiers are equal. If a trusted server S only checks individually whether
those sent identifiers are correct, without checking whether sent two identifiers in step
1 are equal or not, it is possible that an intruder can receive split data data1 and data2.
As the result, the intruder can get secret data from got split data data1 and data2 by
falsifying identifiers that are sent in step 1. Concretely, the intruder can perform this
attack by following steps. In following steps, I(X) means that ”an intruder receives data
with pretending to be X.”

An attack on first protocol

1. A→ I(S ) : A, B

2. I(A)→ S : I, I

3. S → I : {data1}KIS

4. S → I : {data2}KIS

We prepared second protocol that is different from first protocol, S starts to send data to
each participant. Specification of second protocol is below.

Specification of second protocol
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1. S → A : {data1, B}KAS

2. S → B : {data2, A}KBS

The second protocol has a flaw. In behavior of an intruder based on Dolev-Yao model
[29], if an intruder knows old data that is sent and received in the previous communi-
cation process, the intruder can falsify sent data into old data that the intruder knows
without participants recognizing. Concretely, the intruder can perform this attack by
following steps. In following steps, data1′ and data2′ are old split data to be sent and
received in the previous communication process.

Attack on second protocol

1. S → I(A) : {data1, B}KAS

2. I(S )→ A : {data1′, B}KAS

3. S → I(B) : {data2, A}KBS

4. I(S )→ B : {data2′, A}KBS

It is a case that both data1′ and data2′ are falsified. On the other hand, there is a case
that only data1′ or data2′ is falsified.

Attack on second protocol (in case that data1 is falsified)

1. S → I(A) : {data1, B}KAS

2. I(S )→ A : {data1′, B}KAS

3. S → B : {data2, A}KBS

Attack on second protocol (in case that data2 is falsified)

1. S → A : {data1, B}KAS

2. S → I(B) : {data2, A}KBS

3. I(S )→ B : {data2′, A}KBS

As the result of detecting the secret splitting protocols,

• Get(i, data1)

• Get(i, data2)

have been deduced that means success of an attack because an intruder could get each
split data data1, data2 so that the intruder can get secret data.

• Recv(s, data(id(i), id(i)))
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• Send(s, i, enc(symk(i,s), data1))

• Send(s, i, enc(symk(i,s), data2))

These three formulas equal that the intruder can get secret data.
4 logical formulas are included in deduced logical formulas which mean that partic-

ipants get the falsified data because the received split data has no meaning.

• Recv(a, enc(symk(a,s), old(data1), id(b)))

• Recv(b, enc(symk(b,s), old(data2), id(a)))

• Get(a, data(old(data1), id(b)))

• Get(b, data(old(data2), id(a)))

Coin flips protocols are steps to fairly perform coin-flip for participants. At first, a
participant A sends data with encrypting that receiver B cannot decrypt. After that, B
sends next data the represents the received value of data is odd or even (corresponding
to front or back of the coin). Finally, A sends the firstly sent data to B in order to check
whether the sent data is correct. In coin flips protocols, A must not previously know the
result that received data is odd or even, and B must not previously know whether B ’s
sent data is odd or even.

We prepared one coin flips protocol as the case of formal analysis. In following
specification of coin flips protocol, f (x) is one way function of sent data x, and odd, even
are data that is corresponding to front or back of the coin. Specification of the coin flips
protocol is below.

Specification of the coin flips protocol

Step 1 A→ B : { f (x), A}KAB

Step 2 B→ A : {odd}KAB/{even}KAB

Step 3 A→ B : {x}KAB

We performed formal analysis of the coin flips protocol based on the extended
method. As the result, formula that represent flaw was detected in deduced logical
formulas. However, the protocol is generally believed secure because the probability of
the successful attack is low. Therefore, the extended method cannot judge the security
of the protocols with F3.

Therefore, we can apply the extended method to secret splitting protocols or other
protocols which satisfy the feature F1, F2, F4, and F5 because we find out flaws by
using the extended method. In the future, we will analyze other cryptographic protocols
to confirm the effectiveness of the extended method.
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Chapter 4

Improvement of Flaw Analysis Criteria

To clarify how to analyze the deduced formulas, we organized fine-grained security
properties as flaw analysis criteria according to the definition of flaw. We used the flaw
analysis criteria to analyze the Needham Schroeder protocol and demonstrated that the
proposed flaw analysis criteria are capable to find out flaws of cryptographic protocols.

4.1 Flaw Analysis Criteria

4.1.1 Definiton of Flaws
In a certain application environment, the designed cryptographic protocol should meet
security requirements. A cryptographic protocol has flaws if the protocol designer’s
definition and description of the security requirements are incomplete, or the designed
cryptographic protocol does not satisfy all the security requirements. Flaws can exist in
the cryptographic algorithm, the cryptographic techniques for implementing the algo-
rithm and protocol, and a cryptographic protocol itself. In this paper, we only consider
the flaws in the protocol itself.

In the premise that the security requirements are complete and correct, if the protocol
does not meet the security requirements, we consider that the cryptographic protocol to
be flawed. Security requirements can be expressed as the extraction or combination of
many basic security properties. In other words, a cryptographic protocol that does not
satisfy security properties corresponding to security requirements leads to the generation
of flaws. Therefore, security properties are treated as criteria for determining whether
flaws exist.

4.1.2 Security Properties of Cryptographic Protocols
Confidentiality

Confidentiality of cryptographic protocols means that secret information is not obtained
by unauthorized entities [42]. It classified into general confidentiality, strong confiden-
tiality, forward confidentiality, and know-key confidentiality.

1. General confidentiality
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Secret information of a cryptographic protocol transmitted cannot be leaked to
unauthorized entities [1][2].

2. Strong confidentiality

Unauthorized entities cannot find the difference when the value of the S ecretItem
changes in a cryptographic protocol [14]. In other words, if the intruder cannot
guess or discover the changed value, regardless of whether the S ecretItem is in-
stantiated into any data, it can be considered that the intruder does not obtain any
information of the S ecretItem and the cryptographic protocol satisfies the strong
confidentiality.

3. Forward confidentiality

Even if the long-term key leaks to the intruder, he/she cannot obtain the session
key of a certain communication [42].

4. Know-key confidentiality

Even if the session key is compromised, the intruder cannot find other keys through
the session key [4].

General confidentiality and strong confidentiality mean that secret information is
not disclosed during the operation of the protocol. And the confidentiality of strong
confidentiality is stronger than the general confidentiality.

Forward confidentiality and know-key confidentiality focus on key-related proto-
cols, considering the impact of secret key leakage on secret information. Forward confi-
dentiality mainly provides perfect confidentiality over past encrypted data and know-key
confidentiality restricts the security hazard generated by the session key to the current
communication.

Authentication

1. Entity authentication

An entity authentication assures one participant (through an acquisition of cor-
roborative evidence) of both the identity of the other participant involved and that
the other participant was active at the time the evidence was created or acquired
[42]. In other words, entity authentication should authenticate the identity of the
communicating participants.

2. Data authentication

Data authentication provides for one participant which receives a message as-
surance (through corroborative evidence) of the identity of the participant which
originated the message [42]. It is the process of confirming the origin and in-
tegrity of data. First, authenticate whether the getting data are from the correct
entity. Second, validate whether the data has been altered in an unauthorized man-
ner since the time it was created, transmitted, or stored by an authorized source.
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The security properties of authentication ensure the authenticity of the communica-
tion. The main difference between the two properties is that data authentication provides
no timeliness guarantee (the authenticated data may be old), while entity authentication
implies actual communication with an associated verifier during execution of the current
run of the protocol [51].

