
Doctoral Dissertation

Making Existing Reactive Systems
Anticipatory: Methodology and Case

Studies

Kai Shi

Graduate School of Science and Engineering,
Saitama University

Supervisor: Professor Jingde Cheng

June 2013

Abstract

A reactive system is a system that maintains an ongoing interaction with its
environment, as opposed to obtain a final result. Various reactive systems play
very important roles in modern society, such as bank transfer systems, web servers,
operating systems, computer networks, air/railway traffic control systems, elevator
systems, and nuclear power plant control systems. Since an accident or an attack of
a critical reactive system may cause financial loss and even casualties, the biggest
challenge for reactive systems is not only to ensure the system functionality, but
to prevent these accidents and attacks.

A traditional reactive system is usually passive, i.e., the system can only per-
form those operations in response to instructions explicitly issued by users or ap-
plication programs, but have no ability to do something actively and anticipatorily
by themselves. From the viewpoint of safety engineering and security engineer-
ing, a traditional passive reactive system only has some quite weak capability to
defend accidents and attacks from its external computing environment. In order
to prevent accidents/attacks beforehand, it is desired that a reactive system is
anticipatory, i.e., the system can detect and predict omens of accidents/attacks
anticipatorily and then take some actions to inform its users and perform some
operations to defend accidents/attacks by itself. Therefore, from the viewpoints of
high safety and high security, any critical reactive system should be anticipatory.

In order to build practically useful reactive systems with the ability of antici-
pation, Cheng proposed anticipatory reasoning-reacting system as a certain class
of computing anticipatory systems, which is a computing system can predict based
on the predictive model then take anticipatory actions according to the predictions
as well as take reactive actions to the current situation based on the behavioral
model. The most important features of proposed anticipatory reasoning-reacting
systems are: (1) both the prediction and decision making are base on logic-based
forward reasoning, and (2) an anticipatory reasoning-reacting system is a simple
extension of a reactive system.

However, there are many critical existing systems which perform routine op-
erations well but do not have the ability of anticipation to handle accidents and
attacks. These systems no longer satisfy the requirements of high safety and high
security. Furthermore, it is impractical, if not impossible, to rebuild the whole sys-
tem to be anticipatory, because reimplementation of the whole of a system results
in high cost. On the other hand, it is not necessary and economic to rebuild the
whole of an existing reactive system with anticipatory ability, if it is possible to
extend certain types of existing systems with anticipatory ability without affect-
ing its original functions. However, by now, there is no study about which kind of
reactive systems can be extend to be anticipatory, and no study about how to add
anticipatory ability without affecting or with minor affecting the original system.

Therefore, we argued it is possible to extend an existing reactive system (called
legacy system) to be an anticipatory reasoning-reacting system (called target sys-
tem) without reimplementing the whole of the system, and proposed a general

methodology to realize such an extension. In this research, we first investigated
and analyzed current reactive systems, in order to find out how the current reactive
systems ensure the safety/security, and to find out which kind of existing reactive
systems can be made anticipatory. Based on the analysis, we specified some re-
quirements for the legacy systems which can be extend to be anticipatory. Then
we discussed why it is possible to extend a reactive system anticipatory without
affecting its original function. Based on the above work, we proposed a general
architecture of anticipatory reasoning-reacting system for the extension, and a gen-
eral process to extend an existing reactive system to be anticipatory. The main
phases of the process include: (1) to analyze the target domain, aiming to find out
possible accidents/attacks in the target, as well as their causation, formation pro-
cess, and the consequence, (2) to analysis the legacy system, aiming to ensure the
original function of the system, find out how to get information used for detection
and prediction from the system, and find out which function of the system can be
used as anticipatory actions, (3) to define requirements of the target system, (4) to
construct the anticipatory models, which underline both predicting and choosing
anticipatory actions, and (5) to prepare the anticipatory components, especially
to design and implement the special components for the certain target domain,
and to integrate all anticipatory components with the legacy system. The novelty
of the methodology is that it does not affect the system’s original function, and it
can deal with various reactive systems by using the same process.

In order to show the effectiveness and usefulness of our methodology, we chose
three typical reactive systems as case studies: emergency elevator evacuation sys-
tems, runway incursion prevention systems, and computing application servers,
then applied the methodology to extend these systems to be anticipatory. For
each case study, we elaborated its motivation, system design, system implemen-
tation, and evaluation, as well as showed how to apply the methodology and the
advantage of the certain anticipatory reasoning-reacting system in that case study.
After presented the case studies, we evaluated the methodology from viewpoint of
generality and particularity.

This work has following contributions. First, we conceived a new approach
to improve existing reactive systems safety and/or security by extending the sys-
tem with anticipatory ability. Second, we proposed a general methodology, which
can extend various reactive systems with anticipatory ability, and we showed the
effectiveness of the methodology by applying the methodology to different case
studies. Third, we built three practical ARRSs in the case studies, thus showed
the practical usefulness of anticipation and ARRSs for safety and security. Previ-
ous studies of ARRSs are mainly theoretical, such as formal definition, architecture
design, mechanism of prediction and decision-making, and prototype implementa-
tion, thus, there was a gap between those theoretical work and practical ARRSs.
Whereas, in this work, we built practical ARRSs, as well as solve several practical
problems when building practical ARRSs.

This thesis is organized as follows. Chapter 1 presents the background, motiva-
tion, and purpose of this work. Chapter 2 surveys reactive systems, and analyzes
the feasibility to extend an existing reactive system to be anticipatory. Chapter 3
gives a review of anticipatory reasoning-reacting systems. Chapter 4 presents the

ii

methodology to extend the existing reactive systems to be anticipatory. Chapter
5 shows a case study of emergency elevator evacuation systems. Chapter 6 shows
a case study of runway incursion prevention systems. Chapter 7 shows a case
study of computing application servers. Chapter 8 discusses the generality and
particularity of the methodology. Concluding remarks are given in chapter 9.

iii

Acknowledgments

I would like to gratefully and sincerely thank my thesis supervisor Professor
Jingde Cheng for his guidance, understanding, and invaluable support through my
graduate studies. I am also grateful to my dissertation committee: Professor Nori-
hiko Yoshida, Associate Professor Toshinori Yamada, Associate Professor Noriaki
Yoshiura, and Associate Professor Takashi Horiyama for their support, valuable
feedback, and insightful ideas to this research. I am really grateful to Assistant
Professor Yuichi Goto for teaching me how to do research and helping me in all
respect. I would like to thank Professor Zhiliang Zhu, and Associate Professor
Dancheng Li for their invaluable support through my graduate studies. I would
like to thank Bo Wang, Hongbiao Gao, Da Bao, and other AISE lab members who
have helped me in my doctoral research. I would also like to thank Dr. Ang Li
and Dr. Bo Zhang for their help for my research. Finally, I would like to thank
my wife and my daughter for their understanding and invaluable support.

iii

Contents

Abstract i

Acknowledgments iii

List of figures vii

List of tables viii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Purposes and objectives . 2
1.3 Structure of this thesis . 2

2 Reactive systems and feasibility analysis of extension 3
2.1 Overview . 3
2.2 Functions and classification . 4
2.3 Safety and information security . 5
2.4 Approaches to develop reactive systems 5

2.4.1 Statecharts . 6
2.4.2 Temporal logic . 6
2.4.3 Bigraphical reactive systems 7
2.4.4 Synchronous programming of reactive systems 7
2.4.5 Fault tree analysis . 7
2.4.6 Object-oriented approaches 7
2.4.7 Secure reactive systems . 8

2.5 Need of extension with anticipation 8
2.6 Feasibility analysis of extension . 9

3 Anticipatory reasoning-reacting systems 10
3.1 Logic-based forward reasoning on ARRS 10
3.2 Overview of ARRS . 13
3.3 Safety and information security . 15
3.4 ARRS: The candidate of target system for extension 15

4 A methodology to make existing reactive systems anticipatory 17
4.1 Overview . 17
4.2 Requirements of legacy systems . 17

iv

4.3 Target system . 17
4.4 Phases . 18

5 Case study: Emergency elevator evacuation systems 23
5.1 Overview . 23
5.2 Introduction . 23
5.3 Ideal emergency elevator evacuation systems 24
5.4 Current emergency elevator evacuation systems 25
5.5 Anticipatory emergency elevator evacuation systems 26
5.6 Simulation program of the legacy system 27
5.7 Applying the methodology . 28
5.8 Simulation experiments . 31
5.9 Summary . 33

6 Case study: Runway incursion prevention systems 34
6.1 Overview . 34
6.2 Introduction . 34
6.3 Problems of current runway incursion prevention systems 36
6.4 Anticipatory runway incursion prevention systems 37
6.5 Applying the methodology . 38
6.6 The implemented ARIPS . 40

6.6.1 Overview . 40
6.6.2 System architecture . 41
6.6.3 Filtering . 41
6.6.4 Predicting . 42
6.6.5 Decision making . 45
6.6.6 Databases . 47
6.6.7 Ad hoc methods for efficiency 48

6.7 System mechanism . 48
6.8 Simulation experiments . 50
6.9 Discussion . 55
6.10 Comparison with related work . 56
6.11 Summary . 57

7 Case study: Information security of computing services 58
7.1 Overview . 58
7.2 Introduction . 58
7.3 Ideal malice defense systems . 59
7.4 Current intrusion detection systems 62
7.5 Advantages of ARRSs for malice defense 62

7.5.1 Logical reasoning method 62
7.5.2 Persistent computing . 63

7.6 Applying the methodology . 63
7.7 The implemented system . 64

7.7.1 Overview . 64
7.7.2 Architecture . 65

v

7.7.3 Mechanisms . 66
7.8 Evaluation . 68

7.8.1 KDD99 . 68
7.8.2 A case study of web server 68

7.9 Summary . 69

8 Discussion 71

9 Conclusions 72
9.1 Conclusions . 72
9.2 Contributions . 72
9.3 Future works . 73

Publications 74

vi

List of Figures

2.1 A transformational system as a black box 3
2.2 A reactive system as a “black cactus” 4
2.3 Extending a legacy reactive system with anticipatory function . . . 9

3.1 An architecture of an anticipatory reasoning-reacting system 13

4.1 A general architecture of the target system 19
4.2 Data flow diagram of the target system 19

5.1 Results of three groups of experiments 33

6.1 An architecture of ARRS-based ARIPS 40
6.2 A basic architecture of current runway incursion prevention system 40
6.3 Naming different regions of airport with unique names 42
6.4 Predictor’s data flow diagram . 43
6.5 Transforming sensory information into logical formulas 45
6.6 Decision maker’s data flow diagram 47
6.7 An incident occurred on 18 June 2010 at Zurich airport 49
6.8 Meaning of execution time . 51

7.1 System architecture . 66
7.2 Data flow diagram of anticipation 67
7.3 The experimental environment of ARRS for web server 70

vii

List of Tables

5.1 Predicate dictionary of the world model 29
5.2 Predicate dictionary of the behavioral model 29

6.1 Predicate vocabulary . 46
6.2 Airport surface movement surveillance performance. 51
6.3 Comparing current RIPS and/or human with ARIPS in the total

time of prediction/detection and total time of decision making for
instructions . 54

7.1 Comparing current IDSs with ideal malice defense systems 61
7.2 Detection performance on the KDD99 test dataset 69

viii

Chapter 1

Introduction

1.1 Background and motivation

A reactive system maintains an ongoing interaction with its environment, as op-
posed to obtain a final result [85]. Various reactive systems play very important
roles in modern society, such as bank transfer systems, web servers, operating sys-
tems, computer networks, air/railway traffic control systems, elevator systems, and
nuclear power plant control systems. Since an accident or an attack of a critical
reactive system may cause financial loss and even casualties, the biggest challenge
for reactive systems is not only to ensure the system functionality, but to prevent
these accidents and attacks [17, 120].

A traditional reactive system is passive, i.e., it only performs those operations
in response to instructions explicitly issued by users or application programs, but
have no ability to do something actively and anticipatorily by itself. Therefore, a
passive reactive system only has some quite weak capability to defend accidents
and attacks from its external environment. In order to prevent accidents/attacks
beforehand, it is desired that a reactive system is anticipatory, i.e., the system
should be able to detect and predict accidents/attacks, take some actions to in-
form its users, and perform some operations to defend the system from possible
accidents/attacks anticipatorily. From the viewpoints of high safety and high se-
curity, any critical reactive system should be anticipatory [38].

To build practical anticipatory systems [154] with high safety and high secu-
rity, Cheng proposed anticipatory reasoning-reacting system (ARRS) [38], which
is a computing system that can predict based on the predictive model, then take
anticipatory actions according to the predictions as well as take reactive actions
to the current situation based on the behavioral model. In other word, an ARRS
is a reactive system with ability of anticipation. Some prototypes of ARRSs were
implemented [105, 159].

The problem is that most of existing reactive systems are not anticipatory,
furthermore, it is impractical, but not impossible, to rebuild them to be anticipa-
tory, because reimplementation of the whole of a system results in high cost. If
we can extend an existing reactive system with anticipatory ability but preserving
the system’s original functions, we can improve the system safety or security at a
relatively small cost. However, there is no study about whether it is possible to

1

extend an existing reactive system to be an anticipatory and how to realize such
an extension.

1.2 Purposes and objectives

Our purpose is to propose a general methodology to extend an existing legacy
reactive system with anticipatory ability without reimplementing the whole of the
legacy system. By extending an existing reactive system anticipatory using our
methodology, we can get a new generation system, indeed an ARRS, with higher
safety and higher security.

Our work involves following objectives. First, we show existing reactive sys-
tems’ need for extension with anticipation and feasibility of the extension, based
on the analysis of current reactive systems and their development approaches.
Second, we propose and elaborate the methodology for extension. Third, to show
the effectiveness and usefulness of our methodology, we apply our methodology
to different reactive systems. In this work, we chose three typical reactive sys-
tems as case studies: emergency elevator evacuation systems, runway incursion
prevention systems, and computing application servers. For each case study, we
elaborate its motivation, system design, system implementation, and evaluation,
as well as showed how to apply the methodology and the advantage of the certain
anticipatory reasoning-reacting system in that case study. Finally, after presented
the case studies, we evaluate the methodology from viewpoint of generality and
particularity.

1.3 Structure of this thesis

This thesis is organized as follows. Chapter 1 presents the background, motivation,
and purpose of this work. Chapter 2 surveys reactive systems, and analyzes the
feasibility to extend an existing reactive system to be anticipatory. Chapter 3
gives a review of anticipatory reasoning-reacting systems. Chapter 4 presents the
methodology to extend the existing reactive systems to be anticipatory. Chapter
5 shows a case study of emergency elevator evacuation systems. Chapter 6 shows
a case study of runway incursion prevention systems. Chapter 7 shows a case
study of computing application servers. Chapter 8 discusses the generality and
particularity of the methodology. Concluding remarks are given in chapter 9.

2

Chapter 2

Reactive systems and feasibility
analysis of extension

2.1 Overview

Harel and Pnueli introduced the notation of reactive systems in 1985 [85]. Accord-
ing to Harel and Pnueli, we can divide systems into two classes, transformational
and reactive systems [85]. A transformational system accepts inputs, performs
transformations on them and produces output, i.e., a final result on termination,
shown in Figure 2.1 [85]. By contrast, a reactive system is a computing system
whose role is to maintain an ongoing interaction with its environment rather than
to compute some final value on termination [85, 126, 145]. Figure 2.2 shows a
reactive system M is a “black cactus” which “thorns” are the interface elements
comprising the set E [85]. The behaviors of M is a subset of the words over E
[85].

Reactive systems have the following characteristics [178].

• A reactive system continuously interacts with its environment.

• The interactions between the system and its environment is nonterminating.
The termination of the system is usually considered to be a failure.

• The system must respond to external events of the environment when they
occur. To respond to external stimuli concurrently, the system can be con-
current [77, 126], as well as be sequential with the ability to respond to
interrupts [145, 178].

Figure 2.1: A transformational system as a black box

3

Figure 2.2: A reactive system as a “black cactus”

• The system must response to an external event under a stringent time re-
quirements.

• The response of the system rely on the sequences of the input events. The
response may leave the system in a different state than it was before. In
other words, the response of the system depends on its current state and the
external event that it responds to.

• The response consists of enabling, enforcing, or prohibiting communication
or behavior in its environment.

• The behavior of the system often consists of a lot of interacting processes
that operate in parallel.

2.2 Functions and classification

A reactive system can have three kinds of functions [178]:

• Informative: To provide information about the subject domain, such as to
answer questions and produce reports.

• Directive: To direct the entities in the subject domain, such as to control or
guide a physical entity.

• Manipulative: To manipulate lexical items in the subject domain, such as to
create, remove, or modify lexical items.

An informative function requires system receives a message from a sender and
responds to the same sender. Such a message may or may not be part of the subject
domain. The message is usually a query or update request, and the response is an
answer or update confirmation.

A directive function constrains or influences the subject domain. The sender
of the message and the receiver of the response are usually different entities in the
subject domain. Other possible sources and destinations of messages may be a
system operator and a system client, who are not in the subject domain. They
may send messages to the system that lead to directives sent to subject domain
entities.

4

A manipulative function constructs and maintains a domain of lexical items.
lexical items represent conceptual entities such as texts, graphs, contracts, and
specifications. The source of the messages about the subject domain is some
entity in the environment, such as a system user, and the response is usually an
update of the constructed lexical items plus a feedback to the source and possibly
to other external entities. In this case, the manipulated lexical domain entities are
part of the reactive system.

Generally, one reactive system has one significant function, thus we can classify
the reactive systems by their functions. Accordingly, there are three classes of
reactive systems, i.e., informative reactive systems, directive reactive systems, and
manipulative reactive systems.

2.3 Safety and information security

Safety and information security are typical emergent properties of reactive systems.
Emergent properties [37] are properties of the system as a whole and only emerge
once all of its individual sub-systems have been integrated [112]. The concept of
emergence is the idea that at a given level of complexity, some properties of that
level are irreducible [120].

Safety is freedom of risk [52] (accidents or losses) [120]. A safe system is one
that will never do anything bad, that the definition of what is “bad” is application-
dependent [52]. Safety is the most critical emergent property of typical directive
reactive systems such as industrial control systems, aviation systems, medical care
systems, and weapons.

Generally, information security is prevention of or protection against access to
information by unauthorized recipients or intention but unauthorized destruction
or alteration of that information [52]. Manipulative reactive systems are widely
used by governments, financial institutions, hospitals, institutes, and corporations
to manage lexical entities about their employees, finance, customers, research, and
products. These systems and information are often critical assets that support the
mission of an organization [75]. Protecting them can be as critical as protecting
other organizational resources [75]. Moreover, today, information security of in-
formation systems is not only about confidentiality, integrity and availability, but
also about ensuring that the systems are predictably dependable in the face of all
sorts of malice [17].

2.4 Approaches to develop reactive systems

For reactive systems development, the problem rooted in the notion of the behavior
of a system, i.e., it is difficulty of describing reactive behavior in way that are
clear and realistic, and at the same time formal and rigorous, sufficiently so to
be amenable to detailed computerized simulation [81, 85]. Consequently, most of
approaches of so-called “reactive systems” focus on formal methods, i.e., formal
specification, verification, and development of reactive systems, whose purpose is
to ensure the correctness of the systems.

5

Although several important approaches have been proposed, these approaches
has not yet been satisfactorily solved the problem of reactive systems development
[77, 81], such as state-machines/state-diagrams (such as [56, 65, 66, 95, 136, 168,
169]), communicating finite-state machines [152], augmented transition networks
[176, 180], structured analysis and design technique (SADT) [155], higher order
software (HOS) [80], petri net [140], Milner’s calculus of communicating systems
(CCS) [129], Hoare’s communicating sequential processes (CSP) [88], and Zave’s
sequence diagrams [183], Thus, although some people use these methods to develop
reactive systems [14], we do not discuss them here.

2.4.1 Statecharts

The the visual language Statecharts [81] was created by Harel [82, 89]. In fact,
the work on reactive systems began with the discussion of Statecharts [82, 89].
Harel suggested Statecharts is useful for particular kinds of systems that interact
frequently with one another and do not do heavy computation, then Pnueli coin
the terminology “reactive systems” [82, 89].

Statecharts is the first and most popular formal language for the design of
reactive systems. Statecharts is not only useful for modeling system behavior
in the structural analysis paradigm, but also part of a fully executable language
set for modeling object-oriented systems [83]. Besides, Statecharts is part of the
unified modeling language (UML) since UML 1.x [93].

Harel’s Statecharts extended conventional state-transition diagrams with hier-
archy, concurrency and communication, in order to provide a formalism for speci-
fying reactive behavior [81]. In a word,

Statecharts =state-diagrams+ depth+ orthogonality

+ broadcast-communication [81].

Based on Statecharts, a software tool called statemate [84] was developed.
Statemate is a graphical working environment, intended for the specification, anal-
ysis, design and documentation for large and complex reactive systems [84]. It can
be used to prepare, analyze and debug precise diagramatic descriptions of the
systems from three points of view, capturing, structure, functionality and behav-
ior [84]. Statemate was “the first commercial computer-aided software engineer-
ing tool to successfully overcome the challenges of complex interactive, real time
computer systems, known as reactive systems (2007 ACM software system award
announcement [89]). ”

2.4.2 Temporal logic

Pnueli’s landmark paper, “The Temporal Logic of Programs” [144], marked a
crucial tuning point in the verification of concurrent programs and reactive systems
[89]. By introduce the temporal logic to the field of formal methods, Pnueli gave
researcher a set of tools to specify and reason about the ongoing behavior of
programs [89].

6

The “classical” approach to the use of temporal logic for reasoning about re-
active programs is a manual one. Emerson et al. proposed automated approach
to reasoning about reactive systems especially for model checking and testing sat-
isfiability [49, 57, 58].

2.4.3 Bigraphical reactive systems

Milner et al. proposed bigraphical reactive systems (BRS) [119, 128] as a unifying
theory of process models and as a tool for reasoning about ubiquitous computing.
BRS is useful for design engineers and analysts with the help of computerized
visualization backed by rigorous machine-assisted verification [119].

A BRS involves bigraphs, in which the nesting of nodes represents locality,
independently of the edges connecting them; it also allows bigraphs to reconfigure
themselves [97]. BRSs aim to provide a uniform way to model spatially distributed
systems that both compute and communicate [97].

2.4.4 Synchronous programming of reactive systems

Synchronous languages [25, 77] were designed to allow a program to be consid-
ered as instantaneously reacting to external events [77]. Synchronous languages
were proposed to cover up two deficiency of Statecharts: (1) Statecharts are spec-
ification and design formalism, not programming language, (2) many features of
synchronous model are present in Statecharts, but determinism is not ensured,
and many semantic problems were raised [174]. Three synchronous programming
languages was proposed [78], include Esterel [26], Signal [118], and Lustre [79]. A
purely synchronous variant of Statecharts named Argos [127] was proposed. Based
on Argos, a graphical version of Esterel named SyncCharts [18] was proposed.

2.4.5 Fault tree analysis

Fault tree analysis is a traditional analytic tool for the reliability and safety of
complex systems. It is used for analyzing, visually displaying and evaluating failure
paths in a system, thereby providing a mechanism for effective system level risk
evaluations [59]. Because safety analysis activities are particularly critical in the
case of reactive systems, fault tree analysis can be used to develop reactive systems
[29, 150].

2.4.6 Object-oriented approaches

The main innovations of object-oriented specification of reactive systems are in
raising the level of abstraction in dealing with concurrency, and in supporting
the structuring and derivation of operational specifications, to enhance modifiabil-
ity, scalability, and reusability [96]. Object-oriented specification [96] and object-
printed model [19, 138] for reactive systems were proposed.

On the other hand, because of extensive use of object-oriented design, there
are a lot of object-oriented reactive systems are developed. Both contracts [87]

7

and Statecharts can be used to specify behavioral compositions in object-oriented
systems. There are also some test method for object-oriented reactive systems,
such as Spec Explorer [35].

2.4.7 Secure reactive systems

Most practically relevant cryptographic systems are reactive [142]. Thus actually
all systems secure against active attacks must be defined reactively because such
an attack presupposes that the system gets several inputs or makes several outputs
[142].

Pfitzmann, Waidner, et al. proposed cryptographic security of reactive systems
[141], a model for asynchronous reactive systems to secure message transmission
[143], and a general composition theorem for secure reactive systems [21].

2.5 Need of extension with anticipation

A traditional reactive system is passive, i.e., it only performs those operations in
response to instructions explicitly issued by users or application programs, but
have no ability to do something actively and anticipatorily by itself. Therefore, a
passive reactive system only has some quite weak capability to defend accidents
and attacks from its external environment. In order to prevent accidents/attacks
beforehand, it is desired that a reactive system is anticipatory, i.e., the system
should be able to detect and predict accidents/attacks, take some actions to in-
form its users, and perform some operations to defend the system from possible
accidents/attacks anticipatorily. From the viewpoints of high safety and high se-
curity, any critical reactive system should be anticipatory [38].

