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Non-Linear Analyscs of Energy Transfer in T3 *-Doped Glasses

by Kazuhiko Tonooka

Abstract

Transfer of electronic excitation between rare-earth ions were theoretically and
experimentally studied. The basic theory for this process was developed initially by
Forster for multi-polar interaction. Models for the fluorescence under the influcnce
of energy transfer from energy donors to energy acceptors were presenled to
remove the difficulties with the Forster model. Consideration of the non-linear effect
associated with the excitation of acceptors resulted in the non-linear model.  The
non-exponential fluorescence decays following pulsed excitation and the steady-
state fluorescence of Th3* -doped glasses were examined by means of the non-linear
model, giving a good agreement between experimental results and expectations from
the model. In spite of the good agreement, the averaging of the populiation of aclive
ons and the approximation of interaction to a simplified one-to-many interaction
used in the non-linear madel, were suggested to be inadequate (o evaluate the status
of the system. Counsequently, the non-linear model was developed into a stochastic
model by discriminating all active ions and by introducing the quantization of
energy involved in all transitions. The connection of the elementary process of pair-
transfer to the macroscopic behavior of the donor-acceptor system was exphcitly
formalized without any approximation for the first time. It was shown thal the
stochastic model gave a better fit between theoretical expectations and experimental
results of the Tb-Nd gtass system. Values of the parameters obtained from the
analysis were examined to check the validity of the models. The stochastic model
was found most acceptable to explain the system consisting of donors and acceptors
with complex interaction.
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I. Introduction
Energy transfer of electronic excitation from one ion to another has been attracting atlention
both for theoretical interest and for practical use such as phosphors and lasers. The efficiency of
luminescence will be improved (1) by choosing the host malrix which gives stronger emission,
(2) by increasing the activator concentration, and (3) by utilizing the energy transfer Higher
activator concentration is possible for glasses for they are good solvents of metallic 1ons,
although, it brings about self-concentration quenching Self-concentration quenching is the
phenomenon whereby luminescence intensity decrease with increasing activator concentration
The self-concentration quenching of the luminescence from the 5D3 state of Tb3 * 1ons s mainly
due to the energy transfer between Tb3 * jons. A overview of several energy transfer processes
are shown in Fig.1. Energy transfer means that an excited ion, usually called a donaor, transfers
its excitation energy to another ion, called the acceptor. The absorption and emission of photon
radiation by the rare-earth ions has been considered a one-ion process, however, the energy
transfer is a many-ion process, mainly a two-ion process, as explained brieflly 1 the ligure
(a) In this resonant energy transfer process, ion A (the donor) goes from its exciled state
A 10 ils ground state A and thereby excites another ion, the acceptor, from its ground
state B to ils excited state B . In this process energy is fully conserved, meaning that the

A" —A transition and B—B’ transition have the same energy.
(b) Energy migration is a process in which the excitation of a donor moves around

between donors in a random-walk manner.

_(c) In phonon-assisted energy transfer, there is a considerable mismalch in energy
between the acceplor and the donor. Under the conditions shown in the lell figure, ion B is
excited 1o B and a phonon Aw is emitted 10 conserve energy. If the energy of the B—B’
transition is larger than the transition energy of A=A, the missing energy has to be
supplied by a phonon, as shown in the right figure.

(d) Stepwise up-conversion is a process in which two successive transitions in the donor
system excite one acceptor ion to an higher energy state, approximately twice the energy

A first photon is used to excile the ion from the B state to B slate (resonantly or phonan
assisled) and a second photon is used to reach the C' state . It is importanl that we can

produce visible radiation from infrared radiation utlilizing this mechanism.




The basic theory of energy transfer was given by Forster [1][2] and Dexier [3] Various
medels for the energy iransfer taking account of multi-polar interactions [3}{4], exchange
interaction [3][4], diffusion of energy [5][6] and migration of energy (6][7] have been
developed. The flucrescence decay curves under the influence of energy transfer have been
analyzed by Forster-like models, in which the averaged population of donors was treated by a
linear rate equation. Forster obtained a solution by integrating the energy transfer rate of a
donor-acceptor pair for a large volume, disregarding the excitation of acceptors. However, the
population of excited acceplors is expected to play an important role to the energy transfer
process with increase of acceptors. There are several possible models such as Inokuti-
Hirayama model [4], cascade models [{8,9], discrete shell model [10] and sum of exponential
model [11] for the non-exponential decay curves of donor fluorescence in particular conditions.
The Inokuti-Hirayama model, which is given as an extension of the Fdérster model for multi-polar
interaction, is most widely used for the analysis of donor fluorescence after a pulsed excitation.
Although, none of them give general solution for all cases. A good bibliography on this field was
prepared by Los Alamos Nalional Laboratory [12].

Those old theories have two distinct problems:  One is the infinite energy transfer rate
which appears at the starting point of the decay curve, and the other is that they cannct be applied
to phenomena which takes place after the time scale longer than the relaxation time of the system.
Comparatively little attention has been given to the fluorescence in a steady-state. These
problems are mainly brought by the linear approximation of the rate equation for the donor
population and by the distribution function which assumes a completely random spatial
distribution of interacting ions even within the ionic radius of the concerning active ion It is
preferable to assume that there exist no acceptors within the range of the nearest neighbor
distance of the donor and that the transfer rate of the donor is finite as a macroscopic value The
modification of acceptor distribution was already suggested as an approach to form a realistic
distribution of active ions by H.Dornauf et al[13] and S.R.Rotman et al.[14]

There were many reporls on the energy transfer between rare-earth ions such as
Tod *=Dy3* [15,16], Tb3 *~Eud* [15,16,17], Tb3*—smd* [15,16], TbI*—Tmd*
(15,16,18], T3 *—=P 3+ [15,16], T3 *—E* [15,16,19] and Tb3 *—Ho3* [15,16]

Typical optical transitions of rare-earth ions are due to transitions in the inner shielded 4f



shell For this reason the fluorescence of rare-earth ions is influenced much smaller by the
surrounding crystalline field than is the fiuorescence of other aclivators having transitions in
outer electron shells. Therefore, the fluorescence of rare-earth ions in gtass is expected 10 be
quite similar to that in crystals. Thus one can estimate the energy levels of rare-earth ions In
glasses from the Dieke diagram shown in Fig 2. The main difference between the fluorescence of
rare-earth ions in glasses and that in crystals is the inhomogeneous broadening in speclra.

In this study, more comprehensive models were presented in order 1o remove the
difficulties with ofd models for the donor fluorescence under the influence of enerqy transfer
These models are based on a coupled non-linear rate equation taking the excitations both of donors
and of acceptors into consideralion [20]. Steady state and transient response of the fluorescence
intensity from the 503 state of Tb3 *jons in glasses were analyzed using the non-linear model.
Numerical calculations showed that the non-linear model gave non-exponential decay curves
similar to the famous Inokuli-Hirayama equation. A goocd agreement was obtained between theory
and experimental results. It is a significant advantage of the non-linear model that it gives a
consistent interpretation of the response of donor fluorescence both in sleady and in transient
states from the elementary process of pair-transfer. In spite of the agreemenls obtamned, the
non-linear model looked still inadequate 10 explain the donor-acceptor system from a theoretical
point of view. This inadequacy of the model seemed to be resufted from the approximation of the
complex interaction to a simplified one-to-many interaction. Then the non-linear model was
developed into a stochaslic model in which the transfers of energy from donors to acceptors were
slochastically caiculated without approximations. A compuler simulation based on the stochaslic
model was carried out to analyze the donor fluorescence of the Tb-NGd glass system

The second chapter deals with the basic theory of energy transfer for a donor-acceptor pair
and extensions to a macroscopic system consisting of many donors and acceptors with multi-
polar interaction. The physical picture and the mathematical treatments of the Forster model 1s
interpreted as an approximation of the complex interaction to the simphtied one-to-many
interaction. Importance of the non-linearlity associated with the excstalions of active ions and
the introduction of the non-linear term into the rate equation are described in comparison with
the Forster model. The non-linear model for the donor fluorescence is presented to remove the

difficullies with the Forsler model.



In the third chapler, experirmnental resulls on the donor fluorescence are analyzed using the
non-linear model. 1t is shown (hal the donor fluorescence in slteady slale and transient response
fram TH3 * ions in glasses are consistently understood by the non-linear model, whereas the
Forsler-like models can be applied only to the transient response Decay characteristics by the
non-linear modet are exanuned comparing with those by the Forsier model, giving a considerable
gitlerence n  the short time behawviors of their fluorescence decays between these models.

