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ABSTRACT 

This dissertation presents the research work done for the degree of Doctor of 

philosophy. Considering the stress and displacement fields around an interface edge 

of an elastic and a power-law hardening materials joint, one single separable form 

solution of stress on the interface,  1

0ij ijr f


 


 , gives

 
stress continuity where 

ij denotes stress components, r  and   are polar coordinates,  is the eigenvalue 

and  ijf  is the angular function. However, the displacement on the interface in the 

power-law material is  1 ( 1)

0

n

i iu r g


 


 , and in the elastic material 

is  
0i iu r h





 , where iu is the displacement component, n is power-law 

hardening exponent,  ig  and  ih  are angular functions. Due to the dissimilarity 

of power of r the displacement does not become continuous. The theoretical study on 

singularity around an interface free edge of elastic/power-law hardening materials 

joint has not solved yet. This thesis solved the singular stress fields around an 

interface edge of elastic/elastic-plastic materials joint. The objective of this thesis is 

to present an iteration method to determine the stress and displacement fields around 

an interface edge of a joint in which materials behaves as an elastic and a power-law 

hardening material. J2-deformation plasticity theory under plane strain condition is 

assumed for the power-law hardening material. Both the balance of force and the 

continuity of displacements are satisfied on the interface iteratively. The stress fields 

are found to be singular with the type of 
1ir

 
singularity from the i-th order 

approximation, where r is the radial distance from the interface. Due to the increase 

of iteration, the discrepancy of the r dependence of the fields along the interface is 

decreased. The power of r in the stress equation depends on the hardening exponent n. 

 1i  or more singular terms exist in the i-th order approximation for  1n i i  . 

As n is increased the absolute value of the i-th order of singularity, 1i  , tends to be 

decreased to zero when 1 0i   .  



 ii 

An asymptotic analysis for singular stress fields around an interface-edge of 

dissimilar power-law hardening materials joint has also been presented. Both the 

balance of force and the continuity of displacement are satisfied on the interface for 

two dissimilar power-law hardening materials joint having different power-law 

hardening exponent. In the higher order approximation, the nonlinear effective stress 

term was expanded by Taylor series. Our analyses show the order of stress singularity 

has a dependency with the combination of hardening exponents. Multiple stress 

singular terms exist for  1 2 1n n  in the higher order approximation. The order of 

stress singularity has a dependency with the combination of hardening exponents, 

1 2 and n n . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGEMENTS 

 

I would like to express my thanks and gratitude to my supervisor, Prof. Yoshio 

ARAI whose invaluable advice and guidance in all stages of this research has made 

this work possible. His intelligent supervision with continuous and overflowing 

enthusiasm, unrelenting efforts, great patience and invaluable inputs made it easy to 

put the research ideas in the form that this dissertation presents. He has introduced me 

to the challenge and excitement of this topic. He has attempted to teach me the rigors 

and discipline needed to be a good researcher and I will value these lessons always.  

 

I am deeply grateful to my dissertation committee members, Prof. Hiroshi KATO,   

Prof. Kenichiro HORIO and Prof. Wakako ARAKI for graciously agreeing to review 

this dissertation, and their helpful comments. 

 

I wish to express my sincere thanks to the members of strength of materials 

laboratory. Special thanks to Mr. Toyomi Uchiyama for his help during the study. 

 

The financial support I have received in the duration of this research from the 

Ministry of Education, Science, Sports and Culture (MONBUSHO), Government of 

Japan in the form of scholarship is gratefully acknowledged. 

 

Finally, I wish to extend deepest sense of gratitude to my family members 

including my parents, wife and especially my mother-in-law and father-in-law for their 

endless love, and inspirations and mental support during the critical situation. 

 

 

 



 iv 

 

TABLE OF CONTENTS 

ABSTRACT                                                                     

ACKNOWLEDGEMENTS                                                   

TABLE OF CONTENTS                                                       

LIST OF SYMBOLS 

LIST OF FIGURES 

LIST OF TABLES 

CHAPTER 1  INTRODUCTION                                     

1.1.Introduction                                                             

1.2 Background                                           

1.3 Scope of the Research              

1.4 Objectives                                               

1.5 Outline of the thesis 

                                                

CHAPTER 2 SINGULAR STRESS FIELDS IN ELASTIC/POWER-LAW 

HARDENING MATERIALS JOINT         

2.1 Introduction                                                     

2.2 Formulation: Elastic/ Power-Law Hardening Materials Joint Case                                             

2.2.1 Stress and strain relationships                               

2.2.2 Numerical Shooting Method   

2.2.3 Equilibrium Equations  

2.2.4 Compatibility And Strain-Displacement Equations   

2.2.5 Boundary Conditions    

2.2.6 Solution Method  

2.2.7 Asymptotic Analysis   

2.2.8 Error Calculation For The Solution                         

2.3 Numerical Analysis on Singular Field Around Interface Edge                                  

     2.3.1 Finite Element Method (FEM) 

    2.3.1.1 Small Deformation Theory 

    2.3.1.2 Finite Deformation Theory                                          

     2.3.2 Finite Element Model and Mesh 

  2.3.3 Stress-Strain Relationship  

  2.3.4 Determination of the Stress Intensity Factor 0A                                           

1 

2 

5 

8 

8 

9 

10 

12 

12 

13 

14 

14 

14 

18 

19 

20 

21 

21 

22 

23 

26 

26 

1 

 

 

9 

 

 

i 

iii 

iv 

vii 

xii 

xvi 

 

 



 v 

2.4 Formulation of 0
th

 Order Approximation  

2.4.1 Formulation of 0
th

 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Bonded With Rigid Substrate   

2.4.2 Formulation of 0
th

 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction              

2.5 Formulation of 1
st
 Order Approximation 

2.5.1 Formulation of 1
st
 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Subjected To Forced Displacement 

2.5.1.1 Determination of the Stress Intensity Factor 1A   

2.5.1.2 Alternative way to Express The Definition of Stress Intensity 

Factor
1A
 

2.5.2
 

Formulation of 1
st
 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction 

2.6 Formulation of i
th

 Order Approximation                    

2.6.1 Formulation of i
th

 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Subjected to Forced Displacement  

  2.6.1.1 Determination of the Stress Intensity Factor iA  

2.6.2 Formulation of i
th

 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction 

2.7 Results For The Interface-Edge Problem of Elastic/Power-Law Hardening 

Materials Joint 

2.8 Summary of Elastic/Power-Law Hardening Materials Joint 

 

CHAPTER 3 SINGULAR STRESS FIELDS IN DISSIMILAR POWER-LAW 

HARDENING MATERIALS JOINT                                    

3.1 Introduction                              

3.2 Formulation: Two Power-Law Hardening Materials Joint Cases 

3.3 Solution Method 

3.4 Asymptotic Analysis 

3.5 Results for the Power-Law / Power-Law Materials Joint 

3.6 Summary of Power-Law Hardening/Power-Law Hardening Materials Joint 

 

 

125 

126 

128 

131 

140 

143 

 

125 

 

 

32 

 

32 

 

50 

54 

 

54 

73 

 

75 

 

77 

 

82 

 

82 

105 

 

107 

 

113 

123 



 vi 

 

CHAPTER 4  CONCLUSIONS AND RECOMMENDATIONS FOR           

FUTURE WORK  

  4.1 General conclusions  

 4.1.1 Conclusions on Elastic-plastic/Elastic materials joint  

4.1.2 Conclusions on Power-Law Hardening/ Power-Law Hardening materials 

joint  

  4.2 Future work     

  

REFERENCES                                                            

 

APPENDICES                                                               

 Appendix A                                                             

  Appendix B 

Appendix C 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

157 

 

 

149 

 

 

145 

157 

159 

161 

145 

 

 
145 

 

147 

148 



 vii 

LIST OF SYMBOLS 

 

Symbol Definition 

-(bar) With bar(-) all are in dimensionalized form 

′(prime) Derivative with respect to  of the quantity it is used with 

A′-derivative of A with respect to   

~(squiggle) Angular part of the (r, )separable quantity it is used over 

ζ -angular part of  [where =(r, )] 

 Generalized airy stress function 

0 Airy stress function for zero-th order approximation 

  
Airy stress function for first order approximation 

2  
Airy stress function for second order approximation 

i  
Airy stress function for i-th order approximation 

  
Angular variation of airy stress function  

0  
Angular variation of airy stress function for zero-th order 

approximation 

1  
Angular variation of airy stress function for first order approximation 

2  
Angular variation of airy stress function for second order 

approximation 

i  
Angular variation of airy stress function for i-th order approximation 



 viii 

 Power-law hardening constant 

ijδ  Two dimensional Kronecker delta (i, j=r, ) 

n Stress hardening exponent 

ν Generalized Poisson’s ratio 

ν
I
 Poisson’s ratio for elastic-plastic material 

ν
II
 Poisson’s ratio for elastic material 

E Generalized Young’s modulus 

E
I
 Young’s modulus for elastic-plastic material 

E
II
 Young’s modulus for elastic material 

A Generalized stress intensity factor 

A0 Stress intensity factor at zero-th order approximation 

A1 Stress intensity factor at first order approximation 

A2 Stress intensity factor at second order approximation 

Ai Stress intensity factor at i-th order approximation 

λ Generalized exponent of the stress singularity 

λ0 Exponent of the stress singularity for zero-th order approximation 

λ1 Exponent of the stress singularity for first order approximation 

λ2 Exponent of the stress singularity for second order approximation 

λi Exponent of the stress singularity for i-th order approximation 

iu  Displacement in i direction (i=r, ) 



 ix 

iu  
Angular variation of displacements 

I

iu  
Displacement in i direction (i=r, ) of elastic-plastic material 

II

iu  
Displacement in i direction (i=r, ) of elastic material 

i0u  Incremental displacement in i direction (i=r, ) of zero-th order 

approximation 

i1u  Incremental displacement in i direction (i=r, ) of first order 

approximation 

i2u  Incremental displacement in i direction (i=r, ) of second order 

approximation 

liu  Incremental displacement in l direction (l=r, ) of i-th order 

approximation 

 i 1
u  Total displacement in i direction (i=r, ) of first order approximation 

 i 2
u  Total displacement in i direction (i=r, ) of second order 

approximation 

 l i
u  Total displacement in l direction (l=r, ) of i-th order approximation 

I

ijε  Strain component(i, j=r, ) of elastic-plastic material 

II

ijε  Strain component(i, j=r, ) of elastic material 

ij0ε  Strain component(i, j=r, ) of zero-th order approximation 

ij1ε  Incremental strain component(i, j=r, ) of first order approximation 



 x 

ij2ε  Incremental strain component(i, j=r, ) of second order 

approximation 

ljiε  Incremental strain component(l, j=r, ) of i-th order approximation 

 ij 1
ε  Total strain (i, j=r, ) of first order approximation 

 ij 2
ε  Total strain (i, j=r, ) of second order approximation 

 lj i
ε  Total strain (i, j=r, ) of i-th order approximation 

ijζ  Stress component(i, j=r, ) 

ijζ  Angular portion of stress component 

I

ijζ  Stress component(i, j=r, ) of elastic-plastic material 

II

ijζ  Stress component(i, j=r, ) of elastic material 

ij0ζ  Incremental stress component(i, j=r, ) of zero-th order 

approximation 

ij1ζ  Incremental stress component(i, j=r, ) of first order approximation 

ij2ζ  Incremental stress component(i, j=r, ) of second order 

approximation 

ljiζ  Incremental stress component(l, j=r, ) of i-th order approximation 

 ij 1
ζ  Total stress (i, j=r, ) of first order approximation 



 xi 

 ij 2
ζ  Total stress (i, j=r, ) of second order approximation 

 lj i
ζ  Total stress (i, j=r, ) of i-th order approximation 

 

 

 

 

 

 



 xii 

LIST OF FIGURES 

 

No. Captions Page 

Fig. 1.1 Example of elastic-plastic /elastic material interface and 

illustration of stress singularity of elastic-plastic /elastic 

material joint 

2 

Fig. 2.1 Theoretical Model of Elastic-plastic/Elastic materials joint 11 

Fig. 2.2 Geometries considered and coordinates 11 

Fig. 2.3 Elastic-plastic/Elastic materials joint 15 

Fig. 2.4 Power-law hardening material bonded to rigid substrate 15 

Fig. 2.5 Schematic diagram of applying Traction from Power-law 

hardening material to the elastic material.(a) Traction from 

power-law hardening material (b) Traction to elastic 

material 

16 

Fig. 2.6 Schematic diagram of applying Forced displacement from 

elastic material to the power-law hardening material. (a) 

Forced displacement from elastic material (a) Forced 

displacement to power-law hardening material 

17 

Fig. 2.7 Schematic diagram of applying Traction from power-law 

hardening material to the elastic material.(a) Traction from 

power-law hardening material (b) Traction to elastic 

material 

18 

Fig. 2.8 FEM model of Power-law material bonded to rigid 

substrate 
24 

Fig. 2.9 FEM model of Elastic/power-law hardening materials joint 24 



 xiii 

Fig. 2.10 Mesh division near interface edge 25 

Fig. 2.11 Magnified mesh division near interface corner 25 

Fig. 2.12 log-log plot of  along r in rigid/power-law hardening 

material for n=2.4 

30 

Fig. 2.13 Convergence of  0 1   along r for n=2.4 30 

Fig. 2.14 Convergence of 0A  along r for n=2.4 30 

Fig. 2.15 log-log plot of  along r in rigid/power-law hardening 

material for n=1.3 

31 

Fig. 2.16 Convergence of  0 1   along r for n=1.3 31 

Fig. 2.17 Convergence of 0A  along r for n=1.3 31 

Fig. 2.18 Graphical form of stress singularity 1i  with n  113 

Fig. 2.19 Variation of incremental stresses on the interface with the 

iteration at 410r   

114 

Fig. 2.20 Variation of incremental stresses on the interface with the 

iteration at 410r   

114 

Fig. 2.21 Incremental displacements variation on the interface with 

the iteration at 410r   

115 

Fig. 2.22 Incremental displacements variation on the interface with 

the iteration at 410r   

116 

Fig. 2.23 Converging slope of log logij r   with iteration number 

at 410r   

116 

Fig. 2.24 Angular variation of stresses of 0
th

 order approximation 

near the interface edge of elastic/elastic-plastic materials 

joint for n=1.3 

117 

Fig. 2.25 Angular variation of incremental stresses of 1
st
 order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=1.3 

118 

   



 xiv 

Fig. 2.26 Angular variation of incremental stresses of 2
nd

 order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=1.3 

118 

Fig. 2.27 Angular variation of incremental stresses of 3
rd

 order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=1.3 

119 

Fig. 2.28 Angular variation of stresses of 0
th

 order approximation 

near the interface edge of elastic/elastic-plastic materials 

joint for n=2.4 

119 

Fig. 2.29 Angular variation of incremental stresses of 1
st
 order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=2.4 

120 

Fig. 2.30 Angular variation of incremental stresses of 2
nd

 order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=2.4 

120 

Fig. 2.31 Angular variation of total stresses after i-th order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=1.3 at 410r   

121 

Fig. 2.32 Angular variation of total stresses after i-th order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=2.4 at 410r   

121 

Fig. 2.33 Angular variation of total displacements after i-th order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=1.3 at 410r   

122 

Fig. 2.34 Angular variation of total displacements after i-th order 

approximation near the interface edge of 

elastic/elastic-plastic materials joint for n=2.4 at 410r   

122 

Fig. 3.1 Theoretical model 127 

Fig. 3.2 Analysis model geometries 127 

Fig. 3.3 Elastic-plastic/ Elastic-plastic materials joint 128 

Fig. 3.4 Material I (upper material) bonded to rigid substrate 129 

Fig. 3.5 Schematic diagram of applying Traction from upper 

material to the lower material. (a) Traction from upper 

material (b) Traction to lower material 
130 

   



 xv 

Fig. 3.6 Schematic diagram of applying Forced displacement from 

lower material to the power-law hardening material I 

(upper material). (a) Forced displacement from lower 

material  (b) Forced displacement to upper material 

130 

Fig. 3.7 Schematic diagram of applying Traction from power-law 

hardening material I to the power-law hardening material II 

(a) Traction from power-law hardening material I      

(b) Traction to power-law hardening material II 

131 

Fig. 3.8 Variation of stress singularity 1 1  with 2n for different 1n  140 

Fig. 3.9 Variation of stress singularity 1i 
 
with 1n for same 

difference of 1n and 2n  

141 

Fig. 3.10 Variation of stress singularity 1i 
 
with difference of 

1n and 2n for different 1n   

142 



 xvi 

LIST OF TABLES 

 

No. Captions Page 

Table 2.1 Mechanical Properties of jointed materials for 

elastic/power-law hardening materials joint 26 

Table 3.1 Mechanical Properties of jointed materials for dissimilar 

power-law hardening materials joint 140 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

 

1.1 INTRODUCTION 

The material researched in our project is the characteristics of singular fields 

around an interface edge of elastic/elastic-plastic materials joint. Several industrial 

applications require advanced materials that will fulfill demanding thermal and 

mechanical conditions. In most cases, no unique class of materials can sustain these 

challenging conditions. Due to the brittle nature of some materials, machining is not 

advisable. Production requires materials which are able to survive for a long time at 

high temperatures. Due to the resistant of high temperatures and suitable for 

machining, this elastic/elastic-plastic materials joint have extensive promising 

applications in combustion engine, gas turbine and heat exchanger. Elastic and 

elastic-plastic joints also found as a bimetals, composite materials with hybrid 

matrices, bonded circuits in micro-electronics, bonded solid rocket propellant grains 

with binder, coating on ceramic substrates, adhesively bonded parts and welded 

parts. In these components, damage is often observed along the bimaterial interface 

at locations where there is either material discontinuity or geometry discontinuity or 

both. Fig. 1.1 shows interfacial geometries of interest in engineering. The presence 

of localized damage suggests that there may be intensive stress accentuation at this 

interfacial discontinuity. Knowledge of these locally accentuated stress distributions 

is essential for understanding the initiation and growth of damage. Such 

understanding is important to improve design, both in the material tailoring level 

and in the component level. 
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(a)                                           (b) 

Fig. 1.1 Example of elastic-plastic /elastic material interface and illustration of stress 

singularity of elastic-plastic/elastic material joint. 

1.2 BACKGROUND 

With the increasing technological importance of joints with dissimilar materials, 

interface-edge stress fields and strength of jointed materials have also become a topic of 

major practical interest [1]. Elastic and power-law hardening materials joint is being 

increasingly used in engineering applications in order to profit from the advantages of 

each material [2]. The elasto-plastic interfacial problem has received considerable 

attention in the last decade enabling a thorough understanding to be developed. It is 

very important to clarify the fields for the engineering applications such as the strength 

evaluation of bonded elastic/power-law hardening materials joint and power-law 

hardening materials having different hardening exponent [3].  



3 
 

Due to the different mechanical properties of the jointed materials, very high 

stresses develop near the interface edge [4-6]. Stress singularities might exist in most 

cases around the interface edge of elastic/power-law hardening materials joint [4-6].  

Many studies have been directed toward computing the order of the stress 

singularity for various single and multiple-phase notch/wedge/crack geometries in both 

isotropic and anisotropic media. The stress singularities at the vertex of an elastic plate 

under extension were investigated in detail by Williams [4,5]. The published work on 

bimaterial interfaces is primarily for plastic deformation and for crack geometries [7,8] 

and interface notch geometries [9-12].Some studies have considered elastic or 

elastic-plastic bimaterials, [13-22]. Bogy [1,6,23], Chen and Nisitani [24] Hein and 

Erdagon [25] and Dempsy and Sinclair [26] presented the order of stress singularity 

using Mellin transform method at the isotropic elastic bimaterial wedge apex. 

Considering the influence of the regular terms, the stress singularities at the interface 

edge in elastic bi-materials with edge tractions was analyzed by Yang and Munz [27, 

28]. Dissimilar materials joint with arbitrary bonding angle was analyzed by Xu et al. 

[29, 30]. The aforementioned works focus on the analysis of singularities in the 

homogeneous elastic material and elastic/elastic bimaterial joint.  

In order to account in greater detail for the development of plastic deformation in 

the vicinity of the crack tip, Hutchinson [31], and Rice and Rosengren [32] performed 

an asymptotic analysis of the crack tip fields in a homogenous power-law hardening 

material.  

Recently, many researchers have investigated the elastic-plastic stress singularity of 

an interface crack between two bonded power-law hardening materials. Xia and Wang 
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[33,34] presented asymptotic analysis for interface crack in elastic-plastic material. 

