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ABSTRACT

This dissertation presents the research work done for the degree of Doctor of
philosophy. Considering the stress and displacement fields around an interface edge

of an elastic and a power-law hardening materials joint, one single separable form

solution of stress on the interface, oy oc r*™f,(8),_,, gives stress continuity where
o; denotes stress components, r and ¢ are polar coordinates, A is the eigenvalue
and f;(&)is the angular function. However, the displacement on the interface in the
power-law material is u ocr*"“®g (9) ~, and in the elastic material

is u, oc r*h, (6)9:0, where u, is the displacement component, n is power-law

hardening exponent, g, (¢)and h (&)are angular functions. Due to the dissimilarity

of power of rthe displacement does not become continuous. The theoretical study on
singularity around an interface free edge of elastic/power-law hardening materials
joint has not solved yet. This thesis solved the singular stress fields around an
interface edge of elastic/elastic-plastic materials joint. The objective of this thesis is
to present an iteration method to determine the stress and displacement fields around
an interface edge of a joint in which materials behaves as an elastic and a power-law
hardening material. J,-deformation plasticity theory under plane strain condition is
assumed for the power-law hardening material. Both the balance of force and the
continuity of displacements are satisfied on the interface iteratively. The stress fields
are found to be singular with the type of r**singularity from the i-th order
approximation, where r is the radial distance from the interface. Due to the increase
of iteration, the discrepancy of the r dependence of the fields along the interface is

decreased. The power of r in the stress equation depends on the hardening exponent n.

(i+1) or more singular terms exist in the i-th order approximation for n<(i+1)/i .
Asnis increased the absolute value of the i-th order of singularity, |/l, —1|, tends to be

decreased to zero when 4, —1<0.



An asymptotic analysis for singular stress fields around an interface-edge of
dissimilar power-law hardening materials joint has also been presented. Both the
balance of force and the continuity of displacement are satisfied on the interface for
two dissimilar power-law hardening materials joint having different power-law
hardening exponent. In the higher order approximation, the nonlinear effective stress
term was expanded by Taylor series. Our analyses show the order of stress singularity

has a dependency with the combination of hardening exponents. Multiple stress
singular terms exist for (n,—n,)<Z1in the higher order approximation. The order of

stress singularity has a dependency with the combination of hardening exponents,

n, andn,.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The material researched in our project is the characteristics of singular fields
around an interface edge of elastic/elastic-plastic materials joint. Several industrial
applications require advanced materials that will fulfill demanding thermal and
mechanical conditions. In most cases, no unique class of materials can sustain these
challenging conditions. Due to the brittle nature of some materials, machining is not
advisable. Production requires materials which are able to survive for a long time at
high temperatures. Due to the resistant of high temperatures and suitable for
machining, this elastic/elastic-plastic materials joint have extensive promising
applications in combustion engine, gas turbine and heat exchanger. Elastic and
elastic-plastic joints also found as a bimetals, composite materials with hybrid
matrices, bonded circuits in micro-electronics, bonded solid rocket propellant grains
with binder, coating on ceramic substrates, adhesively bonded parts and welded
parts. In these components, damage is often observed along the bimaterial interface
at locations where there is either material discontinuity or geometry discontinuity or
both. Fig. 1.1 shows interfacial geometries of interest in engineering. The presence
of localized damage suggests that there may be intensive stress accentuation at this
interfacial discontinuity. Knowledge of these locally accentuated stress distributions
is essential for understanding the initiation and growth of damage. Such
understanding is important to improve design, both in the material tailoring level

and in the component level.



Stress Singular Area
Free Boundary

Material 1
T Material I
e Singular Point Plastic zone
Interface Interface 7
Material 11 Material II
(a) )

Fig. 1.1 Example of elastic-plastic /elastic material interface and illustration of stress

singularity of elastic-plastic/elastic material joint.

1.2 BACKGROUND

With the increasing technological importance of joints with dissimilar materials,
interface-edge stress fields and strength of jointed materials have also become a topic of
major practical interest [1]. Elastic and power-law hardening materials joint is being
increasingly used in engineering applications in order to profit from the advantages of
each material [2]. The elasto-plastic interfacial problem has received considerable
attention in the last decade enabling a thorough understanding to be developed. It is
very important to clarify the fields for the engineering applications such as the strength
evaluation of bonded -elastic/power-law hardening materials joint and power-law

hardening materials having different hardening exponent [3].



Due to the different mechanical properties of the jointed materials, very high
stresses develop near the interface edge [4-6]. Stress singularities might exist in most

cases around the interface edge of elastic/power-law hardening materials joint [4-6].

Many studies have been directed toward computing the order of the stress
singularity for various single and multiple-phase notch/wedge/crack geometries in both
isotropic and anisotropic media. The stress singularities at the vertex of an elastic plate
under extension were investigated in detail by Williams [4,5]. The published work on
bimaterial interfaces is primarily for plastic deformation and for crack geometries [7,8]
and interface notch geometries [9-12].Some studies have considered elastic or
elastic-plastic bimaterials, [13-22]. Bogy [1,6,23], Chen and Nisitani [24] Hein and
Erdagon [25] and Dempsy and Sinclair [26] presented the order of stress singularity
using Mellin transform method at the isotropic elastic bimaterial wedge apex.
Considering the influence of the regular terms, the stress singularities at the interface
edge in elastic bi-materials with edge tractions was analyzed by Yang and Munz [27,
28]. Dissimilar materials joint with arbitrary bonding angle was analyzed by Xu et al.
[29, 30]. The aforementioned works focus on the analysis of singularities in the

homogeneous elastic material and elastic/elastic bimaterial joint.

In order to account in greater detail for the development of plastic deformation in
the vicinity of the crack tip, Hutchinson [31], and Rice and Rosengren [32] performed
an asymptotic analysis of the crack tip fields in a homogenous power-law hardening

material.

Recently, many researchers have investigated the elastic-plastic stress singularity of

an interface crack between two bonded power-law hardening materials. Xia and Wang



[33,34] presented asymptotic analysis for interface crack in elastic-plastic material.
Numerical solutions involving elasto-plastic behavior at an interface crack tip for a
power-law hardening materials joint have been developed by Shih and Asaro [35-37]. In
their work nearly separable singular fields have been characterized as small strain HRR
type fields proposed by Hutchinson [31], and Rice and Rosengren [32]. They found that
in bimaterial interface problems the stress and strain fields in the more compliant
materials behave like those of a material with identical plastic properties bonded to a
rigid substrate, and the near-tip stress fields in the higher hardening material are limited
to those levels that can be attained in the lower hardening material. Xia and Wang [38]
have made a higher-order asymptotic analysis on the plane strain interfacial crack
problem in power-law hardening bimaterials which have different power, n, each other
and obtained the asymptotic fields. They found that along the interface ahead of crack
tip the stress fields are co-order continuous while the displacement fields are cross-order
continuous. Lau and Delale [39], Sckuhr et al.[40] as well as Rudge [41] presented a
separable asymptotic solution on a edge bonded wedges of power-law material having

the same hardening exponent,n.

Considering the stress and displacement fields around an interface edge of an elastic

and a power-law hardening materials joint, one single separable form solution of stress

on the interface, o oc r™f;(6) o Jives stress continuity where o denotes stress

components, r and 6 are polar coordinates, Ais the eigenvalue and fij(e) is the

angular function. However, the displacement on the interface in the power-law material

isu; oc r"* g (4) . and in the elastic material isu; o r*h (), , where u;is the

6=0"
displacement component, nis power-law hardening exponent, g,(¢) and h (6) are

angular functions. Due to the dissimilarity of power of rthe displacement does not

become continuous.



In the dissimilar power-law hardening materials joint, the dissimilarity of the power
of ralso exist in the displacement field on the interface due to the different hardening
exponent. Due to the dissimilarity of power of rthe displacement fields are not
continuous at the interface. The question then arises how to satisfy the displacement
continuity condition on the interface, which is an unsolved problem for the power-law

hardening materials joint having different hardening exponent.

In order to satisfy the continuous conditions of displacement and the equilibrium of
force at the interface edge, Duva[42], Rahman[43], Reedy[44] ,Wang[45] and Xu et al.
[46] modelized the elastic/power-law hardening materials joint as a power law
hardening material on a rigid substrate. They conducted the asymptotic analysis similar

to the nonlinear crack problem developed by Hutchinson [31].

Following the previous studies, relatively little work is found in the literature
concerning the determination of stress fields around interface-edge of dissimilar

power-law materials joint.

However, as far as we know, the theoretical study on singularity around an interface
free edge of elastic/power-law hardening materials joint and power-law hardening

materials joint having different hardening exponent has not yet been reported.

1.3 SCOPE OF THE RESEARCH

The scopes of this research include the following aspects:

At the interface of two bonded materials the stresses and displacements should be

continuous due to the following:



Two materials are jointed with each other. The traction which acts along the
interface calculated from the power-law hardening material will be equal and opposite
traction for the elastic material due to the mechanical equilibrium of forces (localization

of balance of linear momentum on the interface).

After joining of two materials, all grain boundary of elastic and elastic-plastic
material are rigidly bonded with each other. The movement of one grain will be the
same as another so the displacement along the interface must be continuous for the
deformation at the interface. Due to the deformation of the structure could be
compatible, the non-traction strains are continuous. So, the displacement at the interface

should be continuous.

In the previous study, the displacement field of elastic material was assumed as O,
i. ., the elastic material was assumed as rigid. Obviously, in reality, the assumption has
some problem because of the displacement field of the elastic material should have
engineering interest. In elastic-plastic/elastic materials joint, the elastic material is brittle
in many cases and hence the singular stress field and the displacement field of elastic
material are important to evaluate the characteristics of strength of elastic/ elastic-plastic
materials joint. Due to the existing singular stress and displacement fields in the elastic
material, rigid/power-law hardening material model could not be applicable for the
strength evaluation of the joint. So it is important to clarify the fields which satisfy the
continuity condition of displacement and the equilibrium of force along the interface of

elastic and power-law hardening materials joint.

In this thesis, an iteration method is proposed for the determination of singular fields

around an interface edge of an elastic and a power-law hardening materials joint. In the



proposed iteration method, to overcome the problem we have considered at the interface
boundary the additional stress fields are set in the elastic side to satisfy stress continuity,
the additional displacement fields in the elastic-plastic side to satisfy displacement
continuity, successively. A governing differential equation in the iterative form obtained
from the compatibility condition is solved theoretically to satisfy the continuity of
displacement and the balance of force on the interface between an elastic material and a
power-law hardening material joint. In order to satisfy the condition of stresses and
displacements on the interface, an asymptotic expansion of the solution in the
summation form is used. Due to the increase of iteration, the discrepancy of the r

dependence of the fields is decreased.

Using the same iterative method we satisfy the boundary conditions to determine the
singular fields around an interface edge of two dissimilar power-law hardening

materials joint having different hardening exponent.

Singular exponents can be determined from the theoretical iterative solution. To
have the stress intensity factor singular fields are compared with stress fields by FEM.
Using the numerical analysis by FEM, stress fields of jointed materials can be
determined where the determination of the singularity and stress intensity factor are
impossible. So, theoretical iteration method is also important to determine the

singularity.

The aim of the present research is to contribute to a better understanding of
determining the stress singularity of elastic-plastic and elastic materials joint interface

by using asymptotic analysis.



1.4 OBJECTIVES

The main objectives of this research are as follows:

1. To present an iteration method by higher order asymptotic analysis for the
determination of singular stress and displacement fields around an interface edge
of two dissimilar materials joint in which materials behaves as an elastic and a
power-law hardening material.

2. To show the stress fields around the interface free-edge of elastic/elastic-plastic
materials joint with the proposed iteration method by higher order asymptotic

analysis under plane strain condition.

1.5 OUTLINE OF THE THESIS

The research work conducted for this project is completely presented in this
dissertation, which is organized as follows. Chapter 1 is an introduction of the research,
which describes the general introduction, background, the motivation, the scopes and
the objectives of the project. In chapter 2, the current research in the area of nonlinear
elastic-plastic material is jointed with linear elastic material are reviewed. The iteration
method of theoretical analysis was discussed. The numerical results of Finite Element
Method (FEM) were also discussed, which included comparison of theoretical analysis
with FEM. The applicability of theoretical iteration method to the materials joint of two
power-law hardening materials having different power-law hardening exponent are
discussed in chapter 3. Chapter 4 describes the concluding remarks and directions for

future investigations regarding this research work.



CHAPTER 2

SINGULAR STRESS FIELDS IN ELASTIC/ POWER-LAW HARDENING
MATERIALS JOINT

2.1 Introduction

In this chapter, we solved for the singular stress and displacement fields around an
interface edge of a joint formed by quarter planes in which materials behaves as an
elastic and a power-law hardening material. We have formulated and solved under the
plane strain condition. J,-deformation plasticity theory is assumed for the power-law
hardening material. By taking the same wedge angle of two materials, our generic
interface-edge model is as butt joint model with the interface-edge of two dissimilar

elastic and power-law hardening materials.

The stress-strain behavior of most engineering materials, in particular metals and
alloys, can be described by the Ramberg-Osgood model, which in uniaxial tensile

deformation is expressed as,
(o)

e=—+aoc" 2.1
= (2.1)

Where, E is the Young’s modulus, & is a material constant called power-law
hardening constant and n is the stress hardening exponent. For most engineering
materials n ranges from 1 to 20 [47]. The first term in equation (2.1), representing
elastic strain, varies linearly with o . The second term, representing plastic strain, varies
as the n-th power of o. When large loads are applied to the material producing full
scale plastic deformation, the plastic strain dominates over the elastic strain. Even when
small loads are applied, such that the overall stress is below yielding (and the overall
plastic strain in the material is negligible), the local stress is highly accentuated at the
immediate vicinity of material discontinuity and geometric discontinuity. In these

regions, the local plastic strain (which scales as ¢") still dominates over the local elastic



strain (which scales aso ). Consequently, to analyze these local accentuated stresses in
the vicinity of discontinuity in elastic-plastic materials, the deformation can be modeled
as being purely plastic[31].

As interface edge is approached, the elastic strain presented as the first term is much
smaller compared with the plastic strain presented as the second term of Eqn.(2.1), so
that the first term can be neglected in asymptotic analysis. Under this condition, the
material law, Eqn. (2.1) is simply replaced by a purely power-law hardening model, that

Is:
e=ao" (2.2)

Eqgn. (2.2) is the basic form of the power-law hardening material model used in this

chapter.

The thesis reported in this chapter is an asymptotic analysis for singular stress fields
around an interface-edge of dissimilar power-law hardening materials joint under

plane-strain condition and J, deformation plasticity theory.

In Section 2.2, we formulate the governing equations for the singular stress field under
the plane strain when an elastic material is jointed with a power-law hardening material.
An effective solution method of numerical shooting method with a fourth-order
Runge-Kutta method is also presented. Numerical Analysis using Finite Element
Method (FEM) on singular field around interface edge is presented in Section 2.3.
Formulation of 0™ Order Approximation, 1% Order Approximation and i" Order
Approximation are presented in Section 2.4, Section 2.5 and Section 2.6, respectively.
Section 2.7 shows results for the interface-edge problem of two dissimilar
elastic/power-law hardening materials joint. This chapter is concluded with summary in
Section 2.8.

2.2 Formulation: Elastic/ Power-Law Hardening Materials Joint Case

Consider a joint plate of dissimilar materials shown in Fig. 2.1. Material 1 is
considered as a power-law hardening material and material 11 is considered as an elastic

material. Plane strain condition is assumed.
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2.2.1 Stress and strain relationships

The generalized dimensionless relationship between strain and stress governed by
a power law form and stress-strain relation in the elastic-plastic side is given by,

&l = g acl s . (2.3)

In the elastic side the stress-strain relation is given by,

E
1 I 1 Il ol
& g {(1+V )O-ij —V 0y } , (2.4)
where = = i -2 d = —5” _ 2
y O =0, 10y +t0, , &= y &y = , and oy = 1 Oe =4[ 5SS o
&y E o, 2

S; =0 —%akkéij .The stresses and displacements of power-law hardening material are

referred to with a superscript “I” while those of the elastic material, with a superscript
“II”.  The dimensionless stress function ¢ and coordinate rare given in terms of
dimensional quantities (barred) by (/5:<Z/ayw2 and r=r/w, where W is the
characteristic length which is taken as the half of the width of plate. It is noted that the
barred quantities are the non-normalized field variables,(o,, &, ) is a reference point for
the uniaxial stress strain curve, &, and &; are the stress and strain components, where
i, jand k are used for subscript indicates ror 8. Eis Young’s modulus, v is the
Poisson’s ratio,d; is the two dimensional Kronecker delta symbol, « and n are
hardening coefficient and hardening exponent, respectively. o, is the effective stress and

s, Is the stress deviator. Summation conversion is assumed.

2.2.2 Numerical Shooting Method

The shooting method is actually an adaptation of the initial value schemes to solve
boundary value problems. It is an effective tool to solve two point boundary value
problems [45] and has been used with success in solving the differential equations
arising in fracture mechanics of interface edge. The first step in two-point shooting is to

start an initial value scheme at one of the boundaries and march towards the second

12



boundary. In an initial value problem the set of initial values of the dependent variable
at the boundary is sufficient of find the solution at an increment of the dependent
variable and hence the solution can march on. In the boundary value problem, however,
not all the initial values are known at the start (since the problem is defined some
boundary values too). The unknown initial values are guessed. After the second
boundary is reached the mismatch of the given boundary conditions with the
corresponding results from the initial value scheme with guessed initial values are
computed. The mismatch is used to refine the guesses for the initial values and they are
systematically changed until the boundary conditions are exactly satisfied. The success
of shooting problem depends to a large extent on the guessed starting values [68, 69].

The joint problem of two materials joint is not truly a two point boundary value
problem since boundary conditions are actually given in three points, namely the two
free-surfaces and on the interface. The shooting technique though can be easily
modified to accommodate this. To adapt the shooting technique to the joint problem of
two materials joint, we simultaneously shoot from the two free surfaces (one on each
component wedge) to the interface. At the interface we have to compute the mismatch
in traction and displacement continuity conditions and adjust our guessed parameters
accordingly. Here, in the first step we considered the traction only to adjust our guessed

parameters.

2.2.3 Equilibrium Equations

The equilibrium equations are automatically satisfied for all stresses derived from

the Airy stress function ¢ when the stresses are defined in the following manner [48]:

_lop 1 5%
2

- 99 2.5
Tnr ror r?o6? (23)
82¢
O :—arz , (2.6)
2
1o 10 -

=250 Yoroo
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2.2.4 Compatibility and Strain-Displacement Equations

Using small deformation theory, the strain compatibility equation is

1 62 1%, 1loe. 2 0°
29 (rey )+ Lo 2% re,)=0. 2.8
r arz( ) r’ 06> r or r? 6r60( o) (28)

The small deformation strain-displacement relationships are written [48],

ou
= 2.9
fu = (2.9)
u 1lou,
=Tr4__°¢ 2.10
Fo = T 50 (210)
gm:i(E%Jr%_u_oj_ 2.11)
2\r 060 or r

2.2.5 Boundary Conditions

Stress free boundaries, balance of force and continuity of displacements on the
interface are the boundary conditions of this problem. The boundary conditions can be
expressed as follows in the polar coordinate system located on the interface edge for

elastic/power-law hardening materials joint,
(O-;H )6‘72[ B (O-;g )‘9‘_; =0 (url )9=0 - (ur” )e:o ! (0;9 )9:0 - (O-;@ ).9:0 '

o)z =(ob) =0 (W), =0y (ob), (ol

2.2.6 Solution Method

In the zero-th order approximation, the stress and displacement fields in the
power-law hardening material are assumed to be the same as the ones in the plate
jointed to rigid substrate instead of elastic material and subjected to the same tensile

load.

14
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The stress fields in the elastic material can be described by the fields of an elastic
wedge which is subjected to distributed tractions along the one edge. The tractions are

the same as the stress distributions on the rigid/power-law interface.

oy, (r,0=0; power-law)

Po
2 A
Pretttttty { c,, (r,6=0; power-law)
0 >X
Power-law
hardening material
Elastic material
0 > X
Géeo (,6=0; power-law)
6,;0 (r,6=0; power-law) gy
(a) (b)

Fig. 2.5: Schematic diagram of applying Traction from Power-law hardening material to
the elastic material.(a) Traction from power-law hardening material (b) Traction to

elastic material.
In the first order approximation, the power-law hardening material having the initial

fields of the zero-th order approximation is subjected to a forced displacement which is

the field on the edge of elastic material of the zero-th order approximation.
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Fig. 2.6: Schematic diagram of applying Forced displacement from elastic material to
the power-law hardening material. (a) Forced displacement from elastic material (a)

Forced displacement to power-law hardening material.

The increase of stress fields in the elastic material can be described by the fields of
an elastic wedge which is subjected to distributed tractions along the one edge. The
magnitudes of the traction are the same as the stress distributions on the power-law

material wedge.
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Fig. 2.7: Schematic diagram of applying Traction from power-law hardening material to
the elastic material.(a) Traction from power-law hardening material (b) Traction to

elastic material.
2.2.7 Asymptotic Analysis

An asymptotic expansion of the Airy stress function in a separable form is assumed

as,
¢ => Ar*g i=012,..., (2.13)
as r —0,where k=1 for power-law hardening material and k = Il for elastic material.

Ais defined as the singular exponent in the i-th order of approximation.4* is the

angular function of airy stress function in the i-th order of approximation. Ais a
constant which is proportional to the stress intensity factor of i-th order incremental

fields. A is defined as,
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(0%),, =2 AT i=012,... (2.14)

A, is controlled by external loading. In the higher order approximation, to satisfy the
displacement continuity condition on the interface A depends on A,, A, also depends on

A,which means A  has a dependency on A, or external loading.

2.2.8 Error Calculation for the Solution

The error value is calculated by using the equation,

error = \/(errorl)z + (error2)2. (2.15)

After integration, solution region is obtained with different error ranges which

m (I)
systematically cover the range of ((&0') J and A, for different error. From the

m (I)
minimum error region, the range of ((qﬁo')j and A, is selected as the initial value

for the integration of next step. The final region of the minimum error is taken with the

" (I)
region of ((gz;o') j and A, contains two equal digits after the decimal point. The

final solution is obtained from this minimum error region and calculated numerically
the solution point where the minimum error occurs. The minimum error region is
integrated with 200 smaller divisions and minimum error point is selected as the

m (I)
solution point and the corresponding (((150') ] and A, is calculated as the solution.