Fairness

Fairness means that after the completion of the cryptographic protocols, any participants
of the protocols has sufficient evidence to resolve possible disputes in the future. And
at any stage of the operation of the cryptographic protocol, any participant will not have
more privilege in the operation. It includes implementation fairness, acquired fairness
and retrospective fairness [5].

1. Implementation fairness

Any participant has the same control over the execution of the cryptographic pro-
tocol. In other words, the participants have the right to choose whether to continue
or give up the execution of the protocol step and to exercise such rights without
affecting the rights of other participants.

2. Acquired fairness

In the case of normal termination of the cryptographic protocols, participants can
be guaranteed the information they should have obtained. In the case of abnormal
suspension, all participants did not receive anything.

3. Retrospective fairness

No participant can escape the responsibilities associated with the exchange of
information.

The above properties describe the fairness to be satisfied during the entire process
of the cryptographic protocols. And they are independent throughout the cryptographic
protocol.

Freshness

The fresh identifier was not used before it was generated, and all the participants be-
lieved that the identifier is also fresh.

Non-Repudiation

The participants of the cryptographic protocols must be responsible for their own ac-
tions, the sender cannot deny the messages they have sent, and the receiver cannot deny
any messages received [38].
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Anonymity

Participants can observe the occurrence of a series of events but cannot know who made
them. Anonymity is divided into the following two forms [48].

1. Sender Anonymity

Anonymity first provides the sender’s anonymous protection, and the sender’s
identity information and address should be hidden.

2. Receiver Anonymity

Similarly, anonymity should provide the receiver’s anonymous protection, and the
receiver’s identity information and address should be hidden.

Atomicity

The concept of atomicity stems from the theory of databases, which means that a logical
unit of a database consists of a series of operations. This group of operations is either
executed, the state changes in a consistent manner, or the operation is not performed, and
the state does not change. Tygar [54] proposed the concept of atomicity of e-commerce
protocols, dividing the atomicity into three levels and being upwardly compatible, that
is, the latter contains the former.

1. Money Atomicity

Funds are conserved before and after e-commerce protocols occur, and funds are
neither created nor disappeared in e-commerce. The reduction in customer money
is equal to the increase in business money.

2. Goods Atomicity

Satisfying the goods atomicity must satisfy the money atomicity. Guarantee the
customer receives the goods only if the merchant receives the payment.

3. Certified Atomicity Satisfying the certified atomicity must satisfy the goods atom-
icity and money atomicity. It is necessary to confirm the goods purchased by the
customer and the goods sent by the merchant.

In summary, the above is the security properties that cryptographic protocols should
meet. It is true that a good cryptographic protocol should also satisfy the properties as
high efficiency, privacy, and robustness, but how to accurately define and describe these
properties is very difficult now. So we do not deeply analyze these properties for the
time being.

4.2 Case Studies
In the previous section, we enumerated the security properties of cryptographic pro-
tocols. In this section, we explained the correctness and necessity of those security
properties by analyzing some specific cryptographic protocols. We analyzed Needham
Schroeder protocol [44] and anonymous atomic transaction protocol [16].
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First, define some symbols used in the explanation of Needham Schroeder protocol
and anonymous atomic transaction protocol.

• A, B, S

Identifiers of participant A, B, S

• C, B,M, L

Identifiers of participant custom, bank, merchant, transaction log

• I

Identifier of an intruder.

• KX1X2

The symmetric key between participants X1 and X2.

• S K

Session key of a cryptographic protocol.

• PKX

The public key of a participant X.

• KX

The long-term key (private key) of a participant X.

• S igX

The signature of a participant X.

• NX

Nonce of a participant X.

• {Y1,Y2, · · · ,Yz}K
Encrypted or decrypted Y1,Y2, · · · ,Yz by key K. If the key is a symmetric key, the
symbol means encrypted or decrypted data. If the key is an asymmetric key, the
symbol only means encrypted data.

• {Y}S igx

Data Y with the signature of participant X.
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4.2.1 Case Study in Needham Schroeder Protocol
Needham Schroeder protocol is an authentication and key exchange protocol [44]. The
function of this protocol is to complete the mutual authentication between participants
A and B and obtain the session key distributed by S .

Specification

1. A→ S : A, B,Na

2. S → A : {Na, B, S K, {S K, A}Kb}Ka

3. A→ B : {S K, A}Kb

4. B→ A : {Nb}S K

5. A→ B : {Nb − 1}S K

This protocol has a flaw [27]. If the intruder intercepts the data sent by participant A
to B in the third step and disguises as B and sends a random number Ni in the same form
as {Nb}S Kin the fourth step, then A sent the {{Ni}S K − 1}S K to the intruder. A thought that
B had obtained and confirmed the session key, but in fact, B did not participate in the
execution of the protocol.

The first attack

1. A→ S : A, B,Na

2. S → A : {Na, B, S K, {S K, A}Kb}Ka

3. A→ I(B) : {S K, A}Kb

4. I(B)→ A : Ni

5. A→ I(B) : {{Ni}S K − 1}S K

According to the definition of security properties, we can find that this protocol does not
satisfy strong confidentiality, entity authentication and data authentication. In the fourth
step and fifth step, the intruder receives Ni and {{Ni}S K − 1}S K . Based on these two data,
the intruder can guess the value of S K and verify it [39], so that the protocol does not
satisfy the strong confidentiality. In the fourth step, participant A does not know if the
entity communicating with him/her is real participant B because A have no idea to check
the identity of the entity, so it does not satisfy the entity authentication. Participant A
also cannot authenticate whether the received message actually came from B. Since the
message was falsified in the fourth step, the protocol does not satisfy the properties of
data authentication.

There is also another flaw in this protocol [27]. If the intruder gets access to Ka,
he/she can record S ’s messages to A. Then, the intruder can pretend to be A to com-
municate with B. Also, participant B cannot judge whether the received message in the
fifth step is fresh.

The second attack
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1. A→ S : A, B,Na

2. S → I(A) : {Na, B, S K, {S K, A}Kb}Ka

3. I(S )→ A : {Na, B, S K, {S K, A}Kb}Ka

4. A→ I(B) : {S K, A}Kb

5. I(A)→ B : {S K, A}Kb

6. B→ I(A) : {Nb}S K

7. I(A)→ B : {Nb − 1}S K

According to the definitions of security properties, we can find that the reason for
this flaw is that the protocol does not satisfy freshness and forward confidentiality. Leak-
age of participant A’s long-term key Ka leads to the leakage of S K, that is, the protocol
does not meet the forward confidentiality. For participant B, the message “{S K, A}Kb”
can only indicate that the operation of this step is fresh, and the fresh identifier S K is
not authenticated by the generating participant S , so participant B cannot judge whether
the message is a replay message or falsified message. Therefore, the protocol also does
not meet freshness.

In summary, the security properties that Needham Schroeder protocol should be met
is confidentiality, authentication, and freshness. Even if one of these properties is not
met, it can create flaws that can be exploited by intruders.

4.2.2 Case Study in Anonymous Atomic Transaction Protocol
In the case study, we do not analyze confidentiality, authentication, and freshness, and
focus on fairness, non-repudiation, anonymity and atomicity. Anonymous atomic trans-
action protocol is an e-commerce protocol that for two or more participants to imple-
ment online transaction functions [16]. This protocol introduces the concept of trans-
action log, independent of the customer, the merchant, and the bank, the fourth party.
Specifically divided into withdrawal protocol and purchase protocol.

The customer has an account in the bank. He/she can withdraw the anonymous
token from the bank. Only the bank can issue the token and the bank cannot track the
identity of the customer through the token. However, if the customer re-uses the token,
the bank will check it out and reveal the identity of the customer.

