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Preface

Securing energy is an important issue for any country to achieve economic development. For
a country to stabilize its energy supply, mitigating the effects of changes in the energy price change
is extremely important. Hence, policymakers engaged in securing energy must pay special
attention to factors that could destabilize the energy prices. Recently, sudden shocks such as the
2008 financial crisis and the COVID-19 pandemic have caused devastating impacts on energy
prices, and it is becoming crucial to learn how such events can influence the energy market.

Decarbonization is another factor that influences energy policy related to securing energy.
Since the world’s energy supply still relies heavily on fossil fuels, many countries are struggling
to reduce the use of fossil fuels. Being the world’s largest CO, emitting country, China is now
trying to cut its coal use and shift towards natural gas, which is known to emit less CO, than coal.

For China to continue its economic growth while shifting toward a lower CO, emitting
energy, it is imperative to understand how the Chinese fossil fuel markets are affected by sudden
shocks and how the relationships between coal, crude oil, and natural gas are changing at this
critical juncture, where the issue of climate change is becoming increasingly severe. However, to
the best of my knowledge, only a few studies have investigated how the Chinese fossil fuel
markets are affected by recent shocks such as the financial crisis of 2008 and the COVID-19
pandemic, and how the relationships among the major fossil fuel markets are changing by
focusing on the time-varying aspect of fossil fuel time series data. The time-varying aspect
captures the effects of time-varying factors on the parameters estimated in the time series models.

Thus, the current dissertation is distinctive in that it examines how the relationships among
the fossil fuel time series variables change from a time-varying aspect. Specifically, I use the
following time series methods: the time-varying parameter vector autoregression (TVP-VAR),
recursive cointegration test, and Bayesian dynamic conditional correlation-multivariate
generalized autoregressive conditional heteroskedasticity (DCC-MGARCH).

First, the TVP-VAR model enables us to capture the potential time-varying nature of the
underlying structure in the economy flexibly and robustly based on the Bayesian algorithm
method, which can resolve the question of whether the estimated time-varying coefficients are
likely to be biased because a possible variation in the volatility of disturbances is ignored. Second,
the recursive cointegration test overcomes the short-run parameters as fixed to evaluate the time
paths of the non-zero eigenvalues instead of all parameters in the VAR model, which is important
for understanding the long-term relationships over time. Third, the Bayesian DCC-MGARCH is

a flexible tool for forecasting and capturing the volatility of time series when the volatility varies
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over time, which is important to have knowledge about volatility because it is a measure of risk.
Hence, these methods can decompose time series data into dynamic scales by estimating
parameters or volatility over time, which contain more information on the time series under
different periods. However, they are yet to be applied to fossil fuel markets.

Thus, this study fills this gap in the literature, and this study aims to test the effectiveness of
these time-series methods with time-varying parameters for the fossil fuel market and to examine
the time-varying issues related to the fossil fuel market to understand fossil fuel price instability
issues. Because fossil fuel markets are often strongly affected by changes in financial markets
such as foreign exchange, relevant stock and gold markets, etc., and hedging across the financial
markets is crucial for achieving sustainable energy supply, this issue is crucial for institutions
seeking to assure energy for their citizens.

For this purpose, Chinese and international fossil fuel markets (coal, crude oil, natural gas,
and liquid natural gas (LNG)), foreign exchange markets, clean energy stock markets, gold, and
bitcoin markets were selected because of the financialization of fossil fuel commodities, and
traders and investors now only consider the fossil fuel market to understand the price stability
issue for energy supply is not sustainable; it is necessary to consider the influence of the financial
market as a potential diversifier of portfolio risk exposure when changing policies such as the
2005 China exchange rate reform and economic events such as the 2008 financial crisis. The
specific research contents are explained as follows:

This dissertation is divided into four parts. This dissertation provides important implications
for energy policymakers in stabilizing Chinese and international fossil fuel markets. In addition,
this study will help Chinese and international energy investors understand the relationship
between the Chinese and international fossil fuel markets and to conduct risk management from
a time-varying perspective.

In the first part of this dissertation, I tested the validity of applying the TVP-VAR method to
fossil fuel market data to identify the impact of the Chinese Yuan (CNY) and Japanese Yen (JPY)
on Chinese LNG import prices. TVP-VAR is known to be useful for identifying how the effect of
one time series variable lasts on the other time-series variable. Furthermore, the TVP-VAR model
enables us to capture the potential time-varying nature of the time series by estimating the
parameter with stochastic volatility (Nakajima, 2011).

Given the 2005 China exchange rate reform and 2013 China’s new energy policy to switch
from coal to imported natural gas, exchange rate fluctuations could affect imported LNG prices.
Moreover, there is no trading market based on supply and demand, and the imported natural gas
prices in Asia are linked to Japanese crude oil; therefore, Asian prices are higher than in other

regions such as the United States and Europe. Thus, it is necessary to study the issue of how the
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exchange rate affects the Chinese imported LNG market to understand the natural gas price
instability issues.

The empirical study suggests that since September 2005, the JPY pass-through rate on the
Chinese LNG import price has been decreasing, while that of the CNY has been increasing.
Notably, the pass-through rate of the CNY began to exceed that of the JPY after 2008. Moreover,
since 2005, the lag effect of the CNY on the Chinese LNG import price has increased compared
to the JPY. If any new currency reform of the CNY is implemented in the future, then the impact
of the JPY on the Chinese LNG import price could be reduced and the lag effect of the CNY on
the Chinese LNG import price could become longer. Therefore, fluctuations in CNY are becoming
an important factor in understanding the movements of Chinese LNG import prices. This implies
the significance of considering the effect of the exchange rate on the energy market when the
market is influenced by the monetary reform of the importing country.

In the second part of the dissertation, I applied the recursive cointegration test to analyze the
connection between the energy market data, given the form of estimating parameters recursively.
The recursive cointegration test is known to be effective in identifying the change in the
cointegration relationship between two time series variables in the energy market under structural
break effects. It is a useful method for investigating how the long-run relationships among the
time-series variables change over time.

The Chinese coal market, which accounts for 70% of China's energy consumption, also faces
the same stability issues as the imported natural gas market. Thus, it is considered insufficient to
understand the problem of price instability from the fossil fuel market of China alone because
China’s domestic coal supply depends on the international market. To this end, it is important to
study how the Chinese domestic coal market is related to international fossil fuel markets to
provide useful information for conducting policies to stabilize coal prices.

Therefore, I applied the recursive cointegration test to recognize the dynamic cointegration
relationship between Chinese domestic coal and international fossil fuel markets during 2000—
2020, considering the structural break effects due to the 2008 financial crisis. I found that the
cointegration relationship between Chinese coal prices and international coal, natural gas, and
crude oil prices have different trends before and after 2008. We also found that the Chinese
domestic coal price was only cointegrated with the prices of international natural gas prices after
2018. These results indicate that the dynamic cointegration relationships between Chinese
domestic coal and international fossil fuel markets change within the investigated period. Natural
gas is one of the major energy sources following the 13th Five-Year Plan of China. The
stakeholders and policymakers of the Chinese coal market must consider the impact of

international natural gas prices to identify Chinese coal price movements to generate more
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accurate expectations.

In the third part of the dissertation, I employed both the recursive cointegration test and the
VAR and VECM models to analyze the shocks in the Chinese and international fossil fuel time
series data. A dummy variable capturing the shock in the time-series data is incorporated into the
VAR and VECM models to test the impact of the shock on the time-series variables.

Focusing only on one Chinese fossil fuel market (LNG import market or coal market) in the
above two research contents is not enough to deeply understand the stability issues of Chinese
fossil fuels. Furthermore, the world is affected by the COVID-2019 pandemic crisis. To gain a
deeper understanding of the impact of the pandemic crisis on their relationship, it is also important
to consider the 2008 financial shock to study the time-varying relationship between China and
international fossil fuels from 2000 to 2020.

To determine the validity of identifying shocks for the energy markets, I examined how the
dynamic cointegration relationship between the Chinese and international fossil markets changed
during the 2008 financial crisis and the COVID-19 pandemic. The results suggest that the effects
of COVID-19 on the linkages between the Chinese and international fossil fuel markets are not
as evident as in the 2008 financial crisis. The study identifies that the effects of the 2008 financial
crisis and the COVID-19 pandemic on the linkages are mostly driven by the impacts of these
crises on Chinese fossil fuel markets. This study indicates the importance of controlling the risk
involved in the Chinese fossil fuel market when events such as the 2008 financial crisis and the
COVID-19 pandemic are changing the linkages between the Chinese and international fossil fuel
markets.

