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Abstract

We explore the coannihilation region of the constrained minimal supersymmetric standard model
(CMSSM) being consistent with current experimental/observational results. The requirements from
the experimental/observational results are the 125GeV Higgs boson mass and the relic abundances
of both the dark matter and light elements, especially the lithium-7. We put these requirements
on the calculated values, and thus we obtain the allowed region. Then we give predictions to the
mass spectra of the SUSY particles, the anomalous magnetic moment of muon, branching fractions
of the B-meson rare decays, the direct detection of the neutralino dark matter, and the number of
SUSY particles produced in a 14TeV run at the LHC experiment. Comparing these predictions with
current bounds, we show the feasibility of the test for this scenario in near future experiment.
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Chapter 1

Introduction

The challenges of the LHC are to discover the Higgs boson and to search for new physics beyond
the standard model (SM). The discovery of the Higgs boson was reported by the ATLAS [1] and
the CMS collaborations [2]. Meanwhile no signals of new physics have been observed so far from
the LHC. However, nature indicates the existence of physics beyond the SM that accounts for the
shortcomings in the SM, e.g., no candidate of dark matter, the origin of neutrino mass, the baryon
asymmetry of the universe, and so on.

It is a challenge to confirm the new physics from only experimental/observational data. The-
oretical studies in advance are essential to identify the signatures of new physics. We now have
measurement data of the Higgs boson, the relic abundance of the dark matter, and so on. What we
should do, therefore, is to precisely extract probable parameter space, and predict the signatures in
each scenario of new physics by using the measured data.

One of the leading candidates of the new physics is the supersymmetric (SUSY) extension of the
SM. A scenario in this extension is the constrained minimal supersymmetric SM (CMSSM) which
is a simple but phenomenologically successful framework. In the CMSSM, all of the observables are
described by only five parameters, and these parameters are tightly connected with the property of
the Higgs boson [3, 4, 5, 6, 7, 8]. The reported mass of the Higgs boson, mh ≃ 125GeV, suggests
heavy SUSY particles [9, 10, 11, 12]. This suggestion is consistent with a null signal of exotics at
the LHC. The heavy SUSY particles imply the heavy dark matter in this framework, because the
lightest SUSY particle (LSP) works as the dark matter.

Cosmological and astrophysical measurements strongly indicate the existence of dark matter,
and numerical simulations suggest that weakly interacting massive particles (WIMPs) are the most
feasible candidate for the dark matter [13, 14, 15, 16, 17, 18]. In the CMSSM with R-parity conser-
vation, the bino-like neutralino is the LSP and consequently is a WIMP dark matter candidate. The
measured abundance of the neutralino dark matter can be acquired in the coannihilation region1.
The heavy neutralino dark matter requires a large coannihilation rate. The large coannihilation
rate sufficiently reduces the relic number density of the neutralino, and can reproduce the measured
abundance of dark matter. The large coannihilation rate needs the tight degeneracy in mass between
the neutralino LSP and the stau NLSP (NLSP: next to the lightest SUSY particle) [24, 25]. Indeed
in large part of parameter space wherein the mass of the Higgs boson is consistent with the reported
one, the mass difference between the neutralino LSP and the stau NLSP is smaller than the mass of
tau lepton, mτ [26, 27]. Such a tight degeneracy makes the stau NLSP a long-lived charged massive
particle (CHAMP) [28, 29].

The long-lived CHAMPs can modify the chain of nuclear reactions in a stage of big-bang nucle-
osynthesis (BBN), and hence distort the primordial abundances of light elements. The success and
failure of the nucleosynthesis are quite sensitive to the property of the long-lived CHAMPs, e.g., the

1The measured abundance is obtained also in the focus-point region in which measured abundance of dark matter
can be reproduced by the large mixing of the bino and the Higgsino components [19, 20]. The latest XENON100 dark
matter search, however, excludes most of parameter spaces of the focus-point region [21, 22, 23]
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lifetime, the number density, the electric charge, and so on [30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61]. The success of
the nucleosynthesis means to reproduce the measured abundances of light elements. Notice that the
measured abundance of lithium-7 (7Li) is reported to be inconsistent with the theoretical prediction
in the standard BBN; the measured one is 7Li/H = 1.48± 0.41× 10−10 [62] and the theoretical pre-
diction is 7Li/H = 5.24× 10−10 [63]. This inconsistency is known as the lithium-7 problem [64], and
the success of the nucleosynthesis includes also solving the problem. It is important to emphasize
that the success of the nucleosynthesis constrains and predicts the property of the stau NLSP.

In this thesis we give predictions to experimentally identify the CMSSM as the new physics in
the light of the natures of the Higgs boson, the measured abundance of dark matter, and the success
of the nucleosynthesis. We concentrate on the scenario wherein the mass difference of the neutralino
LSP and the stau NLSP is smaller than the mass of tau lepton, and the longevity of the stau is
guaranteed by the tight phase space.

Both the mass and the signal strength of the Higgs boson are correlated with parameters of
the stop sector. So it sheds light on the sign(µ), m0, A0, and tanβ which we defer to sfermion
parameters. The predictability of the derived relations, however, is not strong because the parameter
space contains too many degrees of freedom. It should be noted that, combining the relations from
the natures of the Higgs boson and the values of sfermion parameters from the BBN, as we will find,
simple relations between m0 and A0 are shown. Furthermore the degeneracy of the neutralino LSP
and the stau NLSP in the coannihilation region set a relation between M1/2 and sfermion parameters.
Thus accumulating all of relations and constraints, we give theoretical clues on the likely parameter
space of the CMSSM. Then we calculate the observables of terrestrial experiments based on the
analysis. After the discovery of SUSY signals, by checking observables with the calculation we make
it possible to confirm the CMSSM in the near future.