Withdrawal protocol

The protocol for customer C to withdraw anonymous tokens from bank B is as follows.

Specification

1. C → B : {{C,Q,V}S igc}Kb

2. B→ C : {{Token(Q,V)}S igb}Kc
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The customer randomly generates a pair of withdrawal keys Q and q. C is the iden-
tifier of customer, V indicates withdrawal amount. Customer signed the information,
then encrypted with the public key of the bank and sent to the bank. The bank checks
the customer’s account and generates Token(Q,V) if there is a balance. The bank also
generates a database to manage the Token(Q,V). The database is as follows.

Q V Feature Pointer to customer
... ... ... ...

... ... ... ...

Table 4.1: The database of Token

When a merchant comes to the bank to exchange tokens, the bank first checks the
corresponding feature, and if it has not been consumed, the value V of the token is sent
to the merchant’s account and the feature is marked as spent. If the feature shows that
it has been spent, it means that the cost is repetitive. The bank will find the customer’s
identity based on the pointer.

After the bank generates the Token(Q,V), the signed Token is encrypted by the
customer’s public key and sent to the customer.

The customer receives the message and gets the anonymous token. If there is no
recurring spending, banks and merchants cannot know the customer’s identity. Since
only the feature value in the database is negative, the pointer to the client’s identity is
accessed. Thus, the protocol satisfies the sender anonymity.

Purchase protocol

This protocol describes customer C using anonymous Token(Q,V) to purchase.

Specification

1. C → M : {Goods}Km

2. M → C : {{Nm,Contract, {Goods}S K}S igc}Kc

3. C → B : {{Token(Q,V), {Nm,Deadline,M, L}Kq}Kb

4. B→ M : {Nm,Deadline,M, L,V}S igb

5. M → L : {Nm,Deadline, S K}S igm

6. L→ C : {S K}S igl/{Fail}S igl

7. L→ B : {S K}S igl/{Fail}S igl

8. L→ M : {S K}S igl/{Fail}S igl
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Detail of each step of the protocol is as follows. In step 1, customer C sends the
selected Goods encrypt by the merchant’s public key to the merchant M.

Then the merchant generates a message for the goods, encrypts it with the cus-
tomer’s public key and sends it to the customer. Nm represents the transaction number,
Contract includes the goods description and price, and S K represents the session key
of contract.

In step 3, after the customer confirms the message from the merchant, he/she sends
the bank authentication information and authorizes payment in Token(Q,V). Deadline
is the validity period of Token(Q,V). L means the transaction log. After the deadline,
the payment will be canceled and the customer can use the token for other consumption
or refund to the bank.

In step 4, the bank decrypts the authentication message from the customer, verifies
the validity of Token(Q,V) and check whether there is repeated consumption or whether
it exceeds the deadline. After the inspection is completed, the authentication message
{Nm,Deadline,M, L,V}S igbis sent to the merchant.

In step 5, merchant confirmation message is issued by the bank, verification trans-
action number Nm, commodity price V , expiration date Deadline and transaction log L.
Then send the signed information {Nm,Deadline, S K}S igm to the transaction log.

In the next steps, transaction log L confirms commitment message from merchants,
records transaction number Nm, expiration date Deadline, transaction session key S K,
and timestamps at the time of receipt. When it is determined that everything is valid,
the transaction log L sends the signed transaction session key S K to customer C, bank
B, and merchant M. If the Deadline expires, then the transaction log L sends the failed
transaction Fail to customer C, bank B, and merchant M.

The customer C receives the message from the transaction log L and uses the trans-
action session key S K to decrypt the encrypted goods {Goods}S K received in the second
step to obtain the goods. Then compare the goods and Contract to confirm consis-
tency. If inconsistent, the customer can claim against the merchant with theContract,
{Goods}S K and {S K}S igl . If the customer receives Fail message, Token(Q,V) can be
reused.

The bank B receives {S K}S igl from the transaction log L indicating that the transac-
tion was successful and the bank transferred the value of Token(Q,V) to the merchant’
s account. If Fail message is received, the transaction has failed and the bank marks the
Token(Q,V) in the database as not consumed.

The merchant M receives {S K}S igl from the transaction log L indicating that the
customer C had obtained the goods, and the merchant ’s account should have added
value V . If the account does not increase, merchants M can use {S K}S igl and the message
received in step 4 to arbitrate. If the merchant M receives Fail message, it means that
the transaction failed, the customer cannot get the goods, and the merchant ’s account
does not increase in value.

In summary, after the protocol is implemented normally, all participants involved
can obtain the necessary information. If there is an exception, all participants get noth-
ing, which meets the properties of fairness.

In the withdrawal protocol, the bank checks whether tokens are consumed. If there
is no recurring spending, bank and merchant cannot know the customer’s identity. Since
only the feature value in the database is negative, the pointer to the client’s identity is
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Properties Needham Schroeder
Anonymous atomic

transaction
Confidentiality ◦
Authentication ◦

Fairness ◦
Freshness ◦

Non-Repudiation ◦
Anonymity ◦
Atomicity ◦

Table 4.2: The Properties That Protocols Meet

accessed. thus, the protocol satisfies the sender anonymity.
From the description of the anonymous atomic transaction protocols, each commit

of customers, merchants and banks are protected by digital signatures, so that they can-
not deny or reject the information sent or received, which satisfies the security properties
of non-repudiation.

It can be seen that the customer’s reduced money is exactly equal to the merchant’s
increased money, so it satisfies the properties of money atomicity. If the customer pays
the money, he will be able to get the goods and if he gets the goods, he must pay the
money so that it satisfies the goods atomicity. Only the customer can confirm whether
the received goods are the same as the order, but the merchant cannot confirm it, so it
does not meet the certified atomicity.

4.2.3 Summary of Case Studies
By analyzing the Needham Schroeder protocol and anonymous atomic transaction pro-
tocol, it is clear that the enumerated security properties are indeed the cryptographic
protocol should satisfy. When some properties are not satisfied by a cryptographic pro-
tocol, the protocol to be flowed. The table below shows the properties of each two
protocols. It indicates that the seven security properties are necessary for cryptographic
protocols and can be the criteria for determining whether flaws exist.
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Chapter 5

Improvement of Detecting Flaws

To detect more types of cryptographic protocol flaws, we extended the intruder’s behav-
ior to describe guessing attacks and external replay attacks and proposed a new method
to perform forward reasoning to test the flaws related to non-repudiation and fairness
caused by participants’ deception. We also took the Needham Schroeder protocol and
ISI protocol as cases to perform security analysis. By the result of analyzing, it is proved
that the improved formal analysis method with reasoning is effective to detect the flaws
of guessing attacks, external replay attacks and the flaws related to non-repudiation and
fairness.

5.1 Limitations of Detecting Flaws
Although the formal analysis method with reasoning can be used to detect flaws in a
variety of cryptographic protocols, there are still some limitations, that is, the types of
flaws that can be detected are limited. The reason is that the Dolev-Yao model can only
describe the behavior of an outside intruder but does not consider the mutual deception
of the participant inside the protocol. Therefore, all flaws related to internal attacks
cannot be found out.

