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Abstract
The pitch period is defined as the inverse of the fundamental frequency of the ex-

citation source from the voiced speech signal. The pitch period (in short, pitch) or

fundamental frequency is a prominent parameter of speech and highly applicable

for speech-related systems such as speech coding, speech recognition, speech en-

hancement, speech synthesis and so on. The pitch and fundamental frequency so

as to give the same meaning, while the pitch is inherently interpreted as the per-

ception of the fundamental frequency. The pitch is generated from the vibration

of the vocal cord causing periodicity in the speech signal.

Pitch extraction has proven to be a difficult task even for speech in a noise-free

environment. The clean speech waveform is not really periodic; it is quasi-periodic

and non-stationary. Although a large number of pitch extraction methods have

been reported to deal with the noise-free environment. On the contrary, the least

number of researchers attempt to extract the pitch in noisy environments. Under

noisy environments, the periodic structure of the speech signal is destroyed so

that the pitch extraction becomes an extremely complicated task. Therefore, the

reliability and accuracy of the pitch extraction methods face real challenges in

noisy environments.

From the above observations, the objective of this dissertation is to develop

some approaches which are effective to handle the speech signals in the real appli-

cation without any complicated post processing where speech signals are corrupted

by noise. Some conventional state-of-the art approaches rely on a complicated post

processing technique for pitch extraction. In this dissertation, we focus on simple

and efficient approaches that are proposed and implemented to solve the factors

that degrade the performance of pitch extraction methods.

In this dissertation, firstly, we propose the use of fourth-root spectrum instead

of log spectrum for increasing the pitch extraction accuracy in noisy environments.

To get clear harmonics, lifter and clipping operations are followed. When the

resulting spectrum is transformed in the time domain by means of discrete Fourier

transform, the pitch extraction is robust against narrow-band noise. When the

above resulting spectrum is amplified by a power calculation and transformed in

the time domain, the pitch extraction is robust against wide-band noise. These

properties are investigated through exhaustive experiments in a variety of noise

types. Computational time to be required is also studied. The experimental results

based on above properties demonstrate the effectiveness of the new approaches for

13



improving the performance of the pitch extraction. Also, the performance of this

method sometimes deteriorates by the windowing effect. This method utilizes

Hanning window function which does not better perform to extract pitch in the

noisy environments.

To improve the performance of the extraction accuracy, the second approach

considers an advancing trend of recent techniques for pitch extraction of speech in

noisy environments, windowing effects are discussed analytically, and it is insisted

that the Rectangular window should be proactively used instead of the popular

Hanning or Hamming window. In a variety of noise environments, a performance

comparison of the conventional pitch extraction methods is conducted, and as a

result, we take a standpoint to support the autocorrelation (ACF) method. Incor-

porating accumulation techniques, three types of pitch extraction approaches are

developed. Through experiments, it is shown that the proposed approaches have

the potential to provide better performance for pitch extraction without relying

on a complicated post processing technique.
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Chapter 1
Introduction

1.1 Background

Speech is composed of spoken words and sentences which is the most natural

communication mode in daily life. This is the main form to use humans and

interacts with each other. The speech is a sound wave of air, which is generated

random air fluctuations from the lungs through the vocal cords and in vocal tract.

According to the vibration of vocal cord or not, the speech is defined as the voiced

or unvoiced speech. Voiced speech is produced when the vocal cords vibrate at a

particular frequency. This frequency is referred to as the fundamental frequency

(pitch) of the speech signal. On the contrary, the generation process of unvoiced

speech does not involve the use of the vocal cords. Therefore, the fundamental

frequency is the absent in the unvoiced signal. The fundamental frequency is

perceived as pitch level, a low value of the fundamental frequency is perceived as

a low pitch and a high value of fundamental frequency is perceived as a high pitch

[1-6].

The most important purpose of speech is communication. In speech commu-

nication systems, it is difficult to accurately focus on the representation of the

speech signal in a convenient form, and the preservation of the message content in

the speech signal. The acoustic features, vocal tract shape, formant frequencies,

and bandwidths and pitch are associated with the representation of speech signals

and have profound applications in speech recognition, synthesis, and coding [7-14].

The performance of the above application systems are highly influenced by the

accuracy of pitch extraction.

15



1.2 Speech Production Mechanism 16

Figure 1.1: Schematic model for human speech production with different parts.

Pitch is one of the powerful speech analysis techniques and has the ability to

represent the speech signal accurately and efficiently. The pitch changes in response

to the stress, intonation, emotion, and size of the vocal cords at any given instant.

The stress and intonation parameter of speech is most important for the pitch to

identify the phoneme. In the case of the emotional state of the speaker, sometimes

joy produces wide range of pitch, while sadness produces a narrow range of the

pitch. Since, the average size of vocal cords in male speaker is larger than that of

the female speaker, the average pitch of an adult male will be lower than females

for the same utterance. The possible pitch range for men is found between 50-250

[Hz], while for women the range falls between 120-500 [Hz] [15].

1.2 Speech Production Mechanism

Figure 1.1 [2][16] shows the schematic diagram of the human speech production.

The main components of the human speech production system are: the lungs,

trachea, vocal cords, larynx, pharynx, vocal tract, nasal cavity. The components

can be described as follows, by using the muscle force, the lungs generate the air
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Figure 1.2: Source-filter model for speech production.

is streaming through the larynx, where it can be modulated and transferred to the

vocal tract. Depending on the activities of the vocal folds, the air produce a quasi-

periodic wave which is said to be voiced or unvoiced. On the other hand, vocal

tract including the pharynx, oral cavity, and nasal cavity, which can be modeled as

an acoustic tube with variable resonator. For both voiced and unvoiced generation,

the vocal tract behaves as filter, which provides the pressure wave from the vocal

cords and then amplifies to the lips or the nostrils. Speech is simply as an acoustic

wave that is radiated from the system, when air is expelled from the lungs and the

resulting flow of air is perturbed by a constriction in the vocal tract [2].

According to the mode of excitation, speech sound can be divided into three

categories such as voiced, unvoiced, and silence. Voiced sound are produced by

forcing air through the trachea. After that vocal folds vibrate in a relaxation oscil-

lation, there by producing quasi-periodic pulses of air which excites the vocal tract.

The vocal cords vibrate at a particular frequency. This frequency is represented

as the pitch or fundamental frequency. For example, all vowels or the consonant

/m/ are of this type. Unvoiced sound are generated without any vibration of the

vocal cords, simply forcing air through the constriction at a high enough velocity

to produce turbulence. This creates a noise source to excite the vocal tract. In

unvoiced speech, the pitch or fundamental frequency is absent. For example, /f/
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Figure 1.3: Full duration of clean speech signal.

and /s/ are of this type. In the case of silence, where no speech is produced.

The production of speech can also be viewed as a filtering operation in which

a excitation source excites a vocal tract filter is known as source-filter model as

shown in Fig. 1.2 [17]. In Fig. 1.2, the excitation source is the combination of

the impulse train generator with the period according with the vibration of the

vocal cords or a randomly distributed noise generator. Thus, speech signals can be

computed as the convolution of time-varying vocal-tract system with time-varying

excitation source. As a result, speech signals are time-variant in nature which is

represented as in Fig. 1.3.

1.3 Challenges of Pitch Extraction

Many researchers have been concentrated on research and development about pitch

extraction from a speech signal for more than 50 years. No one can able to de-

velop the closed-form solution or error-free method, which is highly efficient and

effective for pitch extraction up to now. The factors are involved to make difficulty

for extracting the accurate and reliable pitch from the speech signal, which is as
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follows.

• The glottal excitation waveform is a quasi-periodic which is not a perfect

periodic train of pulses. It is difficult, even for a researcher, to find the

accurate pitch period of a speech waveform, which changes drastically both

in period and structure of the speech waveform depending on time.

• Another most important factor is to face the difficulty to extract accurate

pitch, when glottal excitation waveform is interacted with the parameters of

the vocal tract [18][19]. Such interactions are harmful to pitch extraction

during rapid variations of the articulators as well as simultaneously rapidly

changing the parameters of the vocal tract.

• For the purpose of pitch extraction, speech is combined into two states; a

voiced state with a harmonic structure and an unvoiced state with a noise-

like structure. The voiced/unvoiced states also affect the extraction accuracy

of pitch.

• To increase the extraction accuracy, we face another challenging error, which

is the choice of beginning and ending locations of the pitch period during

voiced speech segments. For this reason, the spurious pitch period arises.

• Speech selection can also complicate the pitch extraction and result in in-

creased extraction errors. For example, it is extremely difficult to distinguish

between unvoiced speech and low level voiced speech in pitch extraction.

• In practical applications, the background noise can also affect the perfor-

mance of the pitch extraction. Particularly in the case of mobile commu-

nication environments where noise affected is the general scenario. On the

other hand, the signal generation process is also affected by the background

noise.

1.4 Motivation of the Thesis

It should be pointed out that the accuracy of the pitch extraction methods is

affected when the speech signal is corrupted by noise. Also, if the noise level is

high, the extraction accuracy is also affected drastically. Most of the researchers

had invented the pitch extraction method in clean speech conditions. When clean

speech is contaminated by noise, especially in real-world noise, few numbers of
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researchers concentrated on pitch extraction. Moreover, these methods provide

satisfactory performance only at moderately low to high levels of SNR by relying

on the complicated post-processing technique. Also, these methods require the

high processing time. Actually, the processing time is also a growing demand for

practical applications. From the above point of view, it is essential to concentrate

on pitch extraction research where the real world noise is present which indicates

the low level of SNR. It also should be focused on processing time. Our motivation

in this dissertation is that we investigate and develop simple and efficient pitch

extraction methods that are used in real-world noise including low SNRs without

relying on any complicated post-processing.

1.5 Organization of the Thesis

The background, speech production mechanism, challenges of pitch extraction, and

motivation of this thesis have been reviewed in this chapter. The rest of the thesis

is organized as follows.

Chapter 2 describes the segmentation of each frame speech signal in speech

analysis. After that, this thesis presents more details about the operation of some

time domain and frequency domain based pitch extraction methods.

Chapter 3 presents the detailed development of the proposed pitch extraction

method using the concept of the fourth-root spectrum in noisy speech. Firstly,

the general pitch estimation methods and motivation of the proposed methods

are described. Then, the theoretical concept of the FROOT and FROOT+ pitch

extraction method is presented. The proposed pitch extraction methods are per-

formed by measuring the percentage of average gross pitch error (GPE). In these

experiments, Chapter 3 includes the preliminary experiments for the selection of

the constant value in the clipping threshold level, and discusses the analysis from

the obtained evaluation results. Finally, Chapter 3 explains the the noise effect in

each method, processing time and the conclusion are presented.

Chapter 4 continues the related literature review, which is followed by the de-

scription of the pitch extraction methods. Then, Chapter 4, analytically describes

the motivation of using the Rectangular window and explains the proposed accu-

mulation based methods by utilizing the Rectangular window. It also discusses

the performance of the proposed methods with that of the conventional methods

by measuring the percentage of GPE. Finally, processing time and conclusion are

presented.
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Chapter 5 contains a summary of the conclusion and the suggestions for the

future work of the thesis.



Chapter 2
Discussion on Pitch Extraction Methods

2.1 Background

Pitch is extracted from the analysis of speech signal where speech analysis is gener-

ally performed using short-time analysis in time and frequency domains. For this

reason, the speech signal should be experimented in a short-term analysis, where

the signal is divided into short time by using the window function (5-100 [ms]).

