
Chiral Symmetry Breaking and Phase Transitions
in Holographic Gauge Theories

Norio Horigome

Student ID: 05D1008

Division of Material Science
Graduate School of Science and Engineering

Saitama University

Doctoral Course Supervisor: Professor Yoshiaki Tanii

March, 2008



March, 2008

Chiral Symmetry Breaking and Phase Transitions

in Holographic Gauge Theories

Norio Horigomea1

a Division of Material Science
Graduate School of Science and Engineering

Saitama University, Saitama 338-8570, Japan

Abstract

We discuss the spontaneous breaking of the chiral symmetry in QCD in the
framework of the string/gauge duality. We use two different holographic models of
QCD. One of them is the general intersecting Dq/Dp brane model consisting of Nc

Dq-branes and a single probe Dp-brane. The other is the Dq/Dp-Dp brane model in
which we use Nf Dp-Dp-brane pairs as a probe. In particular we consider the D4/D8-
D8 configuration. In both models there is an s-dimensional intersection between
the Dq-branes and the probe branes. The theory localized at the intersection is an
(s + 1)-dimensional QCD-like theory (QCDs+1) in certain cases. In terms of the
string/gauge duality we study the dynamics of strongly coupled large Nc QCDs+1

at zero and finite temperature (and also at finite chemical potential). The near
horizon limit and the probe approximation allow us to treat the Dq-branes as a
background geometry and the Dp-brane or Dp-Dp-branes as a probe which does not
affect this background. In both models the breaking of the chiral symmetry is closely
related to configurations of the probe branes in the Dq background. The quark
mass and the quark condensate can be read from the asymptotic behavior of the
Dp(-Dp)-brane embedding. In the Dq/Dp model we find that the chiral symmetry is
spontaneously broken at zero temperature for certain (q, p, s). We also find that there
appear massless Nambu-Goldstone (NG) bosons associated with this spontaneous
symmetry breaking. In the D4/D8-D8 model we introduce a chemical potential for
the baryon number symmetry as well as temperature. The chemical potential for
the baryon number symmetry is introduced as a non-vanishing asymptotic value of
the time component of U(1) gauge field on the probe brane. We analyze the phase
structure of the model and find a chiral phase transition of the first order.

1 e-mail: horigome@krishna.th.phy.saitama-u.ac.jp
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Chapter 1

Introduction

The duality between string theory and gauge theory has been discussed with great
interest. Recently this duality is often called the string/gauge duality. The basic idea
of this relation was firstly pointed out by ’t Hooft in 1974 [1]. His statement is as
follows; the perturbative expansion of SU(Nc) gauge theory can be considered as string
loop expansion under large Nc limit with fixed ’t Hooft coupling g2

Y MNc, where gY M is
the gauge coupling of the gauge theory. Since the effects of non-planar diagrams can
be ignored in the large Nc limit, the analysis of the large Nc gauge theory becomes
much simpler. The large Nc gauge theory can be a good tool for analysis of quantum
chromodynamics (QCD), which is the quantum field theory of the strong interaction.
One of the most interesting properties of QCD is the asymptotic freedom. Because of
this QCD becomes strongly coupled at low energy. So some non-perturbative methods
have been needed to analyze the low energy aspects of QCD such as the confinement
and the spontaneous chiral symmetry breaking and so on.

The AdS/CFT correspondence [2, 3, 4] (see [5] for a review) provides a new non-
perturbative approach to strongly coupled gauge theories. This duality relates a weakly
coupled string theory (or supergravity as the low energy effective theory of it) in (d+1)-
dimensional anti de Sitter (AdS) spacetime (times a compact space) to a strongly cou-
pled d-dimensional conformal field theory (CFT). In terms of the AdS/CFT correspon-
dence one can obtain correlation functions of operators in CFTd from the supergravity
action of corresponding fields evaluated at the boundary of AdSd+1 [3, 4]. One can
also obtain potential between static quark-antiquark pair by studying the configura-
tion of fundamental strings in the AdS spacetime [6, 7]. The results of refs. [6, 7] agree
with the one expected from conformal symmetry. It may be said that the AdS/CFT
correspondence can be considered as a realization of the proposal of ref. [1].

It seems that the AdS/CFT correspondence can be used to analyze the non-
perturbative aspects of QCD since this correspondence relates a strongly coupled gauge
theory to a weakly coupled string or supergravity theory. There, however, are some
difficulties in an application of the AdS/CFT correspondence to QCD. QCD is a non-
supersymmetric and non-conformal field theory, and there are quarks belonging to
the fundamental representation of the gauge group SU(3). On the other hand, in the
framework of the standard AdS/CFT correspondence we can only construct QCD-like
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models, which are superconformal theories and have fermions belonging to the adjoint
representation of SU(Nc).

The AdS/CFT correspondence can be extended to the string/gauge duality, which
is a generalization to non-conformal and non-supersymmetric theories. Since deforma-
tions of the AdS spacetime lead to the breaking of the supersymmetry and conformal
symmetry of dual gauge theory, we can obtain more realistic models of QCD as in
ref. [8]. In ref. [8] Witten considered Nc coincident D4-branes wrapped on R4 × S1.
Imposing a supersymmetry breaking boundary condition for fields on the D4-branes
along S1 direction, fermion and scalar fields decouple from the system at low energy.
Therefore low energy effective theory becomes a pure Yang-Mills (YM) theory (only
contains gluon fields belonging to the adjoint representation of SU(Nc)). Using this
method one can discuss the confinement/deconfinement phase transition [8], the static
quark-antiquark potential at finite temperature [9, 10, 11] and the mass spectrum of
glueballs [12, 13, 14, 15]. Although these approaches are interesting, there are still no
dynamical quarks in the fundamental representation of the gauge group.

To introduce quarks in the fundamental representation of SU(Nc) Karch and Katz
considered Nc D3-branes and Nf Dp-branes [16]. Open strings connecting D3-branes
and Dp-branes generate Nf flavored fermions in the fundamental representation of
SU(Nc). Such fermions can be regarded as quarks. In the probe approximation Nf ≪
Nc the dynamics of the dual gauge theory can be described by the dynamics of the
probe Dp-branes in the D3-brane background geometry. Therefore the string/gauge
duality can provide realistic models of QCD and methods for analysis of low energy
behaviors of QCD. This approach is often called the holographic QCD [16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] (and references therein).

One of the most interesting phenomena of the low energy QCD is the spontaneous
breaking of the chiral symmetry. In the holographic approach the chiral symmetry
can be realized in two different ways. One of them is based on an intersecting Dq/Dp
brane system [18, 19, 20, 21, 22, 23, 32]. In this approach one introduces Nc color Dq-
branes and Nf flavor Dp-branes. The U(Nc) gauge field on the Dq-branes represents
a gluon field of a QCD-like theory. Open strings connecting the Dq-branes and the
Dp-branes represent quarks in the fundamental representation of U(Nc). When these
brane configurations have directions transverse to both of the Dq and Dp-branes, a
rotational symmetry in these directions can be understood as a chiral symmetry of the
dual gauge theories in certain cases. One can separate color branes and flavor branes
in such directions. This is a holographic description of the explicit chiral symmetry
breaking. The asymptotic distance between these branes is identified with a quark
mass. So one can study the chiral symmetry breaking starting from a theory with a
non-vanishing quark mass and taking the massless limit. So far only the Abelian chiral
symmetry U(1)V × U(1)A is considered in this approach. In ref. [32] we considered all
other types of Dq/Dp models and gave general discussions.

Alternatively, the chiral symmetry can be realized as a gauge symmetry on the
flavor branes. Such a realization of the chiral symmetry is based on an intersecting
Dq/Dp-Dp brane system [24, 25, 26, 27, 28, 29, 30, 31]. When Dp-Dp-brane pairs are
used as flavor branes, one can obtain a non-Abelian chiral symmetry U(Nf )L × U(Nf )R.
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These configurations of physical interest often do not have directions transverse to both
of the color and flavor branes. Therefore, it is not obvious how to introduce a quark
mass in these models. In both of these two approaches, the spontaneous breaking of
the chiral symmetry is closely related to the configurations of the probe branes in the
background geometry.

The chiral symmetry breaking was also discussed at finite temperature [18, 19, 33,
34, 35, 36, 37, 38] and at finite chemical potential [39, 40, 41, 42, 43]. The tempera-
ture T is related to a period δtE of the S1 compactified Euclidean time coordinate as
T = 1/δtE. The chemical potential µ is introduced as a non-vanishing asymptotic value
of the time component of the gauge field on the probe brane A0 ∼ µ. One can study a
chiral phase transition and obtain a phase diagram of the QCD-like theories. Particu-
larly in ref. [40] we obtained the phase diagram of the Sakai-Sugimoto model, which is
based on the D4/D8-D8 brane model and gives a holographic dual of QCD. The phase
diagram which we obtained looks like that of QCD at high temperature phase but
different at low temperature phase. So far there are many related works for the holo-
graphic QCD or holographic gauge theories at finite chemical potential for the baryon
number symmetry [44, 45, 46, 47, 48, 49, 50, 51, 52] and for the isospin symmetry
[53, 54, 55, 56]. Historically, the chemical potential in the framework of the AdS/CFT
correspondence was firstly introduced for R symmetry [57, 58, 59]. There are also many
related works concerning the chemical potential for R symmetry [60, 61, 62, 63, 64, 65].

The purpose of the present paper is to study the chiral symmetry breaking in
general intersecting D-brane model in terms of the string/gauge duality. We use two
different models. One of them is the Dq/Dp brane model consisting of Nc Dq-branes
and a single probe Dp-brane with an s-dimensional intersection. The other is the
Dq/Dp-Dp brane model in which we use Nf Dp-Dp brane pairs as probe brane instead
of a single Dp-brane in the Dq/Dp model. In particular we concentrate on a special
configuration, D4/D8-D8 model with a three-dimensional intersection. These two brane
models give holographic duals of QCD-like theories in (s + 1)-dimensional spacetime
QCDs+1 in certain cases. In the Dq/Dp model approach there can be configurations
having directions transverse to both of the Dq and Dp-branes. A rotational symmetry
of such directions can be regarded as a chiral symmetry of dual gauge theory at the
intersection in certain cases. We can obtain a non-Abelian chiral symmetry for certain
values of (q, p, s) in contrast to the models in refs. [18, 19]. In the D4/D8-D8 model,
on the other hand, there are no such directions. However, a gauge symmetry on the
D8-D8-branes can be regarded as a chiral symmetry. In the near horizon limit and
the probe approximation we can treat the Nc Dq-branes as a gravitational background
geometry and the Dp-brane or Nf Dp-Dp-branes as a probe which do not affect this
background. We discuss the chiral symmetry breaking by analyzing the Dp or Dp-Dp-
brane dynamics in the Dq-brane background geometry.

The organization of the paper is as follows. Chapter 2 and 3 are devoted to brief
reviews of the basic aspects of the chiral symmetry in QCD and the basic idea of the
string/gauge duality, respectively.

In Chapter 4 we study the chiral symmetry breaking in the general intersecting
Dq/Dp brane model. First we study the low energy spectrum at an s-dimensional
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intersection. In general dual theories are defect field theories [66, 67]. We are interested
in field theories without defects. The Dq/D(q + 2) model with s = q − 1 is dual to
QCDs+1 since one of the spatial directions of the Dq-branes is compactified on S1 and
then there is no defect at low energy limit. In particular, the D2/D4 model with
s = 1, the D3/D5 model with s = 2 and the D4/D6 model with s = 3 correspond to
QCD2, QCD3 and QCD4, respectively. For certain (q, p, s) the rotational symmetry
of the transverse directions can be understood as a chiral symmetry in the QCD-like
theories. These chiral symmetries are non-Abelian SU(2)L × SU(2)R for QCD2 and
Abelian U(1)A for QCD4. Next, we study the dynamics of the Dp-brane in the Dq-brane
background geometry for the Dq/D(q + 2) model by using the string/gauge duality at
zero and finite temperature. The quark mass mq and the quark condensate

⟨
ψ̄ψ

⟩
can

be read from the asymptotic behavior of the Dp-brane embedding. As a result, in
the zero temperature analysis, we find a non-zero quark condensate even for massless
quark limit. This corresponds to a spontaneous chiral symmetry breaking in QCD2

and QCD4. Then we find massless Nambu-Goldstone (NG) bosons as the fluctuations
around the vacuum Dp-brane embedding. If quarks are massive mq ̸= 0 there appear
pseudo-NG bosons with a non-vanishing mass. In the finite temperature analysis the
vacuum embeddings also breaks rotational symmetry. Then the chiral symmetry is
also broken as in the zero temperature case. We find that quark condensate vanishes
and the chiral symmetry restores at high temperature limit. Note that we also study
the Dq/D(q + 4) model with s = q. This chapter is based on the work [32].

In Chapter 5 we study the chiral symmetry breaking in the general intersecting
Dq/Dp-Dp brane model. In particular we analyze the phase structure of the D4/D8-
D8 model at finite temperature and finite chemical potential. This model is called the
Sakai-Sugimoto model. It has a manifest U(Nf )L×U(Nf )R chiral symmetry as a gauge
symmetry on the probe D8-D8-brane pairs and gives a holographic dual of QCD4. The
chemical potential can be introduced as a non-vanishing Euclidean time component of
U(1) gauge field on the probe D8-D8-branes. As in Chapter 4 we study it in terms
of the string/gauge duality. In the low temperature phase only U-shaped connected
D8-D8 embeddings are possible. In the high temperature phase, on the other hand,
another type of embeddings is possible. They are straight disconnected D8 and D8
embeddings which fall into the horizon. By comparing the Euclidean actions for each
embeddings we can analyze the phase structure of the model at finite temperature and
finite chemical potential. This chapter is based on the work [40].

Finally we summarize our results in Chapter 6. In Appendix we give a short
discussion on a fluctuation of the radial part considered in Chapter 4.
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Chapter 2

Spontaneous chiral symmetry
breaking in QCD

A quantum field theory of the strong interaction can be described by quantum chro-
modynamics (QCD). QCD is based on an SU(3) gauge theory. The action of QCD
with Nf flavored quarks is

S =

∫
d4x

− 1

2g2
Y M

tr (F µνFµν) +

Nf∑
i,j=1

ψ̄i {iδijγ
µ(∂µ − iAµ) − Mij}ψj

 , (2.1)

where Fµν = ∂µAν−∂νAµ−i[Aµ, Aν ] is the field strength of gluon fields Aµ = Aa
µT

a (T a

(a = 1, 2. · · · , 8) are generators of SU(3)) which belong to the adjoint representation
of SU(3). ψi (i = 1, 2, · · · , Nf ) are quark fields with Nf flavors and belong to the
fundamental representation of SU(3). The trace “tr” is taken over color indices and
the normalization is defined as tr(T aT b) = 1

2
δab. gY M and Mij are the gauge coupling

constant and quark mass matrix respectively. We have ignored the ghost term and the
gauge fixing term for simplicity.