Numerical solutions involving elasto-plastic behavior at an interface crack tip for a 

power-law hardening materials joint have been developed by Shih and Asaro [35-37]. In 

their work nearly separable singular fields have been characterized as small strain HRR 

type fields proposed by Hutchinson [31], and Rice and Rosengren [32]. They found that 

in bimaterial interface problems the stress and strain fields in the more compliant 

materials behave like those of a material with identical plastic properties bonded to a 

rigid substrate, and the near-tip stress fields in the higher hardening material are limited 

to those levels that can be attained in the lower hardening material. Xia and Wang [38] 

have made a higher-order asymptotic analysis on the plane strain interfacial crack 

problem in power-law hardening bimaterials which have different power, ,n each other 

and obtained the asymptotic fields. They found that along the interface ahead of crack 

tip the stress fields are co-order continuous while the displacement fields are cross-order 

continuous. Lau and Delale [39], Sckuhr et al.[40] as well as Rudge [41] presented a 

separable asymptotic solution on a edge bonded wedges of power-law material having 

the same hardening exponent, n .  

Considering the stress and displacement fields around an interface edge of an elastic 

and a power-law hardening materials joint, one single separable form solution of stress 

on the interface,  1

0ij ijr f


 


 , gives

 
stress continuity where ij denotes stress 

components, r  and   are polar coordinates,  is the eigenvalue and  ijf  is the 

angular function. However, the displacement on the interface in the power-law material 

is  1 ( 1)

0

n

i iu r g


 


 , and in the elastic material is  

0i iu r h





 , where iu is the 

displacement component, n is power-law hardening exponent,  ig  and  ih  are 

angular functions. Due to the dissimilarity of power of r the displacement does not 

become continuous. 
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In the dissimilar power-law hardening materials joint, the dissimilarity of the power 

of r also exist in the displacement field on the interface due to the different hardening 

exponent. Due to the dissimilarity of power of r the displacement fields are not 

continuous at the interface. The question then arises how to satisfy the displacement 

continuity condition on the interface, which is an unsolved problem for the power-law 

hardening materials joint  having different hardening exponent. 

In order to satisfy the continuous conditions of displacement and the equilibrium of 

force at the interface edge, Duva[42], Rahman[43], Reedy[44] ,Wang[45] and Xu et al. 

[46] modelized the elastic/power-law hardening materials joint as a power law 

hardening material on a rigid substrate. They conducted the asymptotic analysis similar 

to the nonlinear crack problem developed by Hutchinson [31].   

Following the previous studies, relatively little work is found in the literature 

concerning the determination of stress fields around interface-edge of dissimilar 

power-law materials joint.  

However, as far as we know, the theoretical study on singularity around an interface 

free edge of elastic/power-law hardening materials joint and power-law hardening 

materials joint having different hardening exponent has not yet been reported. 

1.3 SCOPE OF THE RESEARCH 

The scopes of this research include the following aspects: 

At the interface of two bonded materials the stresses and displacements should be 

continuous due to the following: 
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Two materials are jointed with each other. The traction which acts along the 

interface calculated from the power-law hardening material will be equal and opposite 

traction for the elastic material due to the mechanical equilibrium of forces (localization 

of balance of linear momentum on the interface). 

After joining of two materials, all grain boundary of elastic and elastic-plastic 

material are rigidly bonded with each other. The movement of one grain will be the 

same as another so the displacement along the interface must be continuous for the 

deformation at the interface. Due to the deformation of the structure could be 

compatible, the non-traction strains are continuous. So, the displacement at the interface 

should be continuous.
 

In the previous study, the displacement field of elastic material was assumed as 0,  

i. e., the elastic material was assumed as rigid. Obviously, in reality, the assumption has 

some problem because of the displacement field of the elastic material should have 

engineering interest. In elastic-plastic/elastic materials joint, the elastic material is brittle 

in many cases and hence the singular stress field and the displacement field of elastic 

material are important to evaluate the characteristics of strength of elastic/ elastic-plastic 

materials joint. Due to the existing singular stress and displacement fields in the elastic 

material, rigid/power-law hardening material model could not be applicable for the 

strength evaluation of the joint. So it is important to clarify the fields which satisfy the 

continuity condition of displacement and the equilibrium of force along the interface of 

elastic and power-law hardening materials joint. 

In this thesis, an iteration method is proposed for the determination of singular fields 

around an interface edge of an elastic and a power-law hardening materials joint. In the 
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proposed iteration method, to overcome the problem we have considered at the interface 

boundary the additional stress fields are set in the elastic side to satisfy stress continuity, 

the additional displacement fields in the elastic-plastic side to satisfy displacement 

continuity, successively. A governing differential equation in the iterative form obtained 

from the compatibility condition is solved theoretically to satisfy the continuity of 

displacement and the balance of force on the interface between an elastic material and a 

power-law hardening material joint. In order to satisfy the condition of stresses and 

displacements on the interface, an asymptotic expansion of the solution in the 

summation form is used. Due to the increase of iteration, the discrepancy of the r 

dependence of the fields is decreased. 

Using the same iterative method we satisfy the boundary conditions to determine the 

singular fields around an interface edge of two dissimilar power-law hardening 

materials joint having different hardening exponent. 

Singular exponents can be determined from the theoretical iterative solution. To 

have the stress intensity factor singular fields are compared with stress fields by FEM. 

Using the numerical analysis by FEM, stress fields of jointed materials can be 

determined where the determination of the singularity and stress intensity factor are 

impossible. So, theoretical iteration method is also important to determine the 

singularity. 

The aim of the present research is to contribute to a better understanding of 

determining the stress singularity of elastic-plastic and elastic materials joint interface 

by using asymptotic analysis. 
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1.4 OBJECTIVES 

The main objectives of this research are as follows: 

1. To present an iteration method by higher order asymptotic analysis for the 

determination of singular stress and displacement fields around an interface edge 

of two dissimilar materials joint in which materials behaves as an elastic and a 

power-law hardening material. 

2. To show the stress fields around the interface free-edge of elastic/elastic-plastic 

materials joint with the proposed iteration method by higher order asymptotic 

analysis under plane strain condition. 

1.5 OUTLINE OF THE THESIS 

The research work conducted for this project is completely presented in this 

dissertation, which is organized as follows. Chapter 1 is an introduction of the research, 

which describes the general introduction, background, the motivation, the scopes and 

the objectives of the project. In chapter 2, the current research in the area of nonlinear 

elastic-plastic material is jointed with linear elastic material are reviewed. The iteration 

method of theoretical analysis was discussed. The numerical results of Finite Element 

Method (FEM) were also discussed, which included comparison of theoretical analysis 

with FEM. The applicability of theoretical iteration method to the materials joint of two 

power-law hardening materials having different power-law hardening exponent are 

discussed in chapter 3.  Chapter 4 describes the concluding remarks and directions for 

future investigations regarding this research work. 
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CHAPTER 2 

SINGULAR STRESS FIELDS IN ELASTIC/ POWER-LAW HARDENING 

MATERIALS JOINT 

2.1 Introduction 

In this chapter, we solved for the singular stress and displacement fields around an 

interface edge of a joint formed by quarter planes in which materials behaves as an 

elastic and a power-law hardening material. We have formulated and solved under the 

plane strain condition. J2-deformation plasticity theory is assumed for the power-law 

hardening material. By taking the same wedge angle of two materials, our generic 

interface-edge model is as butt joint model with the interface-edge of two dissimilar 

elastic and power-law hardening materials. 

    The stress-strain behavior of most engineering materials, in particular metals and 

alloys, can be described by the Ramberg-Osgood model, which in uniaxial tensile 

deformation is expressed as, 

n

E


  

        
 (2.1) 

Where, E  is the Young’s modulus,  is a material constant called power-law 

hardening constant and n  is the stress hardening exponent. For most engineering 

materials n  ranges from 1 to 20 [47]. The first term in equation (2.1), representing 

elastic strain, varies linearly with . The second term, representing plastic strain, varies 

as the n -th power of  . When large loads are applied to the material producing full 

scale plastic deformation, the plastic strain dominates over the elastic strain. Even when 

small loads are applied, such that the overall stress is below yielding (and the overall 

plastic strain in the material is negligible), the local stress is highly accentuated at the 

immediate vicinity of material discontinuity and geometric discontinuity. In these 

regions, the local plastic strain (which scales as n ) still dominates over the local elastic 
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strain (which scales as ). Consequently, to analyze these local accentuated stresses in 

the vicinity of discontinuity in elastic-plastic materials, the deformation can be modeled 

as being purely plastic[31]. 

As interface edge is approached, the elastic strain presented as the first term is much 

smaller compared with the plastic strain presented as the second term of Eqn.(2.1), so 

that the first term can be neglected in asymptotic analysis. Under this condition, the 

material law, Eqn. (2.1) is simply replaced by a purely power-law hardening model, that 

is: 

n           (2.2) 

Eqn. (2.2) is the basic form of the power-law hardening material model used in this 

chapter. 

The thesis reported in this chapter is an asymptotic analysis for singular stress fields 

around an interface-edge of dissimilar power-law hardening materials joint under 

plane-strain condition and J2 deformation plasticity theory. 

In Section 2.2, we formulate the governing equations for the singular stress field under 

the plane strain when an elastic material is jointed with a power-law hardening material.  

An effective solution method of numerical shooting method with a fourth-order 

Runge-Kutta method is also presented. Numerical Analysis using Finite Element 

Method (FEM) on singular field around interface edge is presented in Section 2.3. 

Formulation of 0
th

 Order Approximation, 1
st
 Order Approximation and i

th
 Order 

Approximation are presented in Section 2.4, Section 2.5 and Section 2.6, respectively. 

Section 2.7 shows results for the interface-edge problem of two dissimilar 

elastic/power-law hardening materials joint. This chapter is concluded with summary in 

Section 2.8. 

2.2 Formulation: Elastic/ Power-Law Hardening Materials Joint Case 

Consider a joint plate of dissimilar materials shown in Fig. 2.1. Material I is 

considered as a power-law hardening material and material II is considered as an elastic 

material. Plane strain condition is assumed. 
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Fig. 2.1: Theoretical Model of Elastic-plastic/Elastic materials joint. 

 

Fig. 2.2: Geometries considered and coordinates. 
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2.2.1 Stress and strain relationships 

The generalized dimensionless relationship between strain and stress governed by 

a power law form and stress-strain relation in the elastic-plastic side is given by,  

13

2

I n I

ij e ijs   .         (2.3) 

In the elastic side the stress-strain relation is given by,  

  1
I

II II II II II II

ij ij kk ijII

E

E
        ,      (2.4) 

where, kk rr zz      ,
ij

ij

y





  ,

y

y
E


  , and 

ij

ij

y





 ,

3

2
e ij ijs s  , 

1

3
ij ij kk ijs     .The stresses and displacements of power-law hardening material are 

referred to with a superscript “I” while those of the elastic material, with a superscript 

“II”.  The dimensionless stress function   and coordinate r are given in terms of 

dimensional quantities (barred) by 2

yw    and r r w , where w  is the 

characteristic length which is taken as the half of the width of plate. It is noted that the 

barred quantities are the non-normalized field variables,( ,y y  ) is a reference point for 

the uniaxial stress strain curve,
 ij  and ij are the stress and strain components, where

,i j and k  are used for subscript indicates r or  . E is Young’s modulus,   is the 

Poisson’s ratio, ij  is the two dimensional Kronecker delta symbol,  and n  are 

hardening coefficient and hardening exponent, respectively.
e is the effective stress and 

ijs is the stress deviator. Summation conversion is assumed. 

2.2.2 Numerical Shooting Method 

The shooting method is actually an adaptation of the initial value schemes to solve 

boundary value problems. It is an effective tool to solve two point boundary value 

problems [45] and has been used with success in solving the differential equations 

arising in fracture mechanics of interface edge. The first step in two-point shooting is to 

start an initial value scheme at one of the boundaries and march towards the second 
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boundary. In an initial value problem the set of initial values of the dependent variable 

at the boundary is sufficient of find the solution at an increment of the dependent 

variable and hence the solution can march on. In the boundary value problem, however, 

not all the initial values are known at the start (since the problem is defined some 

boundary values too). The unknown initial values are guessed. After the second 

boundary is reached the mismatch of the given boundary conditions with the 

corresponding results from the initial value scheme with guessed initial values are 

computed. The mismatch is used to refine the guesses for the initial values and they are 

systematically changed until the boundary conditions are exactly satisfied. The success 

of shooting problem depends to a large extent on the guessed starting values [68, 69]. 

The joint problem of two materials joint is not truly a two point boundary value 

problem since boundary conditions are actually given in three points, namely the two 

free-surfaces and on the interface. The shooting technique though can be easily 

modified to accommodate this. To adapt the shooting technique to the joint problem of 

two materials joint, we simultaneously shoot from the two free surfaces (one on each 

component wedge) to the interface. At the interface we have to compute the mismatch 

in traction and displacement continuity conditions and adjust our guessed parameters 

accordingly. Here, in the first step we considered the traction only to adjust our guessed 

parameters. 

2.2.3 Equilibrium Equations 

The equilibrium equations are automatically satisfied for all stresses derived from 

the Airy stress function   when the stresses are defined in the following manner [48]: 

2

2 2

1 1
rr

r r r

 




 
 

 
,       (2.5) 

2

2r









,        (2.6) 

2

2

1 1
r

r r r


 


 

 
 

  
.       (2.7) 
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2.2.4 Compatibility and Strain-Displacement Equations 

    Using small deformation theory, the strain compatibility equation is
    

   
22 2

2 2 2 2

1 1 1 2
0.rr rr

rr r
r r r r r r r

 

 
 

 

  
   

    
   (2.8)  

 The small deformation strain-displacement relationships are written [48], 
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        (2.9) 
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      (2.11) 

2.2.5 Boundary Conditions 

    Stress free boundaries, balance of force and continuity of displacements on the 

interface are the boundary conditions of this problem. The boundary conditions can be 

expressed as follows in the polar coordinate system located on the interface edge for 

elastic/power-law hardening materials joint, 
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(2.12)

 

2.2.6 Solution Method  

    In the zero-th order approximation, the stress and displacement fields in the 

power-law hardening material are assumed to be the same as the ones in the plate 

jointed to rigid substrate instead of elastic material and subjected to the same tensile 

load.  
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Fig. 2.3: Elastic-plastic/Elastic materials joint. 

 

Fig. 2.4: Power-law hardening material bonded to rigid substrate. 
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The stress fields in the elastic material can be described by the fields of an elastic 

wedge which is subjected to distributed tractions along the one edge. The tractions are 

the same as the stress distributions on the rigid/power-law interface. 

      

(a)                                     (b) 

Fig. 2.5: Schematic diagram of applying Traction from Power-law hardening material to 

the elastic material.(a) Traction from power-law hardening material (b) Traction to 

elastic material. 

 

In the first order approximation, the power-law hardening material having the initial 

fields of the zero-th order approximation is subjected to a forced displacement which is 

the field on the edge of elastic material of the zero-th order approximation. 
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(a)                                  (b) 

Fig. 2.6: Schematic diagram of applying Forced displacement from elastic material to 

the power-law hardening material. (a) Forced displacement from elastic material (a) 

Forced displacement to power-law hardening material. 

 

The increase of stress fields in the elastic material can be described by the fields of 

an elastic wedge which is subjected to distributed tractions along the one edge. The 

magnitudes of the traction are the same as the stress distributions on the power-law 

material wedge. 
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(a)                                  (b) 

Fig. 2.7: Schematic diagram of applying Traction from power-law hardening material to 

the elastic material.(a) Traction from power-law hardening material (b) Traction to 

elastic material. 

 

2.2.7 Asymptotic Analysis 

 

    An asymptotic expansion of the Airy stress function in a separable form is assumed 

as, 

1
, 0,1,2,...ik k

i i

i

Ar i
   ,      (2.13) 

as 0,r  where k I for power-law hardening material and k II for elastic material. 

i is defined as the singular exponent in the i-th order of approximation. k

i  is the 

angular function of airy stress function in the i-th order of approximation. iA is a 

constant which is proportional to the stress intensity factor of i-th order incremental 

fields. iA
 
is defined as, 
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  1

0
, 0,1,2,....iI

i

i

A r i


 
 


        (2.14) 

0A is controlled by external loading. In the higher order approximation, to satisfy the 

displacement continuity condition on the interface 1A depends on 0A , 2A also depends on

0A which means iA
 has a dependency on 0A or external loading. 

2.2.8 Error Calculation for the Solution  

The error value is calculated by using the equation,  

   
2 2

error error1 error2 . 
      

(2.15) 

After integration, solution region is obtained with different error ranges which 

systematically cover the range of  
( )

0

i

I
 
 
 

 and 0 for different error. From the 

minimum error region, the range of   
( )

0

i

I
 
 
 

 and 0  is selected as the initial value 

for the integration of next step. The final region of the minimum error is taken with the 

region of  
( )

0

i

I
 
 
 

 and 0  contains two equal digits after the decimal point. The 

final solution is obtained from this minimum error region and calculated numerically 

the solution point where the minimum error occurs. The minimum error region is 

integrated with 200 smaller divisions and minimum error point is selected as the 

solution point and the corresponding   
( )

0

i

I
 
 
 

 and 0  is calculated as the solution. 

The iterative procedure stops when the error is less than 610 . After tentative solution, to 

get the exact solution it is necessary to correct the initial value of  0

I


which was 

assumed as 1. To get the exact value, it is necessary to satisfy  
0

1I

 



 . So initial 

value of  0

I


 becomes,    0 0
1.0

T
I I

 
 




 , where  

0

T
I

 



is the tentative solution 

obtained assuming  0 1.0I

 . 
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Assume at
2


  , 0 0,I   0 0,I


  

 
 0 0 0

0

1.0
, ,I I

T
I

 

  




 
  and after i-th 

integration at 0,             
( ) ( ) ( )

( )

0 0 0 0 0 0 0 0, , ,

i i i

I I i I I I I I I       
          

        
       

. 

The solution procedure is same as described above for seeking the minimum error. Due 

to the change of    0 0
1.0

T
I I

 
 




 , all angular function terms changes with the same 

ratio for the exact solution.  

 

2.3 Numerical Analysis on Singular Field Around Interface Edge 

In this section, we examine the numerical results of elastic and elastic-plastic 

materials joint interface. For this reason, a numerical model is considered to examine 

the singularity index of elastic and elastic-plastic materials joints interface. The 

numerical calculation is carried out on the basis of singularity theory. The power-law 

hardening prediction is considered on the numerical calculation for elastic-plastic 

material. The stress singularity fields of power-law hardening material are compared to 

examine the results. The continuity condition of displacement and stress components at 

the interface conflicts the existence of a separable form singular solution like 

 i iu r f  for the material pair. Applicability of the power-law/rigid materials joint 

model to ceramic/metal joint in regard to the interface-edge problem should be 

examined by numerical facts. In this section, we consider numerical model for 

elastic/power-law hardening butt joint to determine the stress and displacement 

distribution. One of the powerful numerical tools extensively used in fracture mechanics 

research in the Finite Element Method (FEM). In this chapter, we constructed an elastic 

and elastic-plastic butt joint model to analysis elastic and plastic deform material. For 

plastic deformation, we consider the power-law hardening materials prediction by small 

deformation and finite deformation theory. It was also analyzed that the stress and 

displacement distribution of elastic/power-law hardening butt joint interface is linear or 

nonlinear function for small deformation and finite deformation theory.  
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2.3.1 Finite Element Method (FEM) 

2.3.1.1 Small Deformation Theory 

 

The classical theory of isotropic plastic solids undergoing small deformations is 

based on the decomposition, 

, 0e p pu H H trH          (2.16) 

of the displacement gradient into elastic and plastic parts, where eH represents rotation 

and stretching of the material structure, while pH ,the plastic distorsion, characterizes 

the evolutions of dislocations and other defects through this structure. In this classical 

theory the plastic rotation pW the skew tensor in the decomposition p p pH E W  where,

pH into symmetric and skew parts-is essentially irrelevant, and it may be absorbed by 

its elastic counterpart without affecting the resulting field equations. Recent interest in 

the behavior of material at micron length scales has led to a growing literature 

concerned with strain gradient plasticity (Fleck and Hutchinson [49]; Gurtin [50]; 

Gudmundson [51]). A tracit central assumption of these gradient theories motivated, by 

experience with classical plasticity is that the constitutive theory not involve the plastic 

rotation-field pW ; consequently. 

To understand the issue of whether or not an isotropic theory of plasticity should 

involve the rotation field, it is useful to bear in mind that, the Cauchy stress T expends 

power during plastic flow in consort with plastic-strain rate pE ; the spin pW , whether it 

may be, involves no expenditure of power and, consequently, generates no dissipation. 

But the development of higher order (strain gradient) theory necessarily involves higher 

order stresses and this renders uncertain what form the underlying power expenditures 

should take. 

The principal of virtual power then led us to account for power expanded by the 

field pH , which we accomplish with the aid of second microscopic stress pT . We 

complete this accounting with the assumption that power expended in stretching and 

rotating the material structure has the form : eT H . So the power expended within any 

part P (sub region of the body), has the form, 

 : : :p p p p

V

T E T H S curlH dV  .     (2.17) 
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Consequences of the virtual power principal are that the classical macroscopic 

balances need be supplemented by micro force balance. 