The fourth chapter describes computer simulations applied to the analysis of energy
rransfer. A stochastic model for the donor fluorescence is proposed as an exiension of the non-
linear model to consider the complex interactions between donors and acceptors wilhout
approximations. The discrimination of individual active ions and the quantizalion of energy
associated with all \ransitions are identical to the stochaslic model. Monte Carlo simulations on a
computer are used for the evaluation of fluorescence decays based on the stochastic model. Beiter
agreements are reported between the simulated results by a computer and the experimental
results on Tb3 *-doped glasses.

The fifth chapter focuses on the origins for the non-exponential responses and the effect of
energy back-transfer. Theoretical investigations of the non-knear model, the stochastic model
the Forster model concludes thal the non-exponential responses of the donor fluorescence, which
is the main character of the system occurring energy transfer, is better understood as a result of
the non-linearity in the dynamics of energy transfer. Considerable presence of energy back
transfer is suggested from the spectral iavestigation of Tb3 * jons in glasses and from the
evaluation of the energy relaxation of acceptors with and withoul considering the back transier.

Concluding remarks are described in the sixth chapter. The stochastic model is found most
acceplable to account for the macroscopic behavior ot donor fluorescence based on the fundamental
process of energy lransfer between a donor and an acceptor. It is also concluded that the
discrimination of individual active ions and the quantization of transferred energy are essential to
formalize the system consisling of donors and acceptors with complex interaction. Usefulness and
limitations of a computer simulation are mentioned to carry out the analysis of energy transfer

based on the stochastic model.
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Fig.1. Diagrams of several energy transfer processes.
(a) Resonant energy transfer. (b) Energy migration,
by which the excitation moves between donors.

(c) Phonon assisted energy transfer with the emmission
or absorption of a phonon. (d) Stepwise energy
up-conversion.
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2. Theories

2.1. Bastc theory of energy transfer
Dexter derived the following expression for the probability of resonant energy transfer for

a donor-acceptor pair via an electric dipole-dipole interaction as,

_ 3t kg, g Y fa(E) Fu(£)

dr T R TR RN (1)
4ndro KIl‘zEc E*

where 11 is the refraclive index, T is the distance between the donor and lhe acceptor, C 1s the
velocity of light, K is the dielectric constant, E. is the permittivity of the medium, kg 15 the
radiative transition probabibly for the donor, Qi (= [0x(E)JE) is the energy integral of the
oplical cross-section G4(E) in the absorption band, f4(E) is the normalized emission specltcum of
the donor and F4(E) is the normalized absorption spectrum of the acceptor. We can sel the
quantity (€/ Kx'/2g;) equal 1o unity in the numerical evaluation. Since a donor transfers energy
10 1ts nearby acceptors and an acceplor obtains energy from its nearby donors, the expression for
the energy transfer should reflect the focal distribulion of the dislances between such interacting

ions. Exiending eq.(1) for the multi-polar interaction, one can rewnte il as

P(T):kn(%)g T T T T IT Tty - (2)
where
o E) FuE)
pe=ablet e i | o pyge| EIFRED e 5
O and (' k2, ] o) g k. )

¥

andS is 6,8,10 for dipole-dipote (d-d), dipole-quadrupole (d-q) and gquadrupole-quadrupole
(q-q) interactions, respectively. The parameter R 1s usvally called the critical distance of
energy ftranster.

Consider a system in which donors and acceptors are randomly distnbuted as shown in £ig.3
(a). The distribution of rare-earth ions doped in glassy medium is a typical case Since donors
and acceplors are usually cations, there exist such anions as 02 - among active ions. In the
figure, however, these anions were omilled for clarity. The probability of energy transfer from
donors to acceplors depends on the distance between them. Since a donor transfers energy to its

nearby acceplors and an acceptor obtains energy from its nearby donors, the expression of the




energy transfer should refiect the local distribution of the distances between such interacting
ions Figure 3 (b) shows the schematic paths of the energy transfer from one specilic donor o
nearby acceptors for the same distrnbution of Fig 3 (a). Suppose that there are Ngy acceptors
which can receive energy from the donor. The probability of energy transfer for the donor is

given by

Na
Poe My RET, BaE | cuees sons aves commmens sumase s s s s 450 44500 § 5690 ¢ 50000 5 540 8§ s 1 e 425 (4)

kej
where Rgk 18 the distance between the donor and the k-th acceptor  Similarly, the probability

for one specific acceplor obtaining energy from nearby donors, as shown in Fig.3 (c), is given by
) N
P, = kg RéX RIE  iitin e e s vomnimm momims s e o i s orons + v § st 8 ner 3 0 5 s (5)
kx|

where Ngis the number of donors which can give energy to the acceptor and Rdk is the distance
between the acceptor and the k-th donor. The migration, the diffusion and the back-transfer of
the excitation [21,22] were neglected here. One can see from eqs (4) and (5) that the
probabilities of energy transfer for each donor and acceptor are usually different, therefore

these energy transfer rates should be dislinguished in forming rate equations.

2.2. Forster model

AL first, the Forster model should be reviewed, since it helps us to understand the
fundamentals and the phenomenology of the donor fluorescence in a macroscopic system.
Approximaling the complex interactions between many donors and acceptors 10 the simplified
interaction between a donor and acceptors, Forster analyzed the donor fluorescence with with

the following rate equation for the population of donors,

dpgd
dt BER TRE L

where D) is the population of the donor, kR is the radiative transilion rate of donors, Ng is

the number of acceptors, Rk is the distance between the donor and the k-th acceplor, Rq is the

—{D—



critical distance of energy transfer. This rate equation is restricted tc the dipole-dipole
interaction The excitation of acceptors were disregarded in the Fdorster model.

We begin with the following rate equation extended to the multi-polar interaction

dp g
dt

N
_ B P (Ro ¢
= ke Db kRk‘; (——Rk) Db

where S is 6, 8 and 10 for the dipole-dipole, the dipale-quadrupole and the quadrupole-
quadrupole interactions. The excitation of acceptors were disregarded in the Forster model The

exact solution of eq (7) can be written in the form

N,
D) = Pu0) exp(-krt -kgR¢ Y Rét) s 2 i s s 3 om0 63 Fn 55 5 5w e (8)
=

N
PAL = Pud exp(-kx t) TT exp(-krRd Ri't) e NS Y
k=1

Introducing the distribution function w(r) , Férster obtained the macroscopically averaged value

of Pty as
RS
PW =Ppoexp(-kxt) lim | j wR) exp(-kn (30)° 1) "
0 R R IR Bt
Rg 00
where
N = g—ﬂ Ri Q5585 650 ¥ wimmm miim 3 ebn sinm s 5 s 5 5 smst = mss 5 s 5 s 22 s w5 mmm e oS o B 5 nci (11)

C, is the acceptor concentration and the distribution function of acceptors around the donor is

normalized such that

RK
I w(r) dr =1 e (12)
: i ronn e e e e o 5 e e B S S R i i e s 3 b e >

It is convenient lo rewrite eq. (10) as

o) =p©exp(-krt) fim [J(t)N

Rgf\oo

where
RR

Jo = w(r) exp(-krt RET) dr
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Then he assumed that the distribution of acceptors around the concerning donor was cormpletely

proportional to 2 for all r, as shown in Fig.4. Putling the distribution function as

wir) = 47\[/(2 ........................................................................................ (15)
where
Vo %—NR; OO (16)

one can write function J(1) as
[ Re
M= ﬂ\ﬂ 12 exp(-kr LRG1) dr
0

Expanding the eq.(17) in a power series of t and neglecting the higher order term than 3/ | he

obtained

I(t) = l~%—HCHR8F(I~3/S)I—}J—(er)3/S ................................................... (18)

The procedure reducing 1o equation (18) is explained in the appendix. We should be aware thalt
this approximation leading to equation (18) will limit the validity of the Forster model. Making

use of eq.(11) , eq. (13) and the formula

exp( X )= Im (”%UN

Ko | D0 RO B SNED S AR SN SN A0 TR 1658 N 8 SRR (19)
one gel the approximated relation
p() = p(0) exp( -krt) exp{_‘%ﬂ_ca F(l—3/S)R5(th)3/5} e e R ofbes SRR S 49 €3 (20)

This is the decay function initially obtained by Forster for the donor fluorescence. Putling
C = __}_ R-j B T T T L L T PP 21
0T 4p O ( )

we can get the Inokuti-Hirayama equation,

d)(t)z(b(O)exp[-kgt-T(1~%~)g—;(kgt)3’5] TR UTRUURPRRRI (22)

Sophisticated treatments and approximations outlined above are inevitable to obtain the results in

the Forster model , since the summed transfer rate in eq. (7),

Ny
kr Re ¥y R
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becomes infinite when il is calculated with the distribution function W(r) proportonal to the
donor-acceptor distance 1 for ail r. Mathematcal approximations psed in the Forster model may
reduce the theoretical consistency of it.  Thus, we should notice that the [mokuti-Hirayama

equation is not a theoretical equation but an approximated gne.