The iterative procedure stops when the error is less than10™°. After tentative solution, to
get the exact solution it is necessary to correct the initial value of (4/30') which was

assumed as 1. To get the exact value, it is necessary to satisfy (&;9 )6:0 =1. So initial

value of (g, )” becomes, (¢, )"=1.0/ (&gg);zo,where (&;9);0 is the tentative solution

obtained assuming (4, )” =1.0.
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=, (¢30' )W, A, and after i-th

Assume at 9:% , ¢ =0, (¢o') =0, (¢o
RGOECIRGE I

The solution procedure is same as described above for seeking the minimum error. Due

integration atd =0, ¢ =4 ©, ((/;o' ), :(((Zol ),j

to the change of ((,50' )" :1.0/(&;9 );zo , all angular function terms changes with the same

ratio for the exact solution.

2.3 Numerical Analysis on Singular Field Around Interface Edge

In this section, we examine the numerical results of elastic and elastic-plastic
materials joint interface. For this reason, a numerical model is considered to examine
the singularity index of elastic and elastic-plastic materials joints interface. The
numerical calculation is carried out on the basis of singularity theory. The power-law
hardening prediction is considered on the numerical calculation for elastic-plastic
material. The stress singularity fields of power-law hardening material are compared to
examine the results. The continuity condition of displacement and stress components at

the interface conflicts the existence of a separable form singular solution like

u ocr’f, (H)for the material pair. Applicability of the power-law/rigid materials joint

model to ceramic/metal joint in regard to the interface-edge problem should be
examined by numerical facts. In this section, we consider numerical model for
elastic/power-law hardening butt joint to determine the stress and displacement
distribution. One of the powerful numerical tools extensively used in fracture mechanics
research in the Finite Element Method (FEM). In this chapter, we constructed an elastic
and elastic-plastic butt joint model to analysis elastic and plastic deform material. For
plastic deformation, we consider the power-law hardening materials prediction by small
deformation and finite deformation theory. It was also analyzed that the stress and
displacement distribution of elastic/power-law hardening butt joint interface is linear or

nonlinear function for small deformation and finite deformation theory.
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2.3.1 Finite Element Method (FEM)

2.3.1.1 Small Deformation Theory

The classical theory of isotropic plastic solids undergoing small deformations is
based on the decomposition,
Au=H®+HP", trH? =0 (2.16)
of the displacement gradient into elastic and plastic parts, where H° represents rotation
and stretching of the material structure, while H " the plastic distorsion, characterizes
the evolutions of dislocations and other defects through this structure. In this classical
theory the plastic rotationW "the skew tensor in the decomposition H? = EP +W ? where,
H Pinto symmetric and skew parts-is essentially irrelevant, and it may be absorbed by
its elastic counterpart without affecting the resulting field equations. Recent interest in
the behavior of material at micron length scales has led to a growing literature
concerned with strain gradient plasticity (Fleck and Hutchinson [49]; Gurtin [50];
Gudmundson [51]). A tracit central assumption of these gradient theories motivated, by
experience with classical plasticity is that the constitutive theory not involve the plastic
rotation-fieldW P ; consequently.

To understand the issue of whether or not an isotropic theory of plasticity should
involve the rotation field, it is useful to bear in mind that, the Cauchy stress T expends
power during plastic flow in consort with plastic-strain rate E”; the spinW °, whether it
may be, involves no expenditure of power and, consequently, generates no dissipation.
But the development of higher order (strain gradient) theory necessarily involves higher
order stresses and this renders uncertain what form the underlying power expenditures
should take.

The principal of virtual power then led us to account for power expanded by the
field H®, which we accomplish with the aid of second microscopic stress T". We
complete this accounting with the assumption that power expended in stretching and
rotating the material structure has the formT : H®. So the power expended within any

part P (sub region of the body), has the form,
I(T:EP+TP:HD+S:curIHp)dV. (2.17)

\
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Consequences of the virtual power principal are that the classical macroscopic

balances need be supplemented by micro force balance.
2.3.1.2 Finite Deformation Theory

A converted co-ordinate Lagrangian formulation of the field equations is employed
with the initial unstressed state taken as reference. All fields quantities are considered to
be functions of convected co-ordinates y'. Based on the finite element analysis, body
forces are neglected, the requirement of equilibrium is specified in terms of the principal

of virtual work is written as;

[ 70,0V — [ 7,5u,ds =0 (2.18)

\% S

Here, z; are the contravariant components of the Kirchhoff stress (7 = Jo ,where o is the

Cauchy stress and J is the ratio of current to reference volume of a material element)
on the deformed converted coordinate net. The quantitiesV and S are the volume and
surface, respectively.

The nominal traction components, T;, and the Lagrangian strain components, ¢; are
given by

T, :(Tij +Tkj'ui,k)77j ( )
2.19

1
& :E(ui’j U+ Uy, Uy )

where, nis the surface normal in the reference configuration, u. are the components

ij
of the displacement vector on the base vectors in the reference configuration and(), j

denotes convariant differentiation in the reference frame.
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2.3.2 Finite Element Model and Mesh

Theoretical elastic and elastic-plastic finite element model, rigid and power-law
hardening model joint is shown in Fig.2.8 and Fig.2.9 was carried out using the finite
element code ABAQUS V6.7 [52]. For elastic and elastic-plastic model, fixed boundary
condition were applied to the bottom layer of the model and uniform tension was
applied to the upper boundary of the model. For rigid and power-law hardening model
bottom layer is fixed and uniform tension was applied to the upper boundary of the

model. The length of elastic and elastic-plastic plate along Y direction is 4.0 and 4.0

mm, respectively. Overall mesh division of the model is shown in Fig.2.10. Fine mesh
is considered near to the interface. Near to the interface edge of model the mesh division
Is shown in Fig.2.11.

To calculate and determine the value of stress singularity and stress intensity factor,
external load of 130 MPa is applied. To calculate the maximum amount of external
distributed load, stepping method is used and load in increased by step by step by using
the restarting method. During the numerical calculation we consider the following FEM
method.

Consider a plane strain elastic-plastic plate under uniform tensile load is applied in
the upper edge and fixed to the lower edge as shown in Fig.2.8. Elastic/power-law
hardening materials joint is modelized as an elastic-plastic plate bonded with an elastic
plate where lower edge of elastic plate is sliding and the uniform tension load is applied

to the upper edge of elastic-plastic plate as shown in the same Fig 2.9.
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In Fig.2.8, L is the characteristic length dimension, W is half of the width of plate, po

is the far field uniform tension and r,&are the coordinate system. The finite element

mesh we have used in our joint material model is given in Fig.2.9. The magnified mesh

division near the interface corner is given in Fig.2.24.
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Fig.2.10: Mesh division near interface edge Fig.2.11: Magnified mesh

division near interface corner

The stress fields were also calculated numerically by using elastoplastic finite
element method [54]. In FEM calculation, the Cu, was assumed to be an elastic
power-law hardening plastic material with power-law hardening constant, « and
power-law hardening exponent n. SizN, was assumed to be elastic. Plane strain 8
nodes isoparametric elements were used. Finite element meshes were divided into 40

in the near edge area, O<r/t<0.1. The length of elements along radial direction

varies as following equations [53],

| :'i—-l, i=12,3,--30. (2.20)
0.9

wherel.is a radial length of i-th element. The minimum length of elements, 1,/t, is

10™°. For circumferential direction meshes are divided into 24 by equal angle. The
total number of elements is 31347 and the total number of nodes is 62995. Aspect

ratio [54] is kept constant, L/W =2.67 where, L=4mmand W =1.5mm.
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2.3.3 Stress-Strain Relationship

The elastic properties of material | (SizN4 )and material 1l (Cu)are shown on the
Table 1. The plastic property of the Cu was measured experimentally in the previous
study by Liton S.K et. al.[55-57] where the initial yielding strength was 30 MPa. It is
noted that, our analyzing method is suitable for any value of n. Two or more singular
terms exist only for those cases of n<2.0. In what follows an interface edge problem
with two differentn, n<2.0 and n> 2.0, will be investigated in detail. The Mechanical
properties of power-law hardening material and elastic material assumed to illustrate the

stress and displacement fields are listed in Table 2.1.

Table 2.1: Mechanical Properties of jointed materials for elastic/power-law hardening

materials joint

Properties | E[GPa] v o, [MPq] n a Po[MPa]
Material | 108 0.33 30 1-20 10.1 130
Material 11 304 0.27 - - - -

2.3.4 Determination of the Stress Intensity Factor A,

Stress intensity factor is an important mechanical parameter and fracture toughness

is another important material parameter used in fracture mechanics

A parameter called the stress-intensity factor (A ) is used to determine the fracture

toughness of most materials. Fracture toughness is a property which describes the
ability of a material containing an interface to resist fracture, and is one of the most

important properties of any material for virtually all design applications

To prevent the material from failure/fracture, it is important to know the material

parameter for the fracture at the interface before loading.

The theoretical results will be applicable in materials engineering to design
elastic/elastic-plastic material joint (for example ceramic/copper joint) to meet specific

performance requirements.
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The dominant stresses near the interface is of the r-6 form of : Oy = Abl’%_l5'ijo,
where 0< A, <1, so the stress becomes singular (unbounded) as r—0. The local
asymptotic analyses determines 4, and &;,, thus giving the spatial structure of the
local stress distribution. The generalized stress intensity factor, A, scales the magnitude

of the singular stress field. A links the remote applied loading to the local stress field,

and can only be determined if the global full-field solution is solved.

The stress intensity factor, A is the only quantity not determined by the
asymptotic analysis. A is determined by the full solution, and it depends on loading,

geometry and mechanical properties. The value of A characterizes the magnitude of

the stress state in the region of the interface corner. No matching of FEM with theory is

needed in the higher order approximation to determine A (i=1,2,3---) since the
magnitude of higher order term A (i=12,3---) is determined by A, . For the

determination of stress intensity factor, A, from the stresses obtained with FEM the least

squares method has been used. The stress field can be written as[58,59]:

oy =A s, (2.21)

Where, &; is the angular function. ij=rr,60or r6.

From the definition of stress intensity factor, &,,(6=0)=1[60,61]

(Cgp)pe = AT ™ (2.22)
=log(oy,),, =109(A) +(4 —1)logr (2.23)

equation is same the equation of straight line like, y =ax+b ,where, a :(ﬂﬂ —1) ,called

slope and b =1log(A,),called intercept of the line.

log A, = IntNercept (2.24)

Gtheory
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Intercept

where, 6,,(0=0)=1 log A, = = Intercept=b A =10 (2.25)

To determine the stress intensity factor, logarithmic distribution of (agg )‘9=0 along r

has been used from FEM of rigid/power law hardening material.

The order of the stress singularity, 4,—1, is fully determined by the asymptotic

singularity analysis and depends only on power-law hardening exponent, n for bonded

power-law hardening material and rigid quarter planes.

The logarithm of radial distribution of stress component near the interface corner along

direction at@ =1.875", is considered to calculate the stress intensity factor.
Least squares method was used to get slope and intercept for different ranges of r .

For different range of radial distance r, slope and intercept was evaluated

numerically and slopes are compared with the order of stress singularity by theoretical
analysis (theoretical slope) and most close value is selected. The slopes obtained by
least squares method is compared with theoretical slope where, slopes are converged
and also diverged for different range of r. Numerically calculated slopes which are
converged to theoretical value after three decimal point is shown by the following figure

and corresponding intercept also shown in this figure. Stress intensity factor is

calculated from the intercept using, A, =10°.

Following criteria is considered to determine the stress intensity factor. ryi, should
be enough small as much as possible due to the singularity dominance near the interface
edge.

There are numerical error found in the minimum r region, so here, rmin is selected far
from the numerical error region and rma iS changed, stress singularity and stress
intensity factor is determined for different ranges of r. Again, selected a new value of
min @nd rmax IS changed, stress singularity and stress intensity factor is determined for

different ranges of r and the procedure is followed repeatedly.
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Slope and stress intensity factor is determined for different ranges of r and plotted in
a graph where allowable range from the theoretical slope is considered. For minimum
values of ryax there are slope and stress intensity factor changes rapidly that means there
are numerical error for smaller ry.x region. For larger rmax region is far from the
interface so it will give far field with the singular field. Suitable data has been selected

after the error range within the allowable range of theoretical slope.

And hence, stress intensity factor is selected from the allowable range taken after three

decimal points considering above criteria.

For n=2.4(rigid/power law hardening material), The theoretical calculated eigenvalue,

A, =0.753675.The theoretical order of stress singularity is 4, —1=-0.246325.

The stress intensity factor is determined by numerical analysis using Finite Element
Method. The determination procedure of stress intensity factor is shown in Figures
(2.12-2.17).

Stress field can be explained on the interface as Eqn.(2.22)

which show the dependence of singular stress field on these two parameters, the stress

intensity factor of singular stress field, A, and its order,|4, -1, is different. A,

affects proportionally and |4, -1 affects exponentially.
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Fig.2.12: log-log plot of o, along r in rigid/power-law hardening material for n=2.4
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From the selected suitable data range, A, =2.792,2.790,2.790 and 2.789

Finally, A, =2.790
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From the selected suitable data range, A, =2.177 and 2.185 Finally, A, =2.185.
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2.4 Formulation of 0™ Order Approximation

2.4.1 Formulation of 0" Order Approximation: Constitutive Equations in the
Power-Law Hardening Material Bonded With Rigid Substrate

Invoking the plane strain condition stress-strain relation can be expressed as:

grr = (1+V){(1_V)O-rr _VO-HH} +gao-:lsrr (226)

&g =(14V) {(1— V)04 —VO, } Jrgozae”_ls&9 (2.27)
3 n-1

&y =(1+Vv)o,, 508, (2.28)

In this approximation, the elastic strains in compared with the plastic strains are
small and can be neglected in the asymptotic analysis. Hence according to the plastic
deformation theory the three dimensional stress-strain relations take the form given in
Eqgn. (2.3). The nonlinear term of the strain components for plane strain is written as

follows:

n_l{(2—v) (1+v)%} (2.29)

&y = A0, Oy —
2 2
2—-v 1+v
&y =00, " ( ) Oy~ ( ) O (2.30)
2 2
3
&y =—00, O, (2.31)

The stress boundary conditions are that the free-edges are traction free and the

displacement boundary conditions are given by Eqn. (2.32)

(2.32)

We can express the stress distribution in terms of stress function following Rice [32]
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Airy stress function in a separable form is assumed as,

=g = A rg oses% (2.33)

Assume, A, depends on the deformation and substituting Eqn.(2.33) into Eqns.(2.5-2.7),

we can express the stress distribution in terms of the stress function as [31,32,62]

Grvo = A T35, (2.34)
oo = AT G (2.35)
Gro = AT G (2.36)
where

Gro = (Jo+1)+(d) (2.37)
G0 =0 (% +1) % (2.38)
G =—() % (2.39)

In this thesis, ( )' denotes differentiation with respect to &, and ( ~) denotes the

angular variation of (), respectively.

The effective stress term can be expressed in terms of deviatoric stress as,

3
2
o2 = E{sijsij} (2.40)
3
2 2 2 2 2 2 2 2 2 2
O-e = E |:srr + SHE) + Szz + sr6 + Srz + Ser + SE)Z + Szr + SZB (241)
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Plane strain condition, s, =s,, =S, =S, =5,,=0 (2.42)
Eqgn. (2.41) yields,
o = g[sf, +52, 425, (2.43)

Deviatoric components can be written as,

1 - 1 - =
Srro :E{rﬂo 1f0rr} " Sao :E{r% lfoee} 1 Seoo = re 1f0r9 (244)
where,

= A 4002+ (B |t A (o 0= 2)+ (&) | o =-A (B 2(249)

Substituting Eqn.(2.44) into Eqn.(2.43) yields an expression for the effective stress,

nt

o, = [g(rz%n ( fore + Togp +8 fozre))} 2 (2.46)

Replacing Eqn.(2.45),Eqn.(2.46) is written as,

o7 = A @[{¢ o)+ (@) | [t oy | vs () %}T
(2.47)

Eqn.(2.47) can be rewritten as,

ol = AN g (2.48)

Where,
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(3 froeomnrtar | ofseomanetar | fiia |
(2.49)

Substituting all the strain components of nonlinear part of Equations (2.29-2.31) in the
strain compatibility equation ,Eqn.(2.8) and replacing stresses as Eqns.(2.5-2.7) in terms

of airy stress function the final form of the Eqn.(2.8) yields,

182{8 [(z 2 (1212 ai‘ { (W 16"5]}
r or? or? r 89 r arae orof r oo

e {G“((z—v)% (2- v)a¢ (1+V)_¢}}

r2 0% r or r: 062

A2 fon(E 005 T

ror or r2  06° r?

(2.50)

Eqgn.(2.50) includes four terms. Internal part of each terms can be calculated separately

as,

) &0 op _(1+v) 2%
C s ) o

' (2.51)
= A’ {{(2—1/)(% +1) 2 —(1+v) (4 +1)} (1+v)(¢0 ) }
o’¢p  10¢ _ ~1\
oroo roo (%) (@52
e )
r or r- o6 or?
(2.53)

:i{ﬁbrw«z—v)(% #1)=(1+v)(%+ 1)}y +(2-v)(d )"}

Substituting Eqns.(2.51-2.53) into Eqn.(2.50), compatibility equation becomes,
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1 &2

FW{GS_lAbr% {{(z_v)(z@ +1) 4, - (1+v)(4, +1)}¢50' —(1+V)(¢;0| )}}

L8
T arae{ A‘)%(%)}

Lot 2 () - (e )l 2 (@) |

10

_Far{ I AT H(2-0) (A +1) - (L+0) (A +1) A} +(2-v) (& )"}:0

Derivatives of Eqn.(2.48) are as,

(2.54)

0 (- - o
82@ A (n1) ()11 (g g @59
520':_1 AN (n-1)(%-1) 256'”_1
S = A (D) (4 ” @57)
1% term of Eqn.(2.54) can be represented as:
2 - ~ M (258)

iaar { T A {{(2—1/)(/10+1)ﬂ.0—(1+v)(ﬁ,0+1)}¢0' ~(1+v)(d) }}
= AT (4 -1)(n-1){(n-1) (4 1) -1} + 24, (n-1) + 4 ) 57
x{{(Z—v)(/lo +1) 2 —(14v) (A + 1)} —(1+v) (A )H
2nd term of Eqn.(2.54) can be represented as:
6 82 n-1 "’I’
Farae{ae AJM"(%)}

(2.59)

oae o 4 rayno2) 22 v (@)
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3rd term of Eqn.(2.54) can be represented as:

S arar @@ )& e (@) |
=A?“"""”‘”H({(2—V)(%+1)—(1+V)(%+1)%}¢3J (2-v)(@&) jazagzl} (2.60)

60‘
00

i@ wa)@) @) e

{2 ) D)0+

4th term of Eqn.(2.54) can be represented as:

10

_Fa{o-glpbrﬂoli{(Z—v)(ﬂo +1)=(14v) (A +1) Aoy +(2-v) (4 )j}
:-Aer“*“”‘”{({(z—v)uo+1>—<1+v><ﬂo+l>%‘r 2@ ot~ ”“l}

(2.61)

Replacing Eqgns.(2.58-2.61) into Eqgn. (2.54) compatibility equation is expressed as,

np(n%-n-2) _ n— n— 1)1\ 4 n—1)+ 4 )"t (Z_V)(AO-"]')AO}ﬂ_ )4 "}}
R O (N LU )
@) |

LA ZH( {(2-v) (A +1) - (1+v) (A +1) A} 4 +(2- v)(¢0)jaz~ l}
{

+6 A2 {ﬂo (N4, —n +1)[

06?

m\o 6—: -1

+2[ {(2-v) (4 +1)-(L+v (/10+1)%}(¢33)’+(2—V)(¢;3)]

00

(et @) se-n@) o |

o {( (2-v) (4 +1)-(1+v (lo+1)go}(/§g+(2—v)((50')”jn(ﬂo—l)&e"—l}zo
(2.62)
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Agr(ﬂﬁo-n-Z)
XH(% ~1)((n-2){(n-1)(4 ~1) -1} +24, (n-1)+ 4 )67 {{(2—1/)(/10 +1) 2= (1+v) (4 +1)} 5 —(1+v)(4 )}}

y { %M_M)(@g—g(&; )+ (4 ))}

d

+ 2({(2—1/)(/10 +1)—(1+v)(4 +1)ﬂ,0}(¢30' )' +(2—v)(¢§0' )”,Ja&:_l

06?

(=) )= )AL 2@ |

00

(2.63)

(% —1)((n 1){(n-1)(4 -1)- }+2/10(n—1)+/10){(2—v)(ﬂo +1) 4y = (1+v) (4 +1)} 677,
~{(2-v) (% +1) = (14v)(%4 +1)4 }n(ﬂo 1)&“*%'
(

H(2-v) (% +1)- (1+V)(ﬂo+1)ﬂo} g
+64, (N4, — n+1)

N

602
() 22 ) ) - ) () ) ()
—uo—l)(lw)((n— D{(n-1)(A ~1) -1} + 24, (n-1)+ ) 572 (4 )

O 1)o7 (3 + (2 T (8 20t ()
(2B +1) (1) (A ) A} 62 (4 )

+2(2-v) a;}gl (&) +(2-v)er (&) =0

(2.64)
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(2n*25 = n?vA) =3n° 3 +3n45 —n*A5 =347 + 2n*VAS +3n° A, —3nA, — N +3n+nv ) 61,
aZ&I’]—l
00?

+{—vAg = 2hy = 23 + Ay —v +2] &,

!