This thesis is organized as follows. In next chapter, we briefly review the Big Bang Nucleosyn-
thesis and explain Lithium problem. In chapter III, we review the Stau BBN scenario. We show in
this chapter that the longevity of the stau, the formation of the bound state between long lived stau
and nuclei, exotic nuclear reactions, and relic density of stau at he BBN era. We show the solution
for the lithium problem and relic abundance of the dark matter in the light of MSSM. In chapter
IV, we explore allowed parameter space of the CMSSM. In Sec. 4.1 we recall the framework of the
CMSSM, keeping an eye on the coannihilation scenario. Then we set the constraint on some input
parameters from the viewpoint of the report of the Higgs boson and the observed abundances of both
dark matter and light elements. The derived model space is for stau-neutralino coannihilation region
and that solves the Li problem. The constraints is substantially weakened without considering the
Li problem, and hence the assumption is important. In Sec. 4.2, we show the allowed region of the
CMSSM parameters obtained by the constraints. The relations of the parameters are derived from
the results. In Sec. 4.3, we show the predictions for SUSY mass spectrum, the anomalous magnetic
moment of the muon, branching fractions of the B-meson rare decays, and direct detection of the
neutralino dark matter in the allowed region. We show the number of the signals of the long-lived
stau and the neutralino at the LHC experiment, and then we discuss the verification of the scenario
in Sec 4.4. Chap. 5 is devoted to a summary and a discussion.
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Chapter 2

Review of the Big Bang
Nucleosynthesis

We review the mechanism of the Big Bang Nucleosynthesis (BBN) in this chapter. We roughly
divide the processes of the BBN into three part as follow. Firstly the ratio between number density
of neutron (n) and proton (p) is fixed by chemical equilibrium through weak interaction. Next n
and p make the deuteron (d). At the last, helium (He) is made from n, p, and d. We explain each
part in detail from now. We refer [56, 65, 66, 67, 68] through the chapter.

2.1 Neutron - Proton ratio (T ≤ 0.8MeV)

Before explaining the BBN, we consider the condition of the universe when the temperature of the
that is higher than 1 MeV. p and n exchange each other through the following reactions,

n ↔ p + e−ν̄e, (2-1-1a)

νe + n ↔ p + e−, (2-1-1b)

e+ + n ↔ p + ν̄e. (2-1-1c)

If the timescale of these reactions is shorter than the age of the universe, the system is in the chemical
equilibrium. Then the chemical potential of these particles have a relation as follows:

µn + µν = µp + µe. (2-1-2)

Here we consider that the temperature of the universe is O(1MeV), (anti) electron and (anti) neutrino
are relativistic particles. Then the number density of the (anti) electron ne−(ne+) and (anti) neutrino
nνe(nν̄e) have a relation with T and chemical potential as follows:

ne− − ne+ =
1
3
µeT

2,

nνe − nν̄e =
1
6
µνeT

2.

(2-1-3)

We use following facts that i) ηb ≡ nb/nγ ≃ 10−10 (ηb is the baryon to photon ratio) and ii) the
universe is neutral, i.e., nb ≃ ne− − ne+ to derive a relation as follows:

µe ≪ T (2-1-4)

Therefore we neglect the chemical potential of e. Here we assume that the chemical potential of µe

is also negligible. Then the relation Eq. (2-1-2) becomes as follows:

µn = µp (2-1-5)

4



Meanwhile n and p are non-relativistic particles, and hence np and np are expressed as follows:

np = 2
(

mpT

2π

)3/2

exp
[
−mp − µp

T

]
, (2-1-6)

nn = 2
(

mnT

2π

)3/2

exp
[
−mn − µn

T

]
, (2-1-7)

Using Eqs. (2-1-5), (2-1-6), and (2-1-7), we write the ratio of nn and np as follows:

nn

np
= exp

(
−Q

T

)
, (2-1-8)

Q = mn − mp = 1.293 [MeV]. (2-1-9)

In this way, the weak interaction reactions fix the ratio between nn and np. We see from Eqs. (2-1-8)
and (2-1-9) that the number density of n is smaller than that of p because the mass of n is larger
than that of p.

However the reaction rates of the exchange process between n and p decrease with decreasing the
temperature of the universe. When the reaction rates become smaller than the Hubble expansion
rate (H), n and p decouple from the thermal bath, and the ratio between nn and np is frozen-
out. Here we show the temperature of the universe when the ratio is frozen-out. To do this, we
consider the reaction rate of the exchange processes between n and p. We obtain the reaction rate
by integrating the square amplitude of reaction process times the density in the phase space through
the all momentum of final state. For the conservation of the energy and the momentum, we put the
delta function in the calculation. For example, the reaction rate of inverse process of Eq.(2-1-1b) is
given by