 

2.3.1.2 Finite Deformation Theory 

 

A converted co-ordinate Lagrangian formulation of the field equations is employed 

with the initial unstressed state taken as reference. All fields quantities are considered to 

be functions of convected co-ordinates
iy . Based on the finite element analysis, body 

forces are neglected, the requirement of equilibrium is specified in terms of the principal 

of virtual work is written as; 

0ij ij ij ij

V S

dV u dS            (2.18) 

Here,
ij are the contravariant components of the Kirchhoff stress ( J  ,where is the 

Cauchy stress and J is the ratio of current to reference volume of a material element) 

on the deformed converted coordinate net. The quantitiesV and S  are the volume and 

surface, respectively. 

The nominal traction components, iT , and the Lagrangian strain components,
ij are 

given by 

 

 

,

, , ,

,

1
,

2

i ij kj i k j

ij i j j i ki k j

T u

u u u u

  



 

  
      (2.19) 

where,  is the surface normal in the reference configuration,
iju are the components 

of the displacement vector on the base vectors in the reference configuration and(), j

denotes convariant differentiation in the reference frame. 
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2.3.2 Finite Element Model and Mesh 

Theoretical elastic and elastic-plastic finite element model, rigid and power-law 

hardening model joint is shown in Fig.2.8 and Fig.2.9 was carried out using the finite 

element code ABAQUS V6.7 [52]. For elastic and elastic-plastic model, fixed boundary 

condition were applied to the bottom layer of the model and uniform tension was 

applied to the upper boundary of the model. For rigid and power-law hardening model 

bottom layer is fixed and uniform tension was applied to the upper boundary of the 

model. The length of elastic and elastic-plastic plate along y direction is 4.0 and 4.0 

mm, respectively. Overall mesh division of the model is shown in Fig.2.10. Fine mesh 

is considered near to the interface. Near to the interface edge of model the mesh division 

is shown in Fig.2.11. 

   To calculate and determine the value of stress singularity and stress intensity factor, 

external load of 130 MPa is applied. To calculate the maximum amount of external 

distributed load, stepping method is used and load in increased by step by step by using 

the restarting method. During the numerical calculation we consider the following FEM 

method. 

Consider a plane strain elastic-plastic plate under uniform tensile load is applied in 

the upper edge and fixed to the lower edge as shown in Fig.2.8. Elastic/power-law 

hardening materials joint is modelized as an elastic-plastic plate bonded with an elastic 

plate where lower edge of elastic plate is sliding and the uniform tension load is applied 

to the upper edge of elastic-plastic plate as shown in the same Fig 2.9. 

 



24 
 

  

 

 

 

In Fig.2.8, L is the characteristic length dimension, W is half of the width of plate, p0  

is the far field uniform tension and ,r  are the coordinate system. The finite element 

mesh we have used in our joint material model is given in Fig.2.9. The magnified mesh 

division near the interface corner is given in Fig.2.24. 

Fig.2.8: FEM model of Power-law 

material bonded to rigid substrate. 

 

Fig.2.9: FEM model of 

Elastic/power-law hardening materials 

joint. 
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The stress fields were also calculated numerically by using elastoplastic finite 

element method [54]. In FEM calculation, the Cu, was assumed to be an elastic 

power-law hardening plastic material with  power-law hardening constant, α and 

power-law hardening exponent n. Si3N4 was assumed to be elastic. Plane strain 8 

nodes isoparametric elements were used. Finite element meshes were divided into 40 

in the near edge area, 0 0.1r t  . The length of elements along radial direction 

varies as following equations [53], 

1 , 1,2,3, ,30.
0.9

i
i

l
l i         (2.20)  

where il is a radial length of i-th element. The minimum length of elements, 0l t , is

510 .  For circumferential direction meshes are divided into 24 by equal angle. The 

total number of elements is 31347 and the total number of nodes is 62995. Aspect 

ratio [54] is kept constant, 2.67L W  where, 4mmL  and 1.5 mm.W   

 

 

Fig.2.11: Magnified mesh 

division near interface corner 

Fig.2.10: Mesh division near interface edge  
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2.3.3 Stress-Strain Relationship 

The elastic properties of material I (Si3N4 )and material II (Cu)are shown on the 

Table 1. The plastic property of the Cu was measured experimentally in the previous 

study by Liton S.K et. al.[55-57] where the initial yielding strength was 30 MPa. It is 

noted that, our analyzing method is suitable for any value of n . Two or more singular 

terms exist only for those cases of 2.0n  . In what follows an interface edge problem 

with two different ,n  2.0 and 2.0,n n  will be investigated in detail. The Mechanical 

properties of power-law hardening material and elastic material assumed to illustrate the 

stress and displacement fields are listed in Table 2.1. 

Table 2.1: Mechanical Properties of jointed materials for elastic/power-law hardening 

materials joint 

Properties E[GPa]   
y  [MPa] n    P0 [MPa] 

Material I 108 0.33 30 1-20 10.1 130 

Material II 304 0.27 - - - - 

 

2.3.4 Determination of the Stress Intensity Factor 0A  

Stress intensity factor is an important mechanical parameter and fracture toughness 

is another important material parameter used in fracture mechanics 

A parameter called the stress-intensity factor ( iA ) is used to determine the fracture 

toughness of most materials. Fracture toughness is a property which describes the 

ability of a material containing an interface to resist fracture, and is one of the most 

important properties of any material for virtually all design applications 

To prevent the material from failure/fracture, it is important to know the material 

parameter for the fracture at the interface before loading. 

The theoretical results will be applicable in materials engineering to design 

elastic/elastic-plastic material joint (for example ceramic/copper joint) to meet specific 

performance requirements. 
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The dominant stresses near the interface is of the r-θ form of :
0 1

0 0 0ij ijA r
  , 

where 00 1  , so the stress becomes singular (unbounded) as r→0. The local 

asymptotic analyses determines 0 0and ij  , thus giving the spatial structure of the 

local stress distribution. The generalized stress intensity factor, iA , scales the magnitude 

of the singular stress field. iA  links the remote applied loading to the local stress field, 

and can only be determined if the global full-field solution is solved. 

The stress intensity factor, iA  is the only quantity not determined by the 

asymptotic analysis. iA  is determined by the full solution, and it depends on loading, 

geometry and mechanical properties. The value of iA
 
characterizes the magnitude of 

the stress state in the region of the interface corner. No matching of FEM with theory is 

needed in the higher order approximation to determine ( 1,2,3 )iA i  
 
since the 

magnitude of higher order term ( 1,2,3 )iA i   is determined by 0A . For the 

determination of stress intensity factor, 0A from the stresses obtained with FEM the least 

squares method has been used. The stress field can be written as[58,59]: 

0 1

0ij ijA r
 

        
(2.21) 

Where, 
ij  is the angular function. ij rr , or r . 

From the definition of stress intensity factor,  0 1    [60,61]
 

  0 1

00
A r



 
 




        
(2.22) 

   0 00
log log( ) 1 logA r 

 


   
     

(2.23) 

equation is same the equation of straight line like, y ax b  ,where,  0 1a    ,called 

slope and 0log( )b A ,called intercept of the line. 

         
(2.24)

 
0log
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where,  0 1   

 
0log

1

Intercept
A Intercept b  

   
0 10bA 

  
(2.25) 

To determine the stress intensity factor, logarithmic distribution of   
0 




 along r  

has been used from FEM of rigid/power law hardening material. 

The order of the stress singularity, 0 1  , is fully determined by the asymptotic 

singularity analysis and depends only on power-law hardening exponent, n  for bonded 

power-law hardening material and rigid quarter planes. 

The logarithm of radial distribution of stress component near the interface corner along 

direction at 1.875  , is considered to calculate the stress intensity factor. 

Least squares method was used to get slope and intercept for different ranges of r . 

For different range of radial distance r , slope and intercept was evaluated 

numerically and slopes are compared with the order of stress singularity by theoretical 

analysis (theoretical slope) and most close value is selected. The slopes obtained by 

least squares method is compared with theoretical slope where, slopes  are converged 

and also diverged for different range of r. Numerically calculated slopes which are 

converged to theoretical value after three decimal point is shown by the following figure 

and corresponding intercept also shown in this figure. Stress intensity factor is 

calculated from the intercept using, 
0 10bA  . 

Following criteria is considered to determine the stress intensity factor. rmin should 

be enough small as much as possible due to the singularity dominance near the interface 

edge. 

There are numerical error found in the minimum r region, so here, rmin is selected far 

from the numerical error region and rmax is changed, stress singularity and stress 

intensity factor is determined for different ranges of r. Again, selected a new value of 

rmin and rmax is changed, stress singularity and stress intensity factor is determined for 

different ranges of r and the procedure is followed repeatedly. 
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Slope and stress intensity factor is determined for different ranges of r and plotted in 

a graph where allowable range from the theoretical slope is considered. For minimum 

values of rmax there are slope and stress intensity factor changes rapidly that means there 

are numerical error for smaller rmax region. For larger rmax region is far from the 

interface so it will give far field with the singular field. Suitable data has been selected 

after the error range within the allowable range of theoretical slope. 

And hence, stress intensity factor is selected from the allowable range taken after three 

decimal points considering above criteria. 

For n=2.4(rigid/power law hardening material), The theoretical calculated eigenvalue, 

0 0.753675  .The theoretical order of stress singularity is 0 1 0.246325    . 

The stress intensity factor is determined by numerical analysis using Finite Element 

Method. The determination procedure of stress intensity factor is shown in Figures 

(2.12-2.17). 

Stress field can be explained on the interface as Eqn.(2.22) 

which show the dependence of singular stress field on these two parameters, the stress 

intensity factor of singular stress field, 0A , and its order, 0 1  , is different. 0A  

affects proportionally and 0 1   affects exponentially. 
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Fig.2.12: log-log plot of  along r in rigid/power-law hardening material for n=2.4 

     

 

From the selected suitable data range, 0 2.792,2.790,2.790A   and 2.789  

Finally, 0 2.790A 
 

 

 

 

Fig.2.13: Convergence of  0 1   

along r for n=2.4  

Fig.2.14: Convergence of 0A  along 

r for n=2.4 
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Fig.2.15: log-log plot of  along r in rigid/power-law hardening material for n=1.3 

 

         

 

 

From the selected suitable data range, 0 2.177A   and 2.185 .Finally, 0 2.185.A 
 

 

 

Fig.2.16: Convergence of  0 1   

along r for n=1.3  

Fig.2.17: Convergence of 0A  

along r for n=1.3 
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2.4 Formulation of 0
th

 Order Approximation  

2.4.1 Formulation of 0
th

 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Bonded With Rigid Substrate 

Invoking the plane strain condition stress-strain relation can be expressed as: 

(2.26) 

     13
1 1

2

n

rr e s            
    

(2.27) 

  13
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2

n

r r e rs        
      

(2.28) 

In this approximation, the elastic strains in compared with the plastic strains are 

small and can be neglected in the asymptotic analysis. Hence according to the plastic 

deformation theory the three dimensional stress-strain relations take the form given in 

Eqn. (2.3). The nonlinear term of the strain components for plane strain is written as 

follows: 

(2.29) 
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(2.30) 
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(2.31) 

The stress boundary conditions are that the free-edges are traction free and the 

displacement boundary conditions are given by Eqn. (2.32) 
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(2.32) 

We can express the stress distribution in terms of stress function following Rice [32]  
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Airy stress function in a separable form is assumed as, 

0 1

0 0 0

I IA r
    , 0

2


 

      
(2.33) 

Assume, 
0 depends on the deformation and substituting Eqn.(2.33) into Eqns.(2.5-2.7),  

we can express the stress distribution in terms of the stress function as [31,32,62] 

0 1

0 0 0rr rrA r
 

                                      

(2.34)
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where 
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(2.39) 

In this thesis,   denotes differentiation with respect to  , and ( ) denotes the 

angular variation of ( ), respectively.
 

The effective stress term can be expressed in terms of deviatoric stress as,
 

 2 3

2
e ij ijs s 

        
(2.40)
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Plane strain condition, 0zz z zr rz zs s s s s     
   

(2.42) 

Eqn. (2.41) yields, 

2 2 2 23
2

2
e rr rs s s      

       
(2.43) 

Deviatoric components can be written as, 
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(2.44)
 

where, 

    0 0 0 0 0 01 1I I

rrf A    
 

    
 

,     0 0 0 0 0 01 1I If A    
 

     
 

,  0 0 0 0

I

rf A  


  (2.45)
 

Substituting Eqn.(2.44) into Eqn.(2.43) yields an expression for the effective stress, 
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(2.46) 

Replacing Eqn.(2.45),Eqn.(2.46) is written as,

               0

1
1

2 2 2 2
2

1 1 ( 1)1

0 0 0 0 0 0 0 0 0 0 0

3
1 1 1 1 8

8

n
n

n nn I I I I I

e A r


          




  
          

                         

         

(2.47) 

Eqn.(2.47) can be rewritten as, 
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Where, 
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(2.49) 

Substituting all the strain components of nonlinear part of Equations (2.29-2.31) in the 

strain compatibility equation ,Eqn.(2.8) and replacing stresses as Eqns.(2.5-2.7) in terms 

of airy stress function the final form of the Eqn.(2.8) yields, 
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         (2.50) 

Eqn.(2.50) includes four terms. Internal part of each terms can be calculated separately 

as,
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Substituting Eqns.(2.51-2.53) into Eqn.(2.50), compatibility equation becomes, 
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(2.54) 

 

Derivatives of Eqn.(2.48) are as, 
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1
st
 term of Eqn.(2.54) can be represented as: 

 

(2.58) 

2nd term of Eqn.(2.54) can be represented as: 
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3rd term of Eqn.(2.54) can be represented as: 
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(2.60) 

4th term of Eqn.(2.54) can be represented as: 
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Replacing Eqns.(2.58-2.61) into Eqn. (2.54) compatibility equation is expressed as, 
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Co efficient are： 
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Effective stress term can be calculated applying plane strain condition as: 
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So, Compatibility equation becomes in the form of  
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Where,  1f  is expressed in Eqn.(2.72)                                                                  

and 
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Equation (2.78) is fourth-order ordinary differential equation. For the solution of 

fourth-order equation, the equation is reduced into a system of first-order equations. 

And, therefore, equation is solved using the Runge-Kutta method. 

Stress fields are expressed in Eqns. (2.34-2.36) where the effective stress as,
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Applying plane strain condition strain components are expressed as:
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From Equation (2.9) displacement can be written as,
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Eqn.(2.11) can be rewritten as, 2 r
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(2.94) 

When
0 1  , the displacement is infinite. Obviously, infinite displacement does not 

occur in reality. To determine the displacement field we have to use another expression. 

We know from the strain displacement relation from Eqn.(2.10): 
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(2.95) 

where, 
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The boundary condition for traction free and clamped condition is given in Eqn. (2.32) 

and applying boundary condition, Initial conditions at 
2


  : From equation (2.38) & 

(2.39)  

 0 0 0 01 0, 0,I I       if 0 01, 0   
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After integration final conditions, at 0  ,
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Assume at
2


  , 0 0,I   0 0,I


    0 0 01.0, ,I I  

 
  and after i-th integration    

at 0,      
( )
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0 0 0 0,

i

I I i I I   
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 The error value is then calculated by using the Equation (2.15) applying following 

procedure: After integration, solution region is obtained with different error ranges 

which systematically cover the range of  
( )

0

i

I
 
 
 

 and 0 for different error. From 

the minimum error region, the range of   
( )

0

i

I
 
 
 

 and 0  is selected as the initial 
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value for the integration of next step. The final region of the minimum error is taken 

with the region of  
( )

0

i

I
 
 
 

 and 0  contains two equal digits after the decimal point. 

The final solution is obtained from this minimum error region and calculated 

numerically the solution point where the minimum error occurs. The minimum error 

region is integrated with 200 smaller divisions and minimum error point is selected as 

the solution point and the corresponding   
( )

0

i

I
 
 
 

 and 0  is calculated as the 

solution. 

After tentative solution, to get the exact solution it is necessary to correct the initial 

value of  0

I


which was assumed as 1. To get the exact value, it is necessary to satisfy 

 
0

1I

 



 .So initial value of  0

I


 becomes,    0 0
1.0

T
I I

 
 




 , where  

0

T
I

 



is 

the tentative solution obtained assuming  0 1.0I

 . 

Assume at
2


  , 0 0,I   0 0,I


  

 
 0 0 0

0

1.0
, ,I I

T
I

 

  




 
  and after i-th 

integration at 0,     
( )

( )

0 0 0 0,

i

I I i I I   
  

   
 

,    
( )

0 0

i

I I 
  

  
 

 and 

   
( )

0 0

i

I I 
  

  
  . 

The solution procedure is same as described above for seeking the 

minimum error. Due to the change of  
 

0

0

1.0I

T
I

 







 , all angular function terms 

changes with the same ratio for the exact solution. 

Once singular exponent, 0 is known the angular variation of stresses can be computed. 

To compute the stresses we need to calculate unknown angular functions to satisfy 

traction on the interface.  
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2.4.2 Formulation of 0
th

 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction 

The traction boundary conditions are that the free-edges are traction free and that the

, r    are continuous at the interface. Mathematically this can be expressed by: 
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(2.103) 

Assumed, Airy stress function 0 1

0 0 0

II IIA r
   

    
(2.104) 

Compatibility equation becomes in the form of,  

   
4 2

2
2 20 0
0 0 04 2

1 2 1
II II

IId d

d d

 
  

 
     .     (2.105) 

Equation (2.105) is the fourth-order ordinary differential equation. For the solution of 

fourth-order equation, the equation is reduced into a system of first-order equations. 

And, therefore, equation is solved using the Runge-Kutta method. 

Stress fields can be expressed as: 
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(2.106)
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(2.108) 

where, 
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Applying plane strain condition strain fields are expressed as,  

     1 1
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II II II II II II

rr rrII

E

E
        

     
(2.112)
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(2.114) 

Displacement fields are also expressed by the following equations,
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(2.115) 

We assume   0
0

0.II

r
r

u

 Displacement fields are,
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(2.116) 

where,
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(2.117)

 

From equation (2.10) we can deduce the displacement equation as, 
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(2.118)
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IIu 
 

can be a function of r or a constant. We assume   0
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0II

r
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   00

2

, 0II du C r d
 

 

 

and
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If 

   00
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1, IId u C r
 

  .  

This is rigid body rotation. Neither strain nor stress occurs due to the rotation. So we 

can neglect it for the discussion of stress or strain. But, for the displacement we have to 

consider rigid body rotation. 
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(2.119) 

where, 
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 (2.120)

 

Using Equation (2.11) another expression of strain, displacement can be written as: 

(2.121)

 

Or, 2
II II

II II r
r

u u
r u r
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(2.122)

 

Rigid body rotation is depends on r and angular function. To overcome the rigid body 

rotation we have to assume the displacement as a function of r and the angular function 

term. 

Assume,      0 0 01

0 0; ,
II II

II u u
u kr f kr f or r kr f
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When
0 1  , equation becomes,     0
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u
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(2.123) 

Displacement u  can be expressed as, 
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(2.124) 
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where, 
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(2.125)
 

Boundary equation on the interface at 0  can be expressed as, 
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        (2.126)
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        (2.127) 

Finally, governing differential equation (Eqn. (2.105)) is solved to satisfy the traction 

boundary condition on the interface.  

Assume at
2
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and after i-th integration    
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and  
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0 0error2
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(2.129)

 

The error value is then calculated by using the Equation (2.15) and solution is obtained 

for the minimum error. 
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2.5 Formulation of 1
st
 Order Approximation  

2.5.1 Formulation of 1
st
 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Subjected To Forced Displacement 

In the following the Airy stress function and other equations assuming only to the 

first order approximation can be described for the illustration of solution method. 

Assumed, 0  and 1 depend on the deformation and  

0 11 1

0 1 0 0 1 1

I I I IA r A r
          .        (2.130) 

Substituting Eqn. (2.130) into Eqns.(2.5-2.8), stress fields are expressed as, 
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where, 

    0 0 0 0 0 01 1I I

rrf A    
 

    
  ,

    1 1 1 1 11 1I I

rrf    
 

    
   

    0 0 0 0 0 01 1I If A    
 

     
  ,

    1 1 1 1 11 1I If     
 

     
   

 0 0 0 0

I

rf A  
 

  
  ,

 1 1 1

I

rf   
 

  
       

(2.137)
 



55 
 

Substituting Eqns.(2.134 -2.136) Eqn.(2.43) yields, 
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From the Taylor series expansion,   
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(2.139) 

In the 1
st
 order approximation, nonlinear effective stress term 1n

e
 is expanded by 

Taylor series and the first two terms are considered for further calculations. Before 

expansion this term is written as, 
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where, 
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Before expansion Eqn. (2.140) can be written as, 
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(2.142) 

Assuming smaller range of r  1r  near the interface edge it is reasonable to have 

the singular exponent of incremental stress 1  which is larger than the zero-th order 

singular exponent 0 , i.e., 0 1  . The order of r of the terms in the part powered by 
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 1 2n  in Eqn. (2.140) is 0,  1 0  and  1 02    respectively which means the 

order of r  in the second and third terms are positive in magnitude. Positive power of 

small r gives the value smaller than 1. Also 1 1A  , 1 1f  and 2 1f  .The summation of 

the second and third terms has the smaller magnitude than 1.This satisfies the 

convergence condition for the Taylor expansion. Assuming the first term as the leading 

term and remaining terms as the incremental term Taylor expansion is applied to Eqn. 