+{—2A% = 28 — 6N, +BNA —4v, +8, —2v +4) ajf;-l (%)

—N?A¢ +22,0° —vn?A§ +22vn® —vn* =’ -9n4, | _ | (413' )n
O-e
+3N =A% +6A2N+T A, —VvAZ = 2vA —v +2 ’

2=n-1
+(2_V)an;2 (¢ol)

+2(2—v)a§f; (4 )

H2-v)er ()7 =0

(2.65)

Co efficient are :

)" @-v)er

m los n-1
e

(&) (4-2v)=2

" {—nzﬂoz + 24,0 —vn2 A2 + 24vn? —vn® —n? —9n/,

2 ~n-1
o0°o,

~n-1 2_
}O-e +( V) 892

+3N— A2 +6AN+TA —VAE —2vA, —v +2

~n-1
0o,

(4) :© {-2vA2 —222 —6n2, +6n1> — 4, +82, ~2v +4) =

d o {2nP2 —nPvAg —3nA5 + 3045 —N° A7 —3nA] + 2n°VA7 +3n° Ay —3n A, —n’ +3n+ v} &1

aZ&nfl
VA —2vA — AF+ Ay~ v+ 21—
{ VAg —2vi, = Ay + A —v } 06°
(2.66)
Effective stress term can be calculated applying plane strain condition as:
o’ = (v2 —v +1)(arr +0,, )2 ~30,,0,,+30,, (2.67)
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Gt = [(ﬂo +l)2 {(1+102)(v2 —v+1)+20 (21/2 —2v—1)}(¢30' )2
sl +D){2(v2 v +1) 4 (2 2 1) 2, L& (R + (v —v+1)((¢~0' )jz +34 ((cf?o' )ﬂ 2
(2.68)

2 M a2 () v (2 20 &
Dol 2o 0T o 4
v2(v v 1) (A) (A) +622 () (4 )'}

{1 (10 2) (0 v 1) 2 (207 20 1)) ()

(Ao +1){2(7 v 1)+ (202 ~2v 1) 2} (&) + (v ‘”1)((% )”jz " ((% Uz}z

(2.69)
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g :”7{2(%”)2 RS O ()
(A +1){2(v —v+1) (202 —2v—1)/10}{((¢70' )j v2(d) (&) +4 (4 )(4)}
- {(% @) +{ (@ )”'jz}m; {(&s @)+ (& ))H

o (40 (1 22) (0 v 1) 2 (27 -2 1)) (&)

H(arDf2(v v 1) (2 ~2v 1) A} & (&)

+(v? v+l)(( )J +32,0(( )ﬂj’

P 2 (1 27 v )220 (R
el vt (-2 (@) (&) 4 (2]
v2lvr v )& (R) 62 (R) (&)

P 2 (1) v o) (v 20 ()
o2l -vt) (2t -2 (R (@) +& (2}
vav-va) @) (@) vo (@) (@)

| (0 (1 2) (v v 42) 2 (207 20 1)} (&)

a3 (R) o (&) oo (@) |

(2.70)

aZ&r]—l

" . A\@
From =%, the terms included (4)
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{nT_l{(ﬂo H){2(v: v 1)+ (27 -2 -1) 4} & +2(v2 ~v+1)(4 )”} fl(g)“j}(q;o. )<4>

(2.71)

Where,

f1(9)=[(/1O F 1) {1+ 8) (VP v+ 1)+ A (207 —2v 1)} (4 )
(2 +D){2(v2 v 41) (27 ~2v 1) 2 1 () +(v° —v+1)(( )j+3zo (( )ﬂ

(2.72)

The coefficient of (4, )(4) becomes,

2 v 2 a2 (@) )7

(2.73)
2 ~n-1
From the compatibility equation, the coefficient of (450' )(4) becomes from the aaC;ez
term,
o aZNI’]fl
{(2—1/)(%') {—vig —2viy =2 + Ay —v+2} 4y } aeez (2.74)

So, the term included(&o' )(4) in the compatibility equation,

{(2—1/)( ) (VA =202 =25 + 2 —v+ 2} }

x[”T‘l{(ﬂ,o +1){2(v2 —v+1)+ (2 —2v—1)zo}¢30' +2(v:-v+1)(d )} fl(g)?}(% )(

(2.75)

4)

From the compatibility equation, the term included (4, )(4) becomes from the &

e

term is,
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w

(2-v)5 (&) = (2-v)1.(0) 7 x(@)" (2.76)
where the coefficient of (450' )(4) is, (2-v)f,(0) 2

So, the total terms included (4, )(4) becomes,

{(2—\/) £(0)7 {(z_v)(gzo' ' o {ovaE = 2vig - 2+ g —v+2}¢50'}

{”;1{(,10 ) 2(v2 v 1)+ (207 -2 1) 2 +2(vE v +1) (4, )} fl(e)“f}}
(2.77)

So, Compatibility equation becomes in the form of

(@) - ((®) (@) (&) 2 27®)

Where,

=2V (0)T 4| (R + i 2is -2 a2 |

2o faler vy -2 afi ool v @) 10)
(2.79)

And,

o6
06

+3N— A5 +6AN+T A —VA; —2vA, - V+2)5n_1+(2 v)k }(%)”

C=(4-2v) (¢0) H{(=n%A3 + 2450 v 22 + 23 v’ —n” —9nj

{2022 ~ 222 6Ny + 6110 — 4y +8 — 2v+4}a~_ <(d)
+{(2n2/104—n2v/1§—3n2/1§+3n20 N’A3 =3nA3 +2n°vA7 +3n% 4, =304, —n* +3n+n’v )61
+{VAS = 200 = A+ Dy —v + 2} K } x ¢,

(2.80)
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Where, f,(6)is expressed in Eqn.(2.72)

and

knTllzwl)Z{(l%)(v vl A (2 -2 - 1)}{¢ (5')"{(%)'}2}
HA+1){2(v? —v+1)+ (27 - 2v - 1)10}{((&;)"j 2(dy ) (¢)}

+2(v? v+1)[( )J +6&0{ H

x[(ﬂ,o+1)2{(l+ﬂo)(v v+1)+/10(2v —2v— 1) ¢
Ha+D){2(v v 1)+ (27 ~2v 1) 2| & x(d )

GRS

e LR R (O AR PN 1)}(&)’ i
Hag+1){2(v? —v+1)+ (2P ~2v-1) 4 { <(@) + }
2yt )() <(R ) 65 (R) () |

R 2 (L) v o) )
R e S ) ME R RN
v2fyt v s (&) (@) +o2 (@) <(@) |

| (o 2 (1 20) (v v 1) 2207 -2} ()

(A + D207 v 1)+ (22 ~2 1) 2 | A< ( R ) + (v v+1)(( )] +32,0(( )ﬂz

(2.81)
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Equation (2.78) is fourth-order ordinary differential equation. For the solution of
fourth-order equation, the equation is reduced into a system of first-order equations.

And, therefore, equation is solved using the Runge-Kutta method.

Stress fields are expressed in Egns. (2.34-2.36) where the effective stress as,

L

= Ao {( 1) @) -2 - (@) )+{ (@ )j vz (@ ))}

(2.82)
Applying plane strain condition strain components are expressed as:
gho = A 1"V (2.83)
Ehpo = A 1"V Eh (2.84)
Elgo = A5 1"y (2.85)
where,
n-1
n+l ~ ~ A\ 2 /N2 ~r /o~ A\ ,,”2 ~¢27
-2 ol 2)8 8| (-9 (8 -0 98 (8 o (] )
(2.86)
n-1

n+l

o = 2_1_"320({(/102 -1

=
—_—
B
~7
—
7\
—_
S
|
[EXY
SN—
N
—_
=
SN—
N
|
N
—_—
S
|
[E=Y
N —
Y
—_
=
SN—
:
+
7N\
—_
=
—s
N
N
+
SN
S
7N\
—_
>
N —
N
N
Ne—e—
N

(2.87)
n-1
n+l . 2. .2 o ~”2 ~,27
b2 a8 (44 (8 205 8 @) <)) 41|
(2.88)
From Equation (2.9) displacement can be written as,
u'y = A r™ gl (2.89)

where,
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n+l n-1

23 a {(1_ 2V () }[(%z S (@) -2(2 08 (&) +((¢zg )j +4A§[(¢FJ )n

"

(n4, —n+1) :
(2.90)
. ou, ou,
Eqn.(2.11) can be rewritten as, r—2—u, =2re¢,, — (2.91)
or 00
We assume,
NAg—n+1 . aug nAg—n+1-1 . aug nly—n+1
u, =kr f(@)..ﬁz(nﬂo—nﬂ)kr f(0); or, rﬁz(nﬂo—nﬂ)kr f(0)
So equation becomes, When 4, =1,
Kk Mo+ aur
™ (0){n(4 —1)} =2re, - ~ (2.92)
Ugo = ATT™ "0 (2.93)
where,
n+l n-3

T et CRU AR (I M (CT R (GO

2
"

{42; (402 ~1)~ 4o +8) 2o +1} (& ) +{(Tn—4)22 ~4(n-1) 4, + n}((q?o' ) j (#)
+{4xg((&; I ool )”jz}(«z: ' va(z )& () {-lon-212 -a0-0 4o} (&) -n(&)'}

(-1 (& s vt s e +0(d |

2

(2.94)

When 2, =1, the displacement is infinite. Obviously, infinite displacement does not

occur in reality. To determine the displacement field we have to use another expression.
We know from the strain displacement relation from Egn.(2.10):
= AT (2.95)

|
Us(o)

where,
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n1

(GRS >jﬁ{(< ) o8 >j}]

(2.96)

th =237 a (&) ]

N[y o

The boundary condition for traction free and clamped condition is given in Eqgn. (2.32)

and applying boundary condition, Initial conditions at 6 = %: From equation (2.38) &

(2.39)

(A +1) Aody =0, @ =0, if A #-1 4 #0 (2.97)
~&(4) =0, (&) =0, if %#0 (2.98)
Unknown are: (450' )", (gz?o' )m, 4, After integration final conditions, at 6=0,0/, =0
and 0, =0

ni

(f‘;on—:%r:j)((l‘ﬂé)ég (@ )J

x{(z;—l)z(ng -2 - (@) |+ (@) | vess((@)) } -0

>
w

- 21;3”? - {(%_1)2(%)2_2(%_1)5(;((50')"J{(&J)"]:Mé((ié)!T}

2

x| 422 {(4n (2 -1)- 2 +4) 4 +1)() {(7n—4)l§—4(n—1)ﬂo+n}((¢3o')ﬂj (%)

. 4/102[ )ﬂ(%) +2(22-1) 4, ((%)"]{_{(Sn—z)zg—4(n—1)/10+n}(¢50')'—n(%)m}
+(4 - 1)( ){(W0 any +47,+n)(dy ) (45) H:

(2.100)
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Assume at 6 = % d =0, (4 )' =0, (450' )” =10, (4 )m , A, and after i-th integration

4 m (I)

ao=0, & =a% (@) =((@)) (@) =(@)] o (@) <@V

gy o (1)
errorl_m (1-4) %" +| (&)

X{ (21 () 22— ((% y j(i) +[((¢30' )"j(i)jz +472 (((&o' )'j(i)]z}z

n+l

2732
{n(4 -1)}(n4, —n+1)

ooz ey (1) {0}

xlmg{(zln(mmwmu}[(&; ) in-apz s () (@)

+{% B N CaREER X ik
-2 -atn-n (3 ) o @)

-4 30 - e | o))

error2 =—

(2.102)

The error value is then calculated by using the Equation (2.15) applying following

procedure: After integration, solution region is obtained with different error ranges

m (I)
which systematically cover the range of [(&0') J and A, for different error. From

m (I)
the minimum error region, the range of ((4150') J and A, is selected as the initial
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value for the integration of next step. The final region of the minimum error is taken

m (I)
with the region of ((50') ] and A, contains two equal digits after the decimal point.

The final solution is obtained from this minimum error region and calculated
numerically the solution point where the minimum error occurs. The minimum error

region is integrated with 200 smaller divisions and minimum error point is selected as

m (I)
the solution point and the corresponding [((ﬁo') } and A4, is calculated as the
solution.

After tentative solution, to get the exact solution it is necessary to correct the initial

value of (4130' ) which was assumed as 1. To get the exact value, it is necessary to satisfy

"

(&;6)9:0 =1.S0 initial value of (¢30') becomes,(;z?o' )” =1.0/(6;9);:O , where (&;5); is

the tentative solution obtained assuming (gZO' ) =1.0.

Assume at@:%, % =0, (& )’=O, (gZO' )": 1'0T : (950' )m, A, and after i-th

integration - at - 0=0. ¢ =", (&:)':((&;)'}m , (&:)"=((¢3;)"Jm and

n (I)
¢30') j The solution procedure is same as described above for seeking the

"

minimum error. Due to the change of (g?o') , all angular function terms

-
5in)
90 Jo-0

changes with the same ratio for the exact solution.

Once singular exponent, A, is known the angular variation of stresses can be computed.

To compute the stresses we need to calculate unknown angular functions to satisfy

traction on the interface.
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2.4.2 Formulation of 0™ Order Approximation: Constitutive Equations in the

Elastic Material Subjected to Traction

The traction boundary conditions are that the free-edges are traction free and that the

0,0, are continuous at the interface. Mathematically this can be expressed by:

1
=0

(0'96(0))9 : (J;L)(O) )9 = 0';9(0) )H

| and ) | B (2.103)
(O-re(o) )e _% =0 (O-rH(O) )9 0 <0r6(0) )9 0
Assumed, Airy stress function ¢=g¢' = A, r*"g, (2.104)
Compatibility equation becomes in the form of,
d*y' 2\2 71 d? ¢

o4 =—(1-2) " —2(22 +1) : (2.105)

Equation (2.105) is the fourth-order ordinary differential equation. For the solution of
fourth-order equation, the equation is reduced into a system of first-order equations.

And, therefore, equation is solved using the Runge-Kutta method.

Stress fields can be expressed as:

=A™, (2.106)

= A 176, (2.107)

= AT (2.108)
where,

= (DA +(A) (2.100)

Sppio) = (Fo +1) Ao’ (2.110)

5 0 =70 () (2.111)
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Applying plane strain condition strain fields are expressed as,

S {a)ot ol

Displacement fields are also expressed by the following equations,

uI

r

)

r

I rr(O)dr

0

E“ {(1+v”)[1 v Ia dr — VI

We assume (ur(o)) e 0.Displacement fields are,

where,

=A Ty,

E

E |

S [ RS g

From equation (2.10) we can deduce the displacement equation as,

n_
UH—

(u

I
0(0)

),

l—,q;

NN

_

£pyd 6 — Iu”d0+( y )6

2

can be a function of r or a constant. We assume (u

51
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6(0)

)r:o -

dr]} (uo))..,

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)



1l _ d 1] B 1 1] 1au0(0)
(ug(o))e__z =C,r? ,d#0 and (599)62_% —(Fur(0)+ —— If

B
2

This is rigid body rotation. Neither strain nor stress occurs due to the rotation. So we
can neglect it for the discussion of stress or strain. But, for the displacement we have to

consider rigid body rotation.

= A, ra) (2.119)

9(0) Uo(o)

where,

49(0) - EII /10

T s TR ) [aao- ()@Y | e

Using Equation (2.11) another expression of strain, displacement can be written as:

o (2.121)
(ngL) z = e +Codr ™ —Cor
Ly 2\r 06 .
1 1
Or, r%—u” =2rg! _ (2.122)

or ¢ Y00

Rigid body rotation is depends on r and angular function. To overcome the rigid body
rotation we have to assume the displacement as a function of r and the angular function

term.

(’Bu;' 6u;'

Assume,u, =kr®f (0) .. = Akr 7 f(0); 0 = Akr* f (0)
1
When 4, =1, equation becomes,  kr* f (0)(4, —1)=2re,), 6;6') (2.123)
Displacement u, can be expressed as,
= g 2.124
Upo) = Ao ™ Uyq (2.124)
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where,

e :_5_,',_121&:_3{{21; (o (@) et )@ 2129

Boundary equation on the interface at & =0can be expressed as,

Tpooy = AT (Ao +1) Ao’ = AT (A +1) Aoty (2.126)

ooy =—A A (') ==A T % (4 ) - (2.127)
Finally, governing differential equation (Egn. (2.105)) is solved to satisfy the traction
boundary condition on the interface.

Assume at @ = —%, é' =0, (4 )’ =0, (4 )" and (4! )m and after i-th integration

o0, =, (@) =((@) | (@) (@] e (@) (@) )

(1) (i)

where,
errorl =g, — (4 )(i) (2.128)

and

error2 :£(¢30' )’j_u%l )'J(i) (2.129)

The error value is then calculated by using the Equation (2.15) and solution is obtained

for the minimum error.
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2.5 Formulation of 1** Order Approximation

2.5.1 Formulation of 1% Order Approximation: Constitutive Equations in the
Power-Law Hardening Material Subjected To Forced Displacement

In the following the Airy stress function and other equations assuming only to the

first order approximation can be described for the illustration of solution method.

Assumed, 4, and A4 depend on the deformation and

P=dh+d = AT+ AT (2.130)
Substituting Eqn. (2.130) into Eqgns.(2.5-2.8), stress fields are expressed as,

. = Aor‘ol{ & (7o +1)+ (& )}+ INEE {é’ (4 +1)+ (& )} (2.131)
Too = A1 (A +1) Ao+ AT (4 +1) 4, (2.132)
Oy = —(A) (@) A+ ArH(E) 21] (2.133)
o= (T g H AT, (2.134)
See :%{rﬂol fooo + A re fwe} (2.135)
Srp = re” foro + A re firo (2.136)
where,

P %{4’30' (% +1)(1_%)+((50' )”} f. ={¢71' (4 +1)(1—/11)+(4’;1I )”}

o ={-A(R) ] 1o ={ (&) 4] (2.137)

54



Substituting Eqns.(2.134 -2.136) Eqn.(2.43) yields,

n-1

2
oy = [§(r o ( fore + Tog +8Torg ) +2A rtota™ ( fore Fure + Too Tiap +8Tory fir ) + A A ( fire + fiop +8f1 ))}

8
(2.138)

From the Taylor series expansion,

n-1

y+dy=(x+dx) 2 =x

n-t n-3
2 2

e (DO 2

n-1
+—=X
2

(2.139)

In the 1% order approximation, nonlinear effective stress term o *is expanded by

Taylor series and the first two terms are considered for further calculations. Before

expansion this term is written as,

n-1

o ZEUM—D fo+2A re a2 4 A2 20D fz):l 2 1 (2.140)

e

where,

fo= ( fore + Tooo +8oro )’ T = (Forr furr + Tooo Tro +8Tors i) T = ( fure + 100 +8 flre)

= A o112 48] 1o =A R (20400 (@) o= -4 (R) 4

!

m—{qﬁl (A+1)(1-4)+ (é)} {¢ (4+1)(1—ﬂl)+(¢1')"},fm{—(é‘)ﬂl}-

(2.141)

Before expansion Eqgn. (2.140) can be written as,

n-t
2

ey E( fo+2A r ) f 4 A PP, )} . (2.142)

Assuming smaller range of r (r <1)near the interface edge it is reasonable to have
the singular exponent of incremental stress A, which is larger than the zero-th order

singular exponent A4, , i.e., 4, <A4. The order of rof the terms in the part powered by
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(n-1)/2 in Egn. (2.140) is 0,(4, —4,)and 2(4,—4,) respectively which means the
order of r in the second and third terms are positive in magnitude. Positive power of
small r gives the value smaller than 1. Also A <1, f, <land f, <1.The summation of
the second and third terms has the smaller magnitude than 1.This satisfies the
convergence condition for the Taylor expansion. Assuming the first term as the leading
term and remaining terms as the incremental term Taylor expansion is applied to Eqgn.
(2.140). After expansion and neglecting the higher order term of A the equation

becomes,

n-1 n-3

ot~ E 20D fo} 2 +”T_1E 2D fo} 2 x%(a xr 2. (2.143)

Substituting effective stress term from Eqn.(2.143) into Eqgn. (2.3), strain components

are expressed as:

n-1 n-3
2

6~ Sal | 3w | P g p s S a1 3 g
4" |L8 2 |8 4

orr

n-3
2 | =113 sueng |23 any
+ —|=r f —r f
A x 5 |:8 0 x8 2
n-5
+(n—1)(n—3) 3 2t f| 2 19 G- 2 rﬂo—lfm
8 8 16

n-1 n-3

3 2(i-1) 2, » -1 3 p 2oL 42 )
LA 3 |7 s God g 3 o 'f
A1|:8 0 1rr Al 2 8 4

1rr

n-3

+Af>< nT_l{grzuol)fo} 2 Xgrz(m)fz
n-5
n-1)(n-3 >
+w §r2%_l) fo 2 X g"2(10%_2)(11)2 Fﬂi_lflrr
8 8 16

(2.144)
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A’includes cube of small magnitudes. Which means the terms are very small in

compared with the initial term. So, A’ term will be neglected.

n-1

grrz%a [g fO 2 rn(%_l) fOrr
n-3 n-1
LA X P ”T‘l[g fo}z x%flfmr+[§ for £
n-3 n-5
- 2 n-1)(n-3 2
+ At x| pri-sionz —”21[2 fo}z x§f2+—( )8( )E for () o
- n-3
+n2—1 §f0j| 2 Xgrn%—z%—ndﬂi flflrr
(2.145)
Similarly,
n-1
- z%a E fo} b g
n-3 n-1
nin-iaa | D=1 3 2 3 3 2
+Aixr% foth T[g fl:l xzf1f099+[§ fo} fo0
n-3 n-5
A —3 4 —ne n-1/3, |2 3 n-1)(n-3)[3 12z 9
+A12X r o—34g 1424, T|:§ f0:| Xg ‘I:Z_i_()fs()[g fo:l XE(fl)Z fogg
n-3
n-1[3 2 3 Nig—235—N+27
+T gfo er flfl.%?
(2.146)
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n-1

Erp zEO‘ {g fo:| 2 o fore

2
n-3 n1
nAg—N—Jg+ n-1|3 2 3 3 2
+AJ.Xr% Tt T{gfo} Xzflfom"{gfo} firo
%3, ()33 T7
Ny —34y—n+1+ n-113 2 3 n- n- 3 ? 9 ?
1+ A2 x| pMobamnite2sy > {gfo} x§f2+T{§fo} XE(H) Fore

1ro

n-3
+n—1‘:§ fo} 2 )(Er_nﬂ(,—214\)—n+21,1 f]_f
4

2 |8
(2.147)
Strain components are in the following form according to the order of A :
Eq = o+ Em {O(A )} +£,,{O(A”)} (2.148)
Ego = Epgo + Egn {O(A )} + €45, {0(A" )} (2.149)
Erp = Ergo + € {O(A)} + 6, {0(A)} (2.150)

In these expressions strain components will have three terms with respect to the
power of r.r"o™ (Mt gng (M3 T2A  Erom zero-th order approximation

solution it is clear that the terms of r"“™ satisfy the compatibility condition. To solve
the compatibility condition on the remaining terms, we assume the two terms satisfy the

conditions independently. At first we will consider it neglecting the third term.
Ej &0 + €53 {O(A)] (2.151)
Strain components are in the following summation form:

Ey = Exro + &4 (2.152)

rrl

(2.153)

| | I
Egoy = Eago T €
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3:0(1) ~ 3r|.90 + ngHl (2.154)

Initial part of strain components are expressed in Eqns. (2.83-2.85). Strain components

and derivatives of strain components contains first order term of A :

e I S (2.155)
géyl = Atr)]_l rnﬂoini%%%ﬂ (2.156)
e I (2.157)
where,

n+1
~l _~-1l-nq 7
Emn=2" 372 al(n-

VR
/_g\
—_
S
—_—
-
SR
SN —
SN —
7\
—_—
by
SN—
N—
N
—_—
s
—_—
-
S
all N
N\
. —
ol
—
N——
%,—/
—_~~
N—
——
>
hSS
—_
o~
RN
N—
—_~
o~
N
SN—
>
—_
=
N —
%r_/

{{(% a2 ) +{(®) ] +2( b-2) (& )"]}w{(% j %}T (0| ad (a1 -0)-A (4] |

(2.158)

e s |
XH(%(l—ﬂé))2+ ) [ J} {maull A&(@)"}
ol (1-48)+ (R (&) zo}x<—1>{a(¢l )

+H(%(1—25))2[(%)"]12(%(1—45))[(%)”]}w{(%)’%}z]2x{m‘uﬁl)w—l)—a(@)”}

(2.159)
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n+1

22737 a|(n _1)({(50' (1_102))2 +[(¢%’ )jz + 2(450' (1-% )){(%' )j% 4{(% J %}ZJ 2

(2.160)
Derivatives of strain components with respect to r can be written as,
|
S p aniy=n—d+ A NG (2.161)
55691 = A (A —n— A + A r Rt gl (2.162)
|
0 N vy - o+ A A (2.163)
2 1
% = AV (g —n—Ag + &) x(ndg —n— g + A4 —1)r(Me e a2lal (2.164)
r
2
T (vdg -y e (g 1 2 (2.165)
r
2
68‘9”’1 A (N —n— Ao+ A)x(ndg —N— g + A4 —1)r(Me a2zl (2.166)
.