If quarks are all massless the action (2.1) has the following global symmetry

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (2.2)

where SU(Nf )L ×SU(Nf )R, U(1)V and U(1)A are a chiral symmetry, a baryon number
symmetry and an axial rotational symmetry of quarks, respectively. Note that U(1)A

is a symmetry of the classical theory but it is broken by quantum anomaly. Indeed,
at the classical level, the action (2.1) with Mij = 0 is invariant under the following
transformations

ψL → eiαa
LtaLψL (eiαa

LtaL ∈ SU(Nf )L), ψR → eiαa
RtaRψR (eiαa

RtaR ∈ SU(Nf )R), (2.3)

ψ → eiαψ (eiαψ ∈ U(1)V ), ψ → eiα5γ5

ψ (eiα5γ5 ∈ U(1)A), (2.4)

where taL and taR (a = 1, 2, · · · , N2
f − 1) are generators of SU(Nf )L and SU(Nf )R,

respectively. αa
L, αa

R, α and α5 are the real parameters. Then the corresponding
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conserved currents are

jaµ
L = ψ̄LγµtaLψL, jaµ

R = ψ̄RγµtaRψR, (2.5)

jµ = ψ̄γµψ, j5µ = ψ̄γµγ5ψ. (2.6)

Defining the vector and axial-vector currents in terms of eqs. (2.5)

V aµ ≡ jaµ
L + jaµ

R , Aaµ ≡ jaµ
L − jaµ

R , (2.7)

conserved charges corresponding to the transformations (2.3) can be written as

Qa
V =

∫
d3x V a0, Qa

A =

∫
d3x Aa0. (2.8)

The vacuum of QCD is only symmetric with respect to the diagonal part of the chiral
symmetry SU(Nf )L × SU(Nf )R

Qa
V |0⟩ = 0, Qa

A |0⟩ ̸= 0. (2.9)

Therefore the chiral symmetry is spontaneously broken to its diagonal subgroup

SU(Nf )L × SU(Nf )R → SU(Nf )V . (2.10)

Then there appear (N2
f − 1) massless Nambu-Goldstone (NG) bosons associated with

this spontaneous symmetry breaking. The spontaneous chiral symmetry breaking re-
quires a non-zero quark condensate ⟨

0|ψ̄iψi|0
⟩
̸= 0. (2.11)

Because of the asymptotic freedom QCD is strongly coupled at low energy. The origin
of the spontaneous chiral symmetry breaking seems to concern with the low energy
dynamics of QCD, but so far it is not fully understood.

Let us consider two-point function of the axial-vector currents and that of the
divergence of the axial-vector currents

iΠabµν(q) =

∫
d4x eiq·x ⟨

0
∣∣T (

Aaµ(x)Abν(0)
)∣∣ 0

⟩
, (2.12)

iΨab(q) =

∫
d4x eiq·x ⟨

0
∣∣T (

∂µA
aµ(x)∂νA

bν(0)
)∣∣ 0

⟩
. (2.13)

Then one can find the following relation

iqµqνΠ
abµν(q) = iΨab(q) − iqµ

∫
d4x eiq·x ⟨

0
∣∣δ(x0)

[
Ab0(0), Aaµ(x)

]∣∣ 0
⟩

+

∫
d4x eiq·x ⟨

0
∣∣δ(x0)

[
Aa0(x), ∂µA

bµ(0)
]∣∣ 0

⟩
. (2.14)

Using the partially conserved axial current (PCAC) hypothesis

∂µA
aµ = faM

2
aϕa (a = 1, 2, · · · , N2

f − 1), (2.15)
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where fa, Ma and ϕa are the decay constants, masses and field operators of pseudo-
scalar mesons, respectively, then the first term in the right hand side of eq. (2.14)
represents the two-point function of pseudo-scalar mesons. The third term is the so-
called σ-term. Taking a limit q → 0 eq. (2.14) becomes

0 = f 2
aM4

a

(
iδab

q2 − M2
a

∣∣∣∣
q→0

+ · · ·

)
− i

⟨
0
∣∣∣ψ̄i

{
T a,

{
T b,M

}}
ij

ψj

∣∣∣ 0
⟩

. (2.16)

For simplicity we assume that Nf = 2 and the each quark mass are equivalent Mij =
mq1ij. Therefore one can obtain the Gell-Mann-Oakes-Renner (GMOR) relation [68]

M2
π = −

mq

⟨
0
∣∣(ūu + d̄d

)∣∣ 0
⟩

f 2
π

. (2.17)

Note that the case for Nf = 3 was studied in ref. [68]. If mq = 0 a non-zero quark
condensate

⟨
ψ̄ψ

⟩
̸= 0 leads the spontaneous breaking of the chiral symmetry. Then the

NG-bosons associated with the symmetry breaking are massless. On the other hand, if
mq ̸= 0 the quark mass term in the action (2.1) explicitly breaks the chiral symmetry.
Then the NG-bosons become pseudo-NG bosons with mass Ma.

In the following discussions we consider more general QCD with Nc colors and Nf

flavors rather than ordinary QCD with three-colors and six-flavors. We often take a
limit Nc → ∞ to simplify the analyses.

9



Chapter 3

A brief review of the string/gauge
duality

We give a brief review of the string/gauge duality in this chapter. First we explain ba-
sic aspects of D-branes in string theory. The D-branes play an important role when we
discuss the duality between string theory and gauge theory. The AdS/CFT correspon-
dence is proposed by Maldacena [2] and formulated by Gubser et al. [3] and Witten [4].
It relates a weakly coupled string theory on AdS5 ×S5 spacetime to a strongly coupled
four-dimensional N = 4 super Yang Mills theory. In terms of the AdS/CFT correspon-
dence we can study non-perturbative aspects of strongly coupled gauge theories. The
AdS/CFT correspondence can be extended to non-supersymmetric and non-conformal
theories. It is called the string/gauge duality. The string/gauge duality also provides
us a non-perturbative method for the analysis of strongly coupled gauge theories such
as low energy QCD.

3.1 D-branes in string theory

String theory is based on one-dimensional extended compact objects, called strings.
Since string sweeps a two-dimensional surface (world-sheet) in the D-dimensional
spacetime (D = 26 for bosonic string theory and D = 10 for superstring theory),
string world-sheet is parametrized by a set of two parameters (τ, σ). The position of
the string in the spacetime is given by string coordinate Xµ(τ, σ) (µ = 0, 1, · · · , D−1).
The string world-sheet action is

S = − 1

2πα′

∫
d2σ

√
hhαβ(σ)∂αXµ∂βXνgµν(X), (3.1)

where gµν(X) and hαβ(σ) are the metrics of the the D-dimensional spacetime and two-
dimensional string world-sheet, respectively. h ≡ | det hαβ| is the absolute value of the
determinant of hαβ. α′ is the Regge slope parameter and is related to the string length
ℓs as α′ = ℓ2

s.
For a one-dimensional compact object two types of topology are possible. One is

closed string without boundary, which is topologically equivalent to a circle. The closed
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Figure 3.1: Dp-brane can be understood as a (p+1)-dimensional hypersurface on which
open strings can end.

string boundary condition is

Xµ(τ, σ) = Xµ(τ, σ + π). (3.2)

The other is open string with boundaries at the endpoints of the string, σ = 0, π,
which is topologically equivalent to a line segment. We need to impose a boundary
condition for both ends of open string coordinate Xµ(τ, σ). Requiring the vanishing of
the surface term in the variation of the string world-sheet action (3.1) 1

δS = − 1

2πα′

∫
dτ {(∂σXµ) δXµ|σ=π − (∂σXµ) δXµ|σ=0} , (3.3)

we have to adopt the Neumann boundary condition ∂σX
µ|σ=0,π ≡ ∂

∂σ
Xµ|σ=0,π = 0 or

the Dirichlet boundary condition δXµ|σ=0,π = 0.
For example we impose the Neumann boundary condition for the 01 · · · p-directions

of the open string coordinate

∂σX
µ(τ, σ)|σ=0,π = 0 (µ = 0, · · · , p) (3.4)

and the Dirichlet one for the other directions

X i(τ, σ)|σ=0,π = ci (i = p + 1, · · · , D − 1), (3.5)

where ci is a constant. Then we have a (p+1)-dimensional hypersurface on which open
strings can end (Fig. 3.1). It is called Dirichlet p-brane or Dp-brane in short [69]. If we
do not need to specify the dimension of it, we simply call it D-brane. Dp-brane breaks
the Poincaré invariance ISO(1, D−1) of the D-dimensional spacetime in the directions
transverse to the Dp-brane

ISO(1, D − 1) → ISO(1, p) × SO(D − p − 1). (3.6)
1Here, for simplicity, we use the flat Minkowski metric gµν = diag(−1, 1, · · · , 1) for the background

spacetime and the conformal gauge hαβ = eϕηαβ for the string world-sheet, respectively. eϕ is a
conformal factor and ηαβ = diag(−1, 1).

11



In the following we note some important properties of the D-branes in superstring
theory without detailed discussions. Let us add open strings with the boundary con-
ditions (3.4) and (3.5) to type II closed superstring theory. This is a consistent string
theory only if p is even for type IIA theory and only if p is odd for type IIB theory.
The physics on the Dp-brane can be described by open strings ending on the Dp-brane.
Its low energy effective theory is a (p + 1)-dimensional super Yang-Mills (SYM) the-
ory. It can be obtained by a dimensional reduction from ten-dimensional N = 1 SYM
theory. The physics far from the Dp-brane can be described by closed strings and it is
locally equivalent to type II superstring theory. These sectors interact with ordinary
open-closed string interactions.

D-brane breaks a half of the spacetime supersymmetry. In type II superstring
theory there is N = 2 supersymmetry in ten-dimensional language. Corresponding to
it there are two Majorana-Weyl supercharges with 16 real components. However the
D-brane preserves only half of it since the open string boundary condition relates left-
moving sectors to right-moving sectors. Therefore type II superstring theory coupled
to the D-brane preserves only 16 real supercharges (D-brane is a so called BPS state).
It is N = 1 supersymmetry in ten-dimensions.

The Dp-branes carry the Ramond-Ramond (RR) charges. There are (p + 1)-form
gauge fields Cp+1 from the RR sector in type II superstring theories. The field strength
of the RR gauge field is given by Fp+2 = dCp+1. The coupling of the RR gauge field to
the Dp-brane world-volume is given by

µp

∫
Dp

Cp+1, (3.7)

where µp is the RR charge of the Dp-brane. The RR gauge fields of type IIA theory
are C1, C3, C5, C7 and they couple to the Dp-brane for p = 0, 2, 4, 6, respectively.
The RR gauge fields of type IIB theory are C0, C2, C4, C6, C8 and they couple to the
Dp-brane for p = −1 , 1, 3, 5, 7, respectively. The field strength of the RR gauge
field Cp+1 is given by Fp+2 = dCp+1. Note that not all of the above RR gauge fields
are independent since the Hodge duality F8−p = ∗Fp+2 relates C7−p to Cp+1 in analogy
with the electric-magnetic duality in electromagnetism. The D8-brane for type IIA
theory and the D9-brane for type IIB theory also require the RR gauge fields C9 and
C10, respectively.

The D-brane plays an important role to study the non-perturbative aspects of string
theory since the D-brane itself is a non-perturbative dynamical object of string theory.
The D-brane is also important for the analysis of gauge theories since the D-brane
leads to a duality between string theory and gauge theory as discussed bellow.

3.2 The AdS/CFT correspondence

The AdS/CFT correspondence [2] is a powerful duality between string theory and
gauge theory. Original statement of the AdS/CFT correspondence is concerned with
type IIB string theory (or supergravity as the low energy effective theory of it) on
AdS5 × S5 and four-dimensional N = 4 U(Nc) SYM theory.
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Let us consider Nc coincident D3-branes in ten-dimensional bulk. The complete
action of this system is not known well, however the effective action of the system in
the low energy limit can be written as

Seff = SD3 + Sbulk + Sint, (3.8)

where SD3, Sbulk and Sint are the actions for fields on the Nc D3-branes, fields in the
ten-dimensional bulk and interactions between these fields, respectively. Taking the
limit for the Regge slope parameter

α′ → 0 (3.9)

keeping the energy scale, the string coupling gs and the number of D3-branes Nc fixed,
then the interactions between the fields on the branes and the fields in the bulk Sint

vanish. The field theory on the branes decouples from the bulk. So there are two
decoupled descriptions of the system. In the above decoupling limit and the low energy
limit, SD3 can be written by the lowest modes of open strings having both ends on D3-
branes, which give four-dimensional N = 4 U(Nc) SYM theory. Sbulk can be written
by free type IIB supergravity.

An alternative picture of the system at low energy is possible. There is a three-
brane solution in type IIB supergravity, which is the correspondent of D3-brane in
string theory. The massless fields in the bulk decouple from the near horizon region
due to the decoupling limit (3.9). So there are two decoupled descriptions of the system,
i.e., free type IIB supergravity and the near horizon region of the geometry. The near
horizon geometry of the three-brane solution can be written as AdS5 × S5.

Note that we can trust classical supergravity approximation if string loop correc-
tions can be ignored and typical length scale of the theory is much larger than the
string length ℓs

gsNc = fixed ≫ 1, Nc → ∞. (3.10)

Since the four-dimensional Yang-Mills coupling gY M is related to the string coupling
gs as

gsNc =
g2

Y MNc

2π
≡ λ, (3.11)

the limit (3.10) requires large ’t Hooft coupling λ and small string coupling gs. In the
above two pictures there are two decoupled descriptions and the one of them is free
type IIB supergravity in both pictures. Therefore it seems that a weakly coupled type
IIB supergravity on AdS5 ×S5 is related to a strongly coupled four-dimensional N = 4
large Nc U(Nc) SYM theory.

There is no general proof of the AdS/CFT correspondence. However, a large number
of examples which support this correspondence were found. In the remainder of this
section we review the ansatz proposed by Gubser, Klebanov and Polyakov [3], and
Witten [4] (GKP-W ansatz). The GKP-W ansatz relates the generating functional for
the conformal field theory (especially N = 4 SYM theory) to the partition function for
the string theory on AdS5 × S5 spacetime as⟨

exp

(∫
∂(AdS)

ϕ0O
)⟩

CFT

= Zstring [ϕ0] . (3.12)
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The left and right hand side of eq. (3.12) are the generating functional for N = 4 SYM
theory and the partition function for the string theory on AdS5 × S5, respectively. ϕ0

is the value of a bulk field ϕ on the boundary of AdS spacetime ∂(AdS) and O is an
operator of N = 4 SYM theory.