(2.140). After expansion and neglecting the higher order term of 1A the equation 

becomes, 
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Substituting effective stress term from Eqn.(2.143) into Eqn. (2.3), strain components 

are expressed as: 
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3

1A includes cube of small magnitudes. Which means the terms are very small in 

compared with the initial term. So, 3

1A  term will be neglected. 
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 Similarly,  

  
 

0

0 0 1

0 0 1

1

2
( 1)

0 0

3 1

2 2

1 1 1 0 0 1

3 5

2 2 23 1 22

1 0 2 0 1 0

3 3

4 8

1 3 3 3

2 8 4 8

1 31 3 3 3 9

2 8 8 8 8 16

n

n

n n

n n

n n

n n

f r f

n
A r f f f f f

n nn
A r f f f f f



 

  

 

  



 





 

  

 

   


    


 
    

       
     

  
                    

 0 0 1

3

2
2 2

0 1 1

1 3 3

2 8 4

n

n nn
f r f f

  





  


          

         

(2.146)
 



58 
 

  
 

0

0 0 1

0 0 1

1

2
( 1)

0 0

3 1

2 2

1 0 1 0 0 1

3 5

2 2 23 1 22

1 0 2 0 1 0

3 3

2 8

1 3 3 3

2 8 4 8

1 31 3 3 3 9

2 8 8 8 8 16

n

n

r r

n n

n n

r r

n n

n n

r

f r f

n
A r f f f f f

n nn
A r f f f f f



 

  

 

  



 





 

  

 

   


    


 
    

       
     

  
                    

 0 0 1

3

2
2 2

0 1 1

1 3 3

2 8 4

n

n n

r

n
f r f f

  





  


          

         

(2.147)
 

Strain components are in the following form according to the order of 1A :
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In these expressions strain components will have three terms with respect to the 

power of r. 0 0 0 1( 1)
,

n n n
r r

      
and 0 0 13 1 2n n

r
     

. From zero-th order approximation 

solution it is clear that the terms of 0( 1)n
r

 
satisfy the compatibility condition. To solve 

the compatibility condition on the remaining terms, we assume the two terms satisfy the 

conditions independently. At first we will consider it neglecting the third term. 

 (1) 0 1 1( )ij ij ij O A   
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Strain components are in the following summation form: 
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(1) 0 1

I I I
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(2.154)
 

Initial part of strain components are expressed in Eqns. (2.83-2.85). Strain components 

and derivatives of strain components contains first order term of 1A : 
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Derivatives of strain components with respect to r can be written as, 
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(2.166) 

From zero-th order approximation solution it is clear that the terms of 0( 1)n
r

 
satisfy 

the compatibility condition. To solve the compatibility condition on the remaining terms, 

we assumed the two terms (zero-th order term and first order term of 1A ) of strain 

components satisfy the conditions independently. Finally, initial part of compatibility 

equation is same as the equation which is satisfied in zero-th order approximation. So, 

remaining part of compatibility equation should be satisfied independently. Using Eqn. 

(2.143), the compatibility equation will have three terms with respect to the power of r , 
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0 0 0 1( 1) 2 2
,

n n n
r r

        
and 0 0 13 2 1

.
n n

r
     

To solve the compatibility condition, we 

assume that those three terms satisfy the conditions order by order. Here we will neglect 

the third term. Assuming second term as the incremental part the compatibility equation 

includes the exponent of r as 0 0 1 2
.

n n
r

     
 Hence, in the first order approximation, 

compatibility equation becomes in the form of,  

4 3 24 3 2

0 0 0 01 1 1 1
1 1 1 1 1 1 0 0 14 3 2 4 3 2

, , , , , , , , , , , .
I I I II I I I

I Id d d dd d d d
B A C A A A A n

d d d d d d d d

      
   

       

 
    

 

         

(2.167) 

Equation (2.167) is the fourth-order ordinary differential equation of 1

I . Within the 

first order approximation unknowns are 
1 1 1 1 1 1 1 1 1, ,  ,  and .I I I IA A A A        B and C are 

derived using Mathematica (symbolic mathematics software) [63] and all terms of 

compatibility equation are presented in appendix; the equation is solved using 

Runge-Kutta method. Incremental stress fields are expressed as, 

1 1

1 1 1

I I

rr rrA r 

        

(2.168)
 

1 1

1 1 1

I IA r  
        

(2.169)
 

1 1

1 1 1

I I

r rA r  

        

(2.170) 

where, 

   1 1 1 11I I I

rr   


  

       

(2.171)
 

 1 1 1 11I I

    
       

(2.172)
 

 1 1 1

I I

r  


 

        

(2.173)
 

Strain components are expressed in Eqn. (2.155-2.157). Displacement component can 

be written in terms of strain components as, 

0 1 0 1

r rr

I I I I

r r rr rr

u dr

u u dr dr



 



   



        

(2.174)
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Initial part of displacement components and initial strain components has a
 
relationship 

like:
0 0

I I

r rru dr   expressed in Eqn. (2.89). 

So, 0 0 1( ) 11

1 1 0 1

n nI I n I

r rr ru dr A r u
             

(2.175) 

where, 
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(2.176) 

Finally, (1) 0 1

I I I

r r ru u u 
       

(2.177)
  

From zero-th order approximation:  0 0
0I

ru
 


 
So,  (1) 10

I I

r ru u
 


  

(2.178) 

Displacement at any arbitrary value of  , 0 0 0 11 ( ) 11

(1) 0 1 0 0 0 1

n n n nI I I n I n I

r r r r ru u u A r u A r u
           

 

         

(2.179) 

Displacement on the interface,  

     0 0 1( ) 11
1 0 11

00

n nI I n I
r rr

u u A r u
  



   


       (2.180) 

Strain displacement relation in Eqn.(2.11)substituting 
0 1r r r       and 

0 1u u u      Strain displacement relation becomes,
 

0 1 0 1
0 1 0 12 2r r

r r

u u u u
r u r u r r

r r

 
    

 

   
      

       
(2.181)
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Initial part of displacement components and initial part of strain components has a 

relationship like Eqn.(2.91) 

 So incremental part, 

 
1 1

1 12 r
r

u u
r u r

r


 



 
  

        
(2.182)

 

Assume,    0 0 1 0 0 1( ) 1 ( ) 1 11
1 0 0 1( 1) ;

n n n nu
u Kr f n n Kr f

r

     
             
      


  

Equation becomes, 

  0 0 1( ) 1 1
0 0 1 12

n n r
r

u
Kr f n n r

  

    


    
    

    
(2.183) 

When
0 0 1 0n n      , 

 
1

1 1

0 0 1

1
2 r

r

u
u r

n n
 

   

 
  

          

(2.184)

 

When 
0 0 1 0n n      , the displacement is infinite. Obviously, infinite displacement 

does not occur in reality. To determine the displacement field we have to use another 

expression. 

where, 
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(2.185)

 

The displacement equation can be expressed as, 

0 0 1( ) 11

1 0 1

n nI n Iu A r u
  

 

   

       

(2.186) 

where, 
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(2.187)

 

Finally, (1) 0 1

I I Iu u u   
    ( 1 ) 0 10

I I Iu u u  
  

    
(2.188) 

From zero-th order approximation:  0 0
0Iu  


  

So,  (1) 10

I Iu u 


 
(2.189) 

Displacement at any arbitrary value of  ,
   

 

Displacement at any arbitrary value of  , 0 0 0 11 ( ) 11

(1) 0 1 0 0 0 1

n n n nI I I n I n Iu u u A r u A r u
   

    

        

         

(2.190) 



66 
 

Displacement on the interface,  

    0 0 1( ) 11
(1) 1 0 1

0 0

n nI I n Iu u A r u
  

  
 

   

 
       (2.191) 

Displacement of Elastic material side after zero-th order Approximation which will be 

used as the forced displacement on the interface: 
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II II

r ru A r u




        

(2.192) 
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(2.193) 

where, 
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(2.195) 

For the case of traction free edges and forced displacement from elastic material side 

Boundary conditions should be satisfied as: 
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(2.196)

 

Due to the forced displacement on the interface, displacement of first order 

approximation in the power law material side should be the same as the displacement of 

zero-th order approximation in the elastic material side. 

The iterative boundary condition on the interface can be expressed as,
  

     1 0
0 0

I II

r r
u u

  
 ,      1 0

0 0

I IIu u
 

  
 ,     (2.197)  

Within the first order approximation in the power-law material side we have, 

 Where    (1) 0 10 0

I I I

r r ru u u
  

  and    (1) 0 10 0

I I Iu u u    
 

  
(2.198) 

From zero-th order approximation we have, 
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  0 0
0I

ru
 

 and  0 0
0Iu  


          

(2.199)
 

 
So, remaining term    1 00 0

I II

r ru u
  

 and    1 00 0

I IIu u   


  
(2.200) 

where 
0

II

ru and 
0

IIu  are the displacements of zero-th order approximation in the elastic 

material side,
1

I

ru and 
1

Iu  are the incremental displacements of the first order 

approximation in the power-law hardening material side. To derive the expressions for 

displacement, small deformation strain-displacement relations, Eq.(2.9)-Eq.(2.11), have 

been used. Strain components are derived using Eq.(2.3) and Eq.(2.4) for power-law 

material and elastic material, respectively. From Eq.(2.9) the strain component, ,rr is 

integrated by r to derive the expression of displacement ru and the expression of u is 

also derived from r using Eq.(2.11).  

Displacement functions of elastic material side within zero-th order approximation 

which is used as the forced displacement on the power-law material side in the first 

order approximation are, 

0

0 0 0

II II

r ru A r u


 ,  0

0 0 0.
I I I Iu A r u



 

      

(2.201) 

where k

riu and k

iu are the angular function terms of displacement component, 

0 and 1,  and i k I II  . 1

I

ru is a function of 
1 1 1 1 1 1 1 1 1, ,  ,  and .I I I IA A A A      

 

To satisfy the boundary condition
 
on the interface the power of r should be equal. 

Equating the power of r we have, 

  1 0 01 1 .n             (2.202)
 

It seems the first order singularity is depends on hardening exponent n  and zero-th 

order singularity 0 . 
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To satisfy the displacement continuity condition on the interface order by order the 

boundary equation can be expressed as, 

   0 0 1 0( ) 11

0 1 0 00 0

n nn I II

r rA r u A r u
   

 

   

 


     
(2.203) 

and 

   0 0 1 0( ) 11

0 1 0 00 0

n nn I IIA r u A r u
   

  

   

 


     
(2.204) 

Equating the power of r in the boundary equation, Radial part is equal in both sides 

so remaining part means the angular function part should be the same 

Where, the magnitudes of L.H.S and R.H.S should be same due to forced displacement 

on the interface. 
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(2.205) 
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(2.206) 

2

1 0

nA A C                                                   (2.207) 

where C is constant value numerically known from the angular function term.
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(2.208) 

Using Eqn. (2.208) the determination of constant term without the determination of 

stress intensity factor is impossible. Only one can have the relationship between the 

stress intensity factor of the first order term in terms of the zero-th order term by Eqn. 

(2.207). 
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To calculate Error following equation is followed from Eqn. (2.196): 

   

   

1

0 0 0 1

1

0 0 0 1

error1 θ=0;elastic 0;power-law

error2 0;elastic 0;power-law

II n I

r r

II n I

A u A u

A u A u 



 





  

   
   

(2.209) 

In the first order approximation, compatibility equation presented in Eqn. (2.167).  

Equation (2.167) is the fourth-order ordinary differential equation of 1

I . For the solution 

of fourth-order equation, the equation is reduced into a system of first-order equations:  

Assume, 
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are known from the solution of 0-th order 

approximation. 
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(2.210)

 

B and C are derived using Mathematica software and checked the initial part (zero-th 

order term) of compatibility equation which is same as the compatibility equation 

derived theoretically for zero-th order approximation. Within the first order 

approximation unknowns are 
1 1 1 1 1 1, ,  , ,  and .I I I I A         

And, therefore, equation is solved using the Runge-Kutta method. 

Applying boundary conditions on the stress free edge: 
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From zero-th order approximation we know  0
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similarly,  (1)
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From zero-th order approximation we know  0
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(2.214) 

Incremental stress fields are expressed in Eqns. (2.168-2.170) 

Initial conditions at 
2


  : From equation (2.169) & (2.170) dividing by 1 1
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We know 1 from Eqn.(2.202) and  Unknown are:    1 1 1 1,II IIA A 
 

  

After integration final conditions, at 0  ,  
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72 
 

 

             

   

1

1 12
0

0 0

0 0 1 0 0 1

3

2 2 2
2

2 2

0 0 1 0 0 0 0 0 0 0 0

2

0 0 0

2 3
error2 0;elastic

( )( 1)

1 ( 1) 1 2 1 4

1

n

n n
II

n

I I I I I

I I

A
A u

n n n n

n n n






     

          

  



 



  
      


                                        



                  

           

( ) 2 ( )
( )

0 0 1 1 1 1 1 1 0 0 1 1 1

2 2
2

2 2

0 0 0 0 0 0 0 0

1 1 4 1

1 2 1 4

i i
i

I I I I I

I I I I I

A A A         

       

                                                    

                             

   

 
           

         

1

( )2

1 1 1

3
1

2 2 2
2

2 2

0 0 0 0 0 0 0 03

( )
22

2

0 1 0 1 1 0 0 0 1

1

3
1 2 1 4

2

4( 1) 1 1

n

i

I

n

I I I I I

i

I I I I

A

n

n A n

 

       

       







             



                                  

             
           

                

( ) 2 ( )
( ) ( )

2 2

1 1 1 1 0 0 1 1 1 1 1

2 ( ) ( )
( )

2 2

0 1 1 1 1 1 0 0 0 1 0 1 1 0

4 1

1 2 1 2 1

i i
i i

I I I I I

i i
i

I I I I I I I

A A A A

n A A n A n

      

          

                                

                                
    

                    

         

( )
( )

2

1 1 1 1 1

(3) (3)2
2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
2

2 2

0 0 0 0 0 02

1

2 1 8 2 1 2 1 2

1
1 2 1

2

i
i

I I

I I I I I I I I I I

I I I I

A A  

             

     

             

                 
 

            
    

 

                     

3

2 2

0 0

( ) 2 ( ) ( )
( ) ( )2

2 2 2 2

0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1

4

4( 1) 2 1 1 8 1

4(

n

I

i i i
i i

I I I I I I I I I In A n A A A A

 

               



               

                                             

                      

          

( ) ( ) ( )
( )

2 2

0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1

( )
(3) (

2

0 1 0 1 1 0 0 1 1 1

1) 2 1 2 1 1

4( 1) 2 1

i i i
i

I I I I I I I I I

i

I I I I I

n A n A n A A

n A n A

              

       

                                        

       
 

             

                 

( ) ( ) ( )2) (3) (3)
2 2

1 1 0 0 0 1 1 1 1 1

2 ( ) 2 ( )( ) ( )
(3) (3)

2 2 2

0 0 1 1 1 1 1 0 1 1 1 1 1

1 1

4 1 1

i i i
i

I I I I I

i ii i
I I I I I I

A n A A

A A n A A

      

        

       
                    

                                  
       

                     

2
2

0 0 0 1 1 1 0

( ) ( ) ( ) ( )
( ) (3) (3)

2 2

0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1

2 1 2 1

2 1 1 1

I I I

i i i i
i

I I I I I I I I

n A

n A n A A n A A

     

           

            

                                                 

         

(2.219)  

The error value is calculated by using the equation (2.15)  
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2.5.1.1 Determination of the Stress Intensity Factor 1A
 

Stress can be expressed as,
 

     0 11 1

0 0 1 10 0 0

I I IA r A r
 

    
   

  
 

    
(2.220)

 

Substituting,  0 0
1I

 





 
in Eqn.

 
(2.220) 

   0 11 1

0 1 10 0

I IA r A r
 

  
  

 
 

     
(2.221)

 

From FEM for joint material (power law hardening/elastic material joint),  
0

I

 



is 

known and from zero-th order approximation 0 1

0A r
  is also known  

    01 11

1 1 00 0

I IA r A r


  
  

 
 

     
(2.222)

 

From first order approximation after solution of differential equation the numerical 

value of  1 1

IA is known.
  

we have,      1 11 1

1 1 1 1 1 10 0
1I IA r A r 

  
    

 
 

    
(2.223)

 

As the definition of stress intensity factor
1A ,  1 0

1I

 





   
(2.224) 

Substituting Eqn (2.224) into Eqn. (2.223) yields,
 

   1 1 1 1 1
0

1IA A


  


  
      

(2.225)
 

From first order approximation after solution of differential equation the numerical 

value of  1 1

IA and all of its derivatives are known.
  

From FEM,
 1A

 
is known numerically fro Eqn. (2.207) 

so,  1 1 1 1

I IA A 
 
and  similarly all of its derivatives are known. 



74 
 

For 2n  , power of 0A is smaller than 0 (means negative power shows opposite 

behavior) and for 2n  , power of 0A is larger than 0 (means positive power shows 

same behavior). For 2n  , two singular term exist up to the first order approximation 

and for 2n  one singular term exist. 

When 2,n  2 2

1 0A A C  or 1A C . 

When 2,n  1 1   stress fields are, 0 1

0 0 1ij ij ijA r
  

  (last part is independent of r)  

Therefore, 2n   is a trivial solution. 

From FEM of joint material can be written as 

     0 11 1

0 (0) 1 (1)0 0 0

I I IA r A r
 

    
   

  
  

    
(2.226)

 

Substituting,  0 0
1I

 





 
in Eqn.

 
(2.236) 

   0 11 1

0 1 (1)0 0

I IA r A r
 

  
  

 
  

     
(2.227)

 

From FEM for joint material (power law hardening/elastic material joint),  
0

I

 



is 

known and from zero-th order approximation 0 1

0A r
  is also known  

    01 11

1 1 00 0

I IA r A r


  
  

 
 

     
(2.228)

 

As the definition of stress intensity factor
1A ,  1 0

1I

 





 

  01 11

1 00

IA r A r


 
 


 

      
(2.229) 

Taking logarithmic distribution, 

    0 1

1 1 00
log 1 log log IA r A r



 
  


   

    
(2.230) 
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Right hand side have the term   0 1

00

I A r


 
 


 is calculated at first and then 

logarithmic distribution is calculated.  
0

I

 



is numerically known along radial 

distance r by FEM for joint material and 0 1

0A r
  is calculated and subtracted for the 

same radial distance where 0A and  0 1  is known from rigid/power law hardening 

material by FEM. 

For example, 2.4n  is presented here: 0 2.790A  and  0 1 0.246     

  0 1

00

I A r


 
 


 is calculated along radial distance r.  

To determine the stress intensity factor, logarithmic distribution of stress along r has 

been used from FEM of joint material. 

we have, from Eqn. (2.230)
 

Where slope is  1 1    and 1log A  is intercept. Least squares method was used to 

calculate slope and intercept for an r range the r range is known and used to determine 

the stress intensity factor for rigid power law hardening material (zero-th order 

approximation). calculated  1 1 0.2893    and 1 0.02738A  . From first order 

approximation theoretical slope is  1 1 0.09853    and theoretically calculated stress 

intensity factor is 1 0.059A  .These values show some deviation of theoretical result 

from FEM result. This is due to the numerically calculated result by FEM includes 

higher order terms but, theoretically only zero-th order and first order terms are now 

considered. 
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2.5.1.2 Alternative Way To Express The Definition Of Stress Intensity Factor
1A  

Assume 0 11 1

0 1 0 0 1

I I I IA r r
     

    
     

(2.231) 

 
 

 
 

0 0 0 11 1 11

0 00 0

n n nI n I n I

r r r
u A r u A r U

         
     

(2.232) 

 
 

 
 

0 0 0 11 1 11

0 00 0

n n nI n I n Iu A r u A r U
   

  

      
     

(2.233) 

The magnitude of 
 0

I

r
U  and 

 0

IU


 can be determined based on the displacement 

continuity conditions, 

 
     0 0 1 0

11

0 00 0
0 0

n nn I II

r r
A r U A r u

   

 

   

 


     
(2.234) 

 
     0 0 1 0

11

0 00 0
0 0

n nn I IIA r U A r u
   

 
 

   

 


     
(2.235) 

Then we know from the solution of differential equation
1

I ,
1

I ,
1

I and 
1

I . 

