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Abstract

We introduce a notion of a uniform dimension, denoted by u-dim, of a uniform space. We construct a
uniform space X such that u-dim X = n and dim X = m for n,m € NU{0}. We also prove that the identity

mapping of a uniform space X has the pseudo orbit tracing property if and only if u-dim X < 0.

1 Introduction

In this paper we study a uniform dimension u-dim X of a uniform space X. All spaces are assumed to be
normal unless otherwise stated.

In section 2 we introduce a notion of a uniform dimension of a uniform space. We prove the subspace
theorem and the completion theorem for uniform dimension.

In section 3 we consider relationships between uniform dimensions and topological dimensions. We give a
uniform space X such that u-dim X = n and dim X = m for every n,m € NU {0}.

Fujii (see [2] Theorem 2.3.2 or [1] Remark 4.30) pointed out that the identity mapping of a compact metric
space X has the pseudo orbit tracing property if and only if X is zero-dimensional. In section 4 we generalize
this result. Namely, we prove that the identity mapping of a uniform space X has the pseudo orbit tracing
property if and only if u-dim X < 0.

For standard results and notion in General Topology and Dimension Theory we refer to [3] and [4].

2 Definition of uniform dimensions

We begin with basic symbols.

Let A and B be collections of subsets of a space X, x € X and Y a subset of X. We set

St(z,A) = (J{Aed:ze A}
St(Y,A) = (J{AeA:vnA#n
A* {St(4, A): A e A}
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AY = {ANY:Ade A}

ANB = {ANB:Aec Aand B e B} and
UAa = Ja:4eny

Let A and B be covers of a space X and z,y € X. We say that A refines B, in symbol A < B, if for every
A € A there exists B € B such that A C B. If z € St(y, A), then we write d(z,y) < A.

By a uniformity ® on a space X, we mean a collection of open covers of X satisfying:
(1) if 4 € ® and V is an open cover of X with &/ <V, then V € @,
(2)ifU,V € ®, then U AV € D,
(3) for every U € ® there exists V € ® such that V* < U,
(4) for every = € X the collection {St(z,U) : U € ®} is a neighborhood base at x.
A uniform space is a pair (X, ®) consisting of a space X and a uniformity ® on X. An open cover U of a
uniform space (X, @) is a uniform cover of X if U € ®. To simplify notions, we often use the symbol X instead

of (X, ®) for a uniform space.

2.1. Definition. To every uniform space X we assign the uniform dimension, denoted by u-dim X. Let n
denote an integer > —1; we say that:

(1) u-dim X < n if every uniform cover of X is refined by some uniform cover of order < n + 1.

(2) u-dim X = n if u-dim X < n and the inequality u-dim X < n — 1 does not hold.

(3) u-dim X = oo if the inequality u-dim X < n does not hold for any n € N.

The collection of all open covers of a space X refined by a finite open cover of X is a uniformity on X. It is

obvious that u-dim X = dim X for this uniform space X. Every compact space X has a unique uniformity on

X, so we have u-dim X = dim X

For a subset Y of a uniform space (X, ®) we set
®|Y = {U : U is an open cover of Y such that V|Y < U for some V € ®}.

Then the collection ®|Y is a uniformity on Y. We say that (Y, ®|Y) is a uniform subspace of (X, ®).
2.2. Theorem. For every uniform subspace Y of a uniform space X the inequality u-dim Y < u-dim X holds.

Proof. The theorem is obvious if u-dim X = oo, so that we can suppose that u-dim X < co. Suppose that
u-dim X = n. For every uniform cover U/ of Y there exists a uniform cover V of X such that V|Y < U. Since
u-dim X = n, we can take a uniform cover W of X such that W < V and ord W < n + 1. Then W[Y is a
uniform cover of Y which refines ¢/ and has order < n+ 1. This implies that u-dim Y < n, therefore u-dim Y <

u-dim X.

2.3. Theorem. If a uniform space X satisfies the condition u-dim X < 0, then X is zero-dimensional.
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Proof. For every x € X and any neighborhood U of z there exists a uniform cover U of X such that
St(z,U) C U. Take a uniform cover V of X such that V < U and ord ¥V < 1. The set V = St(z,V) is a
neighborhood of z and V = St(z,V) C St(z,Ud) C U. Since V is an open cover of order < 1, V is open-and-

closed in X. Hence X is zero-dimensional.