The short window of a signal is called frame. By multiplying the input signal with

a window function, the windowed signal also goes to zero at the border such that

the discontinuity at the border becomes invisible as shown in Fig. 2.1.

Traditionally, different window functions are used in speech processing depend-

ing on the situations. In the field of pitch extraction, most of the researchers are

used the Rectangular, Hanning, and Hamming windows [2], respectively, which are

represented by,

Winrec(n) =

{
1 0 ≤ n ≤ N − 1

0 otherwise
(2.1)

Winhan(n) =

{
0.5− 0.5cos(2πn/(N − 1)) 0 ≤ n ≤ N − 1

0 otherwise
(2.2)

Winham(n) =

{
0.54− 0.46cos(2πn/(N − 1)) 0 ≤ n ≤ N − 1

0 otherwise
(2.3)

By utilizing the short-time windowed speech signal, we can easily extract the

22
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Figure 2.1: Framed clean speech signal (a) using Rectangular window, (b) using
Hanning window, (c) using Hamming window.

pitch. However, pitch extraction has proven to be a difficult task, even for speech

in a noise-free environment. The clean speech waveform is not really periodic;

it is quasi-periodic and highly non-stationary which is shown in Fig. 2.2. In

this figure, pitch period is present, where the fundamental frequency or pitch is

the reciprocal of the pitch period. On the other hand, when the speech signal is

corrupted by noise i.e noisy speech signal, which is shown in Fig. 2.3. In noisy

environments, the reliability and accuracy of pitch extraction algorithms face real

challenges. Under noisy conditions, the speech peaks is affected by noise peaks.

Therefore, the periodic structure of the speech signal is destroyed. So that, the

pitch extraction becomes an extremely complicated task. Therefore, a lot of pitch
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Figure 2.2: Framed clean speech signal.

extraction methods have been addressed for clean speech while pitch extraction

methods from noisy speech has been addressed only by a few researchers.

2.2 Pitch Extraction Methods

This section presents some well known pitch extraction algorithms that appear in

the literature. These pitch extraction methods have been utilized either in the

time domain or frequency domain or in both domains of the speech signal, up

to now. In the time domain pitch extraction methods [18-29], the measurements

are directly applied on the speech waveform. Therefore, peak position, valley

point, zero-crossing, autocorrelation, and number of measurement influence the

time domain pitch extraction methods. Traditionally, time domain methods are

efficient for extracting the accurate pitch period when quasi-periodic signal has

been processed by reducing the effect of vocal tract characteristics. On the other

hand, frequency domain pitch detectors [30-35] depend on the speech signal when

it maintains the periodicity in the time domain. After that, the spectrum of the

signal in frequency domain consists of series of impulses and its harmonics which

is emphasized to extract the more accurate pitch period of the signal. Hybrid

pitch detector methods [36-37] are used both time domain and frequency domain
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Figure 2.3: Framed noisy speech signal (0 [dB], white noise).

to extract the accurate pitch. For example, some time hybrid pitch extraction

methods utilize frequency domain technique to reduce the effect of vocal tract

characteristics and then time domain technique is applied to extract the more

accurate pitch period.

In order to compare the performance of the proposed method in Chapters 3

and 4, the conventional pitch extraction algorithms were additionally implemented

which are the time domain (such as autocorrelation function (ACF) [24], aver-

age magnitude difference function (AMDF) [25], weighted autocorrelation func-

tion (WAF) [26], and YIN [27]) and frequency domain based methods (cepstrum

(CEP) [29-31], modified CEP (MCEP) [32], and windowless autocorrelation func-

tion based CEP (WLACF-CEP) [33]). These methods are chosen because they

are highly effective against the random noise as well as reduce the vocal tract

characteristics. In this chapter, the above methods are discussed.
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Figure 2.4: ACF in clean speech signal (a) input signal (b) ACF in (a).

2.3 Methods in Time Domain

2.3.1 Autocorrelation Function (ACF)

Autocorrelation function (ACF) [24] is one of the correlation-based method which

is highly efficient for extracting the pitch period, because it can measure similarity

between signals by simple computation, and represents a large peak at the lag

corresponding to the pitch period. For a given signal x(n) , defined for all n, the

ACF is defined as

φxx(m) =
1

N

N−1∑
n=0

x(n)x(n+m) (2.4)

whereN is the frame length andm is the lag number. If x(n) is periodic with period

T , then the ACF, φxx(m) is also periodic with the period of T and shows peaks

at the locations of kT where k is an integer (k = 0, 1, 2, 3....). Thus, the periodic

signal is also a periodic signal with the period, the period of the autocorrelation

function reflects the period of input signal. The ACF uses the location of the
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Figure 2.5: ACF in noisy speech signal (a) noisy speech signal at 0 dB SNR (white
noise) (b) ACF in (a).

second largest peak relative to the largest peak (at m = 0) to obtain an estimate

of the pitch period such as shown in Fig. 2.4.

In general, the white noise v(n) is uncorrelated with signal x(n) for all values

of m except for m = 0. The ACF of v(n), φvv(m) is defined as

φvv(m) =

σ2
v for m = 0,

0 for m 6= 0,
(2.5)

where σ2
v is the noise variance of v(n). The autocorrelation of a white noise process

will be an impulse function at lag m = 0. In the presence of noise, the autocorre-

lation of the noisy speech y(n) , φyy(m) is computed as

φyy(m) = φxx(m) + φvv(m) (2.6)

In (2.6), such method are robust against random noise, because only the first lag

of noise is affected with clean speech. Thus, it can reduce the high-frequency
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components and emphasize the low-frequency components to extract the accurate

pitch. On the other hand, the pitch extraction performance of the ACF-based

methods are degraded when clean speech is corrupted by color noise. In the ACF

of color noise, the clean speech is affected by noise with the increases of the values

of lag, m. φyy(m) in (2.6) can also be written as

φyy(m) = φh(m) ∗ φp(m) (2.7)

where φh(m) and φp(m) are the autocorrelation functions of the vocal tract and

the vocal source, respectively, and ∗ denotes the convolution. Eq. (2.7) indicates

that the φyy(m) is highly influenced by the vocal tract information φh(m), which

makes difficult to detect more appropriate pitch as shown in Fig. 2.5.

2.3.2 Average Magnitude Difference Function (AMDF)

Correlation based processing also includes the average magnitude difference func-

tion (AMDF) method [25]. The AMDF, ψ(m) treats as a difference between the

original speech signal and its delayed version, which is defined as

ψ(m) =
1

N

N−1∑
n=0

|y(n)− y(n+m)| (2.8)

It shows almost similar properties with the ACF. ACF exhibits the peaks at delays

corresponding to the pitch period. While the difference signal always exhibits deep

nulls at delays corresponding to the pitch period of voiced sounds having a quasi-

periodic structure as shown in Fig. 2.6. The magnitude of the global minimum

of AMDF is severely affected by intensity variation and background noise of the

speech signal causing pitch extraction errors as shown in Fig. 2.7.

2.3.3 Weighted Autocorrelation Function (WAF)

The autocorrelation function (ACF) [24] is a straightforward computation one in

the time domain and shows effectiveness against wide-band random noise such as

white noise. The ACF corresponds to a correlation calculation between the input

speech signal and its delayed version in the time domain, but it is also obtained

by the inverse Fourier transform of the power spectrum of the speech signal in

the frequency domain which satisfy the Wiener–Khinchin theorem. The ACF is,

however, affected by the characteristics of the vocal tract. Thus, spurious peaks are
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Figure 2.6: AMDF in clean speech signal (a) input signal (b) AMDF in (a).

0 50 100 150 200 250 300 350 400 450 500

Samples (Time)

-0.2

0

0.2

A
m

p
lit

u
d
e

0 50 100 150 200 250 300 350 400 450 500

Lag

0

0.05

0.1

A
m

p
lit

u
d
e

False pitch

Figure 2.7: AMDF in noisy speech signal (a) noisy speech signal at 0 dB SNR
(white noise) (b) AMDF in (a).
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Figure 2.8: WAF in clean speech signal (a) input signal (b) WAF in (a).

also sometimes introduced in the spectrum in noisy or even in noiseless conditions.

These peaks also sometimes makes true peak selection a difficult task. On the

other hand, the AMDF [25] gives rise to a falling tendency with the increase of

the delay number, which makes difficult to detect the appropriate valley point,

therefore, inaccurate pitch extraction will be obtained. To solve this problem,

WAF can emphasize the true peak and suppresses the non-pitch peaks as well as

noise components by dividing ACF with the AMDF, which is represented as WAF.

In WAF [26], the ACF and AMDF are used as numerator and denominator parts,

respectively. For a noisy signal y(n), n = 0, 1, ...N − 1, at a frame, the WAF, ζ(τ)

is denoted as

ζ(τ) =
φyy(τ)

ψ(τ) + λ
(2.9)

where λ is a small positive constant to avoid the division by 0.

In WAF, the ACF creates a strong peak at the location which corresponds to

the pitch period. On the other hand, the inverse of the AMDF, 1/AMDF, also

creates a strong peak at the same location, because the AMDF itself creates a

deep notch at the same location. Therefore, these peaks are emphasized in the

WAF. Furthermore, the components of noise included in noisy speech may be dis-

tributed in the waveform of the ACF for a certain range of lags. In the AMDF
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Figure 2.9: WAF in noisy speech signal (a) input signal at 0 dB SNR (white noise)
(b) WAF in (a) (c) input signal at -10 dB SNR (white noise) (d) WAF in (c)

case, also a similar phenomenon is expected in the waveform of the AMDF (actu-

ally the inverse of the AMDF). However, these noisy components would behave in

a different manner in the ACF and AMDF, which are uncorrelated as validated in

[26]. Therefore, a multiplication of the two functions; the ACF and 1/AMDF, sup-

presses the noise components each other. This also leads to suppress the unwanted

peaks created in the ACF and 1/AMDF each other. Hence, the WAF efficiently

emphasizes the pitch peak and provides an excellent performance of pitch extrac-

tion in noisy environments as shown in Fig. 2.9 (b). Contrary, at high SNR level

(-10 [dB]) as shown in Fig. 2.9 (d), the WAF emphasizes to extract the accurate

pitch period but it is affected by the vocal tract characteristics, causing the error

rate is increased.
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2.3.4 YIN Method

Among the correlation based pitch extraction methods in time domain, YIN [27]

is one of the most important approach which is concentrated in speech and music

signals. The YIN method is introduced by A. de Cheveigne and H. Kawahara in

2002, which is followed some steps.

• Difference function: Finding the difference function which provides the al-

most similar properties of the ACF. The difference function is highly empha-

sized to reduce pitch extraction errors by utilizing square of the difference

between the original speech signal and its delayed version. The difference

function, d(τ) is defined as

d(τ) =
N−1∑
n=0

(y(n)− y(n+ τ))2 (2.10)

• Cumulative mean normalized difference function: In order to utilize the

quasi-periodic nature of speech signal for pitch extraction, the YIN algorithm

normalizes the difference function by its cumulative mean, is represented as

d′(τ) =

1, for τ = 0,

d(τ)
1
τ

∑τ
j=1 d(j)

otherwise,
(2.11)

• Another number of steps in YIN algorithm are absolute threshold, parabolic

interpolation, and best local search, respectively, to determine the list of

candidates, true pitch extraction of the whole period, and search the analysis

point for the better estimation, respectively.

YIN is a successful and robust time-domain algorithm for pitch extraction in noise

free environment, but in noisy environments, YIN algorithm is not more effective.