Stress can be expressed as 

  1 1

1 1 1 11I Ir   
  

       
(2.236) 

If we define 1A  as    1 1

1 10

I A r


 
 




     
(2.237) 

Then,    1 1 1 1 0
1 IA


 


  

      
(2.238) 

If we define 1

I as  1 11 1

1 1 1

I Ir Ar   
 

     
(2.239) 

Then 1 1 1

I IA 
        

(2.240) 

  1 1

1 1 1 1 11I IAr


            (2.241) 

When 0  this should be,   1 1

1 10

I A r


 
 


 , as given in Eqn.(2.241) 

so    1 1 1
0

1 1I


  


 

       
(2.242) 
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If we divide    1 1 1 1 0
 by 1I I

 
  


   and multiply 1A , 

   
1

1

1 1 1 0
1

I

I

A





 


 

where
   

1

1 1 1 0

1
1 I

A


 




 

or    1 1 1 10
1IA


 


  

 
(2.243) 

   
 

     

1

1

1

1 1 1 11 1
1 1 1

1 1 1 1 1 1 10 0 0

1

1 1

I I
I

I I I

rA
A A r







  

 


   





  

  
 

    
             

(2.244) 

From Eq.(2.241), 
   

1
1

1 1 10
1

I
I

I




 






 
 or 

 
 1

1 1 1

1 0

1
I

I

I



  




 


 

(2.245) 

From Eqn. (2.241) and Eqn. (245)  

Then    1 1 11 1 1

1 1 1 1 1 1 10
1I I I Ir r r A

  


     


    

    
(2.246) 

where    1 1 1 10
1IA


 


  

      
(2.247) 

Once singular exponent, 1  
is known the angular variation of stresses can be 

computed. 

 2.5.2 Formulation of 1
st
 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction 

Invoking the plane strain condition strain can be expressed in terms of stresses as, 

     1 1
I

II II II II II II

rr rrII

E

E
        

     
(2.248) 

     1 1
I

II II II II II II

rrII

E

E
         

     
(2.249) 

  1
I

II II II

r rII

E

E
    

       
(2.250) 

Compatibility equation in terms of stress component may be written as: 



78 
 

2 2 3 3 4 4 4

3 2 2 4 2 3 3 2 2 2 2 4 4 4

1 1 4 2 2 2 1
0

r r r r r r r r r r r r r

       

   

       
       

         
    (2.251) 

For the case of stress free-edges and traction on the interface, boundary condition: 

  

  

1

2

1

2

0

0

II

II

r


















 and 

   

   

1 10 0

1 10 0

I II

I II

r r

  

  

 

 

 

 




      

(2.252) 

Assumed, Airy stress function, 0 11 1

0 1 0 0 1 1

II II II IIA r A r
      

   
  

(2.253)
 

So, compatibility equation becomes, 

         

            

       

0 01 1

0 01 1

0 1

1 1

0 0 0 1 1 1 0 0 0 0 1 1 1 13 2

1 21 2

0 0 1 1 0 0 0 0 0 1 1 1 1 14

0 0 0 1 1 13

1 1
1 1 1 1

4 2
1 1 1 1

2
1 1

II II II II

II II II II

II II

A r A r A r A r
r r

r A r A A r A r
r r

A r A r
r

  

  

 

         

         

   

 

  

      

  
        

 

  
   



        

         

 
 

 
  

0 0

1 1

0 1

1 3

0 0 0 1 0 0 0 0 0 02

1 3

1 1 1 1 1 1 1 1 1 1

4 4
1 1

0 0 1 14

2
1 1 1 2

1 1 1 2

1
0

II II

II II

II II

A r A r
r

A r A r

A r r A
r

 

 

 

       

       

 

 

 

 





 
     




      



  

         (2.254) 

From zero-th order approximation solution it is clear that the terms of 0 3
r
  satisfy 

the compatibility condition. To solve the compatibility condition, remaining terms 

satisfy the condition independently. So the compatibility equation for remaining terms, 

   
4 2

2
2 21 1

1 1 14 2
1 2 1

II
IId

d

 
  

 


    

      
(2.255)

 

Equation (2.255) is the fourth-order ordinary differential equation. For the solution 

of fourth-order equation, the equation is reduced into a system of first-order equations:  
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Assume,  
2 3

1 1 1
1 2 3

1(1) , 1(2) , 1(3) , 1(4)
II II II

II d d d
w w w w

d d d

  


  
     

Where,  1 1 1(2)w w  ,  1 2 1(3)w w  ,  1 3 1(4)w w   

 
4 3 2

1 1 1 1
1 14 3 2

1 4 , , , ,
II II II II

IId d d d
w f

d d d d

   
 

   

     
      

(2.256) 

And, therefore, equation is solved using the Runge-Kutta method. 

Where incremental part of stress field can be written as, 

1 1

1 1 1

II II

rr rrA r 

        

(2.257)

 

1 1

1 1 1

II IIA r  
        

(2.258)
 

1 1

1 1 1

II II

r rA r  
        

(2.259) 

where, 

   1 1 1 11II II II

rr   


  

       

(2.260)

 

 1 1 1 11II II

   
       

(2.261)
 

 1 1 1

II II

r  


 
        

(2.262) 

Displacement can be calculated as: 

0 1 0 1

II II II II

r r rr rru u dr dr    
      

(2.263)
 

Initial part of displacement components and initial strain components has a relationship. 

Remaining term can be expressed as, 

1

1 1 1

II II

r ru A r u


        

(2.264)
 

where, 



80 
 

 
     1 1 1 1 1

1

1
1 1 1

III
II II II II II II

r II

E
u

E


      



    
       

      

(2.265)
 

Displacement equation of first order approximation of elastic material side can be 

expressed as, 

0 1

(1) 0 1 0 0 1 1

II II II II II

r r r r ru u u A r u A r u
 

   

     

(2.266)

 

And again we know from Eqn. (2.10), substituting , 
1 0 1

II II II

       , 
  0 11

II II IIu u u 
 

 

and 
  0 11

II II II

r rr
u u u 

 

Strain displacement relation becomes, 

0 0 0 0

0 1 0 0 1 1

2 2 2 2

II II II II II II

r ru u r d u d r d u d   

   

     

   

       
   

(2.267)

 

Initial part of displacement components and initial part of strain components has a 

relationship. Remaining term can be expressed as, 

0 0

1 1 1

2 2

II II II

ru r d u d 

 

  

 

  
      

(2.268)
 

 Finally,  

(1) 0 1

II II IIu u u   
        

(2.269)
 

We know from the strain displacement relation given in Eqn.(2.10) from the
 

incremental part strain displacement relation can be written as: 

1

1 1 1

II IIu A r u

 

        

(2.270) 

where 



81 
 

        
1

0

21
1 1 1 1 1 1

1

2

1 1 1 1 1
I

II II II II II II II

II

A rE
u d

E







         







        




 (2.271) 

Eqn. (2.269) can be rewritten as,

 
0 1

(1) 0 1 0 0 1 1

II II II II IIu u u A r u A r u
 

       

     

(2.272)

 

Using expression of Eqn.(2.11)strain, displacement can be calculated. 

Rigid body rotation is depends on r and angular function. To overcome the rigid body 

rotation we have to assume the displacement as a function of r and the angular function 

term. 

Assume,      1 1 111 1
1 1 1; ,

II II
II u u

u kr f kr f or r kr f
r r

   
      
   

   

So equation becomes, When
1 1  ,   1 1

1 11 2
II

II r
r

u
kr f r



  



  

   
(2.273) 

1

1 1 1

II IIu A r u

 

        

(2.274) 

where, 

 
 

       2

1 1 1 1 1 1

1 1

1
2 1 1 1

1

III
II II II II II II

II

E
u

E



       

 

   
            

(2.275)
 

Substituting into Eqn. (2.269) Total displacement fields can be expressed in Eqn. 

(2.272) 

Applying boundary conditions traction free-edge can be expressed as, 

     (1) 0 1

2 2 2

0II II II
      

  
  

  

     

(2.276) 

and 

     (1) 0 1

2 2 2

0II II II

r r r      
  

  
  

      
(2.277)
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From zero-th order approximation we know  0

2

0II
 




 ,  0

2

0II

r  



   

So  1

2

0II
 






 

and  1

2

0II

r  





     

(2.278) 

Initial conditions at
2


   :  

      
1

1
1 1 1 1 1 11

1 0, 0,
II

II IIA A
r






   


    if 1 11, 0   

   
(2.279) 

And 
   

1

1 1 1 11
11

0, 0,

II IIII

r
A A

or
r





 


 

 
   

 
if 1 0 

   
(2.280) 

Assume at
2


   ,  1 1 0,IIA   1 1 0,IIA


  1 1

IIA
  and  1 1

IIA
  hence, after i-th 

integration at 0,         
( )

( )

1 1 1 1 1 1 1 1,

i
i

II II II IIA A A A   
  

   
 

,    
( )

1 1 1 1

i

II IIA A 
  

  
 

 

and    
( )

1 1 1 1

i

II IIA A 
  

  
 

 

 
( )

1 1error1
i

I II            (2.281) 

   
( )

1 1error2

i

I II 
    

    
   

      

(2.282)

 

The error value is calculated by using the equation (2.15) 

2.6 Formulation of i
th

 Order Approximation  

2.6.1 Formulation of i
th

 Order Approximation: Constitutive Equations in the 

Power-Law Hardening Material Subjected To Forced Displacement 

We can express the stress functions in the form of an infinite power series have been 

given by Hutchinson [31] in the solution of a nonlinear power-law hardening material 

crack tip field:  

Let, 0 1 21 11 1

0 1 2 0 0 1 1 2 2
iI I I I I I I I

i i iA r A r A r A r
            

        (2.283) 
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where, 0 1 21 1 1

0 1 2 0 0 1 1 2 2

I I I I I IA r A r A r
         

     and 
1iI I

i i iA r
  

   

Assume, 
0 1 2, ,   and 

i depends on the deformation  

Substituting Eqn. (2.283) into Eqns. (2.5-2.7), we obtain stress fields of i-th order 

approximation as, 

           

   

0 1 21 1 1

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2

1

1 1 1

1i

I I I I I I

rr

I I

i i i i i

r A A r A A r A A

r A A

  



         

  

  



       
             

     

 
    

 

         

(2.284)

       0 1 21 11 1

0 0 0 0 1 1 1 1 2 2 2 21 1 1 1 iI I I I

i i i iA r A r A r A r
  

              
       

         
(2.285)

 

       0 1 21 11 1

0 0 0 1 1 1 2 2 2
iI I I I

r i i ir A r A r A r A
  

              
      

   

(2.286)
 

 0 1 21 11 1

0 1 1 2 2

1

2
i

rr rr rr rr i irrs r f A r f A r f A r f
    

   
    

(2.287)
 

 0 1 21 11 1

0 1 1 2 2

1

2
i

i is r f A r f A r f A r f
  

    

  
   

    
(2.288)

 

0 1 21 11 1

0 1 1 2 2
i

r r r r i irs r f A r f A r f A r f
  

    

  
        

(2.289)
 

where, 

    0 0 0 0 0 01 1I I

rrf A    
 

    
  ,

    1 1 1 1 11 1I I

rrf    
 

    
   

    2 2 2 2 21 1I I

rrf    
 

    
  ,

    1 1I I

irr i i i if    
 

    
   

    0 0 0 0 01 1I If     
 

     
  ,

    1 1 1 1 11 1I If     
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    2 2 2 2 21 1I If     
 

     
  ,

    1 1I I

i i i i if     
 

     
   

 0 0 0 0

I

rf A  
 

  
  ,

 1 1 1

I

rf   
 

  
  ,

 2 2 2

I

rf   
 

  
  ,

 I

ir i if   
 

  
 

(2.290)
 

Substituting Eqns.(2.284 -2.290) into Eqn.(2.43) yields an expression for the effective 

stress, 





0 1 2

0 1 2

0 1 2

2
1 11 12

0 1 1 2 2

2
1 11 1

0 1 1 2 2

2
1 11 1

0 1 1 2 2

3

8

8

i

i

i

e rr rr rr i irr

i i

r r r i ir

r f A r f A r f A r f

r f A r f A r f A r f

r f A r f A r f A r f

  

  

   

  

   

   

  

  

      

      

      
   

(2.291)

 

Assume, 

 

 

 

0 1 2

0 1 2

0 1 2

1 11 1

1 0 1 1 1 2 2

1 11 1

2 0 2 1 1 2 2

1 11 1

3 0 3 1 1 2 2

, ,

, ,

,

i

i

i

rr rr rr i irr

i i

r r r i ir

C r f C A r f A r f A r f

C r f C A r f A r f A r f

C r f C A r f A r f A r f

  

  

   

  

   

  

  

  

     

     

     
  (2.292) 

Eqn.(2.298) yields, 

      2 2 22

1 1 2 2 3 3

3
8

8
e C C C C C C      

    
(2.293)

 

Eqn.(2.298) can be written after Taylor expansion as, 

            
1 3

2 2 2 2 21 2 2 2 2 2 2

1 2 3 1 2 3 1 1 2 2 3 3 1 2 3

3 1 3 3 3
8 8 8 8

8 2 8 4 8

n n

n

e

n
C C C C C C C C C C C C C C C

 

      
                      
     

         
(2.294)

 

where constant terms can be written as, 

   02( 1)2 2 2 2 2 2

1 2 3 0 0 08 8rr rC C C r f f f


 


    

     

 

0 0 01 21 1 1 11 1

1 1 1 0 1 2 0 2 0
i

rr rr rr rr i rr irrC C A r f r f A r f r f A r f r f
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0 1 0 2

0

2 2

1 1 2 2 3 3 1 0 1 0 1 0 1 2 0 2 0 2 0 2

2

0 0 0

8 8 8

8i

rr rr r r rr rr r r

i rr irr i r ir

C C C C C C A r f f f f f f A r f f f f f f

A r f f f f f f

   

       

 

   

   

 

            

    

         

 

         1 1 2 2
2 2 22 11 2 12 2 2

1 1 1 1 2 1 2 2 22 i

rr rr rr rr i irrC A r f A A r f f A r f A r f
                 

 

         

(2.295)

 

Similarly,    
2 2

2 3 and C C   includes second order of 1A , bi-linear of 1 iA A   and 

2 iA A    and second order term of 
2 iA A .  So,       2 2 2

1 2 38C C C     also includes 

second order of 1A , bi-linear of 1 iA A   and 2 iA A    and second order term of 
2 iA A . 

Which means the terms are very small in compared with the initial term. So, here 

   
2 2

1 2,C C   and  
2

3C order terms can be neglected. 

After Taylor series expansion and neglecting higher order terms Eqn. (2.291) yields, 

   

   

0 0

0 1 0 2

0

1 3

2 2
2( 1) 2( 1)1 2 2 2 2 2 2

0 0 0 0 0 0

2 2

1 0 1 0 1 0 1 2 0 2 0 2 0 2

2

0 0

3 1 3
8 8

8 2 8

3
8 8

4

i

n n

n

e rr r rr r

rr rr r r rr rr r r

i rr irr i

n
r f f f r f f f

A r f f f f f f A r f f f f f f

A r f f f f

 

   

   

       

 

 



 

 

   

 

   
        
   

       

     08 r irf f 
 

(2.296)

 Assume, 

   

   

2 2 2

0 0 0 0 1 0 1 0 1 0 1

2 0 2 0 2 0 2 0 0 0

8 , 8

8 , 8

rr r rr rr r r

rr rr r r i rr irr i r ir

f f f f f f f f f f f

f f f f f f f f f f f f f f

     

       

     

     

  

(2.297)
 

So, expression for the effective stress becomes, 

 0 0 0 1 0 2 0

1 3

2 2
2( 1) 2( 1) 2 2 21

0 0 1 1 2 2

3 1 3 3

8 2 8 4
i

n n

n

e i i

n
r f r f A r f A r f A r f

       

 

           
           
   

(2.298)
 

Substituting effective stress term into Eqn.(2.3), strain components have the form in 

terms of C as, 
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1 3

2 2
2 2 2 2 2 2

1 2 3 1 2 3

1 1 2 2 3 3 1 1

3 3 1 3
8 8

2 8 2 8

3 1
8

4 2

n n

rr

n
C C C C C C

C C C C C C C C

 

 
               




        

   

(2.299) 

Where, 

     

1 3

2 2
1 2 2 2 2 2 2

1 2 3 1 2 3 1 1 2 2 3 3

3 1 3 3
8 8 8

8 2 8 4

n n

n

e

n
C C C C C C C C C C C C

 

    
              
     

(2.300)
 

   

   

    

1 1

2 2
2 2 2 2 2 2

1 2 3 1 1 2 3 1

3

2
2 2 2 2

1 2 3 1 1 1 2 2 1 2 3

3

2 22 2 2

1 2 3 1 1 2 1 2 1 2 3

3 3 1 3 1
8 8

2 8 2 8 2

1 3 3 1
8 8

2 8 4 2

1 3 3 1
8 8

2 8 4 2

n n

rr

n

n

C C C C C C C C

n
C C C C C C C C C C C

n
C C C C C C C C C C C

 

 






                  


  
          

 

  
            

 

(2.301)
 

Here,  
2

1C ,
1 2C C  and 

1 3C C   includes square of small magnitudes. Which means 

the terms are very small in compared with the initial term so these terms can be 

neglected. 

   

   

1 1

2 2
2 2 2 2 2 2

1 2 3 1 1 2 3 1

3

2
2 2 2 2

1 2 3 1 1 1 2 2 1 3 2

3 3 1 3 1
8 8

2 8 2 8 2

1 3 3 1
8 8

2 8 4 2

n n

rr

n

C C C C C C C C

n
C C C C C C C C C C C

 

 




                  


  
          

 

(2.302)
 

In terms of 0 1 2, , , , if f f f  ,Eqn.(2.302) yields, 
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0 0 1 2

0 0 1 0 2 0 0

0

1

2
2( 1) 1 11 1

0 0 1 1 2 2

3

2
2( 1) 2 2 2 1

0 1 1 2 2 0

3

2
2( 1)

0

3 3 1

2 8 2

1 3 3 1

2 8 4 2

1 3

2 8

i

i

n

rr rr rr rr i irr

n

i i rr

n

r f r f A r f A r f A r f

n
r f A r f A r f A r f r f

n
r f

   

       



 



   



       






         


  
         

 

  
  

 
   

   

0 1 0 2 0 1

0 0 1 0 2 0 2

0 0 1

2 2 2 1

1 1 2 2 1 1

3

2
2( 1) 2 2 2 1

0 1 1 2 2 2 2

3

2
2( 1) 2

0 1 1

3 1

4 2

1 3 3 1

2 8 4 2

1 3 3

2 8 4

i

i

i i rr

n

i i rr

n

A r f A r f A r f A r f

n
r f A r f A r f A r f A r f

n
r f A r f A

      

       

  

      



       



  

      

  
         

 

 

  
    

 
   0 2 02 2 1

2 2

1

2
i i

i i i irrr f A r f A r f
         

     


         

(2.303)
 

 Here higher order terms (  
2

iA order terms) can be neglected and neglecting higher 

order terms, 
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(2.304)
 

Similarly 
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(2.305)
 

And 
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(2.306)
 

Strain components are in the following form according to the first order terms of

1 2, iA A A : 

 0 1 1 2 2( ) { ( )} { ( )}rr rr rr rr rri iO A O A O A       
   

(2.307)
 

 0 1 1 2 2( ) { ( )} { ( )}i iO A O A O A           
   

(2.308)
 

 0 1 1 2 2( ) { ( )} { ( )}r r r r r i iO A O A O A           
   

(2.309)
 

In these expressions strain components will have i-th terms with respect to the power of 

r. 0 0 0 1 0 0 2 0 0 1 0 0( 1)
, , , , ,i in n n n n n n n n

r r r r r
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From zero-th order approximation solution it is clear that the terms of 0( 1)n
r

 
satisfy 

the compatibility condition and from (i-1) th order approximation solution the terms of

0 0 1in n
r

     
also satisfy the compatibility condition. To solve the compatibility condition 

on the remaining terms, we assume the i-th terms satisfy the conditions independently.  