For a metric space (X, d) let @, be the collection of open covers of X which is refined by {B(z,¢) : v € X}
for some € > 0, where B(z,¢) is the e-neighborhood of z in X. Then (X, ®,) is a uniform space. We say that

®, is the uniformity which is induced by the metric d on X.

Let ®4 be the uniformity induced by the Euclidean metric on the real line R. It is well-known that dimR = 1.

We consider the uniform dimension of this space.

For every € > 0 let us set

U = {(ne,(n+ 1)) :n € Z} U {((n — %) (n + %)5) ‘n ez},

Since %5 is a Lebesgue number of U, U. is a uniform cover of R. For every uniform cover U of R there exists
€ > 0 such that {B(z,¢) : © € X} refines /. On the other hand, since mesh U. = ¢, U refines {B(z,¢) : x € X}.

Obviously, ord U, = 2. Thus we have u-dim X < 1. By Theorem 2.3, we have u-dim X = 1.

A uniform space X is totally bounded if every uniform cover U has a finite subcover of X. Let F be a
collection of subsets of a uniform space X. We say that F contains arbitrarily small sets if for every uniform
cover U there exists F' € F such that F' C U for some U € Y. A uniform space X is complete if every collection
F of closed subsets of X which has the finite intersection property and contains arbitrarily small sets has non-
empty intersection. It is well-known ([3], 8.3.16) that a uniform space X is compact if and only if X is totally
bounded and complete. Every compact space X has a unique uniformity. The unique uniformity on a compact

space X is the collection of all open covers of X.

For a metric space (X, d) the uniform space (X, ®,) is totally bounded (respectively complete) if and only

if the metric space (X, d) is totally bounded (respectively complete) .

We denote by (X, ®) the completion of a uniform space (X, ®). The completion (X, ®) is the unique uniform
space which is complete and contains (X, ®) as a dense uniform subspace.

Let ¥ be a subcollection of a uniformity ® on a uniform space X. We say that U is a base for & if for
every U € & there exists V € ¥ such that V < U. For an open subset G of a uniform space X we set
Y(G) = X — Clg(X — G). Then it is known that {v(U) : U € ®} is a base for ®, where v(U) = {v(U) : U € U}.

It is easy to show the following Fact.

Fact. Let U and V be uniform covers of a uniform space.
IfU <V, then v(U) < ~v(V).
The equality ord & = ord ~(U) holds.

For more detailed information about uniform spaces the reader is referred to [3] and [5].
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2.4. Theorem. For every uniform space X the equality u-dim X = u-dim X holds.

Proof. Suppose that u-dim X = n. For every uniform cover U of X ~(U) is a uniform cover of X. Thus we

can take a uniform cover V of X such that V < v(U) and ord V < n + 1. Let us set W = V|X. Then we have
W=VIX <~yU)| X =U and ord W =ord V|X <ord V <n+ 1.

This implies that u-dim X < n.
Conversely, suppose that u-dim X = n. For every uniform cover ¢ of X there exists a uniform cover V of X

such that v(V) < Y. Since u-dim X = n, V is refined by some uniform cover W of order < n+ 1. Then we have
YW) < (V) <U and ord v(W) =ord W < n + 1.

This implies that dim X < n.

2.5. Corollary. For every totally bounded metric space (X, d) the inequality
u-dim (X, ®4) > dim X holds.

Proof. Since X is totally bounded, the completion X is compact, therefore u-dim X = dim X. By Theorem
2.4, we have u-dim X = u-dim X. Since X is separable and metrizable, we have dim X < dim X. Hence the

inequality u-dim (X, ®4) > dim X holds.

3 Uniform dimension and topological dimension

This section is concerned with relationships between the uniform dimension and the topological dimension.

3.1. Example. For every n € N there exists a uniform space Y, such that

u-dim Y;, =0 and dimY,, = n.

E. Pol and R. Pol [6] constructed a hereditarily normal space ¥ with dimY” = 0 containing for every n € N a
perfectly normal subspace Y,, such that dimY;,, = n. Let Z,, be the Stone-Cech compactification of Cly'Y,,. Since
Z,, is compact, Z, has a unique uniformity. We regard Y,, as a uniform subspace of Z,. As the completion of

Y, is uniformly isomorphic to Z,,, by Theorem 2.4, u-dim Y,, = u-dim Z,, = dim Z,, = dim Cly'Y;,, < dimY = 0.

3.2. Example. For every n € N there exists a uniform space Z, such that

u-dim Z,, = n and dim Z,, = 0.