2.3. Non-linear model

Unlike the Farster model, the time dependent population of acceplors in excited state and the
excitation term for analyzing the sleady slate fluorescence were taken into coansideration in ths

model. The rate equation for the populatlions of donors and acceptors, () and [g(1) are given

by (20]
d
‘3‘(‘“) = o (1-Pg®) - (ketkn) P = kra (1-Pal)) PO
TR S €0 R D B S S s 0 6 e 9 s (24)
d
(()ii(() - kr“pd(() (I'pa({) ) - k/\ pa([)

where ky is the energy relaxalion rale of the donars by non-radiative transitions, ka is the
energy relaxation rate of lhe acceptors, Ktg is the energy transfer rate from a donor (o
acceplors, kTa is the energy transfer rale from donors to an acceptor and g s the excitation
rale of the donors. Addition of the excitation lerm for daonors is necessary 10 analyze the
fluorescence in a steady state. The quantities Kty and kr, are the macroscopic values
corresponding to  eqs.(4) and (5) respectively and assumed 1o be finite. Formalization of the
rate equalion as ordinary differential equations is permitled Dy the introduction of finite k14 and
ks - The macroscopic model described by equation (24) is shown schematically in Fig.5 It is
possible 1o obtain a linear equation equivalent 1o the rale equalion of the Forster by
approximating the equation (24) to a linear form. The non-linsar product PO -PNalt) will play
an important role under the condition of slrong excitation such as in laser medium or high
concentration of active ions. The intensity of the donor fluorescence is proportional to the
product of P! and the donor concentration Cg Inlroducing a coefficient o, the relative

intensity of fluorescence is expressed as

— 3~



IO = o Capall) i e e e e (25)

In advance of analyzing an actual fluorescence of a donor-acceptor system, the macroscopic
Iransfer rates corresponding to equations (4) and (5) must be caiculated as a ftunction of
concentration of donors and acceptors. Fdrster assumed thal the radial distribution funclion of
acceptors around a donor was independent of the acceptor concentration and that the distribution
function was proportional to the square of r for all r. These assumplions predicts a linear
dependence of the energy transfer rate on the acceptor concentration and a infinite transfer rate
at the initial point of decay curves. Altthough a quadratic dependence of the energy lransfer rate
was reported [23,24], in addilion, the transfer rales are expected to be finite for all the time.
In the calculation of macroscopic transfer rates K74 and Kra, two basic assumptions on the
distribulion functions for the donors and acceptors were made

(a) There exists a minimum distance Rp between donors and acceptors.
(b) Donors and acceptors segregate at high concentrations.

This leads to the distribulion function for acceptors around a donor,

W) :{ v (r<Ru)
dn 2 Cy + 473 P Cy Ca 8(-Ry) (r>Rpy)

where Cg is the acceptor concentration and B is a coellicient of segregation. These modiflied
distribution of donors and acceptors is shown schematically in Fig.6.  The first term 4nr2(ja
represents a random distribution outside the sphere of radius Rp The second term
4 nBrQCdOdE)(r- Rp) represents the segregation of donors and acceptors at the spherical surface
with radius Rp. Since the active ions are usually cations, the nearest neighbors must be anions
such as 02 -, Hence, the distance Rp is expected to be the second nearest neighboring distance for
the aclive ions. With the introduced distribution function, the transfer rate from a donor to

acceptors in d-d interaction was oblained as

krd=4—7erR—%—+4erkRBC“Cd o R 99 5 A S § T § R SN B Y unlh et Whinse B8iher BBl T ¥ (27)
3 R? 4

ALY n
Same as the function Wy(r), the distribution function of donors around an acceptor was put,

V\,d(r):{ (r<R")
!Inrzcd . 4]{[58(:3 Cd 6([-Rn) (r . R“) e et (28)



These distribution funclions are shown in Fig.6 Thus the transler rale for an acceplor 1s given
by

kTa_—‘i—NDkRC—j*“tﬂ'r)kRBCﬂEd B R R T T T T e R (29)

n n
These transfer rates k1g4 and k7, are finite for all the ime and satisfy the quadralic dependence
al high concentrations of active ions, as they were expecled experimenially,

The fluorescence intensity can be analyzed by the simultaneous calculation of eqs.
(24),(25),(29) and (13). A solution in steady slate was exactly abtained as as a function of the
concentrations of donors and acceptors. In case of Iransient analysis of lluorescence, the non-

linear rate equation was solved numencally for the exact solution was harcly obtamed
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3. Aunalysis of Experimental results
3.1. Experunental

The glass samples under investigation contained TbpO3 and Nap (O  in addition to the
nelwork formers (NWF) such as SiOp, GeO2, B20O3 and Po(G5. Their compositions  are
expressed in terms of molar percentages x, y and zas X NWF + y NagO + z Thp (O3, where
X+y+z=100 and y/x=0.5. The glass samples with z=0.3 to 7.0 for each NWF were prepared
as listed in table 1. Alter mixing the raw malerials of SiO2, K GeQy, H3PO4, H3BO3, Nap O3
and Thp O3 in a clean polyethylene botlle, glass batches were melted for a few hours in a Pt
crucible in a furnace at temperatures between 900°C and 1300°C They were then cast and
annealed under suitable conditions. Befare measuring the fluorescence intensity, all of the
glasses were cut and polished in order to ensure the same surface condition

The intensity of the  sleady-state fluorescence was measured under 360nm
wavelength excitation from a mercury lamp at room temperature The apparatus for the
measurement consisted of the mercury lamp, band-pass and UV-cutting filters, a
monochromator and a photomulliplier . The wavelength-dependent sensitivity of the
detection system was calibraled by a standard tungsten lamp  The fluorescence of Tod +
under ultra-violet excitation is initiated mainly by electrons al 5D3 and 2Dy levels The
fluorescence intensily from the 5D4“7F5 transition (A=450 nm) in silicate, phosphate,
borate and germanale glasses was measured as a function of Tbo O3 concentration, as shown
in Fig.7. Al measurements were carried out at room temperalure. At the lower
concentrations than 4 mol% of TbpOy , the fluorescence intensity of all glasses becomes
stronger with increasing Tbo2(Og content. A slight tendency of the concentration quenching of
fluorescence is observed at the higher concentrations. Figure 8 shows the relative
fluorescence intensity in steady-state from the the °D3—/Fg transition (A=410 nm) as a
function of ThpO3 content with a 360nm wavelength excitalion . The quenching of
fluorescence with increasing Thp(O3 concentration was observed in each of glasses. The

fluorescence from the 5D3 state has much stronger tendency of concentration quenching
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than that from the 5Dy state. This concentration quenching of the 5D3 fluorescence s
recognized as a result of energy transfer from excited Tb3 * jons at the 5D3 state to ground
state Tb3 * jons [31,32).