From zero-th order approximation solution it is clear that the terms of "™ satisfy

the compatibility condition. To solve the compatibility condition on the remaining terms,
we assumed the two terms (zero-th order term and first order term of A) of strain

components satisfy the conditions independently. Finally, initial part of compatibility
equation is same as the equation which is satisfied in zero-th order approximation. So,
remaining part of compatibility equation should be satisfied independently. Using Eqn.

(2.143), the compatibility equation will have three terms with respect to the power of r
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o2 M AtA gnd rM T4 1o solve the compatibility condition, we

assume that those three terms satisfy the conditions order by order. Here we will neglect
the third term. Assuming second term as the incremental part the compatibility equation
includes the exponent of ras r"*" %" Hence, in the first order approximation,

compatibility equation becomes in the form of,

dgy d’y d’4) ddy
do* " d6* ' de® ' do’

¢30',n,20,21].
(2.167)
Equation (2.167) is the fourth-order ordinary differential equation of 451' . Within the

A4 _ [ A TE ,dE , d
BxA = [Ades,adez,a A

" (K

,Ag'" and 4. Band C are

derived using Mathematica (symbolic mathematics software) [63] and all terms of

first order approximation unknowns are Ag', A4, Ad

compatibility equation are presented in appendix; the equation is solved using
Runge-Kutta method. Incremental stress fields are expressed as,

o = AT (2.168)
Ton = AT G (2.169)
ol = AT (2.170)
where,

Gy =@ (+)+(4') (2.171)

Gon =4 (A+1) 4 (2.172)
Sin=(4) 4 (2.173)

Strain components are expressed in Eqn. (2.155-2.157). Displacement component can

be written in terms of strain components as,

u, = Jsrrdr
| | | | (2.174)
= U, +Uy = Ig,rodr +J'gmdr
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Initial part of displacement components and initial strain components has a relationship

like: u}, = [ ,dr expressed in Eqn. (2.89).

So, uly=[gldr= Ayt rMenrengy (2.175)

where,

n+l

e e G R REES (O SR

n-1

|
fiiaf ] <ofpiaesna

(2.176)
Finally, uy, =u/,+Uy, (2.177)
From zero-th order approximation: (u/,) =0 So, (ufy)  =u}, (2.178)

Displacement at any arbitrary value of @,u/, =uj,+u}, = A} r"™ "), + A rteAr gy

(2.179)
Displacement on the interface,
(uhy ) =(uh),, = A5 ron g, (2.180)
Strain displacement relation in Eqn.(2.11)substituting ¢,, ~ &,,, +&,, and
U, =U, +U, Strain displacement relation becomes,
r 8;?0 Uy +T % Uy~ 2re,,— 20 o aa“g (2.181)
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Initial part of displacement components and initial part of strain components has a
relationship like Eqn.(2.91)

So incremental part,

ou,,
or

oo

r —U, = 2r&,, — (2.182)

Ny _ (Ndo —N— 2y + A + KMo £ ()

Assume, u,, = KrM oA (g) - 5
"

Equation becomes,

Kr =0 f () g, —n— A + 4} =2r&,, — aa“g (2.183)
When ni, —n—4,+4, =0,
_ 1 Ny (2.184)

TRy +,11}{2r8”91_ ae}

When nj,—n-2,+4, =0, the displacement is infinite. Obviously, infinite displacement

does not occur in reality. To determine the displacement field we have to use another

expression.

where,
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u, _2" 3 Ab arMe
69 (N4, —n-A,+ 4 +1)

{‘%3)[{(”<1—zé>>2+(<~s>”)z+z<«s'<1—ﬂs>)[<%>"j}+4[<¢z>’zojz]n;'l

(a0 (@) @) (8) el (@) (2 -9AK -A @)

((qﬁ) j[ -1+ ) Ad' - A (4 j

ol (&) ] (e )k - A (@) Jo 20 (20928 (&) A8 +0(@) (-4) a2 <A (4 ) ]
(o) & (R) o (B (8] 21 2)(R) (R) -2( -0& (&) +2(2) (#)")

(3] fra-sy (@) -2 (N'<1—ﬂs>>(<«z>”j}+4[<«z>’zoj2]n;

st (R | oanliese & (08 (8 w0 @ (R (-0 - (4
~-D2A(8) (&) (&) +2(2+4) (% ) {( i (i) & +n(@) [ o- Af)aé'w(é')]}
~40-022 (8 ) A(A ) (B)" +2n(8 ) ((-1+22) A - A (@) +n(d (1-22)) (2 -2) Adk - Ad® |
(@) (o)A -0 Jon R | (12 -9A (@) -ad?)

21 x| 202 @) (8]

2(n-1)24 (R ) A(4) + n[—(—wf)/\qi' +A (A )"j(cio' ) +n(a) [(1—15)/\(;5; ) +A (4 )(S’HH

(2.185)

The displacement equation can be expressed as,

Upy = Ayt ot gy (2.186)

where,
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il - 21'”3%105
(A —n—Jy + A) (N —n— Ay + Ay +1)

H(m)m n-eacen| (@12 (8 ) eldto- (@S| ofi@iaf |
{{ee-s H } { oG- A(E >"}+4{—<‘%'>'%}2*<—1>{’*<¢1'M}]
{foes H}{ ) eofwis)
—{(”W = m s diei<]|

[4(n D24 (A ) (&) (&) +n(1-22) (4 )2[(41—)A1¢—A(¢)j [(¢o)%]2[(%—1)%'—/3&(@')")
+n((¢)j( 1) Ad A1(¢)]+220 1¢(2(n 1) (4 )/’a(é')'+”(¢35)"[(1‘”f)w+A1(q51')”m
(2l A0 0 (R () 20 0@ (B) 204 -0 (R)° +2(a) (%))

)
{3 {wos{0) J v | %JJ
{4<n 1)MA¢ ] +2n(1 ¢)( 1Ad - A (4 )'(«%')"[(ﬂf—l)#\é'—Ai(é')”j
~4n-D44 (4 ) (4) A(4) (&) {Z(n 1) 2o (4 ) 1 (1-47) Ad! A(ﬁ))}
40D (3) A(&) (&) +2n(d )((ﬂl ~1)Ad - Ad )(¢) ( i (1- ﬂo)) (2 -)Ad - Ad”)
+4ﬂo[(¢o)ﬂ(ﬂf—l)ﬁ(é‘)’—%j [(aﬁ j[( A(F) - AgE j+2(1—ﬂo)%[Z(n—l)MAi(&;)'(&J)"
a)

+z(n—1)ﬂoﬂl(¢3s)'a(¢i')"+”((1—A Ad -+ A( )() #n(d >"[<1-”f>’*<¢1'f*”ﬁ(";f)@ﬂﬂ}

(2.187)
Finally, Uy =Ugpo+Up = (ups)  =Up o+u; (2.188)
From zero-th order approximation: (uj,) =0 S0, (upy)  =us (2.189)

Displacement at any arbitrary value of @,
Displacement at any arbitrary value of 6, uy, =uy, +uy, = A} r™e "Gy, + A) re e atig

(2.190)
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Displacement on the interface,

e e (2.191)

Displacement of Elastic material side after zero-th order Approximation which will be

used as the forced displacement on the interface:

= A real (2.192)
= A roa" (2.193)

where,

g =:—,|,{(1+/10 ” ){(ﬂo FD)(L-v" A )+ (1" ) (A" )} (2.194)

o E_' (1+v”)

0jo == m{{zﬂo + (A +1)(1-v" "2} (4 ) (2" (A )} (2.195)

For the case of traction free edges and forced displacement from elastic material side
Boundary conditions should be satisfied as:

(oo )gzz =0 (ur'(l)g:0 :(ur” ()9 =A rg (g70;elastic)

2

~ (2.196)
(Ur'aa) )g% =0 (Ué(l) )9:0 ( 9(0)) = A rly, (6 = 0;elastic)

Due to the forced displacement on the interface, displacement of first order
approximation in the power law material side should be the same as the displacement of

zero-th order approximation in the elastic material side.

The iterative boundary condition on the interface can be expressed as,

I N I _
(“r(l) )H = (ur(O) )H, (Uaa) )9:0 = (ue(o) )9:0, (2.197)
Within the first order approximation in the power-law material side we have,
| | | | |
Where (ur(l) )920 =(ur0 +ur1)9 0and ( 9(1)) (ul90 +u‘91)0:0 (2.198)

From zero-th order approximation we have,
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(us),, =0and (up) =0 (2.199)

So, remaining term (ur'l) . :(ur”o)g:0 and (u('ﬂ)g:O :<U4I9I0)9:o (2.200)

where u'yand uy, are the displacements of zero-th order approximation in the elastic

material side, u, and u,, are the incremental displacements of the first order

approximation in the power-law hardening material side. To derive the expressions for
displacement, small deformation strain-displacement relations, Eq.(2.9)-Eq.(2.11), have
been used. Strain components are derived using Eq.(2.3) and Eq.(2.4) for power-law

material and elastic material, respectively. From Eq.(2.9) the strain component, ¢,,, iS
integrated by rto derive the expression of displacementu, and the expression of U, is

also derived from¢,, using Eq.(2.11).

Displacement functions of elastic material side within zero-th order approximation
which is used as the forced displacement on the power-law material side in the first

order approximation are,
Ui = A T 0k, Upg = A P74l (2.201)
where G and Gy are the angular function terms of displacement component,

"

i=0andLk=1andIl. aisafunction of Ag' Ad' ,Ad'" A" and 4.

To satisfy the boundary condition on the interface the power of r should be equal.

Equating the power of rwe have,

A =2+ (1-n) (4, -1). (2.202)

It seems the first order singularity is depends on hardening exponent n and zero-th

order singularity 4, .
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To satisfy the displacement continuity condition on the interface order by order the

boundary equation can be expressed as,

A oo Awml(ﬂ ) AT (~" )9 i (2.203)
and
N (¢ ) = A,r* (ap ) o (2.204)

Equating the power of r in the boundary equation, Radial part is equal in both sides

so remaining part means the angular function part should be the same

Where, the magnitudes of L.H.S and R.H.S should be same due to forced displacement

on the interface.

= A;H (Ufll )9:0 =A (UVHO)H:O and A?il (6;1)9:0 =A (U;O )9:0 (2'205)

:>A1=A§_n Nlafo )a:o and =A= A)Z n ll],g )_=° (2.206)
(u”)a:o/Ai ( 91)e=o/A1

A=A xC (2.207)

where C is constant value numerically known from the angular function term.

C-= (rllo)ao and C— (er)

(a),,/A (08, A

Using Eqn. (2.208) the determination of constant term without the determination of

(2.208)

stress intensity factor is impossible. Only one can have the relationship between the
stress intensity factor of the first order term in terms of the zero-th order term by Eqn.
(2.207).
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To calculate Error following equation is followed from Eqn. (2.196):

errorl= Ay, (6=0;elastic)— Ay~ 0, (€ = 0; power-law)

_ (2.209)
error2 = Ay, (6 = O;elastic) — A\ Gy, (6 = 0; power-law)

In the first order approximation, compatibility equation presented in Eqn. (2.167).

Equation (2.167) is the fourth-order ordinary differential equation of¢~1' . For the solution

of fourth-order equation, the equation is reduced into a system of first-order equations:

4%
d&®

Assume, wi) = Ad, W@ <AL wE-ASL, w@-a

where, ¢30, d¢° d’ ¢° d” ¢° and d ;0 are known from the solution of 0-th order

dé  do? ' de?
approximation.
wi(D)' = wi(2)
W1(2)" = wi(3),
W1(3) =wi(4),
wi(4)' = A 40"
_ d3¢?1| d2¢?1| d¢1 d ¢0 d ¢o d ¢o d¢o 7l
_f[/ﬂ do? A do? ’Ai AR, do* ' dg®  do? ' de ¢°'n’ﬂ“°’ﬂlJ
_ C(,d% ,d’ ,dg d'g, d’¢, d’4, dg, -
= B(Aldea’ﬂdgz’/ﬂ A1¢1.d94’dea’dgz'de,céo,n,%%J
(2.210)

B and C are derived using Mathematica software and checked the initial part (zero-th
order term) of compatibility equation which is same as the compatibility equation

derived theoretically for zero-th order approximation. Within the first order

A" A and A,

And, therefore, equation is solved using the Runge-Kutta method.

" '

approximation unknowns are 4', 4", 4

Applying boundary conditions on the stress free edge:
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(0-6I’9(l) )g:% = (O-;HO )9:1 + <O-;01 )6 =0 (2.211)

2 2

From zero-th order approximation we know(aé'%)0 )9 =0,80 (0;91)9 =0 (2.212)

similarly, (o)), = =0 = Otow =Trs0 +Opmn (2.213)

N

From zero-th order approximation we know(o}y,) . =0,50 (o) . =0 (2.214)
2 2

Incremental stress fields are expressed in Eqgns. (2.168-2.170)

Initial conditions at 6= %: From equation (2.169) & (2.170) dividing by r*™

or ;‘%’91:(]14-1);{1(,6&&1'):0, (Ad)=0,if A4#-1 4#0 (2.215)

I
O
ra

And - _j (AG") =0,0r (AG") =0,if 40 (2.216)

m

We know 4 from Eqn.(2.202) and  Unknown are: ( Ag" ) (Ag")

After integration final conditions, at =0,

! "

. Ad' =0,(Ag") =0, (A4 ) and (A4")  hence, after i-th

Assume at g =

NN

integration at6 =0, ( Ag ) _ ( Ad )m | (Acfi" ) _ ( (Mi" ),]0) | (A&é“ ) i ((Aﬁl" )”jm

" o (i)
and (Ag") {(M&") j (2.217)
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21’"3%151/-\(;"l
(N —n-4,+ A4)(n4, —n— 2, + 4, +1)

HMM”“”W‘ (@) ot -oferaf |
XH% (&Y H(8) 2| (20" o0 (0 | a3 2 <o (a8 )]AH

oz (@] sewo-wfar) e >'ﬂo}zfx<—1>{(<m' >']“)ﬂl}]

error2 = Ay, (6 = O;elastic) —

s -nal@ (180 | R oota-2) @ (e aind) (8| Joo{ (8 4 [ 2020000 () ) |
ol (e ndt " ) otens o () oo - ind)” 1]
x(z@—ww) 02 (4 () 2l 22) (4 () - <wow<¢>“+z<¢z>"<¢zs>“>]]

e m——

X{_«n_lw((w”(<~;>j+2n1zo <¢>[ ) (( )j”+su (&) (i)~ (a1 |

R () (3 R R I e ol (-(aeai [ (nd) )
ST )[(A;')j( i )[(1 2)(ad)" [( >j Jm“ o) (20 (a2 | (08" |
R CIE: ] (@) [ J (") ozt e -van(ad) )
%_WO)M[ -] J et 1]

(2.219)

The error value is calculated by using the equation (2.15)
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2.5.1.1 Determination of the Stress Intensity Factor A

Stress can be expressed as,
(699) =AT" 1(59.90 )9 +AT" 1(0-.991)9 0 (2.220)

Substituting, (&6'.90 )6:0 =1 in Eqgn. (2.220)

(o0), = AT+ AT (6)), (2.221)

From FEM for joint material (power law hardening/elastic material joint), (0,'99)920 IS

known and from zero-th order approximation A, ris also known

At 1(0-091)€ 0 (U.;a )020 ~ Aot (2.222)

From first order approximation after solution of differential equation the numerical

value of (Ady')is known.

we have, A r*7(&,,, ), =(Ad') r*H(A+D)A4 (2.223)
As the definition of stress intensity factor A , (6;91)9:0 =1 (2.224)
Substituting Eqn (2.224) into Eqgn. (2.223) yields,

=A=(Ad') (A+D)4 (2.225)

From first order approximation after solution of differential equation the numerical

value of (Ad')and all of its derivatives are known.
From FEM, A is known numerically fro Eqn. (2.207)

s0, &' =(Ad')/A and similarly all of its derivatives are known.
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Forn>2, power of A, is smaller than O (means negative power shows opposite
behavior) and for n<2 power of Ajis larger than O (means positive power shows
same behavior). For n< 2, two singular term exist up to the first order approximation
and for n> 2one singular term exist.

When n=2, A=A>?xCor A=C.

When n=2, 4 =1 stress fields are, o; = r’*~&.,+&;, (last part is independent of r)
ijo ij1

Therefore, n=2 is a trivial solution.

From FEM of joint material can be written as

(0%),0 = AT (G ), + AT (A6, (2.226)
Substituting, (&;90 )9:0 =1 in Egn. (2.236)

(o0), = AT + AT (A (2.227)

From FEM for joint material (power law hardening/elastic material joint), (0,'99)920 IS

known and from zero-th order approximation A, ris also known

A’ 1(%) o =(o%), ,~ AT (2.228)
As the definition of stress intensity factor A , (6;91)9:0 =1

ATt =(oy) —AT*? (2.229)
Taking logarithmic distribution,

log A +(4,—1)logr = log {(aala )9=0 -A r%‘l} (2.230)
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Right hand side have the term {(0;9)9 A r*ﬂ*l} is calculated at first and then

logarithmic distribution is calculated. (6;9)00 is numerically known along radial

distance r by FEM for joint material and A, r*™ is calculated and subtracted for the

same radial distance where A,and (ﬂn —1)is known from rigid/power law hardening

material by FEM.

For example, n=2.4is presented here: A, =2.790and (4, —1)=-0.246

{(0;6 ).~ A r‘ﬂ*l} is calculated along radial distance .

To determine the stress intensity factor, logarithmic distribution of stress along r has

been used from FEM of joint material.

we have, from Egn. (2.230)

Where slope is (/11—1) and log A s intercept. Least squares method was used to

calculate slope and intercept for an r range the r range is known and used to determine

the stress intensity factor for rigid power law hardening material (zero-th order

approximation). calculated (4, —1)=-0.2893 and A =0.02738 . From first order

approximation theoretical slope is (4, —1)= 0.09853 and theoretically calculated stress

intensity factor is A =0.059.These values show some deviation of theoretical result
from FEM result. This is due to the numerically calculated result by FEM includes
higher order terms but, theoretically only zero-th order and first order terms are now

considered.
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2.5.1.2 Alternative Way To Express The Definition Of Stress Intensity Factor A

Assume g=g) +¢ = A r°g +r o] (2.231)
U: _ A?rn ﬂ0+1)+l rl(0 Ab—lr(mo Aﬂ+ﬂ1)+lu|'l(0) (2232)
u! ZA(:]rn(;lOu)ﬂ ;(o Ab—lr(mo n— ﬂo+ﬂi)+1uél)(o) (2.233)

The magnitude of Ur'(o) and U} can be determined based on the displacement

6(0)
continuity conditions,

Ab_lr(mo n- 40+/11)+1(U| ) _ Abrﬂo( )9:0 (2.234)
Aé\—lr(nﬂo—n—ﬂowh)ﬂ (U"I ) = A (0 (~;|(0 ) (2.235)

Then we know from the solution of differential equation ®, ,&!",&!"and &!".

Stress can be expressed as

Oppr = (A4 +1) 417D, (2.236)
If we define A as  (ogy) = Ar+ (2.237)
Then, A =(4+1)4(d]) (2.238)
If we defined'as  r*"d®; = Ar+ g’ (2.239)
Then @) = Ag' (2.240)
O = (A +1) LA (2.241)

When @ = 0this should be, (o-%,l) = Ar“™, as given in Eqn.(2.241)

s0(4 +1) 4 (4 )e =1 (2.242)
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If we divide o, by (4 +1)4(®})  and multiply A,

! A A _ (&
O go1 (/11+1)/11(q31' )9_0 Where(ﬂﬁl)ﬂl(c'f)i )9:0 =lor A —(fbl )gzo(ﬂl +1) 4 (2.243)
o A _ A ATDATTD L B 2,244
O A@),, ama@),, @) oo
From Eq.(2.241), ¢ =— , or f?i =4 (L +1)4, (2.245)
((Dl )9:0 (j'l +1)ﬂ1 (q)l )370
From Eqn. (2.241) and Eqn. (245)
Then r**®] =r**(d;) @' (4+1)4 =r*"Ad (2.246)
where A =(®}) (4+1)4 (2.247)

Once singular exponent, 4, is known the angular variation of stresses can be

computed.