Γpe→νn =
1

(2π)5

∫
fe(Ee)[1 − fν(Eν)]|M|2pe→νnδ(pp + pe − pν − pn)

d3pν

2Eν

d3pn

2En
, (2-1-10)

where fi(Ei) is the density in the phase space, and Ei and pi are the energy and four momentum of
particlei, respectively. Reaction amplitudes of Eqs. (2-1-1a), (2-1-1b), and (2-1-1c) are proportional
to that of β decay, and hence expressed as follows,

|M|2 ∝ G2
F (1 + 3g2

A), (2-1-11)

where GF is the fermi coupling constant and gA ≃ 1.26 is the axial vector coupling constant.
The value both of Q and electron mass determine the integral range. We here define following

physical parameters with no dimension for simplicity of the calculation.

q =
Q

me
, ϵ =

Ee

me
, z =

me

T
, zν =

me

Tν
, (2-1-12)

where Tν is the temperature of the neutrino. Using the parameters, we give the reaction rate as
followings,

Γpe→νn =
G2

F (1 + 3g2
A)m5

e

2π3

∫ ∞

q

dϵ
ϵ(ϵ − q)2

√
ϵ2 − 1

(1 + eϵz)(1 + e(q−ϵ)zν )
(2-1-13)

The behavior in the limits of high or low temperature is given by,

Γpe→νn →


G2

F (1 + 3g2
A)m5

e

2π3

(
T

me

)3

exp
(
−Q

T

)
for T ≪ Q,m,

7
60

π(1 + 3g2
A)G2

F T 5 for T ≫ Q,m.

(2-1-14)
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We compare the reaction rate with the Hubble expansion rate to check which the system being in the
nuclear statistical equilibrium (NSE) or no NSE. Taking the fact that the universe was dominated
by radiation into account, we express the Hubble expansion rate as follows;

H ≃ 1.66g
1/2
∗

T 2

mpl
≃ 5.5

T 2

mpl
, (2-1-15)

where g∗ is the sum of the freedom degree of relativistic particles, mpl(= 1.22 × 1019 GeV) is the
planck mass. Using Eq. (2-1-14) and (2-1-15), we obtain the ratio given by

Γ
H

=
(

T

0.8 MeV

)3

. (2-1-16)

We see from the equation that the exchange processes occur rapidly when the temperature of the
universe is higher than 0.8 MeV, and hence the ratio of number density between p and n is as same
as that in NSE. On the other hand, when the temperature of the universe is lower than 0.8 MeV,
the exchange processes between n and p become frozen-out, and then the ratio is fixed. Left panel in
Fig.2.1 shows Γn→p and H as a function of T , and right panel shows the ratio nn/np as a function of
T . At the T = 0.1 MeV, n-p ratio is about 1/7. Almost all n at the temperature make the 4He, and
hence the abundance of 4He, Y = ρHe/ρb (here ρHe is the density of He, and ρb is that of baryon)
finally become as follows:

Y =
2(nn/np)
1 + nn/np

≃ 0.25. (2-1-17)

Figure 2.1: Left panel:Γn→p and H as a function of T . Right panel:The ratio nn/np as a function
of T .

2.2 Deuteron synthesis

We can make a rough estimation for the last abundance of He. However we must know the mechanism
of deuteron synthesis to make a accurate estimation. Deuteron synthesis is needed to occur helium
synthesis.

The fusion of n and p forms the d.

p + n ↔ d + γ (2-2-1)

The binding energy of d, Ed is 2.22 MeV, and hence photon with energy ≥ Ed can break a d into
its component n and p.
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From now on, we show a rough estimation for the relative numbers density of p, n, and d and
derive the starting temperature of deuteron synthesis Td. Here we define Td as the temperature at
which nd/nn = 1

Firstly we express the number density of d like Eqs. (2-1-6) and (2-1-7) as follows:

nd = 3
(

mdT

2π

)3/2

exp
(
−md

T

)
. (2-2-2)

Using Eqs.(2-1-6), (2-1-7) and (2-2-2), we show the relative numbers density of p, n, and d as follows:

nd

npnn
= 6

(
π

mnT

)3/2

exp
(

Ed

T

)
, (2-2-3)

where we approximate mp = md/2 = mn.
Next we show the Td. As long as the Eq. (2-2-3) holds true, d - n ratio is expressed as follows:

nd

nn
= 6np

(
π

mnT

)3/2

exp
(

Ed

T

)
, (2-2-4)

We can write the d-n ratio as a function of T and the ηb if we make some simple assumptions. We
see from the Fig. 2.1 that n-p ratio is 0.2 when the exchange processes are frozen-out. Using the
fact, we approximate np as follows:

np ≃ 0.8nb = 0.8ηbnγ = 0.8ηb

[
0.243T 3

]
(2-2-5)

Substituting Eq. (2-2-5) into Eq. (2-2-4), we find that the d-n ratio is a relatively simple function
of T :

nd

nn
≃ 6.5ηb

(
T

mn

)3/2

exp
(

Ed

T

)
(2-2-6)

The temperature Td of deuteron synthesis can be found by solving the equation.

1 ≃ 6.5ηb

(
T

mn

)3/2

exp
(

Ed

T

)
(2-2-7)

With mn = 939.6 MeV, Ed = 2.22 MeV, and ηb = 6.05×10−10, the temperature of deuteron synthesis
is Td ≃ 0.070 MeV. Therefore, when the temperature of the universe decreases to 0.070 MeV, the
abundance of d rapidly increases and then the helium synthes is ready to start.

