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Abstract 

 

Human can effortlessly express their spatial experience and talk about where objects are located in relation 

some underlying objects. Since it is impossible for us to learn all the objects, such information has been 

critical to explore the visual world. Intuitively, if we know where the objects are, recognizing them will 

become easier. In computer vision, in order to mimic human’s ability, an important and open problem is to 

endow robotic systems the ability to comprehend spatial relations as human does. This is somewhat like a 

school child does when learning to write a descriptive sentence, such as the CD is to the left of the book. 

The primary goal of this work is to design and demonstrate spatial recognition methods to bridge the gap 

between visual information and human cognition. Towards this goal, we treat spatial relations as a kind 

feature as well as other visual features, such as color, size, etc and have developed computational templates to 

represent spatial relations. We propose a novel model to encode linguistic spatial expressions.           

We first investigated how humans manipulate space by the action of natural language and classified basic 

class of relation. We then extracted the observations from cognitive systems to computer vision applications. 

We propose templates for recognizing spatial relation, translating linguistic expression into visual information, 

representing spatial terms in an angular fashion. The templates have been tested over 720 scenarios where 1-3 

unknown objects within.  

 Comprehending spatial relations are beyond simply distinguishing them. It is noticeable that spatial 

relation needs a pair of objects. In determination of different class of relation, the underlying objects which 

are named as reference objects play a decisive role. Concretely, objects like humans, animals and computer 

displays are somewhat different with objects like balls, boxes, cups in that they have intrinsic front side. The 

former’s front is independent from interlocutors’ viewpoint whereas the latter’s is not. It turns out the front 

orientation adjacent to the frontal-side of those objects are transformed accordingly if they are rotated from 

the frontal view. We then focus on introducing an estimation model for those objects, from estimating poses 
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transformations, to adjusting intrinsic-front orientation. The first step studies one prominent type of pose 

variation given viewpoint transformation in supervised fashion. Naïve Bayesian classifier is followed for 

prediction. The estimator performs highly competitively with the state of the arts on the ETH-80 database, 

and an everyday-object database that we collected on our own. 

The models profit from an interactive interface, which is developed to understand some simple English 

words and grammatical structures. The ability makes our models are closer to the way of human-human 

interaction. Finally, we conduct experiments integrally within the system, which consists of an object detector, 

a spatial recognition model, a pose estimator and a user interface. The goal is recognizing unknown objects 

via comprehending spatial relations by interactive means. The simple yet effective models outperform in 

recognition tasks in the author’s database. 
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Chapter 1 

Introduction 

Talking about space and understanding corresponding spatial relations are the fundamentals for humans. 

These abilities are so unique that can set humans apart from other species. In visual recognition, humans 

often use spatial relations to depict their visual surrounding environments and localize objects within. 

Intuitively, if we know where the objects are, recognizing them should be easier. Particularly, this strategy is 

extremely useful in the scenes in which the objects that we intend to reach for are not familiar with. In order 

to develop human-like robotic vision systems, it is necessary to endowing the machines with the same ability. 

This chapter will first describe the thesis motivations, objectives and challenges. An outline of the thesis is 

then given. 

 

1.1 Spatial Relations in Visual Recognition 

Object recognition is an important yet challenging research direction. Over the years, much of the progress 

has been paid to develop algorithms for modeling and learning objects. Nearly all of these approaches are 

based on some kind of visual image features, e.g., color, shape. With the help of more and more sophisticated 

machine learning models, these features have achieved good success in high-level recognition tasks. But as 

the task level becomes higher and higher, the limitation of those features becomes more obvious. For example, 

they are highly influenced by illumination, scale, and object diversities. A slight variance in color can make 

an object thoroughly different. Different object instances can cause strong variations even they belong to the 

same category. Considering the numerous types of objects exist in our visual world and how fast the number 

grows every day. How the traditional object recognition algorithms going to be scalable to cope with these 

defects?  
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Consider the following scenarios in Fig. 1.1. In (a), a scenario contains several objects. A robotic system 

has already learnt a juicy box, and a cup noodle. The target object is labeled in yellow bounding box but we 

don’t know what it is. How to instruct the robotic system successfully locate the target object? In scenario (b), 

4 jars have been recognized by the robotic system. When the robotic system is supposed to locate one of them, 

what is the best way to distinguish it from the others? Obviously, our visual experience and intuition suggest a 

straightforward way that is, addressing where the object is. Intuitively, if we know where the objects are, 

recognizing them should be easier. One can say the object is in front of the juice n scene (a), and the 

leftmost jar in scene (b). In order to develop human-like robotic vision systems, it is necessary to endowing 

the machines with the same ability. 

 

 

 

 

 

 

 

However, identifying spatial relations remains difficult for computers. There are two main reasons. First, 

duplicating the process from human perception is complicate. Somehow humans can effectively deal with this 

complexity—they can map natural language description onto nonlinguistic spatial representation. A listener 

(a)                                      (b) 

Fig.1. 1: 2 scenarios from home object dataset. Spatial relations can simply distinguish the target 

object from the others. 
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who perceives a description, must (1) find the reference and target objects in the description; (2) impose a 

proper frame of reference on the reference object; (3) identify the spatial relation that the speakers proved; (4) 

choose the target object, which best represents the relation; and (5) produce an answer. In terms of recognition 

tasks by verbal means, speakers must explicitly encode spatial relations into linguistic expressions, namely, 

people must have a non-verbal spatial representation of a perceived configuration so that they can map this 

onto a verbal one. The second difficulty is how to translate linguistic expression to visual information to 

non-intelligent computers. Since computers are good at processing numbers, how to present spatial terms in a 

numerical coordinate representation? For example, how left is left? 

Validating spatial relation associates with a pair of objects, which is a significant defect is so that it cannot 

be independently used yet. Even though, we still believe identifying spatial relations is important and 

advantageous for 3 reasons: (1) spatial relations are important in many regions of cognitive science, including 

linguistics, philosophy, anthropology and psychology. In order to mimic humans’ ability, it is propitious time 

to introduce the conception into computer vision field; (2) Spatial relation is stable. It implies a two-fold 

meaning. One is it is less influenced by illumination and scale changes than other kinds of visual features. On 

the other hand, it is independent of diverse object categories; and (3) Spatial relation is a unique form— 

relatively, only one relation exists in pair of objects.  

The focus of this work, aims to address the very challenge of the spatial understanding, a subordinate 

territory in previous vision research. It poses the question of the how to translate natural language expressions 

to visual information, which is also the essence of the task. The ultimate goal is recognizing generic objects 

via spatial relations within an image in an interactive fashion. Despite the concerted effort in the last decade, 

the objective yet, remains challenging and unsolved well. Although numerical work for robot navigation, such 

as, instructing robotic systems moving towards to the certain objects, no satisfactory methods exist that work 

for localization tasks. In this work, we provide a novel framework. The sketch of our idea is following. An 

untrained image is first served by an object detector, where pre-learnt object is detected. If target object is still 

undetected, human users manually annotate the object and instruct the system to recognize it via spatial 
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relations. User will benefit from a user interface, which requires typing simple instruction. The interface can 

systematically analyze semantic components, separating the target object as well as that of the reference 

object, and the relation between both. This is an interactive process that user continually gather information 

whether the system understands their intention. The integral framework illustrated in Fig. 1.2 includes a user 

interface, an object detector and object spatial recognition model. After processed by an object detector, a 

dispenser is highlighted. But what we want is the toothpaste, which still unknown to the robotic system. 

Then the system then switches to an interactive mode. User first inquires the system whether can see the 

target object, the toothpaste. If the answer is negative, then user prompts the positional information such as 

“The toothpaste is to the right of the bottle”. As long as the system detects a target object that best 

represents the relation provided by the user, it reports and waits for confirmation. If the answer is positive, the 

process is ended successfully with given a command, e.g. “bring the toothpaste for me”. Otherwise, it 

continues till the number of processing exceeds the total number of annotated objects in the image.  

 

                           Fig.1. 2: The integral system 
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To validate our method, we have built a novel database specifically tailored to the task of spatial relation 

recognition. The dataset is twofold: 132 objects, in total of 5,124 images from 30 categories for the purpose of 

object recognition and in the total of 720 scene images for object localization task. The objects we grouped 

obeying the lexical meaning in English, which describe the meaningful concept in cognition and the 

perceptual apparatus, 

We will show in our experiments that our model is capable of identifying fundamental spatial relations, e.g. 

front. To summarize, we highlight here the main contributions of our work.  

 From a plethora of work in cognitive science, we make sense of how human manipulate space and 

conclude some perceptual limitations on talking about space. 

 We then bring the conceptions into computer vision field and propose a model for identifying and 

comprehending some fundamental English spatial expressions 

 Our work is designed as a visual-interactive fashion that reference objects can be visually detected 

which target objects are recognized through natural language. This scheme leverages the gap 

between language and vision. 

 To our knowledge, it is the first approach to achieve visual recognition objectives via comprehending 

spatial relation.  

 Since there is no publicly database available, we provide a new database specially tailored for our 

experiment design. 

 

1.2 Related Work 

Spatial information can be derived from vision, audition, and haptic. That is, this representation is not 

exclusively visual or haptic or aural, but neatly incorporating with spatial. Researchers have been firmly 

believed that spatial representations can be translatable into a form of representation specific to the motor 

system that instinctively guides human behavior and vice versa. For example, we can touch what we see, find 

underlying targets according to what we hear see, and avoid obstacles as we navigate through space, see Fig. 
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1.3. In this section, we first review the related work in interdisciplinary domain, combining psychology, 

linguistics, and philosophy. The psychologist’s contribution is a concern for how spatial relations are 

apprehended, a concern for the interaction of representations and processes underlying an individual’s 

comprehension of spatial relations. These theories so are important to use that the theories and models they 

developed is the benchmark of our work. Then we focus on the robotic application in the AI field. 

 

 

 

 

 

 

 

 

 

1.2.1 Spatial Comprehension in psychology, linguistics, and philosophy 

1.2.1.1 Spatial Representation 

In the last decades, researchers are intrigued by the language that compatible with constraints on 

nonlinguistic spatial cognition. Specifically, there must be some level of visual representation that can be 

accessed by our linguistic system.  