2.5.2 Formulation of 1% Order Approximation: Constitutive Equations in the

Elastic Material Subjected to Traction

Invoking the plane strain condition strain can be expressed in terms of stresses as,

g :%{(1+v” H(2-v")or —v"a;'g}} (2.248)

by =:—|II{(1+V” ){(l—v" )al;'g—v"ar'r'}} (2.249)
1 EI 1l 1l

gl =F{(1+v Jou (2.250)

Compatibility equation in terms of stress component may be written as:
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lop_13% 409 2% 2 &9 2 o' +a¢ 1% _,

2.251
rPor rrord rtod® ror® rPordd  rlore? ort rt oot ( )

For the case of stress free-edges and traction on the interface, boundary condition:

1
(699(1) )9 _ =0 GI =|o
2 and ( 5I’91)9 0 ( T’Igl)e 0 (2.252)
1 —
(o-fg(l) )g=’27 =0 (6”’1 )9:0 - (6”91 )9:0
Assumed, Airy stress function, ¢=¢' +4" = A r*"g" + A r*"4" (2.253)

So, compatibility equation becomes,

A

(A G )R A ) S (A G DA A ) )
H PAR) A (@) j+;(Ao(ﬂo 1)y (A ~1) G + A (4 +1) 4 (4 -1)r7 ")

A (@ +A G (@)

P2l A (G D) A (E) + Ay (A +2) 2 (Ao 1) (4 —2) ™ !
A () AP () + A (1) 4 (4 -1)(4 -2) )]

+ri4(A0 rﬂwl(&ou )(4) + rﬂﬁlAi(&lu )(4)) -0
(2.254)

From zero-th order approximation solution it is clear that the terms of r’ > satisfy
the compatibility condition. To solve the compatibility condition, remaining terms

satisfy the condition independently. So the compatibility equation for remaining terms,

d*g
de*

—_(1-22\Vg" —2 8¢1”
=—(1-47) " —2(# +1)—%- o (2.255)

Equation (2.255) is the fourth-order ordinary differential equation. For the solution

of fourth-order equation, the equation is reduced into a system of first-order equations:
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Assume, wi(l)=4", M(2)=%, wi(3) = ddzlz : \'\/1(4)—O|dg1

Where, wi(1) =wi(2), wi(2) =wi(3), wi(3) =wi(4)

, _ d451|| B dSéII dZéII délll -
wa(4) = do* f( do® ' de* ' do 4 "11} (2.258)

And, therefore, equation is solved using the Runge-Kutta method.

Where incremental part of stress field can be written as,

rrl Alrﬂl 76 rrl (2257)
Ton = A TGy, (2.258)
O =A T 6, (2.259)
where,
& = (4 +1)E" (") (2.260)
o = (A +1) A" (2.261)
&y =—A(&") (2.262)

Displacement can be calculated as:
i = [emodr+ [ &lfdr (2.263)

Initial part of displacement components and initial strain components has a relationship.

Remaining term can be expressed as,
U = A 10y (2.264)

where,
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a _:_;{(12"){(31 FD)(L-v" VA& + (1w ) (4 )}} (2.265)

Displacement equation of first order approximation of elastic material side can be
expressed as,

Uy = Ur +Ugy = Ay 107 + A 10 (2.266)

And again we know from Eqn. (2.10), substituting , &, = &0 + & + Ugsy = Ugo +Upn
and g, = U +Uy

Strain displacement relation becomes,

0 0 0 0
Ugo +Ugy =T [ £4d0— [ufidO+r [ £5,d0— [ ujido (2.267)
= = = =

Initial part of displacement components and initial part of strain components has a

relationship. Remaining term can be expressed as,

0 0

upy =1 [ en,do— [ ulido (2.268)
TG

Finally,

Uy = Upo +Ugy (2.269)

We know from the strain displacement relation given in Egn.(2.10) from the

incremental part strain displacement relation can be written as:
Ugy = A 0y (2.270)

where
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ol = A () () (- (1v") [ a0 (20 (@) 2270

T
2

Eqgn. (2.269) can be rewritten as,
Ugy =Ugp +Ugy = Ay Il + A g, (2.272)
Using expression of Eqn.(2.11)strain, displacement can be calculated.

Rigid body rotation is depends on r and angular function. To overcome the rigid body
rotation we have to assume the displacement as a function of r and the angular function

term.

ou,, ; ouy

Assume, uf = ke’ 1(6) - S22 = ke (0);or, 122 = 2k 1 (0)
r r
]
So equation becomes, When 4, -1, kr* f (6)(4-1)= 2re! — aaug (2.273)
uy = A ray (2.274)

where,

ay = —:—;%{{2/@2 +(4 +1)(1-v" —v”ﬂl)}(&l” ) +(1-v")(4" )} (2.275)

Substituting into Eqn. (2.269) Total displacement fields can be expressed in Eqn.
(2.272)

Applying boundary conditions traction free-edge can be expressed as,

(oma )9?% = (oo )9;% +(om )9}% =0 (2.276)
and

1] _ 1] Il _

4 o=_=" - r o=~ r o=_" - .
(o) : (o100) 2+(am) 2 0 (2.277)
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From zero-th order approximation we know (o, ) . =0,(0y) . =0
2 2

So (og), =0 and (a},) . =0 (2.278)

Initial conditions at@ = —% :

% (4 +1)4(A) =0, (Ad")=0if 4=-1420 2.279)
And ;{giz—ﬂla(g;ﬁlu):o’or a(glfl):o,if A #0 (2.280)

" m

Assume atez—g, Ad" =0, (A4" )' =0,(Ag4") and (Ag") hence, after i-th
. , I U O
integration atg =0, (Ad" ) =( Ad" )(), (A4") =((A1¢1")j (Ad") Z((Aﬁ") j

wa (') -{ (A |

errorl= ¢ —(4131” )(i) (2.281)

, A
error2 = ((g?l' ) j—((@“ ) ] (2.282)
The error value is calculated by using the equation (2.15)

2.6 Formulation of i™ Order Approximation

2.6.1 Formulation of i Order Approximation: Constitutive Equations in the

Power-Law Hardening Material Subjected To Forced Displacement

We can express the stress functions in the form of an infinite power series have been
given by Hutchinson [31] in the solution of a nonlinear power-law hardening material

crack tip field:

Let, =g +@' +) +--+¢' = A TG + Ar g + A gret 1. 1 A g'r T (2.283)
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where, &+l + ¢ = AT + ArUg - Adiretand ¢ = AT
Assume, A,, A, 4,---and 2 depends on the deformation

Substituting Eqn. (2.283) into Eqgns. (2.5-2.7), we obtain stress fields of i-th order

approximation as,

o=t e A e Gy A @) oo v e )]
rerr AR (32 A (R |

(2.284)

Op =P (B +D) A+ A G (A+D) AT+ A G (L +1) 4+ + A G (4 +1) A4rH
(2.285)

(PR 2 A AR (R A 2] 200

Srr = %{r%_l fOrr + A& r;vrl flrr + AZ r}Q& f2rr teeet A r/ﬁ_l firr} (2'287)
Spo = %{r%il foaa + Ai rat fwo + Az r fzao +eet A re fiﬂ()} (2288)
S0 = ret foro + A rit fro + A, rt forg -+ A i fio (2'289)
where,

&z
\_/‘
%ﬁ_J

i e )] = (D02 (@
2"_{"52 (22 + 1)) (% )"} fm={¢5.' (4 +1)(1—z.)+(7)”}

o =4 (1 +)a-) (&) | T = {¢1 (A+1)(1-4)+ (@')ﬂ}
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Substituting Eqns.(2.284 -2.290) into Eqn.(2.43) yields an expression for the effective
stress,

o-e2 = g{[r%_l fOrr + Ai rjrl f1rr + AZ rkil f2rr Tt Ai rii_l firr :'2
+[r%_l foae +A re flya +A re fzaa +o A e fiea]z (2.291)
+8[I’j°71 fOre + A1 ret flra + Az re fzra ot Ai re fire]z}
Assume,

Cl =r%7 fOrr’ ACl

(A1 r’t f.+A rﬂrlerr +et A r)Vlfinr)'
(A1 re fioo + A ret fa00+-+ A ri fiee)’
Cy ="y ACy=(AT* M, + A, 4ot AT

C,=r"*f,, AC,

(2.292)
Eqgn.(2.298) yields,

ol = g{[c1 +AC, " +[C, +AC,T +8[C, +AC3]2} (2.293)

Eqn.(2.298) can be written after Taylor expansion as,

n-1

n-3
oMl x E(cl2 +C,2+8C2 )} +”T_1E(cf +C,2+8C2 )} * x {%(clAc1 +C,AC, +8C,AC, ) + gx {(Acl)2 +(AC, )’ +8(AC, )2}}

(2.294)

where constant terms can be written as,

(C2+C,2+8C7 ) =r*Cod ({2 + fp, +817,)

orr

CAC, = A xr®™f, ra ™, + A xre™f, r="f, +-+Axr'f

A4-1
r firr

orr
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ClAcl + CZACZ +8C3AC3 = Ai X r/ﬁﬁﬂrz ( fOrr fJ.rr + fOH& f19€ +8 f0n9 f1r6)+ AZ X r%MLFZ ( fOrr f2rr + fOGH fZHB +8 fOrH erH)

+...+Axr%+}“_2(f f + fO@g fi39+8forg fira)

orr “irr

(AC,) = A2 x (1t ) 4 A A x2(r 2t £, )+ A (1, ) oot A (10, )
(2.295)

Similarly, (AC,)’ and (AC,)” includes second order of A, bi-linear of A ---Aand
A,--A and second order term of A,--A. So, {(AC,)+(AC,)"+8(AC,)’}also includes

second order of A, bi-linear of A---Aand A,---A and second order term of A,---A.
Which means the terms are very small in compared with the initial term. So, here
(AC,)",(AC,)" and (AC,)”order terms can be neglected.

After Taylor series expansion and neglecting higher order terms Eqn. (2.291) yields,

n-3

n-1 n-3
O':il ~ [g rity ( fozrr + fozee +8 fozrg ):| ’ + nT_l|:§ 20D ( fozn + fozea +8 foer ):l 2

3
X_

4
ok AXTA (o g 4850, Ty )

Orr “irr

Orr “1rr

(Ai X r;@w—z ( f f + f000 fwa +8 f0r0 f1r0)+ AZ X rjoﬂlﬁz ( fOrr f2rr + fO(}O f200 +8 fOr() fzm) (2296)

ASsSsSume,

( Fore + fozee +8 fozre)’ f,= ( forr Fuee + Togo Fio0 +8oro f1n9)

f0 Orr

fz =( f f2rr + foea fzea +8 fom erG)’ fi = ( fore fire + foea fi99 +8f0r9 fire)

Orr Orr “irr

(2.297)

So, expression for the effective stress becomes,

n-t n-3
2

ot zEr%‘” fo} ’ +n7_1[§r2“°‘1’ fo} x%(Alxr*ﬁ“ﬂ‘2 f+ A xroe2f 4o Axrhths? fi)(2,298)

Substituting effective stress term into Eqn.(2.3), strain components have the form in

terms of C as,
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n-1 n-3

6~ §((:12+(:22+8C32) 2 nt 3(c +C248C7) |
2% |8 2 |8
(2.299)

x%(ClACl +C,AC, +8C3AC3)}<%{C1 +AC,}

Where,

n-1 n-3

a;-lz[g(cﬁczusc;)r ”21{:(0 +C,2 +8C, )T x%(ClAC1+C2AC2+8C3AC3) (2.300)

n-1 n-1

3 2z 1 3 2 1
£, ~=a [g(C12+C22+8C32)} xicl{g(cluczusc;)} x—AC,

j ;(C ?AC, +C,C,AC, +8C,C,AC, ) (2.301)

3

1
< ~(c.(ac,) +c,acAcC, +8AC1C2AC3))

Here, (ACl)Z ,AC,AC,and AC,AC, includes square of small magnitudes. Which means

the terms are very small in compared with the initial term so these terms can be

neglected.

iy
w
1
w
—_
O
+
O
+
o
O
—
| I
X
H
O
+
1
w
—_—
O
+
O
+
o
O
~
X
I

i
(2.302)

n-3

L2 1{3(0 +C,2+8C, )}2 3 E(CZAC +C,C,AC, +8C,C,AC ))
2 |8 4 2

Interms of f,, f,,f,,---, f, ,EQn.(2.302) yields,
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n-1

Ey B ga ‘:grzuﬁ_l) fO} 2 X%{rﬂﬂ_l fOrr + Ai r%_l f1rr + A2 rﬂz_l f2rr Tt Ai rﬂi_l firl’}
_ _n-3
P D S et g S (A A g AR g AT xS [t )
2 |8 | T4 2
_ _h-3
I 2P g |G (A A s A ) (AT, )
_ _h-3
R 2 | (AT A ek A A P
4t

w

n—

~ ‘

n-1(3 - 3 e e e 1 -~
+T[§r2“0 2 fo} ><Z(A1><M0 AR A xR e A xr Rt Zfi)xE{A r 1fm})

(2.303)

Here higher order terms ( (A )zorder terms) can be neglected and neglecting higher

order terms,

n-1 n-1 n-3
3 3. 12 .o Vo1t 3.2 n-1/3, |2 3
gn, zza Iig f0j| r %) fOrr +A1I’ Yo Aot ‘:g fo} flrr +T|:§ fo} ><Z(f0rr fl)
-1 n-3
e s 3 2 n-1(3 2 3
"'Azrﬂ0 ot |:§ fo:| fm*‘T{g fo:l XZ(fOrer)
1 n-3
wenais 113 2 n-13 2 3
+“'+A1 Pt |:§ fojl firr+7‘:§ fojl ><Z(fOrr fl)
(2.304)

Similarly
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8 2 |8 4
n-1 n-3
nigneis, || 36 |2 n-1[3_, ]2 3
"'Azr/IO fotte l:g fo} fo00 + [5 fo} Xz(foeefz)
n-1 n-3

enaan 113 . 12 n-1{3, [2 3
ook A P [_fo} fi00+_‘:_f0:| Xz(foeefi)

8 2 |8

(2.305)

And

n-1 n-t n-3
&, zga {g fo} SRR A W {g fo} ’ f., +n_2—1{§ fo} i X%( foro 1)
1 n-3
+A, Vot [g fo} i f2r9+nT_1B fo} 2 X%(fom f.)
1 "3

g A P E fo} i fim+”7_1E fo} i x%(fom )

(2.306)

Strain components are in the following form according to the first order terms of

AL A A

grr ~ 8rr0 + grrl {O(A&)} + 5rr2{O(A2)}+ """ +grri{O(A )} (2307)
Egp = Eggo T Egn {O(Al)} + &5, {O(A) 000 +&,,{0(A)} (2.308)
&g = &g+ En{O(A)} + €, {O(A) I+ +£,{0(A)} (2.309)

In these expressions strain components will have i-th terms with respect to the power of

P pnGed pNen—oth pNe-n-iotls Moot PNt
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From zero-th order approximation solution it is clear that the terms of "™ satisfy
the compatibility condition and from (i-1) th order approximation solution the terms of
r™"%*41 3150 satisfy the compatibility condition. To solve the compatibility condition

on the remaining terms, we assume the i-th terms satisfy the conditions independently.
iy = Gijo T &1 {O(Ai)}+glj2 {O(Az )}"‘ """ +glji{O(A)} (2.310)

Strain components are in the following summation form:

Lo I I I

grr(i) R & +grr1 +grr2 +'“+8rri (2311)
Lo I I I

Egoiy = €00 T E€an t Egor Tt E gy (2.312)
Lo I I |

Evoiiy T Eroo TE T Erg2 T & (2.313)

Initial part of strain components are given in Eqns.(2.83-2.85) and strain components

includes first order term of A are presented in Eqns.(2.155-2.157):

Strain components includes first order term of A, :

Errp = A AT R R gL (2.314)
Eopp = A Ap T T R g, (2.315)
Ergp = A - AT g, (2.316)
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[ {(% ) [ el ) )"]}M{(«zg )’%}Tx{qy (e 12 -1)- (3 )}]

(2.318)

(2.319)
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Where, Strain components includes i-th order term of A :

gl = AL A Mo htA gl (2.320)
Ehg = AV A TR A (2.321)
gl = AL A M tA gl (2.322)
where,

+H(¢zo' b)) +{ () | vl ) (8 )"j}w{(&a )'%}2}24—1){&.' (5 1) -1-( )}}

(2.323)
o) {08 o1 (o) (R )+ )”’FJ
XH(% () o[ (8 ) +2f () )]}{¢ (+0a-3-( |

(2.324)
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(e iy el | ol
(2.325)

Derivatives of strain components with respect to r can be written as,
o, 08y = AV A (g —n— Ay + 4 Moot gl (2.326)
62—;?“=A6‘1A (g —N—Jg + A )Mo nRA D1 (2.327)
agrg. = A A a(ndg —n—2g + 4 )rMe e a D gl (2.328)
62 "“ = A A (Vg ==+ ) x(ndg =n—Jg + 4 —L)rWe A g (2.329)
‘92‘999' = A A (Mg =n—dg + ) (N —n—Jo + &y ) r TR g, (2:330)
62‘%' = AEA (0 —n—Zg+ A)x(ndg—n—Jg + 4~ r(Me R ARl (2.331)

From zero-th order approximation solution it is clear that the terms of "™ satisfy

the compatibility condition. To solve the compatibility condition on the remaining terms,
we assumed the two terms (zero-th order term and first order term of A) of strain
components satisfy the conditions independently. Finally, initial part of compatibility
equation is same as the equation which is satisfied in zero-th order approximation. So,
remaining part of compatibility equation should be satisfied independently. Using Eqn.

(2.298), the compatibility equation will have three terms with respect to the power of r
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I,.n(ﬂo—l)—z rnﬂo—n—ﬂo+ﬂ1-—2 and rnﬂo—Sﬂo—nJrZ/Ii—l

. To solve the compatibility condition, we

assume that those three terms satisfy the conditions order by order. Here we will neglect

the third term. Assuming second term as the incremental part the compatibility equation

includes the exponent of ras r*e™""o™=2,

Hence, in the i-th order approximation,

compatibility equation becomes in the form of,

dg'
do’

dZél

B ,
A 46

A

d4¢~ll :_C(A d3¢~ll A

do* de®’

Aé““

d'dy d¢y d’¢, dfy

do* ' do® ' do* ' deo

o M-wj

(2.332)

Equation (2.332) is the fourth-order ordinary differential equation of ¢5i' . Within the

i-th order approximation unknowns are &', a4

1’

¥

"

4" A and 4. B and C are

derived using Mathematica software and the equation is solved using the Runge-Kutta

method.

The expressions for incremental stresses in the i-th order approximation are:

o A1~
Owi = A r O i

. Al ~l
Cos = AT Gy

1 _ A1 ~1
GrHi - A r O-rai

Displacement fields are expressed in the i-th order approximation as,

|
rrl

1 | I | ! !
Upgy =Upg + Uy +Up, +o-+ U, = Igrrodr+jg

93

dr+_[g

1
rr2

dr+---+jgr'ridr

(2.333)
(2.334)

(2.335)

(2.336)

(2.337)

(2.338)

(2.339)



Initial part of displacement components and initial strain components has a relationship.

From (i-1) th order approximation on the interface,

Ugg +Upy +Up, -+ Upg =~ Ig:rodr + Ig:rldr + J.gr'rzdr et J.gr'r{ifl}dr (2.340)
ur'{ifl} =A r(”ﬂﬁ‘”‘ﬂo”ifl)*ll]r'{i&} (2.341)
Ul = AL (Voo A)agl (2.342)

where,

n+1
g 2 "32aA(H)
M (N —n—Jg + Ay +1)
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Finally, displacement after i-th order approximation:

u'. =ul,+ul +ul +-+ul (2.345)

|
r(i)

On the interface, from zero-th order approximation: (u,'o) =0

S0, (Ufgy),, = Uty +Ufp +- Uy (2.346)

And from the (i-1) th order approximation displacement field is known and which is
same as the forced displacement field from the elastic material side of the (i-2)-th order

approximation. All terms up to the (i-1)-th order approximation is known. Displacement
u' at any arbitrary value of @ , and on the interface, is expressed as Eqn.(2.243) and
Eqn.(2.346) ,respectively. Where,u!, and u/,are given in Eqn.(2.89) and Eqn.(2.155).
Displacement u! are given in Eqn. (2.342). From strain displacement relation in
Eqn.(2.11)substituting &,, = £,y + €+ + & ANA U, =Uy +Uy +---+U,  Strain
displacement relation becomes,

OU,,
or

r —u90+r%—um+---+r%—ugi z2rg€0—%+ngm,l—%+---+2rgmi -
(2.347)

Initial part of displacement components and initial part of strain components has a

r

relationship. So incremental part for the i-th order approximation,

6uHi auri
Fr—=—Uy = 2rg; ——=
00 (2.348)
Assume, uai — Kr(nﬂo—n—ﬂodi)ﬂf (6) % — (nﬂo -n _ﬂo —|—ﬂ,| +1)Kr(nﬂgfnfﬂo+ﬂ1-)+l—1f (0),
Equation becomes,
KMot (9){nd, —n— 2, + 4} = 2re,, —% (2.349)

And we haveu,, in Eqn.(2.93) and uy, in Eqgn. (2.157) similarly u), canbe

calculated as,
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T S 1 (2.350)
where,

21132 105A
-n- /10+A,)(M[J n—2A,+4 +1)

H 1)yt 1) -2 +{ (@ )"jlz(qz;(1—@5))((&;)"j}+4{(¢z;)'zo}z]
({ro-z H }{ (4 +1)(4 1)—(¢5.')"}+4{—(¢z:)’%}24—1){(&.')’a.}]
{foe-s o) | ofo|

ue

{5 3[{ J e} 46 i

[ 4044 (&) (4) (&) ( 1+ j [¢ zojz((—l%)é'—(é')”j
+n(<¢fs>>(~ = (zn a8 ] 240887
(a0 > 2o )@ () 21 )& (8)° 28] (8) )

(@) (228 -0
21024 (&) #-+n(@) [-(20 )80 4@ )
)" (@ (1= (e 40)8 -0
¥ (L&) -0 |r20-22) 8 x| 20Dk (8 ) (&
2224 (&) (8 o[ ~(1e2)d (@) @) n(& >”[—<—1+4.2)<¢z.'>'+<¢z.')@)}H}

(2.351)

«J-an- mw[ +zn 1—@5)2&;(@)'[(—“ N (@) v8a (A

205
T
| l

4= () (B) (8 +2(2+2)(&)
1

ASS
|
:$~\z
N
—_
hSl
~—
>
—_
ASN
—~
[N
N—

Finally, u()_u U, + U+ + Uy, (2.352)
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|
o

From the zero-th order approximation we have: (uf',0 )9:0 =

On the interface, (u;(i) )620 = Uy, +Uy, +-+-+Uy (2.353)

From the (i-1)th order approximation (u'

0 is known and the power of r is

—_~

i-1} )9:0
equal to the power of r from elastic material side of the (i-2) th order approximation ,
which is used as the forced displacement in the power law material of the (i-1)th order

approximation on the interface.