First, by using a method of A. K. Steiner and E. F. Steiner [7], we construct a compactification of N with
n-dimensional remainder. Represent the space N of all positive integers as the union |J{NN; : i € N} of infinite
sets, where N; N N; = () whenever ¢ # j. Take a countable dense subset D of I", where I = [0,1]. Let ¢;
be a bijection from N; onto D and let ¢ : N — D be the mapping defined by ¢(z) = ¢;(z) for each xz € N;.
The space G = {(z,¢(z)) : * € N} is homeomorphic to N. Let us set Y,, = Clynxi»G, where wN is the

Alexandroff compactification of N. Obviously, the space Y,, is a compactification of N, and the remainder
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Y,, — N is homeomorphic to I". Thus we have dimY,, = n. We regard N as a uniform subspace of Y,,, and we

denote by Z,, this uniform space. By Theorem 2.4, we have u-dim Z,, = u-dim Y,, = dimY,, = n.

If a uniform space X is the topological sum of two spaces Y and Z, then the equality
u-dim X = max{u-dim Y, u-dim Z} and dim X = max{dimY,dim Z}

hold. Hence we can construct a uniform space X such that u-dim X =n and dim X = m for n,m € NU {0}.

4 Pseudo orbit tracing property

A self-mapping f on a uniform space X is uniformly continuous if f~1(U) is a uniform cover of X for every
uniform cover Y of X, where f~1(U) = {f~'(U) : U € U}. A self-bijection f on a uniform space X is a uniform
isomorphism if both f and f~! is uniformly continuous.

Let f be a uniform isomorphism on a uniform space X and let ¢/ be a uniform cover of X. A sequence
{z, : n € Z} of points of X is a U-pseudo orbit for f if d(f(zp),zn+1) < U for every n € Z. A sequence
{z,, : n € Z} of points of X is called to be U-traced by x € X if d(f"(x),z,) < U for every n € Z. A uniform
isomorphism f on a uniform space X has the pseudo orbit tracing property if for every uniform cover U of X
there exists a uniform cover V of X such that every V-pseudo orbit for f can be U-traced by some point z € X.

Fujii [2] pointed out that the identity mapping of a compact metric space X has the pseudo orbit tracing

property if and only if X is zero-dimensional.

4.1. Theorem. The identity mapping id on a uniform space X has the pseudo orbit tracing property if and
only if u-dim X < 0.

Proof. Suppose that u-dim X < 0. For every uniform cover ¢/ of X we take a uniform cover V of X such that
YV < U and ord V < 1. It suffices to show that every V-pseudo orbit for id can be U-traced by some point z € X.
To this end let {z,, : n € Z} be a V-pseudo orbit for id. Since ord V < 1, it is easy to see that {z, :n€Z} CV
for some V € V. Take z € X and U € U such that V C U and = € U. Obviously, d(id"(z),x,) < U. Hence id
has the pseudo orbit tracing property.

Conversely, assume that u-dim X > 1. Then there exists a uniform cover U of X such that every uniform
cover V of X which refines ¢/ has order > 2.

Take uniform covers YW and W’ of X such that W* < W' and W'* < U. For every uniform cover V of X we
shall construct a V-pseudo orbit for id which can not be W-traced by any point of X.

Let V be a uniform cover of X. For V.V’ € V we write V ~ V' if there exist Vy, Vi, --,V,, € V such that
V=V, V' =V,and V;NV;11 # 0 for each i = 0,1,---,n— 1. Obviously, the above relation ~ is an equivalence
relation on V. Let {V, : A € A} be the equivalence class with respect to ~. We set V) = [JV) for each A € A
and V' = {V) : A € A}. Then ordV’ < 1. Since (W*)* < W™* < U, V' does not refine WW*)*. This implies
that there exists V) € V' such that Vy ¢ St(St(W, W), W*) for every W € W. Take z € V) and W € W
such that = € W. Since V) ¢ St(St(W, W), W*), we can take y € V) — St(St(W, W), W*). Since = ~ y, there
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exist Vo, V1,+-+,V,, € V such that z € V, y € V,, and V; N V; 1 # 0 for each i = 0,1,---,n — 1. Take a point
ziy1 € V;NViyq for each : =0,1,---,n — 1. We also set x_; = x for every i = 0,1,2,--- and x; = y for every
t=n+1,n+2,---. The sequence {z; : i € Z} is a V-pseudo orbit for id. Assume that the sequence {z; : i € Z}
can be W-traced by some point z € X. Since z € St(W, W), y € St(St(W, W), W) C St(St(W, W), W*). This

is a contradiction.
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