The fluorescence under ultra-violet excitation originates largely from the 5D3 level
when the concentration of Th3 * is low Since the energy difference between D3 and ® Dy
levels is equal to that between 7F0 and 7F6, energy transfer can take place between 503~
5D4 transition and 7F5- 7Fo transition as ilustrated schematically in Fig9  The energy
transfer from °D3- D4 transition 1o /Fg- /Fp transition simultaneously generales the
energy relaxation from the 5D3 state to the 5D4 state For this reason it is called 5D3» 5Dy
cross-relaxation. This °D3- 9Dg4 cross-relaxalion becomes important  with increasing
Tb3 * concentration, resulting in the concentration quenching of the of the 5D3 lluorescence
and the increase of fluorescence from the 2D4 state Simultaneous measurements of
fluorescence from 5D3 and 5D4 levels are more informative lo understand lhe 503- SDy
cross-relaxation of Tb3 * jons. Figure 10 shows the time dependence of Tb3 * fluorescence
intensity from the D3 excited donor state and from the 9D4 melastable state in silicate
glasses measured under the Npo-laser excitation . Ground state T3 * jons are initially
excited 1o the 5D3 slate by the pulsed excitation at A=337nm with the half width of 1ns and
then relax by energy transfer or by radiation of a photon Non-exponential decays, which
are the characteristic behavior of the donor fluorescence under the influence of energy
transfer, are observed for the 9D3 fluorescence. The intrinsic life-time of the D3
fluorescence was evaluated to be 1.0msec. The non-exponential decay of the 5D3
fluorescence and the slow rise of5D4 fluorescence reflect the population change from 5D3
to SD4 due 1o the 5D3—5Dy /Fg—/Fg cross-relaxation The intrinsic life time of the
5D4 fluorescence was measured to be 2. 5msec. Thus il is possible to investigate the 5D3-
5D4 cross-relaxation of Tb3 * ions by the analysis of the fluorescence intensity originating

from the 5D3 level



3.2. Steady-state analysis
An exact solution in a steady-slale can be obtained from the rate equation (24) It 1s
possible 10 put k1g=K1a=k1 for the 503 ~5D4  cross-relaxation between Tb3 * ions The

equation for Dg in a steady-state under a continuous excitation g is

ke (gthe +hy) pi+{kalgthrtha) +hr(ka-g)}pa-gka =0 . (30)
where
/(r:k'|'d:k'ra:4—ﬂ P\S/\'RQ“L4/'TRS/’(RB—C—i ........................................ (31)
3 Ra Ry,

Cg is the concentration of the Tb3 * ions and B is a parameter characterizing the

segregation of the Tb3 * jons. Equation (31) expressing the transfer rate is
restricled to the case of d-d interaction. Solving above quadratic equation of PDg , one

gels the donor population of T3 * ions as

D) = - tkrthat g) ka- (ka-g) ky * ﬂ(kwkmg)km (kate) kphz-4 g ka( k/\*kr)ki ...... (32)
2 k(kytkntg) ’ J

The steady state fluorescence from the 5D3 level of Tb3 * ions in glasses were analyzed
using equation (32) It was determined k;:;=1000 sec’l  from the 5D3 decay curves for
0.3mol% of TbpO3. Figure 11 shows the experimental and theoretical resulls  for the
fluorescence intensity as a function of the Tb3 * ion concentration A quenching of the
fluorescence with increasing T3 * jon concentralion is observed for each of the glasses
The solid curves are the theoretical results analyzed by the non-linear model wilh
parameters listed in table 2. The non-radiative transition rate kN was neglected against
km. These parameters were determined by curve filting , taking account of the consistency
with the following results of time-dependent analysis.  Since the non-radiative transition
rate increases with increasing  dopant concentration, the concentration dependence of ka
was introduced as Ka=Cp o+ Ca 1Cg. The distance Ry, was expected to be 0.4nm, since this is

the minimum distance between two Tb3 * jonsin  crystalline TbpO3. The excitation of

acceptors is dissipated as phonons or infrared radiation. The mulli-phonon process [33,34]



will be dominant for the relaxaton from the 7Fj (}=0-6) lavels of Th3 ' In addition to
the cross-relaxation from the 903—5D4 to 7Fg—7Fg Iransitions, phono-assisied cross-
relaxation was reported lrom the 5D3=5Ds to /Fg—7F and TFg—7Fp transiions |35
Taking these lransitions 10 the 7F0 , 7Fy and 7Fp levels into consideralion the oblained
value of ka=5x1 03 at their medium concentration of Th3 * ions  corresponds 1o the report
on the energy relaxation by multi-phonon processes [36] From the experimental resulls n
reference [36], the relaxalion rate of acceplors were expecled 10 be Ka=1x10% 0 silicate
gfasses.

Paramelers Rq andD were calculated from the concentration dependence of kv The
parameters obtained for the Tb3 * cross-relaxation and segregation are listed 1n lable 3.
The critical Iransfer distances Rg were estimated to be 1.0nm~1.inm. The segregation
term 4nBH,12C@Q}, expressing the number of Th3 *ions at the second nearest neighbor
position, is in the range 0.4 ~ 5.1 for silicale, phosphate, borate and germanate glasses
The positive values of 4NBRn2%Cd indicate lhe presence of segregation m excess of the
average disinbution Judging from these values, the segregation of T3 * jons in  sihcate

and germanate glasses is stronger than that in borate and phosphate glasses

3.3. Transient analysis
The decay curves for the donor fluorescence under the influence of the 503 —9Dyq

cross-relaxation  were analyzed numerically using the rate equation (24) Figure 12

shows the experimental points of the 503—’7F5 emission and the fitted curves by the non-

linear analysis in silicate glasses. Non-exponential decays of fluorescence inlensity were

observed at all conteats of TbpO3. The radiative relaxation rate of donors, kR were

determined fo be 1.0x103 from the 503 decay curve for 0.3mol% of TbpoOQy  The

population of acceptors at t=0 and the energy relaxation rale of acceptors were assumed (0 be
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zero in the analysis, namely {)a(0)=0 and kn=0 . The rapid decay of the fluorescence
from the ®Ds5 state with increasing Tbp O3 content is due to the cross-relaxation, which
transfers electrons from the excited state (5 D3) lo the metastable state (5 Dy4) of the donor
ions and excites acceptors. We can neglect the population of the 5D4 metastable state in the
analysis, since the 5D4 state has no resonant transitions affecting the cross-relaxation
excep! through the migration or the back-transfer of the excitation It was estimale by the
curve fitting to the experimental results that PK0)=0.7, Re®=3x10"54m® and f=1x10"
36m4  are taken as common parameters for the various Tbp O3 contents, assuming electric
dipole-dipole interaclion. These parameters obtained by the time-dependent analysis
correspond to those by the steady-state analysis Alhough there found a significant
disagreement that the transient analysis gave a much less estimation of the relaxation rate of
acceptors than that by the steady-state analysis The energy relaxation rate of acceptors was
estimated to be /<A<‘1OO from the transient analysis. It is expected that Ka=1x1 0% from
experimental results on multi-phonon relaxations mentioned above.  Consequently, the
energy relaxation rate of acceptors obtained by the steady-state analysis seems to be more
reliable than that by the transient analysis The disagreement in he evaluation of acceptor
relaxation between the steady-state analysis and the transient analysis will be mainly due to
an effect of energy back-transfer. The effect of energy back-transfer on the fluorescence
decays of donors will be discussed later. The migration of energy may be another process
causing discrepancy betwean the theoretical expectations and the experimental results. The
migration leading to a macroscopic equilibrium of energy will be important at the initial
part of flarescence decays.

Next, experimental results for the Tb3 *—Nd3 * energy transfer were examined by

means of a numerical calculation. The energy transfer from the 5D4 "7F4 transition  of
TH3* to the 41g; o~ and4(‘x5/2 transition of Nd3* was reported [16] This process of
energy transfer from Tb3* to Nd3* is illusirated schematically in Fig.13 In the analysis,

this energy transfer was approximated to a simple system expressed by the rate equation
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(24). The fivorescence decay curves were expressed in lerms of the inokuli-tHirayama
equation In reference [16). Figure 14 shows the companson between the presem non-
linear analysis and the Inokuli-Hirayama equation for the decay curves of the TH3 *
fluorescence in Ca(PO3) 2 glasses under the influence of energy Iransfer from 1bY " to
Nd3 t. The curve fit parameters by the non-linear model is lisled In table 4 The
parameters Ry and [} were estimated as common paramaters for the various molar ratios
NdTb. The concentration of Tb3 * is estimated to be 2x1026m-3. The best fit parameters
wers ReP=1.5x1034n6 and B=1x1037m4 for the various concenlrations of Nd3 * The
critical distance was calculated at Rp=1.1Tam In this case, the effect of seqregation was
negligible since dnBRnQCaCd was estimated to be 001, It 1s preferable thal one can
estimate the parameters Kg, Ro, B. PKO) and Pa( 0) 1o be independent of the rations
Nd/Tb. We can also find that both the non-linear model and the Inokuti-Hirayama equation
give good filtings to the experimental results of donor fluorescence It was a surprise that
these two analyses give similar decay curves in the time region longer than the relaxalion
time of the system. However, it should be noted that the decay curves predicled from the
Inokuti-Hirayama equation are non-exponenlial n its oature, even at low acceptor
concentratien, and that the first derivative of the Inokuli-Hirayama equation becomes
infinite at t = 0 . In order to examine the differences between these models, decay curves
predicted from them were compared in & very short time range, as shown Fig 15. The decay
curves prediclted from the non-linear analysis become exponential near the initial point,
yielding a reasonable energy transfer rate at t = 0 Experimental results on the donor
fluorescence supports single-exponential decays as a short time response just after a pulsed

excitation.
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Table 1 Sample data of Tb3+-doped glasses.