Displacement of Elastic material side after (i-1) th order Approximation which is

used as the forced displacement:

Upi = A MU + A TAUL +-o o+ A r’“ur”{i_l} (2.354)

Upig) = A FoUjo + A TAUg +-o o+ Ay 15U, (2.359)

o(i-1) ofi-1

For the case of Free edges-forced displacement from elastic material side, Boundary

conditions are:

! _
Coods=0 (o), =), 0556
(o )gzg =0 (u;(i))gzo = (upon )9:0
Last part of boundary equations can be written as,
(ufy +up, +--+up )a:o = (ur“o FUpy e Uy )620 (2.357))

To satisfy the boundary equation of (i-1) th order approximation, up to (i-1) th terms
of both sides are known and is equal. So, all terms are cancelled out up to (i-1) th order

and remaining terms should be satisfied on the interface.

On the interface the last part of boundary condition can be described as,

(uy ),9:0:(“:5_1})6:0 and similarly ~ (uy ) =(u;{i_l})9:0 (2.358)

0=0

It can be expressed in detail,

97



A\;—l r(nﬂo—n—ﬂo+ﬂi)+l~l + A?—l r(nﬂo—n—ﬂ(ﬁﬂq)ﬂu + + A)_l I,.(n/io n— AO+/71)+IU

" 2.359
= A raly + Ara’ +- A 1}r"16r”{ ) ( )

and

Ar;—l r(nﬂo—n—ﬂﬁ+ﬂl)+1~|1+ n-1 r(nﬂo—n—ﬂo+ﬂz)+1~l Foet n-1 r(nlo—n—ﬂo+/li)+1a;i

= ATy, + ATy +--+ A rdy, (2.360)
From the (i-1)-th order approximation it is known that,
AT PR A AN (Rl AL (v wmﬂul{l .
= A, realy +A&rﬂi~" +ot A, rﬂ””;_}
(2.361)
Al (o erdgl AN (Vo ek)stgl L AL r(nao—n—zouj)ﬂlj;{i_}
(2.362)

= A, redy, + Arta) +- A, rﬂ“u
So, remaining terms are:

AE AR gL S A gl AT AR g A gl (2.363)

Applying the boundary condition, remaining terms of boundary equation becomes,

(urli )9:0 - (U:I{H} )9:0 and (uéi )9:0 - (U;I{i,l} )0:0 (2:364)

Where angular function terms of displacements are presented in Eqns.(2.344,2.351)
and

~=
E_
|
mim
f_&_\
—~
[N
>t
Lo <
N—
1
—_
o~
+
-
~—
—_—~
T
<—
|
<
A
~
_|_
—_
'—\
<
~
—_
-~~~
\'"_/‘
| I—
N——
~
N
w
(2]
1
~

(2.366)
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Due to the forced displacement on the interface, displacement of i-th order
approximation in the power law material side should be the same as the displacement of

(i-1) th order approximation in the elastic material side.

The iterative boundary condition on the interface can be expressed as,

| _ 1 1 _ n
(ur(i)).gzo - (ur(i—l) )9:0’ (ug(i))gzo = (ua(i—l) )6,:0- (2.367)
Where (uf,) = (ur'o F UL U, U U )9:0 (2.368)
(u” ) —(u” +ull +u +-+u ) (2.369)
r(i-1) 0=0 —\"ro rl r2 r{i-1 0=0 )
(u;(i))gz0 = (ué',o +Uy, +U,, +---+U;{H} +uy, )HZO (2.370)
d 1 _ 1 1 1 1 2 371
an (ua(i—l) )9:0 ={Upo +Up +Up, + +u6{i—1} 60 (2. )
[ I [ [ I _ (M n I |
So, (uro Uy +Upy +oo e+ Uy + Uy )620 = (uro +Upy + U+ Uy )HZO (2.372)
and (Uhg + Uy +Uy, +-+-+Upy  + Uy )9:0 = (Ul +upy U+ Uy )gzo (2.373)

ro

From zero-th order approximation: (u/;) =0and (uj) =0

From (i-1) th order approximation:

(ulo +uly+uly +-uly )M = (U +ulh el )0:0 (2.374)
and (ugo +Upy +Ugy -+ gy )9:0 = (ut'g'0 +Ugy +Ug, +++ gy, )9:0 (2.375)
oo I o, 1 .
So, remaining term (uy,) —(ur{if})ezoand (Uh), . —(ug{H} )6:0 (2.376)
On the interface Power of r should be equal. Where,
A=Ay =(1-n)(%4-1) (2:377)
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From the solution of zero-th order approximation, eigenvalue , 4, is known for
different n. Right hand side of the above equation is known and constant where, (1— n) is
negative (-)ve in sign due to the power law hardening material n>1,(20 —1)a|so

become (-)ve because of 1, <1.So R.H. side is always makes a positive constant.

To satisfy the boundary condition in the i-th order approximation the singular exponent

would have the form,
A=A +ix(1-n)(4 -1) . (2.378)
It seems the i-th order singularity depends on the hardening exponent nand the zero-th

order singularity 4,.

Equating the power of r in the boundary equation, Radial part is equal in both sides so

remaining part means the angular function part should be the same

Equating the power of r, from (uy) = (ur“{i_l} )920 and (uy) = (u;'{i_ } )9:0

On the interface at ¢=0, u;=uy,, and ug =uy,

Ak?_l [ (Vo=n—Ao+4)+1 (l]rli )g:0 =A, % (l]r“{i—l} )9:0 (2379)
and
A r(ﬂ%*”*%*’ﬁ)ﬂ(aéi )g:o —A I (ag{iil} )H (2.380)

Equating the power of r,
A;H (Grli )9:0 = A—l(ar"{i—l} )920 and A;H (a;i )0:0 = A—l(a;{i—l} )9:0 (2.381)

A=A"A xC (2.382)

(Ufl!{i‘l} )9:0 —cand (ay{i_l} )€=0 =C (2.383)

(ah),.,/A (05),,/A
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Compatibility equation becomes in the form of fourth-order ordinary differential
equation are given in Eqgn. (2.332). Equation (2.332) is the fourth-order ordinary

differential equation. For the solution of fourth-order equation of Ag', the equation is

reduced into a system of first-order equations: Assume,

00) = AR, W2 <A WO)=A G W=A TS

Where, wi(1) =wi(2), wi(2) =wi(3), wi(3) =wi(4) and 5072%122)12;% and

e
% are known from the solution of 0-th order approximation.

wi(1)"=wi(2)
wi(2)" = wi(3),
w1(3)" =wi(4),

:f(Adczﬁ. ALE N dB A A d, d¢o,¢;0.,n,%%j

do® ' ' de* ' do’ "dot " do® T de* T do

[ p R O 4R ER ) dh
B de* ' de* " ' do’ do* ' de® " do® ' de

Ad',...,

dn ﬂqj
(2.384)

B, C and —C/B equation is derived using Mathematica software. And, therefore,

equation can be solved using the Runge-Kutta method.

Applying boundary conditions:

(O';w(i) )H,z, = (0;90 )e:ﬁ - (0';91 )a:ﬁ + (0';92 )g:z Feegt (O-;ei )9i =0 (2.385)

2 2 2 2

From zero-th order approximation we know(af',gO )g_,r =0, and from (i-1) th order
2

approximation we know (agg{i_l} )0_,, ) (aé',gi )022 -0
- g
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similarly,

(O'rle(i) )ei = (o-rleo )9:1 +(O'r|91)g:g +(O-rI02 )ezﬁ +"'+(O'rlgi )Q:E =0 (2.386)
2

2 2 2 2

From zero-th order approximation we know(ar'go )9:£ =0, and from (i-1) th order
2

- - I _
approximation we know (o7, , )9=’2’ =0 50 (o}, )gz,; =0 (2.387)

The expressions for incremental stresses in the i-th order approximation are given in

Eqns. (2.336-2.338)

Initial conditions at 6 = % :

raff'l =(4+D)4(Ad')=0, (Ad')=0,if 4 =-1 4 =0 (2.388)
And ﬁﬂ:-ﬂ,,(p,qi')'zo,or (Ad') =0.if 4 %0 (2.389)

14 "

We know Z from Eqn. (2.378). Unknown are: (Ad') . (Ad')

After integration final conditions, at & =0, error can be calculated as,

errorl= A0, , (6 =0;elastic)— A7 Al (6 = 0; power-law)
error2 = A0, ,, (6 =0;elastic) — Ay Al (6 = 0; power-law)

~ N "
v

Assume atg =, Ad' =0,(Ad') =0, (Ad') and (A&,')W hence, after i-th

im0 ()~ (88" (7 -((88) |08 (4 |
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(2.390)
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21’"3%1(1,0&;"1
(A —n—=A, +4)(NA —N— 4, + 4 +1)

error2 = A 0, ,, (0 = O;elastic) -
H(nl)(nzonﬂom +1>[ (80 0-20)) +( (& )”jz+z(¢z; 0-2) ( )"j}+4{(¢50' )’zo}z]n;

{{«3@'(1z;)+(a5;)"}{<;z;)’zo}x{((w))“")u.+1)u.1)[(qu.')"j“"’}w{(&a)’ﬂo}zx(1){[(%')’)“”%}}
@y (@r ] =@ e @r)}-«{@ )’%}2]241){((%')’]‘”?}]
=3[ 20 o

t

2

@ esy«(@y) e <1—z;>)[<¢s,;)"j}w((@;mjzf1

R R )2(<—1+ﬂf><%')“"’—((A«i')”j“"’]w((a; )'%jz[(ﬁ—l)(w )““)—((Aaz.')”j“”)}
sl | s m - {(ad ) oae (2(”-% ) (a1 ) oy -2 a)" o ))m
*[2(1—%2)255(50')'+845(¢7J)'(¢%')"—2(45—1)(50')'(%)"—2(15—1)«5;(5;)“#2(&;)”(&;)“))}
_(212[{(%(1—15))1((45;)"]12(@;(1—15))((5;)"]}4[(%Mﬂ
X{_“(”‘l’%&((‘\"’;")’jﬂn)[(%)”jz””(l‘ﬂﬁ)z%(%)'[(Aﬁ—l)(/%é')“”)—[(Aé')"] +8ﬂé(¢?;)’(5;)”((42—1)(/\5.')“"’-((A@,')"j“"’j
““”‘”WJWﬁ*”(WE'YJM”W-@(%>’x{2<n—1>ﬂm<¢%'>’(<Aé'>’j“")+n<¢z;>"[<1—i.z></w.'>“")+(<A¢z.'>"j“”’]

-0 &) (83| ()" 20l (-0 a0)” (a0 | @) a2 (2 -9 (40T (12
M((%)’jz((‘l”"z)[(%')'j(m)‘((’\&')@)m}”((%)"H(—Hiﬁ)((/ﬂﬁ.')'j(m—((A&.')‘”)“")}2(1_1;)250'

{z(n_l)m. (A% ()

(in)

" (in)

2048 (A1) +n[<1—az)<ﬁwz.')“”’+((A«i.')”]“")](%)“)+n<¢%>”[<1-%2>(<M'>'Jw*((“é'ﬁ)mw
(2.391)

The error value is calculated by using the equation (2.15) and solution is obtained for

the minimum error.
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2.6.1.1 Determination of the Stress Intensity Factor A

Stress can be expressed as,

(59.9) = A" 1(6900)9 +A1rﬂi_l(o-;01)9 +A " 1(5902) o “+A rﬂi_l(&;ai) _

6=0
(2.392)

where, (&,'990)9:0:1 : (&6',91) =land ( Gy 1})go:1
(00), = AT A L AT s AT (G, ) (2.393)

From FEM for joint material (power law hardening/elastic material joint), (o-,lg )920 is

known and from zero-th order approximation A, r™* from first order approximation

A r*™ and from (i-1)th order approximation Ay r= is also known
AT (Gh)  =(oh) (AT T+ AT AT e A P (2.394)

From i-th order approximation after solution of differential equation the numerical value

f (Ad')is known.

we have, A 1" (&4, ) =(Ad ) r (4 +1) 4 (2.395)

where, &) =¢' (4 +1)4 (2.396)

As the definition of stress intensity factor A, (&;gi )Q:0 =1 (2.397)
- 1

= 2.398

:(')9:0 (,1'4_1)/’{1 ( )

From theory (AW;.') is known

= A =(A4 )9:0 (4 +1) 4 (2.399)
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From i-th order approximation after solution of differential equation the numerical
value of (A(},' )and all of its derivatives are known. From FEM, A is known
numerically so, @' = (AW;.' )/A and similarly all of its derivatives are known. From

boundary equation on the interface at =0 ,are presented in Eqns. (2.381-2.382). For

n>1, power of A issmaller than 1 (means negative power shows opposite behavior).

From FEM of joint material we can write the following equation,

(0-99) =A ro 1(0-990) +A r%_l(&;el)ezo +A r%_l(&a}ez)gzo +ot A rjrl(&;ai) _

6=0
(2.400)

where, (&;90 )H =1, (6'6',91)6:0 =land (&;g{i_l} )H:O =1
(099) AT LA LA P +Ar“(099,)90 (2.401)

From FEM for joint material (power law hardening/elastic material joint), (0;9 )920 S

known and from zero-th order approximation A, r*™ from first order approximation

A r* and from (i-1)th order approximation A{H} r =+ is also known

AT (60), =(00),  —(A T+ AT+ AP et A e (2.402)
As the definition of stress intensity factor A , (&;gi )0:0 =1,Eqn. (2.402) yields,
Arit=(oy) —(A+AT T LA L A e (2.403)
Taking logarithmic distribution,

log A +(4 —1)logr = Iog{(a;g)gzo (AT AT A A M_fl)}

(2.404)
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Right hand side have the term should be calculated at first

{(0;9)920—(,% r‘°*1+Alr*1‘1+A2r‘2‘1+~-~+Aflrﬂ*-1’l)} and then logarithmic
distribution is calculated. (06'.9)620 is numerically known along radial distance r by
FEM for joint material and (A, r™™+ A r**+ A r**+...+ A r*7)is calculated and
subtracted for the same radial distance where A and (4, —1) is known from

rigid/power law hardening material and A, (4-1), A,, (4-1)andA ,, (4,-1)

is known after first order, second order and(i-1)th order approximation, respectively
by FEM.

Once singular exponent, A is known the angular variation of stresses can be computed.

To compute the stresses we need to calculate unknown angular functions to satisfy

traction on the interface.

2.6.2 Formulation of i™ Order Approximation: Constitutive Equations in the

Elastic Material Subjected to Traction

For the case of stress free edge and traction on the interface boundary conditions:

I _
(Gﬂﬁ(i))g=z - and (G‘;'gi )9=0 B (G‘;‘gi )ezo (2.405)
(G:;(i) )g_fzf =0 (O-'I@i )0:0 - (O-:‘I?i )0:0
Assumed,

¢:¢0II +¢_|_” +¢2II +"'+¢|“ — A) rﬂo-*—l&oll +A§_ r/11+1¢'%ll +A2 rﬂQ+l~2II +"'+A éllrﬁ1-+l(2.406)

So, compatibility equation in terms of stress component becomes,
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%(AJ(JO +1)rod) + A(A+D) G + A (L +1)rg +-+ A (4 +1)r'g")
riz(/s,o(,lO +1) A7 + A (A1) A+ A (A +1) A ek A (A +1) AT
+i4[r%+lﬁb(~g' Vst () e () o A () )”j
+2(A (2 +D) 2 (o ~Dr g + A (A +D 4 (A1) P!
A (A +1) 4 (A =112 ot A (A +1) A4 (4 -1)r" 4" )

E{ A (@] A (@) A D (@ A (4 (@
2 G (@ Ao 0 (oD (-2

S A (L) A (B) + A (2404 (A -1)(A-2)rd")
A (A A0 20 (B 4 A (2 1) 2 (A -1) (4, - 2) )

+A (4 +1)A4r 4! )+A( 1) 4, (ﬂ,,—l)(z,,—z)r“&,“)j

(Aof%*l(¢é') e (@) e ()4 +r“#\(&.”)(4)):
(2.407)

From zero-th order approximation solution it is clear that the terms of r*? and

from (i-1) th order solution the terms i satisfy the compatibility condition.

Compatibility condition satisfied up to (i-1) th order approximation that includes the

r2073 rﬂl_a _”r;ti—lf3 ay g - . - . -
term ' : . To solve the compatibility condition, remaining terms satisfy

the condition independently. So the compatibility equation for remaining terms,

a4~.u 2\2 71 2 o ~|”
824 =—(1-47) ¢" —2(4* +1) 4 (2.408)

Equation (2.408) is the fourth-order ordinary differential equation. For the solution of

fourth-order equation, the equation is reduced into a system of first-order equations:

Assume,  wi(l)=g", w1(2)_0'¢6:I wWA(3) = ZZ”, vvl(4)=dd??;I
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Where, wi(1) =wi(2), wi(2) =wi(3), wi(3) =wi(4)

’_d4('£lll_ d3¢zlll dZé'II d¢“ »
W4) =g _f( a0 a0 a0 j (2:409)

And, therefore, equation is solved using the Runge-Kutta method.

The resulting expressions for incremental stresses are:

on=AT5) (2.410)
O = AT Gy (2.411)
O = AT 6y, (2.412)
where,
& = (4 +1)§" + (4" (2.413)
S = (% +1) A" (2.414)
&l =2 (A" (2.415)

Displacement can be calculated as:

ul +ul +ulh +-+ult _[grrodr + Igmdr + Igrrzdr REPPR J'g“ dr (2.416)

rri

Initial part of displacement components and initial strain components has a

relationship and given in Eqgn. (2.88). From the (i-1) th order approximation,

Uy = A 1y, (2.417)
o = Arig)! (2.418)
where
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a:;ll}_s—sl{%{(%ﬂ)@—v”— L)L) (8 )}} (2.419)

g :—;{@{(1 FD)(L-v" v+ (L") (8" )}} (2.420)

Displacement equation of first order approximation of elastic material side can be

expressed as,

Urgy =Upg gy +Up o+ U = A P00 + A 120y + A =y +--+ Artag - (2421)

And again we know, from Eqn.(2.10) substituting, & HH() = Eppo + Eppy + Eppa T+ Epyi

1 1 1l 1 1l 1 1 1 1l 1
Upgiy =Ugo +Ugy +Ug, +---+Ug and Ur(iy = Upp +Upy +Upy + -+ Uy
Strain displacement relation becomes,

Upy + Uy + Uy ++-+ Uy

=rTg%0d9 ju d49+rfg(,md9 ju d9+rjgmd9 _[u do+-- +rjg%,d9 ju“de

2 2 2 2 2 2 2

(2.422)

Initial part of displacement components and initial part of strain components has a
relationship. So incremental part,
1

Ug =

'—.o

el do— j u'de (2.423)

2

NN

Finally,

u;'(i)=u;'0+ug'1+u;'2+~-~+u;'i=Abr”°u +A A + A TR0, -+ A TR (2.424)

Using another expression of strain Eqn. (2.11), displacement can be calculated as:
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27 2lr o6

o=—=
2

aull
(£ )ez_ﬂ = l(lﬂmodrd-1 —Cord‘1] (2.425)

Displacement can be calculated From Eqn.(2.11).Rigid body rotation is depends on
r and angular function. To overcome the rigid body rotation we have to assume the

displacement as a function of r and the angular function term.

1 1

Assume, uy =kr f () .. % = Akr" 7 £ (6); or, r% = Akr’ £ (6) (2.426)
r r

So equation becomes, When 4, =1,

u' = A rig! (2.427)

where,

a =—E—L%{{uﬁ (A A0) (1" "2 (E) + (1" ) (4 )} (2.428)

Total displacement yields,
Upiy = Ay Tl + A T 05 + A, 1205, +---+ ATH0, (2.429)

Boundary Conditions:

(O'“ . ) =0 I (.
(1) Jo-_7 . = .
06(i) J . and (G(:m )9:0 (O_T:gu )9:0 (2.430)
(O-rué’(i))e_’zf =0 (Urgi )6:0 - (Gmi )ezo
Applying boundary conditions:
(‘7;:90))9:1 = (‘7;:90 )gz,z +(G;:91)9=,£ +(G¢;:92 )9?5 +'”+(O-;<I9i ),9:,& =0 (2.431)
2 2 2 2 2

From zero-th order approximation we know (o, )9 . =0, and from up to (i-1) th order
—2

approximation (a;'g(i_l) )gz,z =0 so, (ae';(i))ezl =0 and (Ur”a(i))gz,z =0
2 2 2
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(O-rlg(i))gz_% = (O-rllao )6:—% +(O-r|;1)€:_% +(O-r“92 )9:_% +"'+(G|!l)i )6:—% =0 (2.432)

From zero-th order approximation we know(ar'(;0 )e:—f =0, and from up to (i-1) th order
2

approximation (o), =0 0, (o7;) . =0. (2.433)
2

2

Initial conditions at @ = —% :

2 =(4+D)A(Ad")=0, (AG")=0,if A4 %-1 4 %0 (2.434)
And ri%%—&(%" ) =0.0r (Ag") =0,if 420 (2.435)

Assume at@:-%, Ad" =0, (A4" )':0,(A .")” and (Ag" ) hence, after i-th

!