According to the GKP-W ansatz (3.12) we can obtain the correlation function of
the operator Os in N = 4 SYM theory by evaluating the partition function of the
string theory (or supergravity) as a function of boundary values of the fields. For
example two point function of Os is calculated as follows. The two point function of
Os is obtained by differentiating (3.12) with respect to ϕ0

⟨O(x1)O(x2)⟩ =
δ

δϕ0(x1)

δ

δϕ0(x2)
Zstring [ϕ0] . (3.13)

In the limit (3.10) supergravity approximation is valid then we can write

Zstring [ϕ0] ∼ exp(−SSUGRA[ϕ])

= exp

(
−

∫
d4x1d

4x2 ϕ0(x1)G(x1 − x2)ϕ0(x2)

)
, (3.14)

where G(x1 −x2) is the Green function. Therefore the two point function of O is given
by

⟨O(x1)O(x2)⟩ = G(x1 − x2). (3.15)

Note that there is a one to one correspondence between the operators O in SYM
theory and the fields ϕ in supergravity [4]. Although the above AdS5/CFT4 corre-
spondence are based on Nc coincident D3-branes, we can start with Nc coincident
Dp-branes. In such case the correspondence can be extended to the AdSp+2/CFTp+1

correspondence.

3.3 The string/gauge duality

The AdS/CFT correspondence can be extended to the string/gauge duality. This is a
generalization to non-conformal and non-supersymmetric theories. The deformations
of the AdS spacetime leads to the breaking of the supersymmetry and conformal sym-
metry. Therefore there will be a relation between a string theory in the asymptotically
AdSd+1 × S9−d spacetime and a d-dimensional non-supersymmetric and non-conformal
gauge theory.

Let us consider Nc coincident non-extremal Dp-branes, which correspond to the
theory at finite temperature. Taking the decoupling limit (3.9) we can replace the Nc

Dp-branes with the black p-brane solution. The near horizon geometry of the black
p-brane solution is [70]

ds2 =

(
U

R

) 7−p
2

(
−f(U)dt2 +

p∑
i=1

(
dxi

)2

)
+

(
R

U

) 7−p
2

(
dU2

f(U)
+ U2dΩ2

8−p

)
,

f(U) = 1 −
(

UT

U

)7−p

, R7−p = (4π)
5−p
2 Γ

(
7−p
2

)
gsNc ℓ 7−p

s , (3.16)
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where dΩ2
8−p is the metric of a unit S8−p. The dilaton field and the RR flux are given

by

eϕ = gs

(
R

U

) (7−p)(3−p)
4

, F8−p = dC7−p =
2πNc

V8−p

ϵ8−p, (3.17)

where ϵ8−p and V8−p are the volume form and the volume of a unit S8−p. The RR
charge is measured in units of 2π as

∫
S8−p F8−p = 2πNc. The relations between the

coupling constant of the gauge theory and that of the string theory is

g2
p+1 = (2π)p−2gs ℓ p−3

s , (3.18)

where gp+1 is the (p+1)-dimensional gauge coupling. The (p+1)-dimensional ’t Hooft
coupling is defined as

λp+1 =
g2

p+1Nc

(2π)p−2
. (3.19)

Note that the supergravity description is valid for [70]

1 ≪ λp+1

(
UT

ℓ2
s

)p−3

≪ N
4

7−p
c . (3.20)

For the extremal case UT = 0 the low energy effective theory on the Nc Dp-branes
is (p + 1)-dimensional U(Nc) SYM theory with sixteen supercharges. The isometry of
the metric (3.16) is

ISO(1, p) × SO(9 − p). (3.21)

In the field theoretical view point ISO(1, p) and SO(9 − p) symmetries correspond to
the Poincaré symmetry and the R symmetry of the SYM theory on the Dp-branes,
respectively.

The string/gauge duality is a powerful tool for the analysis of non-perturbative
aspects of strongly coupled gauge theories. It is also useful for the analysis of the low
energy behaviors of QCD such as the confinement and the spontaneous chiral symmetry
breaking.
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Chapter 4

Dq/Dp brane model

In this chapter we study the chiral symmetry breaking in the general intersecting
Dq/Dp brane model. This brane model gives a holographic description of QCD-like
theory. The rotational symmetry in the directions transverse to both Dq-branes and
Dp-brane can be regarded as chiral symmetry for certain cases. We study the breaking
of these symmetries and related phenomena by using the string/gauge duality.

4.1 General setup

We consider an intersecting brane system consisting of Nc color Dq-branes and a single
probe Dp-brane

x0 · · · xs xs+1 · · · xq xq+1 · · · xq+p−s xq+p−s+1 · · · x9

Nc Dq ◦ · · · ◦ ◦ · · · ◦ − · · · − − · · · −
Dp ◦ · · · ◦ − · · · − ◦ · · · ◦ − · · · −

(4.1)
with xq being a coordinate of S1. It has an s-dimensional intersection in the directions
x1, · · · , xs. The configuration (4.1) is a T-dual of Ds′/D9 system with s′ = 9− (q +p−
2s) ≥ s. Following ref. [30] we call it a transverse intersection if s′ = s (q + p− s = 9)
and a non-transverse intersection if s′ > s (q+p−s < 9). Non-transverse intersections
have directions transverse to both of the Dq-branes and the Dp-brane, while transverse
intersections do not.

The configuration (4.1) has the following symmetries. The gauge symmetry of this
system is U(Nc) × U(1). The U(1) gauge symmetry on the Dp-brane is regarded as
a global symmetry (baryon number symmetry) of an (s + 1)-dimensional field theory
at the intersection. The ten-dimensional Lorentz symmetry SO(1, 9) is broken to its
subgroup by the configuration (4.1). Therefore the global symmetry preserved at the
intersection contains

SO(1, s) × SO(9 − q − p + s) × U(1), (4.2)

where SO(1, s) is the Lorentz symmetry at the intersection and SO(9 − q − p + s) is
the rotational symmetry in the directions xq+p−s+1, · · · , x9.
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The spectrum of the theory localized at the intersection is as follows. Massless fields
generated by q-q strings (open strings having both ends on the Dq-branes) are a gauge
field Aµ (µ = 0, 1, · · · , s), scalar fields Φi (i = s + 1, · · · , 9) and fermionic fields S.
Imposing the periodic boundary condition for the bosonic fields and the anti-periodic
one for the fermionic fields along the compact xq direction, the fermions become massive
at zero mode and supersymmetry is explicitly broken at low energy. Then the scalars
acquire mass at one-loop level. Thus only the gauge field Aµ is massless at low energy.
This gives a pure U(Nc) gauge theory.

To study the lowest modes generated by q-p strings (open strings connecting the
Dq-branes and the Dp-brane), we note the zero-point energy in the R sector and the
NS sector [71]

aR = 0, aNS =
#ND − 4

8
, (4.3)

where #ND = q + p − 2s = 9 − s′ is the number of spatial coordinates of open strings
which have the Neumann boundary condition for one end and the Dirichlet one for the
other end. The lowest modes generated by q-p strings in the NS sector are massive
for #ND > 4 (#ND = 6, 8), massless for #ND = 4 and tachyonic for #ND < 4
(#ND = 0, 2). We do not consider the tachyonic case #ND < 4. When #ND ≥ 4, the
lowest modes from the NS sector are massive (by loop effects for #ND = 4) and are
decoupled at low energy. There are only massless fermions from the R sector. They
belong to representations of the Clifford algebra for the NN and DD directions. These
fermions belong to the fundamental representation of U(Nc) and are called “quarks”.

In general the Dq/Dp configuration (4.1) is dual to a defect field theory [66, 67]. We
only consider the case s+1 = q, which corresponds to a theory without defects. We are
interested in non-transverse intersections satisfying s′ > s, which implies s < 9−#ND.
Possible cases are s = 1, 2, 3, 4 for #ND = 4 (p = q + 2) and s = 1, 2 for #ND = 6
(p = q + 4). The configurations with #ND = 6 do not preserve supersymmetry and
are most likely unstable. We further restrict ourselves to the cases s = 1, 2, 3 since
we are especially interested in theories in four and lower dimensions. To summarize,
we consider the Dq/D(q + 2) configurations for q = 2, 3, 4 compactified on xq shown
in Table 4.1. The effective theory on the intersection at low energy is an (s + 1)-
dimensional non-supersymmetric U(Nc) gauge theory with quarks in the fundamental
representation. We call this theory “QCDs+1” for the sake of convenience.

Since these configurations are non-transverse intersections, there are directions
transverse to both of the Dq-branes and the Dp-brane. In refs. [18, 19] the rotational
symmetry SO(9−q−p+s) of such directions is interpreted as a chiral symmetry in the
dual gauge theory for certain sets of (q, p, s). When the Dq-branes and the Dp-brane
are separated along these directions, quarks on the intersection become massive and
the chiral symmetry is explicitly broken. As we will see in subsect. 4.2.2, only when
aNS = 0 (#ND = 4) and p − s − 2 > 0, which are satisfied for the configurations in
Table 4.1, an equation for probe brane embeddings derived from the Dirac-Born-Infeld
(DBI) action has a solution for which the distance between the color branes and the
probe brane asymptotically approaches a constant value. This distance is interpreted
as a quark mass.
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0 1 2 3 4 5 6 7 8 9
color D2 ◦ ◦ ◦ − − − − − − −
probe D4 ◦ ◦ − ◦ ◦ ◦ − − − −
color D3 ◦ ◦ ◦ ◦ − − − − − −
probe D5 ◦ ◦ ◦ − ◦ ◦ ◦ − − −
color D4 ◦ ◦ ◦ ◦ ◦ − − − − −
probe D6 ◦ ◦ ◦ ◦ − ◦ ◦ ◦ − −

Table 4.1: The Dq/D(q + 2) brane configurations with #ND = 4. From top to bottom
these are dual to QCD2, QCD3 and QCD4, respectively.

We can explicitly write down the symmetry (4.2) for the configurations in Table 4.1.
In the D2/D4 model, which has a one-dimensional intersection and is dual to QCD2, we
can identify the SO(4)6789 rotational symmetry in the x6, x7, x8, x9 directions with an
SU(2)L×SU(2)R chiral symmetry of quarks. Indeed, the GSO projection in the R sector
of open strings requires that the chiralities of SO(1, 1)01 and SO(4)6789 are correlated.
Left-handed (right-handed) quarks of SO(1, 1)01 have the positive (negative) chirality of
SO(4)6789 and transform as (2,1) ((1,2)) under SU(2)L×SU(2)R. The gauge symmetry
U(1) on the probe brane acts on quarks as a baryon number symmetry U(1)V . Therefore
the global symmetry (apart from the Lorentz symmetry) of QCD2 at the intersection
is

SO(4)6789 × U(1) ∼ SU(2)L × SU(2)R × U(1)V . (4.4)

Thus we can realize a non-Abelian chiral symmetry in a holographic model of this type,
although spacetime is two-dimensional.

In the D3/D5 model, which has a two-dimensional intersection and is dual to QCD3,
we can identify the SO(3)789 rotational symmetry in the x7, x8, x9 directions with an
SU(2) symmetry of QCD3. Then the global symmetry of QCD3 at the intersection is

SO(3)789 × U(1) ∼ SU(2) × U(1). (4.5)

Quarks transform as 2 under SU(2). Note that there is no chirality in QCD3 and
therefore the symmetry (4.5) is not a chiral symmetry.

Finally, in the D4/D6 model, which has a three-dimensional intersection and is dual
to QCD4, we can identify the SO(2)89 rotational symmetry in the x8, x9 directions with
an axial U(1)A symmetry of QCD4 as discussed in refs. [18, 19]. The global symmetry
of QCD4 at the intersection is

SO(2)89 × U(1) ∼ U(1)A × U(1)V . (4.6)

4.2 Chiral symmetry breaking from supergravity

analysis

The dynamics of a strongly coupled large Nc gauge theory can be analyzed by super-
gravity. We study the chiral symmetry breaking in this section. The near horizon
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limit and the large Nc limit Nc ≫ 1 allow us to treat the Dq-branes as a background
geometry and the Dp-brane as a probe which does not affect this background. We will
find that the Dp-brane embedding breaks the SO(9− q−p+ s) rotational symmetry in
the directions transverse to both of the branes. This can be interpreted as the chiral
symmetry breaking in QCD2 and QCD4. We will calculate the quark condensate and
find a non-zero value even in the massless quark limit. Although we are most interested
in the configurations in Table 4.1, we will give formulae for the configuration (4.1) with
general q, p, s.

4.2.1 Dq-brane background

The near horizon geometry of S1 compactified Nc Dq-branes can be obtained by the
double Wick rotation t → it, xq → ixq and interchanging of t ↔ xq in the metric (3.16)

ds2 =

(
U

R

) 7−q
2

(
−dt2 +

q−1∑
i=1

(
dxi

)2
+ f(U)(dxq)2

)
+

(
R

U

) 7−q
2

(
dU2

f(U)
+ U2dΩ2

8−q

)
,

f(U) = 1 −
(

UKK

U

)7−q

, R7−q = (4π)
5−q
2 Γ

(
7−q
2

)
gsNc ℓ 7−q

s . (4.7)

xq is a coordinate of S1 and its period is denoted as δxq = 2π/MKK . MKK is a
compactification scale. To avoid a conical singularity at U = UKK in the U -xq plane
the period must be related to a constant UKK as

δxq =
4π R

7−q
2

(7 − q) U
5−q
2

KK

. (4.8)

The dilaton field and the RR flux are given by eqs. (3.17)
The relations between the parameters in the gauge theory and those in the string

theory are

g2
q+1 = (2π)q−2gs ℓ q−3

s , MKK =
7 − q

2 (4π)
5−q
4 Γ(7−q

2
)

1
2

U
5−q
2

KK

(gsNc)
1
2 ℓ

7−q
2

s

, (4.9)

where gq+1 is the (q + 1)-dimensional gauge coupling.
We introduce isotropic coordinates in the directions (U, Ω8−q) to simplify the fol-

lowing analysis. Introducing a new radial coordinate ρ defined by

U =

(
ρ

7−q
2 +

U7−q
KK

4ρ
7−q
2

) 2
7−q

, ρ2 =
9∑

α=q+1

(xα)2 (4.10)

the metric for the transverse space (U, Ω8−q) in eq. (4.7) can be written as(
R

U

) 7−q
2

(
dU2

f(U)
+ U2dΩ2

8−q

)
= K(ρ)

(
dρ2 + ρ2dΩ2

8−q

)
= K(ρ)

9∑
α=q+1

(dxα)2, (4.11)
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where

K(ρ) =
R

7−q
2 U

q−3
2

ρ2
. (4.12)

We divide the coordinates xq+1, · · · , x9 into two parts and introduce spherical coordi-
nates (λ, Ωp−s−1) for the xq+1, · · · , xq+p−s directions and (r, Ω8−q−p+s) for the xq+p−s+1,
· · · , x9 directions. Then the Dq background becomes

ds2 =

(
U

R

) 7−q
2

(
−dt2 +

q−1∑
i=1

(dxi)2 + f(U)(dxq)2

)
+K(ρ)

(
dλ2 + λ2dΩ2

p−s−1 + dr2 + r2dΩ2
8−q−p+s

)
, (4.13)

where ρ2 = λ2 + r2. We will wrap the probe Dp-brane around Sp−s−1 in the next
subsection.