NW F S0, GeO, B0, PO; |
Base glass 67510,+33Na,0|67/Ge0,+33Na,0|678,0,+33Na,0(67P,0,+33Na, O
compasition (Moi)

Sample composition X NWF+y Na,0+z Tb,0,
(Mmako) (x ¥y +z2=100, y/x =0.5) )
Doped Tb,0, (mol%b) 2=03,07,10,15 25, 40,60 and 70
Melting temperature 1300 °C 1000 °C 1200 °C 900 °C
Annealing 400~100 °C 450~100 °C 450~100 °C | 200~100 °C
- 20 °C [ hour -
Size 5mm x5 mmx 8 mm
—/30
b :
N D3 ]
3.0~
5
- Dy —20 "
€
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Fig 9. Simplified energy levels of Tb3 * jons Thick arrows iliustrate

the 5D3— 5D4 cross-relaxation between neighboring T3 * ions
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Table 2.
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Fig.11. Steady-state fluorescence intensity for the ievel of
o' with the origins displaced for clarity. The quenching
of the fluorescence with Increasing Tb,O, concentration
was observed in all glasses.

Curve fit parameters of Tb3*-Tb3* energy transfer in sleady-state
Host Glass Silicate Phosphate Germanate Borate
kg (sec 1) 1x10° 1x10° 1x103 1x103
kao (sec 1) 70 56 117 53
ka, (sec ! m3) 3.5x10°28 1.2x10°25 1.5x10°2% 1.8x10 26
Ro® (mf) 6.7x10 54 6.3x10 54 3.4x105%4| 3.7x10°%*
x 3. lxiir=9 1.4%x10°21 1.3x10°24 1.3x10 24
B (m*) 1.4x10° 36 2.4x10°3%7 1.5% 1028 6.3x10°37
g (sec!) 659 72 91 50
kg : radiative transition rate of donors .

ey, =

4mn

RE = &y
4 X HZEC

& : acoefficient .

lf Ca(£ )dEj WEVHE) dE

£

B : acoefficient charactenzing the segregation .

g : excitalion rale of donors .

kao + Crp kay : energy relaxation rate of acceplors .
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Table 3 Parameters of cross-relaxation and segregation.

Host Glass Rq (nmy 4 MBRA2C,Cy
Silicate 1.37 3.4
Phosphate 1.36 0.1
(Germanate 1.23 2.0
Borate 1.24 0.6

Re : crtical distance of energy transfer.

4 nBancaCd - the number of the condensed Th3 * ions
at the second nearest netghbouring position.

Dols - experimental
Solid curves:non-linear analysis

—_
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\\\10!1’\0”/0
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o
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N2 5mol%
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TIME ( usec)

Fig.12. Decay curves of donor fluorescence under the

. 5 5 . q
influence of the "D,- "D, cross-relaxation. Theoretical

curves (solid curves) were fitted to the experimental
results (dots).
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Paramelers kR, Rg. B, paK0) and pa(0} were
independent of the rations Nd/Th.

Curve fit parameters for the TH3*+-Ng3+ enerQy transfer

delermined to be

Mclar Ratio |Nd/Tb = 0.0 |Nd/Tb = 0.2 Nd/ib = 0.5 Nd/Tb = 1.0
kp (sec!) 400 400 400 400
ky (sec!) 32 109 227 283 |
ka (sect) o 5 1.5 5
Krg (sec! ) o 2.4x103 6.0x103 1.2x10°
| pa(1=0) 1.0 1.0 1.0 1.0
P.(t=0) 0.0 0.0 0.1 0.25
C, (m?) 0.0 Ax125 1x1026 | 2x1026
_RgS (wf) —_— 2x10 54 2x10 54 2x10°54
p_(uw') — 1x10-37 1x10-37 1x10-37
kg : radiative transition rate of donors .
K : non-radhalive tansition rate of donoss .
kA : energy relaxation rate of acceptors .
ktq: energy transfer mte froma donor to acceptors.
C, : concentration of acceptors .

B : acoefficient characterizing the segregation .
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Fig.15. Comparision of decay curves predicted by the non-linear model
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4. Stochastic model
4.1. Stochastic rate equations

in previous models, energy ‘ransfer were analyzed by rate equations far lhe averaged
populations of donors and acceptors. However these averaged populations, P gt) and pPy(t),
might be inadequate to represent the status of the system. Since the transfer of energy
induced mainly by mult-polar interaction effective oniy in a short distance, the local
distribution of acceptors around the excited donar will bhe dominant for he dynamics of
energy transfer. Thus the consideralion of iocal distribution of excilatigns is preferable
for more accurate analysis of energy transfer.  This consideration of individual excitations
on donors and acceplors will be performed by  discriminating  all active ions and by
quantizing energy associated with all transitions. The idea of energy quantizalion is applied
to the analysis of energy transfer for the first time. Most models including the non-tinear
model and the Forster model, have never satisfied the discrete properly of energy, since the
analyses were based on the infinitesimal flow of energy in those madels. As a rasull of
quantization of energy, all transitions should be stochastically calculated. It is
appropriate to build a new model for energy transfer based on the elementary process of
pair-transfer, considering the discrimination of all active ions and lhe quantzalion of
transferred energy [41].

The time development for the excitations of the i-th donor and the j|-th acceptor at t+At

is given by the following equation,

Na
r pdi(l ‘Al) = At g(l-pdi(l))- X k-r([ij) Al Ddi(l) (l—psj(l)) - (kR+kN) At p(h(l)- =1 ~ Nd
=1

Nd

Pafitr AU = 3 ke(rif) 81 D) (1-Pafl)) = ka AL P, . j=1 = Na
i=1
where Atis a small step of lime, g is the excitation rate of donors, Na is the number of

acceptors, Ndis the number of donors, /(T(I'i)') is the energy transfer rate from a donor to

the acceptor at the distance of rjj, kg is the radiative transition rate of donors, kp is the



non-radialive transition rale of donors, and Ka is the energy relaxation rale of acceptors
Since this is an stochaslic approach, the time dependence of the excitations of donors and
acceptors should be formalized in a difference equalion. All possible transfer paths from
excied donors to ground stale acceptors are explicilly explained in equation (33) using
two-body expansion. Unlke mast models, Ihe excitation and the translerred anergy is
quantized 1n this model. Hence, the population of donors and acceptors must be equal to 0 or
1. Namely, P¢(1)=0,1 and Dy(1)=0,1 tor all jand | . These conditions of the transitions
are quite reasonable from the quantum mechanical point of view. The schematic flow of
energy for a donor-acceptor pair is shown in Fig.16. Donors are excited al the first step.
Then they relax their excitations radiatively or non-radialively, or simultaneously
transfer some energy 10 acceptors. That the energy transfer is mostly a Iwo-body process,
allows to use the two-body expansion for the modelng of the complex donor-acceplors
system,

Il is informative to compare the non-linear model, the Foérsler model and the stochastlic

model in a form of rale equalion. The rale equation for the stochastic model can be given as

L0 Na .
f ‘d_dl‘() = g(1-Pg)) - 2 kr(6) Pa® (-0 - (krthn) P, 151~ Nd
J=1
| T G AR § <t (34)
dpg & .
—(J_;‘—: Z k‘((l"\J) Ddi(() (l'pﬂj(l)) - ka DEJ({) . j=1 - Na

=
This expression in a rale equation might lose the exactness of the stochastic model However,
we can easily understand- this coupled equation as an extension of the non-linear model,
comparing wilh the rate equation (24). Egualion (34) can be recognized also as an
extension of the Férstec’s rate equation. f is sull imponant that equalion (34) s
stochastic rate equation. Migrations, diftusions and back lransfer ol energy are neglected

here for simplicity
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4.2. Analysis of experimental data by Monte Carlo simulations

Experimental results for the Tb3 *—Nd3 * energy transfer [16] were numerically
analyzed by means of a computer simulation based on eqg (33). In the calculation, 3200
excited donors and 12800 ground state acceptors were randomly generated as the initial
condition. The radiative transition of donors, the energy transfer from donors to acceptors
within the pair-distance of 3nm, and the energy relaxalion of acceptors were
stochastically calculated step by step . The energy moves from the excited donor mostly 1o
its nearest acceptor . Transfer of energy to farither acceptors will be negligible small for
an actual system. Consequently, the culoff at 3nm in the calculalion of energy lransfer is
considered enough due to the short critical transfer distance about 1.4nm. However, the
energy transfer for all probable combinations of donors and acceptors is expected to be
evaluated. The The dependence of the transfer probability on the distance is r-6 r-8 r-10
for d-d , d-q and q-q interactions, respectively. The generation rate, g was supposed 1o be
zero for the decay curves just after a pulsed excitation.