The motivation of anticipation is to deal with safety and information security,
but traditional approaches to develop reactive systems are not. As we mentioned
in section 2.4, current approaches to develop reactive systems focus on the behavior
of a system, i.e., the functions of a system, but not emergent properties, such as
safety and information security. Moreover, these formal methods are high-cost and
difficult to use, thus people developed many existing systems without using these
formal methods.

There are many critical existing systems which perform routine operations
well but do not have the ability of anticipation to handle accidents and attacks.
These systems no longer satisfy the requirements of high safety and high security.
Furthermore, it is impractical, if not impossible, to rebuild the whole system to
be anticipatory, because reimplementation of the whole of a system results in high
cost. On the other hand, it is not necessary and economic to rebuild the whole
of an existing reactive system with anticipatory ability, if it is possible to extend
certain types of existing systems with anticipatory ability without affecting its
original functions.

8

Figure 2.3: Extending a legacy reactive system with anticipatory function

2.6 Feasibility analysis of extension

Any reactive system M has a set I of inputs (e.g., inputs that represent events
and conditions produced by the environment), a set O of outputs (e.g., action
instructions produced by M), and a reactive function fP mapping non-empty
sequences of subset of I into a subset of O [85, 146]. Many reactive systems
also have some implemented mechanisms to take action instructions to prevent an
ongoing/potential accident/attack, such as applying the brake in a railway system,
and blocking an intruder by configuring a firewall in computer networks. However,
a traditional reactive system cannot take these action instructions anticipatorily,
because fP is passive. Therefore, we can add an additional anticipatory function
fA shown in figure 2.3, which can detect and predict accidents/attacks base on I,
then choose appropriate action instructions to handle these accidents/attacks, i.e.,
anticipatory actions, which can be taken by the original reactive system. For most
concurrent systems, the fA only carries out some additional action instructions,
while the system’s original reactive function is kept, which means the original
reactive actions and the anticipatory actions are taken simultaneously. For those
systems that anticipatory actions may affect the system’s original reactive actions
such as a critical sequence of actions, in most cases, the system’s original reactive
actions have a higher priority thus the anticipatory actions must wait, because we
do not want to affect the system’s original functions. However, in some situation,
the original reactive actions may make against the safety or security of the system,
the original actions should be canceled, while the system’s original functions are
still kept in most of the time. We call the original reactive system legacy system,
and call the extended system target system, as the figure 2.3 shows.

As we discussed above, if we want to extend a legacy reactive system with
anticipation, the system must satisfy the following requirements.

• There must be some approaches to perceive adequate subset of I of the legacy
system for detection and prediction.

• The legacy system must have some implemented mechanism to take actions
to handle the ongoing/potential accidents/attacks.

Besides, for some extreme real time systems, it may be too late to predict and
take actions before the accidents/attacks cause pernicious consequences, thus such
systems are not suitable to extend with anticipation.

9

Chapter 3

Anticipatory reasoning-reacting
systems

3.1 Logic-based forward reasoning on ARRS

The following content in the section is according to [70].
Anticipation is the action of taking into possession of some thing or things

beforehand, or acting in advance so as preclude the action of another. It is a
notion must relate to two parties such that the party taking anticipation acts
in advance of a proper time earlier than the time when another party acts. To
implement the facility of anticipation, we can naturally find following issues: how
to predict future event or events, and how to take next actions. For the facilities,
a prediction method and a decision-making method with forward reasoning based
on strong relevant logic systems are proposed [38, 40, 44, 46, 106, 107].

Reasoning is the process of drawing new conclusions from given premises, which
are already known facts or previously assumed hypotheses (Note that how to define
the notion of ‘new’ formally and satisfactorily is still a difficult open problem until
now). In general, a reasoning consists of a number of arguments (or inferences)
in some order. An argument is a set of statements (or declarative sentences) of
which one statement is intended as the conclusion, and one or more statements,
called ‘premises,’ are intended to provide some evidence for the conclusion. An
argument is a conclusion standing in relation to its supporting evidence. In an
argument, a claim is being made that there is some sort of evidential relation
between its premises and its conclusion: the conclusion is supposed to follow from
the premises, or equivalently, the premises are supposed to entail the conclusion.
Therefore, the correctness of an argument is a matter of the connection between
its premises and its conclusion, and concerns the strength of the relation between
them (Note that the correctness of an argument depends neither on whether the
premises are really true or not, nor on whether the conclusion is really true or not).
Thus, there are some fundamental questions: What is the criterion by which one
can decide whether the conclusion of an argument or a reasoning really does follow
from its premises or not? Is there the only one criterion, or are there many criteria?
If there are many criteria, what are the intrinsic differences between them? It

10

is logic that deals with the validity of argument and reasoning in general. A
logically valid reasoning is a reasoning such that its arguments are justified based
on some logical validity criterion provided by a logic system in order to obtain
correct conclusions (Note that here the term ‘correct’ does not necessarily mean
‘true’.). Today, there are so many different logic systems motivated by various
philosophical considerations. As a result, a reasoning may be valid on one logical
validity criterion but invalid on another.

A formal logic system L is a doublet (F (L), `L) where F (L) is a formal language
which is the set of all well-formed formulas of L, and `L is a logical consequence
relation of L such that for P ⊆ F (L) and c ∈ F (L), P `L c means that within the
framework of L, c is a valid conclusion of premises P . For a formal logic system
(F (L), `L), a logical theorem t is a formula of L such that ∅ `L t where ∅ is
the emptyTh(L) set. We use Th(L) to denote the set of all logical theorems of L.
Th(L) is completely determined by the logical consequence relation `L. According
to the representation of the logical consequence relation of a logic, the logic can be
represented as a Hilbert style formal system, a Gentzen natural deduction system,
a Gentzen sequent calculus system, or other type of formal system. Let (F (L),
`L) be a formal logic system and P ⊆ F (L) be a non-empty set of sentences (i.e.
closed well-formed formulas).

A formal theory with premises P based on L, called a L-theory with premises P
and denoted by TL(P), is defined as TL(P) =df Th(L)∪ The

L(P), and The
L(P) =df

{et | P `L et and et 6∈ Th(L)} where Th(L) and The
L(P) are called the logical

part and the empirical part of the formal theory, respectively, and any element of
The

L(P) is called an empirical theorem of the formal theory.
For a formal logic system where the notion of conditional is represented by

primitive connective entailment “⇒”, a formula is called a zero degree formula
if and only if there is no occurrence of ⇒ in it; a formula of the form A ⇒ B
or Q(A ⇒ B) where Q is the quantifier prefix of A ⇒ B is called a first degree
conditional if and only if both A and B are zero degree formula; a formula A is
called a first degree formula if and only if it satisfies one of the following conditions:
(1) A is a first degree conditional, (2) A is in the form +B or Q(+B) where + is
a one-place connective such as negation and so on and Q is the quantifier prefix
of +B such that B is a first degree formula, and (3) A is in the form B ∗ C or
Q(B ∗ C) where ∗ is a non-conditional two-place connective such as conjunction
or disjunction and so on and Q is the quantifier prefix of B ∗ C such that both of
B and C is first degree formulas, or one of B and C is a first degree formula and
another is a zero degree formula.

The notion of degree of nested conditional can also be generally defined as
follows. Let A, B, C are formulas. The degree of conditional in A, denoted by
D⇒(A), is inductively defined as follows: (1) D⇒(A) = 0 if and only if there is no
occurrence of ⇒ in A, (2) if A is a conditional of the form B ⇒ C, then D⇒(A) =
max{D⇒(B), D⇒(C)} + 1, (3) if A is in the form +B where + is a one-place
connective such as negation and so on, then D⇒(A) = D⇒(B), (4) if A is in the
form B ∗C where ∗ is a non-conditional two-place connective such as conjunction
or disjunction and so on, then D⇒(A) = max{D⇒(B), D⇒(C)}, and (5) if A is in
the form QB where Q is the quantifier prefix of B, then D⇒(A) = D⇒(B). Let

11

k be a natural number. A formula A is called a kth degree formula if and only if
D⇒(A) = k, in particular, A is called a kth degree conditional if it is a conditional.

Let (F (L), `L) be a formal logic system and k be a natural number. The kth

degree fragment of L, denoted by Thk(L), is a set of logical theorems of L that is
inductively defined as follows (in the terms of Hilbert-style formal systems): (1)
if A is an axiom of L and D⇒(A) ≤ k, then A ∈ Thk(L) , (2) if A is the result
of applying an inference rule of L to some members of Thk(L) and D⇒(A) ≤ k,
then A ∈ Thk(L) , and (3) Nothing else are members of Thk(L), i.e., only those
obtained from repeated applications of (1) and (2) are members of Thk(L).

Let (F (L), `L) be a formal logic system, P ⊂ F (L) (P 6= ∅), and k and j be
two natural numbers. A formula A is said to be jth-degree-deducible from P based
on Thk(L) if and only if there is an finite sequence of formulas f1, . . . , fn such that
fn = A and for all i(i ≤ n) (1) fi ∈ Thk(L), or (2) fi ∈ P , or (3) fi is the result of
applying an inference rule to some members fj1 , . . . , fjm(j1, . . . , jm < i) of the
sequence and D⇒(fi) ≤ j. The set of all formulas which are jth-degree-deducible
from P based on Thk(L) is called the jth degree fragment of the formal theory with
premises P based on Thk(L), denoted by T j

Thk(L)
(P).

Automated reasoning is concerned with the execution of computer programs
that assist in solving problems requiring reasoning. By adopting a suitable for-
mal logic system for a target problem, we can do logically valid reasoning and
get unknown or undecidable facts/hypotheses from empirical theorems that are
well-known theories in a target domain. To do such logically valid reasoning auto-
matically, a mechanism of automated reasoning is demanded. A forward reasoning
engine is a computer program to automatically draw new conclusions by repeat-
edly applying inference rules to given premises and obtained conclusions until some
previously specified conditions are satisfied. A facility to do reasoning automat-
ically can be implemented by such forward reasoning engines and logic systems
that are suitable for a target problem.

As a methodology of prediction, a method using anticipatory reasoning based
on temporal relevant logics or 3D spatio-temporal relevant logics was proposed
[38, 46]. Prediction is the action to make some future events known in advance,
especially on the basis of special knowledge. It is a notion must relate to point of
time to be considered as the reference time. For any prediction, both the predicted
thing and its truth must be unknown before the completion of that prediction. An
anticipatory reasoning is a reasoning to draw new, previously unknown and/or
unrecognized conclusions about some future event or events whose occurrence and
truth are uncertain at the point of time when the reasoning is being performed [38].
To represent, specify, verify and reason about various objects in the real world and
relationships among them in the future, any ARRS needs a right fundamental logic
system to provide a criterion of logical validity for anticipatory reasoning as well
as formal representation and specification language. Temporal relevant logics and
3D spatiotemporal relevant logics are hopeful candidates of such right fundamental
logic systems for ARRSs [38, 46]. Furthermore, to perform anticipatory reasoning
automatically, an anticipatory reasoning engine was proposed and its prototype
was implemented [44, 72, 132]. An anticipatory reasoning engine is a forward
reasoning engine to perform anticipatory reasoning based on temporal relevant

12

FC

St

FC... FC

St

FC... FC

St

FC...

ETDBLTDBPr

DM C/S

Me Inf

Mo

 Antcipatory Reasoning-Reacting System

SSB

External Environment

data/instruction interaction

component database

data/instruction interaction between stations

data-instruction station

Rec

Figure 3.1: An architecture of an anticipatory reasoning-reacting system

logics or 3D spatio-temporal relevant logics.
On the other hand, a decision-making method with reasoning about actions was

proposed [105, 106, 107]. An action in a computing anticipatory system is a deed
performed by the system such that as a result of its functioning a certain change of
state occurs in the system. To take next actions, at first, a computing anticipatory
system enumerates all actions that the system can perform in a predicted future
situation as candidates of next actions, and then, the system chooses appropriate
actions as next actions to defend the system from possible failures and attacks.
Reasoning about actions in a computing anticipatory system is the process to draw
new conclusions about actions in the system from some given premises, which are
already known facts or previously assumed hypotheses concerning states of the
system and its external environment [106]. The decision-making method uses rea-
soning about actions to enumerate candidates of next actions. Deontic relevant
logics and temporal deontic relevant logics are adopted as hopeful candidates of
right fundamental logic systems for reasoning about actions [42, 106, 107]. Fur-
thermore, to perform reasoning about actions automatically, an action reasoning
engine was proposed and its prototype was implemented [106, 107]. Like the antic-
ipatory reasoning engine, an action reasoning engine is a forward reasoning engine
to perform reasoning about actions based on deontic relevant logics or temporal
deontic relevant logics.

3.2 Overview of ARRS

The following content in the section is according to [70].
An architecture of an ARRS was proposed [71]. Figure 3.1 shows the archi-

tecture of the ARRS. An ARRS is a persistent computing system. A persistent
computing system [4] can be constructed by a group of control components that

13

are independent of systems, a group of functional components that carry out spe-
cial tasks of the system, and soft system buses (SSBs). Control components may
include a central controller/scheduler (C/S), a central measurer (Me), a central
recorder (Rec), a central monitor (Mo), and an central informant (Inf). A cen-
tral controller/scheduler orders and controls all components to carry out some
operations with a high priority. A central measurer measures current status of the
system, and stores measured data into a central recorder. A central recorder stores
data observed by a central measurer, and provides them to a central monitor and a
central controller/scheduler. A central monitor monitors the behavior of the whole
of the system, and reports unexpected behavior or troubles to a central informant.
A central informant receives such reports from a central monitor, and informs the
reports to managers of the system. A soft system bus is simply a communication
channel with the facilities of data/instruction transmission and preservation to
connect components in a component-based system. It may consist of some data-
instruction stations (St’s), which have the facility of data/instruction preservation,
connected sequentially by transmission channels, both of which are implemented
by software techniques, such that over the channels data/instructions can flow
among data-instruction stations, and a component tapping to a data-instruction
station can send data/instructions to and receive data/instructions from the data-
instruction station. SSBs are used for connecting all components such that all
data/instructions are sent to target components only through the SSBs and there
is no direct interaction that does not invoke the SSBs between any two components.

Functional components of an ARRS are classified into two kinds components;
ones are common components in all ARRSs and others are application-dependent
components. A predictor (Pr), a decision maker (DM), a logical theorem database
(LTDB), and an empirical theorem database (ETDB) are the common components.
A predictor receives several kinds of data and outputs predictions with quantitative
information and predictions without quantitative information. A decision-maker
receives two kinds of predictions from a predictor, and outputs instructions to an
ARRS. A logical theorem database stores fragments of logic systems underlying
anticipatory reasoning or reasoning about actions. An empirical theorem database
stores empirical theorems of a target domain as predictive models, behavior mod-
els, or world models, and empirical theorems deduced from the models by the
predictor or the decision-maker. A predictive model is a set of empirical theorems
and related with time in a target domain of the system. A behavior model is a set
of empirical theorems and related with behavior in a target domain of the system.
A world model is a set of empirical theorems of the target domain except empirical
theorems related with time and behavior.

PCS-core components are control components and soft system buses. They
are common in all persistent computing systems. ARRS-core components are a
predictor, a decision-maker, a logical theorem database, and an empirical theorem
database. They are common components in all ARRSs, but not in all persistent
computing systems.

14

3.3 Safety and information security

There are two aspects of ARRS for ensuring the safety or information security.
First aspect is correctness. In ARRS, the correctness is depending on two

layers. First layer is the correctness or suitableness of anticipatory model and
measurement information. If they are correct, maybe the output of the system is
correct. The second layer is the guarantee, that if the model is correct, and the
measurement information is correct, then the output is correct. The correctness
of prediction and decision-making is depending on logic system by adopting for-
ward deduction, not abduction or induction. The feature of deduction is if the
premise is correct, then the conclusion is correct. For the mechanism of prediction
and decision-making, we adopt forward deduction based on strong relevant logic.
Therefore, we can guarantee that.

The second aspect is performance. If the anticipatory actions of ARRS is given
before the accident occurs/the consequence of attacks occurs, ARRS adopt suitable
action to prevent these accidents/attacks.

3.4 ARRS: The candidate of target system for

extension

ARRSs are suitable candidates of target systems for the extension, because (1) an
ARRS uses logical reasoning to predict and make decisions, and (2) the architecture
of ARRS is an extension of a reactive system.

An ARRS uses logical reasoning method to predict and make decisions [38],
while such method can be applied to different reactive systems from various appli-
cation areas. We can apply logical reasoning method to different types of reactive
systems in different areas. The basic idea of logic-based reasoning method is to ex-
plicitly separate the underlying logical system, reasoning/computing mechanism,
and empirical knowledge in any prediction/decision making, such that both under-
lying logical system and empirical knowledge can be revised/replaced/customized
in various predictions/decision making processes performed by an area-independent,
task-independent, general-purpose reasoning mechanism [44, 45]. The method
of prediction/decision making by logic reasoning has the following characteris-
tics [44, 45]. First, to explicitly separate the underlying logic system, reason-
ing/computing mechanism, and empirical knowledge directly results in an adap-
tive prediction/decision making method such that one can easily develop, modify,
and improve the underlying logic system, reasoning/computing mechanism, and
empirical knowledge separately to satisfy different requirements from various appli-
cation areas. Second, as the underlying logic system (i.e., logical validity criterion)
and empirical knowledge are separated explicitly, the prediction/decision making
results can be evaluated from two aspects: logical aspect that is area/problem in-
dependent and empirical aspect that is area/problem dependent. Third, as a char-
acteristic of development and maintenance technology, the underlying logic sys-
tem, reasoning/computing mechanism, and empirical knowledge can be developed
and maintained separately. Fourth, because logic systems and their formal lan-

15

guages are adopted as the absolute, area/problem independent criterion of correct-
ness/validity and representation languages, the approach of prediction/decision
making by logic reasoning is more suitable to qualitative methods rather than
quantitative methods.

As an extension of a reactive system, the ARRS’s architecture [71, 159] is fit
to embrace different reactive systems. An ARRS consists of PCS-core, ARRS-core
components, and application-dependent components, and connects all components
using soft system bus (SSB) methodology [39]. SSBs methodology provides us to
build persistent computing systems such that they can be easily maintained, up-
graded, or recongured, without changing the basic system architecture, by adding
some new components and/or data-instruction stations for satisfying new require-
ments, replacing an old or problematic component and/or datainstruction station
with a new or sound one, and removing some useless components and/or data-
instruction stations. The maintenance, upgrade, or reconguration of a persistent
computing system based on SSBs can be done anytime by using the facility of
data/instruction preservation of SSBs without stopping the running of the whole
system [43]. We can view a reactive system or a component/module of a certain
reactive system as an application-dependent component in ARRS. Therefore, an
ARRS has the ability to embrace other reactive systems.

16

Chapter 4

A methodology to make existing
reactive systems anticipatory

4.1 Overview

Our methodology aims to combine an existing reactive system, called legacy sys-
tem, with some components which can provide anticipatory ability, then get a
new system that in fact is an ARRS, called target system, which can deal with
accidents/attacks anticipatorily with preserving the original system functions.

4.2 Requirements of legacy systems

As we discussed in section 2.6, the legacy reactive system must satisfy the following
requirements.

• There must be some approaches to perceive adequate subset of the legacy
system’s the input set for detection and prediction.

• The legacy system must have some implemented mechanism to take actions
to handle the ongoing/potential accidents/attacks.

Besides, for some extreme real time systems, it may be too late to predict and
take actions before the accidents/attacks cause pernicious consequences, thus such
systems are not suitable to extend with anticipation.

4.3 Target system

Figure 7.1 shows a general architecture of the target system embracing a legacy
reactive system. Figure 7.2 shows the data flow diagram of the target system.
Besides the legacy system, the target system includes following components.

There are three databases. LTDB is a logical theorem database, which stores
fragments of logical systems [38]. ETDB is an empirical theory database storing an-
ticipatory model, including world model, predictive model, and behavioral model,

17

which express the real world, predictive laws and behavioral patterns of the tar-
get domain as empirical theories represented by logical formulas correspondingly.
RDB is a rule database storing filter rules, translation rules, interesting formula
definitions, interesting terms, actions mapping rules, and condition-action rules.

Observers and filter deal with the data from the legacy system. Observers per-
ceive the inputs of the legacy system that represent events and conditions produced
by the environment. Besides, the observers could also perceive the status of the
legacy system. In many cases, there are some sensors/monitors/statistical tools
have been implemented in the legacy system. If we can utilize these observers,
we do not need to implement new observers. Filter filters out the trivial sensory
data and generates important and useful information for detection/prediction or
decision-making.

Formula generator, forward reasoning engine, and formula chooser generate
predictions or next actions. Formula generator encodes the sensory data into log-
ical formulas used by the forward reasoning engine according to the translation
rules. Forward reasoning engine is a program to automatically draw new con-
clusions by repeatedly applying inference rules, to given premises and obtained
conclusions until some previously specified conditions are satisfied [47]. The for-
ward reasoning engine gets logical formulas translated at the formula generator,
fragment of (a) logic system(s), and the anticipatory model, and then it deduces
candidates of predictions/next actions. Formula chooser chooses nontrivial con-
clusions from forward reasoning engine according to interesting formula definitions
and interesting terms.

Action planner receives candidates of next actions and current situation, and
then calculate the planned actions. The action planner has two functions: (1) the
candidates of actions are only based on qualitative information of the situation,
while the action planner can utilize quantitative information to revise the actions,
and (2) to make accurate plan, calculation is needed, such as to calculate how
many special actions should be taken to prevent a certain accident/attack.

Enactor receives planned actions from action planner, matches the current sit-
uations to the situation-action rules to select appropriate actions to take, and then
gives corresponding instructions according to the actions mapping rules to invoke
the actions of the legacy system. Besides, if the original reactive actions of the
legacy system may make against the safety or security of the system in some situ-
ation, the enactor are also in charge of canceling these original actions. Condition-
action rules specify when an unexpected accident/attack occurs abruptly in real
time, (1) which reactive actions should be taken, and (2) which planned actions
should be canceled.

Soft system bus [39] and central control components provide a communication
channel for each component and an infrastructure for persistent computing [39].

4.4 Phases

In our methodology, there are five major phases to extend a legacy reactive system
with anticipatory ability.

18

Figure 4.1: A general architecture of the target system

Figure 4.2: Data flow diagram of the target system

19

Phase 1: Analyze the target domain

First, we analyze the possible accidents/attacks in the legacy system’s target
domain. We list possible accidents/attacks in the target domain, and then for
each possible accident/attack. We analyze each possible accident’s/attack’s cau-
sation, formation process, and the consequence, as well as other attributes such as
likelihood and severity. Based on the severity and likelihood, we could sort these
possible accidents/attacks in order of importance.

Second, we analyze the possible (anticipatory) actions for defending against
accidents/attacks in the target domain. For each possible accident/attack, we
find out whether it is possible to defend against it and what actions could defend
against it, both an ongoing one and a potential one.

Phase 2: Analyze the legacy system

First, we need to understand the requirements of the legacy system. Second, for
the legacy system, we list the set I of inputs that represent events and conditions
produced by the environment and the set O of output action instructions produced
by the legacy system, and understand the function fP of the legacy system. Third,
we find out which anticipatory actions the legacy system has already had the ability
to take, by comparing the outcome of phase 1.2 and the set O of outcome of phase
2.2. Fourth, we analyze the legacy system to find out which ongoing/potential
accidents/attacks the system already has the ability to handle, and how the system
defends against them. After that, we could also find out which accidents/attacks
that the legacy system cannot handle or do not handle well, which may be the
goals of the target system. Fifth, we find out the approaches to perceive the inputs
that represent events and conditions produced by the environment and (optional)
status of the legacy system itself, and the approaches to invoke these existing
anticipatory action instructions of the legacy system.

Phase 3: Define requirements of the target system

The requirements of target system include the functional requirements that
specify which accidents/attacks should be tackled, and which anticipatory ac-
tions should be used to prevent against a certain accidents/attacks, and the non-
functional requirements including performance, security, availability, etc.

Phase 4: Construct anticipatory model

First, before constructing anticipatory model, we need to choose the logic ba-
sic(s) for the target domain. A model is a simplified representation of something
[52]. In the target system, an anticipatory model is represented by a set of logi-
cal formulas of a specific logic (or logics). Thus before we build an anticipatory
model, we must choose a logical basis for the model. Such logic must satisfy the
following requirements [38]. First, the logic must be able to underlie relevant rea-
soning as well as truth-preserving reasoning in the sense of conditional. Second,
the logic must be able to underlie ampliative reasoning. Third, the logic must be

20

able to underlie paracomplete and paraconsistent reasoning. Especially, the logic
for prediction must be able to underlie temporal reasoning.