5.2 Extending Formal Analysis Method with Reasoning
by Adding Participant’s Behaviors

5.2.1 Basic Notions and Security Properties
Participant is an authorized entity who executes the cryptographic protocols. Participant
is divided into two types. One is an honest participant who sends or receives data in
strict accordance with the steps of a cryptographic protocol. The other is a dishonest
participant who may lie in the execution of a cryptographic protocol or not execute the
cryptographic protocol at all, trying to impersonate or deceive the other participant to
achieve various illegal purposes. In this paper, we assumed that participant A and B may
be dishonest participants, while CS (currency server) and TTP (trusted third party) are
always honest participants.
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The execution of each message of a cryptographic protocol is related to the secu-
rity of the environment. If the message is not executed or is not executed correctly, we
consider that the message is interruptible. If a message should be sent by a dishonest
participant, it is interruptible because the dishonest participant may choose to stop send-
ing a message for his own benefit. If a message should be sent by an honest participant,
the message is uninterruptible in a situation of secure environment because an honest
participant will always follow the protocol process. If the environment is not secure, the
message sent by the honest participant may be lost, so that the message is interruptible.
This thesis only considers the interruption in a secure environment.

Non-repudiation [35][36][38] and fairness [5][32][38] are the security properties of
cryptographic protocols. Non-repudiation means that the participants of a cryptographic
protocol should be responsible for their actions, the sender cannot deny the messages
they have sent, and the receiver cannot deny any messages received. In the event of
a dispute, a participant can provide the necessary evidence to protect its own inter-
ests. Non-repudiation is achieved by the sender having the receiver’s non-repudiation
evidence and the receiver having the sender’s non-repudiation evidence [52][58]. The
sender’s non-repudiation evidence is used to prove that the sender did send the mes-
sage, and the receiver’s non-repudiation evidence to prove that the receiver did receive
the message.

Fairness means that at any stage of the operation of a cryptographic protocol, any
participant will not have more privilege in the operation. It includes implementation
fairness, acquired fairness and retrospective fairness [5][47]. Implementation fairness
means any participant has the same control over the execution of the cryptographic pro-
tocol. In other words, the participants have the right to choose whether to continue or
give up the execution of the protocol step and to exercise such rights without affecting
the rights of other participants. Acquired fairness means in the case of normal termi-
nation of the cryptographic protocols, participants can be guaranteed the information
they should have obtained. In the case of abnormal suspension, all participants did not
receive anything. Retrospective fairness means no participant can escape the responsi-
bilities associated with the exchange of information. In this thesis, we focused on the
realization of acquired fairness, which is also the most important aspect of fairness.

5.2.2 Formalization
Overview of Formalization

In the previous formal analysis method with reasoning, analysts formalize the “behav-
iors of participants”, “behaviors of an intruder”, “common behaviors among participants
and an intruder” and “irregular case” as targets of formalization [57]. In the extended
method, to detect the flaws that caused by dishonest participants, we have added “con-
firm behaviors” and some new tasks in “common behaviors”. Below we only provide a
formal description of behaviors to perform non-repudiation and fairness flaws detection.

Analysts formalize “behaviors of participants”, “common behaviors” and “confirm
behaviors” as targets of formalization. “behavior of participants” means a set of rules of
participants.” “common behaviors” represents rules except for the behaviors of sending
and receiving data by participants. “confirm behaviors” represents a set of rules that
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participants judge whether the signatures or keys are true.
To formalize the behaviors above, we used the definition of predicates, functions

and individual constants in section 3.2.1 and added following predicates and individual
constants that represents participants’ behavior or data in cryptographic protocols.

Predicates

• Co f (p1, p2, x): p1 confirms that p2 has responsibility of x.

Constants

• ttp: Trusted third sever.

In addition, there are uniquely defined functions and individual constants that are
assigned to each data in a cryptographic protocol.

Behaviors of Participants

Behaviors of participants are to describe the specification of a cryptographic protocol.
Generally, in specification of cryptographic protocols, sending and receiving in step M
are represented as M.X1 → X2 : Y1,Y2, · · · ,Yz, it means that X1 sends data Y1,Y2, · · · ,Yz

(z ∈ N) to X2 in step M.

1. Represent participants’ behaviors in each step of a cryptographic protocol by for-
mulas. pi and xi are individual variables, n and m are the number of sent or
received data.

a. As step 1 of the protocol,

S tart(p1, p2)⇒ S end(p1, p2, data(x1, . . . , xn)) (5.1)

means “if a cryptographic protocol starts with p1 and p2, p1 sends data x1, . . . , xn

to p2”.

b. As step 2 of the protocol,

Recv(p1, data(x1, . . . , xm))⇒ (Parti(p1)⇒
S end(p1, p2, data(x1, . . . , xn))) (5.2)

means “if a participant p1 receives data, p1 sends the next data to p2.” pi, xi are
individual variables, and n,m are the number of sent or received data.

2. Replace individual variables p1 and p2 in formulas (5.1) and (5.2) with ttp or pi

respectively in the previous task. For example, if sender of corresponding step
is a third trusted party ttp, individual variable p1 is replaced with the individual
constant ttp.

3. Replace individual variables x1, · · · , xn in formulas (5.1) and (5.2) with terms
according to following rules corresponding step of the specification.
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a. If sent data Yi is not encrypted, substitute a function f (pi) or f (ttp) respectively
or an individual variable that is uniquely defined.

b. If Yi is incremented data, substitute plus(x′i). x′i is replaced as well as previous
task 3-a.

c. If Yi is encrypted data, substitute enc(k, x′1, · · · , x′n) and replace k depending on
key types such as public key or symmetric key.

d. If Yi is signed data, substitute sig(pi, x′1, · · · , x′n) and replace pi with p1, p2, . . . ,
pn or ttp.

4. In part of formulas A1 ⇒ A2 (A1, A2 is formulas), if a variable is included only in
A1 or A2, define an individual constant and replace the variable into the constant.

5. Add quantifier ∀ corresponded to individual variables k, xi, and pi in those formu-
las.

6. Generate a formula S tart(p1, p2) with substituting an individual constant of par-
ticipants to p1 and p2.

Common Behaviors

Common behaviors mainly describe implicit behaviors such as encryption or decryption
behaviors of participants.

1. Generate ∀p((Recv(p, recvdata1)∧· · ·∧Recv(p, recvdatan)⇒ Recv(p, recvdata′)))
represents if p receives multiple data, p receives another data.

2. Generate the formula that means if p receives data encrypted by p’s symmetric
key or public key, p gets original data. ∀p1∀p2∀x1 . . .∀xn(Recv(p1, enc(symk(p1, p2),
x1,· · · , xn))⇒ Recv(p1, data(x1, · · · , xn))), and ∀p∀x1 . . .∀xn(Recv(p, enc(pk(p), x1,
· · · , xn))⇒ Recv(p, data(x1, · · · , xn)))

3. Generate the formula that means if p receives data encrypted by a session key that
p knows, p gets original data. ∀p1∀x1 . . .∀xn(Recv(p1, enc(sesk(p1), x1, · · · , xn))⇒
Recv(p1, data(x1, · · · , xn)))

4. ∀p1∀p2(Eq(symk(p1, p2), symk(p2, p1))) represents symk(p1, p2) and symk(p2, p1)
are equal.

5. Parti(α) where α represents a person or the third trusted server.
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Confirm Behaviors

Confirm behaviors are the basis for the participants to judge whether the received mes-
sage is correct or not.

1. Generate formulas of the public key other participants that each participant have
confirmed before the cryptographic protocol executing. ∀p1∀p2(Co f (p1, p2, pk(p2))),
which means p1 have confirmed that p2 has responsible for the pk(p2).