Simulated curves for the d-d, the d-q and the q-q interactions, were fitted to the
experimental points of the donor fluorescence, as shown in Fig.17. The energy transfer is
from the ®D4 =7 Fy4 transition of Tb3* ions to the 4|9/2'* 4Ggp transitions of Nd3 *
ions. The radiative transition rate of donors kg was determined at 430sec” | by a single
exponential fit to the experimental points of Nd/Tb=0. The critical transfer distance, Rg
was evaluated in stead of the function kT(r;j) . The function k+v(r) was assumed in the
form,

aty = ew (Roy =
Parameters ka and Ry listed in Table 5 were determined to give the best fits in a long time
range. A definite value of ka is obtained only on the assumption of d-g interaction  Figure
18 shows the behavior in a short time range given by another trial of calculation with the
same set of parameters. It is clarified that the results of the calculation supposing ag-q

interactions changed too much with time and that of d-d interactions, too little The decay

33—



curves of d-g interaction (rg) seems the best fit to explain the experimental data in the
whole time range belween 10pus and 1ms. Figure 19 shows the histogram to clarify the
deviations of the calculations from the experimental data for 100 trials of d-d, d-g and qg-q
interaction models, respectively. Il is evident that d-q interactions fit best among those.
The validity of the stochastic model was examined by comparing the parameter “ka
with other experimental results. We examined the obtained parameter kA by comparing
with other experimental results. it is known that the Nd3 * ions excited at the 4Gg;n state
relax to their ground state mainly via the 4F3/2 state. From some experimental results
[42,43], the parameter ka was estimated to be about 2x103sec 1 which include the life
time at the 4Fq, o state. It was found that the obtained value ka=370sec” ! by our Monte
Carlo simulation was much smaller that thal by experiments. This underestimation of the
relaxation rate of acceptors will be brought by the neglects of energy back-transfer. The
analysis without considering the back-lransfer of excitation will commonly give an
underestimaled rate of energy relaxation for acceptors. Since the pair of the excited
acceptor and the ground state donor is always generaled as a result of the energy transfer in
the forward direction, some excitations of acceptors will go back to the donors nearby. Thus
the net transfer of energy from donors to acceptors is reduced by the presence of energy
back-transfer. A better agreement will be obtained by an analysis considering the back
transfer processes. An extended calculation considering the back-transfer processes, will
be carried out in the next chapter. The Monte Carlo technique used here is proved effective
lo calculate the complex interaction processes of the energy transfer kinetics and 1o

evaluate the additional effects of migrations and/or back-transfers.
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Table 5 Oblained arameters of best fit curves for the energy transfer
from Tb*" to Nd°* ions determined by the stochastic model.

interaction d-d d-q g-q
dependence on r -6 -8 -10
ky (sec™) 430 430 430
k, (sec™) <20 370+40 > 5000
R, (nm) 1.39 1.36 1.30
T (°D,) O experimental[16]

\
J

FLUORESCENCE INTENSITY (a.u.)

exponential fit

Nd/Tb=1.0

0.1 [ [ |
0 200 400 600 800
TIME (Usec)
Fig.18. Decay curves of donor fluorescence in a short

time range. The decay curves of d-q interaction seems
the best fit to explain the experimental data.
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5. Discussions
5.1. Origins of non-exponential responses

Phenomenological agreements between experimental results on the decay curves of donor
fluorescence and predictions by the Inokuti-Hirayama equation were often reported, however,
some difficullies with the Forster-like models were also pointed out. These difficulties such as
the infinite energy transfer rate at the initial point of decay curves and the inability to analyze
steady-states seem to be serious to the theoretical consistency of all Forster-like models. In the
non-linear model, the non-exponential responses were found to be caused by the non-linearity of
the rate equation.  From a mathematical point of view, it is quite reasonable to understand the
non-exponential decays as a result of the non-linearity in the rate equation. On the other hand,
the mathematical origin of the non-exponential decay in the Forster model are not clear for its
complex mathematical treatments. Our main question to the Fdorster-like models is the
theoretical consistency in getting the non-exponential decay function from a linear rate equation.
The exact solutions of a linear rate equation of first order must be single-exponential functions
from a mathematical requirement. We recognize that the Forster model gives good fits to
experimental results. Actually, the Inokuti-Hirayama equation have been most widely used for
the analysis of donor fluorescence. This usefulness of the Foérster model will mean that it gives a
good approximation to the decay functions of donor fluorescence in some conditions. And yet,
limitations to the Forster model are also unclear for its complicated procedures obtaining the
macroscopic response of the donor fluorescence. Therefore it is still worthwhile to investigate
the steps leading to the non-exponential function after treatments by Forster and Inokuti-
Hirayama. Since all of these models can give good fits to experimental results, one can hardly
find out the best model from phenomenological investigations. Thus, these models should be
examined especially concerning on the theoretical consistency.

The treatments in the Forster model were studied from a theoretical point of view. Equation
(1) is an acceptable equation for the donor population when the population of acceptors is
neglected. Equations (2) and (3) are exact solutions of eq. (1). It should be noticed that eq.(3)

is not a exact solution but an approximated one. The exact formula should be
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Ry
pM) = p© exp(-krt) exp{ -kr lim N w(r) (?-r\ﬂ)s dr ¢}

Rg=e Jo
since the function w(r) describes the the distribution of distance r. We can find that the function
m is still single-exponential from eq. (34) even with the introduction of distribution
function w(r) . It is quite natural 10 be single-exponential from a mathemaltical point of view On
the other hand, the function m given by eq. (4) is already non-exponential.  The non-

exponentiality of eq. (4) might not be clear. It is helpful 1o examine the case of discrele

distribution of acceptors. For a special case of w(r), eq (4) becomes
PO =poexp(-ket) [Nxexp{—kg(%—lo)st AN exp{-kR(If_To)st JPetle e g e (37)

where the number of distributed acceptors are assumed to be N at r=r{ and Ny al r=rp It is
apparent that the function mdefined by eq. (35) consists of a linear combination and non-
linear products of single-exponential functions. Thus the decay function (4) is non-exponential.
Reconsidering the transformation from eq. (3) to eq.(4), we find that the eq. (4) is an
approximation and that the non-exponential decays arise from eq. (4). Therefore it can be
concluded that the origin of non-exponential decays in the  Forster model is due to the
approximation of the exact solution to eq.(4). Such approximation required to obtain the decay
function seems to be fatal to the theoretical consistency of the Forster model. There might be
another possibility to remedy the Forster model. The main objective against our interpretations
will be that the original equation (1) is incorrect and that the correct funclion is given by
eq.(4). However, the exact rate equation for eq.(4) has not been found yet The proper
approach for the theoretical study of donor fluorescence should begin with the formalization of a
rate equation for the system. Since no rale equation from which eq.(4) is given as an exact
solution has been found in spite of mathematical investigations, | am negative to eq. (4) as a
theoretical function for the donor fluorescence under the influence of energy transfer.