Second, we construct world model. A world model represents status of the real
world and essential empirical knowledge (not related with time and behavior) in
target domain. We use a vocabulary of predicates or constant terms to present the
status of the real world. In addition, if necessary, we collect and represent empirical
knowledge (not related with time and behavior) as conditionals (see “conditional
2” [52]). The construction of the world model involves following steps. (1) In the
target domain, list possible objects and their properties and statuses. (2) List
relationships among the objects (if have). (3) List possible events and conditions
produced by the environment we concern. (4) Determine the essential empirical
knowledge (not related with time and behavior). (5) Formalize the information.
For information got from step (1) to (3), we use a vocabulary to represent, while
for information got from step (4), we use conditionals to represent.

Third, we construct predictive model. The predictive model represents the
predictive knowledge used to make predictions. We are only interested in certain
kinds of predictions, while in the target system, they are mainly accidents/attacks
and other predictions, which can help to predict accidents/attacks. Therefore, the
predictive model is assembled by conditionals, which can be used to get these in-
teresting predictions. The construction of the predictive model involves following
steps. (1) Determine which events/conditions (accidents/attacks and other pre-
dictions, which can help to predict accidents/attacks) we concern in the target
domain, and list these events/conditions. (2) Determine the predictive knowledge
related with these events/conditions. (3) Formalize the knowledge as conditionals.

Fourth, we construct behavioral model. The behavioral model is used for qual-
itative decision, which represents the behavioral knowledge used to choose ac-
tions. The purpose of qualitative decision is to find out “what actions should be
taken?” and “which actions should be taken first?” Thus, the result of qualita-
tive decision is a set of candidates of next actions, which are labeled as “obliga-
tory”/“permitted” and/or priorities. Therefore, the behavioral model is assembled
by conditionals, which can be used to get these results of qualitative decision. The
construction of the behavioral model involves following steps. (1) List possible
actions that the system can be taken to prevent accidents/attacks. (2) Decide
which events/conditions cause to take these actions. (3) Formalize the informa-
tion. For information got from step (1), we use a vocabulary to represent, while
for information got from step (2), we use conditionals to represent.

Fifth, we evaluate the constructed anticipatory model. To evaluate anticipatory
model, we could utilize some (user-defined) evaluation criteria to evaluate the
model formally. Besides, in practical, we can use test set for evaluation, which is a
set of empirical/historical data about accidents and attacks in the target domain.

Phase 5: Implementation

Most components of the target system are general-purpose. Thus, we do not
need to rebuild them for different systems. There are some implemented com-
ponents can be used in this phase, such as a general-purpose forward reasoning

21

engine [47]. We have also implemented a general filter, a semiautomatic formula
generator, a general formula chooser and a general enactor, which may deal with
most cases. Our methodology considers using these prepared components. Of
course, one can rebuild all of these components.

First, we implement observers or utilize some substitutes in the legacy system
to observe events and conditions produced by the environment, which relate to
requisite events/conditions used by anticipatory model. Second, we configure fil-
ter rules to filter nontrivial events/conditions used by anticipatory model. Third,
we configure the actions mapping rules. The mapping rules map the possible an-
ticipatory actions (based on behavioral model) are represented as logical formulas
to concrete instructions that the target system can execute. Fourth, we config-
ure translation rules according to the logic basis and anticipatory model. Fifth,
we define the interesting formulas and configure the interesting terms. Interest-
ing terms specify which terms we are interested: (1) for detection/prediction, the
interesting terms are events and conditions produced by the environment about
accidents and attacks, and (2) for decision-making, the interesting terms are the
actions, which can be produced by the system. Interesting formula definitions
specify which formulas, formalized by interesting term(s) and other symbols, we
are interested. Sixth, we implement action planner and configure calculate rules.
Not all target systems need quantitative calculation. Because quantitative calcu-
lation depends on the application domain, we may resort to different algorithms
thus build different action planners for different target systems. Seventh, we im-
plement the enactor and configure condition-action rules. Eighth, we integrate
all components. Ninth, we test the target system. Tenth, we evaluate the target
system before putting into service.

22

Chapter 5

Case study: Emergency elevator
evacuation systems

5.1 Overview

Although current emergency elevator evacuation system (EEES) have made big
progress in their physical safety, these systems are still in an early phase for evac-
uation elevator control, because the current EEESs (1) cannot automatically deal
with different evacuation types, different extraordinary events, and cannot dispatch
the elevator cars according to the evacuation type, the extraordinary event, and
the current situation, and (2) does not consider anticipation. In this case study,
we applied the methodology to add anticipatory ability to the current emergency
elevator evacuation systems with some sensory systems. After the extension, we
got an anticipatory emergency elevator evacuation system (AEEES), which can
predict and detect hazards in the emergency evacuation, and then dispatch the
elevator cars anticipatorily, aiming to avoid hazards beforehand, thus to rescue
more occupants and to shorten the evacuation time. In order to evaluate AEEES,
we implemented a simulation program, which simulates the elevator systems and
its environment, and then we took three groups of experiments to compare differ-
ent EEESs: EEES using down-peak, reactive EEES, and AEEES. We considered
the rescued ratio as the evaluation factor, and AEEES always got highest rescued
ratio in the experiments.

5.2 Introduction

Using elevators for emergency evacuation has become reasonable and necessary for
modern high-rise buildings in recent years. First, it is impossible to evacuate an
ultra high-rise building in a tolerable time by only using stairs [31]. Using elevators
can decrease evacuation time and reduce congestion on stairs which equates to
less potential for injuries [51]. Second, the aged and people with disabilities or
injuries can hardly use stairs to evacuate [31]. Third, fire is not the only reason for
evacuation. Sometimes it is important to leave the building before a situation gets
worse, such as a bomb threat or other acts of terrorism [51]. Lastly, the current

23

elevator systems can provide safe and reliable operation both for fire service access
and for occupant egress during fires [51, 113].

An emergency elevator evacuation system (EEES) includes the elevator equip-
ment, hoistway, machine room, and other equipment and controls needed for safe
operation of the elevator during the evacuation process [109]. Because the pur-
pose of emergency evacuation is to move people away from the threat or actual
occurrence of a hazard immediately and rapidly, an ideal EEES should have the
following features: safe, context aware, anticipatory, and instructional/informati-
ve. However, the current researches of EEESs mainly focus on the physical safety
of the elevator systems; few researches involve context aware of EEESs; let alone
anticipation.

As an attempt to realize an advanced EEES with safe, context aware, antici-
patory, and instructional/informative features, we propose a new type of EEESs,
named anticipatory emergency elevator evacuation system (AEEES), which can
detect and predict hazards in the emergency evacuation, and then dispatch the el-
evator cars anticipatorily aiming to avoid hazards beforehand, thus to rescue more
occupants and to shorten the evacuation time. In order to implement the AEEES,
we adopted our methodology to extend current EEES to be an ARRS, indeed an
AEEES. To evaluate the AEEES, we present experiments for comparison the basic
EEES which dispatch elevator cars using down-peak [23], the reactive EEES with
context awareness but without anticipation, and our proposed AEEES. However,
we do not discuss the physical safety of the EEES, because there are a lot safety
elevator have been practically used [31].

5.3 Ideal emergency elevator evacuation systems

What should an ideal emergency elevator evacuation system (EEES) be? Because
the purpose of emergency evacuation is to move people away from the threat or
actual occurrence of a hazard immediately and rapidly, an ideal EEES should have
the following features.

Safe: The EEES must ensure the safety of the passengers who take the elevators
during the emergency evacuation.

Context aware: The EEES can autonomically both sense and react against the
particular case of emergency. “Sense” means the EEES can detect the emergency
events (e.g., fire, gas leaks), perceives the current situation (e.g., which rooms are
catching fire in a fire emergency, an elevator car is full loaded), and recognizes
special people (e.g., people with disabilities or injuries). “React” means the EEES
decides which evacuation type is taken according to the emergency situation (in-
cluding total evacuation, staged evacuation, and fractional evacuation [51]), and
reacts to some particular events (e.g., not stopping the elevator car in fire, dis-
patching a fully loaded elevator directly to the evacuation floor).

Anticipatory: In order to indeed make “people away from the threat”, the
EEES should be anticipatory, i.e., the EEES should predict the future situations
(e.g., who will be in danger soon, and there will be a congestion in some stairs),
then dispatch the elevator cars beforehand, aiming to avoid disaster beforehand

24

and shorten the evacuation time. A serious emergency usually gets worse rapidly
with deadly damage. For example, in an uncontrollable conflagration, because the
fire spread with great rapidity, it is too late to egress when fire and poisonous
smoke draw near. Thus the EEES should have the ability to predict which area
of building will be dangerous, then rescue the people in that area. Besides, if the
EEES can predict where a congestion will happen, then transport some people in
that area, thus a trample may be avoided.

Instructional/informative: The EEES can instruct occupants to use the ele-
vators to evacuate, and inform occupants the current situation of emergency by
public address or other approaches. Besides, the EEES must instruct occupants
which elevators can be used, who should use the elevator first, as well as inform
occupants the emergency situation, and how long they have to wait the next shift.

5.4 Current emergency elevator evacuation sys-

tems

The current researches of emergency elevator evacuation systems (EEES) mainly
focus on the physical safety of the elevator systems, and there is still a gap between
current EEESs and ideal EEESs. Klote et al. studied the feasibility of elevator
evacuation of FAA air traffic control towers and developed the concept of EEES
[109]. The researches of EEESs can be divided two categories: physical safety and
elevator cars dispatch for emergency.

Physical safety is the basic challenge of EEESs, i.e., to protect elevators from
heat, flame, smoke, water, overheating of elevator machine room equipment, loss of
electric power, as well as to assure the safety of people traveling in the elevators.
Several researches were carried out on this topic [113, 109, 110]. As a result,
several kinds of elevators for evacuation were developed, which can provide the
above safety features, such as the enhanced elevators and protected elevators [51].
By now, some skyscrapers have equipped these elevators for evacuation [31].

In addition to safety, another challenging problem for EEES is how to control
elevators autonomically, effectively and safely according to the current evacuation
type and extraordinary event. Until now, there are mainly following elevator
control strategies for evacuation.

Neglect: Some EEESs do not provide additional control strategies for evacua-
tion. These systems just use general elevator algorithm or general group control
algorithm for evacuation.

Manual control and semiautomatic control with human oversight [32, 121]:
Large buildings often have a command center for directing an emergency evac-
uation. Operators in command center can get information from alarm systems,
floor monitors, television or security cameras, then dispatch elevators to where
they are needed manually. Operators can also use some automated control system
to set priorities and determine which floors should evacuate using the elevators.

Down-peak and its variation: In down-peak mode, elevator cars depart from
the lobby to the highest floor served, then run down the floors in response to hall
calls placed by passengers wishing to leave the building. There are also some im-

25

proved group elevator down-peak scheduling (including zoning of elevator groups)
for emergency evacuation [123]. For evacuation, down-peak mode is proved more
better than other special operating modes such as up-peak [23]. The benefit of
down-peak is easy to implement.However, only using down-peak cannot consider
different emergency evacuation types, such as fractional emergency evacuation [51],
and current perils and situation of the scene.

Dispatching elevators based on the current situation: Some patents claimed
their systems can measure the number of people remaining inside a building, detect
an emergency condition in the building, then dispatch the elevators according to
these current situation [100, 101, 137]. However, these patents do not show how
to fulfill their claim in detail. Moreover, these systems can only dispatch elevators
based on certain kinds of information, but cannot deal with complex situation
dynamically.

Theoretical evacuation strategies: There are some theoretical elevator evacua-
tion strategies were proposed, that can be used to determine which floor should
be evacuate firstly [30, 73, 149]. However, they are only theoretical work and do
not show how to use these strategies in a practical EEES.

In summary, although the current EEESs have made big progress in their phys-
ical safety, the current EEESs are still in an early phase for autonomic evacuation
elevator control, because the current EEESs (1) cannot automatically deal with
different evacuation types, different extraordinary events, and cannot dispatch the
elevator cars according to the evacuation type, the extraordinary event, and the
current situation, and (2) does not consider anticipation.

5.5 Anticipatory emergency elevator evacuation

systems

We propose a new type of EEESs, named anticipatory emergency elevator evacua-
tion system (AEEES). An AEEES can automatically detect and predict hazards in
the emergency evacuation, and then dispatch the elevator cars anticipatorily, aim-
ing to avoid disasters beforehand, thus to rescue more occupants and to shorten
the evacuation time. Because the physical safety of AEEES is ensured by the
enhanced/protected elevators, the heart of AEEES is an information system to
control elevator cars and to instruct occupants. Thus, we only focuses on the
information system, but not the whole of AEEES as well as the physical safety.

In order to fulfill the features of context aware, anticipatory, and instructional/-
informative, we analyzed the system requirements of the AEEES as follows.

R1: The AEEES should perceive the current situation of the building by utilizing
the sensory data from different kinds of sensors and monitor systems.

R2: The AEEES should deal with different type of emergency, such as fire, gas
leaks, bomb threats, as well as several types of emergency happens in the
same time. Besides, the system should deal with new type of emergency with
trivial modification.

26

R3: The AEEES should decide the evacuation type according to the current emer-
gency, including total evacuation, staged evacuation, and fractional evacua-
tion [51].

R4: The AEEES should predict the future hazards automatically and autonomi-
cally .

R5: The AEEES should automatically generate anticipatory actions (against the
future hazards), reactive actions (against the ongoing hazards), and routine
actions (for total occupation, e.g. down peak). Besides, the AEEES should
judge which actions should be taken first automatically.

R6: The AEEES should inform the corresponding occupants the ongoing hazards
and the predictions of hazards, and which elevators can be used and when
next shift comes, as well as instruct the occupants what to do next. The
content of the messages are chosen automatically. The AEEES gives messages
by public address system or other communication systems.

R7: The AEEES should know evacuation for certain type of emergency should
stop automatically, when that emergency was eliminated (e.g. the fire dies
out).

R8: The AEEES should be portable for different buildings with trivial modifica-
tion, such as different building structure, different elevator systems, different
sensors, and different layout of elevators and sensors.

5.6 Simulation program of the legacy system

Because of cost considerations, we did not consider applying our methodology to
a real elevator system, and instead, we implemented a simulation program, which
simulates the elevator system and its environment (e.g., building, floors, eleva-
tor lobby, occupants, and emergencies). The simulation program provides the
interface to observe the situation, the interface to control the elevator cars, the
interface to implement different emergencies, and the statistic module, thus we can
implement and compare different EEESs based on the simulation program. The
simulation program reserves abundant adjustable settings, e.g., number of floors
of the building, number of elevator cars, the layout of elevators, elevator proper-
ties (e.g., speed, time for stop, time for entrance/exit), number of occupants for
each floor, occupants with disabilities. In this simulation program, we assume
the elevator car and the evacuation floor is aways safe, and if the elevator lobby
is in emergency, and then people cannot egress from corresponding elevator. We
also implemented some emergencies, such as fire (based on [130, 151]) and bio-
logical/chemical leak emergency. Besides, each emergency has adjustable settings,
e.g., spread speed for different directions, and acceleration. The simulation pro-
gram also provides a graphic display to show the whole progress of evacuation, as
well as the emergencies.

27

5.7 Applying the methodology

In this section, we use each phase of the methodology to extend the legacy systems
to be an AEEES.

Phase 1: Analyze the target domain

The possible accidents are disasters or bad situations, such as fire, toxic fume,
biological/chemical leak, congestion, etc. The possible anticipatory actions for
an EEES is to dispatch the elevator cars anticipatorily, aiming to avoid disaster
beforehand and shorten the evacuation time.

Phase 2: Analyze the legacy system

The set I includes: (1) the occupants’ direct operations to the elevator system,
(2) the emergency events, such as fire, bomb threats, biological or chemical threat,
and (3) occupants’ conditions, such as where the occupants and occupants with
disabilities or injuries are. For O, the actions are mainly dispatching the elevator
cars, furthermore, some elevator cars also support “shuttle mode”, to avoid time
needed for accelerating and decelerating smoothly [30], besides, the public address
system can give warnings and instructions to occupants. The anticipatory actions
are dispatching the elevator cars. The legacy system only ensures the safety of
elevator cars and evacuation floors, but cannot dispatch the elevator cars antici-
patorily. For I, there are many existing equipments can perceive the status of the
building (including elevator systems and occupants) and occupants. Emergency
sensors (heat detectors, smoke detectors, flame detectors, gas sensors, sensors to
detect chemical and biological leak, etc.) can detect emergencies. The status of
occupants, such as number of occupants in each floor/area, and whether there are
disabled or injured people, can be monitored by using RFID [123] or cameras [103].
We can connect the filter directly to these sensors by invoking the sensors’ driver
program. For O, we can dispatch the elevator cars by giving instructions to eleva-
tor control system of the legacy system. When an emergency arises, the elevator
control system could disable the regular dispatch mode, and receives instructions
from enactor.

Phase 3: Define requirements of the target system

Because the purpose of emergency evacuation is to move people away from
the threat or actual occurrence of a hazard immediately and rapidly, we con-
sider the target EEES should be safe, context aware, anticipatory, and instruc-
tional/informative.

Phase 4: Construct anticipatory model

We choose temporal deontic relevant logics [42] as the logic basis to both predict
and make decisions. Such logics satisfied the requirements of logic basis of phase
4.

28

Table 5.1: Predicate dictionary of the world model
Predicate Meaning

Floor(f) f is a floor
Lobby(l) l is an elevator lobby

Upstairs(f1, f2) f1 is upstairs of f2
Locate(l, f) elevator lobby l locates in floor f
Elevator(e) e is an elevator car

Getatable(e, l) elevator e is getatable to lobby l
Occupied(r) region r has alive people
Afire(r) region r is afire
Smoke(r) region r is full of smoke
Poison(r) region r has biological or chemical threat
Person(o) o is a person

Priority(o, p) o has priority p for rescuing
In(o, r) o in the region r

Eliminated(et) emergency et has been eliminated

Table 5.2: Predicate dictionary of the behavioral model
Predicate Meaning

Pickup(f, p, et)
pick up people on floor f with priority p due to

emergency type et

FullEvacuation(et)
adopt full evacuation from the building because of

emergency type et
StopEvacuation(et) stop the evacuation because of emergency type et

Dispatch(e, f, p, et)
an action that elevator e to pick up people on floor f

with priority p because of emergency type et

In this case, we build the vocabulary as a predicate dictionary, shown in table
5.1. Moreover, we do not need other empirical knowledge in the world model.

In this case, the interesting predictions are emergencies. There are different
empirical theories for different emergencies. For example, in fire emergency, to
predict fire spread, we have following empirical theorem “the upper floor of the
afire floor will catch fire with highly probable” [130, 151]: ∀f1∀f2(Upstairs(f1, f2)∧
Afire(f2) ∧ ¬Afire(f1) ⇒ F (Afire(f1))). To predict based on prediction, we
have: ∀f1∀f2(Upstairs(f1, f2) ∧ F (Afire(f2)) ∧ ¬Afire(f1) ⇒ U(Afire(f2), F (
Afire(f1)))), which means “if a floor will catch fire, and then when this floor is
really afire, its upstairs will catch fire”.

Because we use temporal deontic relevant logics as the logic basis, we use “O”
to specify an action is “obligatory” to do, and “P” for “permission”. In order
to express more precision, we also introduces priority constants (using floating
number to express, smaller means higher priority): CRITICAL > HIGH >
MEDIUM > NORMAL > LOW > PLANNING. As shown in table 5.2,
we build the vocabulary of actions (only the last one is an explicit instruction
to dispatch the elevator cars). There are three types of actions in an AEEES:

29

reactive, anticipatory, and routine. Reactive actions deal with current crises. An-
ticipatory actions deal with predictive crises. Routine actions are used in a full
evacuation to egress all occupants in the building, e.g., down peak. Now we show
how to construct the behavioral empirical knowledge. For example, in fire emer-
gency, “the occupants of the fire floor are the occupants at the highest risk and
should be the ones to be evacuated first by the elevators” [149], which can be
expressed as empirical theorem about reactive actions: ∀f(Afire(f)∧Floor(f)∧
Occupied(f) ⇒ O(Pickup(f, CRITICAL, FIRE))). To predict crises, we have
empirical theorems about anticipatory actions: ∀f(F (Afire(f)) ∧ Floor(f) ∧
Occupied(f) ⇒ O(Pickup (f,HIGH,FIRE))) and ∀f∀a(U(a, F (Afire(f))) ∧
Floor(f) ∧ Occupied(f) ⇒ O (Pickup(f,MEDIUM,FIRE))). To express rou-
tine actions, e.g., down peak can be expressed as: ∀et∀f(FullEvacuation(et) ∧
Floor(f) ∧ Occupied(f) ⇒ P (Pickup (f, PriorCal(NORMAL, f), et))), which
means when we want to apply full evacuation because of emergency type et, we can
pick up each floor with priority PriorCal(NORMAL, f). PriorCal is a function
to calculate priority, which result is NORMAL−0.001×FloorNumber(f), mean-
ing higher floor has higher priority. To consider full evacuation when fire emer-
gency, can be expressed as empirical theorem: ∀r(Afire(r) ⇒ FullEvacuation(
FIRE)). Besides, because the aged and people with disabilities have higher pri-
ority in any emergency, we have: ∀o∀p∀f(Person(o)∧Priority(o, p)∧Floor(f)∧
In(o, f) ⇒ P (Pickup(f, p, ANY))). Because the elevator cars are the executor
of the actions, we use Dispatch(e, f, p, et) to express the action elevator e to pick
up people on floor f with priority p because of emergency type et. We have:
∀f∀p∀et∀e∀l(O(Pickup(f, p, et)) ∧ Elevator(e) ∧ Getatable(e, l) ∧ ¬IsF ire(l) ∧
Locate(l, f) ⇒ O(Dispatch(e, f, p, et))) and ∀f∀p∀et ∀e∀l(P (Pickup(f, p, et)) ∧
Elevator(e)∧Getatable(e, l)∧¬IsF ire(l)∧Locate(l, f)⇒ P (Dispatch(e, f, p, et))).
When certain emergency was eliminated (e.g. the fire dies out), the AEEES
should know the evacuation should stop, thus we have: ∀et(Eliminated(et) ⇒
P (StopEvacuation(et))).

In this case, we integrate the evaluation of anticipatory model into the experi-
ment in section 5.8.

Phase 5: Implementation

Because we choose temporal deontic relevant logics as the logic basic, for pre-
diction, the interesting formula (IF) is defined as: 1) If A is an interesting term,
then A is an IF ; 2) If A is an interesting term, then ¬A is an IF ; 3) If A or B
is IF s, then U(A,B) is an IF ; 4) If A is an IF, then ∀xA and ∃xA are IF s; 5)
If A is an IF, then ΦA is an IF, where Φ is one of {G, F}. For candidates of
actions, the IF is defined as: 1) - 3) are as same as that of prediction; 4) If A is
an IF, then ΦA is an IF, where Φ is one of {O, P}. For the prediction of fire,
Afire is an interesting term. For candidates of actions, Pickup, FullEvacuation,
StopEvacuation, and Dispatch are interesting terms.

The action planner can refine the actions by quantitative calculation, in order
to plan precise elevator cars dispatch. In this case study, the action planner also
takes charge of canceling actions when certain emergency was eliminated. The ac-
tion planner outputs next planned actions for each elevator car. The action planner

30

maintains a two level priority set called action container, where the low priority
subset stores all candidates of actions containing predicate P , the high priority
subset stores remaining candidates of actions, and each subset sorts candidates
of actions according to their priority. When we fetch elements from the two-level
priority set, we first fetch the actions with highest priority from the high prior-
ity subset, after the high priority subset has been traversed, we fetch the actions
with highest priority from the low priority subset. The action planner maintains
a variable called planned action for each elevator cars. An algorithm to calculate
quantitative planned action is:

for each (elevator e1 in all elevators){

if (e1 is free){

for each (action in action_container){

planRescuePeople = 0;

for each (elevator e2 in all elevators)

if (e2.planned_action.floor

== action.floor)

planRescuePeople += e2.CAPACITY;

if(action.floor.peopleNumber+REDUNDANTNUM

>planRescuePeople){

e1.planned_action = action;

break;

}

}

}

}

The calculation is triggered by the event when an elevator car is free. When
the elevator car arrives at the floor of its planned action, we set its planned action
as NULL. We have following condition-action rule in the target system: “Never
stop the elevator car at an elevator lobby with an ongoing emergency.”

Furthermore, we can realize the instructional/informative feature by using the
public address system to broadcast the current emergencies, predictions of emer-
gencies, planned elevator dispatch, which are represented as logical formulas such
that they can be easily translated into natural language.

5.8 Simulation experiments

To evaluate AEEES, we also implemented other two EEESs: EEES using down-
peak and reactive EEES (to rescue the floor with emergency first, then using
down-peak).

The basic experiment scenario is that a building with 25 floors (almost all
skyscrapers zone elevators with sky lobby, which is equivalent to superposition of
several short building) and 8 elevators, uniform distribution of occupants, and the
emergency is uncontrollable accelerated fire with random origin of fire. The ex-
perimental parameters’ setting of fire emergency is based on [151, 130], and other

31

parameters’ setting is based on [108]. All occupants evacuate only by using eleva-
tors. We designed three groups of experiments: (1) origin of fire in different floor,
3,000 occupants in the building, (2) different fire spread speed, 3,000 occupants in
the building, and (3) different number of occupants; while other parameters stay
the same.