2.3 Beyond Deuteron

The d-n ratio does not remain indefinitely at the equilibrium value given by Eq. (2-2-6). Once a
significant amount of d forms, many possible nuclear reactions are available. For example, d reacts
with p to form 3He:

d + p ↔3 He + γ, (2-3-1)

Alternatively, d also reacts with n to form 3H, also known as t:

d + n ↔ t + γ, (2-3-2)

Triton is unstable;it spontaneously decays to 3He as(t →3 He + e + ν̄e). However, the decay time
of t is approximately 18 year ; during the brief time that BBN lasts, tcan be regarded as effectively
stable.

Deuteron also reacts with each other to form 4He:

d + d ↔4 He + γ. (2-3-3)
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Table 2.1: Binding energy and freedom

AZ BA[MeV] gA

d 2.22 3
t 6.92 2

3He 7.72 2
4He 28.3 1
12C 92.2 1

However, it is more likely that the interaction of two d will end in the formation of t or 3He as
follows:

d + d ↔ t + p, , (2-3-4)

d + d ↔3 He + n. (2-3-5)

A large amount of t or 3He is never present during the BBN era. Soon after they are formed, they
are converted to 4He by reactions such as

t + p ↔4 He + γ, (2-3-6)
3He + p ↔4 He + γ, (2-3-7)

t + d ↔4 He + n, (2-3-8)
3He + p ↔4 He + p. (2-3-9)

All reactions from Eq. (2-3-1) to Eq. (2-3-7) does not involve neutrinos; they involve the strong
nuclear force, and have large cross-sections and fast reaction rates. Thus, once nucleosynthesis
begins, d, t, and 3He are all efficiently converted to 4He.

Once 4He is reached, however, the orderly march of nucleosynthesis to heavier and heavier nuclei
reaches a roadblock. For such a light nucleus, 4he is exceptionally tightly bound, as shown at
Tab.2.1. By contrast, there are no stable nuclei with A = 5. 5He and 5Li are not stable nuclei.
Thus, 4He is resistant to destruct by p and n. Small amounts of 6Li and 7Li, the two stable isotopes
of lithium, are made by reactions such as

4He + d ↔6 Li + γ, (2-3-10)
4He + t ↔7 Li + γ. (2-3-11)

In addition, small amounts of 7Be are made by reactions such as

4He +3 He ↔7 Be + γ. (2-3-12)

The synthesis of nuclei with A > 7 is hindered by the absence of stable nuclei with A = 8. For
example, if8Be is made by the reaction

4He +4 He → 8Be, (2-3-13)

then the 8Be nucleus falls back apart into a pair of 4He nuclei with a decay time of only τ = 3×10−16s.

2.4 SBBN reaction network

Figure.2.2 shows the output of the SBBN reaction network [56]. We obtain this time evolution of
number density of each nucleus by solving the set of Boltzmann equations on the abundances of the
different species,

dYi

dt
= −H(T )T

dYi

dT
=

∑
(ΓijYj + ΓiklYkYl + ...), (2-4-1)
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where Yi = ni/nb are the time t(or temperature T )-dependent ratios between the number density ni

and the baryon number density nb of light elements i = p, n, d,4 He, and so on. The Γij... represent
generalized rates for element internal conversion and decay that can be determined in experiments
and/or inferred from theoretical calculations. H(T ) is the temperature dependent Hubble expansion
rate.

The full form of the Boltzmann equations should be given in terms of particle distribution func-
tions over energy and momenta. However, in practice, the system of Eq. (2-4-1), which assumes
thermal distributions for nuclei, provides an excellent approximation because the frequent interac-
tions with the numerous γs and e±s in the plasma keep the light elements tightly coupled to the
radiation field. The dependence of H(T ) on the temperature of the primordial plasma can be further
specified;

H(T ) = T 2

(
8π3g∗GN

90

)1/2

, whereg∗ = gboson +
7
8
gfermion, (2-4-2)

where the gs denote the excited relativistic degrees of freedom. This expression needs to be
interpolated across the electron-positron annihilation epoch, in which the photon bath is heated
with respect to the neutrino reservoir. The neutrinos maintain a quasi-thermal spectrum with
temperature

Tν ≃
(

4
11

)1/3

T, (2-4-3)

in the approximation of full neutrino decoupling at the time of electron-positron annihilation[with
small calculable corrections] Following e± annihilation, the Hubble rate is given by H(T ) ≃ T 2

9 /(2×
178s), where T9 denotes the photon temperature T in units of 109 K.

Beginning from the earliest times, the following sequence of of events occurs:

(a) the chemical decoupling of neutrinos from the thermal bath,

(b) the annihilation of electrons and positrons,

(c) the freeze-out of neutrons and photons,

(d) an intermission” between the n/p freeze-out and the deuteron ignition at the end of the “bot-
tleneck”,

(e) helium synthesis at T9 ≃ 0.85 (70keV), and

(f) a follow-up stage in which the main nuclear reactions gradually drop out of equilibrium and
the abundances of all light elements freeze out.

We explain the Figure from now on. Initially, at T ≫ 109K, almost aall baryon is in the form of
free p and n. As the deuteron density increases upward, however, the point is eventually reached
where significant amounts of t, 3He, and 4He are formed. By the time the temperature has dropped
to T ≃ ×108K, at t ≃ 600sec, BBN is essentially over. Nearly all the baryons are in the form of free
p or 4He nuclei. The small residue of free n decays into p. Small amounts of d, t, and 3He are left
over, a tribute to the incomplete nature of BBN. (t later decays to 3He.) Very small amounts of 6Li,
7Li, and 7Be are made. (7Be is later converted to 7Li by electron capture:7Be + e− → 7Li + νe.)
The freeze-out abundances are given by the horizontal lines on the right-hand side of the graph.
Although some neutrons are still generated by residual deuteron (d) fusion below T9 ≃ 0.1 (10keV),
they are too few in number to cause any further change in the elemental abundances.