2.4 Methods in Frequency Domain

2.4.1 Cepstrum (CEP) Method

In the CEP [29]-[31] method, the pitch is extracted by utilizing the inverse discrete

Fourier transform (IDFT) of the log-amplitude spectrum, which is more effective
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Figure 2.10: CEP in step-by-step (a) clean speech signal (b) log-amplitude spec-
trum in (a), (c) CEP output.

in clean speech. A speech signal may be modelled as the convolution of excitation

source information, e(t) and vocal tract information and a glottal input v(t) in time

domain. Alternatively, in frequency domain, the spectrum of the speech signal is

the product of excitation source information, E(f) and vocal tract information

and a glottal input V (f). The speech signal can be expressed as in time domain

and frequency domain, respectively,

x(t) = e(t) ∗ v(t) (2.12)

X(f) = E(f).V (f) (2.13)

The CEP of x(t), C(n) can be obtained as

C(n) =
1

F

F−1∑
f=0

log|X(f)|e
j2πfn
F (2.14)
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Figure 2.11: CEP in step-by-step (a) input signal at 0 [dB] SNR (white noise) (b)
log-amplitude spectrum in (a), (c) CEP output.

where X(f) is the DFT of x(t) with F frequency points. By utilizing the properties

of (2.12) and (2.13), it can be represented as in (2.14),

C ′(n) =
1

F

F−1∑
f=0

[log|E(f)|+ log|V (f)|]e
j2πfn
F (2.15)

From the above observations in (2.14), One of the advantages of CEP method

is that the logarithm operation compresses the spectral diversity of |X(f)| and

easily separates the excitation source information and vocal tract information,

respectively. The logarithmic function of CEP method has the effect of shifting

the vocal tract characteristics to low-quefrency parts. Utilizing high quefrency

parts, CEP can extract the pitch without being affected by the characteristics

of vocal tract. Therefore, the CEP based methods clearly express the harmonic

structure of the speech signal under clean speech conditions as shown in Fig. 2.10.
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Figure 2.12: Block diagram of MCEP method.
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On the other hand, when clean speech is corrupted by noise, the CEP method can

be represented as

C ′(n) =
1

F

F−1∑
f=0

log|X(f) + V ′(f)|e
j2πfn
F (2.16)

where V ′(f) corresponds to the DFT of additive noise. According to Eq. (2.16),

the addition of log|V ′(f)| can destroy the periodicity of log|X(f)| at low SNRs.

The CEP obtained from the clean speech signal which is shown in Fig. 2.10, where

detection of pitch peak is more accurate. On the other hand, after corruption with

white noise at 0 [dB] SNR is shown in Fig. 2.11, where the detection of the true

pitch peak has failed.

2.4.2 Modified Cepstrum (MCEP) Method

Traditionally, the CEP method is very simple to implement and more efficient

in clean speech environment. But, in noisy environment, the log-amplitude spec-

trum is highly affected by noise. From these observations, the MCEP [32] method

utilizes the lifter and clipping operations which is shown in Fig. 2.12. These oper-

ations are applied on the log spectrum output in the frequency domain, to enhance

the extraction accuracy of pitch. Lifter is a flattening operation which is effective

to eliminate the effect of vocal tract characteristics and followed to the clipping

operation. After that, clipping operation is applied on liftered spectrum to reduce

the effect of noise components. However, the noise components are also present

among the harmonics of the clipping output in the high frequency region. There-

fore, MCEP method is used the high frequency components on clipped spectrum.

After this operation, inverse discrete Fourier transform (IDFT) is applied to the

low frequency part and then pitch is extracted by searching a location of the peak

in the quefrency domain. The MCEP is comparatively insensitive to vocal tract

effects, but it is sensitive to noise characteristics, resulting in extraction errors in

highly noisy environment.

2.4.3 Windowless Autocorrelation Function based Cepstrum

(WLACF-CEP) Method

The windowless ACF (WLACF) based CEP (WLACF-CEP) [33] utilizes both the

properties of WLACF and CEP as shown in Fig. 2.13. The WLACF of the signal
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Figure 2.13: Block diagram of WLACF-CEP method.

is a noise compensated equivalent of the signal, while sustaining the periodicity of
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the speech signal. The WLACF, φyy−wl(m) is defied as

φyy−wl(m) =
1

N

N−1∑
n=0

y(n)y(n+m) (2.17)

for y(n), n = 0, 1, 2, ..., 2N − 1. In the case of φyy−wl(m), m = 0, 1, 2, ..., N − 1,. In

(2.15), y(n+m) is not zero outside N . Therefore, the WLACF shows the strongest

in periodicity with accurate pitch peaks. However, the WLACF sometime faces

the pitch extraction error due to the effect of the vocal tract characteristics. To

combat this problem, a noise free speech signal with periodicity is applied to the

CEP to enhance the accuracy of pitch extraction by reducing the effect of vocal

tract characteristics. Therefore, the developed WLACF-CEP method, Cwlacf (n) ,

as

Cwlacf (n) =
1

M

M−1∑
f=0

log|φyy−wl(f)|e
j2πfn
M (2.18)

The WLACF-CEP method behaves better against various types of noise which

is in [33]. But, in noisy environments, the CEP based method does not perform

well because the speech peaks are influenced by the noise peaks in the frequency

domain.

2.5 Summary

In this chapter, based on time and frequency domains, different methods for ex-

tracting pitch have been discussed. In addition the effect of noise on the ACF and

AMDF are explained. In noisy environment, these methods are not effective than

the WAF and YIN techniques, which are also analyzed detail in time domain. On

the other hand, some important methods are discussed in frequency domain. The

following Chapters 3 and 4 present two techniques based on the CEP and ACF

methods, respectively. The proposed techniques are more effective by utilizing the

properties of CEP and ACF which improve the performance of the pitch extraction

accuracy in noisy environments.



Chapter 3
Pitch Extraction Using Fourth-Root
Spectrum in Noisy Speech

In this chapter, we propose techniques which are based on the CEP method. The

CEP method utilizes the log spectrum which maintains the strong periodicity in

clean speech. However, in case of noisy speech, the periodicity of log spectrum is

corrupted in high frequency domain, and unnecessary peaks arise. From the above

point of view, we present the use of the fourth-root spectrum instead of the log

spectrum for pitch extraction in noisy environments. To obtain clear harmonics,

lifter and clipping operations are performed. When the resulting spectrum is trans-

formed into the time domain by the discrete Fourier transform, pitch detection is

robust against narrow-band noise. When the same spectrum is amplified by power

calculation and transformed into the time domain, pitch detection becomes robust

against wide-band noise. These properties are investigated through exhaustive

experiments in various noises. The required computational time is also studied.

3.1 Problem Formulation

The pitch period is defined as the inverse of the fundamental frequency of the

excitation source from a voiced speech signal. The pitch period (in short, pitch) or

fundamental frequency is a prominent parameter of speech and highly applicable

for speech-related systems such as speech analysis-synthesis, speech coding, speech

enhancement, and speaker identification systems. The performance of these sys-

tems is significantly affected by the accuracy of pitch or fundamental frequency

extraction. In this study, we treat pitch and fundamental frequency as having the

39
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Figure 3.1: Block diagram of FROOT and FROOT+ methods

same meaning, while pitch is inherently interpreted as the perception of funda-

mental frequency.

Pitch extraction has proven to be a difficult task, even for speech in a noise

free environment [18][39]. A clean speech waveform is not really periodic; it is

quasi-periodic and highly nonstationary. On the other hand, when a speech signal

is corrupted by noise, it is difficult to maintain the reliability and accuracy of pitch

extraction algorithms. Under noisy conditions, the periodic structure of the speech

signal is destroyed so that pitch extraction becomes an extremely complex task.

Among the conventional pitch extraction methods, the autocorrelation function

(ACF) [24] is straightforward to compute in the time domain and shows robust-

ness against wide-band random noises such as white noise. The ACF corresponds

to a correlation function between the input speech signal and its delayed version

in the time domain, but it is also obtained by the inverse Fourier transform of the

power spectrum of the speech signal. The ACF is, however, affected by the charac-

teristics of the vocal tract. To reduce the effect of the vocal tract, many algorithms

have been developed that rely on the properties of the correlation function [25]-

[32]. For example, YIN [27] focuses on the relationship between the conventional

ACF and the difference function, and utilizes a cumulative mean function of the

difference function to reduce the error rate in pitch extraction. The average mag-

nitude difference function (AMDF) [25] is a simplified version of the ACF, which

treats the difference between the speech signal and its delayed version. In [28], the

AMDF was combined with linear predictive analysis to eliminate the effect of the

vocal tract. Correntropy [40] has similar properties to the ACF and correntropy

has a kernel function to transform the original signal into a high-dimensional repro-

ducing kernel Hilbert space (RKHS) in a nonlinear manner. This transformation

preserves the characteristics of the periodic signal. Higher-order statistics [41] are

also used to enhance the resolution of pitch extraction. However, the performance

of correntropy and higher order-statistics in noisy environments is unsatisfactory.

In [42], harmonic sinusoidal autocorrelation (HSAC) was proposed. The symmet-
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ric average magnitude sum function (SAMSF) was utilized to generate a periodic

impulse train to extract the pitch. The resulting pitch extractor based on least

squares and optimum value finding (searching) is too complex to implement be-

cause it requires post-processing. In [43], dominant harmonic reshaping from the

normalized autocorrelation function (NACF) [44] of noisy speech was performed

and the empirical mode decomposition (EMD) of the resulting NACF waveform

was implemented where an iterative operation could not be avoided. The method

in [43] is also complicated and results in a long computation time. In [45], the

auditory filterbank decomposed the speech signal into subbands. Then, the NACF

was applied to the subband signals, which were encoded to extract the pitch. The

NACF reduces the variations in signal amplitude more than the ACF does. The

approach in [45] is very effective, but it inherently relies on a sophisticated post-

processing technique to compensate for the pitch extraction errors.

In highly noisy environments, the two correlation-based methods, ACF and

AMDF, are inferior to the weighted autocorrelation function (WAF) [26]. The

WAF also focuses on the ACF, but it is weighted by the inverse of the AMDF,

resulting in an excellent pitch extractor in noisy environments. Most of the ACF-

based pitch extraction methods are effective in white noise. However, the pitch

extraction performance of the ACF-based methods is degraded when clean speech

is corrupted by color noise.

In the frequency domain, one of the most widely used techniques employs the

cepstrum (CEP), which was originally proposed in [30] and improved in [31]. In

the CEP method, the pitch is extracted by applying the inverse Fourier transform

to the log-amplitude spectrum, which is also effective. The logarithmic function

involved in the CEP shifts the vocal tract characteristics to low-quefrency parts.

Utilizing high-quefrency parts, we can extract the pitch without being affected by

the characteristics of the vocal tract. The modified CEP (MCEP) in [32] further

involves the liftering and clipping operations on the log spectrum, which is used

to remove the characteristics of the vocal tract as well as to eliminate the unnec-

essary notches of spectral valleys that correspond to noise in the log spectrum.

The MCEP also removes the high-frequency components to increase the pitch ex-

traction accuracy. The ACF of the log spectrum (ACLOS) [38] also utilizes the

liftering and clipping operations on the log spectrum. Then, the ACF is applied to

the resulting log spectrum. The ACLOS emphasizes the periodicity of harmonics

in the spectrum.

The CEP-based methods clearly express the harmonic structure of the speech
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signal under no-noise conditions. However, in noisy environments, the CEP-based

methods do not always perform well because the speech peaks are affected by the

noise peaks in the frequency domain. A spectral harmonic technique was proposed

in [36]. In this method, a bank of bandpass lifters is used to flatten the spectrum.