4.2.2 Dp-brane embeddings

We study the dynamics of a Dp-brane in the Dq background. Taking the large Nc

limit Nc → ∞ with keeping λq+1 = gsNcℓ
q−3
s = fixed ≫ 1, the probe approximation

Nc ≫ Nf (Nf is the number of probe Dp-branes and we set Nf = 1 in this chapter)
requires

λp+1 = gsNfℓ
p−3
s → 0, (4.14)

where λp+1 is the ’t Hooft coupling of the (p + 1)-dimensional theory on the Dp-brane
world-volume. Then the gauge theory on the Dp-branes decouples from the system
and the backreaction of the Nf Dp-branes to the ten-dimensional bulk is too small
comparing with that of the Nc Dq-branes. So the Nf Dp-branes can be introduced into
the Dq background as a probe, which do not affect the background.

The dynamics of the probe Dp-brane in the background (4.13) is described by the
DBI action

SDp = −Tp

∫
dp+1x e−ϕ

√
− det gMN , (4.15)

where gMN (M,N = 0, 1, · · · , p) is the induced metric on the world-volume and Tp

is the tension of the Dp-brane. For simplicity we have ignored the gauge field on the
probe Dp-brane. The gauge field on the probe brane plays an important role when we
introduce a chemical potential for the baryon number symmetry in eq. (4.2).

We use a physical gauge for Dp-brane world-volume reparametrizations and use the
spacetime coordinates xµ (µ = 0, 1, · · · , s), λ, Ωp−s−1 as the world-volume coordinates.
Then the configurations of the Dp-brane are determined by xi (i = s+1, · · · , q), r and
Ω8−q−p+s as functions of those world-volume coordinates. We make an ansatz

xs+1, · · · , xq = constant, r = r(λ), θa = constant, (4.16)

where θa (a = 1, 2, · · · , 8 − q − p + s) are coordinates of S8−q−p+s.

20



With this ansatz, the induced metric on the Dp-brane is

ds2 =

(
U

R

) 7−q
2

(
−dt2 +

s∑
i=1

(dxi)2

)
+ K(ρ)

[(
1 + (r′)2

)
dλ2 + λ2dΩ2

p−s−1

]
, (4.17)

where r′ = dr
dλ

. Then the DBI action of the Dp-brane becomes

SDp = −T̃pVp−s−1

∫
ds+1x

∫
dλ ρα

(
1 +

U7−q
KK

4ρ7−q

)β

λp−s−1
√

1 + (r′)2, (4.18)

where T̃p ≡ g−1
s TpR

−α and Vp−s−1 is the volume of Sp−s−1. The parameters α and β
are defined as

α =
1

4
(7 − q)(4 + 2s − q − p) , β =

1

2
(4 + 2s − q − p) +

2(p − s)

7 − q
. (4.19)

The action (4.18) leads to the equation of motion for r(λ)

d

dλ

[
ρα

(
1 +

U7−q
KK

4ρ7−q

)β
λp−s−1 r′√
1 + (r′)2

]
=

∂

∂r

[
ρα

(
1 +

U7−q
KK

4ρ7−q

)β
]

λp−s−1
√

1 + (r′)2.

(4.20)
As in refs. [18, 19] we are interested in the situation in which the asymptotic distance

between the Dq-branes and the Dp-brane is a finite constant r∞. This constant is
proportional to the quark mass. Therefore we impose the boundary conditions for
λ → ∞

r(λ)|λ→∞ = r∞, r′(λ)|λ→∞ = 0. (4.21)

Then, eq.(4.20) can be linearized at large λ as

d

dλ

(
λα+p−s−1r′

)
= α λα+p−s−3 r, (4.22)

and the asymptotic behavior of the solution is

r(λ) ∼ aλk+ + bλk− , (4.23)

where a, b are constants and

k± =
−(α + p − s − 2) ±

√
(α + p − s − 2)2 + 4α

2
. (4.24)

For the boundary condition (4.21) to be satisfied, we must require α = 0 and p−s−2 >
0. The first condition implies that the ground states of the NS sector of q-p strings are
massless since α = −2(7− q)aNS as seen from eq. (4.3). Then, the asymptotic behavior
of r(λ) is

r(λ) ∼ r∞ + c λ−(p−s−2), (4.25)
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Figure 4.1: Solutions of eq. (4.20) for various values of r∞ in (a) the D2/D4 model
with s = 1, (b) the D3/D5 model with s = 2 and (c) the D4/D6 model with s = 3.

where c is a constant. As in ref. [19] the quark condensate
⟨
ψ̄ψ

⟩
can be calculated

by differentiating the vacuum energy density derived from the DBI action (4.18) with
respect to the quark mass mq. Thus we obtain the quark mass and the quark condensate
in terms of the constants r∞ and c as

mq =
r∞

2πℓ2
s

,
⟨
ψ̄ψ

⟩
= −2π(p − s − 2) ℓ2

s T̃pVp−s−1 c. (4.26)

We have numerically solved eq. (4.20) for all possible values of q, p, s satisfying
α = 0, p − s − 2 > 0, s ≤ 3. The solutions of the D2/D4 model with s = 1, the
D3/D5 model with s = 2 and the D4/D6 model with s = 3 are plotted in Fig. 4.1 for
various values of r∞. The variables λ and r in these figures denote dimensionless ones
rescaled by appropriate powers of UKK . The leftmost curve in these figures represents
U = UKK . Its interior U < UKK is not a part of the space that we are considering.
All the solutions have similar behaviors to those of the D4/D6 model with s = 3 (Fig.
4.1 (c)), which was studied in ref. [19]. The solutions approach a constant value r∞
for λ = ∞, while they reach a point outside of the curve U = UKK at λ = 0. The
solutions break the rotational symmetry SO(9 − q − p + s) in the (r, Ω8−q−p+s) space
to SO(8 − q − p + s).
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Figure 4.2: The quark condensate as a function of the quark mass for (a) the D2/D4
model with s = 1, (b) the D3/D5 model with s = 2 and (b) the D4/D6 model with
s = 3.

We have also numerically calculated the quark condensate as a function of the quark
mass c = c(r∞) for all possible values of q, p, s satisfying α = 0, p − s − 2 > 0, s ≤ 3.
It is plotted in Fig. 4.2 for the D2/D4 model with s = 1, the D3/D5 model with s = 2
and the D4/D6 model with s = 3. The variables r∞ and c in these figures denote
dimensionless ones rescaled by appropriate powers of UKK . For all cases we find a
non-zero quark condensate for r∞ = 0. This agrees with a field theoretical view point.
In QCD we expect that the chiral symmetry is spontaneously broken by the non-zero
quark condensate even for mq = 0.

Finally, we write down a pattern of the symmetry breaking explicitly. For the
D2/D4 model with s = 1 it is

SU(2)L × SU(2)R × U(1)V → SU(2)V × U(1)V , (4.27)

for the D3/D5 model with s = 2

SU(2) × U(1) → U(1) × U(1), (4.28)

and for the D4/D6 model with s = 3 [19]

U(1)A × U(1)V → U(1)V . (4.29)
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4.3 NG bosons as fluctuations of the probe brane

In this section we study fluctuations of the probe brane around the vacuum embedding.
In the previous section we have seen that the vacuum embedding breaks SO(9 − q −
p + s) rotational symmetry in the (r, Ω8−q−p+s) space to SO(8 − q − p + s). This
symmetry breaking corresponds to the chiral symmetry breaking for certain sets of
(q, p, s). Therefore, there should be (8 − q − p + s) NG bosons associated with the
symmetry breaking. If quarks are massless these bosons are massless NG bosons. On
the other hand, if quarks are massive these are pseudo-NG bosons with a non-vanishing
mass. We will show that these pseudo-NG bosons satisfy the GMOR relation (2.17)
for a small quark mass mq. We will also give the effective action of the fluctuations at
quartic order. These results are a generalization of those of the D4/D6 system studied
in ref. [19] to the Dq/Dp systems.

4.3.1 Fluctuations around the vacuum embeddings

We study fluctuation modes around the vacuum Dp-brane embedding

xs+1, · · · , xq = constant, r = rvac(λ) + δr(xM), θa = 0 + δθa(xM), (4.30)

where rvac is the vacuum embedding determined numerically in the previous section.
For simplicity we concentrate on fluctuations of r and θa. In general, these fluctuations
depend on all of the world-volume coordinates xM of the Dp-brane. We will see that
the fluctuations δθa are identified with the (pseudo-)NG bosons for the breaking of the
rotational symmetry of S8−q−p+s (a subspace of the (r, Ω8−q−p+s) space).

The induced metric on the Dp-brane world-volume is

ds2 =

(
U

R

) 7−q
2

(
−dt2 +

s∑
i=1

(dxi)2

)
+ K(ρ)

[(
1 + (r′vac)

2
)
dλ2 + λ2dΩ2

p−s−1

]
+K(ρ)

[
2r′vac∂MδrdλdxM +

(
∂Mδr∂Nδr + r2

vacγab∂Mδθa∂Nδθb
)
dxMdxN

]
,

(4.31)

where γab is the metric of a unit S8−q−p+s. Then the DBI action of the Dp-brane (4.15)
becomes

SDp = −T̃p

∫
dp+1x

√
det γαβ

(
1 +

U7−q
KK

4ρ7−q

)β

λp−s−1
√

1 + (r′vac)
2

×
[
1 +

r′vac∂λδr

1 + (r′vac)
2

+
K(ρ)

2
gMN

(
∂Mδr∂Nδr

1 + (r′vac)
2

+ r2
vacγab∂Mδθa∂Nδθb

)
+ · · ·

]
,

(4.32)

where gMN is the induced metric without the fluctuations (4.17) and the dots represent
terms higher than quadratic order in the fluctuations. Note that ρ2 = λ2 + (rvac + δr)2
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still contains the fluctuation δr. Expanding eq. (4.32) in the fluctuations we obtain the
action to quadratic order as

SDp = Svac + Sδr + Sδθ, (4.33)

where Svac is the action for the vacuum embedding, i.e., eq. (4.18) for r = rvac. Sδr and
Sδθ are the actions for the fluctuations δr and δθa, respectively. We concentrate on the
fluctuations δθa. The fluctuation δr can be studied in a similar way (see Appendix A).
After some simple calculations we obtain the action for δθa

Sδθ = −T̃p

∫
dp+1x

√
det γαβ λp−s−1

√
1 + (r′vac)

2

×
(

1 +
U7−q

KK

4ρ7−q
vac

)β
K

2
gMNr2

vacγab∂Mδθa∂Nδθb (4.34)

and the equation of motion

(
7 − q

2

)2
U5−q

KK

M2
KK

ρ−(7−q)
vac

(
1 +

U7−q
KK

4ρ7−q
vac

)β− 2(5−q)
7−q

r2
vac∂µ∂

µδθa

+
1

λp−s−1
√

1 + (r′vac)
2

∂

∂λ

[(
1 +

U7−q
KK

4ρ7−q
vac

)β
λp−s−1r2

vac√
1 + (r′vac)

2

∂

∂λ
δθa

]

+

(
1 +

U7−q
KK

4ρ7−q
vac

)β
r2
vac

λ2
∇2δθa = 0, (4.35)

where γαβ and ∇2 are the metric and the Laplacian on a unit Sp−s−1.
We can write a solution of the equation of motion (4.35) in a form

δθa = F a(λ) Y (Ωp−s−1) eik·x, (4.36)

where Y (Ωp−s−1) is the spherical harmonics on Sp−s−1. We consider the zero (constant)
mode of Y and study only lowest-mass modes for simplicity. Substituting eq. (4.36)
into eq. (4.35) we obtain an eigenvalue equation for the (s + 1)-dimensional mass
M2

θ = −kµkµ. Although we can solve eq. (4.35) by numerical calculations as in ref.
[19], here we are content with asymptotic solutions of a linearized equation of motion
for λ → ∞. Taking account of the asymptotic behavior of rvac in eq. (4.25) the first
term of eq. (4.35) is sub-leading and the linearized equation for λ → ∞ becomes

∂

∂λ

(
λp−s−1r2

vac

∂

∂λ
δθa

)
= 0. (4.37)

Depending on the value r∞ in eq. (4.25) the general solution is

δθa ∼
{

aλp−s−2 + b (r∞ = 0)
a + bλ−(p−s−2) (r∞ ̸= 0),

(4.38)
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where a, b are independent of λ. Since p − s − 2 > 0, these solutions are normalizable
when a = 0.

The non-linear equation of motion (4.35) has exact solutions δθa = F aeik·x (F a =
constant), which have an eigenvalue Mθ = 0. From the above results on the asymptotic
behaviors these solutions are normalizable only when r∞ = 0. Since r∞ = 0 means
vanishing quark mass mq = 0, the normalizable solutions with Mθ = 0 can be regarded
as the NG bosons associated with the spontaneous breaking of the rotational symmetry
SO(9 − q − p + s). When r∞ ̸= 0 (mq ̸= 0), the quark mass term explicitly breaks the
chiral symmetry and we do not expect massless bosons. However, for small quark mass
mq there should exist pseudo-NG bosons with a small mass Mθ, which we consider in
the next subsection.

In two dimensions there exists no massless NG boson associated with a spontaneous
symmetry breaking [72]. We have seen that there appear massless bosons even in the
D2/D4 model with a one-dimensional intersection when quarks are massless. These
massless bosons should be an artifact of the large Nc limit and should become massive
if we take into account contributions from higher orders in the 1/Nc expansion. The
situation is similar to the case of the Gross-Neveu model in two dimensions [73], in
which massless bosons appear in the large N limit.