Fig.1. 3: Spatial representations take as input information from vision, audition, and the haptic system, 

and provide information to the motor system and language and vice versa. 
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A canonical example of spatial language is the encoding of spatial relations between pairs of objects or 

object parts. Talmy[96] has demonstrated that spatial prepositions such as on, above, etc intuitively code only 

a schematic relationship, while disregarding many spatial properties, e.g. shape, color, size, orthogonal 

position. [7, 15, 80] suggested that objects are represented as structural descriptions, which are composed of 

spatial relations among parts. Some of these relations are defined according to their corresponding spatial 

prepositions; for example, front, below. This assumption gradually had been mad more explicit. [41] has 

implemented a neural network for shape recognition that has nodes allocated specifically to the relations such 

as left of, right of. In such instances, there is no attempt to define the actual spatial configurations these 

relations encompass; rather such models of visual representation rely on our intuitive and linguistic 

conceptualization. Therefore, while spatial relations are a basic and essential element of several theories of 

object representation, they have been characterized mainly in terms of their linguistic counterparts and 

without direct evidence about their organization. Although a direct link between closed-class spatial forms, 

spatial prepositions in English, and visual representations may indeed exist, this connection is tenuous in that 

it has not been empirically validated, nor do there exist well-specified models of the underlying structure of 

particular spatial relations. 

Meanwhile, connections between spatial prepositions and visual information have been studied 

predominantly through spatial language, but not both. For example, there is a strong tradition of implicitly 

addressing the nature of spatial representations through linguistic descriptions of spatial layouts and the study 

of cognitive maps [59, 60]. More relevant to our study, [38] explored the representation of the horizontal 

space surrounding oneself in terms of the spatial descriptors front, back, left, and right. When they required 

subjects pointing to the outer boundaries of different category regions in the experiments, they found that 

recall accuracy for object position relative to the subject varied between regions: front yielding the highest 

accuracy for object position and back yielding the poorest performance.  
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1.2.2.2 Classification of Frame of Reference Classification 

The notion of frame of reference is crucial to the study of spatial cognition. To describe where a target 

object is with respect to a reference object, we need some way of specifying underlying coordinates systems 

on the space. [47] compared two systems of frame of reference: deictic and intrinsic, and specified how these 

frames of reference differed from the formal and the perceptual point of view, for example, analyzing the use 

of left versus right, in front of versus behind. [10, 83] ranged over the philosophical and psychological 

literature, and concluded that frames of reference come down to the selection of reference objects. Kant [42] 

argued elegantly that the human body frame is the source of our basic intuitions about the nature of space, as 

exemplified in a description such as the glasses are to the right of the telephone. [6, 18, 36, 37, 48, 49, 50, 

61, 69, 72, 73, 84, 85, 102, 106] elaborated 3 frames of reference: intrinsic, relative and absolute, which can 

be thought of as different strategies for specifying the spatial relationship between the target and the reference 

objects. Fig. 1.4 illustrates the 3 frames of reference. In fact, the frequency and range of application of these 

frames of reference differ across languages. English speakers mainly use 2 different frames of reference to 

describe spatial relationships in table-top space: intrinsic frame of reference or relative frame of reference. In 

the use of intrinsic frame of reference, they say the fork is beside the spoon [58]. Or In the use of relative 

frame of reference, they say the fork is to the left of the spoon. They do not say the fork is to the north of 

the spoon. In Sect. 2.xx, we introduce the 2 frames or reference in more details. 
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1.2.2 Learning Spatial Relations for Robotic Systems 

1.2.2.1 Qualitative Spatial Reference Learning 

To specify positional information in human-robot interaction, qualitative spatial reference, a novel and 

powerful strategy, serves as a necessary bridge between the metric knowledge required by robot, and more 

abstract concept for natural language utterances. Increasingly sophisticated approaches to the computation of 

spatial relations have been developed in the last couple of decades [1, 2, 24, 68, 70, 76, 81]. In [30] the 

CSR-3D system, a model for the computational of topological and projective relations and 3D space, is 

presented. The model is enhanced to include composite spatial relations, such as to the left of and behind or to 

the left of and near which are very common used in German [31] and proved for cognitive plausibility [32, 

33]. 

Fig.1. 4: Description in Intrinsic, Relative and Absolute frames of reference 

Intrinsic: The fork is at the nose of the spoon 

Relative: The fork is to the left of the spoon 

Absolute: The for is to the north of the spoon 
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1.2.2.2 The Robotic Systems 

In computer vision, little work has been done. As part of the VITRA project in Saarbr cken, Gapp [30, 31] 

developed a computational model for basic meaning of spatial relations. His model is used to generate 

linguistic spatial expressions based on simulated city scenes. For graded applicability regions he uses spline 

functions. [90, 91] developed a model which are often inspired by force-field models from physics. In their 

design, situations involving more complex object configurations (like walls, bent objects close to each other). 

Fuhr and his collegues as part of the SFB 360 project “Situated Artificial Communicators” [29] developed the 

system, integrating speech and visual input. They used 3D acceptance volumes in their model. By introducing 

an intermediate representation layer independent of actual reference frames their approach can handle image 

sequences efficiently. Closer to our application is the system developed by Moratz[62-67, 98].They have 

developed a computational framework to localize interested objects using geometry projection, focusing on 

configurations of simple, convex objects. They instruct the Pioneer robot to move towards particular objects 

pointed at by the experimenter. The test scene is designed simple in which two or three objects are placed on 

the floor together with the robot as shown in Fig. 1.5. Fig. 1.6 and Fig. 1.7 list in total of 13 controlled 

configurations in 2 experiments. 2 examples of a typical interaction situation are:  
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ROBOT: I can see a barrel and two boxes. Where  

shall I go? 

USER: to the box at the outer left 

ROBOT: I don’t understand the word “außen” 

USER: left 

ROBOT: please reformulate 

USER to the left box 

ROBOT: I start going 

 

USER: go back 

ROBOT: I don’t understand 

USER: straight ahead 

USER: start moving 

ROBOT: I don’t understand 

USER: go 

USER: roll 

ROBOT: I don’t understand 

(Prolonged failure - re-start: new configuration) 

USER to the left 

ROBOT: I don’t understand 

USER:  turn around to the left 

ROBOT: I don’t understand 

USER: move to the left box 

ROBOT: successful robot movement to the goal 

object 

 

Dialog transcript in Experiment 1 Dialog transcript in Experiment 2 
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Fig.1. 5: The robot system, two boxes and a barrel 

(a) Conf.1 
(b) Conf.2 
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(c) Conf.3 (d) Conf. 4 (e) Conf. 5 

Fig.1. 6 Configurations Experiment 1 

(a) Conf.1 (b) Conf.2 (c) Conf.3 
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Motivated in part by their work, ours is different in two points: 1) we focus on the projection step, 

extending 2d geometry projections to 3d; and 2) Unlike constructing a robotic system moving forward to 

referents, we prefer to locate the referents across a sliding window via spatial relations, instead. 

 

(d) Conf.4 (e) Conf.5 (f) Conf.6 

(g) Conf.7 (h) Conf.8 

Fig.1. 7 Configurations Experiment 2 
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Chapter 2 

Towards Spatial Comprehension 

The only feature that distinguishes the target objects from others in scenarios is their position. This elicits the 

fundamental conception in spatial comprehension—the frame of reference. In this chapter, we classify 3 

frames of reference—intrinsic, relative and group and elaborate how objects present in their usages. Then we 

propose spatial templates to model spatial linguistic expressions, from singular form to composites, to 

superlatives, from to 2 dimensions to 3 dimensions. For each template, we conduct experiments over the 

author’s database. 

2.1 Understanding Spatial Knowledge  

2.1 .1 Terminology 

Projective Prepositions Topological Prepositions 

front above/top/upon/over 

back below/under/beneath/underneath 

left near/nearby/beside/around 

right far 

leftmost along/alongside 

rightmost here/ there 

between in/into 

 on/onto 

 at 

 inside/outside 

Table 1: Prepositions in English 
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 In English expressions, the referent and relatum are encoded as noun phrases; the relation is encoded as a 

preposition, which is considered as a key part in a description. Prepositions are mainly divided into two 

classes: topological, and projective. Table.1 presents a list of the prepositions in English. In our work, we are 

interested in the projective ones. 

In order to establish a validated spatial relation, it requires three entities: a located object, which is 

so-called referent, at least one reference object, which is so-called relatum and a prevailing reference 

coordinate, which is so-called frame of reference. In fact, frame of reference is the fundamental in spatial 

knowledge. It determines the direction in which the referent is located in relation to the relatum. In different 

kinds of scenarios the usage of frame of reference is impressively distinct. Next, we elaborate 2 basic classes 

of frames of references and distinguish the representation in spatial relations. 

 

2.1. 2 Classification of Frames of Reference 

Frame of reference is a 3-d coordinate system that defines an origin, orientation, and direction. English 

speakers most likely apply 3 principle axes: top-down, left-right, and front-back, which can be viewed as 

extending from the center of the reference object and providing 6 canonical directions. Specifically, direction 

determined by the top-down axis is given by gravitation, defining over, above, under, below, and beneath. 

Orthogonal against gravitation is the horizontal plane, which covers the other two axes and helps to define 

front, back, left, right, besides, alongside, and next to, etc. At current stage, we ignore the top-down axis so 

that the system is reduced to 2 dimensions. And also, our work barely focuses on projective relations, which, 

limits our interest on the various presentation of front, back, left, and right. 

Projective prepositions can be used in different ways. One can easily identify the front side and find the 

referent as in the description like the ball is in front of the car. However, if we say the ball is in front of the 

box, it can mean the ball in relation to the box can be located either from the speaker’s or the listener’s 

viewpoint. This elicits the fundamental conception in spatial knowledge—the frame of reference. We should 

start from the classification by Levinson [50], who explicitly specified humans ’language and the proposal, is 
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the most widely approved systematic framework yielding spatially entities. In the first case, the relation is 

activated by intrinsic frame of reference. In the second case, the frame of reference we indicated is relative. 