   ( ) 0 1 1 2 2( ) ( ) { ( )}lj i lj lj lj lji iO A O A O A       
   

(2.310)
 

Strain components are in the following summation form: 

( ) 0 1 2

I I I I I

rr i rr rr rr rri       
      

(2.311) 

( ) 0 1 2

I I I I I

i i           
      

(2.312)
 

( ) 0 1 2

I I I I I

r i r r r r i           
      

(2.313) 

Initial part of strain components are given in Eqns.(2.83-2.85) and strain components 

includes first order term of 1A  are presented in Eqns.(2.155-2.157): 

Strain components includes first order term of 
2A : 

0 0 21
2 0 2 2

n nI n I
rr rrA A r

     

       

(2.314)

 

0 0 21
2 0 2 2

n nI n IA A r
  

    

      

(2.315)

 

0 0 21
2 0 2 2

n nI n I
r rA A r

  
    

      

(2.316)
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where 
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(2.317)
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(2.318)
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         (2.319)
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Where, Strain components includes i-th order term of 
iA : 

0 01
0

in nI n I
rri i rriA A r

     

       

(2.320)

 

0 01
0

in nI n I
i i iA A r

  
    

        

(2.321)

 

0 01
0

in nI n I
r i i r iA A r

  
    

       

(2.322)

 

where,
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(2.323)
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(2.324)
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(2.325) 

Derivatives of strain components with respect to r can be written as, 

0 0( 1)1
0 0 0( ) i

I
n nn Irri

i i rriA A n n r
r

  
       

   


    

(2.326) 

0 0( 1)1
0 0 0( ) i

I
n nn Ii

i i iA A n n r
r

  



       

   


    

(2.327)

  

0 0( 1)1
0 0 0( ) i

I
n nn Ir i

i i r iA A n n r
r

  



       

   


    

(2.328)

   0 0

2
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( ) 1 i

I
n nn Irri

i i i rriA A n n n n r
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(2.329) 

   0 0

2
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( ) 1 i

I
n nn Ii

i i i iA A n n n n r
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(2.330) 

   0 0

2
21

0 0 0 0 02
( ) 1 i

I
n nn Ir i

i i i r iA A n n n n r
r

  



      

   
        



  

(2.331) 

From zero-th order approximation solution it is clear that the terms of 0( 1)n
r

 
satisfy 

the compatibility condition. To solve the compatibility condition on the remaining terms, 

we assumed the two terms (zero-th order term and first order term of iA ) of strain 

components satisfy the conditions independently. Finally, initial part of compatibility 

equation is same as the equation which is satisfied in zero-th order approximation. So, 

remaining part of compatibility equation should be satisfied independently. Using Eqn. 

(2.298), the compatibility equation will have three terms with respect to the power of r , 
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0 0 0( 1) 2 2
, in n n

r r
        

and 0 03 2 1
.in n

r
     

To solve the compatibility condition, we 

assume that those three terms satisfy the conditions order by order. Here we will neglect 

the third term. Assuming second term as the incremental part the compatibility equation 

includes the exponent of r as 0 0 2
.in n

r
     

 Hence, in the i-th order approximation, 

compatibility equation becomes in the form of,  

4 3 2 4 3 2

0 0 0 0
0 0 14 3 2 4 3 2

, , , , , , , , , , , ,
I I I I I I I I

I Ii i i i
i i i i i i i

d d d d d d d d
B A C A A A A n

d d d d d d d d

       
    

       

 
     

 

          

         

(2.332) 

Equation (2.332) is the fourth-order ordinary differential equation of I

i . Within the 

i-th order approximation unknowns are , ,  , ,  and .I I I I

i i i i i iA        B and C are 

derived using Mathematica software and the equation is solved using the Runge-Kutta 

method. 

The expressions for incremental stresses in the i-th order approximation are: 

1iI I

rri i rriA r
 

        

(2.333)

1iI I

i i iA r


  

        

(2.334)

 
1iI I

r i i r iA r


  

        

(2.335) 

where, 

   1I I I

rri i i i   


  

       

(2.336)

 1I I

i i i i    

       

(2.337)

 I I

r i i i  


 

        

(2.338)

 

Displacement fields are expressed in the i-th order approximation as, 

( ) 0 1 2 0 1 2

I I I I I I I I I

r i r r r ri rr rr rr rriu u u u u dr dr dr dr               
(2.339)
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Initial part of displacement components and initial strain components has a relationship.   

From (i-1) th order approximation on the interface, 

   0 1 2 0 1 21 1

I I I I I I I I

r r r rr rr rrr i rr i
u u u u dr dr dr dr   

 
           

(2.340) 

   
0 0 1( ) 11

01 1
in nI n I

r i r i
u A r u

      
 



      

(2.341) 

0 0( ) 11
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in nI n I
ri riu A r u

     

       

(2.342) 

where, 
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(2.343) 
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(2.344)
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Finally, displacement after i-th order approximation:  

( ) 0 1 2

I I I I I

r i r r r riu u u u u   
      

(2.345) 

On the interface, from zero-th order approximation:  0 0
0I

ru
 


  

So,
  ( ) 1 20

I I I I

r i r r riu u u u


  
      

(2.346)
 

And from the (i-1) th order approximation displacement field is known and which is 

same as the forced displacement field from the elastic material side of the (i-2)-th order 

approximation. All terms up to the (i-1)-th order approximation is known. Displacement 

I

ru at any arbitrary value of , and on the interface, is expressed as Eqn.(2.243) and 

Eqn.(2.346) ,respectively. Where, 0

I

ru  and 1

I

ru are given in Eqn.(2.89) and Eqn.(2.155). 

Displacement I

riu  are given in Eqn. (2.342). From strain displacement relation in 

Eqn.(2.11)substituting
0 1r r r r i           and 

0 1 iu u u u     
 
Strain 

displacement relation becomes, 

0 1 0 1
0 1 0 12 2 2i r rir

i r r r i

u u u u uu
r u r u r u r r r

r r r

  
       

  

    
          

     

         
(2.347)

 
Initial part of displacement components and initial part of strain components has a 

relationship. So incremental part for the i-th order approximation, 

 

2i ri
i r i

u u
r u r

r


 



 
  

        (2.348)
 

Assume,    0 0 0 0( ) 1 ( ) 1 1

0 0( 1) ;i in n n ni
i i

u
u Kr f n n Kr f

r

     
             
      


  

Equation becomes, 

  0 0( ) 1

0 0 2in n ri
i r i

u
Kr f n n r

  

    


    
    

    
(2.349) 

And we have
0

Iu in Eqn.(2.93)  and 
1

Iu  
in Eqn. (2.157) similarly I

iu  can be 

calculated as, 
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(2.350) 

where,
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(2.351)

 

Finally, ( ) 0 1 2

I I I I I

i iu u u u u       
     

(2.352)
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From the zero-th order approximation we have:  0 0
0Iu  


  

On the interface,
  ( ) 1 20

I I I I

i iu u u u   
  

    
(2.353)

 

From the (i-1)th order approximation 
  1

0

I

i
u






 is known and the power of r is 

equal to the power of r from elastic material side of the (i-2) th order approximation , 

which is used as  the forced displacement in the power law material of the (i-1)th order 

approximation on the interface. 

Displacement of Elastic material side after (i-1) th order Approximation which is 

used as the forced displacement: 

     
0 11

0 0 1 11 1 1
iII II II II

r rr i i r i
u A r u A r u A r u

  

  
  

        

(2.354)

 

     
0 11

0 0 1 11 1 1
iII II II II

i i i
u A r u A r u A r u

 

  


  
  

     

(2.355)

 

For the case of Free edges-forced displacement from elastic material side, Boundary 

conditions are: 

 

 

( )

2

( )

2

0
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I
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r i

 

 












       and     

   

   

( ) ( 1)0 0

( ) ( 1)0 0

I II

r i r i

I II

i i

u u

u u

 

  

 

 




    

(2.356)

 

Last part of boundary equations can be written as, 
 

    1 2 0 1 10 0

I I I II II I

r r ri r r r i
u u u u u u

 
 

    
    

(2.357))
 

To satisfy the boundary equation of (i-1) th order approximation, up to (i-1) th terms 

of both sides are known and is equal. So, all terms are cancelled out up to (i-1) th order 

and remaining terms should be satisfied on the interface. 

On the interface the last part of boundary condition can be described as,

    10 0

I I

ri r i
u u

 
 


 
and similarly 

 
    10 0

I I

i i
u u  

 


   
(2.358)

 

It can be expressed in detail,
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  (2.359) 

and   
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(2.360)

 

From the (i-1)-th order approximation it is known that, 
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(2.361) 
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(2.362) 

So, remaining terms are: 

   
0 0 1( ) 11

0 1 1
i in nn I II

i ri i r i
A Ar u A r u

       

 
 ,
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i in nn I II

i i i i
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(2.363)

 

Applying the boundary condition, remaining terms of boundary equation becomes, 

    10 0

I II

ri r i
u u

 
 


 
and

 
    10 0

I II

i i
u u  

 


    
(2.364)

 

Where angular function terms of displacements are presented in Eqns.(2.344,2.351)
  

and 
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(2.365) 
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(2.366) 
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Due to the forced displacement on the interface, displacement of i-th order 

approximation in the power law material side should be the same as the displacement of 

(i-1) th order approximation in the elastic material side. 

The iterative boundary condition on the interface can be expressed as,
  

    ( ) 10 0

I II

r i r i
u u

 
 

 , 
     1

0 0

I II

i i
u u
 

 


 
 .    (2.367) 

Where     ( ) 0 1 2 10 0

I I I I I I

r i r r r rir i
u u u u u u
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II II II II II
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So,
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and 
     0 1 2 0 1 21 1
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I I I I I II II II II
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(2.373) 

From zero-th order approximation:  0 0
0I

ru
 

 and  0 0
0Iu  


      

From (i-1) th order approximation:
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and 
     0 1 2 0 1 21 2
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So, remaining term     10 0

I II

ri r i
u u

 
 

 and     10 0

I II

i i
u u  

 


  
(2.376) 

On the interface Power of r should be equal. Where,  

  1 01 1i i n     
       

(2.377)
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From the solution of zero-th order approximation, eigenvalue ,
0  is known for 

different n. Right hand side of the above equation is known and constant where,  1 n is 

negative (-)ve in sign due to the power law hardening material 1n  ,  0 1  also 

become (-)ve because of 
0 1  .So R.H. side is always makes a positive constant.  

To satisfy the boundary condition in the i-th order approximation the singular exponent 

would have the form, 

  0 01 1i i n       .       (2.378) 

It seems the i-th order singularity depends on the hardening exponent n and the zero-th 

order singularity 0.
 

Equating the power of r in the boundary equation, Radial part is equal in both sides so 

remaining part means the angular function part should be the same 

Equating the power of r, from
     10 0

I II

ri r i
u u

 
 

 and     10 0

I II

i i
u u  

 
  

On the interface at 0  , 
 1

I II
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u u
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 1
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i i
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0 1 10 0

i in nn I II
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      (2.379) 

and  
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(2.380) 

Equating the power of r, 
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(2.381) 

1

0 1

n

i iA A A C

          (2.382) 

where,  
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(2.383) 
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Compatibility equation becomes in the form of fourth-order ordinary differential 

equation are given in Eqn. (2.332). Equation (2.332) is the fourth-order ordinary 

differential equation. For the solution of fourth-order equation of I

i iA , the equation is 

reduced into a system of first-order equations:  Assume, 

2 3

2 3
1(1) , 1(2) , 1(3) , 1(4)

I I I
I i i i

i i i i i

d d d
w A w A w A w A

d d d
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and 
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0 2 3
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4
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are known from the solution of 0-th order approximation.  
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(2.384) 

B, C and –C/B equation is derived using Mathematica software. And, therefore, 

equation can be solved using the Runge-Kutta method. 

Applying boundary conditions: 

         ( ) 0 1 2

2 2 2 2 2

0I I I I I

i i            
    

    
    

  

(2.385)

 

From zero-th order approximation we know  0

2

0I
 




 , and from (i-1) th order 

approximation we know 
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0I
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similarly,  
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(2.386)

 

From zero-th order approximation we know  0
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 , and from (i-1) th order 

approximation we know 
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2

0I

r i  





   

(2.387)

 

The expressions for incremental stresses in the i-th order approximation are given in 

Eqns. (2.336-2.338) 

Initial conditions at 
2
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(2.388) 

And    1
0, 0,

i

I
I Ir i

i i i i iA or A
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(2.389)

 

We know i from Eqn. (2.378). Unknown are:    ,I I

i i i iA A 
 

  

After integration final conditions, at 0  , error can be calculated as, 
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(2.391)  

The error value is calculated by using the equation (2.15) and solution is obtained for 

the minimum error.  
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2.6.1.1 Determination of the Stress Intensity Factor iA
 

Stress can be expressed as,
 

         0 1 21 11 1

0 0 1 1 2 20 0 0 0 0

iI I I I I
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From FEM for joint material (power law hardening/elastic material joint),  
0

I

 



is 

known and from zero-th order approximation 0 1

0A r
   from first order approximation 

1 1

1A r  and from (i-1)th order approximation 
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i
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is also known  
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(2.394)

 

From i-th order approximation after solution of differential equation the numerical value 

of  I

i iA is known.
  

we have,      1 1

0 0
1i iI I

i i i i i iA r A r
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where,  1I I

i i i i    
      

(2.396)
 

As the definition of stress intensity factor
iA ,  
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From theory  
0

I

i iA





is known 
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i i i i iA A


  


  
      

(2.399)
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From i-th order approximation after solution of differential equation the numerical 

value of  I

i iA and all of its derivatives are known.
  

From FEM,
 iA is known 

numerically so,  I I

i i i iA A 
 
and similarly all of its derivatives are known. From 

boundary equation on the interface at 0  ,are presented in Eqns. (2.381-2.382). For

1n  , power of 
0A is smaller than 1 (means negative power shows opposite behavior). 

 
From FEM of joint material we can write the following equation, 
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From FEM for joint material (power law hardening/elastic material joint),  
0

I

 



is 

known and from zero-th order approximation 0 1

0A r
   from first order approximation 

1 1

1A r  and from (i-1)th order approximation 
 

1 1

1
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i
A r

  


is also known  
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As the definition of stress intensity factor
iA ,  

0
1I

i 



 ,Eqn. (2.402) yields,
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Taking logarithmic distribution, 
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(2.404) 
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Right hand side have the term should be calculated at first

    0 11 21 11 1

0 1 2 10

iI

iA r A r A r A r
  

 
   


   

 
 and then logarithmic 

distribution is calculated.  
0

I

 



is numerically known along radial distance r by 

FEM for joint material and  0 11 21 11 1

0 1 2 1
i

iA r A r A r A r
     

   is calculated and 

subtracted for the same radial distance where 
0A and  0 1 

 
is known from 

rigid/power law hardening material and 
1A ,  1 1  , 

2A ,  1 1  and
1iA 
,  1 1i  

 

is known after first order, second order and(i-1)th order  approximation, respectively 

by FEM. 

Once singular exponent, i is known the angular variation of stresses can be computed. 

To compute the stresses we need to calculate unknown angular functions to satisfy 

traction on the interface.  

2.6.2 Formulation of i
th

 Order Approximation: Constitutive Equations in the 

Elastic Material Subjected to Traction 

For the case of stress free edge and traction on the interface boundary conditions: 
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(2.405) 

Assumed, 

0 1 21 11 1

0 1 2 0 0 1 1 2 2
iII II II II II II II II

i i iA r A r A r A r
            

        (2.406)
 

So, compatibility equation in terms of stress component becomes, 
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(2.407) 

From zero-th order approximation solution it is clear that the terms of 
0 3

r
 

 and 

from (i-1) th order solution the terms
3ir

 
 satisfy the compatibility condition. 

Compatibility condition satisfied up to (i-1) th order approximation that includes the 

term
0 113 33, , ir r r
      . To solve the compatibility condition, remaining terms satisfy 

the condition independently. So the compatibility equation for remaining terms, 
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2
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Equation (2.408) is the fourth-order ordinary differential equation. For the solution of 

fourth-order equation, the equation is reduced into a system of first-order equations:  

Assume,   
2 3

2 3
1(1) , 1(2) , 1(3) , 1(4)
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d d d
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Where,  1 1 1(2)w w  ,  1 2 1(3)w w  ,  1 3 1(4)w w   

 
4 3 2

4 3 2
1 4 , , , ,

II II II II
IIi i i i

i i

d d d d
w f

d d d d

   
 

   

     
      

(2.409) 

And, therefore, equation is solved using the Runge-Kutta method. 

The resulting expressions for incremental stresses are: 

1iII II
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where, 
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Displacement can be calculated as: 

0 1 2 0 1 2

II II II II II II II II

r r r ri rr rr rr rriu u u u dr dr dr dr            
  

(2.416)
 

Initial part of displacement components and initial strain components has a 

relationship and given in Eqn. (2.88). From the (i-1) th order approximation, 
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where
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Displacement equation of first order approximation of elastic material side can be 

expressed as, 

0 1 2
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And again we know, from Eqn.(2.10) substituting, 
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Strain displacement relation becomes, 
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(2.422) 

Initial part of displacement components and initial part of strain components has a 

relationship. So incremental part, 

0 0
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Finally,  
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Using another expression of strain Eqn. (2.11), displacement can be calculated as: 
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Displacement can be calculated From Eqn.(2.11).Rigid body rotation is depends on 

r and angular function. To overcome the rigid body rotation we have to assume the 

displacement as a function of r and the angular function term. 
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So equation becomes, When 1i  ,  
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where, 
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(2.428) 

Total displacement yields, 
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Boundary Conditions: 
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(2.430) 

Applying boundary conditions: 
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From zero-th order approximation we know  0
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112 
 

         ( ) 0 1 2

2 2 2 2 2

0II II II II II

r i r r r r i            
    

    
    

    

(2.432)

 

From zero-th order approximation we know  0

2

0II

r  



 , and from up to (i-1) th order 

approximation  ( 1)

2

0II

r i  
  

  so,  
2

0II

r i  



 .   (2.433) 

Initial conditions at
2


   :  

      1
1 0, 0,

i

II
II IIi

i i i i i iA A
r






   


    if 1, 0i i   

  
(2.434) 

And    1
0, 0,

i

II
II IIr i

i i i i iA or A
r






  



 
    if 0i 

    
(2.435) 

Assume at
2


   ,  0,II

i iA    0,II

i iA

  II

i iA
  and  II

i iA
  hence, after i-th 

integration at 0,         
( )

( )

,

in
in

II II II II

i i i i i i i iA A A A   
  

   
 

,

   
( )in

II II

i i i iA A 
  

  
 

 and    
( )in

II II

i i i iA A 
  

  
 

 

 
( )

error1
in

I II

i i i iA A           (2.436) 

   
( )

error2

in

I II

i i i iA A 
    

    
   

      

(2.437)

 

The error value is then calculated by using the equation (2.15).  
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2.7 Results for the Interface-Edge Problem of Elastic/Power-Law Hardening 

Materials Joint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.18: Graphical form of stress singularity 1i  with n  

    Figure 2.18 shows the relation between the order of singularity, 1,i   and power 

law hardening exponent, n . As the hardening exponent in the power law hardening 

material is increased the order of the singularity, 1,i  tends to increase which means 

the absolute value of the order of singularity, 1 ,when 1 0i i     tends to decrease to 

zero. 1i  continues increasing when 1 0i   which means no more singularity is in 

the incremental term. Two or more singular terms exist for n<2.0, three or more singular 

terms exist for n<1.50, four or more singular terms exist when n<1.333. In general 

 1i  or more singular terms exist in the i-th order approximation for

 1 , 1,2,3n i i i    . 
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 The magnitude of incremental stress components 
 | |

ij i
  on the interface are 

decreased with the increase of iteration number i  as shown in Fig.2.19 and Fig.2.20  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.19: Variation of incremental stresses on the interface with the iteration at 410r   

 

 

 

 

 

 

 

 

 

Fig. 2.20: Variation of incremental stresses on the interface with the iteration at 410r   
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for 1.3n   and 2.4n  , respectively. The decrement of the incremental stress indicates 

that the solution is converged iteratively to satisfy the equilibrium condition of traction 

on the interface. Comparing Fig.2.19 and Fig.2.20 it can be shown that the solution 

converged rapidly (with minimum iteration number) for 2.4n  than that of 1.3n   

because of the no multiple singular terms exist for the case 2.4n  . 

    The magnitude of incremental displacement components 
 

| |
j i

u  on the interface 

are shown in Figs. 2.21 and 2.22. The incremental displacements are decreased with the 

increase of iteration number. The decrement of the incremental displacement means that 

the solution is converged iteratively to satisfy the continuous condition of displacement 

on the interface between the power-law and elastic material joint. Due to the existence 

of only single singular term for 2.4n  , the solution converged rapidly (with minimum 

iteration number) for 2.4n  while 1.3n  converged slowly (with maximum iteration 

number) that can be shown in Fig.2.22 compared with Fig.2.21.  

 

 

 

 

 

 

 

 

 

Fig. 2.21: Incremental displacements variation on the interface with the iteration at

410r   
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Fig. 2.22: Incremental displacements variation on the interface with the iteration at

410r   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.23: Converging slope of log loglji r   with iteration number at 410r   
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Fig.2.23 shows the variation of slope of log logij r  plots with the iteration 

number for 1.3n  . The slope of stress fields obtained from higher order approximation 

are closer to that found in FEM than that of the zero-th order approximation, which 

indicates that the higher order approximation is important to describe the real field. 