In the fourth part of this dissertation, I investigated how the DCC-MGARCH method can be
applied to fossil fuels and their hedging market data. The DCC-MGARCH is known to be
effective for separating the dynamic correlation relationships among multiple time series variables.
This model captures the correlation clustering and examines how a shock at time —/ impacts the
correlation at time .

Hedging between fossil fuels and other assets is important to assure capital for purchasing
fossil fuels, which will help stabilize the energy supply. However, events such as the pandemic
could make it difficult for the suppliers of energy to hedge the risk of changes in the fossil fuel
price by combining their portfolios with financial assets, such as gold and Bitcoin. Thus, it is
necessary to consider hedging markets such as clean energy stock, gold, and the Bitcoin market
for cross-market investors to understand portfolio risk management based on modern portfolio
theory.

To examine its applications on fossil fuel and its hedging markets, the fourth section

examines how the dynamic correlation relationship between the fossil fuel and clean energy stock,



gold, and bitcoin market changes after the COVID-19 pandemic took place. The parameters are
estimated by the Bayesian method using the US daily data from January 2, 2019, to February 26,
2021, which is divided into periods before and after 2020. The study identifies that the Bayesian
DCC-MGARCH model with the skew multivariate generalized error distribution is credible for
applying the model for the fossil fuel, clean energy stock, gold, and bitcoin markets to estimate
the time-varying conditional correlations between them. The results suggest that the relationships
between fossil fuels and the clean energy stock, gold, and bitcoin market are changing and that
they become positively correlated after the pandemic occurred. The study indicated the
importance of fostering energy and financial market stability and choosing optimal hedging
strategies to minimize the diversification of risk when markets are facing shocks such as the
COVID-19 pandemic.

This dissertation suggests that the three time-series models are suitable for analyzing fossil
fuel market relationships when they are affected by time-varying factors. This empirical
dissertation also suggests that the linkage between the energy time series variable data is
influenced from changes in energy and monetary policies and exogenous shocks like the financial

and COVID-19 crises.
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Part 1: A Study on the Pass-Through Rate of the
Exchange Rate on the Liquid Natural Gas
(LNG) Import Price in China



1.1 Introduction

North America, West Europe, and Asia-Pacific are the main markets for natural gas
consumption in the world but in all of these regions, the liquid natural gas (LNG) import price
has been unstable. For example, according to British Petroleum (BP) (2014, 2015), the Japanese
LNG import price in Asia-Pacific regions decreased 57.5% from $16.33 to $6.94, the US
Natural gas import price declined 43.33% from $4.35 to $2.46, and the UK Heren NBP Index
of natural gas import price depreciated 43.15% from $8.25 to $4.69 during 2014-2016.
Comparing the changes in the LNG import prices among Japan, the US, and the UK, it is
noticeable in this example that the Japanese LNG import price is higher compared to the US
and UK markets. The Japanese LNG price and the LNG import price in the Asian area have
been fluctuating greatly at a higher price level (ANREME, 2015).

One reason why the Asian LNG price has been higher than other regions is that the Asian
LNG import price is known to be related to the average price of Japanese CIF (Cost, Insurance,
and Freight) crude oil import price (ANREME 2016). The CIF crude oil has been kept at a
higher price to protect sellers and buyers involved in the crude oil trade (Kawamoto and Tsuzaki
2007), and as the international crude oil price increases, the CIF price increases accordingly,
making the LNG import price higher. Furthermore, the Asian LNG import price has been much
higher than that of Western countries due to the Asian premium, which is a premium imposed
on Asian countries’ LNG imports from the major gas producers. From the perspective of price
stability, it is necessary to reconstruct a different pricing mechanism from the conventional one,
which reflects the supply-demand balance on the Asian LNG import price. This is crucial for
the Asian natural gas markets to attract market participants (Tong et al. 2014; Choi and Heo,
2017). However, little is known about how the market mechanism functions in determining
LNG import prices in the Asian region.

With the development of the Chinese economy, the demand for energy (especially natural
gas) has increased dramatically. Since 1978, environmental problems such as PM 2.5 have
intensified in China. To cope with such environmental problems, the Chinese government,
proposed by the National Development and Reform Commission, announced a decision to
change the supply and demand structure from fossil fuels to green energy between 2016-2020
(National Energy Board (NEB) 2016) under the Paris agreement on 3 September 2016.
However, according to British Petroleum (BP) (2019), the Chinese consumption of natural gas
increased substantially from 81.9 in 2008 to 283 billion cubic meters in 2018, and the Chinese
domestic production of natural gas increased from 80.9 to 161.5 billion cubic meters between

2008 and 2018.



Furthermore, factors such as the risk of drastic changes in foreign exchange rates will
affect the development of East Asian benchmark prices for the LNG spot market (Shi and Hari
2016). The above-mentioned Asian premium issue and the risks from the foreign exchange rate
changes are likely to become more serious as China continues to enhance more LNG imports
through the spot market in the future. To address this situation, it is necessary to stabilize LNG
import prices. Additionally, the Chinese government should re-examine factors such as foreign
exchange risks that play an important role in determining the LNG import benchmark prices.
This is crucial since the LNG import benchmark price reflects the supply-demand balance in a
real-time way, and it is influential for ensuring the economic efficiency and stability of a natural
gas supply. Furthermore, stabilizing the LNG import price in China is imperative for
establishing a stable benchmark price and improving its energy security and pricing power for
natural gas in the Asia-Pacific markets (Tong et al. 2014).

Another aspect we need to be aware of when investigating the effects of the exchange rate
on the Chinese LNG import price is the Chinese Yuan’s (CNY) monetary reform. Since July
2005, China has made changes to the CNY exchange rate against the US dollar. However, when
China began to apply this monetary reform in 2005, the daily fluctuation of CNY against the
US dollar became less than 0.3%. According to the International Monetary Fund (IMF), until
2015, China had a crawling-peg arrangement for its exchange rate regime. On 11 August 2015,
the People’s Bank of China (PBC) took a decisive step towards floating the CNY. With China’s
large economic scale and the increasing use of the CNY, the CNY was included in the Special
Drawing Right (SDR) basket of the International Monetary Fund (IMF) in 2016. Thus, from
November 2016, China introduced a monetary system to peg the CNY against the basket of
currencies. Liu and Chen (2017) reported that a more flexible exchange rate regime will bring
about a stronger transmission effect from the exchange rate and can cause inflation in China.
Since the 2016 monetary reform, there is a debate about whether changes in the CNY’s value
have effects on the prices of imported goods.

However, up until now, no studies have investigated the exchange rate pass-through of
CNY on the Chinese LNG import price considering the effects of CNY monetary reform. To
bridge this gap, this study identifies the level of the pass-through rate of the exchange rate on
LNG import price. The exchange-rate pass-through refers to the ratio of the price of traded
goods that changes with the exchange rate (John et al. 1992).

This research has the following two objectives. First, the study analyzes how the CNY and
JPY influence the Chinese LNG import price. The import price of LNG in China is linked with
the Japan Crude Cocktail (JCC) price (Martono and Aruga 2018), and the import benchmark
price of LNG is likely connected to the Japanese Yen (JPY). Hence, the study considers the



effects of the foreign exchange risk on the Chinese LNG import price by comparing the
influences on the LNG import price between CNY and JPY. Second, we examine the levels and
the length of the pass-through rate of these currencies on the Chinese LNG import price. We
do this because it is still not clear to what extent the exchange rate fluctuations influence the
Chinese LNG import prices compared to JPY after the 2005 CNY monetary reform.

We expect that before the monetary reform, JPY will have more influence on the LNG
price compared to CNY, but this effect will become smaller after the 2005 monetary reform.
This is because a study finds that countries with higher exchange rate volatilities have higher
pass-through elasticities on import prices (Jose and Linda 2006) and it is known that the
volatility of JPY has been higher compared to CNY before 2005. It is also believed that the
pass-through rate of JPY on LNG import price will become smaller and shorter after the
monetary reform, while that of the CNY will become larger and longer. We expect this result
since as the volatility of the CNY increases, the exchange rate risk in the LNG trading market
has been gradually transferred to the CNY after 2005, and the effects from the CNY will
become more significant in the Chinese LNG market.