4.3.2 Light pseudo-NG bosons and the GMOR relation

As we have seen above, the embeddings with r∞ = 0 and those with r∞ ̸= 0 have
different properties. For the r∞ = 0 embeddings the asymptotic distance between
Dq and Dp-branes is zero and the quarks at the intersection are massless. There are
(8 − q − p + s) massless scalars δθa in the spectrum, which can be identified with the
NG bosons associated with the spontaneous symmetry breaking SO(9 − q − p + s)
→ SO(8 − q − p + s). We call these NG bosons pions. On the other hand, for the
r∞ ̸= 0 embeddings quarks are massive and the vacuum embedding explicitly breaks
the rotational symmetry SO(9 − q − p + s) even for the asymptotic region λ → ∞. In
this case the fluctuations δθa are pseudo-NG bosons with a non-vanishing mass Mθ.

We can show the GMOR relation [68]

M2
θ = −

mq

⟨
ψ̄ψ

⟩
f 2

π

. (4.39)

for a small quark mass mq by using the holographic method [19]. Here, fπ is the
pion decay constant. We begin with the r∞ = 0 embedding and make a small change
r∞ = δr∞. This gives a small mass to quarks. As shown in ref. [19] the mass of the
pseudo-NG bosons Mθ can be obtained by using a standard perturbation theory in
quantum mechanics and is written as

M2
θ = (p − s − 2)

c̄ δr∞∫
dλ µ̄

, (4.40)
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where c̄ is the coefficient in eq. (4.25) and µ̄ is given by

µ̄ =

(
7 − q

2

)2
U5−q

KK

M2
KK

ρ̄−(7−q)
vac

(
1 +

U7−q
KK

4ρ̄7−q
vac

)β− 2(5−q)
7−q

r̄2
vac λp−s−1

√
1 + (r̄′vac)

2. (4.41)

Here and in the following, quantities with a bar denote those for the r∞ = 0 embedding.
The quantities δr∞ and c̄ are related to the quark mass and the quark condensate
as in eq. (4.26). The pion decay constant fπ can be read from the effective action
of δθa. Assuming that δθa depend only on the coordinates of the intersection xµ

(µ = 0, 1, · · · , s) and integrating over λ and Ωp−s−1 in eq. (4.34) we obtain

Sδθ = −f 2
π

∫
ds+1x

1

2
γab ∂µδθ

a∂µδθb, (4.42)

where fπ is given by

f2
π = T̃pVp−s−1

∫ ∞

0

dλ µ̄. (4.43)

Using eqs. (4.26), (4.43) in eq. (4.40), we obtain the GMOR relation (4.39).

4.3.3 The pion effective action

We can write down the effective action of the pion fields δθa at the intersection be-
yond the quadratic order. We assume that δθa depend only on the coordinates of the
intersection xµ (µ = 0, 1, · · · , s). By expanding the DBI action (4.15) for the induced
metric (4.31) to quartic order in δθa we obtain

Sδθ = −
∫

ds+1x

(
f2

π

2
γab∂µ(δθa)∂µ(δθb) +

h1

4

[
γab∂µ(δθa)∂µ(δθb)

]2

−h2

4

[
γab∂µ(δθa)∂ν(δθ

b)
] [

γcd∂
µ(δθc)∂ν(δθd)

])
, (4.44)

where fπ is the pion decay constant (4.43) and the constants h1, h2 are given by

2h1 = h2 = T̃pVp−s−1

(
7 − q

2

)4
U

2(5−q)
KK

M4
KK

∫
dλ ρ−2(7−q)

vac

×
(

1 +
U7−q

KK

4ρ7−q
vac

)β− 4(5−q)
7−q

r4
vac λp−s−1

√
1 + (r′vac)

2. (4.45)

The relative coefficients of the quartic terms are different from those assumed in the
Skyrme model [74, 75] h1 = h2. This is in contrast with another approach [24] to the
holographic QCD, in which the relation h1 = h2 of the Skyrme model was obtained.
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4.4 Finite temperature analysis

To study the theory at finite temperature we introduce a periodic Euclidean time
coordinate tE ≡ it ∼ tE + δtE. The period of tE is the inverse temperature δtE =
1/T . Then there are two periodic coordinates tE and xq. There exist two possible
Euclidean geometries which have an appropriate asymptotic behavior. One of them is
the Euclidean version of the metric (4.7)

ds2 =

(
U

R

) 7−q
2

(
dt2E +

q−1∑
i=1

(
dxi

)2
+ f(U)(dxq)2

)
+

(
R

U

) 7−q
2

(
dU2

f̃(U)
+ U2dΩ2

8−q

)
,

f(U) = 1 −
(

UKK

U

)7−q

, UKK =

(
2

7 − q

) 2
5−q

R
7−q
5−q M

2
5−q

KK . (4.46)

The other is the Euclidean version of the non-extremal black Dq-brane geometry (3.16)

ds2 =

(
U

R

) 7−q
2

(
f̃(U)dt2E +

q−1∑
i=1

(
dxi

)2
+ (dxq)2

)
+

(
R

U

) 7−q
2

(
dU2

f̃(U)
+ U2dΩ2

8−q

)
,

f̃(U) = 1 −
(

UT

U

)7−q

, UT =

(
4π

7 − q

) 2
5−q

R
7−q
5−q T

2
5−q (4.47)

with the dilaton and the RR flux given in eq. (3.17). The parameter UT must be related
to T as above to avoid a conical singularity at U = UT in the U -tE plane. The period
δtE is fixed as

δtE =
4πR

7−q
2

(7 − q) U
5−q
2

T

, (4.48)

and it leads the relation in eq. (4.47). It is obvious that these two backgrounds are
related by interchanging xq, UKK and tE, UT .

It was shown [8, 19, 34] that the background (4.46) is dominant at low temperature,
while the background (4.47) is dominant at high temperature by comparing values of
the Euclidean supergravity action for these backgrounds. A phase transition between
these backgrounds occurs at the temperature for UT = UKK , i.e. Tc = MKK/(2π).
This phase transition corresponds to a confinement/deconfinement transition in the
dual gauge theory [8].

We consider the probe brane dynamics in the high temperature phase. The probe
brane dynamics in the low temperature phase is essentially the same as at zero tem-
perature. We only consider the models with α = 0, p− s− 2 > 0, s ≤ 3 as in the zero
temperature phase. With the ansatz (4.16) the induced metric on the Dp-brane in the
background (4.47) can be written as

ds2 =

(
U

R

) 7−q
2

(
f̃(U)dt2E +

s∑
i=1

(dxi)2

)
+K(ρ)

[(
1 + (r′)2

)
dλ2 + λ2dΩ2

p−s−1

]
. (4.49)

28



Then the DBI action of the probe Dp-brane becomes

SDp = T̃pVp−s−1

∫
ds+1x

∫
dλ

(
1 +

U7−q
T

4ρ7−q

)β−1 (
1 − U7−q

T

4ρ7−q

)
λp−s−1

√
1 + (r′)2,

(4.50)
which leads to the equation of motion for r(λ)

d

dλ

[(
1 +

U7−q
T

4ρ7−q

)β−1 (
1 − U7−q

T

4ρ7−q

)
λp−s−1 r′√
1 + (r′)2

]

=
∂

∂r

[(
1 +

U7−q
T

4ρ7−q

)β−1 (
1 − U7−q

T

4ρ7−q

)]
λp−s−1

√
1 + (r′)2. (4.51)

The asymptotic behavior of the solution r(λ) of eq. (4.51) for large λ is the same as
in the zero temperature case (4.25). The parameters r∞ and c are related to the quark
mass mq and the quark condensate

⟨
ψ̄ψ

⟩
as in eq. (4.26). We have numerically solved

eq. (4.51) for all possible values of q, p, s. All the solutions have similar behaviors to
those for the D4/D6 model with s = 3 discussed in refs. [19, 36, 38]. The solutions for
the D2/D4 model with s = 1, the D3/D5 model with s = 2 and the D4/D6 model with
s = 3 are plotted in Fig. 4.3 for various values of r∞. The variables λ and r in these
figures (and Fig. 4.4 below) denote dimensionless ones rescaled by appropriate powers
of UT . The leftmost curve in these figures represents U = UT .

We have also numerically calculated the quark condensate c = c(r∞). Here we are
interested in the phase structure of the system when the temperature T is varied for
fixed quark mass mq. The relation between T and r∞ can be obtained from eqs. (4.8),
(4.9), (4.48) as

T =
M̄√
r5−q
∞

, M̄2 =
(7 − q)2m5−q

q MKK

4(4π)
5−q
2 Γ(7−q

2
)g2

qNc

, (4.52)

where gq = gq+1/δx
q is the q-dimensional Yang-Mills coupling and r∞ is the dimen-

sionless variable rescaled by UT . Using this relation the quark condensate as a function
of the temperature is plotted in Fig. 4.4. Note that the region near T = 0 in these
figures is not valid since the background (4.46) is dominant at low temperature T < Tc.
All the condensates have similar behaviors to those of the D4/D6 model with s = 3
discussed in refs. [19, 36, 38].

As was discussed in refs. [19, 36, 38] there are two types of embeddings. For
sufficiently large r∞ the probe brane does not reach the horizon U = UT . On the other
hand, for sufficiently small r∞ it reaches the horizon U = UT . For an intermediate
region of r∞ more than one embeddings, which can be either type of embeddings, are
possible. The physically realized embedding is the one with a minimal energy. Varying
the value of r∞ a phase transition between these two types of embeddings occurs at
a certain temperature T = Tfund. This phase transition, however, does not affect the
chiral symmetry of the quarks in QCDs+1 because of the non-zero value of c for all
temperature region except for T → ∞.
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Figure 4.3: Solutions of eq. (4.51) for various values of r∞ in (a) the D2/D4 model
with s = 1, (b) the D3/D5 model with s = 2 and (c) the D4/D6 model with s = 3.

0 1 2 3 4 5 6 7 8 9
color D1 ◦ ◦ − − − − − − − −
probe D5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −
color D2 ◦ ◦ ◦ − − − − − − −
probe D6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ − − −
color D3 ◦ ◦ ◦ ◦ − − − − − −
probe D7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ − −

Table 4.2: The Dq/D(q + 4) brane configurations with #ND = 4.

The above finite temperature analysis can be applied to another type of brane con-
figurations. Here we consider a non-compact limit MKK → 0 of the Dq/D(q+4) model
with s = q at finite temperature. At zero temperature it is dual to a supersymmetric
gauge theory in (q + 1)-dimensions. The case q = 3 is the D3/D7 model at finite
temperature discussed in refs. [18, 36, 38]. The Dq/D(q + 4) configurations for q = 1,
2, 3 are shown in Table 4.2. The rotational symmetry SO(9 − p) in the directions
transverse to both branes is interpreted as a chiral symmetry for certain cases. In par-
ticular, the SO(4)6789 rotational symmetry of the D1/D5 model with s = 1 is regarded
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Figure 4.4: The quark condensate as a function of temperature for (a) the D2/D4
model with s = 1, (b) the D3/D5 model with s = 2 and (c) the D4/D6 model with
s = 3. The solid (dashed) lines represent the contributions from the embeddings which
do (not) reach the horizon U = UT .

as an SU(2)L × SU(2)R chiral symmetry and the SO(2)89 rotational symmetry of the
D3/D7 model with s = 3 is regarded as an axial U(1)A symmetry [18].

In the present case there are two possible background geometries. One of them is
the Euclidean AdSq+2 × S8−q, which is obtained by setting UKK = 0 in the Euclidean
version of the metric (4.7). The other is the Euclidean version of the Schwarzschild
AdSq+2×S8−q, which is given by the geometry (4.47) with non-compact xq. The phase
transition occurs between these two backgrounds [8]. The Euclidean AdSq+2 × S8−q

is dominant at low temperature, while the Euclidean Schwarzschild AdSq+2 × S8−q is
dominant at high temperature.

We consider the probe D(q+4)-brane dynamics in the high temperature phase. The
induced metric and the equation of motion have the same form as (4.49) and (4.51)
with p = q + 4, s = q. The conditions α = 0, p − s − 2 > 0, s ≤ 3 require q = 1, 2, 3.
We have numerically solved eq. (4.51) for these configurations. The solutions for the
D1/D5 model with s = 1, the D2/D6 model with s = 2 and the D3/D7 model with
s = 3 are plotted in Fig. 4.5 for various values of r∞. All the solutions have similar
behaviors to those for the D3/D7 model with s = 3 (Fig. 4.5 (c)) [18, 36, 38]. We have

31



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10
PSfrag repla
ements �(a)

r(�)
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10
PSfrag repla
ements �(b)

r(�)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10
PSfrag repla
ements �(
)

r(�)

Figure 4.5: Solutions of eq. (4.51) for various values of r∞ in (a) the D1/D5 model
with s = 1, (b) the D2/D6 model with s = 2 and (c) the D3/D7 model with s = 3.

also numerically calculated the quark condensate as a function of the temperature.
The results are plotted in Fig. 4.6. All the condensates have similar behaviors to those
of the D3/D7 model with s = 3 (Fig. 4.6 (c)) discussed in refs. [18, 36, 38]

Finally we note that a chemical potential for the baryon number can be introduced
by considering the U(1) gauge field AM on the probe Dp-brane [39, 40]

SDp = Tp

∫
dp+1xe−ϕ

√
det (gMN + 2πα′FMN) + SCS, (4.53)

where FMN = ∂MAN − ∂NAM is the field strength of the U(1) gauge field AM on the
Dp-brane world-volume. SCS is the Chern-Simons (CS) term. In addition to the ansatz
(4.16) we make an ansatz

A = A0(λ)dtE. (4.54)

Then we can solve the equations of motion derived from the action (4.53) for r(λ) and
A0(λ). An asymptotically non-vanishing Euclidean time component of the U(1) gauge
field can be understood as a chemical potential [39, 40]. The Dq/Dp brane models at
finite chemical potential were discussed for certain sets of (q, p, s) in refs. [44, 45, 46,
47, 48, 49, 50, 51, 52]. It will be interesting to give a general discussion for the phase
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Figure 4.6: The quark condensate as a function of temperature for (a) the D1/D5
model with s = 1, (b) the D2/D6 model with s = 2 and (c) the D3/D7 model with
s = 3. The solid (dashed) lines represent the contributions from the embeddings which
do (not) reach the horizon U = UT .

structure in µ-T space of the general intersecting Dq/Dp brane model by using this
chemical potential.
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Chapter 5

Dq/Dp-Dp brane model

As we saw in the previous chapter we could not construct QCDs+1 having a man-
ifest U(Nf )L × U(Nf )R chiral symmetry from the Dq/Dp brane model although we
constructed QCD2 having a non-Abelian chiral symmetry SU(2)L × SU(2)R from the
D2/D4 model with s = 1. In order to realize a manifest U(Nf )L × U(Nf )R chiral
symmetry we study a general intersecting Dq/Dp-Dp brane model [30].