The ACF is applied in the spectrum domain to extract the pitch periodicity by

reducing the effect of vocal tract characteristics. This approach may be effective

but the overall procedure is too complex to implement.

Recently, two sophisticated approaches have been proposed [46][47]. The pitch

estimation filter with amplitude compression (PEFAC) [46] is a frequency domain

pitch extraction method, which utilizes sub-harmonic summation [48] in the log

frequency domain. The PEFAC also includes an amplitude compression technique

to enhance its noise robustness. On the other hand, BaNa [47] considers noisy

speech peaks and provides a hybrid pitch extraction method that selects the first

five spectral peaks in the amplitude spectrum of the speech signal. BaNa calcu-

lates the ratios of the frequencies of the spectral peaks with tolerance ranges and

accurately extracts the pitch of the speech signal.

Although deep neural network (DNN)-based approaches exist [49][50] as a re-

cent approach to pitch extraction, they typically require a tremendously long time

for learning owing to the huge data size.

In this chapter, we propose the use of the fourth-root (FROOT) spectrum of

noisy speech for pitch extraction. Motivated by the fact that the MCEP method is

very simple to implement but provides an excellent pitch extraction performance

in noisy environments, the MCEP method is improved. In the proposed method,

which is referred to as the FROOT method, the fourth-root spectrum is used in-

stead of the log spectrum in the MCEP method. The idea of the FROOT method

has been reported in a conference [51], where a preliminary experiment was con-

ducted and only limited results for narrow-band noise were shown. In this paper,

we further extend the FROOT method for wide-band noise and investigate the per-

formance of both the FROOT and extended FROOT methods in various noises. In

wide-band noise, the noise energy is distributed over a wide range of frequencies.

In this case, the FROOT method is corrupted in the high-frequency domain by the

noise characteristics. However, the extended FROOT method additionally utilizes

the fourth-power calculation (fourth-power spectrum) to present clear harmonics

and emphasizes the pitch peak in the frequency domain, simultaneously suppress-

ing the noise components included in noisy speech. In this paper, the extended

FROOT method is referred to as the FROOT+ method.
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The remainder of this chapter is organized as follows. Section 3.2 describes

the principle of the FROOT and FROOT+ methods. In Sec. 3.3, we first show

preliminary experiments. After that, we compare the FROOT and FROOT+

methods with conventional methods through experimental results and then discuss

the performance and processing time for each method. Finally, we conclude this

chapter in Sec. 3.4.

3.2 FROOT and FROOT+ Methods

Let us assume that the clean speech signal x(n) is corrupted by noise, v(n). The

noisy speech signal y(n) is expressed as

y(n) = x(n) + v(n) (3.1)

Figure 3.1 shows a block diagram of the FROOT and FROOT+ methods. When

the fourth-power calculation in parentheses is included, Figure 1 corresponds to

the FROOT+ method. When this part is not included, it corresponds to the

FROOT method. In the FROOT and FROOT+ methods, firstly we apply a low-

pass filter (LPF) to the noisy speech signal because the LPF can eliminate the

noise characteristics to increase the accuracy of pitch extraction. The LPF is often

applied before the analysis of speech signals and filters out the high-frequency

components of the noisy speech signal. We use an LPF with the telephone line

cut-off frequency.

After windowing, we calculate the fourth-root spectrum. Here, we considered

different spectral shapes of a speech signal as shown in Fig. 3.2. From Fig. 3.2,

we can observe that the periodicity of the log spectrum is destroyed by the noise.

On the other hand, the fourth-root spectrum emphasizes the pitch harmonics in

the low-frequency region as well as reduces the noise effect. For this reason, the

fourth-root spectrum is used in the FROOT and FROOT+ methods.

However, the fourth-root spectrum is sometimes affected by vocal tract char-

acteristics. To overcome this problem, the operation of flattening is effective.

Therefore, we apply a lifter to the fourth-root spectrum by multiplying a filter in

the quefrency domain and then converting the liftering result back to the frequency

domain. Basically, the vocal tract information is present at the lower part in the

quefrency domain. At the higher part in the quefrency domain, the pitch informa-

tion is present. Therefore, we apply a high-pass lifter (HPL) to eliminate the effect
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Figure 3.2: Different spectral shapes of speech signal at SNR=0 [dB] (white noise)

of the vocal tract information and simultaneously eliminate the noise components

contained at the lower part in the quefrency domain. The cutoff quefrency level

of the HPL should be small to reduce the effect of the vocal tract characteristics.

Experimentally, we found that the cutoff quefrency level of 2.5 [ms] (25 samples

for the sampling rate of the NTT database) for the HPL preserves the high pe-

riodicity more reliably than that with a higher cutoff quefrency level at the lifter

output. Some examples are shown in Fig. 3.3. Therefore, when the FROOT and

FROOT+ methods were used in the experiments in Sec. 3.3, the cutoff quefrency

level of 2.5 [ms] for the HPL was used. However, after the lifter operation, we

observed that noise components are present between the harmonics. Therefore, a

clipping operation is also applied to the lifter output, which reduces the effect of

the noise using an accurate clipping threshold level. The selection of the clipping

threshold level is described in Sec. 3.3.
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Figure 3.3: Waveforms of different liftering outputs using cutoff quefrency levels
of (a) 1 [ms] (b) 2.5 [ms] and (c) 4 [ms] at SNR=0 [dB] (white noise) in NTT
database

After the above process, in the FROOT+ method, a power calculation is per-

formed (in the FROOT method, this part is omitted). Figure 3.4 shows an example

of which power factor is suitable for the clipping output to reduce the noise compo-

nents in the FROOT+ method. In Fig. 3.4, we observe that the noise components

are reduced by increasing the power factor. However, as the power factor increases,

the effect of the formant characteristics of the vocal tract sometimes also increases.

Therefore, undesired peaks arise. From Fig. 3.4, we selected four as the power

factor value for the FROOT+ method, which is the most effective value for reduc-

ing the noise. This is the reason why the fourth-power calculation is drawn in Fig.

3.1.

After this process, for both the FROOT and FROOT+ methods, the inverse

discrete Fourier transform (IDFT) is applied and the resulting spectrum is trans-
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Figure 3.4: Relation between the clipping output and the power factor for female
speech at SNR=0 [dB] (white noise)

formed into the time domain, where a peak corresponding to the pitch peak is

detected.

Figure 3.5 illustrates how to extract the pitch period by using the FROOT and

FROOT+ methods in narrow-band noise (car interior noise) and in wide-band

noise (white noise). In the narrow-band noise (Fig. 3.5(a)), we observe that the

energy level of the first three peaks provides almost the same amplitude in the

low-frequency region of the fourth-root spectrum. The pitch information exists in

this region, but some peaks are undesired. When the fourth-power calculation is

applied to the clipping output, the undesired peaks are enhanced. This leads to

the FROOT+ method producing a pitch detection error. However, the FROOT

method gives correct pitch detection without undesired peaks. In contrast, in the

wide-band noise (Fig. 3.5(b)), the harmonic peaks maintain their periodicity in the

low-frequency region at the clipping output. When the fourth-power calculation is
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Figure 3.5: Processing in step-by-step for FROOT and FROOT+ methods, (a) at
SNR=0 [dB] (car interior noise) (b) at SNR=0 [dB] (white noise)

applied to the clipped spectrum, the noise effect is suppressed. Otherwise, the noise

components remain in a wide frequency range. Therefore, the FROOT+ method

accurately detects the pitch peak. The FROOT method leads to a detection error

in this case.

3.3 Experiments

We conducted experiments on speech signals.
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3.3.1 Experimental conditions

Speech signals were taken from two databases: NTT [52] and KEELE [53]. In the

NTT database, which was developed by NTT Advanced Technology Corporation,

the speech materials are 11 [s] long and are spoken by four male and four female

Japanese speakers for each sentence; the speech signals were sampled at a rate of

10 [kHz]. From the KEELE database, we utilize five male and five female English

speech signals. The total length of the ten speakers’ speeches is about 6 [m].

The speech signals were sampled at a rate of 16 [kHz]. To generate noisy speech

signals, we added different types of noise to the speech signals in both databases.

White noise with zero mean and unit variance was generated by a computer and

added to the speech signals with amplitude adjustment. Pink, babble, factory, HF

channel, car interior, and military vehicle noises were taken from the NOISEX-92
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Figure 3.7: Relation between clipping constant level (C) and GPE at different
SNRs (female speakers)

database [54] with a sampling frequency of 20 [kHz], and train noise was taken

from the Japanese Electronic Industry Development Association (JEIDA) noise

database [55] with a sampling frequency of 8 [kHz]. These noises were resampled

with sampling frequencies of 10 [kHz] and 16 [kHz], respectively, when they were

added to the speech data in the NTT and KEELE databases. The SNR was set

to -5, 0, 5, 10, 20, and ∞ [dB], and the other experimental conditions for pitch

extraction were

• frame length: 51.2 [ms], except for BaNa;

• frame shift: 10.0 [ms];

• window function: Hanning;

• band limitation of LPF: 3.4 [kHz];
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• DFT (IDFT) length: 1024 points for the NTT database and 2048 points for

the KEELE database except for BaNa.

The following pitch extraction error e(l) based on Rabiner’s rule [18] was used

for the evaluation of pitch extraction accuracy:

e(l) = Fest(l)− Ftrue(l) (3.2)

where l is the frame number and Fest(l) and Ftrue(l) are the fundamental frequency

extracted from the noisy speech signal and the ground truth fundamental frequency

at the lth frame, respectively. If |e(l)| > 10[%] from the ground truth fundamental

frequency, we classified the error as a gross pitch error (GPE) and calculated the

GPE rate (as a percentage) over all the voiced frames included in the speech data.

Otherwise, we classified the error as a fine pitch error (FPE) and calculated the

mean value of the absolute errors. We detected and assessed only voiced parts

in sentences for pitch extraction. To extract the pitch, we used the search range

of fmax = 50 [Hz] and fmin = 400 [Hz], which corresponds to the fundamental

frequency range of most people.

The ground truth information for the fundamental frequency at each frame

is included in the KEELE database, while the true fundamental frequencies at

each frame in the NTT database were measured in [38] by observing the speech

waveforms carefully, which are used here. Therefore, the Ftrue(l) values in (3.2)

are known a priori in the evaluation.

3.3.2 Preliminary Experiments

For the FROOT and FROOT+ methods, it is important to set a constant param-

eter for the clipping threshold level, η , which is expressed as

η = αmin + C(αmax − αmin) (3.3)

where αmin and αmax are respectively the minimum and maximum values of the

fourth-root spectrum after the lifter operation, and C denotes a constant parame-

ter. We conducted preliminary experiments to determine the optimal value of the

clipping threshold level. For this purpose, we used the NTT database, because

the size of its speech data is smaller than that of the KEELE database. We em-

ployed male and female speech signals corrupted by white noise. By adjusting the

amount of noise to be added, a range of SNR of -5 [dB] to 20 [dB] was investi-
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gated. Additionally, clean speech was also investigated. Figures 3.6 and 3.7 show

the relationship between the clipping threshold level and average GPE rate of the

FROOT+ method for four male and four female speakers, respectively. Here, we

changed the clipping threshold level from 0 to 0.9. In Figs. 3.6 and 3.7, we observe

that setting C = 0.6 - 0.7 for male and female speakers gives low GPE rates at

almost all SNR levels.

In accordance with the results in Figs. 3.6 and 3.7, we select the constant

parameter C = 0.6 commonly for both male and female speech signals to ensure a

high extraction accuracy in the FROOT and FROOT+ methods.