2. If participnat p1 receives the data {x}sigp2
, and p1 confirms that p2 has the public

key which can decrypt the signiture, then p1 can confirm p2 has responsibility of
data x. ∀p1∀p2∀x(Recv(p1, {x}sigp2

) ∧Co f (p1, p2, pk(p2))⇒ Co f (p1, p2, x))

3. If participnat p1 receives the data {x}k, and p1 confirms that k is the key of p2, p1

can confirm p2 has responsibility of data x. ∀p1∀p2∀x(Recv(p1, {x}k)∧Co f (p1, p2, k)⇒
Co f (p1, p2, x))

4. If participnat p1 confirms the data {x}k, and p1 confirms that k is the key of
p2, p1 can confirm p2 has responsibility of data x. ∀p1∀p2∀x(Co f (p1, {x}k) ∧
Co f (p1, p2, k)
⇒ Co f (p1, p2, x))

5. If participnat p1 confirms that p2 has responsibility to data set (x, y, z), p1 can
confirm p2 has responsibility of each data, same if vice versa. They are rep-
resented as ∀p1∀p2∀x1 . . .∀xn(Co f (p1, p2, {x1 . . . xn}) ⇒ Co f (p1, p2, x1) ∧ · · · ∧
Co f (p1, p2, xn)) and ∀p1∀p2∀x1 . . .∀xn(Co f (p1, p2, x1)∧ · · · ∧Co f (p1, p2, xn)⇒
Co f (p1, p2, {x1 . . .
xn}))

6. TT P and CS are always honest participants. If participants p1 and p2 exchange
data through TT P or CS , and p1 confirms TT P or CS has responsibility to data
m, p1 can confirm p2 has responsibility to data m. ∀p1∀p2∀x(Co f (p1, ttp, x1) ⇒
Co f (p1, p2, x1))

5.2.3 Forward Reasoning
In the method, analysts use FreeEnCal [20] to perform forward reasoning automati-
cally. In the extended method, the number of forward reasoning executions depends on
the number of steps of the cryptographic protocol to be detected. Analysts put generated
logical formulas of “common behaviors”, “confirm behaviors” into FreeEncal, and put
the first step of the “behaviors of participants” into FreeEnCal for the first execution of
forward reasoning, and then add the formula that represents the second step of the pro-
tocol to the result of first execution of forward reasoning to perform forward reasoning
the second time. Add the formula that represents each step of the protocol in turn. If
the added formula is represented as the final step of the cryptographic protocol, forwrd
reasoning is finished.
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5.2.4 Analysis
Analysts check the deduced formulas in each execution result of forward reasoning. If
in the final execution result, all participant have confirmed the data they should receive,
the cryptographic protocol has no flaws of not satisfying non-repudiation. Because ac-
cording to the “confirm behaviors”, if one participant deceives the other in the protocol,
the other participant cannot confirm the data he/she has received. If in the middle ex-
ecution results, one participant has confirmed the target data but the other has not, it
indicates that the cryptographic protocol has the flaw of not satisfying fairness.

5.2.5 Case Studies
To validate the extension of formal analysis method with reasoning is valid of detecting
flaws of not satisfying non-repudiation and fairness, we use ISI protocol [40] and CMP1
[26] protocol as cases to analyze the security. ISI protocol is proposed by Medvinsky
and Neuman, the purpose of the protocol is participant A pays participant B, then B
gives the receipt to A.

The specification of the protocol is as follows. In step 1, participant A sends the
symmetric key to ask the public key of B, and then B answers. Then A sends the elec-
tronic money, the service identification number to be obtained and password to B. By
checking the signature of the CS , B can confirm the validity of the electronic money. In
the fourth step, B transmits the electronic money to CS (currency server). Then CS will
pay B in step 5. After receiving the money, B sends the receipt to A. In this protocol, CS
is an honest participant. Here, coins, id, passward, transaction, new − coins, amount,
tid and date are data that is uniquely defined in the protocol.

Specification

1. A→ B : Kab

2. B→ A : {Kb}Kab

3. A→ B : {{coins}S igcs , S Ka, id, password}Kb

4. B→ CS : {{coins}S igcs , S Kb, transaction}Kcs

5. CS → B : {{new − coins}S igcs}S Kb

6. B→ A : {{amount′, tid, date}S igb}S Ka

This protocol has been pointed out that it does not satisfy the security of non-
repudiation and fairness. In the fifth step, B receives the currency signed by CS , but
at this time A does not receive the receipt. If B stops the cryptographic protocol, A has
no way to get the receipt. Therefore, according to the definition of fairness, the crypto-
graphic protocol has a flaw of not satisfying fairness. In the sixth step of the protocol, A
receives the signed receipt, but A cannot confirm whether this is the signature of B, so
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according to the definition of non-repudiation, the protocol has the flaw of not satisfying
non-repudiation.

As the result of formal analysis by the extended method, 21 paths were generated
and 2435 logical formulas were deduced. In the 18th path,

• Co f (b, a, new − coins)

was deduced which means that participant B can confirm that A has responsibility of
new − coins, that is, B received the currency. In the 21st path,

• Recv(a, data({amount, tid, date}S igb))

was deduced which means that A only cannot confirm whether the signature is from B.
Therefore, this protocol has the flaw that does not satisfy non-repudiation. Since A did
not get a receipt when the currency was obtained by B on the 18th path, the protocol has
a flaw that does not satisfy fairness.

In addition, if using the previous formal analysis method with reasoning to analyze
ISI protocol, we will find that the protocol does not satisfy the authentication. The
specific attack is as follows.

Attack

1. A→ I(B)v : Kab

2. I(A)→ B : Kab

3. B→ I : {Kb}Kab

4. I(B)→ A : {Ki}Kab

5. A→ I(B) : {{coins}S igcs , S Ka, id, password}Ki

6. I(A)→ B : {{coins}S igcs , S Ka, id, password}Ki

7. B→ CS : {{coins}S igcs , S Kb, transaction}Kcs

8. CS → B : {{new − coins}S igcs}S Kb

9. B→ I(A) : {{amount, tid, date}S igb}S Ka

10. I(B)→ A : {{amount′, tid′, date′}S igi}S Ka

As a result of formal analysis, formula is

• Recv(a, data(amount′, tid′, date′))
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deduced, which means that A received the falsified data. Therefore, the protocol also
does not satisfy the security of authentication.

CMP1 protocol is a certified e-mail protocol. It is considered that there is no flaws
related to non-repudiation and fairness.

Specification

1. A→ B : h(m), {K}Kttp , {{m}S iga}k

2. B→ A : {{h(m)}S igb}, {K}Kttp , {{m}S iga}k

3. TT P→ B : {{m}S iga}S igttp

4. TT P→ A : {{h(m)}S igb}, (B,m)}S igttp

As the result, in DF3, Recv(B,m) is deduced, which indicates that B get the m and
A does send m. At the same time, Recv(A, h(m)) and Recv(A, (B,m)) are deduced, which
mean that A knows B have get m. Therefore, the protocol satisfy the non-repudiation
and fairness.

In a word, it can be said that the extended method can detect flaws related to non-
repudiation and fairness.
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Chapter 6

Supporting Environment for Formal
Analysis

6.1 Difficulties in Formal Analysis of Cryptographic Pro-
tocols

Although various supporting tools have been proposed and applied, there are still some
difficulties when analysts perform formal analysis of cryptographic protocols.

Firstly, formalization process and its inverse process still need to perform manually
[55] [56] . when analysts use supporting tools to perform formal analysis, formalization
process should be performed at first. In particular, the properties of the cryptographic
protocol should be converted into formalism acceptances or formal theorems. However,
the incompleteness of informal properties makes the formalization process difficult [33],
which leads to the time-consuming and error-prone problems of manual formalization.
Similarly, the inverse process of formalization also needs to perform manually. In for-
mal analysis method with reasoning, it’s difficult for analysts to transform the deduced
logic formulas into their natural language representation.