Next question to be discussed in this chapter is what is the appropriate rate equation for the
non-exponential properties of the donor fluorescence. The basic physical picture of energy
transfer will be the following processes:

(1) Energy transfer occurs from excited donors to ground state acceplors.
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(2) The acceptor obtained energy will stay excited during its life lime,
(3) The deexcited donors and excited acceptors give no influence on the dynamics of energy
transter.
{4) The elemenlary process of energy transfer is a exchange of excitation between a donor
and an acceplor.
(5) Only one excitation is exchanged between a donor and an acceptor at a time.
In addition, it will be widely accepted that the pair-transfer function derived by the perturbation
melthod is applicable also to the complex interactions belween many donors and acceptors. All of
these conditions were well formalized only in the stochastic model. Therefor, the rate equation
(17) by the stochastic model is most acceptable. It is clear from eq. (16) and (17) that the
non-linearity related to the excitation of donors and acceptors is the point to generate non-
exponential decays. We can also derive the Forster model by introducing the averaged population
of excited ions and by reducing the non-linear rale equation to a fnear form. The non-linearity
had been regarded low enough in average. Although, it seems to be the mos! important effect for
the dynamics of energy transfer. Since the energy transfer occurs from a donor mainly to its
nearest acceptor, the non-linearity will be locally enhanced in the neighborhood of the excited
ion. Thus the non-linear effect is expected fo appear stronger than it had been believed.
Consequenlly, the non-linear effect associated with the excitation donors and acceptors has found

1o be the most acceptable origin to the non-exponential decays of donor fluorescence.

5.2. Effect of energy back-transfer

The last process considered is the back-transfer of energy. In this chapter, the fluorescence
of 163+ ions in glasses was analyzed by the non-linear model considering a back-transfer
process. While there were a few reports on the back-transfer of electronic excitation [54,55],
no correspondence with the experimental results has been examined. Once the energy transfer
from a donor 1o an acceptor has occurred, there exist the excited acceptor and the ground-state
donor in a distance enough to interact. Thus the energy of the excited acceptor can go back to the

ground-state donor nearby. From the basic formula by Forster and Dexter , energy transfer
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rate strongly depends on the overlap of emission and absorption spectra. Since the Stokes shift of
rare-earth ions is small, the increased overlap integral will lead to an enhancement of the back-
transfer. Furthermore, phonons at room témperature [51] and the spectral broadening
characteristic of glasses will increase the transfer rate in both directions As a consequence, not
only the forward-transfer but also the back-transfer will play an important role in the energy
transfer process. Roughly speaking , the Stokes shift of Tb3 * is same as the half width of the
emission lineshape from some experimental resulls [52,63]. They are typically about 10nm in
a silicate glass, hence we can estimate the efficiency of the back-transfer as Ng=0.2, assuming
that the normalized emission spectrum of donors and the normalized absorption spectrum of
acceptors are equal and that that these lineshapes of emission and absorption are Gaussian , as
shown in fig.20. The back-transfer rate of energy will be proportional to the acceptor
population in excited state and the donor population in ground state .

Introducing the population of acceptors, the excitation term and the back-transfer of
energy, we begin with the following rate equation for the population of donors and acceptors
in excited state under the influence of energy transfer.

dpg®
pdd[ = (1-pg) ) g - kr+ kN)Pg® - kr1a (1- pa () )pg®) *Np k1 Pa (D) (I- PoH))

d pat)
dt

=k1a (1-pa®) pa® -Nak1aPa V) (1- PO ) - ka pa®)

where Ky is the non-radiative transition rate of donors, ka is the energy relaxation rate of
acceptors, K14 is the energy transfer rate from a donor to acceptors, kTa is the energy transfer
rate from donors to an acceptor , T|g is the efficiency of the back-transfer and gis the excitation
rate of danors. It was difficult for the Forster and Inokuti-Hirayama models to include the back
transfer of energy for its disregarding of acceptor excitation.

It is possible to analyze the donor fluorescence with the effect of back transfer in a simple
case using the rate equation (36). For the fluorescence of Tb3 * jons, the life time of the 503
state is longer than that of the 5D4 sate. Hence, the consideration of the 504 metastable state
is preferable for the analysis of D3 %Dy cross-relaxation. It is possible ta put Ktg=kTa=kT
for the case of cross-relaxation between Tb3 * ions. The rate equation including the population of

5D4 state is given by
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dpg®

(iidt =(1-pg® ) & - ket kn)pq O - kv (1- pa (V)P W+ 1s kT P (DP4()

P et (1-pa) D) - Mo K Pa DPal) - kn o)

FFa—— Pal) p Mp K1 Pa (VP4 A Pa e (39)
d pg®

=k (10a) Pl < Mo k1 Pal) Palh) - kg Dal®
(¢

where D4(1) is the population of 5D4 state and k4 is the energy relaxation rate of the 5D4

state  The equation for PDg in steady-state under a continuous excitation g is

ke(gtkathn) {k4-r]g(g+kg+kN)}p%+{(g+kg+kN)(kAk4+2nn gkr)+ktka (ka-g)}pa- glhkakenpghr)=0 )

Solving above quadratic equation of Dq , one gets the donor population of Tb3 * jons as

- (krrknr )k akat 2 npekr) krkatka-g) *
2 kilkrtkntg) tka-Npthkr-*knt )}

PNaee) =

+'\/{(kR+kN+g)(kAk4+2r]ngkr)-l'krk4(kA—g)}}2+4kT(kR+kN+g) {ksnpkp-+hnre)g(kaks-npgky)
2 klkrthknte) (ke nptkr-+kntg))

where K7 is given by equation (31). the fluorescence intensity given by equation (25) is slightly
varied due lo the presence of 1]p. Parameters were evaluated by curve fitting to the
experimental results given in Fig.11. The effect of the back-transfer was investigated,
comparing the expectations from two analyses wilh and without the back-transfer. Very little
difference were found between them in the steady-state analysis. The reason for it will be thal the
population of acceptors under excitation from a mercury lamp is enough low for the back- V
transfer process 1o be negligible. The population of donors and acceptors were estimated less than
0.01 with these parameters.

The effect of energy back-transfer was expected to appear in the response donor fluorescence
under a strong excitation. The decay curves for the Tb3 * fluorescence after a pulsed excitation
by the No-laser excitation were analyzed numerically based on the non-linear model
considering the effect of energy back-transfer. It was determined kr=1000 sec’! and k4=250
sec’!  from the 5D3 and ©D4 decay curves for 0.3mol% of Tbp(Q3. Parameters for the

503 *'5D4 cross-relaxation were estimated by curve fitting to the experimental results given in
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Fig 12. Obtained paramefers are hsted in lable 6. The population of accepiors at 1=0 and the
non-radiative relaxation rate of donors were assumed to be zero i the analysis, namely
Na0)=0 and kn=0. A distance Ry of 0.4nm was used, which is the mmmum distance between

two Tb3 * ions in Tbo O3. The parameters obtained here correspond to those by the steady-state

analysis.
The excitation energy of acceptors is dissipaled by mulli-phonon process (54} In addition to
the cross-relaxation between the 503—'504 and the 7F5“7F0 transilions, phonon-assisled

cross-relaxation 1o the 7F6—'7F1 and 1he7F-6 ~7Fp transilions were teported [S5] Cnergy
diagram and main relaxation processes related lo the 5D3 -5D4 cross-relaxation of 3+ (s
shown schematically in Fig.22. Taking lhese transiions 1o lhe 7F0 . 'F1 and TFo levels into
consideration, the obtained value of the relaxation rate ol acceptors, ka=10% at their medium
concentration is supported by the report on the multi-phonon relaxation in glasses [56] The
estimated dependence of ka on Thp(Q3 conlent can be also understood from the multi-phonon
relaxation. With the increase of Tbp Gy . mulii-phonon relaxaion will be enhanced.
Consequently, kA will be greatly increased due la lhe low enargy gap between lhe 7!—'0 angd the
7F6 levels. This interpretation corresponds to the concentraton dependence of intensity  and
lifetime of 5D4 fluorescence [57] . The population density of donors at t=0 , 0) depends
slightly on Tbp O3 content in table 6. This reduction of P0) is underslood as a result of the
increased absorption of Incidenl light at high conceniration of dopanls. The observed red shift of
absorption edge of glasses in excilation range [57] is consistent with the concentralion
dependence of DK0) . The number of To3 * jons at the second nearesl neighbor postion 1s
evaluated to be about 47BRp2 Cg? = 3 at ils highest concenlration

in order to examine the effect of back-transfer, obtained parameters by present model were
compared with those by non-linear model withoul considering back-transfer and listed in table
7. It can be concluded that the energy relaxation rate of acceplors will be lower estimated by an
analysis without taking account of back-transfer. Similar elfect of back-transfer was reported
for Pr3 ¥ jons in a cubic lattice by D.L.Huber el al. [54] based on the Forster theory. The non-

linear model with back-transfer gives a fairly good fits, although the fits do not always coincide

with the experimental data at higher content of TbpOy. These errors may be mainly caused by
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the mugration of energy, which were neglected in our analysis. The initial spatial distribution of
excitation will change to a spatial equilibrium through migration within the donor system At
high concentration of Thy O3, the average donor separation is small and the probability for energy
migration between donors is large. The migration leading to a spalial equilibrium may be
impartant at the initial portion of the fluorescence decay of highly doped donors.