3.3.3 Performance Comparison

The pitch extraction performance of the conventional methods (YIN [27] and BaNa

[47]) and the FROOT and FROOT+ methods was investigated in noisy environ-

ments. In [56], BaNa was assessed as the best pitch extractor in noisy environments

among nine methods that were compared. YIN was the second-best method in [49],

where the best one was DNN-based. In this chapter, we consider eight types of

noise, which are classified into two categories depending on their characteristics:

wide-band noise and narrow-band noise. White, pink, babble, train, factory, and

HF channel noises correspond to wide-band noise. Car interior and military vehicle

noises correspond to narrow-band noise. The noise characteristics are discussed in

detail in Sec. 3.3.4. For the FROOT and FROOT+ methods, we commonly used

a cutoff quefrency level of 2.5 [ms] for the HPL. All parameters of the conventional

methods were the same as those of the FROOT and FROOT+ methods, except for

the frame length and the number of DFT(IDFT) points for BaNa. Specifically, for

BaNa, the frame length was set as 60 [ms] and the number of DFT (IDFT) points

was 216 in accordance with [47] (this is the best setting for BaNa). The source

code used to implement BaNa was taken from [57]. We implemented the YIN

method on the basis of the algorithm described in [27]. In particular, for the YIN

method, to confirm the validity of our code, we used the same parameter settings

and GPE evaluation criteria as those in [49], and confirmed that the performance

of our implemented YIN method provides a similar average GPE rate to the YIN

method in [49] for white and babble noises in the KEELE database.

For pitch extraction, we cannot ignore the fact that the extraction performance

is largely dependent on the speaker’s characteristics, especially for low or high

pitches [18][38][39], which are typical characteristics of male and female speech,
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respectively. Additionally, different natures of additive noise such as wide-band or

narrow-band, flat-spectral or not flat-spectral, and time-invariant or time-variant

produce different results for pitch extraction [46][47][49][50]. This is due to the

nonuniform phenomena invoked in a complex combination of speech harmonics,

formant characteristics and the noise shape created in a framed voiced speech.

Therefore, it is important to investigate the pitch extraction performance sepa-

rately on male and female speech and separately on each noise type. For this

reason, we precisely show the result for each case and discuss it later.

(A) NTT database case

Figures 3.8 and 3.9 show the average GPE rates of the four male and four female

speech signals in the NTT database, respectively, with different noises. Each plot

was obtained under each SNR level from -5 [dB] to ∞ [dB] (clean speech).

From Fig. 3.8, it is observed that in the case of wide-band noise, the average

GPE rate of the FROOT+ method is lower than those of the other methods for

the white, train, and HF channel noises at low SNRs. At high SNRs (>10 [dB]),

the FROOT+ and FROOT methods have similar performance characteristics. At

low SNRs of pink and factory noises, BaNa provides a lower error rate than the

other methods. At high SNRs (>5 [dB]) of pink and factory noises, the FROOT+

and FROOT methods have similar performance characteristics but provide lower

GPE rates than BaNa. In the babble noise case, the FROOT+ method has a

lower GPE rate than the YIN method and BaNa, and competitive performance

with the FROOT method. On the other hand, in the case of narrow-band noise,

the FROOT method provides a lower GPE rate than the other methods at almost

all SNR levels except for BaNa at low SNRs (<5 [dB]) of car interior noise.

From Fig. 3.9, the FROOT+ method has significantly better performance than

the FROOT method in the wide-band noise case. However, BaNa has a lower GPE

rate than the other methods in the wide-band noises except for pink noise. BaNa

is still also better in the narrow-band noises, although the FROOT method has

better performance than BaNa at low SNRs of car interior noise. In the pink noise

case, the FROOT+ method has better performance than the conventional and

FROOT methods at all SNRs.

Figures 3.10 and 3.11 show the average FPE for male and female speech data,

respectively, in the NTT database. The FPE represents the degree of variation

in detecting the pitch. The average FPE for all methods ranges approximately

from 0.8 [Hz] to 6.2 [Hz]. In Fig. 3.10, we observe that the FPE of the FROOT+

method is better than those of most of the other methods but not the best. The
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YIN method has excellent performance at low SNRs (<15 [dB]) in the case of

wide-band noise and the FROOT method has the best performance at high SNRs

(>15 [dB]). In the narrow-band noise case, the FROOT method is the best, and the

FROOT+ method is typically the second best. On the other hand, in Fig. 3.11, we

observe that BaNa performs better than the other methods at low SNRs (<5 [dB])

in wide-band noise. At high SNRs, the YIN method has the best performance

and the FROOT and FROOT+ methods, and BaNa have similar performance

characteristics. In the narrow-band noise case, the FROOT method is the best.

(B) KEELE database case

To validate the performance of the FROOT and FROOT+ methods in a more

reliable manner, we also employed the KEELE database. Figures 3.12 and 3.13

show the average GPE rates for male and female speakers, respectively. The

KEELE database provides the ground truth values of the fundamental frequency,

which are obtained from laryngograph signals. We analyzed them and found that

some discontinuities are present. Therefore, the ground truth values are not par-

ticularly accurate. This is reflected in the resulting GPE rates. In Figs. 3.12 and

3.13, the GPE rates of the clean speech are clearly higher than those of the clean

speech in Figs. 3.8 and 3.9. This is due to the lower accuracy of the ground truth

values in the KEELE database.

Figure 3.12 indicates a tendency similar to that in Fig. 3.8 for all methods.

Figure 3.13 is also similar to Fig. 3.9 from a performance comparison aspect,

although BaNa has comparatively low performance in the babble and car interior

noise cases.

The average FPE performance characteristics for male and female speech data

are shown in Figs. 3.14 and 3.15, respectively. Figure 3.14 is also similar to Fig.

3.10, but the FROOT and FROOT+ methods behave similarly, giving the best

performance in almost all cases. However, Fig. 3.15 indicates a different tendency

from Fig. 3.11. In particular, the performance of BaNa deteriorates and BaNa

has the worst performance in all cases. However, the relationship between the

performance characteristics of the FROOT, FROOT+ and YIN methods in Fig.

3.15 is similar to that in Fig. 3.11.

(C) Summary

Through the results in Figs. 3.8-3.15, we observe that the performance of each

method has a similar tendency for both speech databases. To summarize, in the

wide-band noise case, the FROOT+ method provides a low GPE rate in various

types of noise over a wide range of SNRs, although BaNa is advantageous for female
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speech. Regarding the FPE performance, the FROOT method is superior to BaNa.

In the narrow-band noise case, the FROOT method has excellent performance in

terms of GPE and FPE.

In the case of windowing effect for the FROOT and FROOT+ methods, Fig.

3.16 shows the average GPE rate on four male and four female speech signals

in the NTT database with different noises. When the SNR is changed from -5

[dB] to infinity [dB] (clean speech case), each plot has been obtained under each

SNR condition. Here, we have used the white, pink, babble, and car interior

noises. In Fig. 3.16, only the FROOT and FROOT+ methods are compared.

The FROOT and FROOT+ methods are used Hanning window function. On the

other hand, FROOT-REC and FROOT+-REC methods are used the Rectangular

window function. From the experimental results in Fig. 3.16, the usefulness of the

Rectangular window in noisy environments has been found. When the FROOT

and FROOT+ methods are used with the Rectangular window, it provides bet-

ter GPE rates than the Hanning window based FROOT and FROOT+ methods

especially at low SNRs (≤ 10 [dB]) at almost all noise cases except for low SNRs

in car interior noise. At low SNRs in car interior noise, the Rectangular window

based FROOT (FROOT-REC) method is competitive with Hanning window based

FROOT (FROOT) method.

3.3.4 Discussion

We next discuss the performance of each method. Figure 3.17 shows long-term

spectra of the different noises we employed. The spectra of the narrow-band noises

(car interior and military vehicle noises) have the greatest amplitude in the fre-

quency range of less than 200 [Hz], producing narrow-band peaks. On the other

hand, the spectra of the wide-band noises (white, pink, babble, train, factory, and

HF channel noises) are comparatively evenly spread.

The YIN [27] method is an ACF-based method. For such a method, pitch

extraction is robust against wide-band random noises such as white noise but

weak against narrow-band noises such as periodic noise. This is consistent with

the results in Figs. 3.8-3.15. Car interior and military vehicle noises create sharp

peaks in the low-frequency region as shown in Fig. 3.17. These peaks produce

clear periodicity in the noise waveform, resulting in the degradation of the GPE

rate. HF channel noise has wide-band characteristics. However, a typical peak

exists at around 2600 [Hz]. When SNR is high, the peak is negligible. However,
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when SNR becomes lower, the peak increases in magnitude and is expected to

produce periodicity in the noise waveform. This is considered to be the reason

why the GPE rate of the YIN method is often severely degraded at low SNRs

in the HF channel noise case as shown in Figs. 3.8, 3.9, 3.12, and 3.13. In

BaNa, the pitch of speech is found from some candidates and post-processing

is also incorporated to accomplish accurate pitch extraction. BaNa is capable

of overcoming the movement of distorted peaks in noisy cases by estimating the

pitch by calculating the harmonic number with a permitted margin. Female speech

consists of fewer harmonics in the first formant range and the energy of the voice

speech is concentrated at these harmonics; thus, female speech is less affected

by noise. In this case, BaNa is advantageous, as shown in Figs. 3.9 and 3.13

regardless of the noise type. In contrast, in the male speech, the speech energy

is spread over many harmonics and is highly affected by noise. In this case, the

performance of BaNa degrades, since the choice of more spectral harmonic peaks

must be considered. Actually, the performance of BaNa is comparatively low

as shown in Figs. 3.8 and 3.12, but it is still excellent at low SNRs by relying

on the post-processing algorithm. However, a huge number of points of FFT is

required to find each harmonic peak accurately in BaNa. The computation of

several candidate pitches and that of the post-processing including the Viterbi

algorithm are complex, resulting in a long computation time as shown in Sec.

3.3.5. On the other hand, for the FROOT and FROOT+ methods, the fourth-root

spectrum makes the periodicity in the harmonic structure clear. In this process,

the spectral peak of narrow-band noise is suppressed. Since this effect is combined

with the following lifter and clipping operations, the FROOT method is robust

against car interior and military vehicle noises as shown in Figs. 3.8, 3.9, 3.12 and

3.13. However, the FROOT+ method uses the fourth-power calculation after the

clipping operation. In this process, the remaining spectral peak of narrow-band

noise is enhanced again. Therefore, the performance of the FROOT+ method is

lower than that of the FROOT method. However, in the wide-band noise that we

employed, unnecessary peaks typically arise in the high-frequency region as noise

components. These are suppressed by the fourth-power calculation as shown in

Fig. 3.4. Therefore, the fourth-power calculation can be effectively applied to the

clipped spectrum to reduce the noise effect in the case of wide-band noise.
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3.3.5 Processing Time

In Table 3.1, we show the processing time per second of data for each method in

the NTT database. We tested all methods on a PC with an Intel (R) Core(TM)

i5-6400K CPU with 4 [GHz] clock speed and 8 [GB] of memory. For evaluation,

we used five trials for each method then calculated the average processing time

required to obtain reliable measurements. The computational time of the YIN

method is reasonable because it uses the squared difference function to identify the

pitch. BaNa has the longest processing time because of the large FFT size used

to achieve a high frequency resolution. The processing times of the FROOT+

and FROOT methods are similar and shorter than those of the other methods,

since the clipping and liftering operations are directly applied to the fourth-root

spectrum.