Fig. 2.3 shows the abundance of 4He (mass fraction), d, 3He and 7Li (in number of atoms rel-
ative to H) as a function of the baryonic density. The thickness of the curves reflect the nuclear
uncertainties. They were obtained by a Monte-Carlo calculation using for the nuclear rate uncer-
tainties those obtained by [69] with the notable exception of 3He(α, γ)7Be [70] and 1H(n, γ)d[71].
The horizontal lines represent the limits on the 4He, d, and 7Li primordial abundances deduced
from spectroscopic observations. The vertical stripe represents the baryonic density deduced from
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Figure 2.2: Time and temperature evolution of all standard BBN (SBBN) relevant nuclear abun-
dances. The vertical arrow indicates the moment at T9i ≃ 0.85 at which most of the helium nuclei
are synthesized. The gray vertical bands indicate main BBN stages. From left to right: neutrino
decoupling, electron-positron annihilation and n/p freeze-out, d bottleneck, and freeze-out of all
nuclear reactions. Proton (p) and neutron (n) are fiven relative to nb whereas Yp denotes the 4He
mass fraction [56].

CMB observations.[72]. The concordance between BBN and observations is in perfect agreement for
deuteron. Considering the large uncertainty associated with 4He observations, the agreement with
CMB+BBN is fair. The calculated 3He values is close to its galactic value showing that its abun-
dance has little changed during galactic chemical evolution. On the contrary, the 7Li, CMB+BBN
calculated abundance is significantly higher than the spectroscopic observations:from a factor of
≃ 3 [73] when using the Descouvemont et al. library [69] only and the Ryan et al. observations [74]
(dotted lines in lower panel of Fig. 2.3), to a factor of ≃ 5[75, 76] when using the new rates and Li
observations [77]. Table 2.4 displays the comparison between BBN abundances deduced from the
WMAP results and the spectroscopic observation. The origin of this lithium discrepancy between
CMB+BBN and spectroscopic observations remains an open question. Note also that with the new
determination of 4He primordial abundances [78, 79], the agreement for 4He becomes marginal. As
shown on the figure, and increase of the rate of expansion of the universe during BBN (simulated
by an additional effective neutrino family) would improve the situation.
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Figure 2.3: Abundances of 4He (mass fraction), d, 3He and 7Li (by number relative to p) as a
function of the baryon to photon ratio ηb showing the effect of nuclear uncertainties [76]. The vertical
stripe corresponds to the WMAP baryonic density while the horizontal area represent the adopted
primordial abundances (dotted lines those adopted in CV10 [76]). The dashed curves represent
previous calculations[73] before the re-evaluatioin [70] of the 3He(α, γ)7Be rate. The dot-dashed
lines correspond to 4 effective neutrino families.
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Table 2.2: Yields at WMAP baryonic density compared to observations.

Cyburt et al 2008 [75] CV10 [76] Observations Factor
4He 0.2486 ± 0.0002 0.2476 ± 0.0004 0.2534 ± 0.0083 [79] ×100

d/p 2.49 ± 0.17 2.68 ± 0.15 3.02 ± 0.23 [80] ×10−5

3He/p 1.00 ± 0.07 1.05 ± 0.04 1.1 ± 0.2 [81] ×10−5
7Li/p 5.240.71

−0.67 5.14 ± 0.50 1.58 ± 0.31 [77] ×10−10
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Chapter 3

Stau BBN Scenario

In this chapter we review the Stau BBN scenario. We simultaneously solve the Lithium Problem
and the relic abundance of the dark matter in this scenario as follows.

The Standard Model extended with supersymmetry(SUSY) is one of the models that can ac-
commodate long-lived charged massive particles (CHAMPs). With the R-Parity conservation, the
lightest SUSY particle (LSP) is stable and become a cold dark matter. Interestingly, it can offer a
long-lived CHAMPs if the LSP is the bino-like neutralino, χ̃0

1. Coannihilation mechanism is required
to account for the dark matter abundance in this case [114], where the LSP and the next-lightest
SUSY particle (NLSP) are almost degenerate in mass. Staus can acquire a long lifetime when the
mass difference with the LSP is less than the mass of tau lepton. If the stau lives long sufficient to
survive until the BBN era, the staus has an influence on the abundance of light elements through
exotic nuclear reactions. The influence depends on the character of the stau, and the character
depends on the MSSM parameter space. Therefore we solve the Litium problem and explain the
relic abundance of the dark matter by choosing the allowed region in MSSM parameter space.

The outline of this chapter is as follows. In Sec. 3.1 we explain the mechanism of the longevity of
the stau. Here we show the analytical equation for the decay of the stau and the dependence of the
lifetime of the stau on the mass difference. In Sec. 3.2, we explain how to calculate the bound energy
between a stau and nucleus, the cross section and reaction rate for forming the bound state. In this
scenario the exotic nuclear reaction happens through the bound state, and hence these calcularion
is important. In Sec. 3.3, we review the mechanism of the exotic nuclear reactions. The long-lived
stau forms bound state with light nuclei, and then change the nuclei to other nuclei. We calculate
the decay rate of these exotic nuclear reactions and show the timescales. In Sec. 3.4 we calculate the
relic density of stau at the beginning of the BBN era. We put constraints on the parameter space
of MSSM by connecting the calculation of the relic density of stau to the observation of the light
elements abundance, which strongly depends on the relic density of stau.