In addition, if analysts want to use different supporting tools to analyze a crypto-
graphic protocol, they must master each language used by those tools, for example,
Scyther’s input language is loosely based on a C/Java-like syntax [25] but ProVerif’s
input language is a variant of the applied pi calculus [11], which increases the difficulty
of using them.

Secondly, in formal analysis method with reasoning, analysis of deduced formulas
by forward reasoning is also a time-consuming complex task. In the analysis process,
analysts need to find possible successful attacks from millions of formulas. It’s difficult
for analysts to deal with massive amount of deduced formulas to find possible successful
attacks.

Thus, to solve the automatic formalization problem and its inverse process of vari-
ous supporting tools and provide convenient for analysts to analyze the deduced logic
formulas, in other words, to support the whole processes of formal analysis for crypto-
graphic protocols automatically, a supporting environment is necessary and urgent.
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6.2 Requirement Analysis and Function Definition
To develop the supporting environment for formal analysis of cryptographic protocols,
we enumerated following requirements for the supporting environment.

R1: The supporting environment should support the formalization process.

R1.1: The supporting environment should provide the function of transforming
informal properties of the cryptographic protocol into the language of formal
analysis tool of the selected tool.

R1.2: The supporting environment should provide the function of transforming
logical formulas into the language of formal analysis tool.

R2: The supporting environment should support the inverse process of formalization
process.

R2.1: The supporting environment should provide the function of transforming
the language of formal analysis tool into logic formulas.

R2.2: The supporting environment should provide the function of transforming
logic formulas into informal properties.

R3: The supporting environment should support the process of formal analysis.

R3.1: The supporting environment should support the automatic tool for forward
reasoning method.

R3.2: The supporting environment should support the automatic tools for model
checking method.

R3.3: The supporting environment should support the automatic tools for theo-
rem proving method.

R4: The supporting environment should support analysts to analyze the result of for-
ward reasoning.

R4.1: The supporting environment should provide the function of filtering the
logical formulas.

R4.2: The supporting environment should provide a function that sorts out the
filtered logical formulas according to the possibility of successful attacks.

R5: The supporting environment should systematically store the inputting properties of
cryptographic protocols.

R5.1: The supporting environment should store the properties for each user.
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R5.2: The supporting environment should store the properties of each crypto-
graphic protocols.

R5.3: The supporting environment should store the properties for each creation
times.

R6: The supporting environment should make possible for analysts to manage the prop-
erties of cryptographic protocols.

R6.1: The supporting environment should make possible for analysts to search
the properties of cryptographic protocols.

R6.2: The supporting environment should make possible for analysts to modify
the properties of cryptographic protocols.

R6.3: The supporting environment should make possible for analysts to delete
specification of cryptographic protocols.

R7: The supporting environment should systematically store the result of formal anal-
ysis.

R7.1: The supporting environment should store the result of formal analysis for
each user.

R7.2: The supporting environment should store the result of formal analysis for
each cryptographic protocols.

R7.3: The supporting environment should store the result of formal analysis for
each time of formal analysis.

R7.4: The supporting environment should store and manage the result of formal
analysis for each divided cases in tasks of forward reasoning.

R8: The supporting environment should make possible for analysts to manage the result
of formal analysis.

R8.1: The supporting environment should make possible for analysts to search
the result of formal analysis by each formal method.

R8.2: The supporting environment should make possible for analysts that they
can delete the result of formal analysis.

It is a hard task for analysts to perform formalization, forward reasoning or ver-
ification, and analyzing the result of formal analysis. R1, R2, R3, R4 are the basic
requirements of the supporting environment for formal analysis method.
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It is possible that analysts analyze many cryptographic protocols. As the result, it
takes lots of time to find target properties or results from many properties or results.
Therefore, the supporting environment should satisfy R5, R7 to save the properties and
results of each cryptographic protocol.

It can be assumed that analysts improve a target cryptographic protocol from the
result of formal analysis. Therefore, the supporting environment should satisfy R6 to
manage the properties of cryptographic protocols.

It can be assumed that analysts manage the result of the formal analysis of target
cryptographic protocol. Therefore, R8 should be satisfied by the supporting environ-
ment.

To satisfy the requirements above, a list of functions the supporting environment is
as follows.

F1: Formalization function (satisfied R1)

F1.1: Transform informal properties into logic formulas.

F1.2: Transform logic formulas into language of formal analysis tool.

F2: Inverse formalization function (satisfied R2)

F2.1: Transform language of formal analysis tool into logic formulas.

F2.2: Transform logic formulas into informal properties.

F3: Formal analysis function (satisfied R3)

F3.1: Forward reasoning.

F3.2: Proving by model checking.

F3.3: Proving by theorem proving.

F4: Filter function (satisfied R4)

F4.1: Filter logic formulas.

F4.2: Sort out the filtered logic formulas.

F5: Making directory function (satisfied R5,R7)

F5.1: Make directories of the properties and results of cryptographic protocols
for each user.

F5.2: Make directories of the properties and results of cryptographic protocols
for each cryptographic protocol.
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Figure 6.1: An architecture of the supporting environment

F5.3: Make directories of the properties and results of cryptographic protocols
for each creation time.

F6: Properties managing function (satisfied R6)

F6.1: Search the properties of cryptographic protocols.

F6.2: Modify the properties of cryptographic protocols.

F6.3: Delete the properties of cryptographic protocols.

F7: Result managing function (satisfied R8)

F7.1: Search the result of cryptographic protocols.

F7.2: Delete the result of cryptographic protocols.

6.3 Design of the Supporting Environment
The architecture of the supporting environment is shown in figure 6.1. The supporting
environment has three suv-systems that are formalization system, analysis system, and
management system. It also includes two databases named result database (RDB) and
input (IDB).

Formalization system mainly aims to complete the transformation between informal
properties of cryptographic protocols (IP) and logic formulas, or logic formulas and the
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language of formal analysis tool. In this system, there is an interface to corresponding
to each formal analysis tool. The component of transforming into the logic formulas
(TLFC) consists two functions, one is to transform IP into logic formulas, the other
is to transform language of formal analysis tool to logic formulas. The component of
transforming into the language of formal analysis tool (TLATC) also consists two func-
tions that transform IP into language of formal analysis tool or transform logic formulas
into language of formal analysis tool. Transforming into informal language component
(TILC) is used to transform the filtered logic formulas into informal language to make
the results clearly for analysts.

Analysis system provides the most critical step in formal analysis of a cryptographic
protocol, that is, forward reasoning or proving. Therefore, in the analysis system, there
are two components that are reasoning component (RC) and proving component (PC).
RC corresponds to the function of performing forward reasoning and the PC corre-
sponds to the function of performing proving of the formalized protocols. Filter com-
ponent (FC) is to filter the deduced formulas of forward reasoning so that analysts can
analyze them easily.

The management system aims to manage the input IP and the result of forward
reasoning or proving. Analysts can delete, modify or search them by using the manage
functions.

Two database RDB and IDB are used to reserve the input IP and the results of for-
ward reasoning or proving for each user, each cryptographic protocols and each creation
time.

The data processing of the supporting environment is that IP is input to the formal-
ization system. Simultaneously, they are saved to the IDB. After selection the tools, IP
will be transformed into the logic formulas or language of formal analysis tool. Then the
results will work to perform forward reasoning and the results of forward reasoning will
are filtered. After re-entering the filtered results to the TLFC, the filtered results will
be transformed into logic formulas and at last transformed into informal language. The
informal language will be saved to the RDB so that analysts can manage them conve-
niently by the management system. On the other hands, if the PC is started up, proving
tools will work and the results of proving will also be saved to the RDB.