 

2.1.2.1 Intrinsic frame of reference  

One way is to refer the intrinsic side of a relatum e.g., the front side of car. In most of the cases, the front, 

back, left and right regions around a relatum are the regions adjacent to the intrinsic front, back, left and right 

side of the relatum, respectively. For example, a person’s front is adjacent to their body that is on the opposite 

side to their back. When imposing front-back axis on a pair of objects, the front is the surface facing the 

speaker (or listener), and the back is the opposite surface. The relation in the intrinsic frame of reference only 

requires 2 arguments --a relatum and a referent. A description such as the ball is in front of the car is 

explicit enough for interlocutors to understand where the bike is in that the front side of car can uniquely 

distinguish from other side, see Fig. 2.1.  

Intrinsic frame of reference is kind of an object-centered coordinate system and often treats as a complex 

form because it must be extracted from relatums by interlocutors in an appropriate way. Therefore, for the 

purpose of distinction, it is necessary to recognize some specific categories. Seeing an ambiguous figure as a 

duck or a rabbit leads the viewer to assign front to different regions of the object [75]. If you think the cars in 

Fig. 2.1 as a bottle, it may not felicitously say the ball is in front of the bottle. Concretely, objects like people, 

houses, cars and televisions, etc can serve as relatums because they have intrinsic front and back sides. 

However, objects like boxes, balls and cans, etc cannot because they don’t have such characteristic.  
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2.1.2.2 Relative frame of reference 

Relative frame of reference can be employed in two different ways. If the object does not have an intrinsic 

side or its intrinsic orientation is not used for establishing the frame of reference, it can serve as a relatum in 

building relative relations. In this case, objects are often geometric symmetry in at least one dimension. And a 

front can still be contextually induced or projected on it [40, 60, 100]. Miller and Johnson-Laird [100] named 

it as an accidental front. It can be deduced through stating the viewpoint, which is an important contextual 

factor that explains the orientation imposed on the relatum, from where is viewed. Otherwise, it may give rise 

to ambiguity as in the example referred above. In particular, the speaker’s location can overwhelmingly serve 

as viewpoint, such as from my viewpoint, the ball is in front of the box, see Fig. 2.2. The listener’s position 

can also serve as viewpoint as well, but is used less frequently [83]. 

Relative frame of reference can apply on any objects. Objects like balls, bottles and cups belong to this 

domain because they don’t have intrinsic sides. We also can impose relative frame of reference on the object 

of which the intrinsic side is not referred, e.g. the left-right side of a computer display.  

Fig.2. 1: “Front” Examples in Intrinsic use.  
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2.1.2.3 Beyond Relative Relation– Group-Based Frame of Reference 

In the simplest case, a single object serves as the relatum, and can be detected in a straightforward manner 

by the speaker and the robotic system. However, spatial location descriptions can also serve to distinguish 

objects within a group of objects--a situation that occurs frequently in real-world environments, e.g. [98, 101, 

107], but has been largely neglected in the literature. In addressing this issue, we focus on two particular 

questions: 1) since humans consider a group to constitute an integrated object, how can we enable a system to 

treat a group of objects likewise; and 2) what reference frames should be taken in these cases? Note that here 

the conception of “group” refers to either several identical or similar objects. In this section, beyond a single 

relatum scheme, we seek to distinguish unknown objects via simple and straightforward input instructions, 

such as the pocket calculator is in front of the computer displays. 

  When there are multiple identical or similar objects accumulated together in a scene, humans consider them 

to constitute a group. In this case, the group of objects can be viewed as a whole relatum.  Intuitively, a 

conventional way for humans to specify which kind of spatial frame of reference should be imposed on a 

relatum is determine whether it has intrinsic part, especially, intrinsic front. However, this doesn’t make sense 

in group-based frame of reference. For example, a descriptive sentence such as the pocket calculator is in 

front of the computer displays is ambiguous because it can be interpreted in 2 ways. One is the calculator is 

Fig.2. 2: “Left” Examples in Relative use 
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located in front of a group of monitors from the viewpoint of the speaker, with respect to the orientation of the 

monitors themselves, the other one is with respect to the intrinsic orientation of the displays. The first sense 

should employ the relative frame of reference with no doubt. It should be seemed to consider the intrinsic 

frame of reference but doesn’t make sense in practice. Because every computer monitor within the group can 

have the front orientation so that it is impossible to find a mediate front to make them unified. 

Thus, we resort for the first sense even if objects have intrinsic side. In the use of group-based frame of 

reference, Herskovits [39] claims that a situation depends on whether it is seen from the inside or the outside. 

In our work, we discuss these two situations, which are named as internal use and external use, respectively. 

Internal use refers to the interior spatial relations of the group in which the referent we intend to locate in 

relation to the relatum are both in the same group, see Fig. 2.3(a). In this case, human noticeably employ 

unary superlative. For example, they may use the terms such as leftmost, middle and rightmost. External use 

refers the exterior spatial relations in which the referent is independent from the group, see Fig. 2.3(b). In this 

case, we can treat as a derivation of relative frame of reference. 

 

  

 

 

(a)                                          (b) 

Fig.2. 3: 2 situations in the use of group-based frame of reference: (a) internal use; (b) external use 



35 

 

2.1.3 Spatial Templates and Their Acceptance Regions 

A spatial template is a representation that is centered on the relatum and aligned with the frame of 

reference imposed on or extracted from the relatum. It is a 2- or 3-d field that best represent spatial between 

pairs or groups of objects appearing in space. 

When determining whether a spatial relation can be applied on pair of objects what humans do in cognition 

is estimating the fitness. There are three main regions of acceptability. Roughly speaking, the position 

occupied by the referent is compared with the template to determine whether it falls into a good, acceptable 

or bad region: one reflecting good examples, one reflecting examples that are less than good but nevertheless 

acceptable, and one reflecting unacceptable examples [53]. If the referent falls into a good or an acceptable 

region when the spatial template is centered on the relatum, then the relation can apply to pair. It is should be 

noticed that the good and acceptable regions are not mutual or independent from each other, namely, there is 

no distinct with a sharp border between them. Instead, they gradually blend into each other. According to 

Logan [53], take the relation front as an example, any object that is aligned with the forward projection of the 

front-back axis (main axis) of the relatum is a good example. Any object parallel to a horizontal plane aligned 

with the front side of the relatum is an acceptable example, although not a good one. And any object opposite 

to a horizontal plane aligned with the back side of the relatum is a bad, unacceptable example; see Fig. 2.4(a). 

In our work, for the sake of simplicity, we merge the two regions into a larger one; see Fig. 2.4(b).  
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2.2 Computational Model for Human Spatial Linguistic Expressions 

  The central functionality of our model is geometrically defined, but flexible mapping between projective 

linguistic expressions and spatial representation, allowing for 3 classes of frames of reference. The templates 

are based upon angular deviation. The basic idea is a listener projects a 2d coordinate system onto a scenario. 

In intrinsic relations, it is aligned with the intrinsic frame of reference derived from the relatum. In relative 

relations, the spatial template is generated from the interlocutors’ viewpoint and projected onto the relatum. 

 

(a)                                               (b) 

Fig.2. 4: (a) Good, acceptable, and bad regions for ‘front’ orientation in Logan’s template; (b) the 

acceptable and bad regions for ‘front’ orientation in our template. Here we merge the good and 

acceptable regions to form a large one. 
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2.2.1 The 2d Projective Model of Intrinsic and Relative Frames of Reference 

2.2.1.1 Approach 

We first proposed 2 templates on a 2d plane. The spatial templates of projective relation can be 

characterized as follows. For intrinsic frame of reference, the intrinsic front direction of relatum always 

serves as the main axis. While in relative frame of reference, classifying perceivers’ viewpoint is crucial. The 

main axis is the connected line from the perceiver’s center to the relatum. All objects are represented in a 

planar view (bounding box). Two diagonal axes through the centered of the relatum partition the plane into 

front, back, left and right parts. Each partition has a uniform triangular neighboring structure. Fig. 2.5 

illustrates these two templates and the acceptance regions for each orientation. 

The linguistic spatial expressions are represented θintr and θrela, respectively. It is the argument between the 

reference direction and the directed line from the relatum to the referent. θintr, θrela can be defined as: 
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2.2.1.2 Experiments 

We made a series of preliminary experiment to evaluate the proposed approach on the author’s database. The 

database is collected from 15 categories, in total of 450 images containing singular object for training and 60 

scenarios for spatial recognition testing. The scene configuration is simple. Of the 100 images, 30 consist of 2 

objects in which only 1 referent in relation to 1 relatum. There are another 30 images containing 3 objects in 

which 2 referents are surrounded by 1 relatum. The relatums are at their frontal view pose. 

Experiments are done in three steps: (1) detection, where we use the automatic object detection model 

provided by [19] to split the detected (known) and un-detected (unknown) objects; (2) indexing unknown 

Fig.2. 5: Templates in intrinsic and relative frames of reference, and acceptance 

regions 
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objects, if multiple unknown objects are present; and (3) recognizing, where given the specified relatum and 

referent, we use our proposed method to detect the spatial relationship between them. 

In practice, we invite 10 university students to write down spatial descriptions for every unknown object in 

relation to the detected objects. In experiments, we randomly select 6 scenarios per round; the experiments are 

conducted for 10 times. For the sake of simplicity, we have trained and tested the object detector in advance 

over the whole database, and ensure that all the relevant information, including the bounding boxes, the 

locations, widths and heights for the detected objects have been stored in cache. Thus, our experiment started 

from step (2) by manually labeling and indexing un-detected objects.  

We first examined the simplest cases where only one detected and unknown objects exist. Among 30 images, 

our model can successfully achieve the same results with human participants write in advance in 18 images, 

which as shown in Fig. 2.6. Fig. 2.7 shows the observation of the result from the rest of 30 images. The 

precision is 80%, namely, 12 out of 60 pairs of spatial relationship is identified by mistake. 

 

 Fig.2. 6: Experiment results in single referent scenarios 
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2.2.1.3 Discussion 

The result is competitive though, still far away from our expectation because of the simplicity of scene 

configuration. 

In the following, we analyze two main issues that influence the success: distance and acceptance regions. 