We consider the rescued ratio as the evaluation factor.

Rescued ratio = the number of rescued occupants
the number of total occupants in the building

× 100%.

A good evacuation gets high rescued ratio.
Figure 5.1 shows the results of three groups of experiments. Using down-peak

got lowest rescued ratio; AEEES got highest rescued ratio; and reactive EEES’s
rescued ratio was in between of them. To explain why such experimental results
occur, we present a certain situation of first group of experiments. A fire emer-
gency originated from 17 floor (F). Due to the fire alarm, all occupants began
to evacuate from the building by using elevators. For down-peak, all 8 elevator
cars were dispatched to 25F first. Because all occupants used elevators to evacu-
ate, the car would stop at a floor which had occupants. However, the occupants
threatened by the fire (might later die), such as occupants in 17F, cannot use
the elevators in time. For reactive EEES, it sensed emergency on 17F, then dis-
patched all 8 cars to 17F first. Because there were 120 occupants in each floor
and the maximum capacity of car is 20, these non-overloaded cars would stop at
16F and rescue occupants. (If a car is full, both reactive EEES and AEEES dis-
patch the car to evacuation floor without stopping.) After all occupants of 17F
were rescued (the 18F was not afire at the moment), the reactive EEES adopted
down-peak, thus all cars were dispatched to 25F. Later the 18F caught fire, re-
active EEES sensed that and tried to rescue occupants on 18F. However, all cars
were occupied at the moment, besides, the fire was severe, and there was little
time left to rescue the occupants on 18F before they died. For AEEES, it filtered
out the emergency on 17F and the situation of occupants, then transformed them
into logical formulas (e.g., Afire(17F), Occupied(17F)). Based on the predictive
model and the world model (e.g. Floor(17F), Floor(18F), Upstairs(18F, 17F)),
AEEES deduced candidates of predictions. Then AEEES chose F (Afire(18F))
and U(Afire(18F), F (Aire(19F)), which means 18F would catch fire, and af-
ter that 19F would catch fire. For the qualitative decision, the AEEES chose
Pickup(17F,CRITICAL, FIRE), Pickup(18F,HIGH,FIRE), Pickup(19F,
MEDIUM,FIRE), Pickup(1F, PriorCal(NORMAL, 1F), F IRE)), ..., and
Pickup(25F, PriorCal(NORMAL, 25F), F IRE)), which means to rescue occu-
pants on 17F with CRITICAL priority, 18F with HIGH priority, 19F with MEDIUM
priority, and other floor with NORMAL priority besides higher floor has higher
priority. Based on the calculation algorithm, the AEEES first dispatched 7 eleva-
tor cars to 17F and 1 elevator cars to 18F, then dispatched 6 cars to 18F and 2
cars to 19 floor, next dispatched 5 cars to 19F, after that dispatch 7 cars to 25F
and 1 car to 24F.

We noticed sometimes anticipation becomes invalid when the emergency is too
severe or there are too many occupants. Its essence is when carrying capacity of
elevators is insufficient, AEEES can only rescue occupants in emergency floors,

32

Anticipatory

Reactive

Down peak

5 10 15 20 25

20

40

60

80

100

Source of fire (floor number)

R
es
cu
edra
ti
o(%

) Anticipatory

Reactive

Down peak

0.4 0.5 0.6 0.7 0.8 0.9

20

40

60

80

100

Fire spread speed (relative)

R
es
cu
edra
ti
o(%

) Anticipatory

Reactive

Down peak

500 1500 2500 3500

20

40

60

80

100

Number of occupants (person)

R
es
cu
edra
ti
o(%

)

Figure 5.1: Results of three groups of experiments

thus AEEES degenerates to reactive EEES.

5.9 Summary

We presented anticipatory emergency elevator evacuation system (AEEES), its
features, design, prototype implementation by extending existing EEES, and eval-
uation. As a new type of emergency elevator evacuation systems (EEES), AEEESs
show a new direction for EEESs.

We will consider the behavior of occupants, emergencies’ accuracy, various
emergencies, and evaluation from the viewpoint of efficiency in the future work.
In fact, occupants may use stairs to evacuate, and they may spend a long time
before they take evacuation [148], thus AEEESs should deal with this. One urgent
issue is that our system do not consider the smoke of fire which is more deadly than
flame. In order to construct good predictive model for AEEESs, we need qualita-
tive experimental knowledge about emergencies. However, the current researches
about emergencies are mainly numerical. It is a challenge to extract qualitative
knowledge from these quantitative experimental knowledge.

33

Chapter 6

Case study: Runway incursion
prevention systems

6.1 Overview

Although current runway incursion prevention systems have made big progress on
how to obtain accurate and sufficient information of aircraft/vehicles, they cannot
predict and detect runway incursions as early as experienced air traffic controllers
by using the same surveillance information, and cannot give explicit instructions
and/or suggestions to prevent runway incursions like real air traffic controllers ei-
ther. In this case study, we applied our methodology to existing airport/on board
systems/equipment to build an ARRS, called anticipatory runway incursion pre-
vention systems (ARIPS). The ARIPS predicts and detects runway incursions,
then gives explicit instructions and/or suggestions to pilots/drivers to avoid run-
way incursions/collisions. The features of ARIPS include long-range prediction of
incidents, explicit instructions and/or suggestions, and flexible model for differ-
ent policies and airports. To evaluate ARIPS, we built a simulation system, and
evaluated ARIPS using both real historical scenarios and conventional fictional sce-
narios of NASA. We did three groups of experiments to evaluate the performance,
correctness, and generality of ARIPS. The evaluation showed that our system is
effective at providing earlier prediction of incidents than current systems, giving
explicit instructions and/or suggestions for handling the incidents effectively, and
customizing for specific policies and airports using flexible model.

6.2 Introduction

Runway incursions are occurrences at an aerodrome involving the incorrect pres-
ence of an aircraft, vehicle or person on the protected area of a surface designated
for the landing and take-off of aircraft [135]. Runway incursions have the potential
to cause serious accidents with significant loss of life. The world’s deadliest avia-
tion accident was the result of a runway incursion [63]. In the United States, an
average of three runway incursions occur daily [63]. Avoiding runway incursions
has been a top ten priority for the National Transportation Safety Board for over

34

a decade [157].
The causes leading to runway incursions include pilot deviations, operational

errors/deviations, and vehicle/pedestrian deviation [157]. All these causes belong
to human factors.

Traditionally, to prevent runway incursions, both pilots and controllers rely
on visual cues, occasional communications by radio, and their memories [182]. In
recent years, people invented several modern devices and systems to decrease the
chance of runway incursions [182]. Because all causes of runway incursions belong
to human factors, runway incursion prevention systems require removing human
from the system operation loop as much as possible [157]. Therefore, ideal runway
incursion prevention systems should replicate the abilities of experienced air traffic
controllers, i.e., the system should not only predict and detect an runway incursion
but also give explicit instructions and/or suggestions to the pilots/drivers to avoid
the runway incursion/collision.

Although several runway incursion prevention systems have been developed,
current systems are only assistant tools for human, and still far from ideal. First,
although current systems have made big progress on obtaining accurate and suffi-
cient information of aircraft/vehicles, current systems cannot always predict/detect
a runway incursion as early as an experienced air traffic controller predict/detect
by using the same surveillance information. Second, current systems lack the abil-
ity to give explicit instructions and/or suggestions to prevent runway incursions.
We consider a runway incursion prevention system should have such an ability,
because (1) although alert of incursion is given, both the air traffic controllers and
pilots/drivers need time to make decisions about instructions to prevent the incur-
sion, and (2) at a critical moment, human may make mistakes due to overstrain,
but machine do not. Third, current systems do not consider the special conditions
of a certain airport and different areas of that airport. In contrast, experienced
air traffic controllers can use such information for better prediction/detection.

In order to remove human factors from the system operation loop as much as
possible, we propose a new type of runway incursion prevention system, named
anticipatory runway incursion prevention system, which can predict and detect
runway incursions, and then give explicit instructions and/or suggestions to pi-
lots/drivers to avoid the runway incursion/collision. The features of our system
include: (1) long-range prediction: to predict runway incursions earlier than cur-
rent runway incursion prevention systems for reserving more time to handle the
incidents, (2) explicit instructions and/or suggestions: not only to give alerts to
air traffic controllers/pilots/drivers, but also to give explicit instructions and/or
suggestions to pilots/drivers to avoid the incursions/collisions, and (3) flexible cus-
tomized anticipatory model for different air traffic control policies and airports.
To implement our system, we adopted logic-based reasoning [44, 45] for prediction
and decision making, and adopted anticipatory reasoning-reacting system [38] as
the core of the system architecture. To evaluate our system, we build a simulation
system, and evaluate our system using three historical real scenarios of incidents,
four conventional test scenarios for evaluating runway incursion prevention sys-
tems, as well as some random variation of these scenarios for testing the frequency
of missed alerts and false alerts.

35

6.3 Problems of current runway incursion pre-

vention systems

A number of systems for runway incursion avoidance and detection were proposed,
such as runway incursion prevention system (RIPS) [36], airport surface detection
equipment - model X (ASDE-X) [68] , runway incursion monitoring and collision
avoidance system (RIMCAS) [185], runway status light system (RWSL) [64], air-
port movement area safety system (AMASS) [61], and advanced surface movement
guidance and control system (A-SMGCS) [92, 134].

We investigated and analyzed the problems of current runway incursion pre-
vention systems, then specified what these problems are, and why these problems
are important or why these problems arise.

• Tardy prediction/detection

Although current systems can obtain accurate and sufficient information
of aircraft/vehicles, they cannot always predict/detect a runway incursion
as early as an experienced air traffic controller predict/detect by using the
same surveillance information. There are two reasons arising tardy predic-
tion/detection. First, current systems focus on detecting an ongoing runway
incursion, or predicting a forthcoming collision, but not focus on predicting
a forthcoming runway incursion. Due to the high speed of aircraft, when a
runway incursion has happened, there may be insufficient time to manage
the incident [157]. Second, current systems use inflexible algorithms/models,
and cannot flexibly utilize the empirical knowledge of air traffic controllers
and the concrete conditions of the airport [15]. For example, in the real
incident shown in section 6.7, for RIMCAS, only two aircraft simultaneously
enter a “critical circle”, an alert can be triggered [15]. In contrast, a concen-
trated experienced air traffic controller could utilize the layout of runways to
predict that runway incursion long before the two aircraft enter the “critical
circle”.

• Lack of explicit instructions and/or suggestions

Current systems only give alerts, but cannot give explicit instructions and/or
suggestions to pilots/drivers to avoid the incursions/collisions. Although air
traffic controllers/pilots/drivers may be aware of an ongoing/forthcoming
incident, they have to make correct decisions to manage the incidents in very
limited spans of time. To make the decisions also consumes time, besides, in
an extreme emergency, people tend to relay on instinct instead of rationality.

• High frequency of missed alerts and false alerts

Several current systems suffer high frequency of missed alerts and false alerts
[160]. Missed alerts and false alerts is a direct result of erroneous or miss-
ing traffic data [36]. Besides, inflexible algorithms/models may lose their
effectiveness for some special situations and airports [15]. Furthermore, nu-
merical calculation approaches cannot distinguish between a severe accident
and a trivial incident, which causes high frequency of unnecessary alerts.

36

• Inflexible algorithms/models

Most of current system use inflexible algorithms/models to predict/detect in-
cursions/collisions. Inflexible algorithms/models cannot adapt to the needs
of customization and variability, i.e., they cannot flexibly utilize the empir-
ical knowledge of air traffic controllers and the concrete conditions of the
airports. Besides, airport operations are complex and vary for different poli-
cies and different airports (even in different areas of one airport). Therefore,
we should not use a single general algorithm/approach for different policies
and airports (even in different areas of one airport). Furthermore, as we
discussed above, inflexible algorithms/models could cause both tardy pre-
diction/detection and missed/false alerts.

Although some approaches based on artificial intelligence may use flexible mod-
els, such as [28], they did not show their effectiveness and efficiency, as well as
practical use in real systems.

In this case study, our aim is not to solve all these problems completely. We
only focus on (1) earlier prediction/detection of runway incursions/collisions than
current systems by using the same processed information of aircraft/vehicles, such
as position, speed, and acceleration, (2) facility to give explicit instructions and/or
suggestions to avoid the incursions/collisions, and (3) flexible models. It is im-
portant for runway incursion prevention systems to get accurate and sufficient
surveillance information of aircraft/vehicles, such as position, speed, and acceler-
ation, out of noisy surveillance data in time. Almost all current systems focus
on aircraft/vehimissed/false surveillance informationmissed/false surveillance in-
formationcles surveillance, and made big progress on this topic. However, they are
beyond the scope of this work that how to get accurate and sufficient surveillance
information and how to work under missed/false surveillance information.

6.4 Anticipatory runway incursion prevention sys-

tems

ARIPS We propose a new type of runway incursion prevention system, named
anticipatory runway incursion prevention system (ARIPS), which is a runway in-
cursion prevention system not only predict and detect runway incursions, but also
give explicit instructions and/or suggestions to pilots/drivers to avoid runway in-
cursions/collisions. Besides, an APIPS also predicts runway incursions as early as
an experienced air traffic controller does, and has low frequency of missed alerts and
false alerts and instructions. Due to the problem of inflexible algorithms/models
and its consequences, an ARIPS uses flexible models, which can be customized for
different air traffic control policies and airports.

We analyzed the system requirements of the ARIPS as follows.

R1 The ARIPS should predict/detect a runway incursion/collision as early as
an experienced air traffic controller does.

37

R2 The ARIPS should give alerts to both air traffic controllers and related pi-
lots/drivers. Besides, the ARIPS should give alerts with different emergency
levels, such as advisory, watch, and warning to specify an alert from trivial
to severe. System users can choose to turn off trivial alerts to focus on the
critical incidents.

R3 Besides alerts, the ARIPS should also give explicit instructions and/or sug-
gestions to pilots/drivers to avoid the incursions/collisions.

R4 The ARIPS should be a general one, which can be deployed in different
airports with trivial modification or configuration.

R5 The ARIPS should use flexible models, which can be customized for specific
air traffic control policies and airports, as well as different areas of a specific
airport. Besides, the models of ARIPS should express the knowledge of air
traffic control in an explicit way, thus the domain experts can customize,
modify, and examine these models easily.

R6 The ARIPS should have low frequency of missed alerts and false alerts and
instructions.

6.5 Applying the methodology

Phase 1: Analyze the target domain

The possible accidents are runway incursions and runway collisions. The possi-
ble anticipatory actions include holding a taxiing aircraft/vehicle, stopping taking
off, stopping landing and going around, etc.

Phase 2: Analyze the legacy system

The set I includes: 1) the locations of aircrafts/vehicles, and 2) the speed and
acceleration of aircrafts/vehicles. These information are provided by traffic infor-
mation system [157] and traffic surveillance sensor system [157]. For set O, actions
are instructions, which are carried out by human machine interface system, which
gives the alerts about runway incursions or collisions as well as the instructions
for avoiding runway incursions or collisions to both pilots/drivers and air traffic
controllers, and traffic signal system, which gives instructions to pilots/drivers by
mainly using lights through different light systems deployed in the airport. The
anticipatory actions are some instructions in O, such as holding a taxiing air-
craft/vehicle, stopping taking off, and stopping landing and going around. The
legacy system can only give passive warnings, but cannot prevent runway incur-
sions or collisions anticipatorily.

Phase 3: Define requirements of the target system

38

The target system should not only detect a runway incursion or predict an
forthcoming collisions, but also predict a runway incursion as early as an experi-
enced air traffic controller. Besides, the target system should give not only alerts
but also explicit instructions and/or suggestions to pilots/drivers to avoid the in-
cursions/collisions.

Phase 4: Construct anticipatory model

We chose temporal deontic relevant logics [42] as the logic basis to both predict
and make decisions.

For the world model, we built the vocabulary as a predicate dictionary shown
in table 6.1. Besides, we also need some empirical knowledge, such as “if a air-
craft is accelerating on a runway, then that aircraft is taking off” represented as
∀o∀r(At(o, r)∧Runway(r)∧Aircraft(o)∧Accelerate(o) ⇒ TakeOffFrom(o, r)).

In this case, the interesting predictions are runway incursions and runway colli-
sions. The predictive model includes the knowledge used for generating these inter-
esting predictions. For example, we have conditionals ∀r1∀r2∀r3∀o(C2(r1, r2, r3)∧
H(At(o, r1))∧At(o, r2) ⇒ F (At(o, r3))) meaning “if an aircraft has crossed the hold
line of a runway, then that aircraft will arrive at that runway”, and F (At(o, r)) ∧
Active(r) ⇒ F (RIby(o, r)) meaning “if an aircraft will arrive at a runway and
that runway is active (occupied for taking off or landing), then that aircraft will
cause runway incursion on that runway”.

The behavioral model specifies the actions to prevent a ongoing/furture run-
way incursion/collision. For example, we have conditionals ∀o∀r(F (At(o, r)) ∧
F (RIby(o, r)) ⇒ O(Hold(o))) meaning “if an aircraft will arrive at a runway and
will cause a runway incursion on that runway, then the aircraft is obligatory to hold
in its position”, ∀o1∀o2∀r(F (LandOn(o1, r)) ∧ F (RIby(o2, r)) ⇒ O(GoAround
(o1))) meaning “if an aircraft is landing on a runway and there will be a runway
incursion on that runway, the aircraft should cancel landing and go around”, and
∀o1∀o2∀r(TakeOffFrom(o1, r) ∧ F (RIby(o2, r)) ⇒ O(Evade (o1))) meaning “if
aircraft is taking off form a runway and there will be a runway incursion on that
runway, the aircraft should cancel taking off, and evade potential collision”.

Phase 5: Implementation

Because we also chose temporal deontic relevant logics as the logic basic. The
interesting terms of predictions are RIby, Collision, TakeOffFrom, LandOn,
OccupyIntersection, etc. The interesting terms of decision making are GoAround,
Evade, Hold, etc.

Action planner decides an instruction for real time operation. For example,
if the speed of aircraft is greater than V1, then that aircraft cannot stop taking
off, because V1 is the maximum speed in the takeoff at which the pilot can take
the first action (e.g., apply brakes, reduce thrust, deploy speed brakes) to stop the
airplane within the accelerate-stop distance.

39

Figure 6.1: An architecture of ARRS-based ARIPS

Figure 6.2: A basic architecture of current runway incursion prevention system

6.6 The implemented ARIPS

6.6.1 Overview

An ARIPS contains several components shown in figure 6.1, while in this work,
our aim is not to improve current traffic information systems, traffic surveillance
sensor systems, human machine interface systems, or airport traffic signal systems,
but rather only focus on the core components used for prediction/detection of
runway incursions/collisions and decision-making about instructions. To show the
difference between current systems and our system, we show a basic architecture
of current runway incursion prevention system as figure 6.2, which is according to
[157].

40

6.6.2 System architecture

Figure 6.1 shows an architecture of ARRS-based ARIPS, which includes the fol-
lowing components: traffic information system, traffic surveillance sensor system,
filter, predictor, decision maker, databases (LTDB, ETDB, and RDB), human
machine interface system, and airport traffic signal system. Traffic information
system provides local traffic information for the participating users [157]. Traf-
fic surveillance sensor system provides information about the environment, which
is usually preprocessed into a compact meaningful representation by the sensors
[157]. These sensors can be part of an airport infrastructure or part of an air-
craft and/or other mobile units [157]. Filter filters out the trivial information of
aircraft/vehicles and generates the qualitative information of aircraft/vehicles as
current situation for predictor and decision maker. Predictor receives current situ-
ation from the filter, then outputs predictions about runway incursions, collisions,
etc. Decision maker receives predictions from the predictor, current situation from
the filter, and aircraft’s/vehicles’ real time status from the traffic surveillance sen-
sor system, then outputs instructions for avoiding runway incursions or collisions.
LTDB is a logical theorem database, which stores fragments of logical systems
[38]. ETDB is an empirical theory database storing anticipatory model, including
world model, predictive model, and behavioral model. RDB is a database storing
transform rules, calculative rules, interesting formula definitions, and interesting
terms. Human machine interface system gives the alerts about runway incursions
or collisions, as well as the instructions for avoiding runway incursions or collisions
to both pilots/drivers and air traffic controllers. Besides, air traffic controllers also
use the human machine interface system as an input device. Traffic signal system
gives instructions to pilots/drivers by mainly using lights through different light
systems deployed in the airport.

6.6.3 Filtering

Because the ARIPS uses logic-based reasoning method to predict and make de-
cisions, the predictor and decision maker only need qualitative information of
aircraft/vehicles. The most useful information for ARIPS is aircraft’s/vehicles’
locations, as well as their statuses, such as whether an aircraft is accelerating.

The filter consists of a set of filter modules, while each module filters out a cer-
tain kind of sensory information. The filter’s locating module filters out qualitative
location information of aircraft/vehicles, including past locations and current lo-
cations. We divide an airport including its surrounding airspace into different
regions, and name each region with a unique name, shown in figure 6.3. The lo-
cating module represents each region as a polygon, i.e., a set of vertices. Both
traffic information system and traffic surveillance sensor system could provide the
location of an aircraft/a vehicle by a point, i.e., a pair of coordinate. The locat-
ing module calculates which region each aircraft/vehicle locates, by calculating
whether a point is inside a given polygon. The locating module maintenances
two hash maps: PastLocation<aircraft/vehicle identifier, locating region> and
CurrentLocation<aircraft/vehicle identifier, locating region>. When an aircraft/a

41

Figure 6.3: Naming different regions of airport with unique names

vehicle move from one region to another one, the locating module use its location
stored in CurrentLocation to overwrite its location in PastLocation, then use the
new current location to overwrite its location in CurrentLocation. To filter out
aircraft’s status information, the filter’s status module gets acceleration of aircraft
from traffic surveillance sensor system, e.g., an aircraft’s accelerometer could pro-
vide the aircraft’s acceleration. If an aircraft’s acceleration is greater than a give
value, status module calculates that the aircraft is accelerating. The filter modules
will not always output filtered information, because sensory date update contin-
uously. Therefore, the filter modules only output filtered information, when any
qualitative information has changed. The filter modules output the information
as strings, e.g., “N409DR was at A D”, “N409DR is at A 18L D”, “JIA390 is at
18L”, and “JIA390 is accelerating”.

6.6.4 Predicting

The purpose of prediction of ARIPS is to find out “which aircraft/vehicles will
cause runway incursions/collisions?”, “which aircraft will be affected by the runway
incursions/collisions?”, and “where the runway incursions/collisions will happen?”

Figure 6.4 shows the data flow diagram of the predictor. First, formula gen-
erator translates the filtered current situation to logical formulas according to
transformation rules, which base on the predicate dictionary. Second, the forward
reasoning engine gets input of these logical formulas about current state, the world
model, the predictive model, and the fragment of logical system [38], and then ap-
plies forward reasoning. Third, the formula chooser chooses predictions according
to the interesting formula definitions and interesting terms from all formulas rea-
soned out by forward reasoning engine, and transfers them to decision maker and
human machine interface system.

Because the ARIPS uses logic-based reasoning method to predict and make de-

42

Figure 6.4: Predictor’s data flow diagram

cisions, we need to choose a logical basis to underlie temporal reasoning and deontic
reasoning. Therefore, we chose temporal deontic relevant logics, cheng2006temporal
as the logic basis to both predict and make decisions.

A world model is a set of empirical theories represented by logical formulas in
the target domain except empirical theories related with time and behavior [71].
The world model has two functions: to represent the static conditions of the air-
port and to represent essential empirical knowledge except related with time and
behavior. A predicate vocabulary specifies a vocabulary to represent the status of
the real world, shown in table 6.1. By using the predicate vocabulary, we can rep-
resent the airport diagram as a set of logical formulas, and represent the current
situation as a set of logical formulas. We use figure 6.3 as an example to show
how to represent the airport. First, we divide an airport including its surrounding
airspace into different regions, and name each region with a unique name, i.e.,
a constant symbol, shown in figure 6.3. Second, we use a formula constructed
by a predicate and the constant symbol to represent what is that region, e.g.,
Runway(18L) representing region 18L is a runway, Way(A 18L D) representing
that it is a section of way, and A D representing that it is an intersection. Third,
we use a formula constructed by a predicate and constant symbols to represent
the relationship of different regions, e.g., C(18L,A 18L D) representing region
18L and region A 18L D connect with each other, and C2(A D,A 18L D, 18L)
representing that region 18L is a runway, A 18L D is a section of way, region

43

A D connects with region A 18L D, and region A 18L D connects with region
18L. These formulas represent the topology construction of the airport, which
include all geographic information that the system needs. To transform the situa-
tion information from the filter into logical formulas is also based on the predicate
dictionary. Figure 6.5 shows how to transform situation information represented
by strings into logical formulas. “P” is a temporal operator, while PA mean-
ing “it has been the case at least once in the past up to now that A”. Next
step is to determine the common knowledge involving in the target problem and
to represent the knowledge as conditionals. Specifically, the knowledge in world
model does not include knowledge related with prediction and behavior. For ex-
ample, “if an aircraft is accelerating on a runway, then that aircraft is taking off”
can be written as: ∀o∀r(At(o, r) ∧ Runway(r) ∧ Aircraft(o) ∧ Accelerate(o) ⇒
TakeOffFrom(o, r)) (WM1). “If an aircraft is taking off from a runway, then
that runway is active” is written as ∀o∀r(TakeOffFrom(o, r) ⇒ Active(r))
(WM2). “If an aircraft will land on a runway, then that runway is active” is
written as ∀o∀r(F (LandOn(o, r)) ⇒ Active(r)) (WM3). “F” is a temporal op-
erator, while FA meaning “it will be the case at least once in the future form
now that A”. “If an aircraft is taking off from a runway besides that runway in-
tersects with another runway, then that aircraft is occupying the two intersecting
runways” is written as ∀o∀r1∀r2(TakeOffFrom(o, r1) ∧ Intersecting(r1, r2) ⇒
OccupyIntersection(o, r1, r2)) (WM4).