The contributions of the present paper are the following. First, from the perspective of
discovering the Chinese LNG import price, suppliers in the international LNG market need to
consider the impact of exchange rate fluctuations on the Chinese LNG import price. Therefore,
the results of this study provide valuable price discovery information for the international LNG
suppliers exporting LNG to China. Second, the paper could be a good reference to energy-
consuming countries that need to mitigate the effects of exchange rate changes on energy prices.
As China is a country whose exchange rate rule is changing rapidly, the current study could be
a useful source for understanding the impact of monetary reform on energy markets. Finally,
this is one of the first studies to apply the Time-Varying Parameter vector autoregressive (TVP-
VAR) model on an energy market to consider the effects of dynamic changes in the estimated
parameters. Application of the TVP-VAR model is becoming popular in monetary and
economic studies, but this method has not been used often for analyzing the dynamics of energy
markets. Hence, the study can help scholars involved in analyzing energy markets with dynamic
changes to understand the effectiveness of applying the TVP-VAR model on energy market
data.

1.2  Previous Studies

Many studies have analyzed the pass-through rate of exchange rate on the import and
export commodity prices. Some studies concluded that exchange rates have an incomplete pass-

through on import commodity prices (Shinkai 2011; Choudhria and Hakura 2015; Pennings



2017) but Choudhria and Hakura (2015) showed that the pass-through from the exchange rate
to import and export goods are different. They revealed that there is an incomplete pass-through
from the exchange rate to import goods but there is a significant pass-through on the export
goods. Pennings (2017) indicated that the pass-through is incomplete for producer prices.
Furthermore, Kurtovi¢ et al. (2018) found that the pass-through rate on import and export goods
are asymmetric in the cases of monetary appreciation and depreciation.

Moreover, according to Ceglowski (2010), in addition to oil prices, most of the pass-
through rate on the US import goods dropped sharply from 1992 to 2006 (Sekine 2006), and
the same conclusion was reported in Japan after 1970 (Sekine 2006; Shioji and Uchino 2009).
Shinkai (2011) found that the pass-through rate on import price increases when exchange rate
volatility increases in the short run, but this trend is associated with inflation in the long run.
Sasaki (2019) found that Japan’s import pass-through rate had been declining, but it started to
increase during the financial crisis. On the other hand, Kurtovi¢ et al. (2018) reported that there
has been no decrease in the pass-through rates on the aggregate import prices of 7 Southeast
European countries. Hui et al. (2013) reported that compared to developed countries,
developing countries have a higher pass-through rate. Thus, it is likely that the pass-through
rate on the Chinese LNG import price will be high, but up until now, no studies have confirmed
the extent of the pass-through rate on the Chinese LNG import price.

We would also like to introduce studies related to the recent development of the methods
used for analyzing the pass-through rate on import prices. Conventionally, the Vector
autoregression (VAR) model has been applied for investigating the pass-through rate on
commodity prices (Marazzi et al. 2005; Shinkai 2011). However, recently, according to the idea
that the economic structure and conditions of financial policy change over time, the pass-
through rate on import commodity prices was analyzed by considering the effects of changes
in the estimated parameters over time (Sasaki 2019). For example, Primiceri (2005) applied the
time-varying parameter VAR (TVP-VAR) model to investigate the effects of changes in the
US monetary policy in the 1970s and early 1980s. Nakajima and Watanabe (2012) developed
the TVP-VAR extrapolation program in OX software using the macro data of Japan. They
suggested that compared to VAR model fixing parameters, TVP-VAR considering time-
varying parameters improves the accuracy of the prediction of any variable (Nakajima and
Watanabe 2012). Studies such as Shioji and Uchino (2009) and Shioji (2010) also measured
the pass-through rate of the exchange rate on various commodities using the TVP-VAR.

Finally, there are a lot of concerns about how the fluctuations of the CNY will influence
the Chinese economy, production, and import and export prices over time. However, there is

no study investigating how the Chinese LNG import price has been and will be affected by the



CNY and JPY fluctuations in the aftermath of China’s currency reform process. To cover this
gap, this study examines the influence of the JPY and CNY on the Chinese LNG import price
and compares the pass-through rate of these currencies on the Chinese LNG import price using
the latest data available.

Our study is also novel in the sense that although most previous studies analyzed the pass-
through rate by using the VAR model, the current study uses the TVP-VAR model to estimate
the effects of the monetary rates on the Chinese LNG import price. This model enables us to

consider the effects of dynamic changes in the estimated parameters.

1.3 Materials and Methods

The pass-through rate of the exchange rate on the Chinese LNG import price was
estimated using four variables: the CNY (E1;), JPY (E2;), Chinese LNG import price (PL;),
and Japanese crude oil price (P];). Since Asian LNG import price is linked with the JCC crude
oil price (Martono and Aruga 2018) and causes major impacts on the global natural gas industry
chain, the Japanese crude oil price was included in the study.

Our econometric model was based on Primiceri’s TVP-VAR model (Nakajima and
Watanabe 2012), which incorporates the effects of changes in the parameters during the test
period. The model was estimated by using the Monte Carlo experiment with the OX 6 Console.
Before estimating the TVP-VAR model, we tested the stationarity of our test variables with unit
root tests. Then, we tested the cointegration between our variables to see if the VAR model was

a suitable model for applying the data.

1.3.1 Unit Root and Cointegration Test Method

To identify the stationarity of our test variables, we applied the Augmented Dickey-Fuller
(ADF), Phillips—Perron (PP), and Kwiatkowski—Phillips—Schmidt—Shin (KPSS) tests. The
ADF and PP test the non-stationarity of the variables while the KPSS tests the stationarity of
the variables.

After the order of integration was confirmed with the unit root tests, we performed the
Johansen cointegration tests. The Johansen tests were conducted using the two monetary rates
and LNG and crude oil prices: (E1, PL;, PJ;) and (E2;, PL;, P];). Eviews 8.0 software was
used for this purpose.

1.3.2 TVR-VAR Model

Based on the assumption that the variables have unit roots and are not cointegrated, the

TVP-VAR model has a different structure from the VAR model; the estimated parameters



change over time (Primiceri 2005). To consider such parameter changes over time, we applied
the TVP-VAR model on the CNY (E1), JPY (E2), Chinese LNG average import price (PL),
and JCC average crude oil price. The JCC price was included in our model, which was mainly
to avoid the impact of the JCC price on foreign exchange and to better understand the impact
of the exchange rate on the Chinese LNG import price. The lag order of the time-varying model
was determined by using the minimum AIC value obtained from the VAR model. In this study,
two time-varying models for the CNY and JPY were constructed to compare the effects of these
exchange rates on the Chinese LNG import price.

In the CNY TVP-VAR model, the Chinese LNG import price (PL), CNY(E1) monetary
rate, and the JCC crude oil price (PJ) was set as Yg; = (PL;, E1¢,PJ¢)". The model was
constructed as follows:

AYg14t=Cg1t + Be1,1tAYg1t-1 + - + B1stAYR1 65 + Ug1ts (1
ug1e~ N(0,Qgp ), t=s+1,..,n )
where A denotes the first difference of the variable.
Similarly, for the JPY model, the three main variables of our interest were set as Vg, ; =
(PL;,E2.,PJ;)" and the model had the following form:
AYg2t=Cpz¢ + Be21tAYR2 -1 + " + Brz stAYE2 t—s + Ug2t, 3)
ugz¢~ N(0,Qgz¢), t=s+1,..,n 4)

Here, Cg1¢ = (Cpr,E10 CR1 CP],Elt)IJ Ceae = (CpLE20 Cr20 CP],EZt)’ are the time-varying
constant vectors of (3 X 1), Bgq j¢, By i+ are the time-varying coefficient matrices (i = 1, ..., s)
of 3x3), and ugy, = (uPL,EltJ UE1t uP],Elt),JuEZ,t = (uPL,EZt: Up2u uP],EZt), are error term
vectors of (3 X 1).

The error terms Ugq ¢, Ug, ¢ in Equations (2) and (4) were assumed to follow the variate
normal distribution with an average of 0 and time-varying covariance matrices of Qg ;. The
time-varying covariance matrices Qgq. g1, were expanded by using the Cholesky
decomposition:

Qp1t = AR1ZELZE1LARLL (5)
Qpze = Apd S0 Siz cAs e (6)

where Agq ¢, A, + are diagonal matrices of (3). Here, all the diagonal components were

1 0 0 1 0 0
Ap1e = (aEl.th 1 0 ) Apt = (aEZ,th 1 0 )

ag1,31¢ Ag132t 1 Agz31t Ag232¢t 1

In addition, Xg4 ¢, X, ¢ Were the diagonal matrices of (3 X 3) where



Og1,1t O 0 Og21t O 0
Lg1p = 0 Og12t 0 , LE2t = 0 Ot 0 .