_ NC
integration at& =0, (A&,”)z(A&,” )(m), (A&.") =((A¢3.")J :

errorl= Ag' —(A(Z,” )(in) (2.436)

(i)

errorZ:((Aé' )’j—((Aﬁ,“ ),] (2.437)

The error value is then calculated by using the equation (2.15).
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2.7 Results for the Interface-Edge Problem of Elastic/Power-Law Hardening

Materials Joint

Fig. 2.18: Graphical form of stress singularity A —lwithn

Figure 2.18 shows the relation between the order of singularity, A —1, and power
law hardening exponent, n. As the hardening exponent in the power law hardening
material is increased the order of the singularity, 4, —1,tends to increase which means
the absolute value of the order of singularity, |4 -1/, when 4 —1<0 tends to decrease to
zero. A, —1 continues increasing when A —1>0which means no more singularity is in

the incremental term. Two or more singular terms exist for n<2.0, three or more singular

terms exist for n<1.50, four or more singular terms exist when n<1.333. In general

(i+1) or more singular terms exist in the i-th order approximation for

n<(i+1)/i,i=123---.
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The magnitude of incremental stress components |oy, | on the interface are

decreased with the increase of iteration number i as shown in Fig.2.19 and Fig.2.20

60—
n=1.3
- Ggp solid line .
Org dotted line
40t :
E N 1
20r .
OoF | _
0 1 2

3
lteration number, i
Fig. 2.19: Variation of incremental stresses on the interface with the iteration atr =10~

n=2.4
Coo solid line
Gy dotted line
20t -
f’:
< |-
< 1o} ]
oF a-
0 1

2
Iteration number, i

Fig. 2.20: Variation of incremental stresses on the interface with the iteration atr =10~
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for n=1.3 andn=2.4, respectively. The decrement of the incremental stress indicates
that the solution is converged iteratively to satisfy the equilibrium condition of traction
on the interface. Comparing Fig.2.19 and Fig.2.20 it can be shown that the solution
converged rapidly (with minimum iteration number) for n=2.4than that of n=1.3

because of the no multiple singular terms exist for the casen=2.4.

The magnitude of incremental displacement components |uj(i)| on the interface

are shown in Figs. 2.21 and 2.22. The incremental displacements are decreased with the
increase of iteration number. The decrement of the incremental displacement means that
the solution is converged iteratively to satisfy the continuous condition of displacement
on the interface between the power-law and elastic material joint. Due to the existence
of only single singular term forn = 2.4, the solution converged rapidly (with minimum
iteration number) for n=2.4whilen=1.3converged slowly (with maximum iteration
number) that can be shown in Fig.2.22 compared with Fig.2.21.

0.02} 3 n=1.3 :
‘ u, solid line
u, dotted line

0 1 2 3
Iteration number, i

Fig. 2.21: Incremental displacements variation on the interface with the iteration at

r=10"
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0.008} * n=2.4 ]
\ u, solid line
uy dotted line

0.0021

0 1 2
Iteration number, i
Fig. 2.22: Incremental displacements variation on the interface with the iteration at

r=10"
T
n=13 . PER— .
: 2 ;
o /g:’_"_':__—A— ————— —A
o 0341 ¢ e N -
o /
_I._ "
& 7
S 03451 // FEM solid line -
~ Iteration method
S
[e) O (Cge)o=0 dotted line
8 035 A (G19)o=0 broken line 4
C% O (Om)e=n2 short dashed line
o (G1)o—n2 dotted dash line
-0.355 1

0 1 2 3
Iteration number, i

Fig. 2.23: Converging slope of logoy; —logr with iteration number at r =10"
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Fig.2.23 shows the variation of slope of logo; —logr plots with the iteration

number for n=1.3. The slope of stress fields obtained from higher order approximation
are closer to that found in FEM than that of the zero-th order approximation, which

indicates that the higher order approximation is important to describe the real field.

Fig. 2.24: Angular variation of stresses of 0™ order approximation near the interface
edge of elastic/elastic-plastic materials joint for n=1.3

The angular variations of normalized stresses for power-law hardening material
for plane strain condition obtained from theoretical analysis shown in Figures 2.24-2.27
for n=1.3 and Figures 2.28-2.30 for n=2.4. It can be seen that tractions are

continuous across the interface, but there is a big jump in the radial stress, &, . The

stress &, on the elastic material side is much greater than that on the power-law

hardening material side. This means that the interface is really a stress raiser which
results in serious stress concentration. Total stresses and displacements after i-th order
approximation are depicted in Figs. 2.31-2.32 and Figs. 2.33-2.34, respectively. Stresses
and displacements are continuous on the interface of two dissimilar elastic-plastic and

elastic materials joint.
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0
0 [rad]

Fig. 2.25: Angular variation of incremental stresses of 1* order approximation near the
interface edge of elastic/elastic-plastic materials joint for n=1.3

0.04 3 .

0.02

Fig. 2.26: Angular variation of incremental stresses of 2" order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=1.3
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Cjj3

-2e-05

0
0 [rad]

Fig. 2.27: Angular variation of incremental stresses of 3" order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=1.3

Fig. 2.28: Angular variation of stresses of 0™ order approximation near the interface
edge of elastic/elastic-plastic materials joint for n=2.4

119



-—

0
0 [rad]

Fig. 2.29: Angular variation of incremental stresses of 1* order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=2.4

0.0005

e Gro2

—_—

0
0 [rad]

Fig. 2.30: Angular variation of incremental stresses of 2" order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=2.4
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100

-100

0
0 [rad]
Fig. 2.31: Angular variation of total stresses after i-th order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=1.3 at r =10".

—

0
0 [rad]
Fig. 2.32: Angular variation of total stresses after i-th order approximation near the

interface edge of elastic/elastic-plastic materials joint for n=2.4 at r =10".
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Fig. 2.33: Angular variation of total displacements after i-th order approximation near

the interface edge of elastic/elastic-plastic materials joint for n=1.3 at r =10"".

T T T T T T T
[ n=2.4
2_
— 0
> .
2t ’ i
Ug
4| i
I 1 I 1 1 1 1
-1 0 1

0 [rad]
Fig. 2.34: Angular variation of total displacements after i-th order approximation near

the interface edge of elastic/elastic-plastic materials joint for n=2.4 at r=10"*.
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2.8 Summary of Elastic/Power-Law Hardening Materials Joint

Bonded dissimilar materials in which materials behaves as an elastic and a
power-law hardening material were studied and the solution was presented to determine
the stress and displacement fields around an interface edge of dissimilar materials joint.
An iteration method is proposed for the determination of singular fields around an
interface edge of an elastic and a power-law hardening materials joint. In the proposed
iteration method, to overcome the problem we have considered at the interface
boundary the additional stress fields in the elastic side to satisfy stress continuity, the
additional displacement fields in the elastic-plastic side to satisfy displacement
continuity, successively. Due to the increase of iteration, the discrepancy of the r
dependence of the fields along the interface is decreased.

The power of r in the stress equation depends on the hardening exponent n. Asn is
increased the absolute value of the i-th order of singularity, |ﬂ,, —]4, tends to be decreased
to zero when 4 -1<0. (i+1) or more singular terms exist in the i-th order
approximation for n<(i+1)/i. In the zero-th order approximation, the singular
exponent 4, depends on the hardening exponent n.nranging from 1(linear stress
hardening) to o (perfect plasticity). The dominant singularity as reflected 4, is most

severe whenn=1. The value of A, increased monotonically with the increasing of n .

The angular function of separable form term in the displacement fields in the O
order approximation should be zero at @ =0is a necessary condition for the continuity
of displacement on the interface when r— 0 around the interface free edge of
elastic/elastic-plastic materials joint. The stress and displacement fields in the
elastic-plastic material are controlled by the boundary condition which is the same as
the one of an elastic-plastic material on the rigid substrate. The stress fields in the elastic
material are also controlled by the index through the equilibrium of force on the

interface.
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In the power-law hardening material, when nis decreased (for n=1is an
incompressible elastic material) the stronger singularity (4, —1, goes to more negative)
exist in the power-law hardening material due to displacement boundary condition
(r—0,0 (0=0) =0) and weaker singularity (4, -1, goes to less negative) for larger

n. In the elastic/power-law hardening materials joint case the singularity should be
weaker with the decreasing value of n because of n=1is an incompressible elastic
material but in our approximation is not shows this situation. When regarded as
deformation theory materials, the materials just considered each approximate perfect
plastic behavior for small values of n for the power-law material. Yet, the calculated
values of 4 do not agree in this limit. The disparity can be explained as follows. For a
power-law material model, elastic strains were neglected because, as stresses grow large
for any value of n >1, the ratio of elastic strain to plastic strain approaches zero. With an
asymptotic expansion of the governing equations in powers of n, it is easily shown

that n—>lasn — .

In the elastic material, singularity |2—1] depends on Poison’s ratio [64]. Singularity,

|/1 —]4 increases with the increase of Poisson’s ratio. From the stress-strain relation of

power-law hardening material it can be explained that when nis increased; the
effective modulus is decreased due to the increasing strain with increasing n for the
same stress. The Poisson’s ration is fixed, and v=0.5 due to the constant volume.

Hence, there is no dependency of singularity with the Poisson’s ratio.

From 0™ order approximation of our present study, the singular exponent for

n=24is calculated 4, =0.753675+5x107°. From the previous researches it can be
found that for the same value of n=2.4, the singular exponent 4, is calculated by

Duva et al.[65] and Rahman et al.[47] are 0.75and0.76, respectively. This shows our

results are in a good agreement with available results.
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CHAPTER 3

SINGULAR STRESS FIELDS IN DISSIMILAR POWER-LAW HARDENING

MATERIALS JOINT

3.1 Introduction

In this chapter, we solved for the singular stress fields at the interface-edge of two
dissimilar power-law hardening materials joint where dissimilar materials having
different power-law hardening exponents. We have formulated and solved under the
plane strain condition. By taking the same wedge angle of two materials, our generic
interface-edge model is as butt joint model with the interface-edge of two dissimilar

power-law hardening materials.

In [66] an iteration method were presented for the elastic/power-law hardening
materials joint to solve the problem on the interface arising due to the dissimilar power
of rin the displacement field. In this chapter, using the same iterative method as
presented in chapter 2, we have satisfied the boundary conditions to determine the
singular fields around an interface edge of two dissimilar power-law hardening

materials joint having different hardening exponent.

The study reported in this chapter is an asymptotic analysis for singular stress fields
around an interface-edge of dissimilar power-law hardening materials joint under
plane-strain condition and J, deformation plasticity theory. The emphasis is to establish
the effect of constituent material properties and the effect of geometry on the singular

stress fields, when the materials behave as:
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& :ga'ae”llsi} (for material I) (3.1)

gl =§a”a§2‘1si}' (for material 11) (3.2)

where i and j are used for subscript indicates r,0. «* and n, are hardening
coefficient and hardening exponent, respectively. o, is the effective stress and s; is the

stress deviator.

It should be noted that, there can be material mismatch along the interface arising
from either a difference in yield strengths o, = o' or from a difference in power-law
hardening exponents n, #n, or both. We first analyze the effect of n, #n, by focusing
on bimaterial in which only n,#n, buto, =o; . Whenn #n,then there is the
possibility of n, >n,or n <n,. We will assume that the material | is the lower strain

hardening material n, >n, in this research. Stress, strain and displacement quantities

are normalized by yield stress or corresponding yield strain of the material 1. In this

research both the hardening exponents, n;,n, >1.

In Section 3.2, we formulate the governing equations for the singular stress field
under the plane strain whenn, #n, buto, =o' .The solution method is presented in
section 3.3. In Section 3.4 the asymptotic analysis of two dissimilar power-law
hardening materials joint is given elaborately. Results for the interface-edge problem of
two power-law hardening materials joint having different power-law hardening
exponents is presented in Section 3.5. This chapter is concluded with summery in
Section 3.6.

3.2 Formulation: Two Power-Law Hardening Materials Joint Cases

Consider two power-law hardening materials joint with different hardening

exponent n andn,, as shown in Fig.3.1. We will assume that the material 1 is the lower
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strain hardening material in this study.
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Fig. 3.1: Theoretical model.
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Fig. 3.2: Analysis model geometries.



The boundary condition can be expressed as follows in the polar coordinate system
located on the interface edge for power-law hardening materials joint having different

hardening exponent.

0=0 (3.3)

The stresses and displacements of the upper material are referred to with a
superscript “I” while those of the lower material, with a superscript “II” as shown in

Fig.3.1 and 3.2.
3.3 Solution Method

In the zero-th order approximation, the stress and displacement fields in the
power-law hardening material | are assumed to be the same as the ones in the plate
jointed to rigid substrate instead of the material 1l and subjected to the same tensile

load. y

fretttptett

Power-law
hardening material |

Power-law
hardening material Il

2

Fig. 3.3: Elastic-plastic/ Elastic-plastic materials joint.
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Power-law
hardening material |

0

AL NN

Fig. 3.4: Material | (upper material) bonded to rigid substrate.

The stress fields in the power-law hardening material Il can be described by the

fields in the power-law hardening material wedge which is subjected to distributed

tractions along the one edge. The tractions are the same as the stress distributions on the

rigid/material | interface.

Ttetettttes

Power-law
hardening material |

0 >

Géeo (r,0=0; power-law )
)

G, (1,0=0; power-law )

X

Oy, (,0=0; power-law |)

c., (r,0=0; power-law |)

Power-law
hardening material Il

»

Fig. 3.5: Schematic diagram of applying Traction from upper material to the lower

material.(a) Traction from upper material (b) Traction to lower material.
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In the first order approximation, the power-law hardening material 1 having the
initial fields of the zero-th order approximation is subjected to a forced displacement
which is the same displacement induced along the edge of power-law hardening

material Il in the zero-th order approximation.

y AY
1 o (r,6=0; power-law 1)
Uy (I,o= J -
0 W » X
Power-law
Power-law . .
hardening material Il hardening material |
X
0 >
% uy (r,0=0; power-law Il)

Fig. 3.6: Schematic diagram of applying Forced displacement from lower material
to the power-law hardening material I(upper material). (a) Forced displacement from

lower material (b) Forced displacement to upper material.

The increase of stress fields in the power-law hardening material Il can be described
by the fields of the power-law hardening material Il having the initial fields of the
zero-th order approximation which is subjected to distributed tractions along the one
edge. The tractions are the same as the incremental stress distributions on the power-law
hardening material | wedge in the first order approximation. The iteration process

continues as the approximation goes.
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oy, (r,0=0; power-law |)

A
1{ o, (r,0=0; power-law |)
0 »X
Power-law
hardening material |
Power-law
hardening material Il
0 » X
Géel (r,6=0; power-law 1)
I .
G, (1,6=0; power-law ) ps

Fig. 3.7: Schematic diagram of applying Traction from power-law hardening material |
to the power-law hardening material Il (a) Traction from power-law hardening material

I (b) Traction to power-law hardening material 1.

Stress-strain relations used in the material | and material 1l, respectively are
given in Eqn.(3.1) and Eqgn.(3.2),
where i and j are used for subscript indicates r,0. «* and n, are hardening

coefficient and hardening exponent, respectively. o, is the effective stress and s; is the

stress deviator. We will assume that the material | is the lower strain hardening material

(n1 > nz) in this study. Stress, strain and displacement guantities are normalized by

yield stress or corresponding yield strain of the material I. In this thesis both the

hardening exponents, n;,n, >1.

3.4 Asymptotic Analysis

An asymptotic expansion of the Airy stress function in a separable form is assumed

#)=2 Ar*"g",  i=012..;as r—0, (3.4)
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where A, <A,....and k=1 for material | and k = Il for material 1. 4* is the angular
function of airy stress function in the i-th order of approximation. A is a constant which

is proportional to the stress intensity factor of i-th order incremental fields. A is

defined as,

(Oho), =2 AT =012, (3.5)

In the higher order approximation (i>1), nonlinear effective stress term o was

expanded by Taylor series expansion method and the first two terms were considered

for further calculations.

In the first order approximation before expansion this term is written as,

ne—1

ot = pte Y E( f,+2A r) f 4 £ p2 f) )} . (3.6)

where,

fo= ( fore + Top +8 1:02r9) fo = (For fore + Togo frao +8T0r0 furp), T, = ( fire + fiop +8 fer)

o = A oD+ (B o= (0= 2) (&) | {14

o ={ (0024 (@) b = {00020+ o= () |

(3.7)

Assuming smaller range of r (r <1)near the interface edge it is reasonable to have
the singular exponent of incremental stress A, which is larger than the zero-th order
singular exponent A, i.e., 4, <4,. The order of rof the terms in the part powered by
(n,—1)/2 in Eqgn. (3.6) is 0,(4 —4,)and 2(A4 —4,) respectively which means the

order of r in the second and third terms are positive in magnitude. Positive power of

small r gives the value smaller than 1. Also A <1, f, <land f, <1.The summation of
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the second and third terms has the smaller magnitude than 1.This satisfies the
convergence condition for the Taylor expansion. Assuming the first term as the leading

term and remaining terms as the incremental term Taylor expansion is applied to Eqgn.

(3.6). After expansion and neglecting the higher order term of A the equation becomes,

n—1 n—3

Genk-l{grzuo—n fo} ; +nkT_1Er2Wl) fo} ’ x%(ﬁ&xr%%_zfl). (3.8)

Substituting effective stress term from Eqn. (3.8) into Eqgn. (3.1) and Egn. (3.2) , strain

components are expressed according to the order of A as:

gil; = 5il;o +5i?1{O(A1)}+gi?2{O(A&2 )} (3.9)

In this expression strain components will have three terms with respect to the power of r.

G At A gng re 24 Erom zero-th order approximation solution it is

clear that the terms of r™e™

satisfy the compatibility condition. To solve the
compatibility condition on the remaining terms, we assume the two terms satisfy the

conditions independently. At first we will consider it neglecting the third term.
85(1) = gi'jo + 551 {O(A)} (3.10)

Strain components are in the following summation form:

k k K

grr(l) ~ grro + grrl (311)
k k K

Egoy = €gpo T € (3.12)
K k K

Ero) ® €ra0 T a1 (3.13)

Initial part of strain components can be expressed as,

5:(ro = Atr;k r-r1k(/i()7l)§|!(r0 (314)
5;90 = Ay r' (2071)5500 (3.15)
5#90 = A" rnk(ﬂ(rl)grkao (3.16)
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where, the expression of z, are given in chapter 2. It is noted that nis replaced by
n.(n=n,).n=nfor upper material while n=n, for lower material part.

Strain components contains first order term of A :

gllfrl = Agk_l Ai rnkzﬁinkiﬂ(ﬁ/hg:(rl (317)
55.91 = pé‘k*l A r”kﬁc—”k—ﬁﬂ”iggm (318)
5#01 = Agk_l A rnkﬂo_nk_%%grlel (3.19)

where, & are given in chapter 2. It is noted that nis replaced by n (n=n,).n=n

for upper material while n=n, for lower material part. From chapter 2 only equations
presented for power-law material have been considered.

Strain components contains first order term of A :

gtl'(ri = A?k_l A rnkﬂrnkiﬂﬁﬂi grkri (320)
e = Ay LA TR A (3.21)
gy =AY A VTR A (3.22)

where, Z are given in chapter 2. It is noted that nis replaced by n,(n=n,).n=n

for upper material while n=n, for lower material part. From chapter 2 only equations

presented for power-law material have been considered.

In the 0™ order approximation, displacement field can be expressed as,

u;fo = AX rnkﬂo—nkﬂal;o (323)
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where,

uk0 — Atr;k r”k%—”k+1ak

r ro

ul(;o = 'A\?k rnkﬂoin“la;o

In the 1% order approximation, displacement field can be expressed as,

ulj<l — A{;‘k—l A r(nkﬂo—nk—ﬂo"‘ﬂi)‘*'ll]';l
where,

ulr<1 — At';k*l A r(”k%*"k*%*&)ﬂgt‘fl
ull;1 _ Agk -1 A r(”kﬂo—”k—ﬂo"'il)‘*'lagl

In the i™ order approximation, displacement field can be expressed as,

ulj<i — Agk_l A r(”k%*”k*%*”i)*la‘j(i

where,

uk = A;‘k*J- A r(“K%*”k*%*%)ﬂaﬁ

r

ugi — Agk*l A r("k%*”k*%*%)ﬂggi

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

(3.30)
(3.31)

where, angular function of displacementa'; are given in chapter 2. It is noted that nis

replaced by n (n=n,) .n=n, for upper material while n=n, for lower material part.

From chapter 2 only equations presented for power-law material have been considered.

The resulting expressions for incremental stresses are:
k .1 ~k

O-rri = A ril O-rri
k A-1 ~k

Opo = AT Oy

Ko A1~k
O =AT" Gy

135

(3.32)
(3.33)
(3.34)



where angular function of stresses are,

&% = (4 +1)+(4") (3.35)
o = (A4 +1) 4 (3.36)
&ty =—(d) 4 (3.37)

From zero-th order approximation solution it is clear that the terms of r™%™

satisfy the compatibility condition. To solve the compatibility condition on the
remaining terms, we assumed the two terms (zero-th order term and first order term of
A) of strain components satisfy the conditions independently. Finally, initial part of
compatibility equation is same as the equation which is satisfied in zero-th order
approximation. So, remaining part of compatibility equation should be satisfied
independently. Using Eqn. (3.8), the compatibility equation will have three terms with
respect to the power of r, re™? o hori2 gpq phb-36N247 14 ohlve the
compatibility condition, we assume that those three terms satisfy the conditions order by
order. Here we will neglect the third term. Assuming second term as the incremental

part the compatibility equation includes the exponent of ras r** ™ %42 Hence, in
the first order approximation, compatibility equation becomes in the form of,

08 (U5, 08 4 5 06 8 08 8 51 sn) 050

where, B“and C*are derived using Mathematica software. Equation (3.45) is the
fourth-order ordinary differential equation of q?lk. The governing differential equation
and boundary conditions define an eigenvalue problem. Within the first order
A b

Mathematica software. A fourth-order Runge-Kutta method and the shooting method

1’ " 1”

approximation unknowns are &', ,A and 4. B and C are derived using

were used to solve the problem.

To apply traction boundary condition on the interface at =0 can be expressed as,
Too) = AT (Ao +1) Aoy’ = A 17 (Ao +1) Aoy (3.39)
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1l -1 d&o” -1 dggol
Grﬁ(o):_pb I‘% %WZ—A\) rl" ﬂo@ (340)

Finally, governing differential equation is solved to satisfy the traction boundary

condition on the interface.