Distance: There is a significant interaction between angle and distance in our experiments. An evident from 

Fig. 2.8, the flashlight is moved slightly further away from the mug from scene (a) to (b). While being 

depicted from the same viewpoint, our model reckoned the configuration was the same in both of the scenes 

and evaluated the flashlight to the right of the mug whereas human users thought the flashlight became being 

in front of mug in scene (b). Actually, it is indeed considered as slightly different spatial configuration in 

perception. The deviation occurred in the process because of reducing the reference plane from 3d to 2d, 

which may give rise to a loss of finer details that are important for differentiating spatial relation. Therefore, 

we need to return to the 3d world where we exist to cast eyes on the problem.  

Fig.2. 7: Experiment results in two referents scenarios 
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The Acceptance Regions: A particular situation occurs in the case where a referent falls into two acceptance 

regions, and therefore gives rise to the system receptivity dilemma. Take the Fig. 2.9 as an example. 

Assuming a referent is being translated along the main axis relative to a relatum. Our model is able to 

distinguish (a) from (c) in accordance with humans ’cognitive system in that most of/the whole referent 

explicitly fell into one acceptance region with no doubt. However, a problematic result occurs in scene 

configuration (b) in which a referent is spanned two acceptance regions by coincidence. In Fig. 2.10, we 

collect in total of validate 36 utterances of which the model recognizes left in 7 utterances. There is another 7 

utterances use the term front, which obtains the same portion, approximately 20%, with the right. The result 

reveals an interesting phenomenon that even human users can hardly to distinguish it was front or left at a 

glance. Perhaps, arguing either front or left being acceptable is unnecessary, because both of them are 

reasonable per se. Therefore, to reach a consensus with human’s cognition, a conceivable way is improving 

the range of acceptance regions, making both fit.  

Fig.2. 8: Failure case study: interaction between angle and distance 
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Fig.2. 9: Vague vs. non-vague situations: the vagueness is occurred when a referent falls into two acceptance regions. 

Fig.2. 10: Distribution of the left, front and left front utterances in two scenarios in the experiment 
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2.2.2 Modifications: The 3-D Computational Model 

2.2.2.1 Approach 

We defined a viewing sphere plane to represent 3d information. The relationship between a particular 

relatum and referent in intrinsic and relative relations are represented in Fig. 2.11(a) and (b), respectively. 

Apparently, the center of the circular reference plane is the middle point on the base line of the bounding box. 

The most functional improvement of our modified model is the reference plane is not fixed, but flexible. We 

take advantage of the centre of the referent and find the perpendicular line, which is set as half as the 

Euclidean distance from the referent to relatum. Then the reference plane is determined with a radius from the 

foot point to the centre of the circle. This ensures the referent always in an acceptance region. The enlarged 

acceptance regions are shown in Fig. 2.11(c). The angle θintr and θrela thereby become the angle between the 

main axis and the straight line from the projection of referent onto the sphere plane. It should be noticed that 

it may acquire an accidental front by virtual viewpoint in relative frame of reference.  

 

θintri and θrela can be formulated as: 
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The enlarged acceptance areas can compromise with the paradox mentioned above. Alternatively, our 

visual experiences and intuition suggest a preference for both reasonable options, that is, asserting these two 

spatial relations together. Evidence is supported by the data we obtained from the experiment described above 

that rest of 22 collected utterances, approximately 60% combine two canonical terms together. In practice, 

such phenomenon is quite common in English. Normally, no more than two spatial relations are combined, 

e.g., front and left or vice versa; or more regularly, using compound expressions, for example, users can 

depict Fig. 2.9(b) as the (referent) is to the right- front of the (relatum).  

Fig.2. 11: Modified intrinsic, relative relation templates, and enlarged acceptance regions for each orientation 
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  Specifically, Fig. 2.12 shows four compound regions corresponding to left-front, left-back, right-front and 

right-back. We also note that not only are the composites overlapping regions generated from canonical 

expressions, but enlarged to the presentation of that expression in the best way. 
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2.2.2.2 Experiments 

In this set of experiments, to evaluate our proposed model’s precision, we designed it as is able to 

automatically select the relatum. If there are several candidates available, our model is designed to choose the 

optimal one.  

Fig.2. 12: Compound expressional regions 
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The experiments are done in four steps: (1) detection, where we use the automatic object detection model to 

split the detected (known) and un-detected (unknown) objects; (2) indexing unknown objects, if multiple 

unknown objects are present; (3) choosing adequate relatum for each; and (3) recognizing, where given 

specified relatum and referent, we use our proposed method to evaluate spatial relationship between them. 

To determining the adequate relatum, we followed the very simple criterion, that is, the distance from the 

referent to the relatum, which is considered a crucial factor in state-of-the-arts [103]. We chose the object, 

which owns the shortest distance to the referent as relatum. We applied two kinds: Euclidean distance and 

Manhattan distance. If a pair of distance belonging to the same kind has the same value by coincidence, we 

opt for both and evaluate the spatial relationship in turn. 

We first test our model over canonical spatial expressions. The composites are not allowed. We invite 20 

university students to write down spatial descriptions for every unknown object in relation to all detected object 

that can serve as a possible relatum in total of 100 scene images. We then count the highest votes for each pair 

of objects as a benchmark. In experiments, we randomly selected 10 images per round; the experiment is 

conducted for 10 times.  

We evaluated the performance on 3 kinds of scene configurations, from easy to difficult, where 2-5 objects 

were placed on the table. We first examined the simplest cases where only one known and unknown objects 

exist. This indicates no need for evaluating the optimal relatum. Of all 30 images, our model successfully 

achieved the same results with what human participants wrote in advance in 28 images, as shown in row 1 of 

Fig. 2.13. Row 2 of Fig. 2.13 shows the observation of the result from another 30 images in which one 

unknown object is surrounded by two known objects. As we expected, because our modified model ensures the 

observation of finding the shortest projection from referent to the reference plane, the localization result is not 

unobtrusively influenced by the distance from relatum to referent, especially, in more than half of the cases the 

Manhattan distance we measured appears to be larger than the Euclidean distance. The precision is 97%, 

namely, only 2 out of 60 pairs of spatial relationship is identified by mistake. Finally, we tested the complicate 

case over 40 images with 2 or 3 objects being surrounded by 2 known objects. The result is shown in row 3 of 
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Fig. 2.13. Our model still performs stably. Among 220 spontaneous descriptions generated from our model, 

200 pairs of spatial relations, yielding approximately 91%, conforms to human experimenters’ answer.  

 

 

 

→ 

 

 

 

Next, we test the performance on the usage of compound spatial expressions. Along with the evaluation 

method of object detection, the precision of spatial recognition can be defined as: 

Fig.2. 13: Canonical spatial relation experiment result. Row 1: the scenarios of 1 referent vs. 1 relatum. Row 2: the 

scenarios of 1 referent vs. 1 or 2 relatum(s). Row 3: the scenarios of 2 or 3 referents vs. 2 relatums. The referent and chose 

relatum is linked by → 
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#  of true positive spatial relationships

Pr ecision=               
#  of recorded spatial relationships

         (2.1) 

 

Again, we required the students who have took part in the previous experiment to write down spatial 

descriptions. We used 60 images including 45 positives and 15 negatives. The scenarios are designed as 

simple. The positive images are arranged by 3 kinds of configurations: (1) 1 referent and 1 relatum only; (2) 1 

referent and 2 relatums; and (3) 2 referents and 1 relatum. In negative ones, we choose the simplest scene 

configuration with only 1 referent in relation to 1 relatum. Because canonical spatial expression is somewhat 

conflicted with the compound expressions, it is not allowed to utilize. We expect the model to alarm when 

confronting the negatives. The result is impressive, in total of 70 spontaneous descriptions generated from 45 

ones, 68 obtain the success with the precision is 93%. Since there is no description generated from the 

negative examples, we barely count the alarm times when referents are beyond the scope of compound 

regions. By comparing with the total of 15 given answers, the true negative rate is
13

100% 87%

15

  . Some 

representative results are shown in Fig. 2.14. 

 

  The interactive mode result is elaborated in Chapter 5. 
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2.2.3 The Model of Group-based Frame of Reference 

2.2.3.1 Approach  

The situation described earlier proves useful for scenes wherein only 1 object serves as a relatum. This 

study seeks to take this notion further, because we argue that it can also be applied in the case of groups of 

objects. When there are multiple identical or similar objects accumulated together in a scene, humans consider 

them to constitute a group. In this case, the group-relatum can be viewed as a whole bounding area, which 

functions as a rectangular sliding window across the group. 

Fig.2. 14: Compound spatial relation experiment result. The referent and chose relatum is linked by → 
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It has been observed that humans first determine whether the relatum has intrinsic parts in practice. Such 

cognitive behavior may give rise to conflict in the cases of those objects, e.g., computer display, accumulated 

together. For example, a description such as “The pocket calculator is in front of the computer displays” is 

ambiguous. It can be interpreted in several ways. The calculator can be located in front of a group of 

computer displays from the viewpoint of the speaker, with respect to the orientation of the group, or with 

respect to the intrinsic orientation of the computer displays. Herskovits [39] claims that a situation depends on 

whether it is seen from the inside or the outside of the group. In our approach, we discuss these two situations, 

which are called internal use and external use, respectively. Internal use refers to the interior spatial 

relations of the group in which the referent we intend to locate in relation to the relatum are both in the same 

group. In this case, human noticeably employ unary superlative. For example, they may use the terms such as 

leftmost, middle and rightmost. External use refers the exterior spatial relations in which the referent is 

independent from the group. In this case, we suggest that it could be viewed as a type of relative frame of 

reference. 

Internal Use 

Speakers describe the position of an object in a group using the spatial relations between the object and the 

group as a whole, such as: “the second from the left of those objects.” Additionally, humans also noticeably 

employ unary superlatives to describe group of objects. For example, they may use the terms leftmost, middle 

and rightmost, which are binary-level spatial relations based on projections of bounding boxes on the x and y 

axes. Therefore, we define them based on the Manhattan distance between bounding boxes.  

| | | |   manhattan x x y yD C O C O                             (2.2) 
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where C (x, y) is the centroid of the bounding box of the total group, and O(x, y) is the centroid of the 

bounding box of each object in the group. Then, the superlatives can be defined as:  

:   O   arg max{ }

:      O   arg min{

:  O   arg max{ }

}

manhatten

x x manhatten

x x manhatten

x xLeftmost C and D

Middle C and D

Rightmost C and D

               (2.3) 

 

External Use 

Speakers can specify the position of one object which does not belong to the group using the whole group as a 

relatum. This is defined likewise in the way of a conventional relative reference system presentation. 