0 0 OE13t 0 0 Og23t
Here, agl_it, ng‘it were the time-varying variances of structural shocks for variable i,
while agq;j; and ag,;j; were the parameters of the time-varying simultaneous correlations
given to the variable i by the structural shock of the variables j where (i,j = 1,2,3).
Then, based on Equations (1), (2), and (5), the CNY(E1) model could be rewritten as the

following equations:

AYgq = AXg1Be1e + AELZELtEELY (7
eg1e™ N(O, I3). (3
Similarly, based on Equations (3), (4), and (6), the JPY (E2) model could be expressed as
follows:
AYgp = AXg tBe2t + AR, ZE2EE2,0 ©)
€g2,: N(O,I3). (10)

Here, g1 ¢, PE2,c Were the vectors corresponding to Equations (7) and (9):

BEl,t = {CEl,tJ BEl,lt: ---:BEl,st}: BEZ,t = {CEZ,t: BEZ,lt: ---:BEZ,st}-

AXE + is defined as below:
AXgyp = I3®(1'AY1:31,t—1' ---'AYé1,t—s)'AXfaz,t = [3®(1,AYg t—1, - AYE2 1—s),

where I3 is the identity matrix of 3 X 3, and ® is the Kronecker product. In addition, &g =

, _ , . )
(€E1,1t: €E1,2t) €E1,3t) 1E€E2t = (552,1t: €22t €E2,3t) in Equations (8) and (10) are the
normalized structural shocks.

The time-varying parameter was set by assuming the following equations:

Bett+1 = Bewt T 8r18e Be2t+1 = Be2t T 8m280 (11)
Ag1t+1 = A1t T 8E1,at OE2t41 = OBzt + OE2au (12)
hg1t+1 = hg1t + 81 he hEzer1 = heze + Op2he (13)
where,

€E1t I3 0] 0 0 \’

o) 0O X 0

ELpt ) N| O, ELp 8 and

SE1at 0 0 Zpiq

8E1nt 0 0 0 ZE1n /

€E2t I3 0 0 0

8E2,Bt ~nNl o 0 EEZ B 0 0

8E2at N0 0 Zme O |7

8E2nt 0 0 0 Zgon /



AE1,t = (aEl,th: ag1,31t) aE1,32t), and gz = (a52,21t; Ag2,31¢t) aE2,32t), are the lower
triangular components of the Ag;,and Ag,, matrices. The diagonal components
Xgyrand Yg, . were converted into hgq ;= log agl,l-t and hg, ;+ = log agz,it (i=123)
where hgie = (hg11e Re12e herse)’ and hgae = (Re2ae Rezze hezse)’- The time-varying
parameters for the CNY and JPY models were defined as ( Bgi¢ Qg1 hpre ) and
(Be2,t: A2t he2 ).

The prior distributions corresponding t0 (£g1,8, Zg1,a) 2£1,n) and (Zg2, 8, Zg2,a) Lg2,n) Were

set as follows:
ZEl,BNIW(nEl,O: SE1,0); ZELa’”IG(VELao/Z: VEl,a/z): ZEl,hNIG(VEl,hO/Z: VEl,h/Z): (14)

2E2,6~TW(ng20, SE20) ZE2,0 ~1G(VE2,00/2 VE2,0/2), ZE20 ~1G(VE2 00/ 2, VE20/2).  (15)

In Equations (14) and (15), the IW and IG denote the Inverse Wishart and Inverse Gamma
distributions, respectively.

In this study, the above time-varying parameter (Sq¢, Qpt, her) Where e = (E'1, E2) in the
TVP-VAR model was estimated using Bayesian theory. The Markov chain Monte Carlo
(MCMC) method in the framework of Bayesian Inference was used for estimating the time-
varying parameters. According to Nakajima and Watanabe (2012), Y = {Yoi}i=1, B =
{Betdt=s+1, & = {et}tess1, h = {hectitsir,and w = (Ze g, Ze,as Ze,n)- Table 1.1 illustrates the
sampling steps using the joint posterior probability density function (8, @, h, w|Y) and the
MCMC method. The details of the steps are explained in Nakajima and Watanabe (2012) and
Nakajima (2011).

Table 1.1 Sampling steps of the Markov chain Monte Carlo (MCMC) method.

Steps Detail of Steps
1 Set the initial value of 3, a, h, w.
Sampling from B|a, h, Zg, Y.

Sampling from Zg | B.
Sampling from a|B, h, Z,, Y.
Sampling from X |a.
Sampling from h|B, o, Z,, Y.
Sampling from Xy, |h.
Back to step 2.

[e-BEN Be) WU, IR SR US I O]

In step 1, there is a possibility that the estimated value of the fixed parameter is unstable
when the estimation period is short (Nakajima and Watanabe 2012). In this case, the prior
distribution of the initial value of the time-varying parameters of the first 10 samples is drawn
from the normal distribution as prior data (Primiceri 2005). The mean and covariance matrices

of the prior distribution are determined by the ordinary fixed-parameter VAR model (Kosumi



2016). Using the obtained average estimated values (,[?e_o, Qe 0, Be,o) and the estimated values

of the covariance matrix (V(/?e,o); V(&e,o)' V(Be,o)), the following normal distribution was set:

Be,s+1~N(Ge,0J 4V([§e,o)), Oe,s+1 " N( e, 4V(ae,o)), hesy1~N (ﬁe,o; 4V(ﬁe,o))- (16)

In the MCMC method, it takes some time for the Markov chain to converge to the target
distribution, so the first part of the sample sequence was discarded. The expected value was
calculated using the remaining samples, and it was determined whether the chain converged
(Kosumi 2016). In this study, the convergence test was performed with the following methods.

First, we examined the convergence by plotting the sample parameters using the MCMC
method. We used the plots to find out whether the fluctuation of the sample is stable (Kosumi
2016).

Second, the CD statistic proposed by Geweke (1991) was used. The CD statistic was used
to identify whether the averages of the first to last sub-samples are the same. If the test suggested
that the sample parameters converge to samples from the posterior distribution, and if the mean
difference among the first to last sub-samples extracted became zero, then we could confirm
that the parameters did converge.

Finally, the prior distribution was based on Nakajima and Watanabe (2012) and the
estimation is completed with the Ox program for the TVP-VAR model provided by Nakajima
(2011).

1.3.3 Impulse Response Function

The impulse response method is a way to see how the innovation given to the error term
of an equation propagates to the test variables. Since the models for the CNY (E1,, PL¢, PJ;)
and JPY (E2;, PL;, PJ;) are constructed in the same way, we only discuss the impulse response
function for the CNY (E1;, PL¢, PJ;).

The TVP-VAR model of Equation (1) with two lags can be rewritten as follows:

AYg1t=Cg1t + Bg1,1,tAYE1t-1 + BE1,24AYE1t-2 + UE1t - (17)

Here, Cg1¢= (ch,Elt, CE1tr chElt)’, is a time-varying constant vector of (3 X 1),
Bg116Bg12¢ 1s a  time-varying coefficient matrix of ( 3X3 ), and ug, =
(upL_Elt, UE1t uPLElt)' is an error term vector of (3 X 1). The initial value of AYg, ; was set to
zero (AYg; o = 0).

The impulse response function can be obtained by the following steps. First, let the value
of AYg, ; when innovation is not given (g1 ¢ = O, Vt) be AYg} ;. Second, according to Equation

(17), let the value in period t = 1 be AYg; ; = Cgq; while the next period’s value is AYZ, , =

10



Cg12 + Bg122Cg11- The value of AYg;, when innovation is given (Qg;¢ = Ogqy, VE) is
denoted as AYg, ,. Hence, the value of AY in period t = 1is AYg} ; = Cgy 1 + 0pq4 and the
next period’s value is AYg; , = Cgy, + Bgi22 (CE1_1 + GEM) + Og1,2.

Next, by calculating the difference between the case without and with innovations, the
effect of innovation can be expressed as AYth = AY§, ¢ — AYE; . In this case, AY can be
expressed as:

AYg11 = 01,1, AY81 2 = Br1220811 + Op12 - (18)

Equation (18) is called the impulse response function, and the cumulative response
function is defined for every lag period (t=1,2, ...).