 

Fig. 2.24: Angular variation of stresses of 0
th

 order approximation near the interface 

edge of elastic/elastic-plastic materials joint for n=1.3 

 

The angular variations of normalized stresses for power-law hardening material  

for plane strain condition obtained from theoretical analysis shown in Figures 2.24-2.27 

for 1.3n   and Figures 2.28-2.30 for 2.4n  .  It can be seen that tractions are 

continuous across the interface, but there is a big jump in the radial stress, rr . The 

stress rr on the elastic material side is much greater than that on the power-law 

hardening material side. This means that the interface is really a stress raiser which 

results in serious stress concentration. Total stresses and displacements after i-th order 

approximation are depicted in Figs. 2.31-2.32 and Figs. 2.33-2.34, respectively. Stresses 

and displacements are continuous on the interface of two dissimilar elastic-plastic and 

elastic materials joint. 
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Fig. 2.25: Angular variation of incremental stresses of 1
st
 order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=1.3 

 

Fig. 2.26: Angular variation of incremental stresses of 2
nd

 order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=1.3 
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Fig. 2.27: Angular variation of incremental stresses of 3
rd

 order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=1.3 

 

Fig. 2.28: Angular variation of stresses of 0
th

 order approximation near the interface 

edge of elastic/elastic-plastic materials joint for n=2.4 
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Fig. 2.29: Angular variation of incremental stresses of 1
st
 order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=2.4 

 

 

Fig. 2.30: Angular variation of incremental stresses of 2
nd

 order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=2.4 

 



121 
 

 

Fig. 2.31: Angular variation of total stresses after i-th order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=1.3 at 410r  . 

 

 

Fig. 2.32: Angular variation of total stresses after i-th order approximation near the 

interface edge of elastic/elastic-plastic materials joint for n=2.4 at 410r  . 
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Fig. 2.33: Angular variation of total displacements after i-th order approximation near 

the interface edge of elastic/elastic-plastic materials joint for n=1.3 at 410r  . 

 

 

Fig. 2.34: Angular variation of total displacements after i-th order approximation near 

the interface edge of elastic/elastic-plastic materials joint for n=2.4 at 410r  . 
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2.8 Summary of Elastic/Power-Law Hardening Materials Joint 

Bonded dissimilar materials in which materials behaves as an elastic and a 

power-law hardening material were studied and the solution was presented to determine 

the stress and displacement fields around an interface edge of dissimilar materials joint. 

An iteration method is proposed for the determination of singular fields around an 

interface edge of an elastic and a power-law hardening materials joint. In the proposed 

iteration method, to overcome the problem we have considered at the interface 

boundary the additional stress fields in the elastic side to satisfy stress continuity, the 

additional displacement fields in the elastic-plastic side to satisfy displacement 

continuity, successively. Due to the increase of iteration, the discrepancy of the r 

dependence of the fields along the interface is decreased. 

The power of r in the stress equation depends on the hardening exponent n. As n is 

increased the absolute value of the i-th order of singularity, 1i  , tends to be decreased 

to zero when 1 0i   .  1i  or more singular terms exist in the i-th order 

approximation for  1n i i  . In the zero-th order approximation, the singular 

exponent 0  depends on the hardening exponent n. n ranging from 1(linear stress 

hardening) to   (perfect plasticity). The dominant singularity as reflected 0 is most 

severe when 1n  . The value of 0 increased monotonically with the increasing of n . 

The angular function of separable form term in the displacement fields in the 0
th

 

order approximation should be zero at 0  is a necessary condition for the continuity 

of displacement on the interface when 0r  around the interface free edge of 

elastic/elastic-plastic materials joint. The stress and displacement fields in the 

elastic-plastic material are controlled by the boundary condition which is the same as 

the one of an elastic-plastic material on the rigid substrate. The stress fields in the elastic 

material are also controlled by the index through the equilibrium of force on the 

interface. 
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In the power-law hardening material, when n is decreased (for 1n  is an 

incompressible elastic material) the stronger singularity ( 0 1  , goes to more negative) 

exist in the power-law hardening material due to displacement boundary condition 

( 0,r   0 0iu    ) and weaker singularity ( 0 1  , goes to less negative) for larger 

n . In the elastic/power-law hardening materials joint case the singularity should be 

weaker with the decreasing value of n  because of 1n  is an incompressible elastic 

material but in our approximation is not shows this situation. When regarded as 

deformation theory materials, the materials just considered each approximate perfect 

plastic behavior for small values of n  for the power-law material. Yet, the calculated 

values of   do not agree in this limit. The disparity can be explained as follows. For a 

power-law material model, elastic strains were neglected because, as stresses grow large 

for any value of 1n  , the ratio of elastic strain to plastic strain approaches zero. With an 

asymptotic expansion of the governing equations in powers of n , it is easily shown 

that 1n as n . 

In the elastic material, singularity 1   depends on Poison’s ratio [64]. Singularity,

1   increases with the increase of Poisson’s ratio. From the stress-strain relation of 

power-law hardening material it can be explained that when n is increased; the 

effective modulus is decreased due to the increasing strain with increasing n  for the 

same stress. The Poisson’s ration is fixed, and 0.5   due to the constant volume. 

Hence, there is no dependency of singularity with the Poisson’s ratio.  

From 0
th

 order approximation of our present study, the singular exponent for 

2.4n  is calculated 6

0 0.753675 5 10    . From the previous researches it can be 

found that for the same value of  2.4n  , the singular exponent 0 is calculated by 

Duva et al.[65] and Rahman et al.[47] are 0.75and 0.76 , respectively. This shows our 

results are in a good agreement with available results. 
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CHAPTER 3 

SINGULAR STRESS FIELDS IN DISSIMILAR POWER-LAW HARDENING 

MATERIALS JOINT 

3.1 Introduction 

In this chapter, we solved for the singular stress fields at the interface-edge of two 

dissimilar power-law hardening materials joint where dissimilar materials having 

different power-law hardening exponents. We have formulated and solved under the 

plane strain condition. By taking the same wedge angle of two materials, our generic 

interface-edge model is as butt joint model with the interface-edge of two dissimilar 

power-law hardening materials. 

In [66] an iteration method were presented for the elastic/power-law hardening 

materials joint to solve the problem on the interface arising due to the dissimilar power 

of r in the displacement field. In this chapter, using the same iterative method as 

presented in chapter 2, we have satisfied the boundary conditions to determine the 

singular fields around an interface edge of two dissimilar power-law hardening 

materials joint having different hardening exponent. 

The study reported in this chapter is an asymptotic analysis for singular stress fields 

around an interface-edge of dissimilar power-law hardening materials joint under 

plane-strain condition and J2 deformation plasticity theory. The emphasis is to establish 

the effect of constituent material properties and the effect of geometry on the singular 

stress fields, when the materials behave as: 
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1 13

2

nI I I

ij e ijs     (for material I)      (3.1) 

and  

2 13

2

nII II II

ij e ijs     (for material II)     (3.2) 

where i and j  are used for subscript indicates ,r  . 
k and kn  are hardening 

coefficient and hardening exponent, respectively.
 e is the effective stress and 

ijs is the 

stress deviator. 

It should be noted that, there can be material mismatch along the interface arising 

from either a difference in yield strengths I II

y y  or from a difference in power-law 

hardening exponents 1 2n n or both. We first analyze the effect of 1 2n n by focusing 

on bimaterial in which only 1 2n n  but I II

y y  . When 1 2n n then there is the 

possibility of 1 2n n or 1 2n n . We will assume that the material I is the lower strain 

hardening material 1 2n n  in this research. Stress, strain and displacement quantities 

are normalized by yield stress or corresponding yield strain of the material I.  In this 

research both the hardening exponents, 1 2, 1n n  . 

In Section 3.2, we formulate the governing equations for the singular stress field 

under the plane strain when 1 2n n  but I II

y y  .The solution method is presented in 

section 3.3. In Section 3.4 the asymptotic analysis of two dissimilar power-law 

hardening materials joint is given elaborately. Results for the interface-edge problem of 

two power-law hardening materials joint having different power-law hardening 

exponents is presented in Section 3.5. This chapter is concluded with summery in 

Section 3.6. 

3.2 Formulation: Two Power-Law Hardening Materials Joint Cases 

Consider two power-law hardening materials joint with different hardening 

exponent 1n and 2n , as shown in Fig.3.1. We will assume that the material I is the lower 
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strain hardening material in this study. 

 

 

Fig. 3.1: Theoretical model.     

 

 Fig. 3.2: Analysis model geometries. 
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The boundary condition can be expressed as follows in the polar coordinate system 

located on the interface edge for power-law hardening materials joint having different 

hardening exponent. 

2 2

2 2

0,

0,

I II

I II

r r

   

   

 

 

 

 

 

 
     

 

0 0

0 0

,

,

I II

I II

r r

  

  

 

 

 

 




     

0 0

0 0

,

.

I II

r r

I II

u u

u u

 

  

 

 




 

 (3.3) 

The stresses and displacements of the upper material are referred to with a 

superscript “I” while those of the lower material, with a superscript “II” as shown in 

Fig.3.1 and 3.2.  

3.3 Solution Method 

In the zero-th order approximation, the stress and displacement fields in the 

power-law hardening material I are assumed to be the same as the ones in the plate 

jointed to rigid substrate instead of the material II and subjected to the same tensile 

load.  

 

 

 

 

 

 

Fig. 3.3: Elastic-plastic/ Elastic-plastic materials joint. 

 



129 
 

 

Fig. 3.4: Material I (upper material) bonded to rigid substrate. 

The stress fields in the power-law hardening material II can be described by the 

fields in the power-law hardening material wedge which is subjected to distributed 

tractions along the one edge. The tractions are the same as the stress distributions on the 

rigid/material I interface. 

        

Fig. 3.5: Schematic diagram of applying Traction from upper material to the lower 

material.(a) Traction from upper material (b) Traction to lower material. 
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In the first order approximation, the power-law hardening material I having the 

initial fields of the zero-th order approximation is subjected to a forced displacement 

which is the same displacement induced along the edge of power-law hardening 

material II in the zero-th order approximation. 

        

Fig. 3.6: Schematic diagram of applying Forced displacement from lower material 

to the power-law hardening material I(upper material). (a) Forced displacement from 

lower material (b) Forced displacement to upper material. 

The increase of stress fields in the power-law hardening material II can be described 

by the fields of the power-law hardening material II having the initial fields of the 

zero-th order approximation which is subjected to distributed tractions along the one 

edge. The tractions are the same as the incremental stress distributions on the power-law 

hardening material I wedge in the first order approximation. The iteration process 

continues as the approximation goes. 
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Fig. 3.7: Schematic diagram of applying Traction from power-law hardening material I 

to the power-law hardening material II (a) Traction from power-law hardening material 

I (b) Traction to power-law hardening material II. 

Stress-strain relations used in the material I and material II, respectively  are  

given in Eqn.(3.1) and Eqn.(3.2), 

where i and j  are used for subscript indicates ,r  . 
k and kn  are hardening 

coefficient and hardening exponent, respectively.
 e is the effective stress and 

ijs is the 

stress deviator. We will assume that the material I is the lower strain hardening material 

 1 2n n  in this study. Stress, strain and displacement quantities are normalized by 

yield stress or corresponding yield strain of the material I.  In this thesis both the 

hardening exponents, 1 2, 1n n  .  

3.4 Asymptotic Analysis 

An asymptotic expansion of the Airy stress function in a separable form is assumed 

1
( ) , 0,1,2,...;ik k

i i

i

i Ar i
   as 0,r      (3.4) 
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where 0 1....  and k I for material I and k II for material II. 
k

i  is the angular 

function of airy stress function in the i-th order of approximation. iA is a constant which 

is proportional to the stress intensity factor of i-th order incremental fields.
 iA

 
is 

defined as, 

   1

0
0

, 0,1,2,....iI

i

i

A r i





 


       (3.5) 

In the higher order approximation  1i  , nonlinear effective stress term 1n

e
 was 

expanded by Taylor series expansion method and the first two terms were considered 

for further calculations. 

In the first order approximation before expansion this term is written as,  

   0 1 0 1 0

1

2
( 1) 11 ( ) 2( )2

0 1 1 1 2

3
2 ,

8

k

kk

n

nn

e r f A r f A r f
    



    
   

 
   (3.6) 

where, 

     2 2 2 2 2 2

0 0 0 0 1 0 1 0 1 0 1 2 1 1 18 , 8 , 8 ,rr r rr rr r r rr rf f f f f f f f f f f f f f f                     

           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 , 1 1 , ,k k k k k

rr rf A f A f A          
       

               
     

 

           1 1 1 1 1 1 1 1 1 1 1 1 11 1 , 1 1 , .k k k k k

rr rf f f          
       

               
     

           (3.7) 

Assuming smaller range of r  1r  near the interface edge it is reasonable to have 

the singular exponent of incremental stress 1  which is larger than the zero-th order 

singular exponent 0 , i.e., 0 1  . The order of r of the terms in the part powered by 

 1 2kn   in Eqn. (3.6) is 0,  1 0  and  1 02    respectively which means the 

order of r  in the second and third terms are positive in magnitude. Positive power of 

small r gives the value smaller than 1. Also 1 1A  , 1 1f  and 2 1f  .The summation of 
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the second and third terms has the smaller magnitude than 1.This satisfies the 

convergence condition for the Taylor expansion. Assuming the first term as the leading 

term and remaining terms as the incremental term Taylor expansion is applied to Eqn. 

(3.6). After expansion and neglecting the higher order term of 1A the equation becomes, 

 0 0 0 1

1 3

2 2
1 2( 1) 2( 1) 2

0 0 1 1

13 3 3
.

8 2 8 4

k k

k

n n

n k
e

n
r f r f A r f

   

 

       
      
   

  (3.8) 

Substituting effective stress term from Eqn. (3.8) into Eqn. (3.1) and Eqn. (3.2) , strain 

components are expressed
 
according to the order of 1A  as: 

  2

0 1 1 2 1( ) { ( )}k k k k

ij ij ij ijO A O A     
     

(3.9)
 

In this expression strain components will have three terms with respect to the power of r.

0 0 0 1( 1)
,k k kn n n

r r
      

and 0 0 13 1 2k kn n
r

     
. From zero-th order approximation solution it is 

clear that the terms of 0( 1)kn
r

 
satisfy the compatibility condition. To solve the 

compatibility condition on the remaining terms, we assume the two terms satisfy the 

conditions independently. At first we will consider it neglecting the third term. 

   0 1 11
( )k k k

ij ijij
O A   

       
(3.10)

 

Strain components are in the following summation form: 

(1) 0 1

k k k

rr rr rr   
        

(3.11)
 

(1) 0 1

k k k

     
         

(3.12)
 

(1) 0 1

k k k

r r r     
        

(3.13)
 

Initial part of strain components can be expressed as,  

0( 1)
0 00

k kn nk k
rr rrA r

 


       

(3.14)

0( 1)
0 00

k kn nk kA r


  
        (3.15)

0( 1)
0 00

k kn nk k
r rA r


  

        (3.16) 
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where, the expression of 0
k
ij  are given in chapter 2. It is noted that n is replaced by 

kn ( kn n ) . 1n n for upper material while 2n n  for lower material part. 

Strain components contains first order term of 1A : 

0 0 11
1 1 10

k k kn n nk k
rr rrA A r

   
   



      

(3.17)

 

0 0 11
1 1 10

k k kn n nk kA A r
  

  
   



      

(3.18)

 

0 0 11
1 1 10

k k kn n nk I
r rA A r

  
  

   


      

(3.19)

 

where, 1
k
ij  are given in chapter 2. It is noted that n is replaced by kn ( kn n ) . 1n n

for upper material while 2n n  for lower material part. From chapter 2 only equations 

presented for power-law material have been considered. 

Strain components contains first order term of iA : 

0 01
0

k k k in n nk k
rri i rriA A r

   
   



      

(3.20)

 

0 01
0

k k k in n nk k
i i iA A r

  
  

   


      

(3.21)

 

0 01
0

k k k in n nk I
r i i r iA A r

  
  

   


      

(3.22)

 

where, 1
k
ij  are given in chapter 2. It is noted that n is replaced by kn ( kn n ) . 1n n

for upper material while 2n n  for lower material part. From chapter 2 only equations 

presented for power-law material have been considered. 

In the 0
th

 order approximation, displacement field can be expressed as,

 

0 1

0 0 0
k k kn n nk k

j ju A r u
  



      

 (3.23) 
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where, 

0 1

0 0 0
k k kn n nk k

r ru A r u
  



      

 (3.24) 

0 1

0 0 0
k k kn n nk ku A r u



 

 


      

 (3.25) 

In the 1
st
 order approximation, displacement field can be expressed as, 

0 0 11 ( ) 1
1 1 10

k k kn n nk k
j ju A A r u

      


     

 (3.26) 

where, 

0 0 11 ( ) 1
1 1 10

k k kn n nk k
r ru A A r u

      


     

 (3.27) 

0 0 11 ( ) 1
1 1 10

k k kn n nk ku A A r u
  

 
    



     

 (3.28) 

In the i
th

 order approximation, displacement field can be expressed as, 

0 01 ( ) 1
0

k k k in n nk k
ji i jiu A A r u

      


     

 (3.29) 

where, 

0 01 ( ) 1
0

k k k in n nk k
ri i riu A A r u

      


     

 (3.30) 

0 01 ( ) 1
0

k k k in n nk k
i i iu A A r u

  
 

    


     

 (3.31) 

where, angular function of displacement k
jiu  are given in chapter 2. It is noted that n is 

replaced by kn ( kn n ) . 1n n for upper material while 2n n  for lower material part. 

From chapter 2 only equations presented for power-law material have been considered. 

The resulting expressions for incremental stresses are: 

1ik k

rri i rriA r
 

        

(3.32)

1ik k

i i iA r


  

        

(3.33)

1ik k

r i i r iA r


  

        

(3.34) 
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where angular function of stresses are, 

   1k k k

rri i i i   


  

       

(3.35)

 1k k

i i i i    

       

(3.36)

 k k

r i i i  


 

        

(3.37)

 

From zero-th order approximation solution it is clear that the terms of 0( 1)kn
r

 

satisfy the compatibility condition. To solve the compatibility condition on the 

remaining terms, we assumed the two terms (zero-th order term and first order term of

1A ) of strain components satisfy the conditions independently. Finally, initial part of 

compatibility equation is same as the equation which is satisfied in zero-th order 

approximation. So, remaining part of compatibility equation should be satisfied 

independently. Using Eqn. (3.8), the compatibility equation will have three terms with 

respect to the power of r , 0 0 0 1( 1) 2 2
,k k kn n n

r r
        

and 0 0 13 2 1
.k kn n

r
     

To solve the 

compatibility condition, we assume that those three terms satisfy the conditions order by 

order. Here we will neglect the third term. Assuming second term as the incremental 

part the compatibility equation includes the exponent of r as 0 0 1 2
.k kn n

r
     

 Hence, in 

the first order approximation, compatibility equation becomes in the form of,  

4 3 24 3 2

0 0 0 01 1 1 1
1 0 0 1 14 3 2 4 3 2

, , , , , , , , , , , , .
k k k kk k k k

k k k k

k

d d d dd d d d
B C n A

d d d d d d d d

      
   

       

 
    

 
(3.38) 

where, kB and kC are derived using Mathematica software. Equation (3.45) is the 

fourth-order ordinary differential equation of 1

k . The governing differential equation 

and boundary conditions define an eigenvalue problem. Within the first order 

approximation unknowns are 
1 1 1 1 1 1, ,  , ,  and .I I I I A        B and C are derived using 

Mathematica software. A fourth-order Runge-Kutta method and the shooting method 

were used to solve the problem. 

To apply traction boundary condition on the interface at 0  can be expressed as, 

     0 01 1

0 0 0 0 0 0 0 00
1 1 ,II II IA r A r

 


       

        (3.39)
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0 01 10 0

0 0 0 00
.

II I
II

r

d d
A r A r

d d

 



 
  

 

 
         (3.40) 

Finally, governing differential equation is solved to satisfy the traction boundary 

condition on the interface.  

To apply forced displacement from the second material side to the 1
st
 material side. 

The iterative boundary condition on the interface can be expressed as,
  

    ( ) 10 0

I II

r i r i
u u

 
 

 ,      1
0 0

I II

i i
u u
 

 


 
 .    (3.41) 

When 1,i  the boundary equation can be written as, 

     1 0
0 0

I II

r r
u u

  
 ,      1 0

0 0

I IIu u
 

  
 ,     (3.42)  

where 
 0

II

r
u and 

 0

IIu


 are the displacements of zero-th order approximation in the 

power-law hardening material I side,
 1

I

r
u and 

 1

Iu


 are the incremental displacements of 

the first order approximation in the power-law hardening material II side. To derive the 

expressions for displacement, small deformation strain-displacement relations, 

presented in Chapter 2, Eq.(2.9)-Eq.(2.11), have been used. Strain components are 

derived using Eq.(3.1) and Eq.(3.2) for power-law hardening material I and power-law 

hardening material II, respectively. From Eq.(2.9) the strain component, ,rr is integrated 

by r to derive the expression of displacement ru and the expression of u is also derived 

from r using Eq.(2.11). Within the first order approximation in the power-law 

hardening material I side we have,  

(0) (1)

I I I

r r ru u u  , (0) (1).
I I Iu u u          (3.43)

 

From the zero-th order approximation we have,  

 (0) 0
0I

ru
 

 ,  (0) 0
0.Iu  

       (3.44) 
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Displacement functions of power-law hardening material II side within zero-th order 

approximation which is used as the forced displacement on the power-law hardening 

material I side in the first order approximation are, 

2 0 22 1

0 0 0

n nnII II

r ru A r u
  

 , 2 0 22 1

0 0 0.
n nnII IIu A r u


 

 


     

(3.45) 

To satisfy the displacement continuity condition on the interface order by order the 

boundary equation can be expressed as, 

  0 0 1 2 0 22( ) 1 11

0 0 01
0

,
n n n nnn I II

rr
A r u A r u

   



     


     (3.46) 

and 

  0 0 1 2 0 22( ) 1 11

0 0 01
0

n n n nnn I IIA r u A r u
   




     


 ,    (3.47) 

where
 

k

r i
u and 

 
k

i
u


are the angular function terms of displacement component, 

0 and 1,  and i k I II  .  1

I

r
u is a function of 

1 1 1 1 1 1, ,  , ,  and .I I I I A       and 1 . 