A predictive model is a set of empirical theories, which are represented by
logical formulas and related with time in a target domain of the system [71].
The predictive model represents the predictive knowledge used to make predic-
tion. Predictive knowledge is time-related. A piece of predictive knowledge spec-
ifies, that when a certain state (both past and current) occurred, some following
state will be true in the future. In ARRSs, predictive knowledge is a set of con-
ditionals whose consequent of the future is true if and only if the antecedent
holds. Because for any prediction, both the predicted thing and its truth must
be unknown before the completion of that prediction, the conclusion should not
include the knowledge what we have known. Besides, the premises and conclu-
sion should be relevant. Furthermore, we are only interested in certain kinds
of predictions, while in ARIPS, they are mainly collisions, runway incursions,
and other predictions, which can help to predict collisions and runway incursions.
Here are some examples: ∀o∀r1∀r2∀r3(C2(r1, r2, r3) ∧ H(At(o, r1)) ∧ At(o, r2) ⇒
F (At(o, r3))) (PM1), ∀o∀r(F (At(o, r)) ∧ Active(r) ⇒ F (RIby(o, r))) (PM2),
∀o∀r1∀r2∀r3(C3(r1, r2, r3)∧H(At(o, r1))∧At(o, r2) ⇒ F (LandOn(o, r3))) (PM3),
∀o1∀o2∀r(TakeOffFrom(o1, r) ∧ F (LandOn(o2, r)) ⇒ F (RIby(o2, r))) (PM4),
∀o1∀o2∀r1∀r2(OccupiedIntersecting(o1, r1, r2)∧TakeOffFrom (o2, r2) ⇒ F (RIby
(o2, r1))) (PM5), ∀o1∀o2∀r(TakeOffFrom(o1, r) ∧ TakeOffFrom(o2, r) ⇒ F
(Collision(o1, o2))) (PM6). PM1 means when an aircraft has crossed the hold
line of a runway, that aircraft will arrive at that runway. PM1 is valid because
aircraft cannot draw back, when an aircraft reach one end of a way, the aircraft
will arrive at the other end. Because the above formulas are easy to understand,
we do not explain them one by one.

The forward reasoning is performed by a forward reasoning engine, which is a

44

Figure 6.5: Transforming sensory information into logical formulas

program to automatically draw new conclusions by repeatedly applying inference
rules to given premises and obtained conclusions until some previously specified
conditions are satisfied [47]. In ARIPS, we chose FreeEnCal [47] as the forward
reasoning engine.

The formula chooser chooses predictions from all formulas reasoned out by
forward reasoning engine, and transfers them to decision maker and other compo-
nents such as human machine interface systems. We call predictions interesting
formulas (IF), which is defined as follows [159]: If A is an interesting term, then
A is an IF ; If A is an interesting term, then ¬A is an IF ; If A or B is IF s, then
U(A,B) is an IF ; If A is an IF, then ∀xA and ∃xA are IF s; If A is an IF, then ΦA
is an IF, where Φ is one of {G, F}. The interesting terms are RIby, Collision,
TakeOffFrom, LandOn, OccupyIntersection, etc.

Alert generator gets the prediction and generates alerts with different emer-
gency levels, such as RIby and F (Collision) having highest emergency level, and
F (RIby) taking second place.

6.6.5 Decision making

There are two phases to choose instructions for avoiding the runway incursions/colli-
sions: first phase is to make qualitative decision by logic-based reasoning, and
second phase is to refine the decision by quantitative calculation. Figure 6.6 shows
the data flow diagram of the decision maker.

Qualitative decision: The progress of qualitative decision making by logic-based
reasoning is similar with prediction by logic-based reasoning, where the main differ-
ence is to use behavioral model instead of predictive model. The purpose of qual-
itative decision is to find out “which actions must be taken?” and “which actions
should be taken?” Thus, the result of qualitative decision is a set of candidates
of next actions, which are labeled as “obligatory”/“permitted” and/or priorities.
A behavioral model is a set of empirical theories that are represented by logical
formulas and related with behavior in a target domain of the system [71]. The

45

Table 6.1: Predicate vocabulary
Formula Meaning

Aircraft(o) o is an aircraft.
Vehicle(o) o is a vehicle.

Other(o)
o is an object cannot communicate

with air traffic controllers.
Runway(r) r is a runway.
Taxiway(r) r is a taxiway.

Intersection(r) r is an intersection.
Way(r) r is a section of way.

Approach(r)
r is an area region on extension line of a

runway, from the runway threshold to 2000
meters far away from the runway threshold.

HotSpot(r)
r is a hot spot, which is defined as a location
on an airport movement area with a history of
potential risk of collision or runway incursion.

Active(r) Runway r is occupied for taking off or landing.
Accelerate(o) o is notability accelerating.

At(o, r) o is in region r.
RIby(o, r) o is causing a runway incursion on runway r.

Collision(o1, o2) o1 and o2 collide on the runway.
TakeOffFrom(o, r) Aircraft o is taking off from runway r.

LandOn(o, r) Aircraft o is landing on runway r.
OccupyIntersection

(o, r1, r2)
Aircraft o occupies two intersecting runways.

r1 and r2 for taking off or landing.
Intersecting(r1, r2) Runway r1 and r2 cross each other.

C(r1, r2) region r1 connects to region r2.
C2(r1, r2, r3) Runway(r3) ∧ C(r1, r2) ∧ C(r2, r3) ∧Way(r2)

C3(r1, r2, r3)
Runway(r3) ∧ Approach(r2)∧

C(r1, r2) ∧ C(r2, r3)

behavioral model specifies that, when a certain event or state occurs, which actions
must/should be taken, as well as when a prediction about certain event or state
is made, which anticipatory actions must/should be taken. The behavioral model
is assembled by conditionals, which can be used to get these results of qualita-
tive decision. Here are some examples: ∀o∀r(F (LandOn(o, r))∧ F (RIby(o, r)) ⇒
O(GoAround(o))) (BM1), ∀o1∀o2∀r(TakeOffFrom(o1, r) ∧ F (RIby(o2, r)) ⇒
O(Evade(o1))) (BM2), ∀o∀r(F (At(o, r))∧F (RIby(o, r)) ⇒ O(Hold(o))) (BM3),
∀o1∀o2∀r(F (LandOn(o1, r))∧F (RIby(o2, r)) ⇒ O(GoAround(o1))) (BM4), ∀o∀r1∀r2
(TakeOffFrom(o, r1) ∧ F (RIby(o, r2)) ⇒ O(Evade(o))) (BM5). “O” is a deon-
tic operator, while OA meaning “it is obligatory that A”. “GoAround(o)” is a
go-around instruction that an aborted landing of an aircraft o that is on final ap-
proach. “Hold(o)” is a hold-in-position instruction that a taxiing aircraft/vehicle
stops going forward, stays in the current position. “Evade(o)” is an instruction

46

Figure 6.6: Decision maker’s data flow diagram

that an aborted taking off of an aircraft o as well as “see and void” a potential
collision. To choose candidates of actions, the interesting formulas (IF) is defined
as follows: If A is an interesting term, then A is an IF ; If A is an interesting term,
then ¬A is an IF ; If A is an IF, then ∀xA and ∃xA are IF s; If A is an IF, then ΦA
is an IF, where Φ is one of {O, P}. The interesting terms are GoAround, Evade,
Hold, etc.

Quantitative calculation: In order to decide an instruction for real time opera-
tion, quantitative calculation is necessary. For example, if the speed of aircraft o
is greater than V1, then aircraft o cannot execute “Evade(o)”, because V1 is the
maximum speed in the takeoff at which the pilot can take the first action (e.g.,
apply brakes, reduce thrust, deploy speed brakes) to stop the airplane within the
accelerate-stop distance.

6.6.6 Databases

In our current implementation of ARIPS, the databases LTDB, ETDB, and RDB
just store the corresponding data for initializing predictor and decision maker,
while these databases do not participate in the phase of prediction/detection and
decision-making. In the initial phase of ARIPS, predictor reads transformation
rules, interesting formula definitions, and interesting terms from RDB, reads frag-
ment of logical system from LTDB, and reads world model and predictive model

47

from ETDB, while decision maker reads transformation rules, interesting formula
definitions, interesting terms, and calculative rules from RDB, reads fragment
of logical system from LTDB, ands read world model and behavioral model from
ETDB. Both predictor and decision maker stores these data in their working space
for the sake of efficiency. When any data in RDB, LTDB, and ETDB changes in
run time, predictor and decision maker will updates their corresponding data.

6.6.7 Ad hoc methods for efficiency

Traditionally, logic-based reasoning may be not so efficient and do not satisfy the
requirement of time restriction for runway incursion prevention. Especially, the
current FreeEnCal does not handle high degree of logic connectives/operators [47]
efficiently.

To improve the performance of ARIPS, we adopted some ad hoc methods.
First, the formula generator generates the conjunctions of premises, whose de-
gree of “∧” greater than or equal to 3, then inputs these formulas as redundancy
formulas into FreeEnCal. Second, we try to ensure the degree of “∧” of em-
pirical conditionals in anticipatory model is less than 3. Third, we use multi-
processing/multi-threading of FreeEnCal in both predictor and decision maker.
When the situations of aircraft/vehicles change, predictor/decision maker creates
a new process/thread of FreeEnCal for reasoning. Therefore, there may be several
forward reasoning process/thread running simultaneously in predictor or decision
maker. Multi-process/thread of FreeEnCal may deduce redundant results. How-
ever, ARIPS just output these redundant predictions/instructions one by one,
which do not affect the correctness of alerts and instructions.

6.7 System mechanism

In order to explain the mechanism of ARIPS, we use a real incident scenario to
show the working process of ARIPS. The incident occurred on 18 June 2010 at
Zurich airport [15], shown in figure 6.7. At 12:00:30 (UTC) the aircraft THA971
received clearance to taxi to the take-off position on runway 16. At 12:01:31 the
aircraft BCI937 received clearance to taxi to the take-off position on runway 28.
The aircraft BAW713 was ready to depart at holding position point B to the north
of the threshold of runway 28. At 12:02:26 the crew of THA971 received clearance
to take off from runway 16; they acknowledged it immediately and initiated the
take-off roll. At 12:02:31 the crew of BCI937 initiated their take-off roll on runway
28 (Ideally, air traffic controller could notice the runway incursion at this moment).
At 12:02:47, the crew of BAW713 informed the air traffic controller that at that
moment it was possible that two aircraft would take off simultaneously. At 12:02:50
the air traffic controller instructed the crew of BCI937 to abort take-off. The
crew obeyed this instruction and vacated runway 28 on taxiway A4. The crew of
THA971 continued their take-off and flight to their destination. At 12:03:01, the
RIMCAS generated a stage 2 alert.

How ARIPS works under this scenario is as follows. In the initial phase

48

Figure 6.7: An incident occurred on 18 June 2010 at Zurich airport

of ARIPS, predictor and decision maker read the anticipatory model and other
data from LTDB, ETDB, and RDB, as shown in section 6.6.6. The anticipa-
tory model contained all empirical theorems shown in section 6.6. Besides, the
world model also contained static conditions of the airport, such as Runway(28),
Runway(16), and Intersecting(28, 16). After initialization, the filter continuously
received each aircraft’s location, speed, and acceleration from traffic information
system and traffic surveillance sensor system, and filtered out the qualitative infor-
mation of aircraft for predictor and decision maker. At 12:02:31, the filter filtered
out Aircraft(THA971), Aircraft(BCI937), At(THA971, 16), At(BCI937, 28),
Accelerate(THA971), and Accelerate(BCI937). Once filter updated information,
predictor used this information for prediction, while decision maker used this in-
formation for decision-making. From (1) above facts at 12:02:31, (2) above static
conditions of the airport from world model, (3) empirical theorems ∀o∀r(At(o, r)∧
Runway(r) ∧ Aircraft(o) ∧ Accelerate(o) ⇒ TakeOffFrom(o, r)) (WM1) and
∀o∀r1∀r2(TakeOffFrom(o, r1)∧Intersecting(r1, r2) ⇒ OccupyIntersection(o, r1, r2))
(WM4) of world model, and (4) empirical theorem ∀o1∀o2∀r1∀r2(OccupiedIntersecting
(o1, r1, r2)∧TakeOffFrom(o2, r2) ⇒ F (RIby(o2, r1))) (PM5) of predictive model,
based on temporal deontic relevant logics, the predictor deduced predictions/detections
TakeOffFrom(BCI937, 28), TakeOffFrom(THA971, 16), and F (RIby(BCI937, 16)),
then sent these predictions/detections to decision maker and human machine inter-
face system. Then human machine interface system gave alert F (RIby(BCI937, 16)),
i.e., “BCI937 will cause a runway incursion on runway 16”, to both air traffic con-
troller and pilot of BCI937. From the above predictions/detections and empiri-
cal theorems ∀o1∀o2∀r(TakeOffFrom(o1, r) ∧ F (RIby(o2, r)) ⇒ O(Evade(o1)))
(BM2) and ∀o∀r1∀r2(TakeOffFrom(o, r1) ∧ F (RIby(o, r2)) ⇒ O(Evade(o)))
(BM5), based on temporal deontic relevant logics, the decision maker deduced
instructions O(Evade(BCI937)) and O(Evade(THA971)). Because the speed of
either BCI937 or THA971 was less than V1, according to the calculative rule,
the final instructions were “BCI937 abort take-off” and “THA971 abort take-off”,
while decision maker gave these instructions to both human machine interface sys-
tem and airport traffic signal system. Human machine interface system gave these

49

instructions to air traffic controller and pilots of BCI937 and THA971, while air-
port traffic signal system also gave signal instruction to both BCI937 and THA971
for aborting take-off.

We compare ARIPS with the RIMCAS deployed in Zurich airport. In the
real incident, when potential runway incursion occurred 30 seconds, the RIMCAS
generated a stage 2 alert. In contrast, in our simulation experiments shown in
section 6.8, the ARIPS only use 7 seconds to give alert of prediction of runway
incursion as well as the instructions to prevent the runway incursion.

6.8 Simulation experiments

The purpose of simulation experiments is to show the performance, correctness,
and generality of ARIPS. Because the difference between current RIPSs and ARIPS
is the core components of ARIPS, we only implemented and tested the core com-
ponents of ARIPS.

To prepare input data and to simulate outside of the core components of
ARIPS, we also built a simulation program to simulate real dynamic airports.
The simulation program has following features: (1) to simulate any existing air-
ports or user-define airports, (2) user-define aircraft/vehicles routes and speeds
(supporting speed change), (3) tools for user-define airports and aircraft/vehicles
routes, (4) aware of collision and display that, (5) interface for ARIPS getting in-
formation of aircraft/vehicles, including location, speed, and acceleration, and (6)
graphic interface to display the dynamic airport (aircraft taxiing, aircraft taking
off and landing), which is similar with ASDE-X. All programs ran on a PC with
Intel Core i7-860 Processor (2.8GHz, 4 cores, 8 threads), 4Gbyte memory, and
Scientific Linux release 6.2 for x86 64 (Linux kernel is 2.6.32-220). All programs
are written in Java and running on OpenJDK Runtime Environment (IcedTea6
1.10.4), except FreeEnCal in C++. Because the purpose of this work is not about
how to get surveillance information of aircraft/vehicles, we used real surveillance
information about the position, speed and acceleration of aircraft from the three
historical incidents and four test scenarios [36] as the basic experimental data in-
stead of raw sensory data. Besides, we also prepared variations of above scenarios
as experimental data.

To evaluate the performance of ARIPS, we compared the execution time of
ARIPS with current RIPSs and/or human using the same surveillance informa-
tion from the three historical incidents and four test scenarios. The execution
time of current RIPSs and/or human is obtained directly from related documents.
Figure 6.8 shows the meaning of execution time. For human, the total time of pre-
diction/detection is time from the incident occurs to the ATC controller considers
the incident or gives the alert about the incident, and the total time of decision-
making for instructions is from the incident occurs to the ATC controller gives
the ATC-commands for handling the incident. For current RIPSs, the total time
of prediction/detection is time from the incident occurs to the RIPS gives alerts
about the incidents. For ARIPS, the total time of prediction/detection is the sum
of the lead time for updating surveillance information and the time for predict-

50

Figure 6.8: Meaning of execution time

Table 6.2: Airport surface movement surveillance performance.
Lines beginning with req. show the requirements for(ASDEX/ASMGCS).

Lines beginning with emp. show the performance experienced in field studies.

Indicator ADS-B SMR(i) MLAT

Req. target report update rate 1Hz 1Hz 2Hz
Emp. target report update rate 1Hz/0.1Hz 1Hz 2Hz

Req. delay 0.25s 0.25s 0.25s
Emp. delay 0.25s/2.0s 0.25s 0.25s/0.5s

ing/detecting the incursion/collision using the surveillance information, and the
total time of decision-making for instructions and/or suggestions is the sum of the
lead time for updating surveillance information, the time for prediction/detection,
and the time for generating the decision. In the experiments, we did not simulate
the process of generating surveillance information, but used surveillance infor-
mation as input data of ARIPS directly. To compensate the time for updating
surveillance information, we introduced the lead time of updating surveillance in-
formation, and added the lead time to the execution time of ARIPS additionally.
Table 6.2 shows the surveillance performance of some traffic surveillance sensor
systems [157]. According to this table, the experimental lead times of ADS-B,
SMR(i), and MLAT are 0.25 - 2 seconds, 0.25 - 1 seconds, 0.25 - 0.5 seconds
correspondingly. In the experiments, we adopted worst lead time, 2 seconds.

A summary of experimental results are as follows. Because we did each scenario

51

experiment at least five times, our result showed a range of execution time of
ARIPS.

• Scenario A: Boston Logan International Airport (BOS), Nov. 24, 2010 [133]

Type: Departure/Taxi

In the real incident: The ATC controller used 9 seconds to react, and 2 more
seconds to give instructions. The runway incursion prevention system did
not work.

ARIPS’s performance: Using 3.4 - 4.0 seconds to give alert “F (RIby(JB1264, 15R))”
and instructions “O(Evade(JBU417))” and “O(Hold(JBU1264))”.

T1 = T3 + T4 = 2.0 + 4.0 = 6.0

T2 = T3 + T5 = 2.0 + 4.0 = 6.0

• Scenario B: Charlotte Douglas International Airport (CLT), May 29, 2009
[62]

Type: Departure/Taxi

In the real incident: After the incident occurred, 14 seconds later, ASDE-X
alert was given.

ARIPS’s performance: Using 2.6 - 3.8 seconds to give alert “F (RIby(N409DR, 18L))”
and instructions “O(Evade(JIA390))” and “O(Hold(N409DR))”.

T1 = T3 + T4 = 2.0 + 3.8 = 5.8

T2 = T3 + T5 = 2.0 + 3.8 = 5.8

• Scenario C: Zurich Airport (LSZH), June 18, 2010 [15] - the incident shown
in section 6.7.

Type: Departure/Departure on intersecting runways

In the real incident: After the incident occurred, 16 seconds later, the crew
of BWA713 reported the runway incursion to ATC Controllers. After the
incident occurred, 19 seconds later, ATC controller instructed BCI937 to
abort take-off. After the incident occurred, 30 seconds later, the RIMCAS
system generates a stage 2 alert.

ARIPS’s performance: Using 4.9 - 5.0 seconds to give alert “F (RIby(BCI937, 18L))”
and instructions “O(Evade(BCI937))” and “O(Evade(THA971))”.

T1 = T3 + T4 = 2.0 + 5.0 = 7.0

T2 = T3 + T5 = 2.0 + 5.0 = 7.0

• Scenario D: Test scenario 1 on Dallas-Fort Worth International Airport
(DFW), NASA, 2002 [36]

Type: Arrival/Taxi

Performance of NASA’s Runway incursion prevention system (RIPS): After
the incident occurred, 7 seconds later, runway incursion advisory and alerting
system (RIAAS) gave runway traffic alert.

52

ARIPS’s performance: Using 4.4 - 4.7 seconds to give alert “F (RIby(Taxi, 35L))”
and instructions “O(Hold(Taxi))” and “O(Evade(Arrival))”.

T1 = T3 + T4 = 2.0 + 4.7 = 6.7

T2 = T3 + T5 = 2.0 + 4.7 = 6.7

• Scenario E: Test scenario 2 on DFW, NASA, 2002 [36]

Type: Departure/Taxi

Performance of RIPS: After the incident occurred, 15 seconds later, RIAAS
gave runway traffic alert.

ARIPS’s performance: Using 4.4 - 4.7 seconds to give alert “F (RIby(Taxi, 35L))”
and instructions “O(Evade(Departure))” and “O(Hold(Taxi))”.

T1 = T3 + T4 = 2.0 + 4.7 = 6.7

T2 = T3 + T5 = 2.0 + 4.7 = 6.7

• Scenario F: Test scenario 3 on DFW, NASA, 2002 [36]

Type: Taxi/Departure

Performance of RIPS: After the incident occurred, 10 seconds later, RIAAS
gave runway traffic alert.

ARIPS’s performance: Using 4.1 - 4.5 seconds to give alert “F (RIby(Taxi, 35L))”
and instructions “O(Evade(Departure))” and “O(Hold(Taxi))”.

T1 = T3 + T4 = 2.0 + 4.5 = 6.5

T2 = T3 + T5 = 2.0 + 4.5 = 6.5

• Scenario G: Test scenario 4 on DFW, NASA, 2002 [36]

Type: Arrival/Departure

Performance of RIPS: After the incident occurred, 13 seconds later, RIAAS
gave runway traffic alert.

ARIPS’s performance: Using 2.5 - 2.6 seconds to give alert “F (RIby(Arrival, 35L))”,
while using 4.4 - 4.9 seconds to give instructions “O(GoAround(Arrival))”
and “O(Evade(Departure))”.

T1 = T3 + T4 = 2.0 + 2.6 = 4.6

T2 = T3 + T5 = 2.0 + 4.9 = 6.9

Table 6.3 compares current RIPS and/or human with ARIPS in the total time
of prediction/detection and total time of decision making for instructions. We
adopted worst lead time of current traffic surveillance sensor systems (2 seconds)
and worst execution time of ARIPS. We could conclude that ARIPS provided
earlier prediction of incidents and earlier decision-making for instructions than
current RIPSs and/or humans in all scenarios.

The following contents explain the reason why ARIPS could predict earlier than
conventional RIPSs in the scenarios of three real incidents based on the same sen-
sory data. Conventional RIPSs use inflexible algorithms/models, thus they cannot

53

Table 6.3: Comparing current RIPS and/or human with ARIPS in the total time
of prediction/detection and total time of decision making for instructions

Scenario System/Human

Total time of
prediction/
detection
(T1)
(sec)

Total time of
decision-making

(T2)
(sec)

A
ATC controller 9 11
Current RIPS did not work N/A

ARIPS 6.0 6.0

B
Current RIPS 14 N/A

ARIPS 5.8 5.8

C
ATC controller* 16 19
Current RIPS 30 N/A

ARIPS 7.0 7.0

D
Current RIPS 7 N/A

ARIPS 6.7 6.7

E
Current RIPS 15 N/A

ARIPS 6.7 6.7

F
Current RIPS 10 N/A

ARIPS 6.5 6.5

G
Current RIPS 13 N/A

ARIPS 4.6 6.9
* with the help of crew of aircraft

flexibly utilize the empirical knowledge of air traffic controllers and the concrete
condition of a certain airport or certain area of that airport. For example, in
the real incident occurred on LSZH, after potential runway incursion occurred, 30
seconds later, the RIMCAS generated a stage 2 alert, because “every second, the
speed and directional vector are determined from the current position by calcula-
tion. In the process, the directional vector is continuously projected forward. The
speed must be higher than 12 meters per second. In order to recognize the problem
of two aircraft crossing on two different runways, a circular area with a diameter
of 400 meters was laid around the intersection of runways 16/28. If, on the basis
of the calculated projections, two aircraft simultaneously enter this ‘critical circle’
a Stage 2 alert is triggered.” [15] In contrast, ARIPS use flexible models, which
include the empirical knowledge about the runway intersection such as WM4 and
PM5, and the fact that runway 28 and runway 16 cross each other. Therefore,
ARIPS could work like real air traffic controllers more than conventional RIPSs,
thus ARIPS could provide earlier alerts.