Finally, the pass-through rate on the LNG import price is defined as (cumulative impulse
response to the foreign exchange shock of the import price)/(cumulative impulse response to
the own monetary shock) (Shioji 2010). Based on the cumulative response function, the pass-

through rate on the Chinese LNG import price can be expressed as:

D
RE1—>PL _ TE1—>PL,t (19)
pass—through — D .
T
E1-E1t

Here, Rg&s_’sﬁihmugh is the pass-through related to the fluctuation of the CNY on the
Chinese LNG import price, and T2, ,p ¢ is the accumulative impulse response of the CNY
fluctuation shock on the Chinese LNG import price. Finally, T, g1 ¢ is the accumulative

impulse response to its own shock from the CNY fluctuation. All the impulse response function

estimations were performed with OxMetrics6.01.

1.3.4 Data

The monthly average price from China Customs (Wind 2019) was used for the LNG
import price. The monthly average price released by the Petroleum Association of Japan (Wind
2019) was used for the JCC crude oil price. Furthermore, the nominal effective exchange rate
was the exchange rate used in the study. The CNY fluctuation is the monthly average nominal
effective data published by the People’s Bank of China and the data were collected from Wind
Net. The JPY represents the monthly average nominal effective data released by the Bank of
Japan. The sample period covered in this study was from August 2005 to September 2018. All
the data used in this study is provided as supplementary material.

Figure 1.1 is the plots of the standardized data of our variables (E1¢, E2¢,PJ;, PL;)
calculated from Equation (20). From this figure, we can see that the CNY (E1,) is more volatile
than the JPY ((E2,). It is also discernible from the figure that the China LNG import price (PL;)

seems to fluctuate along with the Japanese crude oil price (P];).

11
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Figure 1.1 The plots of CNY (E1;), JPY (E2;), crude oil (PJ;) and LNG import (PL;) prices
from August 2005 to September 2018.

As US dollars are the most commonly used currency in international trades, we used US
dollars as the base unit for our variables. Thus, the JCC crude oil import prices and Chinese
LNG import prices were converted to dollar-denominated prices for unifying the Japanese and
Chinese markets. However, because the data of the variables have different units, they were
standardized by using the following formula:
X—nu

o

Z= (20)

Here, Z is the normalized value of X where X denotes the variable of our interest (CNY,
JPY, JCC crude oil import price, and Chinese LNG import price), while u and ¢ are the mean

and variance of X.
1.4 Results

1.4.1 Unit Root and Cointegration Tests

Table 1.2 depicts the results of the unit root tests. The table indicates that all our time series
data are non-stationary at their level data but become stationary when first differencing them,

suggesting that they are all integrated at order one.
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Tables 1.3 and 1.4 show the results of the Johansen test for the CNY and JPY versus the
natural gas and crude oil prices. The results of the maximum eigenvalue test suggest that both
the CNY and JPY are not cointegrated with the natural gas and crude oil prices based on the
5% significance level. These results point out the validity of using the TVP-VAR model instead
of the TVP vector error correction model (VECM).

Table 1.2 Unit root tests.

Level Data (t-Value) First Difference Data

Variables

ADF PP KPSS ADF PP KPSS
El -1.29 -243 098" 8.04* -—-6.71" 0.63
E2 -0.16 -1.34 031 306" -9.68" 0.18
PL -0.34 -245 0.71* -585" -=2249* 0.09
PJ -046 -2.19 0.26 848" 558" 0.07

* Significant at the 5% significance level.

Table 1.3 Results of the Johansen cointegration test for CNY (E1;, PL;, PJ;).

Rank Trace 0..0.1 p- Maximum 0..0.1 )
Number Test Critical Value Eigenvalue Critical Value
Statistic Value Test Statistic Value
None 31.38* 35.46 0.03 16.00 25.86 0.22
At most 1 15.38 19.94 0.05 10.94 18.52 0.15
At most 2 4.44" 6.63 0.03 4.44* 6.63 0.03
* Significant at the 5% significance level.
Table 1.4 Results of the Johansen cointegration test for JPY (E2,, PL;, PJ;).
Rank Trace Test 0.' 0.1 p- . Maximum 0.' 0.1
Number Statistic Critical Value Elgenva.lufs Test Critical p-Value
Value Statistic Value
None 24.02 3546  0.19 12.04 25.86 0.54
At most 1 11.98 1994 0.16 7.29 18.52 0.45
At most 2 4.68" 6.63 0.03 4.68" 6.63 0.03

* Significant at the 5% significance level.
1.4.2 MCMC Estimation Results

In the MCMC estimation, we ran 10,000 iterations with a burn-in phase of 1000, and a
thinning interval of 10.

Figures 1.2 is the sample autocorrelation function (upper), sample-path (middle), and
posterior probability density function (bottom) of time-varying parameters obtained by the
estimation. From the results in Figures 2a,b, both sample paths (middle) converge after 1000
iterations. The sample autocorrelation function shows that both the coefficients (upper) for
CNY and JPY were approximately reduced to 0 after 500 iterations. In addition, the results
following the normal distribution were obtained for all parameters of the posterior probability

density function (bottom).
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(b) The JPY (E2;, PL¢, PJ;)
Figure 1.2 The sample autocorrelation function (upper), sample-path (middle), and posterior
probability density function (bottom) of TVP-VAR parameters. sy, Sa1, and spq are error
terms of the original time-varying parameters based on the first ny sub-samples. sy, S,2, and
Sy are error terms of the original time-varying parameters based on the last n; sub-samples.
The vertical axis of the upper figure is the sample autocorrelation, and the horizontal axis
denotes the number of iterations. The vertical axis of the middle figure is the sample path and
the horizontal axis is the number of iterations. The vertical axis of the bottom figure is the

posterior probability density and the horizontal axis is the deviation from the average.
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Table 1.5 Estimation results of the TVP-VAR model parameters on the CNY (E1,, PL;, PJ;).

Paramete Averag Standard 95%Credit Inefficiency
.. . CD

r e Deviation Section Factor
Sb1 0.023 0.003 [0.018, 0.029] 0.422° 9.160
Sb2 0.021 0.002 [0.017, 0.025] 0.594* 6.650
Sa1 0.082 0.032 [0.043, 0.163] 0.38* 70.690
Saz 0.074 0.026 [0.040, 0.140] 0.165° 51.010
Sh1 0.610 0.132 [0.385, 0.901] 0.009* 41.910
Sho 0.686 0.168 [0.397, 1.063] 0.147* 56.460

* Significant at the 5% significance level. CD is the normal distribution statistic of Geweke’s
(1991) convergence test. Sy, Sa1, and sp; are error terms of the original time-varying
parameters based on the first ny sub-samples. sy, Sa2, and sy, are error terms of the original
time-varying parameters based on the last n; sub-samples.

Table 1.6 Estimation results of the TVP-VAR model parameters on the JPY (E2;, PL;, PJ;).

Paramet Averag Standard 95%Credit cD Inefficiency

er e Deviation Section Factor
Sh1 0.023 0.003 [0.018, 0.028] 0.542* 9.360
Sb2 0.022 0.002 [0.018, 0.028] 0.154* 5.170
Sa1 0.068 0.022 [0.039, 0.125] 0912~ 41.420
Sa2 0.063 0.019 [0.038, 0.124] 0432~ 78.930
Sh1 0.246 0.084 [0.124, 0.458] 0.879* 72.560
Sh2 0.613 0.171 [0.331, 1.001] 0.214~ 89.370

* Significant at the 5% significance level. CD is the normal distribution statistic of Geweke’s
(1991) convergence test. Sy, Sa1, and sp1 are error terms of the original time-varying
parameters based on the first ng sub-samples. sy,,, S,2, and sy, are error terms of the original
time-varying parameters based on the last n; sub-samples.

Tables 1.5 and 1.6 show the posterior mean, standard deviation, 95% confidence interval,
Geweke’s convergence decision (CD) statistic (p-value) (Geweke 1991), and the inefficiency
factor of the two-sided parameters for the CNY and JPY. Instead of looking directly at the
sample path, we used the CD statistics to estimate how many samples were needed to obtain
the same variance as the sample mean, which was calculated from the uncorrelated samples.
This is called the inefficiency factor. The value of the CD statistics suggests that the model
parameters converged to the posterior distribution. As explained before, the CD statistic is the
normal distribution statistic of Geweke (1991) for the convergence test and it is known that the
Z value of the normal test statistic is 1.6 at the 5% significance level. All the CD test values in
Tables 1.5 and Tables 1.6 are above 1.6, indicating that the null hypothesis was not rejected at
the 5% significance level. Therefore, the null hypothesis of parameters converging to the
posterior distribution was satisfied.