5.1 General setup

We consider an intersecting brane system consisting of Nc color Dq-branes and Nf

probe Dp-Dp brane pairs

x0 · · · xs xs+1 · · · xq xq+1 · · · xq+p−s xq+p−s+1 · · · x9

Nc Dq ◦ · · · ◦ ◦ · · · ◦ − · · · − − · · · −
Nf Dp-Dp ◦ · · · ◦ − · · · − ◦ · · · ◦ − · · · −

(5.1)
with xq being a coordinate of S1. It has an s-dimensional intersection in the directions
x1, · · · , xs. We impose the supersymmetry breaking boundary condition along this S1

as in the Dq/Dp model. The configuration (5.1) is a T-dual of Ds′/D9-D9 system with
s′ = 9 − (q + p − 2s) ≥ s.

The configuration (5.1) has the following symmetries. The gauge symmetry of
this system is U(Nc) × U(Nf )Dp × U(Nf )Dp in contrast with the Dq/Dp model. The

U(Nf )Dp × U(Nf )Dp gauge symmetry on the Dp-Dp-branes is regarded as a global
symmetry of an (s + 1)-dimensional field theory at the intersection. As in the Dq/Dp
model the ten-dimensional Lorentz symmetry SO(1, 9) is broken to its subgroup by
the configuration (5.1). Therefore the global symmetry preserved at the intersection
contains

SO(1, s) × SO(9 − q − p + s) × U(Nf )Dp × U(Nf )Dp. (5.2)

In contrast with the symmetry (4.2) in the Dq/Dp model there is a U(Nf )Dp×U(Nf )Dp

symmetry.
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The spectrum of the theory localized at the intersection is as follows. Fields gen-
erated by q-q and q-p strings are the same as those in the Dq/Dp model. As in the
previous chapter we only consider configurations having #ND ≥ 4. Then there are
only massless fermions, called quarks, from R sector of q-p and q-p̄ strings. Note that
quarks generated by q-p̄ strings have opposite chirality of SO(1, s) to that of quarks
generated by q-p strings. These quarks belong to the fundamental representation of
U(Nc). Quarks generated by q-p strings (q-p̄ strings) transform as (Nf ,1) ((1,Nf ))
under U(Nf )Dp×U(Nf )Dp. Therefore we can regard the symmetry U(Nf )Dp×U(Nf )Dp

as a flavor chiral symmetry U(Nf )L × U(Nf )R of quarks. Therefore we may construct
QCDs+1 having a manifest chiral symmetry U(Nf )L × U(Nf )R.

5.2 An interesting case: D4/D8-D8 brane model

There is an interesting configuration which is dual to QCD4 having a manifest U(Nf )L×
U(Nf )R chiral symmetry. It is the D4/D8-D8 brane system with s = 3 called the Sakai-
Sugimoto model [24, 25]. The brane configuration of the system is

t x1 x2 x3 τ U θ1 θ2 θ3 θ4

Nc D4 ◦ ◦ ◦ ◦ ◦ − − − − −
Nf D8-D8 ◦ ◦ ◦ ◦ − ◦ ◦ ◦ ◦ ◦

(5.3)

with τ ≡ x4 and θ’s being coordinates of S1 and S4 respectively. The period of τ is
denoted as δτ = 2π/MKK . We can explicitly write down the symmetry (5.2) for the
configuration (5.3). The GSO projection for the R sector of 4-8 strings (4-8̄ strings)
requires that only left-handed quarks (right-handed quarks) of SO(1, 3)0123 are phys-
ical states. Left-handed (right-handed) quarks transform as (Nf ,1) ((1,Nf )) under
U(Nf )Dp × U(Nf )Dp. Then the symmetry U(Nf )Dp × U(Nf )Dp can be regarded as a
flavor chiral symmetry U(Nf )L ×U(Nf )R of quarks. Therefore the global symmetry of
the theory at the intersection contains

SO(1, 3) × U(Nf )L × U(Nf )R. (5.4)

5.2.1 D4/D8-D8 brane model at finite temperature and finite
chemical potential

The D4/D8-D8 brane model with s = 3 gives a holographic dual of QCD which contains
Nf flavored left and right-handed quarks in the fundamental representation of U(Nc).
The model at zero temperature was well studied by Sakai and Sugimoto [24, 25]. So
we concentrate on the model at finite temperature and finite chemical potential. The
finite temperature behavior of the Sakai-Sugimoto model was discussed in [34, 35, 37].

In the large Nc limit and the near horizon limit the D4-branes are described by a
bulk background geometry, which is a classical solution of the type IIA supergravity
in ten dimensions. Assuming Nf ≪ Nc the D8-D8 pairs are treated as a probe which
does not affect the bulk background. The bulk background geometry is represented by
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a metric with a periodic Euclidean time coordinate tE ≡ it ∼ tE + δtE in addition to
the periodic τ . The period of tE is the inverse temperature δtE = 1/T . There are two
such Euclidean solutions which have an appropriate asymptotic boundary behavior.
One of them is the Euclidean version of the S1 compactified D4-brane geometry, which
is given by the metric (4.46) with q = 4

ds2 =

(
U

R

) 3
2

(
dt2E +

3∑
i=1

(dxi)2 + f(U)dτ 2

)
+

(
R

U

) 3
2
(

dU2

f(U)
+ U2dΩ2

4

)
,

f(U) = 1 − U3
KK

U3
, UKK =

4

9
R3M2

KK , (5.5)

where dΩ2
4 is the metric of S4 and R3 = πgsNcl

3
s . The parameter UKK must be related

to MKK as above to avoid a singularity of the metric at U = UKK . With this relation
the τ -U submanifold has a cigar-like form with a tip at U = UKK . The dilaton ϕ and
the RR 3-form C3 are given by eqs. (3.17) with q = 4

eϕ = gs

(
U

R

) 3
4

, F4 = dC3 =
2πNc

V4

ϵ4, (5.6)

where ϵ4 and V4 are the volume form and the volume of S4. The other solution is the
Euclidean version of the non-extremal D4-brane geometry, which is given by the metric
(4.47) with q = 4

ds2 =

(
U

R

) 3
2

(
f̃(U)dt2E +

3∑
i=1

(dxi)2 + dτ 2

)
+

(
R

U

) 3
2
(

dU2

f̃(U)
+ U2dΩ2

4

)
,

f̃(U) = 1 − U3
T

U3
, UT =

16π2

9
R3T 2 (5.7)

with the dilaton and the RR 3-form given in eq. (5.6). The parameter UT must be re-
lated to T as above to avoid a singularity of the metric at U = UT . The tE-U submani-
fold has a cigar-like form with a tip at U = UT . It is obvious that these two backgrounds
are related by interchanging τ , UKK and tE, UT . A confinement/deconfinement phase
transition between these backgrounds occurs at the temperature Tc = MKK/(2π) as in
the Dq/Dp brane model.

In refs. [34, 35] Nf D8-D8 pairs were introduced as a probe in the backgrounds
(5.5), (5.7). The effective action of the D8-branes consists of the DBI action and the
CS term

SD8 = T8

∫
d9x e−ϕ Tr

√
det(gMN + 2πα′FMN) − i

48π3

∫
C3 TrF 3, (5.8)

where gMN and FMN = ∂MAN − ∂NAM − i [AM , AN ] (M,N = 0, 1, · · · , 8) are the
induced metric and the field strength of the U(Nf ) gauge field AM on the D8-branes.
T8 is the tension of the D8-brane. The effective action for the D8-branes has a similar
form. The total effective action has a gauge symmetry

U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)V × U(1)A, (5.9)
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where U(Nf )L and U(Nf )R are symmetries of Nf D8 and D8-branes respectively. It was
argued in ref. [24] that this gauge symmetry corresponds to a flavor chiral symmetry of
quarks. The total effective action can be written in the form (5.8) with the integrations
being over the whole of the D8-D8 world-volume. We use this form of the effective
action in the following.

In refs. [24, 34] the gauge fields on the probe branes are treated as fluctuations
representing the hadron spectrum. In this paper we consider a background gauge field.
We assume that only the Euclidean time component of the U(1) gauge field has a
non-vanishing background. We will see that it corresponds to an introduction of the
baryon number chemical potential. We use a physical gauge for D8-brane world-volume
reparametrizations and use the spacetime coordinates other than τ as the world-volume
coordinates. Then, D8 and D8-brane configurations are determined by τ as a function
of those world-volume coordinates. We make an ansatz that A0 and τ depend only on
the coordinate U

τ = τ(U), A0 = A0(U). (5.10)

By this ansatz the CS term in eq. (5.8) vanishes and does not concern us.

5.2.2 Low temperature phase

In the low temperature phase the geometry (5.5) is dominant. Using the ansatz (5.10)
the induced metric gMN on the probe D8-branes is given by

ds2 =

(
U

R

) 3
2

(
dt2E +

3∑
i=1

(dxi)2

)

+

[(
U

R

) 3
2

f(U)(τ ′(U))2 +

(
R

U

) 3
2 1

f(U)

]
dU2 +

(
R

U

) 3
2

U2dΩ2
4, (5.11)

where τ ′ = dτ
dU

. Then, the effective action of the D8-branes (5.8) becomes

SD8 =
NfT8V4

gs

∫
d4x dUU4

[
f (τ ′)2 +

(
R

U

)3 (
f−1 − (2πα′A′

0)
2
)] 1

2

, (5.12)

where A′
0 = dA0

dU
.

This action leads to equations of motion for τ(U) and A0(U)

d

dU

 U4f τ ′√
f (τ ′)2 +

(
R
U

)3 (
f−1 − (2πα′A′

0)
2)

 = 0,

d

dU

 U4
(

R
U

)3
A′

0√
f (τ ′)2 +

(
R
U

)3 (
f−1 − (2πα′A′

0)
2)

 = 0, (5.13)
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Figure 5.1: A D8-D8-brane configuration in the low temperature phase.

which can be easily integrated once. We obtain

(τ ′(U))2 =

(
U8

0 + C2
(

U0

R

)3
)

f(U0)
(

R
U

)6

f(U)2
[(

R
U

)3
(U8f(U) − U8

0 f(U0)) + C2
(
f(U) − f(U0)

(
U0

U

)3
)] ,

(2πα′A′
0(U))

2
=

C2(
R
U

)3
(U8f(U) − U8

0 f(U0)) + C2
(
f(U) − f(U0)

(
U0

U

)3
) , (5.14)

where C and U0 are integration constants. As in the zero temperature case [24] and the
low temperature phase in ref. [34] we have imposed a condition τ ′(U0) = ∞. A typical
configuration of τ(U) is shown in Fig. 5.1. Since there is no place for the D8 and D8-
branes to end, they are connected at U = U0. We also impose the boundary condition
A0(∞) = µ at the both ends of the D8-D8 world-volume, where µ is a constant. We
will identify this constant with the chemical potential for the baryon number later.
Solving eq. (5.14) with this boundary condition we find for U ∼ U0

A0(U) ∼ A0(U0) + const. × C |U − U0|
1
2 . (5.15)

This solution is singular at U = U0 and does not actually satisfy the original equation
(5.13) unless C = 0. Therefore, we must choose C = 0 and obtain A0(U) = µ.
Because of the connected configuration of the D8 and D8-branes the chiral symmetry
U(Nf )L × U(Nf )R on the probe D8-D8 pairs is always broken to a diagonal subgroup
U(Nf )V in the low temperature phase. The situation is the same as in the cases without
the gauge field background [24, 34].

Instead of using the constant U0 to parametrize the solution we can also use the
U = ∞ asymptotic separation L between the D8 and D8-branes in the τ -direction. It
is related to U0 by

L = 2

∫ ∞

U0

dU τ ′(U), (5.16)

where τ ′(U) is given in eq. (5.14) with C = 0.
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Substituting eq. (5.14) with C = 0 into the action (5.12) and introducing new
variables u = U/U0, uKK = UKK/U0 and f(u) = 1 − u3

KK/u3 the effective action
becomes

SD8 = T̄8

∫ ∞

1

du u5

√
u3

u8f(u) − f(1)
, (5.17)

where

T̄8 =
NfT8V4

gs

(
R3U7

0

) 1
2

∫
d4x. (5.18)

Note that this reproduces the result in ref. [34].

5.2.3 High temperature phase

In the high temperature phase the geometry (5.7) is dominant. Using the ansatz (5.10)
the induced metric on the probe D8-branes is

ds2 =

(
U

R

) 3
2

(
f̃(U)dt2E +

3∑
i=1

(dxi)2

)

+

[(
U

R

) 3
2

(τ ′(U))2 +

(
R

U

) 3
2 1

f̃(U)

]
dU2 +

(
R

U

) 3
2

U2dΩ2
4 (5.19)

and the effective action of the D8-branes (5.8) becomes

SD8 =
NfT8V4

gs

∫
d4x dUU4

[
f̃ (τ ′)2 +

(
R

U

)3 (
1 − (2πα′A′

0)
2
)] 1

2

. (5.20)

This action leads to equations of motion for τ(U) and A0(U)

d

dU

 U4f̃ τ ′√
f̃ (τ ′)2 +

(
R
U

)3 (
1 − (2πα′A′

0)
2)

 = 0,

d

dU

 U4
(

R
U

)3
A′

0√
f̃ (τ ′)2 +

(
R
U

)3 (
1 − (2πα′A′

0)
2)

 = 0, (5.21)

which can be easily integrated once as before. As in the case without the gauge field
[34, 35] there are two types of solutions in the high temperature phase.

One solution is similar to the one in the low temperature phase. The integration of
eq. (5.21) gives

(τ ′(U))
2

=
U8

0 f̃(U0)(
U
R

)3
f̃(U)

(
U8f̃(U) − U8

0 f̃(U0)
) , A0(U) = µ. (5.22)
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Figure 5.2: D8-D8-brane configurations in the high temperature phase.

where U0 is an integration constant. As before we have imposed the boundary condi-
tions τ ′(U0) = ∞ and A0(∞) = µ. A typical configuration of τ(U) is shown in Fig. 5.2
(a). The chiral symmetry U(Nf )L×U(Nf )R is broken to a diagonal subgroup U(Nf )V .
Substituting eq. (5.22) into eq. (5.20) the effective action becomes

SU
D8 = T̄8

∫ ∞

1

du u5

√
u3f̃(u)

u8f̃(u) − f̃(1)
, (5.23)

where we have rescaled the variables as u = U/U0, uT = UT /U0, f̃(u) = 1 − u3
T /u3,

and T̄8 is given in eq. (5.18).
Instead of using U0 we can also use the asymptotic separation L in eq. (5.16) to

parametrize the solution, which is more convenient when comparing this solution to
the other one. The relation between L and U0 is obtained from eqs. (5.16) and (5.22)
as

L =

(
R3

U0

) 1
2

F (uT ), (5.24)

where

F (uT ) = 2

∫ ∞

1

du

√√√√ f̃(1)

u3f̃(u)
(
u8f̃(u) − f̃(1)

) . (5.25)

For the other solution the first integration of eq. (5.21) gives

τ ′(U) = 0, (2πα′A′
0(U))

2
=

C2

U8
(

R
U

)3
+ C2

, (5.26)

where C is an integration constant. τ ′(U) = 0 is the trivial solution of (5.21). A typical
configuration is shown in Fig. 5.2 (b). It describes a situation that the probe D8 and
D8-branes separately extend along the U -direction in straight lines. The separation
between the D8 and D8-branes is chosen to be the same as the asymptotic separation
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Figure 5.3: ∆S as a function of uT for various values of c. From the bottom to the top
each line represents the case for c = 0, 0.2158, 0.2252, 0.3 respectively.