6.4 Usage of the Supporting Environment
Overview of the supporting environment is represented as figure 6.2.

Details process are that analysts input user name, cryptographic protocol name and
properties of the cryptographic protocol as a target of formal analysis. Then select the
formal analysis tool. After that, the properties will be transformed into LF (logical
formulas) and LAT (language of formal analysis tool) which correspond to the formal
analysis tool. If analysts would like to use the formal analysis method with proving,
only formalization and proving tasks be needed. For example, when we select ProVerif,
the function of formalization will put informal properties of the cryptographic protocol
into ProVerif’s input language, a variant of the applied pi calculus which support types
[6]. Then Proverif can automatically verify whether flaws exist or not. Because the out-
put produced by ProVerif is rather Verbtim, we do not have to do transformation work.
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Figure 6.2: Overview of the supporting environement

If analysts would like to use the formal analysis method with reasoning, the properties
will be transformed into LF and LAT corresponding to [10] and then forward reason-
ing is performed by using the result of formalization. After that, the results of forward
reasoning presented by LAT will be filtered and sorted. Then the sorted results will be
transformed into LF. At last, target LF will be transformed into informal language for
analysts to analyze whether there are possible successful attacks or not. If the possible
successful attacks are difficult for analysts to confirm, they can use the proving method
of the supporting environment to verify whether the possible successful attacks succeed
or not. By the two rounds of analysis, analysts can find all flaws in the cryptographic
protocols without enumerating the attacks before formal analysis. Analysts can man-
age the input properties and results of each performing of formal analysis. They can
read each property and result of cryptographic protocols by searching the user name or
cryptographic name or creation time. Certainly, they can also search, modify or delete
them.
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Chapter 7

Disscutions

Although we have successfully proved that the extension of formal analysis method with
reasoning can find flaws related to confidentiality, authentication, non-repudiation, and
fairness, there are still some problems with this method.

The first problem is that only limited types of flaws can be detected. In the method,
we use Dolev-Yao model to describe the intruder’s abilities and use the confirm be-
haviors to restrict participant’s capabilities. But it cannot describe the capability of all
honest participants, dishonest participants and intruders to cross-combine, so the for-
mulas associated with certain flaws may not be deduced.

The second problem is that the method cannot deal with the protocols with F3,
which is represented as “the participant send data selectively to another”. The security
of the type of protocols is probabilistic but the method is based on strong relevant logic
so that the method cannot detect the probabilistic flaws. In the future, we will consider
the degree of the security of protocols and try to solve the problems.

The third problem is that until now, although we have performed different case stud-
ies to verify the soundness of the method, there is not a mathematical way to prove that
the deduced flaws are really flaws according to the premises. In the future, we will try
to prove the soundness of the extended method in a methematical way.

The fourth problem is that the current extended method can detect the flaws as same
as proving method, in other words, we haven’t found out an unknown flaws in a cryp-
tographic protocol. However, the method does not depend on the analysts’ abilities,
anyone can detect the flaws by following the steps of the method. In this respect, the
extended method is better than the proving method.

The last problem is that a large amount of logical formulas have been deduced by
using the extended method, obviously, it is difficult for analysts to analyze them one by
one. In the case studies that we have performed, not all the meanings of logical repre-
sentations have been analyzed. So we need to find some ways to exclude the formulas
that considered secure in the generated formulas, narrow the scope of the analysis.
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Chapter 8

Conclusions

8.1 Contributions
First, we described the extended formal analysis method with reasoning which can be
applied to various cryptographic protocols. As the first step of expansion, we compared
19 representative cryptographic protocols based on participants’ number and behaviors
and summarized five features. Then, we extended the participants’ behaviors corre-
sponding to the summarized features. We also proposed a specific procedure to decided
how falsified data that an intruder would send. After extending, we performed case stud-
ies to verify the extended method can be used to detect various cryptographic protocols.
By succeeding detecting the known flaws of secret splitting protocols, it can be said that
the extended method is effective to apply to various cryptographic protocols with four
futures.

Second, we proposed the flaw analysis criteria have been proposed. We defined
what is a flaw in a cryptographic protocol and considered the security properties of
cryptographic protocols can be used as criteria for testing the security of cryptographic
protocols. We have organized six fine-grained security properties of confidentiality, au-
thentication, fairness, non-repudiation, anonymity, and atomicity, and used them as flaw
analysis criteria to analyze flaws in cryptographic protocols. We also verified the flaw
analysis criteria are capable by analyzing Needham Schroeder protocol and anonymous
atomic transaction protocols.

Third, to detect more types of cryptographic protocol flaws, we proposed a new
method to perform forward reasoning to test the flaws related to non-repudiation and
fairness caused by participants’ deception. We also took the ISI protocol and CMP1
protocol as cases to perform security analysis. By the result of analyzing, it is proved
that the extended formal analysis method with reasoning is effective to detect the flaws
related to confidentiality, authentication, non-repudiation and fairness.

Fourth, to resolve the time-consuming and error-prone problems, we explained the
first supporting environment for formal analysis of cryptographic protocols. The sup-
porting environment integrates various supporting tools and it can support analysts to
perform formal analysis of cryptographic protocols through the whole processes.

Therefore, comparing with the formal analylsis method with reasoning, the extended
method is as useful as the proving method and comparing with the previous formal
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analysis method with reasoning for key exchange protocols, the extended method is
more useful than the previous method.

8.2 Future works
In the future, we will analyze more cryptographic protocols to verify the usefulness of
the extended formal analysis method with reasoning for cryptographic protocols. We
will also more fully describe the capabilities of intruders and dishonest participants to
make it possible to detect flaws related to anonymity and atomicity. We will try to give
the methematical proof of the soundness of the extended method. We will find some
ways to narrow the scope of the deduced formulas that need to be analyzed and try to
find out new flaws of cryptographic protocols.
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Appendix A

Case Study In Secret Splitting Protocol

A.1 Logic Formulas of Secret Splitting Protocol

A.1.1 First Protocol
• S tart(p1, p2)⇒ S end(p1, s, data(id(p1), id(p2)))

• Recv(s, data(id(p1), id(p2)))⇒ (Parti(s)⇒ S end(s, p1, enc(symk(p1, s), r1)))

• Recv(s, enc(symk(p1, s), r1))⇒ (Parti(s)⇒ S end(s, p2, enc(symk(p2, s), r2)))

• S tart(p1, p2)⇒ Get(i, data(id(p1), id(p2)))

• S tart(p1, p2)⇒ Get(i, enc(symk(p1, s), r1))

• S tart(p1, p2)⇒ Get(i, enc(symk(p2, s), r2))

• Get(p1, enc(symk(p1, p2), x))⇒ Get(p1, x)

• Get(p1, enc(symk(p2, p1), x))⇒ Get(p1, x)

• Parti(a)

• Parti(b)

• Parti(s)

• ¬Parti(i)

• S esk(sesk)
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• S esk(old(sesk))

• Recv(p, x)⇒ Get(p, x)

• S end(i, p, x)⇒ Recv(p, x)

• S end(p1, p2, x)⇒ Get(i, x)

• S end(p, i, x)⇒ Recv(i, x)

• S tart(a, b)

A.1.2 Second Protocol
• S tart(p1, p2)⇒ S end(s, p1, enc(symk(p1, s), r1, id(p2)))

• Recv(s, enc(symk(p1, s), r1, id(p2)))⇒ (Parti(s)⇒ S end(s, p2, enc(symk(p2, s), r2, id(p1))))

• S tart(p1, p2)⇒ Get(i, enc(symk(p1, s), r1, id(p2)))