As seen in the tables, the values of the inefficiency factor were all less than 100, which
validated the use of the MCMC method (Nakajima and Watanabe 2012). This also confirmed

that our posterior distribution sampled 10,000 times from the prior distribution is valid. Based
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on these results that both of our CNY and JPY samples converge to the posterior distribution,
we used the MCMC method for both currencies.

In summary, the above results of the CD values and the inefficiency factor in Tables 5 and
6 indicate that the parameters of the TVP-VAR model in this study have changed during our

test period.

1.4.3 Results of the Impulse Response Analysis

In this section, the impulse response function of the TVP-VAR model is discussed. Since
the parameter values of the TVP-VAR model change at each time point, the impulse response
function can be drawn in a different diagram at each period. Figure 1.3 shows the shock and
response of each variable of the time paths from the shock (4th, 8th, and 12th lag periods) at
each period.

According to Figure 1.3(a), the impulse response value of the Chinese LNG import price
from the CNY (E1) (4th lag period: €g; T— PL) decreased positively from August 2005 to
February 2007, but increased in March 2007. As the value of CNY appreciated after the
financial crisis, the effects from the CNY on the LNG import price tended to decline from April
2008 to February 2012. However, from March 2012 to September 2018, the value of the
Chinese LNG import price from the CNY (4th lag period : €g; T— PL) became negative and
increased with a negative tendency, and started to decrease toward zero from July 2015. It is
discernible from Figure 1.3(a) that the CNY negatively affects the JCC crude oil price and the
JCC price positively influences the LNG import price, meaning the CNY has negative impacts
on the LNG import price.

According to Figure 1.3(b), the impulse response of the Chinese LNG import price against
the JPY (E2) for the fourth lag period (4th lag period :eg, T— PL) is similar to that of the JCC
price against the JPY (E2) (4th lag period :e5, T— PJ). Both the LNG import price and the JCC
crude oil price were negatively correlated with the JPY, suggesting that JPY appreciation may
lead to a drop in the Chinese LNG import and JCC crude oil prices. The 4th lag period for the
&gy T PL and g, T— PJ between August 2005 to August 2014 has a declining trend, but after
September 2014, the impulses from both of the currencies have been increasing toward zero.

Comparing the results of the CNY and JPY in Figure 1.3, the CNY has a lower impulse
response than the JPY on both the LNG import and JCC crude oil prices at the 4th lag period.
It is apparent that in both currencies, the impulse response effects at the 4th lag periods are

higher than the other lag periods.
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Figure 1.4 shows the impulse responses of October 2008, December 2010, and December
2016, which are likely to reflect the effects of the CNY monetary reform. According to Figure
1.4(a), the impulse response of the CNY on the Chinese LNG import price (¢g; T— PL) from
October 2008 has a higher degree of response than those from December 2010 and December
2016. The reason for this increased impulse from the CNY on the LNG import price might be
related to the monetary reform and the shock of the 2008 financial crisis. From Figure 4b, the
impulse response of the JPY on the Chinese LNG import price (€5, T— PL) from 2008 seems
lower than those from December 2010 and December 2016. This might be because the JPY had
more influence on the LNG import price than the CNY when the 2008 financial crisis occurred.
It could be that the JPY was more susceptible to the oil price plummeted after the crisis.

Observing Figure 1.4 from a comparative viewpoint, the impulse response of JPY to JPY
(€5, T— E2) from October 2008 shows that the impulse stayed relatively stable for December
2010 and December 2016. On the other hand, the impulse response of CNY to CNY (g1 T—
E1) shows that the shock from October 2008 was larger than the shocks from the other two
periods. Its lag effect remained up to the 10th examined period. This longer lag effect in the
CNY compared to JPY is again likely to be the influence of governmental control regarding the

CNY.
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Figure 1.5. 3D impulse response functions. This is a 3D diagram created using MATLAB
R2016a software. The upper part represents the impulse response function (E1 — PL) of the
Chinese LNG import price for the CNY El, and the lower part represents the impulse response
function (E2 = PL) of the Chinese LNG import price for the JPY E2. The X-axis (year)
represents each time point at the data period, the Y-axis (section) represents the time elapsed

from the shock (0-16), and the Z-axis represents the response size (post-shock mean).
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Figure 1.5 shows the three-dimensional (3D) plot that captures the overall image of the
impulse response of the CNY and JPY on the Chinese LNG import price. From the figure, it is
observable that the shock from the CNY to the LNG price (upper figure) is stable up until the
6th lag period while the shock from the JPY seems stable only until the 4th lag period.
Presumably, the reason for JPY having a shorter period to absorb the shock is that the JPY is
more capable to adjust to the free inflow and outflow of foreign capital while the CNY has been

controlled under the regulations imposed by the Chinese government.

1.4.4. Pass-Through Rate Results

In Figure 1.6, the pass-through rate was calculated using the cumulative response value of
the impulse in the first period from the shock of the CNY and JPY on the Chinese LNG import

price.
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Figure 1.6. Changes in the pass-through rate for the CNY (E1;, PL;, PJ;) and JPY (E2,, PL;, PJ;).

Let Rg;;;ﬁ’zhmugh be the pass-through rate of CNY to the Chinese import LNG import
price and Rg,zls_’sli"thmugh be the pass-through rate of JPY on the Chinese LNG import price.
Then, the figure indicates that from Rgﬁ;’sﬁhmu gh- the pass-through rate of the JPY exceeded
—100% in September 2005. On the other hand, the results of the Rgés_)sﬁl“mmugh show that the
pass-through rate of the CNY in this period was only —25%. The figure illustrates that compared
to CNY, the effects of the JPY began to decline after September 2005. R%;ﬁhmu gh decreased
to 0% by September 2008, while RE1>PL did not decline by that much and fluctuated at

pass—through

around negative 25% from October 2006 to May 2008.
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Then, from September 2008 to May 2010, Rpz5:"%y,0un increased toward a positive

direction and reached a maximum of about 20%, while Rg&;’sﬁihmugh decreased slightly, but

then seemed to be stable at around 20%. Besides, R%S_’s’iﬁhmugh decreased to approach 0%
from May 2010 to October 2013, while Rg&s_’sﬂhmugh was stable near the 25% level from
October 2008 to 2013. However, Rg;;;’iﬁhmugh increased in the negative direction since
October 2013, while Rp25:7% 1,01 gn declined to near zero.

These weakening impacts of JPY on the LNG import price were likely related to the CNY
monetary reform. The year 2005 was the year when the Chinese government conducted the
monetary reform, so the declining impact of the JPY after 2005 might be indicating that the
CNY began to have more influence on the Chinese LNG import market after the monetary
reform occurred. It is known that even if the CNY is managed by the government, this reform
can be a significant influential factor in import price fluctuations (John et al. 1992). Hence, we
conceived that it is reasonable to interpret the fact that the CNY began to play an important role
in the Chinese LNG market after 2005 is related to the CNY monetary reform. It is probable
that due to the effect of this 2005 CNY reform, the CNY pass-through rate on the LNG import
price began to become higher than that of the JPY after 2008 and this higher CNY pass-through

rate remained during our investigation period.

1.5 Discussions

First, the above results of Tables 1.5 and 1.6, and Figure 1.2 indicate that the parameters
of the TVP-VAR model in this study have changed during our test period. This implies that
importing companies and suppliers in the international LNG market need to consider the effects
of the CNY fluctuations when purchasing LNG. Thus, the study results provide valuable price
discovery information for Chinese LNG market stakeholders. Numerous studies indicate that
the TVP-VAR model can be applied to analyze macroeconomic data and has its strength in
estimating parameters of models that change with time (Primiceri 2005; Nakajima and
Watanabe 2012; Shioji and Uchino 2009; Shioji 2010). However, this method has not been
applied to understand the relationship between the Chinese LNG import market and the Chinese
exchange rate market after monetary reform took place in China. Hence, the current study
provides some evidence on how effective the TVP-VAR model can be when analyzing the
energy price and currency rate relationship.

Second, Figure 1.5 revealed that the shock from the CNY to the LNG price (upper figure)
was stable up until the 6th lag period, while the shock from the JPY was stable only until the
4th lag period. These results are consistent with the conclusion of Shinkai (2011), Choudhria
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and Hakura (2015), and Pennings (2017) suggesting that the exchange rate pass-through to
import prices is incomplete for a large number of countries. The result of the impulse response
analysis indicated that as the volatility of the CNY increased, the exchange rate risk in the LNG
trading market gradually transferred from the JPY to the CNY after 2005. The results in Figure
1.6 also indicate that compared to JPY, the influence of the CNY began to intensify after 2005.
These results imply that since the July 2005 currency reform, the impact of the CNY on the
LNG import market became stronger. This suggests the importance of considering the effects
of monetary reform for understanding the Chinese LNG import and the exchange rate

relationship.