3.1 Long lived stau

In this section, we show analytical calculation for the lifetime of the stau and numerical results of
the lifetime [29]. The stau is a mass eigenstate consisting of superpartner pf left- and right-hand
taus. The relation between a mass eigenstate and a gauge eigenstate is given as follows,(

τ̃L

τ̃R

)
=

(
cos θτ sin θτeiγτ

− sin θτe−iγτ cos θτ

)(
τ̃1

τ̃2

)
, (3-1-1)

where θτ is mixing angle, γτ is CP violating phase, and τ̃1(2) is the lighter (heavier) stau. We
represent the lighter stau as τ̃ in this paper, and the stau is expressed by τ̃L, τ̃R as follows,

τ̃ = cos θτ τ̃L + sin θτe−iγτ τ̃R. (3-1-2)
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The decay modes of the stau governed by the mass difference between the stau and the neutralino,
according to the kinematics. In this paper we interested in the small mass difference, we consider
following four decay modes and show the diagrams in Fig.3.1.

τ̃ → χ̃0
1 + τ,

τ̃ → χ̃0
1 + ντ + π,

τ̃ → χ̃0
1 + ντ + l + νl (e, µ ∈ l)

(3-1-3)

Figure 3.1: Feynmann diagrams of stau decay:(a)τ̃ → χ̃0
1τ , (b)τ̃ → χ̃0

1ντπ, (c)τ̃ → χ̃0
1ντ lνl.

The interaction Lagrangian describing the stau decay is given by

L = τ̃∗χ̃0
1(gLPL + gR + PR)τ +

√
2GFντγµPLτJµ +

4GF√
2

(l̄γµPLνl)(ν̄τγµPLτ) + h.c. (3-1-4)

The first, second, and third terms describe decay mode of two, three, and four body, respectively.
Here PL and PR are the projection operators, GF is the Fermi constant, and gL and gR are the
coupling constants given by

gL =
g√

2 cos θW

sin θW cos θτ , gR =
√

2g

cos θW
sin θW sin θτeiγτ , (3-1-5)

where g is the weak coupling constant and θW is the Weinberg angle. The expression of Jµ is given
by

Jµ = fπ cos θcp
µ
π, (3-1-6)

where fπ ≃ 92.4 GeV is the pion decay constant, θc ≃ 0.974 is the Cabibbo angle, and pµ
π is the four

momentum of the pion.
Using the interaction Lagrangian, we obtain the decay rates for the two body as follows,

Γ2-body =
1

16πm3
τ̃

(m4
τ̃ + m4

χ̃0
1
+ m4

τ − 2m2
τ̃m2

χ̃0
1
− 2m2

τ̃m2
τ − 2m2

χ̃0
1
m2

τ )1/2

×
{

(g2
L + |gR|2)(m2

τ̃ − m2
χ̃0

1
− m2

τ ) − 4Re[gLgR]mτmχ̃0
1

}
.

(3-1-7)

For 3-body decay, the decay rate is given by

Γ3-body =
G2

Ff2
π cos θ2

c ((δm)2 − m2
π)

128π3m3
τ̃

×
∫ 1

0

dx
√

((δm)2 − q2
f )((δm + 2mχ̃0

1
)2 − q2

f )
1

(q2
f − mτ )2 + (mτΓτ )2

(q2
f − m2

π)2

q2
f

× (q2
f − m2

π)
[
(g2

Lq2
f + |gR|2m2

τ )((δm)2 + 2mχ̃0
1
δm − q2

f ) − 4Re[gLgR]mχ̃0
1
mτqf

]
.

(3-1-8)
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Here q2
f is given by

q2
f = (δm)2 − ((δm)2 − m2

f )x, (3-1-9)

where the index f ∋ π, e, µ denotes a massive particle, except for the neutralino, in the final state,
f = π in the three body decay. Γτ is the decay width.

In the 4-body decay processes, the decay rate is given by

Γ4-body =
G2

F((δm)2 − m2
l )

24(2π)5m3
τ̃

×
∫ 1

0

dx
√

((δm)2 − q2
f )((δm + 2mχ̃0

1
)2 − q2

f )
1

(q2
f − m2

τ )2 + (mτΓτ )2
1
q4
f

×
[ {

1
4
(g2

Lq2
f + |g2

R|m2
τ )((δm)2 + 2mχ̃0

1
δm − q2

f ) − Re[gLgR]mχ̃0
1
mτq2

f

}
×

{
12m4

l q
4
f log

[
q2
f

m2
l

]
+ (q4

f − m4
l )(q

4
f − 8m2

l q
2
f + m4

l )

} ]
,

(3-1-10)

where l = e, µ and q2
f is given by Eq.(3-1-9).

Figure 3.2: Total lifetime and partial lifetimes of each decay mode as a function of δm. The lines label
electron, muon, pion, and tau correspond to the processes τ̃ → χ̃0

1eντ ν̄e, τ̃ → χ̃0
1µντ ν̄µ, τ̃ → χ̃0

1ντπ,
and τ̃ → τ , respectively. Here we take mχ̃0

1
= 300 GeV, θτ = π/3, and γτ = 0.