Table 3.1: Processing time per second of speech

YIN BaNa FROOT FROOT+

0.641 29.427 0.146 0.157

3.4 Summary

In this chapter, we proposed the use of the fourth-root spectrum to deal with the

problem of pitch extraction from noise-corrupted speech signals. The FROOT and

FROOT+ methods were derived from the liftered and clipped version of the fourth-

root spectrum. The FROOT method can be switched to the FROOT+ method in

a simple manner by embedding the fourth-power calculation after the liftered and

clipped spectrum calculation. The FROOT+ method reduces the effect of vocal

tract characteristics as well as suppresses the non-pitch peaks in the frequency

domain, enhancing the pitch peak in the wide-band noise. On the other hand,

the FROOT method behaves similarly to the FROOT+ method but results in a

pitch extractor that is strongly robust against narrow-band noise. Through exper-

iments, we confirmed that both methods are efficient and effective for extracting

the pitch in a wide range of noise types when selected in accordance with the noise

characteristics such as wide-band and narrow-band noises. Also, to improve the

accuracy of the FROOT and FROOT+ methods in noisy environments, the use
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of the Rectangular window is more effective instead of the Hanning or Hamming

window.
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Figure 3.8: GPE for four male speakers with different types of noise under different
SNR levels in NTT database
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Figure 3.9: GPE for four female speakers with different types of noise under dif-
ferent SNR levels in NTT database.
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Figure 3.10: FPE for four male speakers with different types of noise under different
SNR levels in NTT database
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Figure 3.11: FPE for four female speakers with different types of noise under
different SNR levels in NTT database
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Figure 3.12: GPE for five male speakers with different types of noise under different
SNR levels in KEELE database
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Figure 3.13: GPE for five female speakers with different types of noise under
different SNR levels in KEELE database
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Figure 3.14: FPE for five male speakers with different types of noise under different
SNR levels in KEELE database
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Figure 3.15: FPE for five female speakers with different types of noise under dif-
ferent SNR levels in KEELE database
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Figure 3.16: GPE for FROOT and FROOT+ methods with different types of noise
under different SNR levels in the NTT database
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Figure 3.17: Long term spectra of different noises.



Chapter 4
Utilization of Windowing Effect and
Accumulated Autocorrelation Function
and Power Spectrum for Pitch Detection
in Noisy Environments

In this chapter, three types of accumulation techniques are proposed by supporting

the ACF based method to further improve the performance of the ACF. The accu-

mulation based pitch detection methods utilize ACFs obtained from a filter bank

and power spectra obtained from shorter subframes. These are effective to keep

the speech harmonics and to suppress the noise components included in the noisy

speech signal. To improve the accuracy of the pitch extraction methods in noisy

environments, windowing analysis is more effective where the use of the Rectangu-

lar window is emphasized instead of the Hanning or Hamming window. Through

experiments, it is shown that the three accumulation based approaches have the

potential to provide better performance than recent state-of-the art methods for

pitch detection without relying on a complicated post processing technique.

4.1 Introduction

Pitch is an important attribute of human speech, which is originated due to the

vibration of vocal folds. Reliable detection of the pitch period (T0) being the

inverse of the fundamental frequency (F0) from speech is required in a wide range

of applications such as speech coding, speech recognition, speech enhancement,

67
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speech synthesis and so on. Therefore, a large number of pitch detection methods

have been addressed up to now [18][24-33][36-39][44-48][53][58].

Various pitch detection methods are operated in the time domain. The autocor-

relation function (ACF) [24] and average magnitude difference function (AMDF)

[25][28] are widely used to accurately detect the pitch by measuring the similarity

between the original waveform and its delayed version. By using the properties of

ACF and AMDF, a number of methods have been developed. The YIN method

[27] uses a cumulative mean normalized square difference function of the speech

signal. In [26], to improve the robustness of pitch detection in noisy environments,

an improved version of ACF is addressed where the conventional ACF is weighted

by the reciprocal of AMDF. Most of the ACF based pitch detection methods are

effective in white noise. In general, the pitch detection performance of the ACF

based methods is degraded when the clean speech is corrupted by color noise. Also,

the ACF is affected by the characteristics of the vocal tract.

For reducing the vocal tract effect, several pitch detection methods are intro-

duced in the frequency domain. The cepstrum (CEP) method [30][31] is one of

such most popular methods. The CEP is obtained by the inverse Fourier trans-

form of the log-amplitude spectrum. The logarithmic function in the CEP is used

for separating the periodic components from the vocal tract characteristics in the

speech signal. The CEP behaves accurately in a noiseless environment, but in

noisy environments, the performance of the CEP is severely affected. To com-

bat this problem, improved versions are addressed in the modified CEP (MCEP)

[32] and the ACF of the log spectrum (ACLOS) [38], respectively. In [36], a fil-

ter bank approach is incorporated in the frequency domain. The windowless ACF

(WLACF) based CEP (WLACF-CEP) [33] utilizes both the properties of WLACF

and CEP. The WLACF is used for suppressing the noise from the noisy speech

signal, while sustaining the periodicity of the speech signal. In the WLACF-CEP,

a noise suppressed speech signal is applied to the CEP to enhance the accuracy

of pitch detection. In [33], it is shown that the WLACF-CEP behaves robustly

against various types of noise.

Recently, two sophisticated approaches have been addressed [46][47]. The pitch

estimation filter with amplitude compression (PEFAC) [46] is a frequency domain

pitch detection method, which utilizes its sub-harmonic summations [48] in the log

frequency domain. The PEFAC also attempts an amplitude compression technique

for enhancing its noise robustness. On the other hand, the BaNa [47] considers

the noisy speech peaks and results in a hybrid pitch detection method that selects
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first five spectral peaks in the amplitude spectrum of the speech signal. The BaNa

calculates the ratios of the frequencies of the spectral peaks with tolerance ranges

and accurately extracts the pitch of the speech signal.

Traditionally, most of the pitch detection methods are utilized with the Han-

ning or Hamming window for the segmentation at each frame. This is because the

Hanning and Hamming windows are adequate for the purpose of keeping a good

balance between sharp peaks of speech harmonics and noise suppression except

for speech harmonics. Thus, even in the recent techniques of PEFAC [46] and

BaNa [47], these windows are used. However, in both techniques, a comparatively

longer frame length is proactively utilized. Specifically, a frame length of 90 [ms]

in PEFAC and that of 60 [ms] in BaNa are set up, respectively. Increasing the

frame length leads to creating narrowing peaks of speech harmonics. From this

point of view, in this paper we set out to use the Rectangular window proactively

instead of the Hanning or Hamming window, but keeping a standard length of

frame such as 50 [ms] (or less). In noisy environments, a wider bandwidth of each

harmonic peak created by involving the Hanning or Hamming window badly be-

haves due to the corrupted noise. Therefore, these window based methods result in

pitch detection errors in noisy environments. To improve the accuracy of the pitch

detection methods in noisy environments, the use of the Rectangular window is

emphasized instead of the Hanning or Hamming window in this chapter. Support-

ing the ACF based method, three types of accumulation techniques are derived to

further improve the performance of the ACF. The accumulation based pitch detec-

tion methods utilize ACFs obtained from a filter bank and power spectra obtained

from shorter subframes. These are effective to keep the speech harmonics and to

suppress the noise components included in the noisy speech signal.

The remainder of this chapter is organized as follows. Section 4.2 analytically

describes the motivation of using the Rectangular window. Section 4.3 explains

the proposed accumulation based methods. In Section 4.4, we compare the perfor-

mance of the proposed methods with that of the conventional methods. Finally,

we conclude this chapter in Section 4.5.
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4.2 Motivation

Let us assume that a voiced speech signal, s(n) is represented for simplicity by

s(n) =
R∑
i=1

ai cos(2πF0in) (4.1)

where n is a discrete time, ai is the amplitude of each sinusoid (ai > 0), R is

the number of sinusoids, and F correspond to the fundamental frequency. In the

frequency domain, the speech signal is represented by

S(w) =
R∑
i=1

Aiδ(w − w0i) (4.2)

only in the positive frequency region, where S(w) is the (discrete-time) Fourier

transform and w corresponds to the angular frequency with w0 = 2πF0. δ(w) is

the Dirac delta function and Ai is the amplitude level such as Ai = πai, where Ai

is also positive.

When a window function, w(n), 0 ≤ n ≤ N − 1, is used, the framed speech

signal is given by sf (n) = s(n)w(n). In the frequency domain, the speech signal

and window function are convolved as

Sf (w) = S(w) ∗W (w) (4.3)

where Sf (w) and W (w) are the Fourier transforms of sf (n) and w(n), respectively.

From (4.2) and (4.3), we can obtain

|Sf (w)| =
R∑
i=1

Ai|W (w)|δ(w − w0i). (4.4)

If the power spectrum of sf (n) is represented in a sense of Periodogram, one of the

non-parametric methods [59], then the resulting power spectrum, P S
f (w) is given

as

P S
f (w) =

1

N
|Sf (w)|2 =

R∑
i=1

A2
i

N
|W (w)|2δ(w − w0i). (4.5)
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Figure 4.1: Harmonic characteristics of clean and noisy speech signals.

When the Hanning, Hamming, and Rectangular windows are represented by

whan(n) =

{
0.5− 0.5cos(2πn/(N − 1)) 0 ≤ n ≤ N − 1

0 otherwise
(4.6)

wham(n) =

{
0.54− 0.46cos(2πn/(N − 1)) 0 ≤ n ≤ N − 1

0 otherwise
(4.7)

wrec(n) =

{
1 0 ≤ n ≤ N − 1

0 otherwise
(4.8)

respectively, the W (w) of each function is well known as
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Figure 4.2: Block diagram of AACF approach.

Figure 4.3: Block diagram of APS approach.

Whan(w) = 0.5Wrec(w) + 0.25Wrec(w −
2π

N
) + 0.25Wrec(w +

2π

N
) (4.9)

Wham(w) = 0.54Wrec(w) + 0.23Wrec(w −
2π

N
) + 0.23Wrec(w +

2π

N
) (4.10)
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Figure 4.4: Block diagram of C approach.

Wrec(w) =
sin(wN/2)

sin(w/2)
(4.11)

respectively [59][60]. The above expression of each W (w) is a version shifted to

the left by (N − 1)/2 samples, that is, the case of the definition range being

−(N − 1)/2 ≤ n ≤ (N − 1)/2. The bandwidth of the mainlobe of each window

is 4π
N

, 4π
N

, and 2π
N

, respectively. Commonly, when N is increased, the mainlobe

bandwidth is decreased. In this case, even if the speech signal is corrupted by

noise, the affect of noise is suppressed. This is the motivation in [46][47], where a

long length of N is used commonly.

In this chapter, we consider to use the Rectangular window instead of the Han-

ning and Hamming windows, and keep a standard length of N . By this strategy,

it is expected that we could obtain a similar effect of noise suppression, since the

mainlobe bandwidth of the Rectangular window is half of that of the Hanning or

Hamming window. Figure 4.1 shows an example of comparison of windowing ef-

fects. A clean speech signal in the NTT database [52] and its noisy version (white

noise corruption at 0 [dB] signal-to-noise ratio (SNR)) are used here, whose sam-

pling frequency is 10 [kHz]. The amplitude spectrum of the framed signal, |Sf (w)|
in (4.4), is drawn for the Hanning and Rectangular windows, respectively. The

corresponding noisy signal version is overlapped, respectively. In Fig. 4.1, only

a part of the amplitude spectrum, 0 [Hz]-800 [Hz] frequency region, is drawn for

clear visibility. When the harmonic peak location is not shifted for the clean and

noisy speech spectra, a circle is marked. From Fig. 4.1, it is obvious that the

Rectangular window case is more accurate preserving the speech harmonics. This



4.2 Motivation 74

Figure 4.5: GPE for conventional methods with different types of noise under
different SNR levels
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property leads to more accurate pitch detection even in noisy environments.