1.6 Conclusions

This paper provided an overview of the empirical methodology of the TVP-VAR model
with stochastic volatility, as well as its application to the pass-through rate of the JPY and CNY
on the Chinese LNG import price. The empirical application of the TVP regression model
revealed the importance of incorporating stochastic volatility into parameter estimation when
analyzing the impact of the exchange rate on the LNG import price.

The results of our study indicate that if a new CNY monetary reform takes place in the
future, the effects of JPY on the Chinese LNG price will be reduced and those of the CNY on
the Chinese LNG price is likely to become stronger. The study suggests the importance of
considering the CNY fluctuation range when discovering or forecasting the price of the Chinese
LNG import price. These findings imply that the LNG import price will be more stabilized
when the CNY is controlled by the Chinese government.

Hence, the study indicates the significance of considering effects of the exchange rate on
an energy market when it is likely to be influenced by a monetary reform of the importing
country. The study also suggests the importance of applying the TVP-VAR model instead of
using the conventional VAR model when the parameters in the VAR model are time-variant.

Finally, our study is limited in a way that it did not consider other factors such as the freight
and insurance premiums that could influence the pass-through rate on the LNG import price.
Hence, for our future study, we are hoping to investigate the pass-through rate when these

factors are considered in the TVP-VAR model
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Part 2: The linkages among Chinese coal and

international fossil fuel markets
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2.1 Introduction

As coal is an important input factor for production in China, the country faces significant
economic uncertainty resulting from coal price fluctuations (Guo et al., 2016). A decrease in
domestic coal price could reduce the cost for industrial consumers, and thus energy price
changes could be regarded as supply shocks to the Chinese economy (Li et al., 2019).

As the world’s largest producer and consumer of coal, China needs to understand the
relationship between Chinese domestic coal and international energy prices, important for
formulating policies to stabilize the domestic coal price. If the domestic coal market is related to
the international coal, crude oil, and natural gas markets, it implies that companies involved in
assuring fuel sources for the coal-using segments must consider the effects of international coal,
crude oil, and gas markets when they decide their coal consumption levels (Honorata et al., 2020).
It also indicates that policymakers seeking to stabilize the coal price must consider the sharp
increase or decrease in the global energy price to mitigate the effects of the domestic coal price
change on economic growth (Li ef al., 2020).

Numerous papers have investigated the long-run price relationship between crude oil and
imported natural gas in the international market (Ji ef al., 2014; Li et al., 2017). For example, Ji
et al. (2014) revealed a long-run correlation between crude oil prices and the regional natural gas
import price among the North American, European, and Asian markets. Li et al. (2017)
investigated the price relationship between the natural gas and the coal markets to find that they
have cointegration relationships. Li et al. (2017) also indicated that the relationship between
Chinese domestic coal prices and international natural gas became apparent after the market
reforms in the Chinese coal market.

The above research did not test the dynamic relationship among the fossil fuel markets.
However, Ates and Huang (2011) applied the recursive cointegration method to show that the
price relationship between crude oil and natural gas markets had changed dramatically from April
4, 1990, to June 23, 2009. This study is among the few studies investigating the dynamic
relationship among the fossil fuel markets. However, little has been done to identify the dynamic
relationship for the Chinese fossil fuel markets.

The dynamic relationship between Chinese coal and international coal and crude oil prices
is only analyzed based on the dynamic conditional correlation (DCC) model by Li et al. (2019).
The DCC shows how price volatility in one energy market relates to price volatility in another
energy market. However, the DCC does not identify the cointegration relationships among the
market prices. The current study’s first point of divergence from Li et al. (2019) is that it uses the
national overall coal price index, whereas Li ef al. (2019) used the Chinese Qinhuangdao (QHD)

coal price, which only considers the coal price of a particular area. Second, our study is different
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from other relevant studies because we apply the recursive cointegration test to capture the
dynamic relationship between Chinese coal and international natural gas markets.

Li et al. (2019) found that the co-movement between Chinese coal and international coal
and crude oil prices have different trends before and after mid-2008. This result indicates that it
might be necessary to isolate some unique economic events as endogenous structural breaks and
consider the time series data (Byrne and Perman, 2006). For example, many studies have
suggested that the 2008 financial crisis caused immense impacts on energy markets (Aruga and
Kannan, 2020; Yuan, Liu, and Wu., 2010). Additionally, Ling et al. (2013) suggest the importance
of incorporating structural breaks when analyzing macroeconomic time-series data.

Due to structural breaks, understanding the dynamic relationship between international
energy prices and Chinese coal prices is important for stakeholders and policymakers. This study
shows that if the dynamic relationship between coal and international fossil fuel markets changes
within the investigated period, it can imply that stakeholders and policymakers need to consider
changes in the relationship between domestic coal prices and international energy prices to
understand coal price movements and to conduct more accurate forecasting. We expect that the
results of this study can provide valuable price discovery information for Chinese coal market
stakeholders and policymakers.

We expect that the Chinese domestic coal market will not have a relationship with the
international coal, crude oil, and natural gas market before 2008. The Chinese domestic coal
market will begin to have a relationship with them after 2008. This is because China had enough
supply from its domestic production and even exported its coal until mid-2008, suggesting that it
was independent of the international energy market (Li et al., 2020). However, after the 2008
financial crisis, China started to import a fair amount of coal from the international coal market.
One probable reason for this is that the 2008 financial crisis led to a decline in international energy
prices (Joo et al., 2020), and the cost of importing coal was reduced. Furthermore, due to the
implementation of a 4 trillion yuan ($586 billion) stimulus plan, the Chinese economy was still at
a high growth stage relative to foreign economies since 2008, which led China to increase its coal
demand (Yuan, Liu, and Xie., 2010).

We also anticipate that the drastic changes in domestic and international gas markets in the
2010s might have influenced the relationship between the Chinese coal and international fossil
fuel markets. First, as the shale gas revolution causes downward pressure on international gas
markets (Aruga, 2016), the Chinese coal market was affected by this revolution in the 2010s.
Second, as the Chinese government announced an increase in natural gas consumption between
2016 and 2020 (NEBY, 2016) to improve its air quality by reducing PM2.5 and CO2 emissions,

China may shift from coal to natural gas consumption. Chinese natural gas consumption increased
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by 18% from 2018, accounting for 22% of global gas consumption net growth (BP?, 2019). Thus,
the relationship between the Chinese coal and international fossil fuel markets might have
changed in the 2010s.

We explain the research methodology in the next section. The second section describes the

dataset employed in this study. Finally, the results and conclusions are introduced.

2.2 Methods

The traditional Johansen cointegration test can only detect the price linkage during the whole
period and cannot evaluate whether the price linkage changes with time. However, the recursive
Johansen test reveals how the cointegration relationship changes during the investigated period
(Aruga, 2020). The recursive cointegration test can reveal the dynamic time-path of international
energy prices on domestic coal prices. By applying the recursive cointegration test, this study
provides dynamic information on the impact of international prices on domestic coal prices to
stakeholders of the Chinese coal market. To confirm the validity of the recursive cointegration
test, we apply the conventional Johansen test for periods identified to have cointegration
relationships. Thus, this study applies two cointegration tests: the recursive and conventional
Johansen tests (Johansen & Juselius, 1990).

Before performing a cointegration test on the price series, integrating the test variables is
examined through stationarity tests. Therefore, the Augmented Dickey-Fuller (ADF), Phillips-
Perron (PP), and KPSS unit root tests are performed on our time series data. We then identified
the optimal lag orders of the vector autoregressive (VAR) model based on the Schwarz
information criterion (SIC).

Let P; be the column vector of the k price series in this study. Then, the mathematical
representation of VAR is given by:

APy = Ay + A1AP;_ 1 + -+ ApAP_,, + & (1)
where A is the first difference operator, A, is a constant vector (k X 1), A; -+ A,, are matrices of
coefficients to be estimated (k X k), n is the lag order, and &, is the k X 1 vector of error terms.