L in the previous solution. The chiral symmetry U(Nf )L × U(Nf )R is unbroken in
this case. Substituting eq. (5.26) into eq. (5.20) and using the rescaled variables as in
eq. (5.23) the effective action becomes

S
||
D8 = T̄8

∫ ∞

uT

du
u5

√
u5 + c2

, (5.27)

where

c2 =
C2

R3U5
0

. (5.28)

To determine which of the two solutions is dominant we compare the values of the
effective action. From eqs. (5.23), (5.27) we obtain the difference as

∆S ≡ SU
D8 − S

||
D8

T̄8

=

∫ ∞

1

du u5

[√
u3f̃(u)

u8f̃(u) − f̃(1)
− 1√

u5 + c2

]
−

∫ 1

uT

du
u5

√
u5 + c2

. (5.29)

For ∆S < 0 the curved configuration (5.22) is dominant and the chiral symmetry is
broken, while for ∆S > 0 the straight configuration (5.26) is dominant and the chiral
symmetry is unbroken. Although the integrals in eqs. (5.23), (5.27) are divergent at
U = ∞, the difference is finite due to the same asymptotic behaviors of τ(U) and
A0(U). We evaluate eq. (5.29) by numerical calculations. For that purpose it is more
convenient to change an integration variable to z = u−3, which has a finite interval
0 ≤ z ≤ 1 for 1 ≤ u < ∞. The result of the calculations is shown in Fig. 5.3. The
behaviors of ∆S as a function of uT for various values of c are given. The special
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Figure 5.4: The phase diagram in the c-uT space.

case c = 0 reduces to the result in ref. [34]. In this case ∆S is positive for uT larger
than a certain value uT0 and negative for uT < uT0. The chiral symmetry is broken
for uT < uT0 and unbroken for uT > uT0. The point uT = uT0 is a phase transition
point. This phase transition is of the first order since two different configurations in
Fig. 5.2 are possible at the transition point. As c increases, the transition point uT0

decreases. When c > 0.2158, there appears a new region near uT = 0 in which ∆S > 0.
When c > 0.2252, ∆S is positive for all values of uT and the chiral symmetry is always
unbroken.

From these results we can draw a phase diagram in the c-uT space as shown in
Fig. 5.4. The chiral symmetry is broken in the region of small c and small uT and
unbroken outside of it. Note that we are considering here the high temperature phase of
the confinement/deconfinement transition and only the part uT > uKK of this diagram
is valid.

It is more appropriate, however, to draw it in the space of the temperature T and
the baryon number chemical potential µ. From eq. (5.7) the temperature T is related
to uT as

T =
3

4π

(
U0

R3

) 1
2 √

uT =
3

4π

√
uT

L
F (uT ), (5.30)

where we have used eq. (5.24).
The relation of the chemical potential µ to uT and c can be obtained as follows.

From eq. (5.26) the large U behavior of A0(U) has a form

A0(U) ∼ µ +
v

U
3
2

, (5.31)

where µ and v are constants. We have chosen the same value µ for the constant term as
in the curved solution (5.22). According to the AdS/CFT dictionary [5] for a massless
vector field in a six-dimensional bulk, µ is a source coupled to an operator of dimension
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four O4 on a five-dimensional boundary. The U(1) gauge field A0 defined on the whole
of the D8-D8 world-volume contains the gauge fields for both of U(1)V and U(1)A in
the flavor symmetry (5.9). The part of A0 which is symmetric for an interchange of
D8 and D8 corresponds to U(1)V , while the part which is antisymmetric corresponds
to U(1)A [24, 39]. Since the constant term µ is symmetric, it is a background value of
the U(1)V gauge field coupled to the baryon number density O4, and µ is the baryon
number chemical potential.

Integration of eq. (5.26) determines A0(U) up to a constant term (µ in eq. (5.31)).
We can fix this constant term as follows. We first require that A0(U) vanishes at
U = UT because of the regularity. To see this we first change the coordinates from
(U, tE) to (r, θ) defined by

U3 = U3
T + UT r2, θ =

3

2

(
UT

R3

) 1
2

tE. (5.32)

From the induced metric (5.19) with τ ′(U) = 0 we see that (r, θ) are the polar coordi-
nates near the point U = UT . The point U = UT corresponds to the origin r = 0 and
should be treated with care since the polar coordinates are not good coordinates near
the origin. It is better to use the Cartesian coordinates

y = r cos θ, z = r sin θ. (5.33)

The relation between A0 and the components Ay, Az in the coordinates (y, z) is obtained
from A0dtE = Aydy + Azdz as

A0 =
3

2

(
UT

R3

) 1
2

r (−Ay sin θ + Az cos θ) . (5.34)

Since we require that Ay and Az are regular at the origin r = 0, A0(U) must vanish
at U = UT . We also note that although A0(U) is a gauge dependent quantity, it must
vanish at U = UT in any gauge. Only the gauge transformations which preserve the
condition A0(UT ) = 0 are allowed.

The vanishing of A0(U) at U = UT fixes the constant term in this case and we find

A0(U) =
U0

2πα′

∫ u

uT

du′

√
c2

u′5 + c2
. (5.35)

The chemical potential µ is obtained as the asymptotic value for U = ∞

µ = A0(∞) =
R3

2πα′L2
(F (uT ))2

∫ ∞

uT

du

√
c2

u5 + c2
, (5.36)

where we have used eq. (5.24) to eliminate U0. This gives an expression of the chemical
potential in terms of uT and c.

Using eqs. (5.30), (5.36) we can convert the phase diagram in Fig. 5.4 to that in
the µ-T space by numerical calculations. Using dimensionless variables

T̃ = LT, µ̃ =
2πα′L2

R3
µ (5.37)
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Figure 5.5: The phase diagram in the µ̃-T̃ space.

Figure 5.6: The qualitative feature of the full phase diagram in the µ̃-T̃ space.

the phase diagram in the µ̃-T̃ space is shown in Fig. 5.5. Only the part of this diagram
for the high temperature phase of the confinement/deconfinement transition, i.e. T̃ >
T̃c = LMKK/(2π) is valid. Therefore, our result of the phase diagram looks like Fig. 5.6.
The orders of T and µ at the transition points can be estimated from eq. (5.37). Using
R3 = g2

Y MNcl
2
s/(2MKK) and µ̃, T̃ = O(1) we obtain

T = O(L−1), µ = O(g2
Y MNcL

−2M−1
KK). (5.38)

If we assume L = O(M−1
KK), the transition temperature is of the order of the compact-

ification scale MKK , and the chemical potential is of the order g2
Y MNcMKK , which is

much larger than MKK since g2
Y MNc ≫ 1.
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Chapter 6

Summary

We discussed the chiral symmetry breaking in two different general intersecting brane
models in the framework of the string/gauge duality. One of them is the Dq/Dp brane
model consisting of Nc Dq-branes and a single probe Dp-brane with an s-dimensional
intersection. The other is the Dq/Dp-Dp brane model in which we use Nf Dp-Dp-
brane pairs as probe brane instead of a single Dp-brane used in the Dq/Dp model.
In both models we constructed (s + 1)-dimensional QCD-like theories, QCDs+1, at
the intersection for certain (q, p, s) and obtained holographic descriptions of the chiral
symmetry breaking. The chiral symmetry breaking can be understood as geometrical
configurations of the probe branes.

In the Dq/Dp model approach we obtained QCD2, QCD3 and QCD4 from the
D2/D4 model with s = 1, the D3/D5 model with s = 2 and the D4/D6 model with
s = 3, respectively. There is a rotational symmetry SO(9− q − p + s) of the directions
transverse to Dq-branes and Dp-brane in the above models. We found that the rota-
tional symmetry can be regarded as the chiral symmetry of QCDs+1 for certain cases.
In particular this symmetry is non-Abelian SU(2)L × SU(2)R for QCD2 and Abelian
U(1)A for QCD4.

We studied the breaking of the chiral symmetry of QCDs+1 at zero and finite tem-
perature in terms of the string/gauge duality. At zero temperature we found that the
Dp-brane embeddings in the Dq-brane background geometry break the rotational sym-
metry. This corresponds to the chiral symmetry breaking in QCDs+1. We calculated
the quark mass mq dependence of the quark condensate

⟨
ψ̄ψ

⟩
numerically from the

asymptotic behavior of the vacuum embedding and found a spontaneous breaking of
the chiral symmetry.

We studied the fluctuations around the vacuum embeddings. We found that the
fluctuations of the angular coordinates of the vacuum embedding are regarded as (8−
q − p + s) massless NG bosons associated with the spontaneous symmetry breaking
SO(9 − q − p + s) → SO(8 − q − p + s). If quarks have a small mass they are pseudo-
NG bosons with a non-vanishing mass. We showed that the mass of these pseudo-NG
bosons satisfies the GMOR relation by the supergravity calculations. We also obtained
the effective action of the NG bosons at quartic order.

At finite temperature we found that the rotational symmetry in the transverse
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space is also broken by the vacuum embedding as in the zero temperature case. This
corresponds to the chiral symmetry breaking in QCDs+1. We found a non-zero quark
condensate except for the high temperature limit. At the high temperature limit the
quark condensate vanishes and the chiral symmetry is restored. It is interesting to
introduce chemical potential into the Dq/Dp model as well as temperature and discuss
the phases of the dual gauge theories.

In the alternative approach, the Dq/Dp-Dp model, we especially studied the D4/D8-
D8 model with s = 3. The great advantage of the D4/D8-D8 model is that we can
construct QCD4 with a manifest U(Nf )L × U(Nf )R chiral symmetry. The chiral sym-
metry is realized as the gauge symmetry U(Nf )D8 × U(Nf )D8 on the Nf D8-D8-brane
pairs. We studied this model at finite temperature and finite chemical potential. The
chemical potential was introduced as a non-vanishing asymptotic value of the time
component of the U(1) gauge field on the probe brane pairs. We studied the dynamics
of the probe D8-D8-brane pairs in the D4-brane background geometry in terms of the
string/gauge duality as in the Dq/Dp brane model. In the low temperature phase we
found only U-shaped embeddings for which D8-branes and D8-branes are connected
each other. This corresponds to the chiral symmetry breaking in QCD4. Thus the chi-
ral symmetry is always broken in the low temperature phase. In the high temperature
phase another type of embeddings is possible. They are straight disconnected D8 and
D8-brane embeddings. Such configurations respect the chiral symmetry. Comparing
the values of the Euclidean action for each type of embeddings in the high temperature
phase, we found a chiral phase transition of the first order. We obtained the phase
diagram of QCD4 in µ-T space.

It seems that we have good holographic descriptions of QCD. So far the D4/D8-D8
model is the best candidate for the holographic dual of QCD. There, however, are
still many things to be resolved. For example, it is not clear how to introduce quark
mass to the D4/D8-D8 model. In the D4/D8-D8 model quarks are always massless
since there is no direction in which we can separate D4-branes and D8-D8-branes.
For work toward an introduction of a quark mass to the model see refs. [76, 77, 78,
79, 80]. As for the finite temperature analysis, the phase diagram which we obtained
(Fig. 5.6) seems different from the one expected from QCD (particularly in the low
temperature phase) [81]. This is because of the probe approximation. We have ignored
the contribution from the probe branes to the background geometry. The analysis
including the backreaction of the probe branes is needed to clarify the phase structure
bellow the temperature of the confinement/deconfinement phase transition. Therefore
it can be said that the studies toward the real holographic dual of QCD have only just
begun!
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Appendix A

Fluctuation of the radial part

In this Appendix we discuss the fluctuation δr in eq. (4.30). The action for δr can be
obtained from eq. (4.32) as

Sδr = −T̃p

∫
dp+1x

√
det γαβ λp−s−1

√
1 + (r′vac)

2

×

[(
1 +

U7−q
KK

4ρ7−q
vac

)β
K

2
gMN ∂Mδr∂Nδr

1 + (r′vac)
2

+
∂

∂rvac

(
1 +

U7−q
KK

4ρ7−q
vac

)β
r′vac∂λ(δr)

2

2(1 + (r′vac)
2)

+

(
1 +

U7−q
KK

4ρ7−q
vac

)β−2
(

U7−q
KK (c1r

2
vac + c2λ

2)

8ρ11−q
vac

+
U

2(7−q)
KK (c3r

2
vac + c2λ

2)

32ρ18−2q
vac

)
(δr)2

]
,

(A.1)

where c’s are constants

c1 = β(7 − q)(8 − q), c2 = −β(7 − q), c3 = β(7 − q)[β(7 − q) + 1]. (A.2)

From this action we obtain the equation of motion for δr

(
7 − q

2

)2
U5−q

KK

M2
KK

ρ−(7−q)
vac

(
1 +

U7−q
KK

4ρ7−q
vac

)β− 2(5−q)
7−q λp−s−1√

1 + (r′vac)
2
∂µ∂

µδr

+
∂

∂λ

[(
1 +

U7−q
KK

4ρ7−q
vac

)β
λp−s−1∂λδr

(1 + (r′vac)
2)

3
2

]
+

(
1 +

U7−q
KK

4ρ7−q
vac

)β
λp−s−3√
1 + (r′vac)

2
∇2δr

+
∂

∂λ

[
∂

∂rvac

(
1 +

U7−q
KK

4ρ7−q
vac

)β
λp−s−1r′vac√
1 + (r′vac)

2

]
δr

−λp−s−1
√

1 + (r′vac)
2

(
1 +

U7−q
KK

4ρ7−q
vac

)β−2

×

{
U7−q

KK (c1r
2
vac + c2λ

2)

4ρ11−q
vac

+
U

2(7−q)
KK (c3r

2
vac + c2λ

2)

16ρ18−2q
vac

}
δr = 0. (A.3)
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As in subsect. 4.3.1 we write a solution of the equation of motion in a form

δr = G(λ)Y (Ωp−s−1) eik·x, (A.4)

and take the zero (constant) mode for Y (Ωp−s−1). Substituting eq. (A.4) into eq. (A.3)
we obtain an eigenvalue equation for the (s + 1)-dimensional mass M2

r = −kµkµ. The
linearized equation of motion for λ → ∞ is

∂

∂λ

(
λp−s−1 ∂

∂λ
δr

)
= 0, (A.5)

whose general solution is
δr ∼ a + bλ−(p−s−2). (A.6)

In contrast to the case of δθ the asymptotic behavior of δr does not depend on the value
r∞. The normalizable solution corresponds to a = 0. Using this asymptotic behavior
as a boundary condition one can obtain the mass spectrum by numerical calculations
as in ref. [19]. We do not expect a massless particle in the spectrum.