2.2.3.2 Grouping Objects 

A core part of the model is grouping objects. This done by an agglomerative clustering algorithm resembles 

the K-means algorithm.  

  The k-means algorithm [57] is used to find features that are typical and representative for a give object 

category. It is one of the simplest and most popular clustering methods. It pursues a greedy hill-climbing 

strategy in order to find a partition of the data points that optimizes a squared-error criterion. The algorithm is 

initialized by randomly choosing k seed points for the clusters. In each iteration the data point is assigned to 

the closest cluster center. When all data points have been assigned, the cluster centers are recomputed as the 

means of all associated data points. In practice, this process converges to a local optimum within a few 

iterations. 

  In visual object recognition approaches [46, 87, 88, 89, 104, 105], many algorithms employ k-means 

clustering because of its computational simplicity, which allows to apply it to very large datasets. Similarly, in 

our work we inherit the idea to group concrete objects. 



52 

 

  However, the most deficiency of the algorithm is it requires the user to specify the number of groups in 

advance, which is not what our human beings do. Thus, developing an efficient automatic grouping algorithm 

is our long-term goal. 

 

The Grouping Objects Algorithm 

Input: 

n-the number of groups you want 

m- set of centroid vectors  

Local Variables: 

c- centroid coordinate matrix  

g - current iteration group matrix 

i -scalar iterator 

 

function y = groupObj(m n) 

   % initializes value of centroid to start clustering 

   for i  = 1:k 

    c(i,1) = m(i,1); 

    c(i,2) = m(i,2); 

   end 

   temp = zeros(maxRow, 1); % initialize as zero vector 

 

  While 1, 

    d = computeDist(c,m); % calculate objects centroid distance 

    [z,g] = min(d, [],1) % find group matrix g 

    If g = = temp, 

       break; % stop the iteration 

    else 
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       temp = g; % copy the group index 

    end 

    for i = 1: k 

       c(i,1) =mean(m(find(g==i), 1); 

       c(i,2) = mean (m(find(g==i), 2);  

    end 

  end 

   y =[m, g] 

end 

        

2.2.3.3 Experiment 

The experiment is an interactive manner. It should start from grouping objects. We use 100 images on the 

author’s dataset, containing several objects each. After objects are separated by known and unknown labels, 

the model enquires the user number of group. We show the textbox in Fig. 2.15.  

We imply 2 kinds of scene configuration: non-unknown objects and 1 unknown object. Experiments are 

done in three steps: (1) object detection; (2) labeling unknown object if there is; (3) input number of group; 

(4) grouping objects; and (5) identifying spatial relations. Fig. 2.16 shows the grouping results. In Fig 2.17, 

we show some results. The compound expression result is represented in the last row. 

 

Fig.2. 15: Text Input box 
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Fig.2. 16: Grouping results by k-means algorithm 
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Fig.2. 17: Recognition result 
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  However, such k-means algorithm has 2 known deficiencies. Firstly, it requires the user to specify the 

number of groups in advance, which is not what our human beings do for scene understanding. Secondly, the 

k-means procedure is only guaranteed to find a local optimum, so in some of cases, the results we obtain may 

be quite different from run to run. Fig. 2.18 shows a case in which the 4 objects are almost equidistance. We 

run the algorithm 3 times, it turns out that the result is different from time to time. Thus, developing an 

efficient automatic grouping algorithm is our long-term goal. 

 

 

 

 

Fig.2. 18: Deficiency of the resembling k-means algorithm: different results obtained 
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2.3 Conclusion 

We proposed a novel approach for recognizing objects by distinguishing spatial relations. The approach 

contains 3 templates, which can adopt in intrinsic, relative and group-based frames of reference, respectively. 

Especially, the improved 3-D model is flexible so that can cover more complex situations and compound 

linguistic expressions. We evaluate the approach in 3 experiments, which has shown the ability to accurately 

identify spatial relations in various scene configurations. All the experiments hitherto are conducted without 

human interaction. In Chapter 7, we would like to show the interactive experiment result. 
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Chapter 3  

Pose Estimation 

In natural scenes, objects are often arbitrarily placed. A typical case occurs in the use of intrinsic frame of 

reference. Since the intrinsic orientation is extracted from the relatum, irrespective of the user’s viewpoint, 

when the relatum is rotated, its axis must be adjusted correspondingly. In ground plane level, finding intrinsic 

front orientation seems the most striking case. Because once the front orientation is determined, the back, left, 

and right orientation can be deduced. Thus, the core part of the problem to be addressed is in relation to the 

pose estimation. In this chapter we propose a two step approach that concerns estimating the correct object 

pose. 

 

3.1 Instruction 

In natural scenes, objects are often arbitrarily placed. A typical case occurs in the use of intrinsic frame of 

reference. Since the intrinsic orientation is extracted from the relatum, irrespective of the user’s viewpoint, 

when the relatum is rotated, its axis must be adjusted correspondingly. The processes involve translate the 

origin of the frame of reference, rotate its axes to the relevant orientation, and choose a direction. Not all of 

these adjustments are required for every relation. Near requires setting the origin and the scale, whereas above 

requires setting origin, orientation, and direction [53]. In ground plane level, finding intrinsic front orientation 

seems the most striking case. Because once the front orientation is determined, the back, left, and right 

orientation can be deduced. Thus, the core part of the problem to be addressed is in relation to the pose 

estimation. In order to complete understanding spatial relation and objects representation in a visual scene, in 

this chapter we propose a two step approach that concerns estimating the correct object pose.  
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To reliably estimate object pose, we need to model their effect on the image features. We utilize significant 

image characteristics shared by object instances of the same category such as edge orientations and feature 

locations that can be used to constrain the pose and scale at which the object is imaged. Note that these 

estimators regardless of background. Our method shows that given appropriate training data and powerful 

feature, even a simple naïve Bayes classifier is sufficient.  

 Once we obtain such classifier for object pose, we can predict the same object instance pose with the 

similar one.  The positive training sets for these view-tuned classifiers contain much less feature variation 

compared to that of a pose invariant approach. Therefore the feature statistics are much easier to model. In 

fact, this is similar in spirit to the one used in keypoint descriptors such as SIFT [54] to achieve scale and 

rotation covariant keypoint recognition. SIFT uses maxima of Laplacian and the gradient orientation 

histogram to estimate the scale and rotation of the keypoints to be matched, both of which can be directly 

computed from image features. Our pose estimators replace this direct computation with a probabilistic one. 

Furthermore, as in the case of keypoint descriptors, we do not require these estimates to be perfect. 

Approximate values are sufficient because we rely on histogram based feature representations that are largely 

invariant to small changes in bounding box and view angle. 

  Overall, ours is a layered approach. Here by ‘pose,’ we defined it by the viewing angle. We first build a 

view sphere which contains 7 pose transformations. Then we train the estimator only on the bounding box 

dimension instead of on the whole image. We quantify the performance on the author’s database. More details 

about the author’s database introduce in Chapter 4. Finally, we compare two state-of-the-arts to prove our 

result is competitive. 

 

3.2 Related Work 

In the early days, vision researchers paid close attention to the 2D-to-3D correspondence, but many 

approaches were line-based and had many difficulties dealing with real-life images. The aspect graph of [48] 

presents a theory for modeling 3D objects with a set of inter-connected 2D views. This theory has a sound 
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psychological foundation (e.g. [12]) and has been very influential and underlies most approaches to 3D object 

recognition. 

Estimating the 3D pose of objects is a classical problem, and many solutions have been developed using 

either local features (e.g. [20]) or shape outlines (e.g. [45]), usually assuming perfect knowledge of the object. 

With the maturation of local feature detection (as in SIFT and its variants), latest progresses on pose 

estimation have mostly been local-feature based (e.g. [14, 22]) and performed fairly well on instances of 

objects, preferably with texture. There has been an increasing interest lately in 3D object pose classification, 

which aims at predicting a discrete set of viewpoints. A variety of approaches have been explored (e.g. 

silhouette matching [17] or implicit shape models [3] or virtual-training [13]). At the same time, many works 

on category-level classification also address the issue of multiple views (e.g. [77, 99]). The series of work 

from Savarese and Fei-Fei [79, 94, 95] directly address the problem of 3D viewpoint classification at the 

category and are the most relevant for us. They have developed a number of frameworks for 3D viewpoints, 

most adopting the strategy of grouping local features into parts and learning about their relations. Similar 

approaches have been adopted in a number of other works (e.g. [52, 56]) that show promising results. The 

3DObject dataset of Savarese et al [79] is a standard benchmark for viewpoint classification and has a 

systematic collection of object views. A number of categories from the PASCAL challenge [25], such as cars, 

are also annotated with viewpoints. We quantitatively evaluate our approach on these datasets. 

 The most recent progress sees the use of part-based templates [27]. These techniques have been shown to 

perform very well on real life cluttered images. The work of Gu[35] work is based on the mixture-of-HOG 

approach but focuses on viewpoints instead of categories. He explicitly handles viewpoints and train HOG 

models with a large number of viewpoints/components. His work also develops approaches for 

semi-supervised and unsupervised learning of viewpoints, and extends the discrete viewpoint model to the 

continuous case. Bao[4] introduce a new problem object co-detection. Given a set of images with objects 

observed from 2 or multiple images, the model is able to detect the objects, establish the identity of individual 

object instance as well as estimates the viewpoint transformation of corresponding object instances. He 
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measures appearance consistency between objects by comparing part appearance and geometry across images. 

 

3.3 The Model 

We use Naïve Bayesian classifier to learn the histogram distribution from a series of well-defined pose. For 

a novel pose, our objective is to match it with the closest samples. The result is represented by an azimuth 

angle. 