Then the Johansen test is performed using the following vector error correction model:

n-1
APt=1_[Pt—1+ZriAPt—i+Yp t=1,-,T )
i=1
where A is the first difference operator, [[ =YL, A; — I, and I; = — }j_;,1 A;. The number of

cointegration vectors is determined by the rank of the IT matrix in Eq. (2). If rank (IT)=0, the
matrix is null, and the price variables will not be cointegrated. If /1 is of rank k, the price series is
stationary. If 1 < rank(I1) < k, there are cointegration relations among the price variables. y, is

a vector of independent and identically and normally distributed random disturbance terms.
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The model in equation (2) is also applied to the recursive Johansen test. Following Aruga
and Kannan (2020) and Tang and Aruga (2021), first, the estimation algorithm automatically treats
the first k observations as the initial base sample. Second, additional observations are added with
shifts from the base sample. Then, the trace statistics are estimated recursively for each iteration.
Finally, this recursive estimation continues until the final sample period, June 2020, is reached.
The estimation is conducted by CATS 2.0 of RATS Version 10.0. The results are presented in
graphs and are evaluated graphically (Tang and Aruga, 2021).

2.3 Data

The study uses monthly data covering the period 2000:01-2020:06. As different provinces
in China use different coal prices, the Chinese price indices of domestic coal industrial sectors are
used. These data were obtained from the CEINET? Statistics Database. The international coal, oil,
and natural gas prices are acquired from the World Bank commodity markets®.

The Japanese liquefied natural gas (LNG) and the Australian port thermal coal are used in
the study. These data are obtained from the World Bank. Although the Japanese LNG price is
based on a long-term contract it is often used as an indicator for the Asian LNG market (Martono
and Aruga, 2018), and hence, it is meaningful to investigate the relationship with the Chinese coal
market. All price data are shown in Figure 2.1.

As energy prices have different units, they are standardized by the following formula:

z=""4 3)
where Z is the normalized value of P; P denotes the price variable in this study, and u, and o are

the mean and standard deviation of P.
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Figure 2.1 Plots of the price data
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2.4 Results

2.4.1 Unit root test
Table 2.1 shows the unit root test results for the level and the first differences with constant
and trend. The result shows that all price series are non-stationary at their level data but are
stationary when first differencing them at the 1% significance level. Thus, all price series are first-
order integrals in the entire test period.

Table 2.1 Unit root tests.

Level Data (t-Value)  First Difference Data
ADF PP KPSS ADF PP KPSS
Australian coal -2.39 -2.33  0.95* -11.71* -11.78* 0.1
Dubai crude oil  -2.51 -2.04 0.78* -9.53* -875* 0.16
Japanese LNG -2.05 -1.73 1.00* -6.83* -9.50* 0.12
Chinese coal ~ -3.69 -3.02 0.22* -543* -691* 0.05
Note) * Significant at the 1% significance level

Variables

2.4.2 Cointegration tests

Table 2.2 illustrates the results of the Johansen test. The table indicates that the Australian
coal and Dubai crude oil prices are not cointegrated with the Chinese domestic coal price for the
entire period (2001:01-2020:06). This might be because the Chinese government has been
controlling the domestic coal price until 2013 (Zhang et al., 2018). On the contrary, the table
suggests the Chinese domestic coal and the Japanese natural gas markets have a cointegration
relationship for the entire period. This cointegration is likely due to natural gas being a direct
substitute for coal. To reduce its carbon emissions, China began to import natural gas to replace
coal (Ding et al., 2017), decreasing its coal-oriented energy source from 64% to 58% while
increasing the natural gas ratio to 10% during 2015-2020 (National Energy Board, 2016). This
shift in energy sources from coal to natural gas may have affected the price linkage between

Chinese coal and the Japanese natural gas market.

Table 2.2 Cointegration tests

Variables HO: rank=r Trace test Max test

Entire period (2001:01-2020:06)

China coal vs r=0 24.16**(0.002) 19.69**(0.006)
Australian coal r<1 4.47**%(0.003) 4.47**(0.003)
China coal vs r=0 25.81**(0.001) 21.51**(0.003)
Dubai crude oil r<i 4.31*%*%(0.037) 4.31*%*%(0.037)
China coal vs r=0 26.36**(0.000) 23.27**(0.000)
Japanese LNG r<li 3.08(0.108) 3.08(0.108)

Note) ** Significant at the 5% significance level. The value inside the parentheses is a p-value.
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2.4.3 Recursive Johansen test

Figure 2.2 shows the results of the recursive Johansen test. The figure presents the dynamic
changes in the cointegration relationships. The value in the vertical axis denotes the ratio of the
critical value and trace statistics. When this value is larger than one, it indicates that the two series
are cointegrated. Thus, the test results show that the price relation of the whole interval is dynamic
cointegration. Fig (a) indicates that the Chinese domestic coal price is only cointegrated with the
Australian coal price between January 2008 and July 2013. Fig (b) indicates that the Chinese
domestic coal price is cointegrated with the Dubai crude oil price from February 2009 to
November 2014. Fig (c) reveals that the Chinese domestic coal price is cointegrated with the

Japanese natural gas from June 2008 to November 2008 and from December 2017 to June 2020.

1.6 1

14
] AM'/\.__J\M
1

| »
b >
0.8 4 v v
0.6 1 2008M01 2013M07
0.4 -

0.2 -

o -
2000M11  2002M07  2004MO03  2005M11  2007M07  2009M03  2010M11  2012M07  2014M03  2015M11  2017M07  2019M03

Fig. (a): China coal vs Australian coal

1.8 4

1.6 -
14 | 2003M05 , |
|

2004M02

1 Vo ‘ >
0.8 | W
0.6 v A4

\J \4
041 2009M02 2014M11

0.2
o
2000M11  2002M07  2004M03  2005M11  2007M07  2009M03  2010M11  2012M07  2014M03  2015M11  2017M07  2019M03

Fig. (b): China coal vs Dubai crude oil

1.2 4

2.5

2 4 2002M12
| 2004M04 2008M06

1.5 || 2008M11

. I~ N R
\’J —_— W
os | ! '\‘\M“"/{ 2017M12
A/
o -
2000M11 2002M07 2004M03 2005M11 2007M07 2009M03  2010M11 2012M07 2014M03 2015M11 2017M07 2019M03
Fig. (¢): China coal vs Japanese natural gas
Figure 2.2: the recursive Johansen test between Chinese domestic coal price and prices of

Australian coal, Dubai crude oil, and Japanese natural gas

The Johansen test is conducted on periods determined to have such relationships to verify
the cointegration relationships identified by the recursive cointegration test. The unit root tests
were conducted, results are as shown in Table 2.1. The results suggested that all price series are

non-stationary at their level data and become stationary for the first differenced series at the 5%
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significance level. As seen in Table 2.3, the Johansen test reveals that the test variables are
cointegrated during the specific periods identified by the recursive cointegration test. The Chinese
domestic coal price was cointegrated with the Australian coal price from January 2008 to July
2013. The Chinese domestic coal price was cointegrated with the Dubai crude oil price from
February 2009 to November 2014. The Chinese domestic coal price is cointegrated with the
Japanese natural gas price from December 2017 to June 2020.

Table 2.3. Cointegration tests
Variables | HO: rank=r | Trace test | Max test
period (2008:01-2013:07)

China coal vs r=0 29.04*%(0.019) 22.40**(0.017)
Australian coal r<li 6.64(0.38) 6.64(0.38)
period (2009:02-2014:11)

China coal vs r=0 32.06*%*(0.007) 22.89%*%(0.014)
Dubai crude oil r<li 9.18(0.16) 9.18(0.16)
period (2017:12-2020:06)

China coal vs r=0 28.23*%(0.024) 21.02**(0.028)
Japanese LNG r<i 7.21(0.322) 7.21(0.322)

Note) ** Significant at the 5% significance level. The value inside the parentheses is a p-value.

2.5 Discussion

The results indicate that the Chinese domestic coal market is not related to the international
coal, crude oil, and natural gas market before 2008. However, the Chinese domestic coal market's
relationship with them became apparent after 2008. One probable reason for this is that the 2008
financial crisis has influenced the relationship between the Chinese coal and international fossil
fuel markets (Tang and Aruga, 2021). The results also show that the relationships between the
Chinese coal and international fossil fuel markets had changed during the 2010s. It became
apparent that the Chinese domestic coal market was cointegrated with the international natural
gas market after 2018. This could be because the shale gas revolution in the 2010s had influenced

Chinese coal and international fossil fuel market relationships.

2.6 Conclusions

The above results have the following implications. First, the long-run relationship between
the Chinese coal and international fossil fuel markets were changing during the study period,
implying tha