We evaluated the correctness of predictions/detections and decisions about
instructions and/or suggestions of ARIPS using scenario A - G, five variations
for each test scenarios, and combination of test scenarios of NASA, i.e., three
aircraft/vehicles involved in a runway incursion simultaneously. The result of

54

prediction/detection and decision about instructions and/or suggestions of ARIPS
for scenario A - G have been given in the results of performance experiments. In all
experiments, predictions/detections are correct, and all instructions are effective
to avoid the incursion/collisions.

We evaluated the generality of ARIPS using different scenarios, different air-
port, and flexible control policy. Scenario A - G and five variations for each
test scenarios provides the empirical data about different airports and differ-
ent incident scenarios. For flexible control policy, we designed following exper-
iment. We assumed air traffic controllers of DFW decided to use the paral-
lel runway 35L for landing and runway 35C for take-off. Therefore, we added
∀o∀r(TakeOffFrom(o, r)∧LandingRunway(r) ⇒ RunwayConfusion(o)), ∀o∀r
(TakeOffRunway(r)∧LandOn(o, r) ⇒ RunwayConfusion(o)), LandingRunway(35L),
and TakeOffRunway(35C) in world model, added ∀o∀r(RunwayConfusion(o)∧
TakeOffFrom(o, r) ⇒ P (AbortTakeOff(o))) and ∀o∀r(RunwayConfusion(o)∧
F (LandOn(o, r)) ⇒ P (GoAround(o))) (“P” is a deontic operator, while PA
means “it is permitted that A”) in behavioral model, added RunwayConfusion
as interesting term of predictor, and added AbortTakeOff as interesting term of
decision maker. Scenario: The departure aircraft was taking off from runway 35L.
ARIPS’s performance: Using 4.6 - 4.8 seconds to give alert “RunwayConfusion
(Departure)”, and instructions “P (AbortTakeOff(Departure))”. T1 = T3 + T4
= 2.0 + 4.8 = 6.8. T2 = T3 + T5 = 2.0 + 4.8 = 6.8.

In our experiments, scenario A - G and five variations for each test scenarios
showed that our system could deal with different airports and different incident
scenarios based on flexible models. The experiment about flexible control policy
showed that our system could change control policy on run time by changing
behavioral model.

Simulation experiments showed that: (1) our system provided earlier prediction
of incidents than current systems in the experimental scenarios, (2) our system
could give explicit instructions and/or suggestions for handling the incidents, and
(3) our system uses flexible model, which can be customized for specific air traffic
control policies and airports. However, our current implementation cannot solve
the problems of tardy, false or missed alerts caused by erroneous or missing sensory
data.

6.9 Discussion

In our experiments, four test scenarios combined with three incident scenarios
showed that our system could deal with different airports and different incident
scenarios based on flexible models. In additional, the last experiment showed that
our system could change control policy on run time by changing behavioral model.

The following contents explain the reason why ARIPS could predict earlier
than conventional RIPSs in the scenarios of three real incidents based on the same
sensory data. Conventional RIPSs use inflexible algorithms/models, thus they
cannot flexibly utilize the empirical knowledge of air traffic controllers and the
concrete condition of a certain airport or certain area of that airport. For exam-

55

ple, in the real incident happened on LSZH in section 6.8, when potential runway
incursion happened 30 seconds, the RIMCAS generated a stage 2 alert, because
“every second, the speed and directional vector are determined from the current
position by calculation. In the process, the directional vector is continuously pro-
jected forward. The speed must be higher than 12 meters per second. In order to
recognize the problem of two aircraft crossing on two different runways, a circular
area with a diameter of 400 meters was laid around the intersection of runways
16/28. If, on the basis of the calculated projections, two aircraft simultaneously
enter this ‘critical circle’ a Stage 2 alert is triggered. [15]” In contrast, ARIPS use
flexible models, which include the empirical knowledge about the runway intersec-
tion such as WM4 and PM5, and the fact that runway 28 and runway 16 cross
each other. Therefore, ARIPS could work like real air traffic controllers more than
conventional RIPSs, thus ARIPS could provide earlier alerts.

Simulation experiments showed that: (1) our system uses flexible model, which
can be customized for specific air traffic control policies and airports, (2) our sys-
tem provided earlier prediction of incidents than current systems in the scenarios of
three real incidents, and (3) our system could give explicit instructions and/or sug-
gestions for handling the incidents. However, our current implementation cannot
solve the problems of tardy, false or missed alerts caused by erroneous or missing
sensory data.

6.10 Comparison with related work

There are some applications using artificial intelligence for runway safety, such as
[28]. The logic-based reasoning approach for prediction and decision-making used
in ARRSs is different from other methods in the following points. First, the logic-
based reasoning approach used in ARRSs is to explicitly separate the underlying
logical system, reasoning/computing mechanism, and empirical knowledge in any
prediction/decision making. Second, the underlying logical system used in ARRSs
belongs to the family of strong relevant (relevance) logics [41]. Detailed explain of
the differences refer to [44, 45].

Kitajima et al. proposed a decision maker in an ARRS for terminal radar
control [105]. The differences between our work and the work of Kitajima et al.
are listed as follows. (1) Runway incursion and terminal radar control are totally
two different problems. (2) Kitajima et al. only presented a decision maker, not
a whole system. (3) Kitajima et al. did not show a convincing evaluation. First,
their experiment data is unfounded. Second, the experiment results only include
the execution time and number of candidate, without the effectiveness of the chose
actions.

Besides ARRS for terminal radar control, there are also other ARRSs. The
most important feature of logic-based reasoning approach used in ARRSs is gen-
erality. That means we can apply logic-based reasoning approach to any areas
for predicting or decision making, by changing the logical system and empirical
knowledge. In ARRSs, the empirical knowledge is the anticipatory model. There-
fore, in terms of logic-based reasoning approach, the major differences of different

56

ARRSs are different logical systems and/or anticipatory models.

6.11 Summary

We analyzed the problems of current runway incursion systems, and proposed a
new type of runway incursion prevention system based on logic-based reasoning,
which can predict and detect runway incursions, then give explicit instructions
and/or suggestions to pilots/drivers to avoid runway incursions/collisions. Simu-
lation experiments showed that our system has long-range prediction of incidents,
effective explicit instructions and/or suggestions, and flexible model for different
aircraft and air traffic control policies. However, our current implementation can-
not solve the problems of tardy, false or missed alerts caused by erroneous or
missing sensory data.

Our future work will consider such factors such as missed/false surveillance
information, extreme weather, as well as their consequences. The evaluation sce-
narios in this work are not adequate enough, thus more test scenarios are needed
for a more complete test. Besides, we will consider use our system for other runway
safety problems, such as runway excursion and runway confusion.

57

Chapter 7

Case study: Information security
of computing services

7.1 Overview

Different information systems suffer different attacks. Although intrusion detec-
tion systems (IDS) make big progress on defending against computing malice,
most current IDSs are general purpose, and usually weak in certain application
systems/certain type of attacks. We argue that different information system
should have different models of attack prediction/detection, and have ability to
prevent/stop these attacks. Besides, ideal IDS should use explicit model and abil-
ity of customization. In this case study, we apply our methodology to a web server,
which is a typical computing service. By using the methodology, we analyzed how
to detect the events using for prediction and decision making, analyzed how to
take the action by configuring the firewall, constructed anticipatory model, and
built the target system. To evaluate the target system, we first took some real
attacks in a real network, including DoS attacks (including HTTP DoS attacks),
probe attacks (using Nmap), and web hacking attacks (including input validation,
SQL query poisoning, directory browsing, and retrieving non-web files). The tar-
get system can predict/detect all these attacks and prevent these attacks. Besides,
we also use KDD99, a popular dataset, to test the target system. The result by
using KDD99 showed that the target system have low missed/false alarms.

7.2 Introduction

Today, information security of information systems is no longer about confidential-
ity, integrity and availability, but about ensuring that the systems are predictably
dependable in the face of all sorts of malice [17]. It is difficult to defend a sys-
tem against malice, because (1) there are various malicious behaviors for different
systems/applications, (2) new vulnerabilities of systems are exposed, as well as
new approaches for attacking are invented every day, (3) experienced attackers’
behaviors are difficult to detect directly, (4) even if we could detect a malicious
activity, it is difficult to choose appropriate actions to stop the ongoing malicious

58

activity and prevent future attacks by the system itself, and (5) the malice defense
system itself is also the target of malice, and can be compromised.

To defend against computing malice, we argue an ideal malice defense system
should (1) have the ability to detect malicious behaviors, (2) to predict imminent
attacks, (3) to handle the malice by the system itself, (4) use explicit model (for
the sake of explicable system behaviors), (5) handle application-level attacks, (6)
have ability for customization/interoperability, (7) have the ability for update, (8)
handle contextual/collective misuse/abnormal, (9) ensure its own security, and 10)
function continuously and persistently.

As a mainstream approach to defend against malice, an intrusion detection
system (IDS) is a device or software application that monitors network or system
activities for malicious behaviors or policy violations, logs information about them,
and reports them to security administrators, furthermore, some IDSs can attempt
to stop detected possible attacks, also known as intrusion detection and prevention
systems (IDPS) [156]. Although current IDSs make big progress on defending
against computing malice, there is still a gap between them and ideal systems.

On the other hand, anticipatory reasoning-reacting systems (ARRS) [38] were
proposed as high secure systems with the ability to defend against malice anticipa-
torily. Some features of ARRSs, such as logical reasoning based prediction/decision
making and persistent computing [48], may contribute to an ideal malice defense
system. However, until now, there is no concrete implementation of ARRS for
security, as well as no evidence showing the practical usefulness of anticipatory
computing for security.

As a step towards to ideal secure systems, we design and implement an ARRS
for malice defense, which can adapt to different application systems by configuring
different information source, anticipatory models, and anticipatory actions. We
present the system design and implementation, and discuss how our system at-
tempt to meet the features of ideal malice defense systems. We also evaluate out
system by using KDD99 dataset and a case study of web server.

The contributions of this work are: (1) to propose what features ideal malice
defense systems should have, (2) to analyze the gap between current IDSs and
ideal malice defense systems, (3) to present why some advantages of ARRSs could
contribute ideal secure systems, (4) to present and evaluate a practical imple-
mentation of ARRS for security, thus to show anticipatory computing’s practical
usefulness for security.

7.3 Ideal malice defense systems

To defend against computing malice, we argue ideal malice defense systems should
have the following features.

• Detecting

The system can detect an ongoing malicious activity carried out by both
outsiders and insiders.

59

• Predicting

The system can identify suspicious activity, such as reconnaissance, then
predict an imminent attack, besides, the system should also predict fatal
attacks from trivial attacks and other suspicious activities.

• Active response to malice

The system can choose and take actions automatically to both stop an on-
going attacks and prevent an imminent attack anticipatorily.

• Explicit model (explicable behaviors)

The system should use explicable model for detecting/predicting malice and
choosing actions, thus the system’s behaviors are explicable. On the other
hand, opaque model contravenes some laws such as European data protection
law [17].

• Handling application-level attacks

The system can handle application level attacks. Application level attacks
will become the most common computing attacks, moreover, different appli-
cations suffer different attacks.

• Customization/Interoperability

The system can be customized easily for different applications and different
scenarios. Besides, interoperability is one of foundations for customization.

• Update

The system can update to handle new attack techniques.

• Handling contextual/collective misuse/abnormal

The system should handle contextual/collective misuse/abnormal. It is not
easy to detect experienced attackers’ behaviors, unless the system can handle
contextual/collective misuse/abnormal.

• Security

The system can ensure its own security, both preventing against attacks from
outsiders and malicious behaviors and incorrect operations from insiders.

• Persistently continuous functioning

The system can function continuously anytime without stopping its reactions
even when it is being maintained, upgraded, reconfigured, or it is being
attacked.

60

Table 7.1: Comparing current IDSs with ideal malice defense systems

IDS
Pred-
icting

Response
Explicit
model

Application
level attacks

Custo-
mization

Interop-
erability

Update
Contextual/
Collective

Security Persistent

Haystack [161] no passive yes no low low not spec not spec low not spec
IDES [124] no passive partial not finished low low not spec not spec low not spec
W&S [170] no passive yes low low low not spec not spec low not spec
NSM [86] no passive yes no low low not spec not spec low not spec

NADIR [94] no passive yes not spec low low not spec not spec low not spec
Hyperview [53] no passive no not spec low lower not spec not spec low not spec
DIDS [162] no passive yes not finished low low not spec not spec low not spec
ASAX [76] no passive yes not spec higher higher higher not spec low not spec
USTAT [91] no passive no not spec low low not spec not spec low not spec
DPEM [111] no passive no low low low low not spec low not spec
IDIOT [114] no passive no low high higher low not spec low not spec
NIDES [16] no passive partial low high higher high not spec low not spec
GrIDS [165] no passive no no low low low no low not spec
CSM [177] no active not spec no low low not spec not spec low not spec
Janus [69] no active no low low low not spec not spec low not spec
JiNao [98] no passive partial not spec low low not spec not spec low not spec

EMERALD [147] no active partial low low high not spec not spec moderate not spec
Bro [139] no passive partial yes low low high not spec higher not spec

SNORT [11] no active yes no low high high no not spec not spec
Check Point [2] no active yes no low high high not spec not spec not spec
Cisco IDS [3] no passive yes no low low higher not spec not spec not spec
Cisco IPS [4] no active yes no low high higher not spec not spec not spec
Dragon [6] no passive yes no low high high no low not spec
Prelude [10] no passive yes low low high not spec no low not spec
Firestorm [7] no passive yes low low high not spec no low not spec

IBM SNIPS [8] no active yes Web low high not spec not spec not spec not spec
ARMD [122] no passive yes no high not spec not spec not spec not spec not spec
ISOA [179] no active yes high high high low not spec not spec not spec
NIDX [24] no passive yes no not spec low not spec not spec not spec not spec

NetSTAT [173] no passive not spec no high high not spec not spec not spec not spec
MADAM ID [117] no passive yes low low low low not spec not spec not spec

SPADE [164] no passive no no no no no no lower not spec
SmartSifter [181] no passive no no no no no no lower not spec

MET [27] no passive no Email not spec not spec not spec not spec not spec not spec
MINDS [60] no passive no not spec not spec not spec not spec not spec not spec not spec
Valdes [171] no passive no not spec not spec not spec not spec not spec not spec not spec
ADAM [22] no passive no not spec not spec not spec low not spec not spec not spec
IDDM [13] no passive yes not spec low not spec low not spec not spec not spec
PHAD [125] no passive no no not spec low low not spec not spec not spec
ADMIT [158] no passive no not spec low low low not spec not spec not spec
NetProbe [153] no active yes yes high high high not spec high not spec
eBayes [172] no passive no not spec not spec not spec low not spec not spec not spec
Zhao [184] no not spec no no not spec not spec not spec not spec not spec not spec
Kim [104] no passive no no not spec not spec not spec not spec not spec not spec
Munz [131] no passive no no high high not spec not spec not spec not spec

Lakhina [115] no passive no no not spec not spec not spec not spec not spec not spec
Wagner [175] no passive no no not spec not spec not spec not spec not spec not spec
Gates [67] no passive no no not spec not spec not spec not spec not spec not spec

Dubendorfer [55] no passive no no high high not spec not spec not spec not spec
Collins [50] no passive no no not spec not spec not spec not spec not spec not spec
Dressler [54] no passive yes no no not spec low not spec not spec not spec

Karasaridis [99] no passive no no not spec not spec not spec not spec not spec not spec
Livadas [166] no passive no no not spec not spec not spec not spec not spec not spec
BotMiner [74] no passive no no not spec not spec not spec not spec not spec not spec
D-SCIDS [12] no passive no not spec not spec not spec not spec not spec not spec not spec
Khan [102] no passive no not spec not spec not spec not spec not spec not spec not spec
Su [167] no passive no no low low low not spec not spec not spec

Horng [90] no passive no not spec low low low not spec not spec not spec
Cabrera [33, 34] yes active yes no no low not spec not spec not spec not spec

61

7.4 Current intrusion detection systems

In table 7.1, we list 59 intrusion detection systems (IDS), and try to compare
them with ideal malice defense systems. Some conclusions in the table refer to
[20, 116, 163].

By comparing compare the current IDSs with ideal malice defense systems, we
have following conclusions.

• Most IDSs are passive.

• Almost all of active IDSs are directly reactive.

• Most IDSs do not consider to handle contextual/collective misuse/abnormal.

• Almost all active IDSs do not consider prediction.

• A lot of IDSs use opaque models.

• Most IDSs are week in customization/interoperability.

• Almost all network based IDS cannot handle encrypted application-level mal-
ice. Although using a proxy may solve this problem, it defeats application
systems’ efficiency.

• Most IDSs are general purpose. However, they are often weak for a certain
application scenario.

• A lot of IDSs are difficult to change/update their models. They have to
rebuild models for different application scenarios, and some of them also
need training dataset which is difficult to obtain in fact.

• Most IDSs do not consider their own security, especially insiders’ malice or
mistakes.

• Almost all IDSs do not consider persistently continuous functioning.

7.5 Advantages of ARRSs for malice defense

7.5.1 Logical reasoning method

An ARRS uses logical reasoning to predict and make decisions of active response
[38]. The basic idea of logical reasoning method is to explicitly separate the under-
lying logic system, reasoning/computing mechanism, and empirical knowledge in
any prediction/decision making such that both underlying logic system and empir-
ical knowledge can be revised/replaced/customized in various predictions/decision
making processes performed by an area-independent, task-independent, general-
purpose reasoning mechanism [44, 45].

The method of prediction/decision making by logic reasoning has the following
characteristics [44, 45]. First, to explicitly separate the underlying logic system,

62

reasoning/computing mechanism, and empirical knowledge directly results in an
adaptive prediction/decision making method such that one can easily develop,
modify, and improve the underlying logic system, reasoning/computing mecha-
nism, and empirical knowledge separately to satisfy different requirements from
various application areas. Second, as the underlying logic system (i.e., logical
validity criterion) and empirical knowledge are separated explicitly, the predic-
tion/decision making results can be evaluated from two aspects: logical aspect that
is area/problem independent and empirical aspect that is area/problem depen-
dent. Third, as a characteristic of development and maintenance technology, the
underlying logic system, reasoning/computing mechanism, and empirical knowl-
edge can be developed and maintained separately. Fourth, because logic systems
and their formal languages are adopted as the absolute, area/problem indepen-
dent criterion of correctness/validity and representation languages, the approach
of prediction/decision making by logic reasoning is more suitable to qualitative
methods rather than quantitative methods.

7.5.2 Persistent computing

An ARRS is a persistent computing system, which is a reactive system that func-
tions continuously anytime without stopping its reactions even when it is being
maintained, upgraded, or reconfigured, it had some trouble, or it is being attacked
[48]. Persistent computing systems have the two key characteristics and/or fun-
damental features: (1) persistently continuous functioning, i.e., the systems can
function continuously and persistently without stopping its reactions, and (2) dy-
namically adaptive functioning, i.e., the systems can be dynamically maintained,
upgraded, or reconfigured during its continuous functioning [48].

7.6 Applying the methodology

Phase 1: Analyze the target domain

The possible attacks to a computing service includes DoS, probing, compro-
mises, and viruses/worms/Trojan horses [116]. The possible anticipatory actions
include blocking access from the attacker or to the target, killing connections to
or from a particular host, network, and port, changing an attack’s content, ter-
minating a network connection or a user session, and blocking access form certain
hosts or user accounts. Besides, the system could notify security administrators
notifications about important detections/predictions/responses about malicious
activities.

Phase 2: Analyze the legacy system

The set I includes network traffic and network data. To get these traffic/data,
there are two kinds of observers: inline observers and passive observers. An inline
observer is deployed so that the network traffic/data transfer it is monitoring
must pass through it, such as a hybrid firewall, a proxy, and a security gateway.

63

A passive observer is deployed so that it monitors a copy of the actual network
traffic, NetFlow or sFlow, host system status, and application logs and status.
The actions in set O are carried out by actuators. An actuator could be a firewall
(either network firewall or host-based firewall), a router, or a switch, which can
block access from the attacker or to the target; An actuator could be a program
that kills connections to or from a particular host, network, and port, such as
Tcpkill; An actuator could be a security proxy, which can change an attack’s
content; An actuator could also be an application service, while some application
could terminate a network connection or a user session, block access form certain
hosts or user accounts.

Phase 3: Define requirements of the target system

The target system can identify suspicious activity, such as reconnaissance, then
predict an imminent attack, besides, the system should also predict fatal attacks
from trivial attacks and other suspicious activities. The target system can choose
and take actions automatically to both stop an ongoing attacks and prevent an
imminent attack anticipatorily. The target system should use explicable model for
detecting/predicting malice and choosing actions, thus the system’s behaviors are
explicable. The target system can handle application level attacks. The target
system can be customized for different applications and different scenarios, while
interoperability is one of foundations for customization.

Phase 4: Construct anticipatory model

We chose temporal deontic relevant logics [42] as the logic basis. We present
preventing web server against HTTP DoS attacks as an example. In predictive
model, “∀ip addr(MaxConnection(ip addr) ⇒ HttpDos(ip addr))” means “if a
host ip addr makes more than max concurrent requests, it is taking a HTTP DoS
attack.”, and “∀ip addr(TooFrequent(ip addr) ⇒ HttpDos(ip addr))” means “if
a host ip addr requests the same page more than a few times per second, it is
taking a HTTP DoS attack.” In behavioral model, ∀ip addr(HttpDos(ip addr) ⇒
Block(ip addr)) means “if host ip addr is taking a HTTP DoS attack, block it.”

Phase 5: Implementation

Because we also chose temporal deontic relevant logics as the logic basic. The
interesting terms of predictions are predicates of attacks, such as HttpDos. The
interesting terms of decision making are Block, Kill, ChangeContent, etc.

7.7 The implemented system

7.7.1 Overview

After applying the methodology, we implemented an ARRS with ability of malice
defense, which can record information related to malice activities, detect/predict
malice activities based on anticipatory model, then stop/prevent these malice ac-
tivities, besides, the system can also notify security administrators of important
detections/predictions/responses.

64

7.7.2 Architecture

Figure 7.1 shows the architecture of the ARRS for malice defense, which includes
the following components.

• LTDB is a logical theorem database, which stores fragments of logical systems
[38].

• ETDB is an empirical theory database storing anticipatory model, includ-
ing world model, predictive model, and behavioral model, which express the
real world, predictive laws and behavioral patterns of the target domain as
empirical theories represented by logical formulas correspondingly.

• RDB is a rule database storing filter rules, translation rules, interesting for-
mula definitions, interesting terms, and actions mapping rules.

• Observers monitor activities and status of the networks, host servers, or
application services, then send these trivial sensory data to the filter. There
are two kinds of observers: inline observers and passive observers. An inline
observer is deployed so that the network traffic/data transfer it is monitoring
must pass through it, such as a hybrid firewall, a proxy, and a security
gateway. A passive observer is deployed so that it monitors a copy of the
actual network traffic, NetFlow or sFlow, host system status, and application
logs and status.

• Filter filters out the trivial sensory data and generates important and useful
information for detection/prediction or decision making.

• Formula generator encodes the sensory data into logical formulas used by
the forward reasoning engine according to the translation rules.

• Forward reasoning engine is a program to automatically draw new conclu-
sions by repeatedly applying inference rules, to given premises and obtained
conclusions until some previously specified conditions are satisfied [47]. The
forward reasoning engine gets logical formulas translated at the formula gen-
erator, fragment of (a) logic system(s), and the anticipatory model, then it
deduces predictions/next actions.

• Formula chooser chooses nontrivial conclusions, i.e., predictions and next
actions, from forward reasoning engine according to interesting formula def-
initions and interesting terms.

• Enactor receives next actions from formula chooser, then gives corresponding
instructions according to the actions mapping rules to actuators.

• Actuators receive instructions from the enactor, and carry out actions spec-
ified by the instructions to stop/prevent malicious behaviors. An actuator
could be a firewall (either network firewall or host-based firewall), a router,
or a switch, which can block access from the attacker or to the target; An ac-
tuator could be a program that kills connections to or from a particular host,

65

Figure 7.1: System architecture

network, and port, such as Tcpkill; An actuator could be a security proxy,
which can change an attack’s content; An actuator could also be an appli-
cation service, while some application could terminate a network connection
or a user session, block access form certain hosts or user accounts.