4.3 Proposed Methods

Let us assume that the clean speech signal, x(n), is corrupted by noise, v(n). The

noisy speech signal, y(n), is expressed as

y(n) = x(n) + v(n). (4.12)

In this chapter, based on the use of the Rectangular window, we further improve

the ACF method. The frame length is set to 50 [ms]. This length is shorter than

90 [ms] in PEFAC [46] and 60 [ms] in BaNa [47], but it is a very often used level

of frame length in the literature [44] (exactly speaking, 51.2 [ms] with 10 [kHz]

sampling is used in [32-33][36][38][58], but this is almost the same as 50 [ms]).

We propose the following three approaches:

(1) Accumulated Autocorrelation Function (AACF) approach

(2) Accumulated Power Spectrum (APS) approach

(3) Combination (C) approach

Each approach is specifically explained in the next. The aim of each approach is

to enhance the speech harmonics suppressing the noise components.

(1) AACF Approach

Figure 4.2 shows a block diagram of the AACF approach. The framed signal,

yf (n), 0 ≤ n ≤ N − 1, is transformed into the frequency domain by means of Pe-

riodogram calculation with the fast Fourier transform (FFT). The resulting spec-

trum, power spectrum of yf (n) , is represented by P y
f (k) where k is the frequency

bin number related with a discrete representation of w, wk. In the following each

band pass filter (BPF) with different passband, the components of P y
f (k) except

for the passband are forced to zeros directly in the frequency domain. Each band

pass filtered power spectrum P y
f,l(k) , l = 1, 2, ..., 7 where l corresponds to the BPF

number such as BPF1, BPF2, ..., BPF7, is transformed into the autocorrelation

domain by means of the IFFT. The resulting each ACF, ryf,l(m), l = 1, 2, ..., 7

where m corresponds to a lag, is accumulated as

r̄yf (m) =
7∑
l=1

ryf,l(m) (4.13)

for each lag number. Then, by finding the maximum peak location in the funda-
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mental frequency range most of people have, we detect the fundamental frequency

of yf (n).

(2) APS Approach

Figure 4.3 shows a block diagram of the APS approach. The framed signal,

yf (n), 0 ≤ n ≤ N − 1 is divided into three subframes through the time division

part as

yf,1(n) = yf (n), 0 ≤ n ≤M − 1 (4.14)

yf,2(n−D) = yf (n), D ≤ n ≤ D +M − 1 (4.15)

yf,3(n− 2D) = yf (n), 2D ≤ n ≤ 2D +M − 1 (4.16)

where M is an integer which corresponds to the subframe length and D is a frame

shift sample. In general, it is desired that 2D+M − 1 is set so as to be equivalent

to N . In Section 4.4, the length of M and that of D are set to 30 [ms] and 10 [ms],

respectively.

From each subframe yf,j(n), j = 1, 2, 3, 0 ≤ n ≤ M − 1, each power spec-

trum is calculated as P y
f,1(k), P y

f,2(k), and P y
f,3(k). The three power spectra are

accumulated for each frequency bin as

P̄ y
f (k) =

3∑
j=1

P y
f,j(k). (4.17)

The accumulated power spectrum P̄ y
f (k) is band pass filtered by forcing to zeros

except for the passband 50 [Hz] - 900 [Hz]. The resulting power spectrum is inverse

Fourier transformed by the IFFT, and by finding the maximum location on the

resulting ACF, the fundamental frequency of yf (n) is detected.

(3) C Approach

In this approach, the APS approach is combined with the AACF approach as

shown in Fig. 4.4. The accumulated power spectrum P̄ y
f (k) is calculated from the

framed signal yf (n), which is used instead of the power spectrum P y
f (k) in Fig.

4.2.

4.4 Experiments

To investigate the performance of the accumulation based approaches, we con-

ducted experiments on speech signals.
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4.4.1 Experimental Condition

Speech signals are taken from the KEELE database [53]. We utilize five male

and five female speech signals spoken in English from the KEELE database. The

total length for the ten speakers’ speeches are about 6 [m]. These speech signals

were sampled at a rate of 16 [kHz]. To generate noisy speech signals, we added

different types of noise to the speech signals. White noise with zero mean and

unit variance was generated by a computer and added to the speech signals with

amplitude adjustment. Pink noise, babble noise, factory noise, HF channel noise,

car interior noise, and military vehicle noise were taken from the NOISEX-92

database [54] with a sampling frequency of 20 [kHz], and train noise was taken

from the Japanese Electronic Industry Development Association (JEIDA) noise

database [55] with a sampling frequency of 8 [kHz]. These noises were resampled

with a sampling frequency of 16 [kHz], respectively, when they are added to the

speech data in KEELE database. The SNR was set to -10, -5, 0, 5, 10, 20, ∞ [dB]

and the other experimental conditions for fundamental frequency extraction were

• frame length: 50 [ms] except for PEFAC and BaNa;

• frame shift: 10 [ms];

• window function: Rectangular and Hanning except for PEFAC;

• DFT (IDFT) length: 2048 points except for PEFAC and BaNa;

The following fundamental frequency extraction error e(l) was used for the

evaluation of fundamental frequency extraction accuracy based on Rabiner’s rule

[18];

e(l) = Fest(l)− Ftrue(l) (4.18)

where l corresponds to the frame number, Fest(l) and Ftrue(l) are the fundamen-

tal frequency extraction from the noisy speech signal, and the true fundamental

frequency at the l-th frame, respectively. If |e(l)| > 10[%] from the ground truth

fundamental frequency, we recognized the error as gross pitch error (GPE) and

calculated the GPE rate (in percentage) over the total voiced frames included in

the speech data. We detected and assessed only voiced parts in sentences for the

fundamental frequency extraction. For extracting the fundamental frequency, we

used the search range of fmax = 50 [Hz] and fmin = 400 [Hz], which corresponds

to the fundamental frequency range most of people have.
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Table 4.1: GPE for PEFAC with different types of noise under different SNR levels.

Noise type
SNR[dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 44.48 57.50 60.66 70.53 62.88 52.21 30.70 50.38
-5 36.13 43.77 47.68 57.89 49.13 40.73 28.26 42.45
0 31.10 35.44 38.83 46.14 38.62 34.53 27.04 35.89
5 28.08 31.20 33.24 37.23 32.38 30.71 26.51 31.41
10 26.43 27.79 29.11 31.75 29.06 28.07 26.46 28.86
15 25.56 26.60 26.76 28.58 29.06 26.26 26.56 27.55
20 25.14 26.01 25.16 26.79 26.36 25.18 26.63 27.03

The ground truth information for the fundamental frequency at each frame

is included in the KEELE database. Therefore, the Ftrue(l) values in (4.18) are

known a priori to evaluate.

4.4.2 Performance Comparison

In this subsection, the accumulation based approaches are compared to the conven-

tional methods; ACF [24], CEP [30], WLACF-CEP [33], PEFAC [46], and BaNa

[47].

All parameters of the conventional methods are the same as those in the ac-

cumulation based approaches, except for the frame length, DFT(IDFT) points,

window function of PEFAC and the frame length and DFT (IDFT) points of

BaNa, respectively. We used the Hamming window function for the PEFAC and

the frame length was set as 90 [ms] according to the suggestion in [46]. The DFT

(IDFT) points were 213 which was used in the source code. The source code to

implement the PEFAC was collected from [61]. For the BaNa, the frame length

was set as 60 [ms] and the DFT (IDFT) points were 216 according to the suggestion

in [47]. The source code to implement the BaNa was collected from [57].

Figure 4.5 and Tables 4.1-4.6, respectively, show the average GPE rate on five

male and five female speech signals in the KEELE database with different noises.

When the SNR is changed from -10 [dB] to infinity [dB] (clean speech case), each

plot has been obtained under each SNR condition.

In Fig. 4.5, only the ACF, CEP, and WLACF-CEP are compared. The Rect-

angular and Hanning windows are denoted as REC and HAN, respectively. Except

for the car interior noise and military vehicle noise cases, the ACF provides better

performance than the CEP, and a lower GPE rate is obtained with the Rectangu-
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Table 4.2: GPE for BaNa with different types of noise under different SNR levels.

Noise type
SNR[dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 36.46 59.02 51.63 68.45 62.80 36.33 34.33 57.37
-5 27.44 44.06 39.07 55.15 47.57 27.19 28.25 45.94
0 22.61 32.25 29.08 40.54 34.12 22.64 24.34 35.40
5 19.58 24.42 23.11 29.48 26.14 19.82 21.31 28.32
10 17.80 21.56 20.04 22.84 21.70 17.90 19.65 23.76
15 16.97 19.23 18.31 19.69 19.16 17.31 18.26 20.27
20 16.59 17.74 17.36 17.70 17.53 16.57 17.52 18.48

Table 4.3: GPE for AACF with different types of noise under different SNR levels.

Noise type
SNR[dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 39.50 77.89 65.58 70.96 76.94 44.54 78.30 77.53
-5 24.39 60.13 50.75 57.53 60.48 27.44 60.22 67.91
0 16.40 38.60 34.78 40.34 40.16 17.54 37.33 52.11
5 12.66 22.94 22.00 24.78 24.23 13.26 22.49 34.26
10 11.07 15.60 15.12 16.47 15.97 11.37 14.90 20.82
15 10.45 12.40 12.15 12.49 12.43 10.49 11.88 14.82
20 10.06 10.96 10.95 10.82 10.91 10.00 10.61 12.13

lar window. This windowing effect comes from the principle described in Section.

4.2. In the train noise case, although the Hanning window leads to a lower GPE

than the Rectangular window at low SNRs (<5 [dB]), this might be due to a rapid

and strong time variation nature of the train noise. The two noise cases of car

interior and military vehicle show a different tendency. The CEP provides better

performance than the ACF at low SNRs (<5 [dB]). This could be due to a strong

periodical nature of the two noises. See Fig. 4.6 where spectrogram characteristics

of all noises used in the experiment are shown. Figure 4.7 shows long-term spectra

of all noises. From Figs. 4.6 and 4.7, we can observe that the car interior noise

produces a sharp narrow band peak and the military vehicle noise does closed nar-

row band peaks, respectively. These give a strong periodical nature of the noise at

low SNRs. The CEP is known to behave robustly against periodical noises.

In [33], a performance comparison of the WLACF-CEP with ACF based meth-

ods was not revealed. As indicated in [33], Fig. 4.5 shows better performance of

the WLACF-CEP for a variety of noise being white, pink, train, babble, factory,

and HF channel, but the ACF is more robust. On the other hand, for car inte-

rior and military vehicle noises, the CEP is still better than the WLACF-CEP
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Table 4.4: GPE for APS with different types of noise under different SNR levels.

Noise type
SNR[dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 36.93 71.46 62.99 67.99 70.67 47.16 73.54 72.70
-5 23.79 51.58 47.69 53.97 52.71 29.84 51.94 61.29
0 17.10 32.80 32.12 37.32 34.48 19.62 33.24 44.75
5 13.48 21.31 21.82 24.11 22.32 14.91 21.37 28.90
10 12.15 15.82 15.87 17.01 15.93 12.73 15.68 19.52
15 11.38 13.06 13.19 13.32 13.28 11.56 13.09 14.88
20 11.03 11.82 11.87 11.81 11.93 11.09 11.77 12.62

Table 4.5: GPE for C approach with different types of noise under different SNR
levels.