We show the total lifetime and partial lifetimes of each decay mode of the stau as a function of
δm. Here we take mχ̃0

1
= 300 GeV, θτ = π/3, and γτ = 0. It is important to emphasize here that

the lifetime is increases drastically with increasing δm. The 2-body decay is kinematically allowed
in the region with δm > mτ , and the 2-body decay rate is lager than the 3/4 body decay rate. In the
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region with δm < mτ , the 2-body decay is kinematically forbidden, and hence the stau must decay
into mainly 3-body, τ̃ → χ̃0

1ντπ. Thus, a discontinuity is at δm = mτ and the life time drastically
increase in δm < mτ . At the δm = mπ the lifetime increases slightly. This is due to the fact
that the dominant mode changes from 3-body to 4-body decay. In contrast, the life time does not
increase much at δm = mµ even though the decay mode of τ̃ → χ̃0

1µντ ν̄µ is kinematically forbidden
in δm < mµ. This is because the muon production processes is already kinematically suppressed
and the electron production processes govern the stau decay.

Here we also point that the lifetime of the stau is larger than 103 seconds in the region with
δm < 0.1 GeV. The values are important for stau-BBN scenario as we explained later.

3.2 Formation of stau-nucleus bound states

As we explain in sec.(3.1), the stau become long lived if the mass difference is smaller than the mass
of tau lepton. In the case that the stau survives until the BBN era, the stau forms bound state with
nucleus. Through the bound state, the stau induce exotic nuclear reactions.

In this section, we firstly review mechanism for formation of stau-nucleus bound state [34]. We
show capture rate of stau for nucleus, universe temperature at which a bound state is formed. Next,
we explain exotic nuclear reactions induced by the stau. We numerically estimate time scale of these
reactions. taking into account of the time scales, we show the allowed region in parameter space of
stau where calculated abundances of light element is consistent with the observed values.

3.2.1 Evaluation of binding energy

If the stau survive in BBN era, the stau forms bound state with nucleus. Assuming uniform charge
distribution in side the light element, we review the calculation for binding energy of the bound
state.

Hamiltonian for a stau and a nucleus is given as follows,

H =


p2

2mX
− ZXZcα

2rX
+

ZXZcα

2rX

(
r

rX

)2

for (r < rX),

p2

2mX
− ZXZcα

r
for (r > rX),

(3-2-1)

where α is the fine structure constant, rX ∼ 1.2A1/3/200MeV−1 is the nuclear radius, ZX is the
electric charge of the nucleus, and Zc is the electric charge of the stau. A is the atomic number,
and mX is the mass of the nucleus X. Here we assumed mX ≪ mc ∼ O(100)GeV, which means the
reduced mass 1/µ = 1/mc + 1/mX ∼ 1/mX .

Given hamiltonian as eq.(3-2-1), the binding energy for the bound state is given as follows,

Ebin ≃



1
2
Z2

XZ2
c α2m2

X for 0 < ZXZcαmXrX < 1,

1
rX

(
1

mXrX
F (ZXZcαmXrX)

)
for 1 < ZXZcαmXrX < 2,

3
2

[
ZXZcα

rX
− 1

rX

(
ZXZcα

mXrX

)]
for 2 < ZXZcαmXrX < ∞,

(3-2-2)

In this way, the expressions for the binding energy are different each others. This is because approx-
imation used in calculation is different. For 0 < 0 < ZXZcαmXrX < 1, the Coulomb model gives
a good approximation. On the other hand, the harmonic oscillator approximation gives a better
approximation for 2 < ZXZcαmXrX < ∞. We see from the above equations that the binding
energies depends on charge, radius of each nucleus, and the mass of nucleus.

Table.3.1 shows the nuclear radius, the nuclear mass excess, the nuclear mass, and the binding
energy. The nuclear mass and mass excess are expressed by using atomic mass unit as follows,

mX = Au + ∆X , (3-2-3)
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Table 3.1: parameters

X ZX rX(fm/GeV−1) aX(fm/GeV−1) ∆X(10−3GeV) mX(GeV) Ebin(MeV)
p 1 1.200/6.081 28.80/146.0 7.289 0.9388 0.025
d 1 1.512/7.662 14.41/73.04 13.14 1.876 0.050
t 1 1.731/8.772 9.625/48.78 14.95 2.809 0.075

3He 2 1.731/8.772 4.813/24.39 14.93 2.809 0.270
4He 2 1.905/9.654 3.626/18.38 2.425 3.728 0.311
6He 2 2.181/11.05 2.412/12.22 17.59 5.607 0.597
6Li 3 2.181/11.05 1.609/8.153 14.09 5.603 0.914
7Li 3 2.296/11.64 1.379/6.989 14.91 6.535 0.952
7Be 4 2.296/11.64 1.034/5.241 15.77 6.536 1.490
8Be 4 2.400/12.16 0.9066/4.594 4.942 7.457 1.550

where A is the mass number. The Bohr radius of each nucleus is expressed as follows,

aX =
me

Zmred
a0. (3-2-4)

Here me is the mass of electron, a0 is the Bohr radius of the hydrogen, a0 = 0.52918 × 10−10m.