The effect of back-transfer on the dynamics of energy transfer from To3* 1o Nd3* jons was
also examined using the stochastic model. Curve fittings to the experimental results given in
Fig.13 were made by means of a computer simulalion. Parameters determined are listed in table
8. The d-q interaction model was still most acceptable for the better fitting to the experimental
data. The obtained relaxation rate of acceptors, ka=1080%100 for the d-q interaction is found
about three times greater than that by the stochastic analysis without considering back-transfer.

Energy diagram and main relaxation processes related to the energy transfer from T63* 1o

Nd3* ions is shown schematically in Fig.23. Acceptors are excited 1o the state 4(35/2 by the
energy transfer from Tb3 * ions and then relax to the metastable state 4F3/2 by emitling
phonons. The multi-phonon relaxation to the 4Fy,0 state and the fluorescence from the 4Fg o
state are considered to be dominant for the relaxation of acceptors. Some experimental results
[42,43] gave the energy relaxation rate of acceplors as kAw2x1O4 sec 1. The agreement
between the theoretical expectation and the experimental data is not perfect. However, the
stochastic mode! considering the energy back-transfer gave an acceptable estimation of the
relaxation rate. An agreement in numerical values of obtained parameters means a significant
support for the model. Therefore it can be concluded that effect of energy back-transfer should
be considered to evaluate the relaxation of acceptors through the measurement of donor
fluorescence.

The temperature dependence of the back-transfer was not examined in this study. It will be
interesting to investigale the parameter Tp as a function of temperature, since il is suggested
that the microscopic rates for backward and forward transfer are in the ratio of exp(- AE/KT),

where AE is the energy mismatch .
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Table 7. Comparison of parameters for Tt33+ TH enerqgy
transfer determined by analyses with and without
considering back-transfer of energy.

Analysis k. (sec') k,(sec ) R, (nm) B (m*)
with
back-transfer 1.0x10° = 5x10° 1.12 2x10°°
without
back-transfer 1.0x10° <100 1.37 2x10°¢
k, :radiative lransilion rale of donors.
. energy relaxation rate of acceptors.
k, y relaxat te of t
R, . critical distance of energy transfer for a donor-acceplor parr.
B parameler characterizing segregation of donors and acceptors
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Table 8. Parameters for the energy transfer between Tb*" and Nd™* ions
determined by the stochastic model considering back-transfer of energy.

interaction d-d d-q gq-q
dependence on r -6 -8 -10
k. (sec™) 430 430 430
k, (sec™) <500 1080+90 > 1700
R, (nm) 1.43 1.38 1.41
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6. Conclusions

The complex nature of the process of energy transfer between interacting ions in solids makes
it difficult to have one general theory which can apply to all physical cases This has led lo
development of several models to describe specific situations of energy transfer. The major point
of this paper is 1o present a more comprehensive model than the famous Foérster model. A model
based on a coupled rate equation was developed to remove the difficulties with all Forster-like
models. The non-linearity in the rate equalion is resulted from the consideration of acceptor
excitation, which was disregarded in the Forster model. It was shown that both the non-linear
model and the Forster model give good fits to the experimental results in Tb3 *.doped glasses.
However, theoretical advantages of the non-linear model to all Forster-like models are found
Obtaining a good fit between experimental data and the theorelical expectation is not enough to
justify the model. Theoretical consistency is another point to evaluate the model. A trial was
made 1o explain the macroscopic behavior of donor fluorescence from the elementary process of
energy transfer. Consequently, the non-linear model was developed into a stochastic model in
which all probable transitions including energy transfer were stochastically calculated for all
donors and acceptors without approximations. The elementary process of energy transfer
between a donor-acceptor pair were well connected 1o the macroscopic response of donor
fluorescence in the stochastic model

The Forster model, the non-linear model and the stochastic model were studied to evaluate the
origins of the non-exponential decays of donor fluorescence Examining above models, the
stochastic model, which is an extension of the non-linear model and the Forster model to include
the many-body effect, was found to be the most acceptable model for the donor fluorescence under
the influence of energy transfer. Some exira parameters are introduced in the stochastic model,
however, they are explicitly treated with physical picture based on the quantum mechanics The
non-linearity in the rate equation, discrimination of all active ions and the quantization of
transferred energy were essential to the stochastic model Thus it was concluded that the non-

exponential responses were caused by the non-linearity in the dynamics of energy transfer. The
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macroscopic response of a donor-acceptor system was well constructed from the theory of pair-
transfer using two-body expansion. There are many elements 10 be considered as stated in the
previous chapter, however, the quantization of ‘ransferred energy will be the most important
idea for the. detailed modeling of energy transfer. From a theoretical point of view, only the
quantization of energy associale with all transitions may be the principle for the energy transfer
related phenomena.

Stochastic approaches are required to carry out calculations satislying the quantization of
energy for the modeling. Computer simulations are more useful than analytical method for these
stochastic calculations. The Monte Carlo simulation is the best tool for the present, however, it
may has some difficulties in practical calculations. Computer simulations considering additional
effects such as energy migration and back-transfer of energy might be the case with difficulties.
Sine only one transition can be simulated at a time on a computer, the obtained result depends on
the algorithm by which all transitions are .simulated in a time sequence  This logical limitation
in the computer simulation seems to be serious to the calculation with additional effects giving
less influences on the dynamics of energy transfer. Thus both the computer simulation and the

analytical approach will continue to be important also in the future.
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Appendix

In this appendix, the derivation procedure from equation (17) to equation (18) is explained

’along with the Farster's trealments. The function J(1) is given by
|

RZ
JO= ﬁ\?—f 2 exp(-kr LRy T) dr
¢

‘Here the distribution of acceplors was assumed to be proporiional to the square ol lhe dislance
\

from a donor 1o acceptors. Changing the inlegration variable fromrto

|

| J(t)ziﬂ—(thRE)”SJ U exp(- 1) L
g

andsis 6, 8 and 10 for the dipole-dipole, the dipole-quadrupole and the quadrupcle-quadrupole
\
interactions. It is convenient to rewrite in the form

‘ 3/s (°
| J(t):BCSg j U exp(- 0 dL
Ce

'where

|
|

|




o= kal (RO

R e

g

By means of partial integration, one can get the following relation,

f " exp( - Uy db=-[ U exp(- 1) 1 - gf ¢ exp(- 1) o

3

-1-3/s

i

s

oo Cg
exp(- i) - —g—f Cexp(- 0y dr gj O exp(- 1) dL
0 0

We can substitute Cg«l in the integration for a large volume, restricting the analysis to a

transient response. Then the definite integral defined by equation (A6) can be approximated to

-1-3/s . :—§‘~3/s_ 5 *1 + 8. S 1-3/s
] P exp(- D =S - £T0-B ¢ S5
8

where ['(x) is the Gamma function defined as

C(x) = f (T exp(- Q) dC

Neglecting the higher order term than Cgl/z for Cgmo and $>3 , equation (AB6) can be

approximated to

L C_H/SeXp(-C) dC:%CJ/s_ g—T(l—%)

B
Utilizing equations (A3) and (A9), we obtain

L1378

I(t) ~ 1__35_r(]_%) Lg o0 e .

Thus the function J(1) containing parameters Cg, Ro, N and kg was derived as

J(t)= l_g_nca Rg I(1 "3/5)’:?(/@ t)3/5  coime samiy sass st o n € 0

And the more, the application of equation (19) to equation {18) would be unsuitable, since the

equation (18) is an approximated one neglecting the higher order term than 1/N
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