3.3.1 Building Key-Pose Structure  

In our model, an object pose is denoted the azimuth and zenith angles: α, see in Fig. 3.1. Practically, we take 

photos with a hand-camera by walking around an object to record pose changes. The canonical view of an 

object is defined as the most frontal view pose. Given a groups of images, we annotate them manually, first. 

We sample uniformly every 30-degree as a keypoint. For plane 180, we obtain 7 key poses in total. This is 

shown in Fig. 3.2. 

 

 
Fig.3. 1: Azimuth and zenith angle α, β representation 
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3.3.2 Image Feature 

Given a bounding box that defines a region of interested (ROI), we describe it in terms of histogram-based 

features, which have become the norm in object detection due to their ability to handle large intra-class 

variation and to provide robustness against errors in bounding-box size and location. In practice, we first 

compute at every pixel a SIFT descriptor [54]. We then assign to each pixel a cluster number to create label 

maps. The clusters centers are estimated using k-means. Finally, we create a spatial pyramid of gradient 

histograms (PHOG) [9]. Instead of from whole image area, we extract feature from a bounding area, which is 

Fig.3. 2: A car instance example. The key pose structure is built from 7 poses from the same viewpoint. 
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the smallest rectangular region enclosing the object of interest within the image such as the one in Fig. 3.3. 

The local shape is represented by orientations of an edge histogram within an object’s sub-region quantized 

into k-bin and each edge’s contribution is weighted by its magnitude. Therefore, each bin in the histogram 

represents the number of edges that have orientations within a given angular range. The spatial layout is given 

by tiling the object into regions at multiple resolutions (Fig. 3.3). As a result, at each level 0…l, the final 

shape descriptors consist of a histogram of orientation gradients over each object sub-region. In forming the 

pyramid the grid at level l has 2l cells along each dimension. Consequently, level 0 is represented by a 

k-vector corresponding to k bins of the histogram, level 1 by a 21×21×k-vector etc, and the PHOG descriptor 

of the entire image is a vector with dimensionality 4


l

l L
k and is normalized to sum to unity so that 

some objects (edge rich) are not weighted more strongly than others. For example, in our case, for levels up to 

l=2 and k =40 bins, it will be an 840-vector. 



64 

 

 

 

 

 

3.3.3 Pose Estimation 

  Since the key pose structure is quantized into 16 poses. The ith  pose is denoted by 
i

p {α} and p0 

represents a frontal view object. We compute the azimuth angle α for each image with respect to the canonical 

pose (frontal view).  

We then use a Naïve Bayes classifier to learn the mapping from the PHOG feature to the probability of 

each key pose. Naïve Bayesian Classifier is a simple classifier that can be considered as maximum a posterior 

for a generative model. We then apply the rule to learn the distributions of PHOG feature from each key pose. 

Fig.3. 3: A PHOG representation of a car instance at pose 0°. The ROI region is labeled with blue bounding 

box. With using a three-lever PHOG feature, a shape histogram of a ROI is a concatenation of histogram 

described at each level. 
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                                P(p | ph)i                            (3.1) 

 

where ph represents the PHOG computed in the given bounding box. It is obtained by concatenating the 

histograms from all regions inside the bounding box, 

                         
0 1 2 3 4

ph = [ph ,ph ,ph ,ph ,ph ,..., ph ]
m

             (3.2) 

where ph0 is the histogram covering the whole bounding box, ph1 to ph4 are the four histograms that are 

computed on the second level, and so on. The mapping between the pyramid histograms and the object pose is 

approximately calculated by  

                          

0

P(p | ph) = P(p | ph)
l

i i                      (3.3) 

  At run-time, given a bounding box in the image we compute the pyramid histograms and then use the 

learned mapping to estimate a distribution on the key pose. For the sake of simplicity, we take the object pose 

to be the one that maximizes the probability for the corresponding pose.  

3.3.4 Adjusting Front Orientation 

Since the pose variation from its frontal view pose can be estimated by 

                         
p α

α = argmax{P(ph | p )}


　
i

i
                         (3.4) 

 

the transformed front axis is the result of the rotation from the canonical position. Then the problem can be 

treat as the axis rotation problem, see Fig. 3.4. Assume a point in original coordinate is denoted as m(x,y) , 

then the transformed x and y coordinates can be represented by 

                         
tran x y

tran y x

x m cos m sin ,

y m cos m sin .

 

 

 


 
                     (3.5) 
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3.4 Experiment 

3.4.1 Pose Estimation Result 

We use PHOG descriptor within the range 0 to 360-degree into 40 histogram bins stored in cache and Naïve 

Bayesian classifier for each sampled window. Fig. 3.5 shows some representative results. We also evaluate 

the performance with depicting the precision/recall curves drawn for the author’s dataset in Fig. 3.6. 

In our experiment, the PHOG feature can capture shapes of objects effectively and thereby is noteworthy 

for l = 2 (0, 1, 2): with training examples, our method achieves an average performance of 93%, with the best 

results being over 98%. For cars, cellphones, and cameras, the accuracy is close to 91%, which make sense as 

these objects are more boxy. For shoes, race car and spoon, performance is average. We see the least 

successful cases gain for nozzle bottle and toothbrush, both of which are poorly captured with a rectangular 

window in that the front piece and the body of can be totally viewed as two parts. Besides, we found that the 

main pose confusion pairs are those off by 180-degree, for example, front vs. back.  

Fig.3. 4: axis rotation 
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Fig.3. 5: Example results of pose estimation. The last column of each category is the false estimation of category. 
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We compare the performance with M. Ozuysal[71] and Gu’s[35] model. The mean-average accuracy of 

ours in Table 2 is 80.1%, obtaining the second place. We observe that ours outperforms Ozuysal’s except the 

performance in car category. It is no coincidence that our results outperform his model. We use PHOG feature 

that can capture spatial distribution of edges. Moreover, in his model, rotation is limited to in-plane rotation 

on the ground. Gu’s model apply a discriminative template for pose classification based on a part-based 

templates [27]. The discriminative learning can address the classification problem directly and is very 

powerful in exploring noisy image data. 

Fig.3. 6: precision recall curves of 8 categories 

estimation of category. 
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3.4.2 Adjusting front orientation 

  Next, we test the performance of adjustment. Fig. 3.7 shows the result. The last row is the false adjustment 

results.  

Table 2: Comparison with the two models on the author’s database 

estimation of category. 
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3.4.3 Spatial Recognition Experiment 

We use 100 images in the experiment. With using the same setting, the experiment is are done in four steps: 

(1) detection, where we split the detected (known) and un-detected (unknown) objects; (2) indexing unknown 

objects, if multiple unknown objects are present; (3) estimating pose and adjusting the front axis if the relatum 

has intrinsic front; and (4) recognizing. Fig. 3.8 shows the result. 

Fig.3. 7: “Front” orientation adjustment 

estimation of category. 
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  Overall, the approach was efficient and accurate in practice for all the images tested. On average, the 

accuracy is about 91% for singular object detection, and 81% for multiple objects. The response time was 0.2 

seconds per round. Comparing to the cases with wide area of references (e.g. frontal-view of camera), the 

Fig.3. 8: Experiment results for recognizing spatial relation when adjusting “front” orientation  
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accuracy was slightly decreased in the cases with narrow area (e.g. front piece of toothbrush). And it is 

important to notice that the most significantly “hardest” case is using compound expressions. In such cases, 

the accuracy was greatly decreased. Actually, in practice, it seldom utilizes compound expressions perhaps 

humans feel difficult to re-config the cognition map.  

 

3.5 Conclusion 

In this chapter, we have introduced a pose estimator for adjusting front axis orientation extracted from the 

objects. We have acquired a database that contains continuous pose annotation and used it to train the 

estimator. By comparing their output to ground truth values obtained similarly, we showed that the estimator 

is accurate and stable. However, whether pose estimation can be performed reliably for an object category 

depends on the variation of image features as a function of object pose. The features, which are very 

significantly and in a statistically meaningful way, will be easier to design estimators and capture accurate 

posing information. Thus, a binary feature selection method will be discussed in the future. 

Our approach only can estimate a limited number of pose. Therefore automatic ways to determine the 

extension of pose variation is a requirement for further developments. The latent variables used in deformable 

part-based model can represent a change in object pose and each individual part model can represent 

appearance from a separate viewpoint. As a result the model has a potential to be used in covariant pose 

detection and estimation of the viewpoint. 
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Chapter 4 

Constructing the Database 

Database collection has been a critical part of computer vision research. A number of well collected 

databases have played an important role in visual recognition, such as Caltech 101/256[51, 34], 

PASCAL[25] However, none of them is suitable for spatial recognition tasks. In this chapter, we introduce a 

new database specially tailored for our experiment design. It is a two-fold dataset. The first part is used for 

specific object recognition tasks, which contains 122 objects from 24 categories. Each object is represented 

by 7 pose and slightly viewpoint and scale changes spaced evenly over the upper viewing hemisphere. In the 

second part of the database, there are in total of 400 scenarios where the learnt object appears together 

with several unknown objects. Using this database, we first learn and train the object model for recognizing 

specific object, then test it on the scenarios, separate the learnt and unknown. Our ultimate goal is recognize 

unknown objects collaborating with the user interface.  

 

4.1 Instruction 

Our ultimate goal is recognizing unknown objects via spatial relation collaborating with user interface. But 

before that, the system is expected to learn and model some objects from training images, recognize those 

objects in multiple-object scenarios to separate unknown and known objects, and estimate pose transformation 

so that deducing and adjusting the front orientation once the intrinsic frame of reference is determined. Thus, 

unlike other off-the-shelf databases, orienting to single mission, our database should be eligible in 3 tasks 

simultaneously: (1) it should contain singular object samples for object recognition tasks; (2) the objects 

collected should cover multiple pose, and multiple views; and (3) it should provide scenarios in which consist of 

undetected and detected objects--at least, 1 recognized object and 1 undetected object.  
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4.2 Relative work 

Database collection has been a critical part of computer vision research. A number of well collected databases 

have served as an important role in visual recognition. In this section, we introduce some databases directly 

related to our work. 