To apply forced displacement from the second material side to the 1% material side.
The iterative boundary condition on the interface can be expressed as,

(U0 )0 =Y ), (U)o = (Ui, (3.41)

When i =1, the boundary equation can be written as,

(url(l) )9:0 - (U:EO) )9:0 : (u;(l) )9:0 - (uél’l(o) )320’ (3.42)

where ug, and ug,

are the displacements of zero-th order approximation in the

power-law hardening material | side, ur'(l) and u,, are the incremental displacements of

)
the first order approximation in the power-law hardening material Il side. To derive the
expressions for displacement, small deformation strain-displacement relations,
presented in Chapter 2, EQ.(2.9)-Eq.(2.11), have been used. Strain components are
derived using Eq.(3.1) and Eq.(3.2) for power-law hardening material 1 and power-law

hardening material I1, respectively. From Eq.(2.9) the strain component, ¢,., is integrated

rr?

by rto derive the expression of displacementu, and the expression of u, is also derived

from ¢, using Eq.(2.11). Within the first order approximation in the power-law

hardening material 1 side we have,

| | | | | |
Uy =Up gy +Urqy s Uy = Ugegy +Ugg)- (3.43)
From the zero-th order approximation we have,

(“:(0) )9:() =0, (Ué(m )9:0 =0. (3.44)
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Displacement functions of power-law hardening material Il side within zero-th order
approximation which is used as the forced displacement on the power-law hardening

material | side in the first order approximation are,
Upe-

urI:) — AN rnzﬂo—nﬁll]rlloy u;lo — Al rn2/10—n2+1~ll (345)

To satisfy the displacement continuity condition on the interface order by order the

boundary equation can be expressed as,

AR R (g ) = A (3.46)
and

e () I Y (3.47)
where Urk(i) and Ug(i) are the angular function terms of displacement component,

"

i=0andLk=1andIl. a,isafunctionof 4',4",4" 4", A and 4.and4,.

In the zero-th order approximation, from the solution of differential equation of the
power-law hardening material | the singular exponent A, is calculated for hardening
exponent, n, . Displacement of material 1l at =0 within the zero-th order

approximation is applied as the forced displacement to the power-law material | at
6 =0 in the first order approximation.
The iterative boundary condition can be expressed on the interface as,

| _ 1 | _ "

T O O ) A CE T e (3.48)
where G:‘(i) and U;(i) are the angular function terms of displacement component,
i=0123--..

In the first order approximation,

N1 (Mdp=m—2p+4)+ [ 1 — ANl p(odo=np)+L [ gl
Ar (ur(l))gzo_ﬁb r (ur(o))gzo, (3.49)
and

ML (W -m—Zo+ )+ () — At p(nedg=ng)+ (g1
At (@) =AFr (o)), .- (3.50)
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(o) are the displacements of zero-th order approximation in the

1] |
where u,, and u,

power-law material I, ur'(l) and u;(l) are the incremental displacements of the first
order approximation in the power-law material I. Urk(l) is a function of
.8 4" " A and 4. To satisfy the boundary condition on the interface the

power of r in Eqgn. (3.49) and (3.50) should be equal. Equating the power of r we have,
A —1=(4-1){1-(n,—n,)}. (3.51)

Equation (3.51) relates the first order singularity, 4, —1, with the zero-th order
singularity, 4,—1 and power-law hardening exponents, n,and n, When(n,—n,)>1
then 4, —1>0 which means there is no first order singular term. When (n,—n,)<1

then A, —1<Owhich means two or more singular terms exist. n,=n -1 gives a

critical material combination on the existence of higher order singularity. Similarly, to
satisfy the boundary condition in the higher order approximation the singular exponent

would have the form,

1=i-1

A,—l:n;xzo—(lz_o: n;jx{(nl—l)ﬂo—(nl—nz)}—l. (3.52)

It seems the i-th order singularity depends on the hardening exponents n,n, and
the zero-th order singularity 4,. To calculate the singular exponent when the material |1

IS an incompressible elastic material we can assume n, =1. The obtained singular

exponent is as,

A =1=(2—1)x{1-ix(n,-1)} (3.53)
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Equation (3.53) is exactly the same as the expression determined for the

elastic-plastic/elastic materials joint case in chapter 2.

The Mechanical properties of power-law hardening materials are given in Table 3.1. E

is Young’s modulus, v isthe Poisson’s ratio.

Table 3.1: Mechanical Properties of jointed materials for dissimilar power-law

hardening materials joint

Properties E[GPa] v o, [MPa] n a Po [MPa]
Material | 108 0.33 30 1-20 10.1 130
Material 11 108 0.33 30 1-20 10.1 130

3.5 Results for the Power-Law / Power-Law Materials Joint
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Fig. 3.8: Variation of stress singularity A4, —1with n,for differentn,
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Figure 3.8 shows the variation of the first order singularity, 4 —1withn,whenn, is
constant upto the terminated pointn,=n, . The absolute value of the first order
singularity, |4, —1], when 4 —1>0 tends to decrease to zero and when 7, —1<0,
|21—1| is increased with the increase of n,. The gradient of line in Fig.3.8 is larger for

smaller n, than that of larger n, .

0.15r

di—1

-0.15

Fig. 3.9: Variation of stress singularity 4 —1 with n, for same difference of n andn,

Figure 3.9 shows the variation of i-th order singularity, A —1,withn, for the same
difference between hardening exponents, n,andn,where |n, —n,|=0.2. The absolute
value of i-th order singularity, |ﬂ,, —]J,is increased which means stronger singularity

exists when the hardening exponent, n,is small. The qualitative tendency of Fig.3.9 is

almost the same as the i-th order singularity presented in [66] for elastic-plastic/elastic

materials joint.
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Fig. 3.10: Variation of stress singularity 4 —1 with difference of n andn,for differentn,

The variation of i-th order singularity, A —1,with difference between hardening
exponents, n,andn, for the different values of n, is shown in Fig. 3.10. The absolute
value of i-th order singularity, |/?,I —H,is increased when the difference of hardening
exponents, n,—n, is small which means stronger singularity exists. More singular

terms exist for smaller difference of n,andn, which means higher hardening material

(harder material with smallern) includes more singular terms in compared with lower

hardening material (softer material with larger n). The magnitude of first order singular

exponent is increased with decreasing the difference of n, andn, and for (n,—n,)<1,
A =1 .0ne singularity exist for any combination of n,andn,. Two or more singularity

exists only when(n, —n,) <1.
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3.6 Summary of Power-Law Hardening/Power-Law Hardening Materials Joint

Asymptotic solution for the interface-edge problem of power-law hardening
materials having different power-law hardening exponent is presented in this chapter to
determine the stress and displacement fields around the interface edge of jointed
materials. An iteration method is proposed for the determination of singular fields
around an interface edge of two dissimilar power-law hardening materials joint. Our

analyses show the order of stress singularity has a dependency with the combination of

hardening exponents. Multiple stress singular terms exist for (n1 —n2) <1in the higher

order approximation.

If the hardening exponents of bonded power-law hardening materials are very close,
then the material with smaller hardening exponent can be assumed as a very hard
material within the plastic strain range under which the small deformation condition is
satisfied, the assuming method of power-law hardening material | bonded with rigid
substrate instead of power-law hardening material 11 will lose its physical meaning. In
such a case, we cannot regard one of the composed materials as a rigid.

In this analysis in the zero-th order approximation we make is that, since the
power-law hardening materials with different power-law hardening exponents behaves

as if the more stress hardening material is attached to a rigid material, to calculate the

zero-th order singularity in the n, >n,case. In this manner we will be able to get the

singular exponent, 4,, and the angular variation of the stresses &; in the more stress

hardening material, but not the correct angular variations of stresses and displacements
on the less stress hardening material (material 11). The reason is that Material Il (less
stress hardening material) behaves as rigid only as far as its influence on Material
I(more stress hardening material) is concerned. Material 11 is actually not rigid and will
have displacements will be influenced by the more stress hardening material (material I).
Still as far as the solution in the more stress hardening material is concerned our
presented formulation of two different power-law hardening materials joint is sufficient.

For power-law hardening materials having different power-law hardening material

joint case, a separable form solution can be obtained by observing that in the limit

r—o,0q (0:0) =0 (see section 3.4). This condition is restrictive, yet its validity has
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been suggested and supported by interpreting the finite element results of Shih and
Asaro [67].

For the joint of two materials of same power-law hardening exponent, one can
assume the zero-th order singular exponent as unity because of there is no singularity
exists if the materials properties are same. In that case, applying this iteration method

gives the same singular exponent in the higher order approximation as zero-th order. It

points to the fact that when n, and n,are close in magnitude, the region where the

n, # N, solution is acceptable is more restrictive. The requirement of power-law

hardening exponents should be different and not very close is a restriction on

application to real problem of our approximation method.
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CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

4.1 General conclusions

In this work, we have analyzed the singular stress fields around an interface edge
of dissimilar materials joint. We have formulated the problem for plane strain condition.
We proposed an iteration method for the determination of singular fields around the
interface edge of dissimilar materials joint where the interface free-edge geometry has
been considered. We developed our formulations for general bimaterial interface-edge
geometry. In our formulation butt joint model has been considered to result in specific
bimaterial geometries of interest to engineering applications. For the two dissimilar
materials joint, we provided solutions for interface-edge of an elastic and a power-law
hardening materials joint and two dissimilar power-law hardening materials joint having
different power-law hardening exponent. We have correlated our local dominant
singularity results obtained from asymptotic analysis to global full-field finite element
results to obtain the nondimensional generalized stress intensity factors for the plane
strain free-edge interface of two dissimilar materials butt joint. The essential features of

our results are given based on the joint materials.
4.1.1 Conclusions on Elastic-plastic/Elastic materials joint

Bonded dissimilar materials in which materials behaves as an elastic and a
power-law hardening material were studied and the solution was presented to determine
the stress and displacement fields around an interface edge of dissimilar materials joint.
An iteration method is proposed for the determination of singular fields around an
interface edge of an elastic and a power-law hardening materials joint. In the proposed
iteration method, to overcome the problem we have considered at the interface
boundary the additional stress fields in the elastic side to satisfy stress continuity, the
additional displacement fields in the elastic-plastic side to satisfy displacement

continuity, successively.
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Both the balance of force and the continuity of displacements are satisfied on the
interface iteratively. These continuity of the displacement field and the continuity of the
stress field are important features of the stress strain fields near the interface edge of

two dissimilar elastic/elastic-plastic materials joint.

Due to the increase of iteration, the discrepancy of the r dependence of the fields
along the interface is decreased.

In the power-law hardening material, when nis decreased (for n=1is an

incompressible elastic material) the stronger singularity ((/10 —1)goes to more negative)

exist in the power-law hardening material due to displacement boundary condition
(r—0, G, (6=0)=0) and weaker singularity ((4, —1)goes to less negative) for larger
n. In the elastic/power-law hardening materials joint case the singularity should be
weaker with the decreasing value of n because of n=1is an incompressible elastic
material but in our approximation is not shows this situation. When regarded as
deformation theory materials, the materials just considered each approximate perfect
plastic behavior for small values of n for the power-law material. Yet, the calculated
values of 4 do not agree in this limit. The disparity can be explained as follows. For a
power-law material model, elastic strains were neglected because, as stresses grow large
for any value of n>1, the ratio of elastic strain to plastic strain approaches zero. With

an asymptotic expansion of the governing equations in powers of n, it is easily shown
that A, >lasn—oo.

The power of r in the stress equation depends on the hardening exponent n. Asn is
increased the absolute value of the i-th order of singularity, |2,, —]4, tends to be decreased

to zero when 4 -1<0 . (i+1) or more singular terms exist in the i-th order

approximation for n<(i+1)/i.

For the determination of singular exponent, an explicit equation is presented where

the i-th order singularity, A depends on the hardening exponent nand the zero-th

order singularity 4,.
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The angular function of separable form term in the displacement fields in the 0"
order approximation should be zero at #=0is a necessary condition for the continuity
of displacement on the interface when r— 0 around the interface free edge of
elastic/elastic-plastic materials joint. The stress and displacement fields in the
elastic-plastic material are controlled by the boundary condition which is the same as
the one of an elastic-plastic material on the rigid substrate. The stress fields in the elastic
material are also controlled by the index through the equilibrium of force on the

interface.
The stress fields are compared with the fields of joint material results of FEM where

the stress fields are slightly increased with the increase of iteration of asymptotic
analysis which is the superposed stress of 0" order and the higher order stresses. Due to
the slight increase of stresses in the higher order approximation our theoretical stresses
are slightly far from the FEM joint results where 0" order fields are close to that FEM
results. This might be due to the effect of regular stress by remote tensile loading.

4.1.2 Conclusions on Power-Law Hardening/ Power-Law Hardening materials

joint

Asymptotic solution for the interface-edge problem of power-law hardening
materials having different power-law hardening exponent is presented in this thesis to
determine the stress and displacement fields around the interface edge of jointed
materials. Our analyses show the order of stress singularity has a dependency with the

combination of hardening exponents. Multiple stress singular terms exist for

(n,—n,)<1 in the higher order approximation. For the determination of singular

exponent, an explicit equation is also been presented where the i-th order singularity,

A depends on the combination of hardening exponents, n,n,and the zero-th order

i
singularity A4,.

Both the balance of force and the continuity of displacements are satisfied on the
interface iteratively. This continuity of the displacement field and the continuity of the
stress field are important features of the stress strain fields near the interface edge of

two dissimilar elastic-plastic materials joint.
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For the joint of two materials of same power-law hardening exponent, one can
assume the zero-th order singular exponent as unity because of there is no singularity
exists if the materials properties are same. In that case, applying this iteration method
gives the same singular exponent in the higher order approximation as zero-th order.
When material property of two materials tends closer each other, this approximation
gives more singularity exists in compared with the large difference of material
properties. The requirement of power law hardening exponents should be different and
not very close is a restriction on application to real problem of our approximation
method.

4.2 Future work

The thesis is a first effort to address the singular stress fields near the interface edge
of dissimilar elastic/power-law hardening materials joint and power-law
hardening/power-law hardening materials joint. The formulation presented, the iteration
methods developed and the sample problem solved provide useful and insightful
information for the local mechanics environment dominant at interface free-edges where
damage and fracture frequently initiate. Further work needs to be performed to gain
additional understanding on the mechanic relevant to interfacial fracture in this
plastically deforming bimaterial joint. As a direct extension of our work on dissimilar
elastic/power-law hardening materials joint and power-law hardening/power-law
hardening materials joint, one now can solve for stress fields of more interfacial
geometries by different wedge angle (other than the geometries we have solved like butt
joint). Finally, a parallel study to verify experimentally the relevance of this singular
stress fields to interfacial fracture should be conducted.

However, when using this expansion in the higher order approximation for
comparison to finite element results of jointed material, the higher order terms (more
than one term) appears to diverge from the finite element data when the higher order
term is added. This suggests that for any values of n a separable solution for the
higher order terms may not exist. The regular stress term should be considered for the
determination of full field where an eigen expansion with the complex solution is
necessary to accomplish the quantitative results of this analysis. A complete analysis

and discussion should be reported in future work.
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APPENDICES

APPENDIX A

Calculation of Effective Stress term

Kronecker delta defined by

1 i=]

5ij = _ (A-l)
0 i1#]

Deviatoric stress components can be calculated in the summation form as,

S s'j =SSy + erSrB +S.5, + SHrSHr + 849498499 + SGZSHZ + Serzr + Szesze + Szzszz

ij i rrerr rzvrz

2 2 2 2 2 2 2 2 2
=Sy TS99 T35 1516 +5, TS5 +55, 754 544 (AZ)
where,
1 1 1
Sy =0y _gakk =0y _é(arr 1t 0y +0, ) = g(zo-rr —Ogp — Gzz) (A3)
1 1 1
Sep = Opp ) O =%a _g(o-rr T 04+ 0, ) = 5(20-99 —On— Gzz) (A4)
1 1 1
S, =0, _éakk =0, _g(arr + 0y +0, ) = 5(20-22 —Og ~ Oy ) (A5)
Sr6 = GrH’ SHZ = O-é}z’ Szr = Gzr’ Srz = Grz’ SHr = O-Hr’ SzH = O-ze (A6)

We have effective stress term,

3
ol = SIS (A7)

Substituting Eqgn. (A.2-A.6) into Eqn.(A.7), Eqn.(A.8) can be written as,

2 2 2 2 2 2 2 2 2 2
O-e :Srr + 599 + Szz + Sre + srz + Sar + Sez + Szr + SZB

1 ? (1
3 (g(zarr ~Ogp— 0y )j +(§(20-6’9 Oy — 0y )j

2 2 2 2 2 2
+0,,+0,, +0, +0,+0, +0,,

2

1 2
+ (5(2022 —O0g9 — Oy ))

1 2 2 2 3 2 2 2 2 2 2
== 6(O-rr + 0y +Gzz)_6(0rro-60 + 090, +Gzzo-rr)+§(0r0 +0y,+0, +0,+0, +029)

_ 2 2 2 2 2 2
- (Grr + 6967 + O-zz ) - (O-rro-ea + O-Haazz + Gzzo-rr ) + 3(Grﬁ? + Grz + 692 )

(A8)
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Applying plane strain condition,

£, =0, 0,=v(o,+0,), o

yz4 rz

2

e z-r

:o-é’z :Gzr :O-ZHZO

2 2 2 2 2 2
ol = (O'rr +0,, +azz)—(arragg +0,,0,+0,0, )+3(0r9 +o? +crgz)

(A.9)

=07+ 0y +{V (0, + 0y )}2 - (0'"0"9(9 + 0 {V (0 + 0 )| +{V (0 + 0y )} O ) +307,

=02 +02 +20,0,, +v: (0, +0,) - (30'"0"99 +{V (0 + 0 ) (0 + 0 )}) +307,

= (a” +0, )2 +v? (0" + 0y )2 - (30'"0'99 +v (0'rr + 0y, )2 ) + 30'r29

2
= (v2 -v +ZI.)(0'rr +0,) —30,0, +30,,

2 2 2 2
o :(v —V+1)(O'rr+(799) —30,,0,, +307,

For plastic material due to the no volume change, v :%

In plane strain, Eqn.(A.11) can be rewritten as,

2
ol = ((%j - (%j +1J (0, +0y )2 -30,,0,,+307,

Finally,

3 2
2 2
O, = Z(O-rr + 0-99) _30”0-99 + 3Gr0
3 2 3 2
= Z(O-rr ~0y) +ZX 40,049 =300y +307,

= _(o-rr — Oy )2 + 3Gr26’
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APPENDIX B
Displacement boundary conditions (0" order approximation)

At interface the displacements are continuous

Uip = Uio (B.1)
or,

'Abnl rrhﬂo*nﬁlailo — AN r”zﬂo n2+1ull

i0 (B.2)
hence,
%1t _ A?Zl]i'(')
rnz(ﬂo—l)+l nlailo (B.3)
rnl(% -y (4-1) A\?Z ljll(IJ
Abfh (B.4)
r (na—ny)( A;h i0
A{)‘zl]l'(l) (BS)

From Egn. (B.5), whenn #n,. As the material | is assumed to be less hardening
material (lets assume n, >n,), we get, n,—n, <0.Existing a stress singularity gives
A, —1<0, therefore the exponent of rin Eqn. (B.5), (n,—n,)(4, —1)is positive. So as

r — 0, the right hand side of Eqgn. (B.5) approaches 0. This implies that in the near field

region
al,=0 (B.6)
00 =0 (B.7)

This boundary condition for n, #n, (n, >n,)has two immediate effects. Relative to the

more stress hardening material (material | with n, ), we see that the boundary

conditions are identical as if the material I is attached to a perfectly rigid material at the
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interface. This implies that the A, does not depend on the properties of the less stress
hardening material (material 11 withn,). The solution can first be obtained for the more
stress hardening material (material 1 with n;) and once 4, and the stress distributions

in the material I is known, the response of the less stress hardening material (material 11

withn,) can be calculated.
If material Il is elastic, n,is set to be 1. Where the stress hardening exponent of
power-law hardening material is larger than 1(n1 >n2)in that case we see that the

boundary conditions are identical as if the material | is attached to a perfectly rigid

material at the interface.
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APPENDIX C

Numerical Shooting Method
Material I (0™ order approximation)

Since our governing equations are a pair of fourth order differential equations, on free

surface (at 0:% ) we need to prescribe the stress function and its first three
derivatives. That is at 6’:% we need to prescribe {ﬁo' (450' )’ (450' )” ((,50' )m}. From the

boundary conditions we know that at the free-surface ¢, and ((/50') are zero. Since this

IS an eigen-problem we can arbitrarily assign(gz?(,' ) =1.0. We guess the initial values of

the other derivatives of ¢, and A, .With these guessed values we shoot from the stress

free-edge to the interface. To satisfy the boundary conditions at the interface we update
the initial guessed values and we calculate the error. We use an automatic step size
method to accommodate the rapid localized changes in the stress function and its
derivatives and minimize truncation error. The solution is finally obtained when the

error is minimum.

For exact solution, the assumed value of ((/30' )" is updated to satisfy (&,,), ,=1 and

solution is done as above mentioned method.
Material I (0th order approximation)

In the second material side, since our governing equations are a pair of fourth order

differential equations, on free surface (at 9:—%) we need to prescribe the stress

function and its first three derivatives. That is at 9:—% we need to prescribe
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{}",(L" )',(NO” )",(L” )m}. From the boundary conditions we know that at the

~ ~ 4 . . .
free-surface 4" and (') are zero. Since singular exponent, 4, is known from the

solution of material | side the angular variation of stresses can be computed. To
compute the stresses we need to calculate unknown angular functions to satisfy traction

on the interface. We guess the initial values of the other derivatives of q;O” .With these

guessed values we shoot from the stress free-edge to the interface. To satisfy the
boundary conditions at the interface we update the initial guessed values and we
calculate the error. We use an automatic step size method to accommodate the rapid
localized changes in the stress function and its derivatives and minimize truncation error.

The solution is finally obtained for the minimum error.

Material | and Material I1 (i" order approximation)

In the i-th order approximation the singular exponent, A is known from the forced

displacement boundary condition. Since our governing equations are a pair of fourth

order differential equations, on each free surface (at 0:% or 9:—%) we need to
prescribe the stress function and its first three derivatives. That is at
_72. _ T i ~K ~k ! ~ 14 ~ m _
0== and 0= we need o prescribe {¢, (85) (4) (4°) }where k=1 for
material 1 and k = Il for material Il. From the boundary conditions we know that at the

free-surface 4 and (¢§,k) are zero. We guess the initial values of the other derivatives

of 4*or {(;Z,k )" (ﬁlk )m}. With these guessed values we shoot from the stress free-edge

to the interface. To satisfy the boundary conditions at the interface (forced displacement
boundary condition for the solution of material | side and traction boundary condition
for the solution of material 11 side) we update the initial guessed values and we calculate

the error. The solution is finally obtained when for the minimum error.
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Different terms in the compatibility equations of the first order approximation
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