49



Bibliography

[1] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B72
(1974) 461.

[2] J. Maldacena, The large N limit of superconformal field theories and supergravity,
Adv. Theor. Math. Phys. 2 (1998) 231 [arXiv:hep-th/9711200].

[3] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from
non-critical string theory, Phys. Lett. B428 (1998) 105 [arXiv:hep-th/9802109].

[4] E. Witten, Anti de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253 [arXiv:hep-th/9802150].

[5] O. Aharony, S.S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [arXiv:hep-
th/9905111].

[6] S. J. Rey and J. T. Yee, Macroscopic strings as heavy quarks in large N gauge
theory and anti-de Sitter supergravity, Eur. Phys. J. C22 (2001) 379 [arXiv:hep-
th/9803001].

[7] J. M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80
(1998) 4859 [arXiv:hep-th/9803002].

[8] E. Witten, Anti de Sitter space, thermal phase transition, and confinement in
gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [arXiv:hep-th/9803131].

[9] S. J. Rey, S. Theisen and J. T. Yee, Wilson-Polyakov loop at finite temperature
in large N gauge theory and anti-de Sitter supergravity, Nucl. Phys. B527 (1998)
171 [arXiv:hep-th/9803135].

[10] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops in
the large N limit at finite temperature, Phys. Lett. B434 (1998) 36 [arXiv:hep-
th/9803137].

[11] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops,
confinement, and phase transitions in large N gauge theories from supergravity,
JHEP 9806 (1998) 001 [arXiv:hep-th/9803263].

50



[12] C. Csaki, H. Ooguri, Y. Oz and J. Terning, Glueball mass spectrum from super-
gravity, JHEP 9901 (1999) 017 [arXiv:hep-th/9806021].

[13] R. de Mello Koch, A. Jevicki, M. Mihailescu and J. P. Nunes, Evaluation of
glueball masses from supergravity, Phys. Rev. D58 (1998) 105009 [arXiv:hep-
th/9806125].

[14] M. Zyskin, A note on the glueball mass spectrum, Phys. Lett. B439 (1998) 373
[arXiv:hep-th/9806128].

[15] H. Ooguri, H. Robins and J. Tannenhauser, Glueballs and their Kaluza-Klein
cousins, Phys. Lett. B437 (1998) 77 [arXiv:hep-th/9806171].

[16] A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 0206 (2002) 043
[arXiv:hep-th/0205236].

[17] T. Sakai and J. Sonnenschein, Probing flavored mesons of confining gauge theories
by supergravity, JHEP 0309 (2003) 047 [arXiv:hep-th/0305049]

[18] J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral sym-
metry breaking and pions in non-supersymmetric gauge/gravity duals, Phys. Rev.
D69 (2004) 066007 [arXiv:hep-th/0306018].

[19] M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic
dual of large-Nc QCD, JHEP 0405 (2004) 041 [arXiv:hep-th/0311270].

[20] N.J. Evans and J.P. Shock, Chiral dynamics from AdS space, Phys. Rev. D70
(2004) 046002 [arXiv:hep-th/0403279].

[21] K. Ghoroku and M. Yahiro, Chiral symmetry breaking driven by dilaton, Phys.
Lett. B604 (2004) 235 [arXiv:hep-th/0408040].

[22] D. Bak and H. U. Yee, Separation of spontaneous chiral symmetry breaking
and confinement via AdS/CFT correspondence, Phys. Rev. D71 (2005) 046003
[arXiv:hep-th/0412170].

[23] M.J. Rodriguez and P. Talavera, A 1+1 field theory spectrum from M theory,
arXiv:hep-th/0508058.

[24] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog.
Theor. Phys. 113 (2005) 843 [arXiv:hep-th/0412141].

[25] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor.
Phys. 114 (2006) 1083 [arXiv:hep-th/0507073].

[26] E. Antonyan, J.A. Harvey, S. Jensen and D. Kutasov, NJL and QCD from string
theory, arXiv:hep-th/0604017.

51



[27] Y.h. Gao, W.s. Xu and D.f. Zeng, NGN, QCD2 and chiral phase transition from
string theory, JHEP 0608 (2006) 018 [arXiv:hep-th/0605138].

[28] E. Antonyan, J.A. Harvey and D. Kutasov, The Gross-Neveu model from string
theory, Nucl. Phys. B776 (2007) 93 [arXiv:hep-th/0608149].

[29] A. Basu and A. Maharana, Generalized Gross-Neveu models and chiral sym-
metry breaking from string theory, Phys. Rev. D75 (2007) 065005 [arXiv:hep-
th/0610087].

[30] E. Antonyan, J.A. Harvey and D. Kutasov, Chiral symmetry breaking from in-
tersecting D-branes, Nucl. Phys. B784 (2007) 1 [arXiv:hep-th/0608177].

[31] D. Gepner and S.S. Pal, Chiral symmetry breaking and restoration from holog-
raphy, arXiv:hep-th/0608229.

[32] N. Horigome, M. Nishimura and Y. Tanii, Chiral symmetry breaking in brane
models, JHEP 0802 (2008) 003 [arXiv:0710.4900 [hep-th]].

[33] K. Ghoroku, T. Sakaguchi, N. Uekusa and M. Yahiro, Flavor quark at high tem-
perature from a holographic model, Phys. Rev. D71 (2005) 106002 [arXiv:hep-
th/0502088].

[34] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of de-
confinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420
[arXiv:hep-th/0604161].

[35] A. Parnachev and D.A. Sahakyan, Chiral phase transition from string theory,
Phys. Rev. Lett. 97 (2006) 111601 [arXiv:hep-th/0604173].

[36] D. Mateos, R.C. Myers and R.M. Thomson, Holographic phase transitions with
fundamental matter, Phys. Rev. Lett. 97 (2006) 091601 [arXiv:hep-th/0605046].

[37] K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related
properties of mesons in a quark gluon plasma, Phys. Rev. D74 (2006) 106008
[arXiv:hep-th/0606195].

[38] D. Mateos, R.C. Myers and R.M. Thomson, Thermodynamics of the brane, JHEP
0705 (2007) 067 [arXiv:hep-th/0701132].

[39] K.Y. Kim, S.J. Sin and I. Zahed, Dense hadronic matter in holographic QCD,
arXiv:hep-th/0608046.

[40] N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical
potential, JHEP 0701 (2007) 072 [arXiv:hep-th/0608198].

[41] A. Parnachev and D.A. Sahakyan, Photoemission with chemical potential from
QCD gravity dual, Nucl. Phys. B768 (2007) 177 [arXiv:hep-th/0610247].

52



[42] D. Yamada, Sakai-Sugimoto Model at High Density, arXiv:0707.0101 [hep-th].

[43] K. Y. Kim, S. J. Sin and I. Zahed, The Chiral Model of Sakai-Sugimoto at Finite
Baryon Density, JHEP 0801 (2008) 002 [arXiv:0708.1469 [hep-th]].

[44] S. Nakamura, Y. Seo, S.J. Sin and K.P. Yogendran, A new phase at finite quark
density from AdS/CFT, arXiv:hep-th/0611021.

[45] S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holo-
graphic phase transitions at finite baryon density, JHEP 0702 (2007) 016
[arXiv:hep-th/0611099].

[46] Y. Kim, B. H. Lee, S. Nam, C. Park and S. J. Sin, Deconfinement phase transition
in holographic QCD with matter, Phys. Rev. D76 (2007) 086003 [arXiv:0706.2525
[hep-ph]].

[47] S. Nakamura, Y. Seo, S. J. Sin and K. P. Yogendran, Baryon-charge Chemical
Potential in AdS/CFT, arXiv:0708.2818 [hep-th].

[48] K. Ghoroku, M. Ishihara and A. Nakamura, D3/D7 holographic Gauge theory
and Chemical potential, Phys. Rev. D76 (2007) 124006 [arXiv:0708.3706 [hep-
th]].

[49] A. Karch and A. O’Bannon, Holographic Thermodynamics at Finite Baryon
Density: Some Exact Results, JHEP 0711 (2007) 074 [arXiv:0709.0570 [hep-
th]].

[50] D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase
transitions at finite chemical potential, JHEP 0711 (2007) 085 [arXiv:0709.1225
[hep-th]].

[51] S. Matsuura, On holographic phase transitions at finite chemical potential, JHEP
0711 (2007) 098 [arXiv:0711.0407 [hep-th]].

[52] S. Nakamura, Comments on Chemical Potentials in AdS/CFT, arXiv:0711.1601
[hep-th].

[53] R. Apreda, J. Erdmenger, N. Evans and Z. Guralnik, Strong coupling effective
Higgs potential and a first order thermal phase transition from AdS/CFT duality,
Phys. Rev. D71 (2005) 126002 [arXiv:hep-th/0504151].

[54] J. Erdmenger, M. Kaminski and F. Rust, Isospin diffusion in thermal AdS/CFT
with flavor, Phys. Rev. D76 (2007) 046001 [arXiv:0704.1290 [hep-th]].

[55] A. Parnachev, Holographic QCD with Isospin Chemical Potential, JHEP 0802
(2008) 062 [arXiv:0708.3170 [hep-th]].

[56] K. I. Kim, Y. Kim and S. H. Lee, Isospin matter in AdS/QCD, arXiv:0709.1772
[hep-ph].

53



[57] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black
holes and catastrophic holography, Phys. Rev. D60 (1999) 064018 [arXiv:hep-
th/9902170].

[58] M. Cvetic and S.S. Gubser, Phases of R-charged black holes, spinning branes and
strongly coupled gauge theories, JHEP 9904 (1999) 024 [arXiv:hep-th/9902195].

[59] A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Holography, thermo-
dynamics and fluctuations of charged AdS black holes, Phys. Rev. D60 (1999)
104026 [arXiv:hep-th/9904197].

[60] D. T. Son and A. O. Starinets, Hydrodynamics of R-charged black holes, JHEP
0603 (2006) 052 [arXiv:hep-th/0601157].

[61] K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with
a chemical potential from AdS/CFT, Phys. Rev. D73 (2006) 066013 [arXiv:hep-
th/0602010].

[62] K. Ghoroku, A. Nakamura and M. Yahiro, Holographic model at finite tempera-
ture with R-charge density, Phys. Lett. B638 (2006) 382 [arXiv:hep-ph/0605026].

[63] T. Albash, V. Filev, C.V. Johnson and A. Kundu, Global currents, phase tran-
sitions, and chiral symmetry breaking in large Nc gauge theory, arXiv:hep-
th/0605175.

[64] C. P. Herzog, Energy loss of heavy quarks from asymptotically AdS geometries,
JHEP 0609 (2006) 032 [arXiv:hep-th/0605191].

[65] F. L. Lin and T. Matsuo, Jet quenching parameter in medium with chemical
potential from AdS/CFT, Phys. Lett. B641 (2006) 45 [arXiv:hep-th/0606136].

[66] O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal
field theories, Phys. Rev. D66 (2002) 025009 [arXiv:hep-th/0111135].

[67] N.R. Constable, J. Erdmenger, Z. Guralnik and I. Kirsch, Intersecting D3-branes
and holography, Phys. Rev. D68 (2003) 106007 [arXiv:hep-th/0211222].

[68] M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under
SU(3) × SU(3), Phys. Rev. 175 (1968) 2195.

[69] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges, Phys. Rev. Lett.
75 (1995) 4724 [arXiv:hep-th/9510017].

[70] N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity
and the large N limit of theories with sixteen supercharges, Phys. Rev. D58
(1998) 046004 [arXiv:hep-th/9802042].

[71] J. Polchinski, String Theory. Vol. 2: Superstring Theory and Beyond (Cambridge
Univ. Press, 1998)

54



[72] S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun.
Math. Phys. 31 (1973) 259.

[73] D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free
field theories, Phys. Rev. D10 (1974) 3235.

[74] T.H.R. Skyrme, A nonlinear field theory, Proc. Roy. Soc. Lond. A260 (1961)
127.

[75] I. Zahed and G.E. Brown, The Skyrme model, Phys. Rept. 142 (1986) 1.

[76] R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string
tachyon condensation, Nucl. Phys. B787 (2007) 98 [arXiv:hep-th/0702155].

[77] K. Hashimoto, T. Hirayama and A. Miwa, Holographic QCD and pion mass,
JHEP 0706 (2007) 020 [arXiv:hep-th/0703024].

[78] N. Evans and E. Threlfall, Quark mass in the Sakai-Sugimoto model of chiral
symmetry breaking, arXiv:0706.3285 [hep-th].

[79] O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD,
JHEP 0712 (2007) 037 [arXiv:0708.2839 [hep-th]].

[80] A. Dhar and P. Nag, Sakai-Sugimoto model, tachyon condensation and chiral
symmetry breaking, JHEP 0801 (2008) 055 [arXiv:0708.3233 [hep-th]].

[81] J.B. Kogut and M.A. Stephanov, The Phases of Quantum Chromodynamics:
From Confinement to Extreme Environments (Cambridge Univ. Press, 2004).

55


	1 Introduction
	2 Spontaneous chiral symmetry breaking in QCD
	3 A brief review of the string/gauge duality
	3.1 D-branes in string theory
	3.2 The AdS/CFT correspondence
	3.3 The string/gauge duality

	4 Dq/Dp brane model
	4.1 General setup
	4.2 Chiral symmetry breaking from supergravity analysis
	4.2.1 Dq-brane background
	4.2.2 Dp-brane embeddings

	4.3 NG bosons as fluctuations of the probe brane
	4.3.1 Fluctuations around the vacuum embeddings
	4.3.2 Light pseudo-NG bosons and the GMOR relation
	4.3.3 The pion effective action

	4.4 Finite temperature analysis

	5 Dq/Dp-Dp brane model
	5.1 General setup
	5.2 An interesting case: D4/D8-D8 brane model
	5.2.1 D4/D8-D8 brane model at finite temperature and finite chemical potential
	5.2.2 Low temperature phase
	5.2.3 High temperature phase


	6 Summary
	A Fluctuation of the radial part