In the zero-th order approximation, from the solution of differential equation of the 

power-law hardening material I the singular exponent 0 is calculated for hardening 

exponent, 1n . Displacement of material II at 0  within the zero-th order 

approximation is applied as the forced displacement to the power-law material I at 

0   in the first order approximation.  

The iterative boundary condition can be expressed on the interface as, 

      1
0 0

I II

r i r i
u u

 


 
 ,      1

0 0
,I II

i i
u u
 

 


 


    
(3.48) 

where
 

k

r i
u and 

 
k

i
u


are the angular function terms of displacement component, 

0,1,2,3 .i   . 

In the first order approximation, 

     1 0 1 0 1 2 0 21 2( ) 1 ( ) 11 1

0 01 0
0 0

,
n n n nn nI II

r r
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     (3.49) 

and 

      1 0 1 0 1 2 0 21 2( ) 1 ( ) 11 1

0 01 0
0 0

.
n n n nn nI IIA r u A r u
   

 
 

      

 
     (3.50) 
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where 
 0

II

r
u and 

 0

IIu


 are the displacements of zero-th order approximation in the 

power-law material II, 
 1

I

r
u and 

 1

Iu


 are the incremental displacements of the first 

order approximation in the power-law material I. 
 1

k

r
u is a function of 

1 1 1 1 1 1, ,  , ,  and .k k k k A        To satisfy the boundary condition
 

on the interface the 

power of r in Eqn. (3.49) and (3.50) should be equal. Equating the power of r we have, 

    1 0 1 21 1 1 .n n            (3.51) 

Equation (3.51) relates the first order singularity, 1 1  , with the zero-th order 

singularity, 0 1   and power-law hardening exponents, 1n and 2n .When  1 2 1n n 

then 1 1 0    which means there is no first order singular term. When  1 2 1n n 

then 1 1 0   which means two or more singular terms exist. 2 1 1n n   gives a 

critical material combination on the existence of higher order singularity. Similarly, to 

satisfy the boundary condition in the higher order approximation the singular exponent 

would have the form, 

    
1

2 0 2 1 0 1 2

0

1 1 1.
l i

i l

i

l

n n n n n  
 



 
         

 
    (3.52) 

It seems the i-th order singularity depends on the hardening exponents 1 2,n n  and 

the zero-th order singularity 0.  To calculate the singular exponent when the material II 

is an incompressible elastic material we can assume 2 1n  . The obtained singular 

exponent is as, 

    0 11 1 1 1i i n              (3.53) 
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Equation (3.53) is exactly the same as the expression determined for the 

elastic-plastic/elastic materials joint case in chapter 2. 

The Mechanical properties of power-law hardening materials are given in Table 3.1. E

is Young’s modulus,   is the Poisson’s ratio. 

Table 3.1: Mechanical Properties of jointed materials for dissimilar power-law 

hardening materials joint 

Properties E[GPa]   
y [MPa] n    p0 [MPa] 

Material I 108 0.33 30 1-20 10.1 130 

Material II 108 0.33 30 1-20 10.1 130 

 

3.5 Results for the Power-Law / Power-Law Materials Joint 

 

 

 

 

 

 

 

 

Fig. 3.8: Variation of stress singularity 1 1  with 2n for different 1n  
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Figure 3.8 shows the variation of the first order singularity, 1 1  with 2n when 1n is 

constant upto the terminated point 2 1n n . The absolute value of the first order 

singularity, 1 1 ,  when 1 1  >0 tends to decrease to zero and when 1 1  <0, 

1 1   is increased with the increase of 2n . The gradient of line in Fig.3.8 is larger for 

smaller 1n  than that of larger 1n . 

 

 

 

 

 

 

 

 

 

Figure 3.9 shows the variation of i-th order singularity, 1,i  with 1n for the same 

difference between hardening exponents, 1n and 2n where 1 2 0.2n n  . The absolute 

value of i-th order singularity, 1 ,i  is increased which means stronger singularity 

exists when the hardening exponent, 1n is small. The qualitative tendency of Fig.3.9 is 

almost the same as the i-th order singularity presented in [66] for elastic-plastic/elastic 

materials joint. 

Fig. 3.9: Variation of stress singularity 1i 
 
with 1n for same difference of 1n and 2n  
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The variation of i-th order singularity, 1,i  with difference between hardening 

exponents, 1n and 2n
 
for the different values of 1n

 
is shown in

 
Fig. 3.10. The absolute 

value of i-th order singularity, 1 ,i  is increased when the difference of hardening 

exponents, 1 2n n
 

is small which means stronger singularity exists. More singular 

terms exist for smaller difference of 1n and 2n  which means higher hardening material 

(harder material with smaller n ) includes more singular terms in compared with lower 

hardening material (softer material with larger n ). The magnitude of first order singular 

exponent is increased with decreasing the difference of 1n and 2n and for  1 2 1n n  ,

1 1  .One singularity exist for any combination of 1n and 2n . Two or more singularity 

exists only when  1 2 1n n  . 

 

 

 

Fig. 3.10: Variation of stress singularity 1i 
 
with difference of 1n and 2n for different 1n  
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3.6 Summary of Power-Law Hardening/Power-Law Hardening Materials Joint 

Asymptotic solution for the interface-edge problem of power-law hardening 

materials having different power-law hardening exponent is presented in this chapter to 

determine the stress and displacement fields around the interface edge of jointed 

materials. An iteration method is proposed for the determination of singular fields 

around an interface edge of two dissimilar power-law hardening materials joint. Our 

analyses show the order of stress singularity has a dependency with the combination of 

hardening exponents. Multiple stress singular terms exist for  1 2 1n n  in the higher 

order approximation.  

If the hardening exponents of bonded power-law hardening materials are very close, 

then the material with smaller hardening exponent can be assumed as a very hard 

material within the plastic strain range under which the small deformation condition is 

satisfied, the assuming method of power-law hardening material I bonded with rigid 

substrate instead of power-law hardening material II will lose its physical meaning. In 

such a case, we cannot regard one of the composed materials as a rigid. 

In this analysis in the zero-th order approximation we make is that, since the 

power-law hardening materials with different power-law hardening exponents behaves 

as if the more stress hardening material is attached to a rigid material, to calculate the 

zero-th order singularity in the 1 2n n case. In this manner we will be able to get the 

singular exponent, 0 , and the angular variation of the stresses 
ij in the more stress 

hardening material, but not the correct angular variations of stresses and displacements 

on the less stress hardening material (material II). The reason is that Material II (less 

stress hardening material) behaves as rigid only as far as its influence on Material 

I(more stress hardening material) is concerned. Material II is actually not rigid and will 

have displacements will be influenced by the more stress hardening material (material I). 

Still as far as the solution in the more stress hardening material is concerned our 

presented formulation of two different power-law hardening materials joint is sufficient. 

For power-law hardening materials having different power-law hardening material 

joint case, a separable form solution can be obtained by observing that in the limit 

0,r   0 0iu    (see section 3.4). This condition is restrictive, yet its validity has 
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been suggested and supported by interpreting the finite element results of Shih and 

Asaro [67]. 

For the joint of two materials of same power-law hardening exponent, one can 

assume the zero-th order singular exponent as unity because of there is no singularity 

exists if the materials properties are same. In that case, applying this iteration method 

gives the same singular exponent in the higher order approximation as zero-th order. It 

points to the fact that when 1n  and 2n are close in magnitude, the region where the 

1 2n n solution is acceptable is more restrictive. The requirement of power-law 

hardening exponents should be different and not very close is a restriction on 

application to real problem of our approximation method.  
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

4.1 General conclusions 

In this work, we have analyzed the singular stress fields around an interface edge 

of dissimilar materials joint. We have formulated the problem for plane strain condition. 

We proposed an iteration method for the determination of singular fields around the 

interface edge of dissimilar materials joint where the interface free-edge geometry has 

been considered. We developed our formulations for general bimaterial interface-edge 

geometry. In our formulation butt joint model has been considered to result in specific 

bimaterial geometries of interest to engineering applications. For the two dissimilar 

materials joint, we provided solutions for interface-edge of an elastic and a power-law 

hardening materials joint and two dissimilar power-law hardening materials joint having 

different power-law hardening exponent. We have correlated our local dominant 

singularity results obtained from asymptotic analysis to global full-field finite element 

results to obtain the nondimensional generalized stress intensity factors for the plane 

strain free-edge interface of two dissimilar materials butt joint. The essential features of 

our results are given based on the joint materials. 

4.1.1 Conclusions on Elastic-plastic/Elastic materials joint 

Bonded dissimilar materials in which materials behaves as an elastic and a 

power-law hardening material were studied and the solution was presented to determine 

the stress and displacement fields around an interface edge of dissimilar materials joint. 

An iteration method is proposed for the determination of singular fields around an 

interface edge of an elastic and a power-law hardening materials joint. In the proposed 

iteration method, to overcome the problem we have considered at the interface 

boundary the additional stress fields in the elastic side to satisfy stress continuity, the 

additional displacement fields in the elastic-plastic side to satisfy displacement 

continuity, successively.  
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Both the balance of force and the continuity of displacements are satisfied on the 

interface iteratively. These continuity of the displacement field and the continuity of the 

stress field are important features of the stress strain fields near the interface edge of 

two dissimilar elastic/elastic-plastic materials joint. 

Due to the increase of iteration, the discrepancy of the r dependence of the fields 

along the interface is decreased. 

In the power-law hardening material, when n is decreased (for 1n  is an 

incompressible elastic material) the stronger singularity (  0 1  goes to more negative) 

exist in the power-law hardening material due to displacement boundary condition 

( 0,r   0 0iu    ) and weaker singularity (  0 1  goes to less negative) for larger 

n . In the elastic/power-law hardening materials joint case the singularity should be 

weaker with the decreasing value of n  because of 1n  is an incompressible elastic 

material but in our approximation is not shows this situation. When regarded as 

deformation theory materials, the materials just considered each approximate perfect 

plastic behavior for small values of n  for the power-law material. Yet, the calculated 

values of   do not agree in this limit. The disparity can be explained as follows. For a 

power-law material model, elastic strains were neglected because, as stresses grow large 

for any value of 1n  , the ratio of elastic strain to plastic strain approaches zero. With 

an asymptotic expansion of the governing equations in powers of n , it is easily shown 

that 0 1  as n . 

The power of r in the stress equation depends on the hardening exponent n. As n is 

increased the absolute value of the i-th order of singularity, 1i  , tends to be decreased 

to zero when 1 0i   .  1i  or more singular terms exist in the i-th order 

approximation for  1n i i  .  

For the determination of singular exponent, an explicit equation is presented where  

the i-th order singularity, i  
depends on the hardening exponent n and the zero-th 

order singularity 0.
 



147 
 

The angular function of separable form term in the displacement fields in the 0
th

 

order approximation should be zero at 0  is a necessary condition for the continuity 

of displacement on the interface when 0r  around the interface free edge of 

elastic/elastic-plastic materials joint. The stress and displacement fields in the 

elastic-plastic material are controlled by the boundary condition which is the same as 

the one of an elastic-plastic material on the rigid substrate. The stress fields in the elastic 

material are also controlled by the index through the equilibrium of force on the 

interface. 

The stress fields are compared with the fields of joint material results of FEM where 

the stress fields are slightly increased with the increase of iteration of asymptotic 

analysis which is the superposed stress of 0
th

 order and the higher order stresses. Due to 

the slight increase of stresses in the higher order approximation our theoretical stresses 

are slightly far from the FEM joint results where 0
th

 order fields are close to that FEM 

results. This might be due to the effect of regular stress by remote tensile loading.  

4.1.2 Conclusions on Power-Law Hardening/ Power-Law Hardening materials 

joint 

Asymptotic solution for the interface-edge problem of power-law hardening 

materials having different power-law hardening exponent is presented in this thesis to 

determine the stress and displacement fields around the interface edge of jointed 

materials. Our analyses show the order of stress singularity has a dependency with the 

combination of hardening exponents. Multiple stress singular terms exist for 

 1 2 1n n   in the higher order approximation. For the determination of singular 

exponent, an explicit equation is also been presented where the i-th order singularity, 

i  
depends on the combination of hardening exponents, 1 2,n n and the zero-th order 

singularity 0.
 

Both the balance of force and the continuity of displacements are satisfied on the 

interface iteratively. This continuity of the displacement field and the continuity of the 

stress field are important features of the stress strain fields near the interface edge of 

two dissimilar elastic-plastic materials joint. 
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For the joint of two materials of same power-law hardening exponent, one can 

assume the zero-th order singular exponent as unity because of there is no singularity 

exists if the materials properties are same. In that case, applying this iteration method 

gives the same singular exponent in the higher order approximation as zero-th order. 

When material property of two materials tends closer each other, this approximation 

gives more singularity exists in compared with the large difference of material 

properties. The requirement of power law hardening exponents should be different and 

not very close is a restriction on application to real problem of our approximation 

method. 

4.2 Future work 

The thesis is a first effort to address the singular stress fields near the interface edge 

of dissimilar elastic/power-law hardening materials joint and power-law 

hardening/power-law hardening materials joint. The formulation presented, the iteration 

methods developed and the sample problem solved provide useful and insightful 

information for the local mechanics environment dominant at interface free-edges where 

damage and fracture frequently initiate. Further work needs to be performed to gain 

additional understanding on the mechanic relevant to interfacial fracture in this 

plastically deforming bimaterial joint. As a direct extension of our work on dissimilar 

elastic/power-law hardening materials joint and power-law hardening/power-law 

hardening materials joint, one now can solve for stress fields of more interfacial 

geometries by different wedge angle (other than the geometries we have solved like butt 

joint). Finally, a parallel study to verify experimentally the relevance of this singular 

stress fields to interfacial fracture should be conducted. 

However, when using this expansion in the higher order approximation for 

comparison to finite element results of jointed material, the higher order terms (more 

than one term) appears to diverge from the finite element data when the higher order 

term is added. This suggests that for any values of n  a separable solution for the 

higher order terms may not exist. The regular stress term should be considered for the 

determination of full field where an eigen expansion with the complex solution is 

necessary to accomplish the quantitative results of this analysis. A complete analysis 

and discussion should be reported in future work. 
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APPENDICES 

APPENDIX A 

Calculation of Effective Stress term 

Kronecker delta defined by 

1

0
ij

i j

i j



 


        (A.1) 

Deviatoric stress components can be calculated in the summation form as, 

2 2 2 2 2 2 2 2 2

ij ij rr rr r r rz rz r r z z zr zr z z zz zz

rr zz r rz r z zr z

s s s s s s s s s s s s s s s s s s s s

s s s s s s s s s

         

    

        

          (A.2) 

where, 

   
1 1 1

2
3 3 3
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(A.3) 
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3 3 3
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(A.4) 

   
1 1 1

2
3 3 3

zz zz kk zz rr zz zz rrs                  
  

(A.5) 

, , , , ,r r z z zr zr rz rz r r z zs s s s s s                 
  

(A.6) 

We have effective stress term, 

2 3

2
e ij ijs s 

        
(A.7) 

Substituting Eqn. (A.2-A.6) into Eqn.(A.7), Eqn.(A.8) can be written as, 
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Applying plane strain condition, 

 0, , 0zz zz rr rz z zr z                
   

(A.9) 
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(A.10) 
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(A.11) 

For plastic material due to the no volume change, 
1

2
   

In plane strain, Eqn.(A.11) can be rewritten as, 

  
2

22 21 1
1 3 3

2 2
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(A.12) 

Finally,
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APPENDIX B 

Displacement boundary conditions (0
th

 order approximation) 

At interface the displacements are continuous 

0 0

I II

i iu u          (B.1) 

or,  

1 0 1 2 0 21 21 1

0 0 0 0

n n n nn nI II

i iA r u A r u
    

       (B.2) 

hence, 

 

 

1 0 2

12 0

1 1

0 0

1 1

0 0

n n II

i

n In

i

A ur

A ur





 

 


       (B.3) 
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        (B.4) 

  
1

2 1 0

2

1 0 0

0 0

n I
n n i

n II

i

A u
r

A u

 
        (B.5) 

From Eqn. (B.5), when 1 2n n . As the material I is assumed to be less hardening 

material (lets assume 1 2n n ), we get, 2 1 0.n n  Existing a stress singularity gives

0 1 0,    therefore the exponent of r in Eqn. (B.5),   2 1 0 1n n   is positive. So as 

0,r  the right hand side of Eqn. (B.5) approaches 0. This implies that in the near field 

region 

0 0I

ru           (B.6) 

0 0Iu           (B.7) 

This boundary condition for 1 2n n  1 2n n has two immediate effects. Relative to the 

more stress hardening material (material I with 1n ), we see that the boundary 

conditions are identical as if the material I is attached to a perfectly rigid material at the 
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interface. This implies that the 0 does not depend on the properties of the less stress 

hardening material (material II with 2n ). The solution can first be obtained for the more 

stress hardening material (material I with 1n ) and once 0  and the stress distributions 

in the material I is known, the response of the less stress hardening material (material II 

with 2n ) can be calculated. 

If material II is elastic, 2n is set to be 1. Where the stress hardening exponent of 

power-law hardening material is larger than 1  1 2n n in that case we see that the 

boundary conditions are identical as if the material I is attached to a perfectly rigid 

material at the interface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



161 
 

APPENDIX C 

Numerical Shooting Method 

 

Material I (0
th

 order approximation) 

 

Since our governing equations are a pair of fourth order differential equations, on free 

surface (at  
2


  ) we need to prescribe the stress function and its first three 

derivatives. That is at  
2


  we need to prescribe      0 0 0 0, , ,I I I I   

   
 
 

. From the 

boundary conditions we know that at the free-surface  0 0 and I I 

are zero. Since this 

is an eigen-problem we can arbitrarily assign  0 1.0I

 . We guess the initial values of 

the other derivatives of 0

I and 0 .With these guessed values we shoot from the stress 

free-edge to the interface. To satisfy the boundary conditions at the interface we update 

the initial guessed values and we calculate the error. We use an automatic step size 

method to accommodate the rapid localized changes in the stress function and its 

derivatives and minimize truncation error. The solution is finally obtained when the 

error is minimum. 

For exact solution, the assumed value of  0

I


is updated to satisfy  
0

1 



  and 

solution is done as above mentioned method. 

 

Material II (0
th

 order approximation) 

 

In the second material side, since our governing equations are a pair of fourth order 

differential equations, on free surface (at 
2


   ) we need to prescribe the stress 

function and its first three derivatives. That is at  
2


   we need to prescribe 
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     0 0 0 0, , ,II II II II   
   
 
 

. From the boundary conditions we know that at the 

free-surface  0 0 and II II 

are zero. Since singular exponent, 0 is known from the 

solution of material I side the angular variation of stresses can be computed. To 

compute the stresses we need to calculate unknown angular functions to satisfy traction 

on the interface. We guess the initial values of the other derivatives of 0

II .With these 

guessed values we shoot from the stress free-edge to the interface. To satisfy the 

boundary conditions at the interface we update the initial guessed values and we 

calculate the error. We use an automatic step size method to accommodate the rapid 

localized changes in the stress function and its derivatives and minimize truncation error. 

The solution is finally obtained for the minimum error. 

 

Material I and Material II (i
th

 order approximation) 

 

In the i-th order approximation the singular exponent, i  
is known from the forced 

displacement boundary condition. Since our governing equations are a pair of fourth 

order differential equations, on each free surface (at  or 
2 2

 
    ) we need to 

prescribe the stress function and its first three derivatives. That is at 

 and 
2 2

 
    we need to prescribe      , , ,k k k k

i i i i   
   
 
 

where k I for 

material I and k II for material II. From the boundary conditions we know that at the 

free-surface   and k k

i i 

are zero. We guess the initial values of the other derivatives 

of k

i or    ,k k

i i 
  
 
 

. With these guessed values we shoot from the stress free-edge 

to the interface. To satisfy the boundary conditions at the interface (forced displacement 

boundary condition for the solution of material I side and traction boundary condition 

for the solution of material II side) we update the initial guessed values and we calculate 

the error. The solution is finally obtained when for the minimum error. 
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