As a number of well labeled small database, Caltech 101/256[51, 34], MSRC [86] have played an 

important role in visual recognition. Caltech 101 was essentially the first widely adopted dataset for object 

categorization. It has 101 categories and 9146 images in total. The PASCAL VOC datasets are a series of 

datasets used for the PASCAL Visual Object class Challenges. It contains 20 classes. The total number of 

images gradually is increased year by year.  

Our dataset structure is similar to the ImageNet, but as a small one. ImageNet [21] is a large scale ontology, 

labeled image database. It uses a hierarchical structure and covers a wide range of visual concepts including 

animal, plant, artifact, geological formation, activities and materials. Currently, it consists of 21,841 concepts 

and there are a total of 14,197,122 images.  

The most related to our endeavor, the ETH-80[46] database contains hemisphere views of 80 objects from 

8 basic-level categories,  but only singular object within, no multiple object scenarios. Moreover, by 

extending the basic level concept, we classify objects at 4 semantic levels, from the highest abstraction to the 

lowest exemplar.  

Since there is no publicly database available, we aim to offer a new database both applicable to visual 

recognition and spatial recognition tasks simultaneously.  

4.3 Collecting Candidate Objects  

In this section, we present a new database with 400 × 300 pixel resolution color images. All images are taken 

with a Canon IXY 910IS digital camera. The database is twofold: single-object images are for visual 

recognition. And multiple-object scenarios are for spatial recognition. We first describe how construct the 

database and link the concept into a semantic hierarchy for visual recognition tasks. This is the training and 
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evaluation benchmark. Then, we describe how we organize objects to set scenarios for spatial recognition 

tasks. 

4.3.1 Collecting Candidate Objects for Visual Recognition  

4.3.1.1 Method 

At the first step, we aim to collect objects for object recognition and pose estimation tasks. It is important to 

note that the objects we collected are not restricted to the categories because it does not exist per se in the 

world [46]. In fact, the conception of ‘category’ is a learned representation [78] and extremely relying on 

experience. Rather, the basic-level categories [46, 78], which, have shown that it is widely used in human 

categorization at which most knowledge is organized [78]. Taking an example from Brown’s work, a dog can 

not only be thought of as a dog, but also as a boxer, a quadruped, or in general a animate being [11]. Yet, dog 

is the term that comes to mind most easily, which is by no means accidental. 

In addition, we explicitly do not intend to model functional categories, e.g. “things that you can sit on”, 

Even though those categories are important, they exist only on a higher level of abstraction and require a high 

degree of world knowledge and experience living in the real world [46]. Rather, we are interested in 

functional properties, e.g. “things have intrinsic side”. According to our empirical evidence, objects have 

intrinsic front and back side are more common in our daily life. Because of the symmetry in the left-right 

dimension, intrinsic left and right sides of objects are rare [100]. Thus, the most interesting case seems to 

determine intrinsic front. Once the intrinsic front is identified, the back, the left and the right side can be 

deduced accordingly. Previous works [5, 16, 23, 40, 55, 60, 92, 93, 96] have listed some principles to shed 

light on determination of intrinsic front. Those objects can be:  

 The intrinsic front is the side lying in the direction of motion. 

 The intrinsic front is the side containing the perceptual apparatus. 

 The intrinsic front is the side which is most frequently used. 
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We construct the database via ontology concepts, which is a semantic structure supported by the asset of 

WordNet [26], a lexical database of English. Each meaningful concept in WordNet is explained by multiple 

words or phrases, is called “synset”. They are not only described in linguistics, but also in cognitive science. 

The sysnsets of images in the database are interlinked by two types of relations. Similarly to WordNet, the “is-a” 

relation is the most comprehensive and useful. Moreover, the functional property is associated with the “has-a” 

relation, which can semantically describe the meaning such as a computer display has intrinsic-front side.  

The database organizes the different classes of objects into a hierarchy structure. It contains 3 levels. 

Apparently, basic-level category is the easiest for humans. Although it may be impossible to learn all the 

unique basic level for every object, there are objects that have become so much part of our daily life that their 

basic level is well-defined almost all over the world [46], e.g. apples, cars, etc. According to Rosch et al. [78] 

and Lakoff [44], this basic level is also 

 The highest level at which category members have similar perceived shape. 

 The highest level at which a single mental image can reflect the entire category. 

 The highest level at which a person uses similar motor actions for interacting with category members. 

 The level at which human subjects is usually fastest at identifying category members. 

 The first level named and understood by children. 

Subordinate category used in object identification can be found next to it. But we consider the 

superordinate categories which require a higher degree of abstraction and world knowledge as our starting 

point. For example, in Fig. 4.1, container is the highest level. The basic-level category can is adhering to it. 

The next lower level is a finer division in which we chose to include soda, cola, coffee and beer. 

                         

 

 

Fig.4. 1: A semantic structure of the container hierarchy 
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4.3.1.2 Collecting the Candidate Objects 

In our work, we intend to explore categorization for both nature and human-made objects. Inspired by 

ETH-80 and ImageNet, we include objects from six superordinate categories: “cloth & shoes”; “container”; 

“fruit & vegetable”; “instrument”; and “vehicle”. Fig. 4.2 lists the semantic structure in the current version of 

the database. 

In principle, there are two ways of building a database. A category can either by set up by a representative 

distribution of member objects reflecting their probabilities of occurrence in practice, or by a few prototypes 

that approximately span the category [82]. We resort the second option. Each object is represented by 42 

images from pose spaced equally over the upper viewing hemisphere and slightly viewpoint and scale changes. 

Currently, the database contains 132 objects collected from 30 categories and a total of 5,124 images. Fig. 4.3 

shows a snapshot of 2 branches of the container superordinate category. 

 

4.3. 2 Designing Scenarios for Spatial Recognition 

Relatum is the basis in establishment of spatial relation. In order to design quality and reasonable 

scenarios, we need to explore the question of what objects serving as relatums. In cognitive usage, a 

latent property governs the choice of relatum is the visual salience. Visual salience of a relatum 

depends on the interaction of basic features like size, shape and color, correlated to the 

corresponding attributes of the surrounding objects. As noted by [60, 96], if the objects are unequal in size 

or mobility, the larger and more stable is invariably encoded as the relatum. Consider the example in Fig. 4.3. 

This appears to be a predominant way of expressing spatial relations. If someone exchanges referent and 

relatum, saying the jar is to the left of the candle, it produces an odd-sounding result 
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Fig.4. 2: Semantic structure in current version of the database 
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Fig.4. 4: Designing scenarios with adequate relatum. The larger and more stable is usually treated as a relatum. If 

someone exchanges referent and relatum, saying the jar is to the left of the candle, it produces an odd-sounding 

result 

Fig.4. 3: A snapshot of the container abstract class containing two branches: the top row is from the can category; the bottom 

row is from the dispenser category.  
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Currently, we have collected 720 scenarios in total with 1-3 unknown objects being placed around and 1-2 

detected objects nearby. All the detected objects are basically at their frontal view. Example scenarios are 

shown in Fig. 2.6, 2.7, 2.13, 2.14, 2.16, and 2.17. 

 

4.4 Conclusion 

In this chapter, we introduce a new database specially tailored for the experiments. The database is built 

upon ontology structure, which can be easily expanded new domain or instance for the long run. We elaborate 

the criteria for us to collect the candidate objects. Then we describe how we design scenarios for spatial 

recognition tasks. We have conducted experiments on the database. In the next chapter, we introduce the 

experiments in interactive mode on the database. 
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Chapter 5 

Interactive Object Recognition 

Having explained the structure and operation of the integral system, and validated on a variety of categories 

for each model, now we evaluate the performance on the proposed dataset experiments. We also perform 

experiments to make a comparison between of the original and improved models. 

 

5.1 Integral System Overview 

We conduct experiments on the integral system. It contains a user interface, an object detector and a pose 

estimator and an object spatial recognition model. We use the detector provided by Dipnkar[19].An untrained 

image is first served by an object detector, where pre-learnt object is detected. If the target object is still 

undetected, human users manually annotate the object and instruct the system to recognize it via spatial 

relations. User will benefit from a user interface, which requires typing simple instruction. The interface can 

systematically analyze semantic components, separating the referent as well as that of the relatum, and the 

spatial relation between them. Corresponding to the object information recorded in the database, this step can 

make the system clear which frame of reference template should be taken. Once the intrinsic frame of 

reference is determined, we match the pose transformation and adjusting the front orientation.  

 

5.2 The role of Natural Language 

We use a user interface to control the system. The interface is developed to understand some simple 

English words and grammatical structures, such as bring, how many, what and which. To adopt this system 

to group use, the input toolbox was further developed to understand noun-s(es) rules. We restricted user input 
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commands to the following set format, e.g. Bring me (referent), or It is (spatial expression) the (relatum) 

Table 3 lists the semantic form and grammatical structure. 

 
Table 3: Grammar, symbols and linguistic form used in the interaction 
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5.3 Experiment 1: close linguistic form 

  In this set of experiments, the model collaborated with an interaction interface over 600 images. The 

experiments are done in 3 main steps: (1) detection, where using the same setting as in the Experiment 1; (2) 

annotating, where labeling unknown objects by users; (3) interaction, where users are required to stated 

intentions via input instructions if target objects are not detected yet. We note that users can interact with the 

system for several times till all the objects are detected if more than one object is in the image. And it is also 

allowed to use the objects which have been detected previously serving as relatums in the new round.  

  30 university students who are trained to familiar with our system participant the experiment. They are 

required to sit in front of a computer, and received 20 images at each round. Close linguistic form means we 

restrict the syntactic form format, but users can develop their own strategies thorough the procedure, for 

example, how to refer objects. During the instructions, the users are not directed as to which expression 

should or should not be used. The interface is able to process prepositional phrase including a projective term, 

such as “to the left of” or — simpler—“left side”. For utterances of compound expressions, we consider two 

possibilities. One is, combining two canonical expressions, e.g. “the (referent) is in front of and to the left of 

the (relatum)”; another one is using the composites, e.g. “the (referent) is to the left-front (side) of the 

(relatum)”. When the instruction could not be interpreted by the system, the users received the response like I 

don’t understand. They then try further to make their instructions understood. If users do not succeed till the 

number of processing exceeds the number of objects in the image, the system skipped and moved to the next 

image. Such a new start often encouraged the participants to reconsider their strategies [6]. The most 

substantial advantage of the experimental design is it guaranteed that the users chose the frame of reference 

which is most suitable for the query without any external disturbance. In addition, if more than one referent is 

detected at one acceptance region and therefore can share the same spatial relations in relation with a relatum, 

the strategy is enquiring whether it is the target object one by one. 