• Notifier notifies security administrators notifications about important de-
tections/predictions/responses about malicious activities. The notifier gives
notifications by e-mail, short message, as well as the system’s user interface.

• Reporter summarizes the detections/predictions/responses about malicious
activities, as well as provides details of this information.

• Maintainer checks whether there are contradictional theorems in ETDB
against a newly added/modified empirical theorem, when we construct/up-
date/modify the anticipatory model. If the contradictional theorems exist,
the maintainer lists up theorems deduced from the contradictional theorems
in ETDB.

• Soft system bus [39] and central control components provide a communication
channel for each component and an infrastructure for persistent computing
[39].

7.7.3 Mechanisms

In this subsection, we present the system’s mechanisms of anticipation, persistent
computing, reliability and security.

• Anticipation

In order to detect/predict malicious activities then choose and take actions
actively to stop/prevent the malice, our system adopt anticipatory approach
based on logical reasoning method. Figure 7.2 shows the data flow diagram
of anticipation. There are three steps for anticipation. First step is to de-
tect and predict malicious activities. Second step is to choose anticipatory
actions. And third step is to take these anticipatory actions to stop/prevent
these malicious activities. For detecting/predicting malice, there are four
steps. First, observers monitor activities and status of the networks, host

66

Figure 7.2: Data flow diagram of anticipation

servers, or application services, then send these trivial sensory data (current
situation) to the filter, as well as store them. Second, formula generator
translates the filtered current situation and past situation to logical for-
mulas according to translation rules. Third, the forward reasoning engine
gets input of these logical formulas about current/past situation, the world
model, the predictive model, and fragment of logic system, then apply for-
ward reasoning. Forth, the formula chooser chooses predictions/detections
from all formulas reasoned out by the forward reasoning engine. The predic-
tions/detections are used for decision making, as well as sent to notifier and
reporter. For choosing next actions, it is similar with the process of predic-
tion, where the main difference is to use behavior model instead of predictive
model for logical reasoning. After the formula chooser chooses next actions,
these next actions are sent to the enactor, notifier and reporter. For tak-
ing actions, the enactor receives these next actions and translate them to
instructions, then gives the instructions to actuators. An actuator receives
the instructions, then take the actions to stop/prevent the malice activities.

• Persistent computing, reliability and security

The system’s persistent computing, reliability and security mainly resort to
soft system bus (SSB) methodology [39]. The SSB methodology provides a
way that maintenance, upgrade, and reconfiguration of an SSB-based sys-
tem [39] (i.e., adding, replacing, or removing functional components) can
be done without stopping the running of the whole system. Besides, the
SSB methodology provides a way to control and keep reliability and se-
curity in different degree at different points in an SSB-based system. In an

67

SSB-based system, we can anticipatorily protect the whole system by remov-
ing a functional component with some danger temporarily, or anticipatorily
protect an important functional component by stopping its all interaction
with other components. Moreover, the SSB methodology also provides in-
formation hiding, i.e., to make information not visible and not accessible
to those program units or human objects that do not have rights to access
the information. On the other hand, in order to realize features about han-
dling different application-level attacks, customization, interoperability, and
update, it is necessary to dynamically adding/upgrading observers and ac-
tuators. Persistent computing also provide a fundamental for dynamically
adding/upgrading observers and actuators. In order to deal with insiders’
malice/mistakes, such as adding some empirical knowledge which conflicts
with the current knowledge in anticipatory model, the maintainer could check
and detect that, then the system could notify this to other administrators
or supervisors.

7.8 Evaluation

7.8.1 KDD99

The KDD99 dataset [1] was derived from the DARPA98 network traffic dataset [5]
which is the most popular dataset that has ever been used in the intrusion detection
field. We use KDD99 dataset to show logical reasoning method are at least not
worse than other approaches for detecting malice activities. However, because
almost all elements in KDD99 dataset are statistics but do not include contextual
information and details (e.g., IP address, port number), we cannot predict based
on KDD99 dataset, and we do not choose and take actions to defend these malice
activities. Because elements in KDD99 dataset belong to filtered information, we
directly input each element of KDD99 dataset to formula generator one by one.
In this experiment, we only deal with some DoS and probe attacks, because those
remote-to-local and user-to-root attacks are system-dependent. We use temporal
deontic relevant logics [42] as the logic basis. Table 7.2 shows the experimental
results.

7.8.2 A case study of web server

In order to show our system’s practical use, we carry out a case study of web server.
Figure 7.3 shows the experimental environment. The web server is Apache on
Linux. The firewall is a Linux firewall. The client’s OS are Linux used for generate
attacks including DoS attacks (including HTTP DoS attacks), probe attacks (using
Nmap), and web hacking attacks (including input validation, SQL query poisoning,
directory browsing, and retrieving non-web files). The observers include one for
monitoring network status, one for monitoring apache logs, and one for monitoring
other system resource. The actuators include one for reconfiguring the firewall and
one for terminating a connection between a client and the server. We use temporal

68

Table 7.2: Detection performance on the KDD99 test dataset

Attack
name

Protocal
type

Number of
occurrences
on test data

Number of
occurrences
detected

False
classification

False
alarm

Back TCP 2203 2199 0 0
Ipsweep TCP 94 91 0 0
Land TCP 21 21 0 1

Neptune TCP 107201 107095 8 0
Nmap TCP 103 103 0 0
Nmap UDP 25 24 0 0

Teardrop UDP 979 979 0 0
Ipsweep ICMP 1153 1153 104 0
Nmap ICMP 103 103 6 0
Pod ICMP 264 264 0 2
Smurf ICMP 280790 280790 0 0

deontic relevant logics [42] as the logic basis. The system can detect/predict the
attacks mentioned above, and prevent these attacks automatically by blocking a
certain client (by adding rules to firewall or terminating a connection by sending
resets, and terminating corresponding Apache processes).

We show an example about how our system handles HTTP DoS attacks. In or-
der to handle HTTP DoS attacks, we have following empirical theories in the antici-
patory model. In predictive model (the rules refer to [9]), “MaxConnection(ip addr) ⇒
HttpDos(ip addr)” means “if a host ip addr makes more than max concurrent re-
quests, it is taking a HTTP DoS attack.”, and “TooFrequent(ip
addr) ⇒ HttpDos(ip addr)” means “if a host ip addr requests the same page
more than a few times per second, it is taking a HTTP DoS attack.” In behav-
ioral model, HttpDos(ip addr) ⇒ Block(ip addr) means “if host ip addr is taking
a HTTP DoS attack, block it.” To observe requisite events, we utilize “netstat”
to monitor concurrent requests, and analyze apache log to monitor visit frequency.
To realize blocking action, the enactor gives instruction “iptables -I INPUT -s
ip addr -j DROP” to the firewall, and kills all Apache processes connecting with
ip addr by SIGKILL.

7.9 Summary

We proposed what features ideal malice defense systems should have, analyzed
the gap between current intrusion detection systems (IDS) and ideal malice de-
fense systems, presented why some advantages of anticipatory reasoning-reacting
systems (ARRS) could contribute ideal secure systems, presented and evaluated
a practical implementation of ARRS for malice defense. We showed how our sys-
tem attempts to satisfied the features of ideal malice defense systems, except for
handling contextual/collective misuse/abnormal.

Our system is still in its infancy. For KDD99 dataset, we cannot predict malice

69

Figure 7.3: The experimental environment of ARRS for web server

activities and take actions to defend these malice activities because of the limita-
tion of KDD99 dataset. For the case study of web server, we only handle some
traditional attacks. Until now, we do not have evidence to show that our sys-
tem performs better than other approaches from the aspect of detecting malice
activities, makes significant and practical prediction about malice activities, and
handles practical contextual/collective misuse/abnormal.

There are several future works: to prove anticipatory computing’s practical
usefulness on handling contextual/collective misuse/abnormal, to make significant
and practical prediction for some typical malice activities, and to apply our system
on other application areas. Furthermore, in order to make our system practical
useful, we will build some optional anticipatory models, observers and actuators
for some common applications (such as web servers and database systems), thus
the users could easily build their own system by choosing and using these prepared
models and components.

70

Chapter 8

Discussion

Although there are some particularities in the three case studies, we can still argue
our methodology is a general one.

First, our case studies showed that our methodology can deal different kinds
of reactive systems. A reactive system can have following three kinds of functions
[178].

• Informative: To provide information about the subject domain, such as to
answer questions and produce reports.

• Directive: To direct the entities in the subject domain, such as to control or
guide a physical entity.

• Manipulative: To manipulate lexical items in the subject domain, such as to
create, remove, or modify lexical items.

The legacy reactive systems in first and second case studies have directive and in-
formative functions, while the legacy reactive system in third case study has infor-
mative and manipulative functions. Therefore, from viewpoint of system function,
our case studies covers different kinds of reactive systems, thus, our methodology
is general.

Second, our case studies showed that our methodology can improve both the
legacy system’s safety and security. Safety is freedom of risk [52] (accidents or
losses) [120]. Security is prevention of or protection against access to information
by unauthorized recipients or intention but unauthorized destruction or alteration
of that information [52]. Safety and security are closely related and similar, while
the important differences between them is that security focuses on malicious ac-
tions. Our first and second case studies improve the system’s safety by avoiding
disasters/accidents. Our third case study improve the system’s security by pre-
venting attacks/ malicious behaviors.

The main particularity among the three case studies is quantitative calculating
of the action planer. The quantitative calculating for each case study is special,
while it cannot be used in other cases. At present, we can eliminate this particu-
larity by implementing different action planners for different target domains.

71

Chapter 9

Conclusions

9.1 Conclusions

It is difficult to ensure reactive systems’ safety and security, because the problem is
not to ensure what should happen, but to ensure what should not happen [17, 120].
Furthermore, it is more challenging to improve existing reactive systems’ safety
and security.

We have proposed a new approach by extending the systems with anticipatory
ability without reimplementing the whole of the existing system. The proposed
methodology can be used to extend various reactive systems with anticipatory
ability, but preserve the system’s original functions. We presented three case
studies to show how to apply our methodology to legacy reactive systems. We
also discussed the generality and particularity of the case studies.

We can conclude: (1) it is possible to extend an existing reactive system with
anticipatory ability, (2) the anticipatory ability is useful to the legacy reactive
system, thus such an extension is rewarding, and (3) our method is effective, at
least in the three case studies.

9.2 Contributions

This work has following contributions. First, we conceived a new approach to
improve existing reactive systems safety and/or security by extending the sys-
tem with anticipatory ability. Second, we proposed a general methodology, which
can extend various reactive systems with anticipatory ability, and we showed the
effectiveness of the methodology by applying the methodology to different case
studies. Third, we built three practical ARRSs in the case studies, thus showed
the practical usefulness of anticipation and ARRSs for safety and security. Previ-
ous studies of ARRSs are mainly theoretical, such as formal definition, architecture
design, mechanism of prediction and decision-making, and prototype implementa-
tion, thus, there was a gap between those theoretical work and practical ARRSs.
Whereas, in this work, we built practical ARRSs, as well as solve several practical
problems when building practical ARRSs.

72

9.3 Future works

To prove the generality of our proposed methodology, the best way is to apply our
methodology to various target domains. Thus, our future work is to find out some
other interesting areas, which require high safety or high security, then extends
some existing critical reactive systems in these areas with anticipatory ability.

When we construct/update/modify the anticipatory model, it is necessary to
check whether there are contradictional theorems in the current anticipatory model
against a newly added/modified empirical theorem. A truth maintenance system
can check whether there are contradictional theorems in anticipatory model against
a newly added/modified empirical theorem, when we update/modify the anticipa-
tory model.

A software development framework as a reusable, semi-finished application
that can be customized by developers to produce custom applications, is an ideal
solution to build complex software for different target domains, such as ARRSs.
By now, we have proposed the design of such a framework in our paper “a software
development framework for various anticipatory reasoning-reacting systems”.

73

Publications

Refereed papers published in journals or books (first author)

• Kai Shi, Yuichi Goto, Zhiliang Zhu, and Jingde Cheng, “Making Exist-
ing Reactive Systems Anticipatory,” in R. Lee, et al. (Ed.), ”Computer
and Information Science 2013,” Studies in Computational Intelligence,
Vol. 493, pp.17-32, Springer-Verlag, June 2013.

• Kai Shi, Yuichi Goto, Zhiliang Zhu, and Jingde Cheng, “Anticipa-
tory Emergency Elevator Evacuation Systems,” in A. Selamat, N. T.
Nguyen, and H. Haron (Eds.), ”Intelligent Information and Database
Systems, 5th Asian Conference, ACIIDS 2013, Kuala Lumpur, Malaysia,
March 18-20, 2013, Proceedings, Part I,” Lecture Notes in Artificial In-
telligence, Vol. 7802, pp. 117-126, Springer-Verlag, March 2013.

• Kai Shi, Kazunori Wagatsuma, Yuichi Goto, and Jingde Cheng, “World
Model, Predictive Model, and Behavioral Model of an Anticipatory
Reasoning-Reacting System for Runway Incursion Prevention, ” Inter-
national Journal of Computing Anticipatory Systems, CHAOS, 2012
(in press).

• Kai Shi, Yuichi Goto, and Jingde Cheng, “A Software Development
Framework for Various Anticipatory Reasoning-Reacting Systems,” In-
ternational Journal of Computing Anticipatory Systems, CHAOS, 2012
(in press).

• Kai Shi, Yuichi Goto, Zhiliang Zhu, and Jingde Cheng, “Anticipatory
Runway Incursion Prevention Systems, IEICE Transactions on Infor-
mation and Systems, Vol. E96-D, No. 11, IEICE, November 2013 (to
appear).

Refereed papers published in international conference proceedings (first au-
thor)

• Kai Shi, Bo Wang, Yuichi Goto, Zhiliang Zhu, and Jingde Cheng, “An
Anticipatory Reasoning-Reacting System for Defending Against Malice
Anticipatorily,” Proc. 4th IEEE International Conference on Software
Engineering and Service Science (ICSESS 2013), pp. 732-737, Beijing,
China, IEEE press, May 2013 (Acceptance rate: 28.8%).

Refereed papers published in journals or books (co-author)

74

• Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng, “Finding The-
orems in NBG Set Theory by Automated Forward Deduction Based
on Strong Relevant Logic,” in D.-Z. Du and G. Zhang (Eds.), ”Com-
puting and Combinatorics, The 19th Annual International Conference,
COCOON 2013, Hangzhou, China, June 21-23, 2013, Proceedings,”
Lecture Notes in Computer Science, Vol. 7936, pp. 697-704, Springer-
Verlag, June 2013.

Refereed papers published in international conference proceedings (co-author)

• Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng, “Automated
Theorem Finding by Forward Deduction Based on Strong Relevant
Logic: A Case Study in NBG Set Theory,” Proc. 11th International
Conference on Machine Learning and Cybernetics, pp. 1859-1865, Xi’an,
China, The IEEE Systems, Man, and Cybernetics Society, July 2012.

• Liqing Xu, Kai Shi, Yuichi Goto, and Jingde Cheng, “ISEC: An In-
formation Security Engineering Cloud,” Proc. 3rd IEEE International
Conference on Software Engineering and Service Science, pp. 750-753,
Beijing, China, IEEE Press, June 2012.

• Gefei Sun, Kenichi Yajima, Junichi Miura, Kai Shi, Yuichi Goto, and
Jingde Cheng, “A Supporting Tool for Creating and Maintaining Se-
curity Targets According to ISO/IEC 15408,” Proc. 3rd IEEE Inter-
national Conference on Software Engineering and Service Science, pp.
745-749, Beijing, China, IEEE Press, June 2012.

• Bo Wang, Kai Shi, Yuichi Goto, and Jingde Cheng, “Generation of
System Dependence Nets for Ada 2005 Programs,” Proc. 2nd IEEE
International Conference on Computer Science and Automation Engi-
neering, Vol. 3, pp. 401-406, Zhangjiajie, China, IEEE Press, May
2012.

75

Bibliography

[1] KDD cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html, 1999.

[2] Check Point. http://www.checkpoint.com/products/ips-1/, 2012.

[3] Cisco IDS. http://www.cisco.com/warp/public/cc/pd/sqsw/sqidsz/index.
shtml, 2012.

[4] Cisco IPS. http://www.cisco.com/en/US/products/ps5729/Products Sub
Category Home.html, 2012.

[5] DARPA intrusion detection data sets. http://www.ll.mit.edu/mission/
communications/ist/corpora/ideval/data/index.html, 2012.

[6] Dragon. http://www.intrusion-detection-system-group.co.uk/dragon.htm,
2012.

[7] Firestorm. http://www.scaramanga.co.uk/firestorm/, 2012.

[8] IBM Security Network Intrusion Prevention System. http://www-01.
ibm.com/software/tivoli/products/security-network-intrusion-prevention/,
2012.

[9] mod evasive. http://www.zdziarski.com/blog/?page id=442, 2012.

[10] Prelude. http://www.prelude-technologies.com, 2012.

[11] Snort. http://www.snort.org, 2012.

[12] A. Abraham, R. Jain, J. Thomas, and S.Y. Han. D-SCIDS: distributed soft
computing intrusion detection system. Journal of Network and Computer
Applications, 30(1):81–98, 2007.

[13] T. Abraham. IDDM: Intrusion detection using data mining techniques. Tech-
nical Report DSTO-GD-0286, DSTO Electronics and Surveillance Research
Laboratory, Department of Defense, Australia, 2001.

[14] L. Aceto, A. Ingólfsdóttir, K.G. Larsen, and J. Srba. Reactive Systems:
Modelling, Specification and Verification. Cambridge University Press, 2007.

76

[15] Aircraft Accident Investigation Bureau. Final report No. 2113 by the Aircraft
Accident Investigation Bureau, 2010.

[16] D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion detection
expert system (NIDES): A summary. Technical Report SRI-CSL-95-07, CSL,
SRI International, 1995.

[17] R. J. Anderson. Security engineering: a guide to building dependable dis-
tributed systems. Wiley, second edition, 2008.

[18] C André. Representation and analysis of reactive behaviors: A synchronous
approach. In IEEE-SMC’96, Computational Engineering in Systems Appli-
cations, 1996.

[19] A. Attoui and M. Schneider. An object oriented model for parallel and
reactive systems. In Real-Time Systems Symposium, 1991. Proceedings.,
Twelfth, pages 84–93. IEEE, 1991.

[20] S. Axelsson. Intrusion detection systems: A survey and taxonomy. Technical
Report 99-15, Chalmers University, 2000.

[21] M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem
for secure reactive systems. Theory of Cryptography, pages 336–354, 2004.

[22] D. Barbara, N. Wu, and S. Jajodia. Detecting novel network intrusions
using bayes estimators. In Proc. 1st SIAM Conference on Data Mining.
SIAM, 2001.

[23] G. C. Barney. Up-peak, down-peak & interfloor performance. Elevator
World, 47:100–103, 1999.

[24] D.S. Bauer and M.E. Koblentz. NIDX-an expert system for real-time network
intrusion detection. In Proc. 1988 Computer Networking Symposium, pages
98–106. IEEE, 1988.

[25] A. Benveniste and G. Berry. Another look at real-time programming. In
Special Section of the Proceedings of the IEEE, volume 79, 1991.

[26] G. Berry. The foundations of esterel. Proof, Language and Interaction:
Essays in Honour of Robin Milner, pages 425–454, 2000.

[27] M. Bhattacharyya, S. Hershkop, and E. Eskin. MET: An experimental sys-
tem for malicious email tracking. In Proc. 2002 workshop on New security
paradigms, pages 3–10. ACM, 2002.

[28] C. Blaess, C. Tsiampalidis, and J. Vallee. An application of artificial intelli-
gence for the safety in the neighbourhood of airport runways. In Proc. IEEE
ICTAI’96 Workshop on Artificial Intelligence for Aeronautics and Space,
Toulouse, France. IEEE, Nov. 1996.

77

[29] M. Bozzano, A. Cimatti, and F. Tapparo. Symbolic fault tree analysis for
reactive systems. In Proceedings of the 5th international conference on Au-
tomated technology for verification and analysis, pages 162–176. Springer-
Verlag, 2007.

[30] R. W. Bukowski. Emergency egress strategies for buildings. In Proc. 11th
International interflam conference, pages 159–168, 2007.

[31] R. W. Bukowski. International applications of elevators for fire service access
and occupant egress in fires. CTBUH Journal, 2010 Issue III:28–584, 2010.

[32] R. W. Bukowski. Addressing the needs of people using elevators for emer-
gency evacuation. Fire Technology, 48(1):127–136, 2012.

[33] J.B.D. Cabrera, L. Lewis, X. Qin, W. Lee, and R.K. Mehra. Proactive
intrusion detection and distributed denial of service attacks-a case study
in security management. Journal of Network and Systems Management,
10(2):225–254, 2002.

[34] J.B.D. Cabrera, L. Lewis, X. Qin, W. Lee, R.K. Prasanth, B. Ravichandran,
and R.K. Mehra. Proactive detection of distributed denial of service attacks
using MIB traffic variables-a feasibility study. In Proc. 2001 IEEE/IFIP
International Symposium on Integrated Network Management Proceedings,
pages 609–622. IEEE, 2001.

[35] C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and
M. Veanes. Model-based testing of object-oriented reactive systems with
spec explorer. Microsoft Research, MSR-TR-2005-59, 2005.

[36] R. Cassell, C. Evers, J. Esche, and B. Sleep. NASA runway incursion preven-
tion system (RIPS) Dallas-Fort Worth demonstration performance analysis.
Technical Report CR-2002-211677, NASA, 2002.

[37] P. Checkland. System thinking, system practice. John Wiley & Sons, 1981.

[38] J. Cheng. Temporal relevant logic as the logical basis of anticipatory
reasoning-reacting systems. In Proc. Computing Anticipatory Systems:
CASYS - 6th International Conference, AIP Conference Proceedings, vol-
ume 718, pages 362–375. AIP, 2004.

[39] J. Cheng. Connecting components with soft system buses: A new methodol-
ogy for design, development, and maintenance of reconfigurable, ubiquitous,
and persistent reactive systems. In Proc. 19th International Conference on
Advanced Information Networking and Applications, pages 667–672. IEEE
Computer Society Press, 2005.

[40] J. Cheng. Relevant logic as the logical basis for decision making based on
anticipatory reasoning. In Proc. 2006 IEEE Annual International Conference
on Systems, Man, and Cybernetics, pages 1036–1041. The IEEE Systems,
Man, and Cybernetics Society, 2006.

78

[41] J. Cheng. Strong relevant logic as the universal basis of various applied logics
for knowledge representation and reasoning. 136:310–320, 2006.

[42] J. Cheng. Temporal deontic relevant logic as the logical basis for decision
making based on anticipatory reasoning. In Proc. 2006 IEEE International
Conference on Systems, Man and Cybernetics, volume 2, pages 1036–1041.
IEEE, 2006.

[43] J. Cheng. Persistent computing systems based on soft system buses as an in-
frastructure of ubiquitous computing and intelligence. Journal of Ubiquitous
Computing and Intelligence, 1(1):35–41, 2007.

[44] J. Cheng. Adaptive prediction by anticipatory reasoning based on temporal
relevant logic. In Proc. 8th International Conference on Hybrid Intelligent
Systems, pages 410–416. IEEE Computer Society Press, 2008.

[45] J. Cheng. Adaptive decision making by reasoning based on relevant log-
ics. In Proc. Computational Intelligent: Foundations and Applications, 9th
International FLINS Conference, pages 541–546. World Scientific, 2010.

[46] J. Cheng, Y. Goto, and N. Kitajima. Anticipatory reasoning about mobile
objects in anticipatory reasoning-reacting systems. In Proc. Computing An-
ticipatory Systems: CASYS - 8th International Conference, AIP Conference
Proceedings, volume 1051, pages 244–254. AIP, 2008.

[47] J. Cheng, S. Nara, and Y. Goto. FreeEnCal: A forward reasoning engine
with general-purpose. In Proc. 11th International on Conference Knowledge-
Based Intelligent Information and Engineering Systems, Part II, Lecture
Notes in Artificial Intelligence, volume 4693, pages 444–452. Springer-Verlag,
2007.

[48] J. Cheng and F. Shang. Persistent computing systems as an infrastructure
of computing anticipatory systems. International Journal of Computing An-
ticipatory Systems, 18:61–74, 2006.

[49] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. Logics of Programs, pages 52–71, 1982.

[50] M. Collins and M. Reiter. Hit-list worm detection and bot identification in
large networks using protocol graphs. In Proc. 10th International Workshop
on the Recent Advances in Intrusion Detection, Lecture Notes in Computer
Science, volume 4637, pages 276–295. Springer, 2007.

[51] CTBUH. Emergency evacuation elevator systems guideline. CTBUH, 2004.

[52] J. Daintith and E. Wright. A dictionary of computing. Oxford University
Press, sixth edition, 2008.

79

[53] H. Debar, M. Becker, and D. Siboni. A neural network component for an in-
trusion detection system. In Proc. 1992 IEEE Computer Society Symposium
on Research in Security and Privacy, pages 240–250. IEEE, 1992.