Noise type
SNR [dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 35.53 74.66 63.23 68.73 73.51 41.07 77.87 74.07
-5 22.67 54.86 47.71 55.01 55.41 25.68 56.65 63.84
0 16.13 34.61 31.70 37.63 35.77 17.50 35.27 47.70
5 12.86 21.69 21.07 23.65 22.54 13.52 21.95 30.59
10 11.53 15.59 14.99 16.42 15.71 11.77 15.61 19.93
15 10.84 12.74 12.54 12.74 12.91 10.98 12.70 14.76
20 10.52 11.45 11.37 11.36 11.51 10.52 11.39 12.29

especially at low SNRs.

We compare the PEFAC, BaNa, and three accumulation based approaches

(AACF, APS, and C) in Tables 4.1-4.5, respectively. We show the performance of

the ACF in Table 4.6 as the bench mark, which is exactly the same as the ACF

with the Rectangular window in Fig. 4.5. The best score in each noise and SNR

condition case is highlighted by bold face.

From these Tables, it is observed that the PEFAC and BaNa provide com-

paratively better performance at low SNRs as emphasized in each original paper

[46][47]. However, that is not satisfied in all noise cases. In the babble noise case,

the APS provides better score than both the methods at low SNRs. In the white

and HF channel noise cases, the C provides better score except for -10 [dB] SNR

case of the HF channel noise at low SNRs. At high SNRs, the AACF is very ex-

cellent. The AACF provides all best scores for all noise cases at 20 [dB] SNR. It

also provides all best scores for noises except for the military vehicle noise at 15

[dB] SNR. At middle SNRs, the C is excellent especially for the train and babble

noises, and competitive with the ACF in the pink and factory noises. These results
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Table 4.6: GPE for ACF with different types of noise under different SNR levels.

Noise type
SNR [dB] White Pink Train Babble Factory HF channel Car interior Military vehicle

-10 46.36 66.49 64.97 67.99 68.33 57.82 75.59 75.31
-5 28.79 47.61 50.23 54.33 50.89 38.27 56.24 63.59
0 19.03 30.76 33.91 37.84 33.50 23.72 37.29 47.01
5 14.36 20.09 21.94 24.00 21.62 16.49 24.61 30.26
10 12.53 15.05 15.66 16.68 15.70 13.19 17.29 19.48
15 11.42 12.75 12.83 13.18 12.98 12.02 13.74 14.69
20 11.27 11.78 11.80 11.86 11.92 11.52 12.21 12.45

suggest that the accumulation based approaches should be employed adequately

knowing the information about the noise type and SNR degree. It should be noted

here that a complicated and time-consuming post-processing to track the pitch

information with time is not included in the accumulation based approaches.

For a comparison of the AACF, APS and C approaches, it should be noted that

the APS and C approaches are more effective at low SNRs (≤10 [dB]) in almost

all noise cases than the AACF approach in Tables 4.3-4.5. In Tables 4.4 and 4.5,

when the GPE values are lower than those in Table 4.3, the locations are marked

by yellow color. This result indicates that the time division processing commonly

used in the APS and C approaches provides a good effect for suppressing the noise

especially in low SNR cases. Also, we can realize that the yellow marked ranges are

wider in Table 4.5 by comparing Tables 4.4 and 4.5 carefully. As shown in Table

4.3, the AACF approach is very excellent at high SNRs regardless of noise types.

These two observations could explain the combined property of the C approach,

that is, a synergistic effect of combining the frequency division processing in the

AACF approach with the time division processing in the APS approach appears

in the C approach.

We further investigated the relationship between the windowing effect and

frame length for pitch detection. In Fig. 4.8, the ACF, AACF, PEFAC, and

BaNa methods with the Rectangular and Hanning windows are compared when

the frame length is changed from 30 [ms] to 90 [ms]. Here, the typical four noise

types of white, pink, babble and car interior are used and the SNR is set to +5

[dB] commonly. Fig. 4.8 shows that the use of the Rectangular window is better

than that of the Hanning window regardless of the choice of pitch detector. Also,

the GPE rate is increased as the frame length is increased for most of the cases.

Only the PEFAC method provides worse results in shorter frame length cases such
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as less than 50 [ms]. These results could not change largely the conclusive results

of performance comparison in Tables 4.1-4.6.

4.4.3 Processing Time

In Table 4.7, we have compared the processing time per one-second data for each

method in the KEELE database. We have tested all methods on a Laptop with

Intel (R) Core(TM) i7-8565U, 2 [GHz] clock speed of CPU and 16 [Gigabytes] of

memory. For the evaluation, we have used five trials for each method, then calcu-

lated the average processing time to obtain reliable measurements. The computa-

tional time of the BaNa method is so long because BaNa used the large FFT size

for keeping high frequency resolution. The processing time of the PEFAC method

provides the second largest processing time because of large FFT size. The AACF

and C approaches are commonly shorter processing time than that of PEFAC and

BaNa. On the other hand, ACF and APS approaches are almost similar, which

are commonly shorter than that of the other methods, since the IFFT operation

are directly applied to the conventional power spectrum and accumulated power

spectrum, respectively.

Table 4.7: Processing time per second of speech

PEFAC BaNa ACF AACF APS C

1.994 26.194 0.473 1.341 0.474 1.342

4.5 Summary

In this chapter, windowing effects have been discussed analytically and experimen-

tally and the usefulness of the Rectangular window in noisy environments has been

found. A variety of noise types in practice have been considered and the ACF has

been extended to its three accumulation based approaches.

When the ACF is used with the Rectangular window, it provides better GPE

rates than the CEP especially at SNRs higher than 5 [dB] regardless of noise types

(considered in this paper).

When the ACF is extended to the accumulated ACF approach in which a BPF

bank is employed, the accumulation technique provides a further better GPE rate
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Figure 4.6: Spectrograms for different types of noise

in high SNR cases. When the ACF is extended to the accumulated power spectrum
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Figure 4.7: Long term spectra of each noise

Figure 4.8: Frame length dependency for different types of noise at +5 dB SNR

approach in which shorter subframes are employed, the accumulation technique
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becomes robust against babble noise, especially in high noise level cases. For

randomly wide-band noises such as white and HF channel, the combination of the

accumulated power spectrum and accumulated ACF works effectively in low SNR

cases less than 0 [dB]. The combination approach behaves comparatively better in

train and babble noises as well. If we have a priori information about the noise type

and SNR condition or we can estimate them, then it will be possible to select one

adequate pitch detection method among the three proposed accumulation based

approaches.

The accumulated approaches disclose the potential to provide more excellent

performance than two state-of-the art methods; PEFAC and BaNa. The important

point is that a post processing is not involved in the accumulation approaches,

which obviously saves the computation time for pitch detection.



Chapter 5
Conclusion and Future Work

This chapter concludes the thesis with a summary of our work. The brief discussion

of the future work is also stated in this chapter.

5.1 Summary of the Work

Pitch is an important attribute of human speech, which is originated from the

vibration of vocal folds. Pitch period extraction is a key technique to understand

most acoustical phenomena in speech communication and plays an important role

in speech processing applications such as speech coding, speech recognition, speech

enhancement, speech synthesis and so on. The performance of these systems is

significantly affected by the accuracy of pitch or fundamental frequency extraction.

Reliability and accuracy of pitch extraction algorithms face real challenges, when

the speech signal is corrupted by noise.

A few works have been done on the pitch extraction in noisy environments. In

noisy environments, the conventional techniques utilize the time consuming post-

processing on the harmonics in the frequency domain to detect the more appropri-

ate pitch candidates. These methods also used the large number of DFT (IDFT)

size and larger frame length for creating the narrowing pitch peaks. Therefore,

these methods are effective at low SNRs in different noise cases which is empha-

sized in their original paper. However, this is not satisfied at all SNRs in all noise

cases. Also, the conventional techniques provide the large computational time

which is not suitable for real world applications.

Many pitch extraction methods have been developed in the past because it can

be used in real world applications. Nowadays, it has been highly accurate even

86
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in a noisy environment. Therefore, extraction results have come to be demanded.

However, since the speech signal is originally time-varying. Thus, pitch extraction

accuracy is not satisfied by the effect of noise characteristics. Therefore, the pitch

extraction accuracy is further deteriorated. However, we have made a commitment

to extract the pitch in noisy environments. The goal of this thesis is to develop

some methods to extract the more accurate true pitch peak from the noisy speech

signal without any complicated post-processing, which are more convenient and

efficient in the real world applications. These proposed pitch extraction methods

are performed in batch processing for speech waveforms by dividing into a short

time frame. Then, pitch extraction is calculated, and it is performed into the next

short time frame by utilizing the batch processing for the speech waveform. In

this way, frame processing is accomplished. By this way, the extraction result is

obtained for each frame in a short time.

In the first method, we proposed efficient and unique techniques such as FROOT+

and FROOT methods to extract the accurate peak location. Both methods are

utilized on fourth-root spectrum. The FROOT+ method reduces the affect of

vocal tract characteristics as well as to suppress the non-pitch peaks in the fre-

quency domain, resulting in enhancing the pitch peak in the wide-band noise. On

the other hand, the FROOT method is strongly robust against the narrow-band

noise. As a result, the pitch extraction accuracy is significantly improved and the

computational time is reduced.

After utilizing the first proposed work, we have investigated that, this method

used the Hanning window function for generating the framed speech signal. Even,

the state-of-the art methods are utilized these window function and also used

larger frame length for creating narrowing pitch peaks to extract the accurate

pitch candidates. In noisy environments, these window based methods show the

pitch detection errors, because wider bandwidth of window function badly behaves

due to the corrupted noise.

To improve the pitch extraction accuracy, the second proposed work empha-

size to get the narrowing peaks of speech harmonics by utilizing the Rectangular

window with standard frame length instead of the Hanning or Hamming win-

dow. Based on the Rectangular window function, the three accumulation based

approaches show their potentiality for pitch detection without relying on a compli-

cated post-processing. The processing time of the accumulation based approaches

have been also reduced significantly.

Real world speech communication and speech processing applications such as
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coding, recognition, enhancement, synthesis, require some methods for fast and

efficient extraction of the pitch. The first proposed method in this thesis has

shown to be capable to extract the pitch very fast, improves the performance of the

pitch extraction algorithm and provide excellent extraction accuracy. The second

proposed method designs a technique which utilizes the usefulness of Rectangular

window and accumulation based approaches to tackle the problem that arises in

the case of Hanning/Hamming window based methods. Also, this method has

shown better performance and sufficient extraction accuracy which also can be

applied in various pitch extraction applications.

5.2 Future Work

It has been shown that the proposed methods can accurately extract pitch even

under noisy environments. This important feature of the proposed methods create

space for its wide applications in various speech processing tasks. Incorporation of

pitch tracking data helps the extraction system to increase the extraction accuracy

and provide almost clean speech. Therefore, a noise robust pitch extractor is in a

great demand. Two proposed methods in this thesis can be potentially employed

to extract more accurate pitch at low SNRs in noisy environments.

In our experiments, we have used eight types of noise which are represented as

the real world noise. Real world noises are found very difficult to handle for pitch

extraction compared to white noise. In these noise cases, the original papers of the

state-of-the art methods are highly concentrated on low SNRs. The conventional

methods are not satisfied for all noise cases. From this point of view, our proposed

approaches will be highly efficient and effective without any complicated post-

processing when they would be employed adequately knowing the information

about the noise type and SNR degree. Thus, in future we will extend our research

to develop new pitch extraction methods which will be particularly robust against

very low SNR cases in every real world noise case. The developed methods could

be employed to various applications of speech effectively.
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