  The way of determination of group use is to detect whether a sentence contains the word group, or plural 

noun. If there is, the system enquires the number of group. 
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The experiments are conducted for 3 times and we collected a total of 3,352 instructions, corresponding to 

an average of 167.6 per person. Among the instructions, 436 utterances (13% of the total) cannot be 

interpreted because of thoroughly syntactic form or spelling errors. Of the 2,916 validated instructions, 

2,450(approximately 84%) lead to success, 466 instructions (16%) are not be interpreted successfully because 

the users either confused right and left regions, or used their own viewpoint.  

Of every 20 images test by each participant, 5 are randomly selected to report how many and what objects 

have already “seen” at the beginning. Results therefore yield with respect to whether provide a scene 

description. Among the 783 validated instructions generated after a scene description is provided, the 

precision is as high as 88%.Meanwile, 1533 validated instructions are produced without a scene description 

with the precision is slightly decreased to 80%. The reason for failure in most unsuccessful instructions is 

users named the objects that the system could not understand and perceive.  

Regarding instructional strategy, when the scene description is provided, most of the users would like to 

directly refer the referent. For example: 

               

 

 

 

If the scene description is not available, instead of directly referring the referent, users opt for other objects 

for help. This reflects user’s intention for finding out what is understandable for the system, for example, 

users sound out the system by asking “Can you see the book?” Fig.5.1 and Fig. 5.2 show the complete 

transcripts with the scene description provided and unprovided. In the use of group-based frame of reference, 

we use 2 strategies. Fig. 5.3 and Fig. 5.4 show two strategies adopting internal and external manners, 

respectively. In the former case, we use the incremental strategy to guide the system, which make users more 

easily to be clear about how much the system understands the scene context. Whereas we apply a more 

System: I can see a book and a stapler. 

User: The CD is to the right of the book. 
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straight way to ask the system whether can find the group. If the system fails to find group of objects more 

than 3 times, it reports to the user that can’t see the objects. 
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User: Can you see the tape? 

System: No. I do not know what it is.   

              Where is it? 

User: Can you see the bottle? 

System: Yes, I can. 

User: The tape is at the right side of the bottle. 

System: Is this one? 

User: Yes. 

--------------------------------------------- 

User: Bring me the plug? 

System: No. I do not know what it is.   

              Where is it? 

User: It is to the right - front the tape. 

System: Is this one? 

User: Yes.  

 

Scene1 Transcript1 

Non-scene description strategy 

Fig.5. 1: transcript without scene description given 
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Scene description strategy 

Fig.5. 2: transcript with scene description given 

Scene1 Transcript2 

System: I can see 2 objects. Cup and box. 

User:  A can opener is in front of the box. Can you see  

it?  

System: I see two. Is this one? 

User: No. 

System: Is this one? 

User: Yes. 

------------------------------------------------------------------- 

User: Bring me the cake. It is at the left -front side of  

the cup. 

System: Is this one? 

User: Yes.  
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jar

User:  Can you see the jar? 

System: Yes, I can. 

User: How many jars can you see?  

System: I can see three. Are they a group? 

User: Yes. 

System: I see. (show the grouping results, the pink 

bounding box and wait for user 

confirmation)  

          Is this one? 

User: Yes.  

      No. 

------------------------------------------------------------------- 

User: the rightmost one. 

System: Is this one? 

User: Yes.  

     No. 

------------------------------------------------------------------- 

System: Sorry, I cannot see it. 

×3 

≦number of 

detected objects 

Fig.5. 3: Instructional strategy in internal case in the use of group-based frame of reference 
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We also calculate the search time. The system is implemented in Matlab and C/C++. The search time, 

which excludes the interaction time with human users, is measured from the instruction the user provides to 

the first sliding window shown. In average, operating on 400 × 300 pixel images, an object is detected in 1.7 

seconds on 2.80GHz Intel® Core(TM) i7 CPU. The kinds of objects do not influence the result, but their sizes 

do.  
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front

group

can User:  Can you see a group of cans? 

System: No, I can’t. How many cans are there? 

User: three. 

User: Yes. 

System: I see. (show the grouping results, the pink 

bounding box and wait for user 

confirmation)  

        Is this one? 

User: Yes.  

      No. 

------------------------------------------------------------------- 

User: the flashlight is in front of the group. 

System: Is this one? 

User: Yes.  

     No. 

------------------------------------------------------------------- 

System: Sorry, I cannot see it. 

×3 

≦number of 

detected objects 

Fig.5. 4: Instructional strategy in internal case in the use of group-based frame of reference 
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Our results show two interesting facets. One is users prefer to use incremental, e.g., the (referent) is to the 

left of the (relatum), rather than goal-based instructions, e.g. the left (referent), which is believed as easier for 

the system. However, the restricted linguistic setting that users employ somewhat limits the range of 

instructions, a major long-term goal is to employ a broader range of instructions, namely, unrestricted 

linguistic forms. The other one is for speakers, composites is more frequently used than canonical expression, 

although for the listener the canonical expression is more useful than the composite expression. The two 

observations are extremely valuable for us to investigate how spatial configurations influence instructional 

strategy and achieve natural, unconstrained communication in the future.  

 

5.4 Experiment 2: Comparison with the original model 

Finally, we compare the modified approach with previous version with implementing the compound 

template into the original one. 30 images from which have been used in previous experiments are selected. 

The test images consist of 2-3 referents and 1-2 relatums. 6 university students who have taken part in the 

second experiment are invited. They are required to run the two models on the same computer in turn. We 

first run the old one and record the validated and well-understood instructions, then the new model with the 

same instructions. The system reports to user what objects could be seen as long as the scene images are 

shown at the beginning. Fig. 5.5 shows 7 exemplars. The performance of our method, denoted as Ours-new 

and Ours-old, respectively in Table 4. As a result, our improved model gains superior performance than the 

previous one. All objects were localized successfully with users commends by the new model whereas only 1 

test scene were achieved success by the old one. 
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Scenarios Referents Relatums Used spatial expression Recognition method 

Ours-new Ours-old 

Scene 1 component Coffee right front √ ☓ 

flashlight Mug right √ ☓ 

Scene2 wasabi basket right √ ☓ 

 kitchen pad basket left √ √ 

Scene3  teddy bear case right back √ ☓ 

ink case front √ √ 

 keys cup front √ √ 

Fig.5. 5: 7 example scenarios for comparative experiments 
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Scene4  metallic scrub bottle left √ ☓ 

kitchen pad bottle right front √ ☓ 

Scene5 wasabi soda back √ √ 

kitchen pad basket left √ ☓ 

Scene6 wasabi basket front √ √ 

bag clip basket right √ √ 

Scene7 green bag cup left √ √ 

snack cup left back √ ☓ 

 

 

5.5 Failure Case Study 

  We analyze the failure cases and found that the majority of error occurred in the front and the back cases.  

We ascribe the problem to the occlusion. The stricter front/back the referent situates, the worse the 

performance is, especially, when referent and relatum are almost collinear. In Fig. 5.6(a), the near 

one—referent often obscures the far object—the relatum, it can give rise to the insufficient coverage from the 

feature detector in the form of skew bounding box. In Fig. 5.6(b), on the contrary, the referent is hidden at the 

back side of the relatum, which results in an inaccurate annotation. Thus, we intend to employ range data 

method which is derived from images where the data is range or distance rather than intensity. 

Moreover, the one-by-one-requiring instructional strategy doesn’t practicable where 5 or even more objects 

are accumulated together. According to our experience, perhaps 3 or 4 objects are the maximum. A 

Table 4: the results of comparison the approach with previous model  
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conceivable way of remedying the problem is to clarify more details of the relevant referent, for example, 

color, which is believed as the most directly perceived information to identify objects. 

 

              

 

 

 

 

    

 

 

 

 

 

(a)                                     (b) 

Fig.5. 6: Failure case study: occlusion. (a) referent obscures the relatum; (b) the referent is 

hidden at the back side of the relatum 
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Chapter 6  

Conclusion 

 

In this work, we proposed an approach of integrating with a linguistic interface for object 

localization tasks. The goal is to offer a simple and natural way for human users to instruct a robotic 

system to locate intended objects. The core is a geometrical mapping function between spatial 

expressions and characteristic points on a reference plane. On the basis of previous work, we 

examined the existed problems and resolve the model on a 3-D plane. The modified model, on one 

hand, is flexible enough to ensure referent is always in the acceptance region in association with 

relatum irrespective of distance between them. On the other hand, the refined acceptance regions 

are designed to be capable of interpreting projective expressions, not only singular forms but also 

the composites. To validate our approach, we built a novel database specifically tailored to the task. 

We tested our approach on our database. The database is organized by its ontology concepts. We’ve 

shown convincing results that the ability to accurately localize objects obeying users ’intension.  

Since in nature scenes, objects are usually arbitrarily placed, a measure that would allow 

adjusting main axis direction when relevant objects are at an arbitrary pose or viewpoint would be 

an interesting direction, Perhaps finding front is the most interesting and crucial case as it weighs 

the highest priority in all 4 canonical directions. In this thesis, we have applied a classifier for 

estimation pose transformation. It can learn and capture the characteristics of different poses and 

can be directly used for pose classification. The main contribution is to show the applicability of 

finding virtue “front” orientation by the classifier. Our results are competitive on our database.  
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Although our work is still in a preliminary stage, we believe that our results are very important in 

visual recognition tasks. Our work discusses the problem from a novel perspective. 

Possible directions for future work could include two domains. More candidate images with large 

scale and viewpoint changes should be collected for further experiment use. Furthermore, to address 

the occlusion problem, we opt for range data method for solution. Third, by integrating with other 

kinds of visual cues seeks for more to distinguish objects while a pair of spatial relation is available 

for several objects. Finally, we intend to carry out more experiments including more complicated 

configurations and diverse objects. 
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