• S tart(p1, p2)⇒ Get(i, enc(symk(p2, s), r2, id(p1)))

• Get(p1, enc(symk(p1, p2), x1, x2))⇒ Get(p1, data(x1, x2))

• Get(p1, enc(symk(p2, p1), x1, x2))⇒ Get(p1, data(x1, x2))

• Parti(a)

• Parti(b)

• Parti(s)

• ¬Parti(i)

• S esk(sesk)

• S esk(old(sesk))

• Recv(p, x)⇒ Get(p, x)
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• S end(i, p, x)⇒ Recv(p, x))

• S end(p1, p2, x)⇒ Get(i, x)

• S end(p, i, x)⇒ Recv(i, x)

• S tart(a, b)

A.1.3 Third Protocol
• S tart(p1, p2)⇒ S end(p1, p2, data(id(p1), nonce(p1)))

• Recv(p2, data(id(p1), nonce(p1)))
⇒ (Parti(p2)⇒ S end(p2, s, data(id(p1), nonce(p1), id(p2), nonce(p2))))

• Recv(s, data(id(p1), nonce(p1), id(p2), nonce(p2)))
⇒ (Parti(s)⇒ S end(s, p1, enc(symk(p1, s), r1, id(p2), nonce(p1))))

• Recv(s, enc(symk(p1, s), r1, id(p2), nonce(p1)))
⇒ (Parti(s)⇒ S end(s, p2, enc(symk(p2, s), r2, id(p1), nonce(p2))))

• S tart(p1, p2)⇒ Get(i, data(id(p1), old(nonce(p1))))

• S tart(p1, p2)⇒ Get(i, data(id(p1), old(nonce(p1)), id(p2), old(nonce(p2))))

• S tart(p1, p2)⇒ Get(i, enc(symk(p1, s), r1, id(p2), old(nonce(p1))))

• S tart(p1, p2)⇒ Get(i, enc(symk(p2, s), r2, id(p1), old(nonce(p2))))

• Get(p1, enc(symk(p1, p2), x1, x2, x3))⇒ Get(p1, data(x1, x2, x3))

• Get(p1, enc(symk(p2, p1), x1, x2, x3))⇒ Get(p1, data(x1, x2, x3))

• Parti(a)

• Parti(b)

• Parti(s)

• Parti(i)
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• S esk(sesk)

• S esk(old(sesk))

• Recv(p, x)⇒ Get(p, x)

• S end(i, p, x)⇒ Recv(p, x)

• S end(p1, p2, x)⇒ Get(i, x)

• S end(p, i, x)⇒ Recv(i, x)

• S tart(a, b)

A.2 Symbols of FreeEnCal
Individual constants

• C 0 0: a

• C 0 1: b

• C 0 2: s

• C 0 3: i

• C 0 15: secret1

• C 0 16: secret2

Functions

• C 0 5: symk(p1, p2)

• C 0 8: id(p)

• C 0 9: nonce(p)

• C 0 10: tstamp(p)

• C 0 11: enc(k, x1, ..., xn)
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• C 0 12: data(x1, ..., xn)

• C 0 14: old(x)

Predicates

• C 1 0 : S end(p1, p2, x)

• C 1 1 : Recv(p.x)

• C 1 2 : Get(p, x)

• C 1 3 : S tart(p1, p2)

• C 1 4 : Parti(p)

•

Individual variables

• V 0 0 : p1

• V 0 1 : p2

• V 0 2 : s

Logical connectives

• C 2 0: ⇒

• C 2 1: ∧

• C 2 2: ¬
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Appendix B

Case Study In ISI Protocol

B.1 Logic Formulas of ISI Protocol
• S tart(a, b)

• S tart(p1, p2)⇒ S end(p1, p2, data(symk(p1, p2)))

• Recv(p2, data(symk(p1, p2)))⇒ (Parti(p2)⇒ S end(p2, p1, data(enc(symk(p1, p2), pk(p2)))))

• Recv(p1, data(enc(symk(p1, p2), pk(p2))))
⇒ (Parti(p1)⇒ S end(p1, p2, data(enc(pk(p2), sig(cs, coins), sk(p1)))))

• Recv(p2, data(enc(pk(p2), sig(cs, coins), sk(p1))))
⇒ (Parti(p2)⇒ S end(p2, cs, data(enc(pk(cs), sig(cs, coins), sk(p2)))))

• Recv(cs, data(enc(pk(cs), sig(cs, coins), sk(p2))))
⇒ (Parti(cs)⇒ S end(cs, p2, data(enc(sk(p2), sig(cs, new − coins)))))

• Recv(p2, data(enc(pk(p2), sig(cs, new − coins))))
⇒ (Parti(cs)⇒ S end(p2, p1, data(enc(sk(p1), sig(p2, amount)))))

• Parti(a)

• Parti(b)

• S end(a, b, data(x))⇒ Recv(b, data(x))

• Recv(a, {x}kab)⇒ Recv(a, data(x))

• Recv(a, {x}kba)⇒ Recv(a, data(x))
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• Recv(a, {x}pka)⇒ Recv(a, data(x))

• Recv(a, {x}ska)⇒ Recv(a, data(x))

• Recv(a, data(x1, x2))⇒ Recv(a, data(x1))

• Recv(a, data(x1, x2))⇒ Recv(a, data(x2))

• co f (a, cs, pk(cs))

• co f (b, cs, pk(cs))

• Recv(P, data(sig(q, x))) ∧ co f (P,Q, kq)⇒ co f (P,Q, x)

• co f (P,Q, data(X,Y,Z))⇒ co f (P,Q, X)

• co f (P,Q, data(X,Y,Z))⇒ co f (P,Q,Y)

• co f (P,Q, data(X,Y,Z))⇒ co f (P,Q,Z)

• co f (P,TT P,m)⇒ co f (P,Q,m)

• co f (P,Q, {m}k) ∧ co f (P,Q, k)⇒ co f (P,Q,m)

• co f (P,Q, sig(q,m)) ∧ co f (P,Q, kq)⇒ co f (P,Q,m)

• co f (a, cs, pk(cs))

• co f (b, cs, pk(cs))

B.2 Symbols of FreeEnCal
Individual constants

• C 0 0: a

• C 0 1: b

• C 0 2: cs
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• C 0 3: i

• C 0 4: sesk

• C 0 15: coins

• C 0 17: amount

• C 0 18: new − coins

• C 0 19: amount′

Functions

• C 0 5: symk(p1, p2)

• C 0 6: pk(p)

• C 0 7: sk(p)

• C 0 8: id(p)

• C 0 9: nonce(p)

• C 0 10: tstamp(p)

• C 0 11: enc(k, x1, ..., xn)

• C 0 12: date(x1, ..., xn)

• C 0 13: plus(p)

• C 0 14: old(x)

• C 0 16: sig(p, x)

Predicates

• C 1 0 : S end(p1, p2, x)

• C 1 1 : Recv(p.x)
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• C 1 2 : Get(p, x)

• C 1 3 : S tart(p1, p2)

• C 1 4 : Parti(p)

• C 1 5 : S esk(p)

• C 1 6 : co f (p, q, x)

• C 1 7 : sig(p, x)

Individual variables

• V 0 0 : p1

• V 0 1 : p2

• V 0 2 : CS

• V 0 3 : Y

• V 0 4 : Z

• V 0 5 : P

• V 0 6 : Q

• V 0 7 : m

• V 0 8 : coins

• V 0 9 : new − coins

• V 0 10 : amount

• V 0 11 : X

Logical connectives

• C 2 0: ⇒

• C 2 1: ∧

• C 2 2: ¬
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