[54] F. Dressler, W. Jaegers, and R. German. Flow-based worm detection using
correlated honeypot logs. In Proc. 2007 ITG/GI Symposium Communication
in Distributed Systems (KiVS), pages 1–6. VDE-Verlag, 2007.

[55] T. Dubendorfer, A. Wagner, and B. Plattner. A framework for real-time
worm attack detection and backbone monitoring. In Proc. 1st IEEE Inter-
national Workshop on Critical Infrastructure Protection, page 10pp. IEEE,
2005.

[56] MD Edwards and D. Aspinall. The synthesis of digital systems using asm
design techniques. Computer Hardware Description Languages and their
Applications, pages 55–64, 1983.

[57] E. Emerson. Automated temporal reasoning about reactive systems. Logics
for Concurrency, pages 41–101, 1996.

[58] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to
synthesize synchronization skeletons. Science of Computer programming,
2(3):241–266, 1982.

[59] C.A. Ericson II. Fault tree analysis - a history. In Proc. 17th International
System Safety Conference, 1999.

[60] L. Ertoz, E. Eilertson, A. Lazarevic, P.N. Tan, V. Kumar, J. Srivastava, and
P. Dokas. Minds-minnesota intrusion detection system. In Next Generation
Data Mining, pages 199–218. AAAI, 2004.

[61] Federal Aviation Administration. Fact sheet - airport movement
area safety system. http://www.faa.gov/news/fact sheets/news story.cfm?
newsId=6302, accessed Feb. 11. 2013.

[62] Federal Aviation Administration. May 29, 2009 OE/D operational er-
ror category A. http://www.faa.gov/airports/runway safety/videos/media/
simulation.html, accessed Feb. 26. 2013.

[63] Federal Aviation Administration. Pilot’s handbook of aeronautical knowledge
- appendix 1, runway Incursion Avoidance. FAA, 2012.

[64] Federal Aviation Administration Airport Engineering Division. Runway sta-
tus lights system. Technical Report Engineering Brief 64D, FAA, 2011.

[65] AB Ferrentino and HD Mills. State machines and their semantics in software
engineering. In Proc. IEEE COMPSAC’77 Conference, pages 242–251, 1977.

[66] S. Feyock. Transition diagram-based cai/help systems. International Journal
of Man-Machine Studies, 9(4):399–413, 1977.

80

[67] C. Gates, J.J. McNutt, J.B. Kadane, and M.I. Kellner. Scan detection on
very large networks using logistic regression modeling. In Proc. 11th IEEE
Symposium on Computers and Communications, pages 402–408. IEEE, 2006.

[68] J.L. Gertz and R.D. Grappel. Surveillance improvement algorithms for air-
port surface detection equipment model X (ASDE-X) at Dallas-Fort Worth
airport. Technical Report ATC-333, MIT Lincoln Laboratory, 2007.

[69] I. Goldberg, D. Wagner, R. Thomas, and E.A. Brewer. A secure environment
for untrusted helper applications (confining the wily hacker). In Proc. 6th
conference on USENIX Security Symposium, Focusing on Applications of
Cryptography-Volume 6, pages 1–1. USENIX, 1996.

[70] Y. Goto and J. Cheng. A transformation mechanism between sensory data
and logical formulas for anticipatory reasoning-reacting systems. Interna-
tional Journal of Computing Anticipatory Systems, 2013.

[71] Y. Goto, R. Kuboniwa, and J. Cheng. Development and maintenance envi-
ronment for anticipatory reasoning-reacting systems. International Journal
of Computing Anticipatory Systems, 24:61–72, 2011.

[72] Y. Goto, S. Nara, and J. Cheng. Efficient anticipatory reasoning for an-
ticipatory systems with requirements of high reliability and high security.
International Journal of Computing Anticipatory Systems, 14:156–171, 2004.

[73] N.E. Groner. Selecting strategies for elevator evacuations. In Proc. 2nd Sym-
posium on Elevators, Fire, and Accessibility, pages 186–189. ASME, 1995.

[74] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering analysis of
network traffic for protocol-and structure-independent botnet detection. In
Proc. 17th USENIX Security Symposium, pages 139–154. USENIX, 2008.

[75] B. Guttman and E.A. Roback. An introduction to computer security: the
NIST handbook. DIANE Publishing, 1995.

[76] N. Habra, B.L. Charlier, A. Mounji, and I. Mathieu. ASAX: Software archi-
tecture and rule-based language for universal audit trail analysis. In Proc.
2nd European Symposium on Research in Computer Security, Lecture Notes
in Computer Science, volume 648, pages 435–450. Springer-Verlag, 1992.

[77] N. Halbwachs. Synchronous programming of reactive systems. Kluwer Aca-
demic Publishers, 1993.

[78] N. Halbwachs. Synchronous programming of reactive systems - a tutorial
and commented bibliography. In Computer Aided Verification, pages 1–16.
Springer, 1998.

[79] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language lustre. Proceedings of the IEEE, 79(9):1305–
1320, 1991.

81

[80] M. Hamilton and S. Zeldin. Higher order software - a methodology for
defining software. Software Engineering, IEEE Transactions on, (1):9–32,
1976.

[81] D. Harel. Statecharts: A visual formalism for complex systems. Science of
computer programming, 8(3):231–274, 1987.

[82] D. Harel. Statecharts in the making: a personal account. In Proceedings of
the third ACM SIGPLAN conference on History of programming languages,
pages 5–1–5–43. ACM, 2007.

[83] D. Harel and E. Gery. Executable object modeling with statecharts. Com-
puter, 30(7):31–42, 1997.

[84] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: A working environ-
ment for the development of complex reactive systems. Software Engineering,
IEEE Transactions on, 16(4):403–414, 1990.

[85] D. Harel and A. Pnueli. On the development of reactive systems. Logics and
models of concurrent systems, pages 477–498, 1985.

[86] L.T. Heberlein, G.V. Dias, K.N. Levitt, B. Mukherjee, J. Wood, and D. Wol-
ber. A network security monitor. In Proc. 1990 IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages 296–304. IEEE, 1990.

[87] R. Helm, I.M. Holland, and D. Gangopadhyay. Contracts: specifying be-
havioral compositions in object-oriented systems. In OOPSLA/ECOOP
’90 Proceedings of the European conference on object-oriented programming
on Object-oriented programming systems, languages, and applications, pages
169–180. ACM, 1990.

[88] C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[89] L. Hoffmann. Amir pnueli: ahead of his time. Communications of the ACM,
53(1):22–23, 2010.

[90] S.J. Horng, M.Y. Su, Y.H. Chen, T.W. Kao, R.J. Chen, J.L. Lai, and C.D.
Perkasa. A novel intrusion detection system based on hierarchical clustering
and support vector machines. Expert Systems with Applications, 38(1):306–
313, 2011.

[91] K. Ilgun. Ustat: A real-time intrusion detection system for unix. In Proc.
1993 IEEE Computer Society Symposium on Research in Security and Pri-
vacy, pages 16–28. IEEE, 1993.

[92] International Civil Aviation Organization. Advanced surface movement guid-
ance and control systems (A-SMGCS) manual. ICAO, first edition, 2004.
Doc 9830 AN/452.

82

[93] ISO/IEC. ISO/IEC 19501:2005: Information technology – Open Distributed
Processing – Unified Modeling Language (UML) Version 1.4.2. ISO, 2005.

[94] K. Jackson, D. DuBois, and C. Stallings. An expert system application
for network intrusion detection. In Proc. 14th National Computer Security
Conference, pages 215–225. NIST-NCSC, 1991.

[95] R.J.K. Jacob. Using formal specifications in the design of a human-computer
interface. Communications of the ACM, 26(4):259–264, 1983.

[96] H. Jarvinen, R. Kurki-Suonio, M. Sakkinen, and K. Systa. Object-oriented
specification of reactive systems. In Software Engineering, 1990. Proceed-
ings., 12th International Conference on, pages 63–71. IEEE, 1990.

[97] O.H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Tech-
nical report, University of Cambridge Computer Laboratory, 2004.

[98] Y.F. Jou, F. Gong, C. Sargor, S.F. Wu, and R. Cleaveland. Architecture
design of a scalable intrusion detection system for the emerging network
infrastructure. Technical Report CDRL A005, Dept. of Computer Science,
North Carolina State University, 1997.

[99] A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet detection and
characterization. In Proc. 1st Workshop on Hot Topics in Understanding
Botnets, pages 1–8. USENIX, 2007.

[100] K. Kawai. Fire control system for elevator, 2008. US Patent 7,413,059.

[101] K. Kawai. Evacuation system and method for elevator control using number
of people remaining, 2009. US Patent 7,637,354.

[102] L. Khan, M. Awad, and B. Thuraisingham. A new intrusion detection sys-
tem using support vector machines and hierarchical clustering. The VLDB
Journal, 16(4):507–521, 2007.

[103] J. H. Kim and B. R. Moon. Adaptive elevator group control with cameras.
IEEE Transactions on Industrial Electronics, 48(2):377–382, 2001.

[104] M.S. Kim, H.J. Kong, S.C. Hong, S.H. Chung, and J.W. Hong. A flow-based
method for abnormal network traffic detection. In Proc. 2004 IEEE/IFIP
Network Operations and Management Symposium, volume 1, pages 599–612.
IEEE, 2004.

[105] N. Kitajima, Y. Goto, and J. Cheng. Development of a decision-maker
in an anticipatory reasoning-reacting system for terminal radar control. In
Proc. 4th International Conference on Hybrid Artificial Intelligence Systems,
Lecture Notes in Artificial Intelligence, volume 5572, pages 68–76. Springer-
Verlag, 2009.

83

[106] N. Kitajima, S. Nara, Y. Goto, and J. Cheng. A deontic relevant logic
approach to reasoning about actions in computing anticipatory systems. In-
ternational Journal of Computing Anticipatory Systems, 20:177–190, 2008.

[107] N. Kitajima, S. Nara, Y. Goto, and J. Cheng. Fast qualitative reasoning
about actions for computing anticipatory systems. In Proc. 3rd International
Conference on Availability, Reliability and Security, pages 171–178. IEEE
Computer Society Press, 2008.

[108] J. H. Klote. A method for calculation of elevator evacuation time. Journal
of fire protection engineering, 5(3):83–95, 1993.

[109] J. H. Klote, B. M. Levin, and N. E. Groner. Feasibility of fire evacuation
by elevators at FAA control towers. NISTIR 5445, National Institute of
Standards and Technology, 1994.

[110] J. H. Klote, B. M. Levin, and N. E. Groner. Emergency elevator evacuation
systems. In Proc. 2nd Symposium on Elevators, Fire, and Accessibility, pages
131–149. ASME, 1995.

[111] C. Ko, G. Fink, and K. Levitt. Automated detection of vulnerabilities in
privileged programs by execution monitoring. In Proc. 10th Annual Com-
puter Security Applications Conferenc, pages 134–144. IEEE, 1994.

[112] G. Kotonya and I. Sommerville. Requirements engineering: processes and
techniques. John Wiley & Sons, Inc.

[113] E. D. Kuligowski and R. W. Bukowski. Design of occupant egress systems
for tall buildings. In CIB World Building Congress, volume 2004, 2004.

[114] S. Kumar and E.H. Spafford. A pattern matching model for misuse intrusion
detection. In Proc. 17th National Computer Security Conference, pages 11–
21. NIST-NCSC, 1994.

[115] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic fea-
ture distributions. ACM SIGCOMM Computer Communication Review,
35(4):217–228, 2005.

[116] A. Lazarevic, V. Kumar, and J. Srivastava. Intrusion detection: A survey.
Managing Cyber Threats, pages 19–78, 2005.

[117] W. Lee and S.J. Stolfo. A framework for constructing features and models for
intrusion detection systems. ACM Transactions on Information and System
Security, 3(4):227–261, 2000.

[118] P. LeGuernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming
real-time applications with signal. Proceedings of the IEEE, 79(9):1321–1336,
1991.

84

[119] J. Leifer and R. Milner. Deriving bisimulation congruences for reactive sys-
tems. CONCUR 2000Concurrency Theory, pages 243–258, 2000.

[120] N. G. Leveson. Safeware: system safety and computers. Addison-Wesley,
1995.

[121] B. M. Levin and N. E. Groner. Some control and communication consid-
erations in designing an emergency elevator evacuation system. In Proc.
2nd Symposium on Elevators, Fire, and Accessibility, pages 190–193. ASME,
1995.

[122] J.L. Lin, X.S. Wang, and S. Jajodia. Abstraction-based misuse detection:
High-level specifications and adaptable strategies. In Proc. 11th IEEE Com-
puter Security Foundations Workshop, pages 190–201. IEEE, 1998.

[123] P. B. Luh, B. Xiong, and S. C. Chang. Group elevator scheduling with
advance information for normal and emergency modes. IEEE Transactions
on Automation Science and Engineering, 5(2):245–258, 2008.

[124] T.F. Lunt, R. Jagannathan, R. Lee, S. Listgarten, D.L. Edwards, P.G. Neu-
mann, H.S. Javitz, and A. Valdes. IDES: The enhanced prototype, a real-
time intrusion-detection expert system. Technical Report SRI-CSL-88-12,
CSL, SRI International, 1988.

[125] M.V. Mahoney and P.K. Chan. Learning nonstationary models of normal
network traffic for detecting novel attacks. In Proc. 8th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages
376–385. ACM, 2002.

[126] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent
systems: Specification, volume 1. Springer, 1992.

[127] F. Maraninchi. Operational and compositional semantics of synchronous
automaton compositions. In CONCUR’92, pages 550–564. Springer, 1992.

[128] R. Milner. Bigraphical reactive systems: basic theory. Technical report,
Technical Report 523, Computer Laboratory, University of Cambridge, 2001.

[129] R. Milner, R. Milner, R. Milner, and R. Milner. A calculus of communicating
systems, volume 92. Springer-Verlag Germany, 1980.

[130] B. Morris and L. A. Jackman. An examination of fire spread in multi-storey
buildings via glazed curtain wall facades. Structural Engineer, 81(9):22–26,
2003.

[131] G. Munz and G. Carle. Real-time analysis of flow data for network attack
detection. In Proc. 10th IFIP/IEEE International Symposium on Integrated
Network Management, pages 100–108. IEEE, 2007.

85

[132] S. Nara, F. Shang, T. Omi, Y. Goto, and J. Cheng. An anticipatory reasoning
engine for anticipatory reasoning-reacting systems. International Journal of
Computing Anticipatory Systems, 18:225–234, 2006.

[133] National Air Traffic Controllers Association National Office. Boston
Logan controller’s Nov. 24 save. http://www.youtube.com/watch?v=
V-dbEYk-ikU, accessed Feb. 26. 2013.

[134] S. Nihei, H. Miyazaki, T. Koga, H. Aoyama, Y. Kakubari, and I. Ya-
mada. Development of advanced-surface movement guidance and con-
trol (A-SMGC) systems (in Japanese). Technical report of IEICE. SANE,
109(397):101–106, 2010.

[135] International Civil Aviation Organization. Manual on the Prevention of
Runway Incursions. ICAO, first edition, 2007. Doc 9870 AN/463.

[136] D.L. Parnas. On the use of transition diagrams in the design of a user
interface for an interactive computer system. In Proceedings of the 1969
24th national conference, pages 379–385. ACM, 1969.

[137] L. Parrini, P. A. Spiess, K. Schuster, L. Finschi, P. Friedli, et al. Method
and system for emergency evacuation of building occupants and a method
for modernization of an existing building with said system, 2007. US Patent
7,182,174.

[138] C. Passerone, C. Sansoe, L. Lavagno, R. McGeer, J. Martin, R. Passerone,
and A. Sangiovanni-Vincentelli. Modeling reactive systems in java. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
3(4):515–523, 1998.

[139] V. Paxson. Bro: A system for detecting network intruders in real-time.
Computer networks, 31(23):2435–2463, 1999.

[140] J.L. Peterson. Petri net theory and the modeling of systems. PRENTICE-
HALL, INC., ENGLEWOOD CLIFFS, NJ 07632, 1981, 290, 1981.

[141] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic security of
reactive systems. Electronic Notes in Theoretical Computer Science, 32:59–
77, 2000.

[142] B. Pfitzmann, M. Schunter, and M. Waidner. Secure reactive systems. IBM
Research Division, 2000.

[143] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In Security and Privacy,
2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 184–200.
IEEE, 2001.

[144] A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57. IEEE, 1977.

86

[145] A. Pnueli. Applications of temporal logic to the specification and verifi-
cation of reactive systems: a survey of current trends. Current trends in
Concurrency, pages 510–584, 1986.

[146] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190. ACM, 1989.

[147] P.A. Porras and P.G. Neumann. EMERALD: Event monitoring enabling
response to anomalous live disturbances. In Proc. 20th national information
systems security conference, pages 353–365. NIST-NCSC, 1997.

[148] G. Proulx. Evacuation time and movement in apartment buildings. Fire
Safety Journal, 24(3):229–246, 1995.

[149] G. Proulx. Evacuation by elevators: who goes first? In Proc. Workshop on
Use of Elevators in Fires and Other Emergencies, pages 1–13. NRC Institute
for Research in Construction, National Research Council Canada, 2004.

[150] L.L. Pullum and J.B. Dugan. Fault tree models for the analysis of com-
plex computer-based systems. In Reliability and Maintainability Sympo-
sium, 1996 Proceedings.’International Symposium on Product Quality and
Integrity’., Annual, pages 200–207. IEEE, 1996.

[151] J. G. Quintiere. Fire growth: an overview. Fire technology, 33(1):7–31, 1997.

[152] A. Rockstrom and R. Saracco. Sdl–ccitt specification and description lan-
guage. Communications, IEEE Transactions on, 30(6):1310–1318, 1982.

[153] P. Rolin, L. Toutain, and S. Gombault. Network security probe. In Proc. 2nd
ACM Conference on Computer and communications security, pages 229–240.
ACM, 1994.

[154] R. Rosen, John J. Kineman Judith Rosen, and Mihai Nadin. Anticipa-
tory systems: philosophical, mathematical, and Methodological Foundations.
Springer, second edition, 2012.

[155] D.T. Ross. Structured analysis (sa): A language for communicating ideas.
Software Engineering, IEEE Transactions on, (1):16–34, 1977.

[156] K. Scarfone and P. Mell. Guide to intrusion detection and prevention systems
(IDPS). NIST Special Publication, 800(94), 2007.

[157] J. Schönefeld and DPF Möller. Runway incursion prevention systems: A re-
view of runway incursion avoidance and alerting system approaches. Progress
in Aerospace Sciences, 51:31–49, 2012.

[158] K. Sequeira and M. Zaki. ADMIT: anomaly-based data mining for intrusions.
In Proc. 8th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 386–395. ACM, 2002.

87

[159] F. Shang, S. Nara, T. Omi, Y. Goto, and J. Cheng. A prototype imple-
mentation of an anticipatory reasoning-reacting system. In Proc. Computing
Anticipatory Systems: CASYS - 7th International Conference, AIP Confer-
ence Proceedings, volume 839, pages 401–414. AIP, 2006.

[160] GK Singh and C. Meier. Preventing runway incursions and conflicts.
Aerospace science and technology, 8(7):653–670, 2004.

[161] S.E. Smaha. Haystack: An intrusion detection system. In Proc. Fourth
Aerospace Computer Security Applications Conference, pages 37–44. IEEE,
1988.

[162] S.R. Snapp, S.E. Smaha, D.M. Teal, and T. Grance. The DIDS (distributed
intrusion detection system) prototype. In Proc. 3rd USENIX UNIX Security
Symposium, pages 227–233. USENIX, 1992.

[163] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller.
An overview of ip flow-based intrusion detection. Communications Surveys
& Tutorials, IEEE, 12(3):343–356, 2010.

[164] S. Staniford, J.A. Hoagland, and J.M. McAlerney. Practical automated de-
tection of stealthy portscans. Journal of Computer Security, 10(1-2):105–136,
2002.

[165] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. Grids-a graph based intrusion
detection system for large networks. In Proc. 19th National Information
Systems Security Conference, pages 361–370. NIST-NCSC, 1996.

[166] W. Strayer, D. Lapsely, R. Walsh, and C. Livadas. Botnet detection based
on network behavior. In Botnet Detection, pages 1–24. Springer, 2008.

[167] M.Y. Su, G.J. Yu, and C.Y. Lin. A real-time network intrusion detection
system for large-scale attacks based on an incremental mining approach.
Computers & security, 28(5):301–309, 2009.

[168] C.A. Sunshine, D.H. Thompson, R.W. Erickson, S.L. Gerhart, and
D. Schwabe. Specification and verification of communication protocols in
affirm using state transition models. Software Engineering, IEEE Transac-
tions on, (5):460–489, 1982.

[169] A. S. Tanenbaum. Computer networks. COMPUTER NETWORKS, EN-
GLEWOOD CLIFFS, PRENTICE HALL, US, pages 141–148, 1996.

[170] H.S. Vaccaro and G.E. Liepins. Detection of anomalous computer session
activity. In Proc. 1989 IEEE Symposium on Security and Privacy, pages
280–289. IEEE, 1989.

88

[171] A. Valdes. Detecting novel scans through pattern anomaly detection. In
Proc. 2003 DARPA Information Survivability Conference and Exposition,
volume 1, pages 140–151. IEEE, 2003.

[172] A. Valdes and K. Skinner. Adaptive, model-based monitoring for cyber at-
tack detection. In Proc. 3rd International Workshop on the Recent Advances
in Intrusion Detection, Lecture Notes in Computer Science, volume 1907,
pages 80–93. Springer, 2000.

[173] G. Vigna and R.A. Kemmerer. NetSTAT: A network-based intrusion de-
tection approach. In Proc. 14th Annual Computer Security Applications
Conference, pages 25–34. IEEE, 1998.

[174] M. Von der Beeck. A comparison of statecharts variants. In Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, pages 128–148. Springer,
1994.

[175] A. Wagner and B. Plattner. Entropy based worm and anomaly detection
in fast ip networks. In Proc. 14th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprise, pages 172–
177. IEEE, 2005.

[176] A.I. Wasserman. Extending state transition diagrams for the specification
of human–computer interaction. Software Engineering, IEEE Transactions
on, (8):699–713, 1985.

[177] G. White and V. Pooch. Cooperating security managers: Distributed intru-
sion detection systems. Computers & Security, 15(5):441–450, 1996.

[178] R. Wieringa. Design methods for reactive systems: Yourdon, statemate, and
the UML. Morgan Kaufmann, 2003.

[179] J.R. Winkler and L.C. Landry. Intrusion and anomaly detection: ISOA
update. In Proc. 15th National Computer Security Conference, pages 272–
281. NCSC-CSL, 1992.

[180] W.A. Woods. Transition network grammars for natural language analysis.
Communications of the ACM, 13(10):591–606, 1970.

[181] K. Yamanishi, J.I. Takeuchi, G. Williams, and P. Milne. On-line unsuper-
vised outlier detection using finite mixtures with discounting learning algo-
rithms. In Proc. 6th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 320–324. ACM, 2000.

[182] S.D. Young, D.R. Jones, United States. National Aeronautics, Space Ad-
ministration, and Langley Research Center. Runway incursion prevention:
a technology solution. In Proc. Annual International Air Safety Seminar,
volume 54, pages 221–238. Flight Safety Foundation, 2001.

89

[183] P. Zave. A distributed alternative to finite-state-machine specifications.
ACM Transactions on Programming Languages and Systems (TOPLAS),
7(1):10–36, 1985.

[184] Q. Zhao, J. Xu, and A. Kumar. Detection of super sources and destinations
in high-speed networks: Algorithms, analysis and evaluation. IEEE Journal
on Selected Areas in Communications, 24(10):1840–1852, 2006.

[185] Zurich Airport. 2011 runway safety report, 2011.

90

Index

kth degree fragment, 12

AEEES, 24
anticipation, 10
anticipatory, 1, 24
anticipatory action, 9
anticipatory model, 17
anticipatory reasoning, 12
ARIPS, 35, 37
ARRS, 1, 10
ARRS-core component, 14
ASDE-X, 36
automated reasoning, 12

behavior model, 14

conditional, 11
context aware, 24

directive, 4
down-peak, 25

EEES, 23, 24
emergent property, 5
empirical theorem, 11
evacuation type, 27

formal logic system, 11
forward reasoning engine, 12

human machine interface system, 41

IDPS, 59
IDS, 59
information security, 5
informative, 4, 25
instructional, 25

legacy system, 17
logical theorem, 11

manipulative, 4

neglect, 25

passive, 1
PCS-core component, 14
physical safety, 25
predictive model, 14

react, 24
reactive system, 3
reasoning, 10
rescued ratio, 32
RIMCAS, 36
RIPS, 36
runway incursion, 34

safety, 5
sense, 24

target system, 17
traffic information system, 41
traffic signal system, 41
traffic surveillance sensor system, 41
transformational system, 3

world model, 14

91