3.2.2 Recombination Cross Section

We describe the equation for the recombination cross section from the free state to the 1S bound
state. In this evaluation, we assume a hydrogen-type bound state through a dipole photon emission[82]
and a point like particle for the captured light element. The cross section is expressed as follows,

σrv =
29π2αZ2

X

3
Ebin

m3
Xv

(
Ebin

Ebin + 1
2mXv2

)2 exp
[
−4

√
2Ebin
mXv2 tan−1

(√
mXv2

2Ebin

)]
1 − exp

[
−2π

√
2Ebin
mXv2

]
≃ 29π2αZ2

X

3e4

Ebin

m3
Xv

,

(3-2-5)

where v is the relative velocity of a stau and a nucleus. Note that we have mXv2/2 ≃ 3T/2 ≫
Ebin for NR particles in kinetic equilibrium. Here we use the Coulomb model (hydrogen type) to
evaluate the capture rate, where the binding energy Ebin = α2Z2

CZ2
XmX/2 and the Bohr radius

r−1
B ≃ αZCZXmX .

The thermal-averaged cross section is written as

⟨σrv⟩ =
1

n1n2

(
g

(2π)3

)2 ∫
d3p1d3p2exp

[
−E1 + E2

T

]
σrv

=
1

nGnr

(
g

(2π)3

)2 ∫
d3pGexp

[
−mG

T

]
exp

[
− p2

G

2mGT

] ∫
d3p3

rσrvexp
[
− p2

r

2µT

]
=

29παZ2
X

√
2π

3e4

Ebin

m2
X

√
mXT

,

(3-2-6)

where mG = m1 + m2 and µ = mXmC/(mX + mC) ≃ mX with

nG =
g

(2π)3

∫
d3pG exp

[
−mG

T

]
exp

[
− p2

G

2mGT

]
,

nr =
g

(2π)3

∫
d3pr exp

[
− p2

r

2µT

]
.

(3-2-7)
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Here we have assumed that only one stau is captured by a nucleus. Since the photon emission from
a stau is suppressed, the recombination cross section for the further capture of an additional stau
by the bound state would be much smaller. Therefore, as a first step, it would reasonable to ignore
the multiple capture of staus by a nucleus.

3.2.3 Boltzmann equations

We firstly consider the case in which the kinetic and chemical equilibrium between the staus and
the nuclei are not established. Here we must solve the Boltzmann equations for the staus, a nucleus
and a bound states to obtain the number density. For staus,

∂

∂t
nC + 3HnC =

[
∂

∂t
nC

]
capture

, (3-2-8)

where H is the Hubble expansion rate. For a nucleus,

∂

∂t
nX + 3HnX =

[
∂

∂t
nX

]
fusion

+
[

∂

∂t
nX

]
capture

. (3-2-9)

For the bound state,

∂

∂t
n(C,X) + 3Hn(C,X) =

[
∂

∂t
n(C,X)

]
fusion

−
[

∂

∂t
nC

]
capture

. (3-2-10)

By using the detailed balance relation between the forward process X + C → γ + (X,C) an the
reverse process γ + (X,C) → X + C, the capture reaction may be written by[

∂

∂t
nX

]
capture

=
[

∂

∂t
nC

]
capture

≃ −⟨σrv⟩[nCnX − nC,Xnγ(E > Ebin)], (3-2-11)

where

nγ(E > Ebin) ≡ nγ
π2

2ζ(3)

( mX

2πT

)3/2

exp[−Ebin

T
], (3-2-12)

and

nγ =
2ζ(3)
π2

T 3. (3-2-13)

For a light element, if ⟨σrv⟩nC/H ≪ 1 is satisfied and the kinetic equilibrium is well established, we

can get the Saha equation by requiring an equilibrium condition
[

∂

∂t
nX

]
capture

= 0 in this equation.

When the temperature is higher than the binding energy of light nucleus, the destruction rate of
the bound states by scatterings off the thermal photons with E > Ebin is rapid. Then only a small
fraction of bound states can be formed, n(C,X) ∼ nCnX/nγ(E > Ebin) ≫ nX . Once the temperature
becomes lower than the binding energy, the capture starts, and the bound state becomes stable if
the other destruction processes among the nuclei are inefficient. The critical temperature at which
the capture becomes efficient is estimated as follows. In the case of nX > nC , taking nC ∼ n(C,X),
we get a relation (mX

T

)3/2

exp
[
−Ebin

T

]
∼ nX

nγ
= O(10−10). (3-2-14)

On the other hand, in the case of nX < nC , taking nX ∼ n(C,X), we have(mX

T

)3/2

exp
[
−Ebin

T

]
∼ nC

nγ
∼ O(10−10)

(
100GeV

mC

)(
ΩC

0.23

)
, (3-2-15)

where ΩC is the abundance of the stau.
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This analysis shows that the critical temperature is approximately

Tc ≃ Ebin

40
. (3-2-16)

The number density of the bound state is calculated by solving the Boltzmann equations. Fig-
ure.3.3 shows the evolution of the bound ratios of 4He,7 Li and 7Be as a function of the universe
temperature of T [45]. Here we defined the bound ratio as n(τ̃ ,X)/nX . The value of Yτ̃ ,BF is the
yield value of staus at the time of the formation of the bound state with nuclei tBF. The value of
Yτ̃ ,BF is expressed by the yield value of the stau at the freeze-out time and the lifetime of the stau
as follows,

Yτ̃ ,BF = Yτ̃ ,FO exp
[
− tBF

ττ̃

]
, (3-2-17)

where ττ̃ is the lifetime of the stau.
We see from this figure that the critical temperature is different in case of 4He, 7Li, and 7Be.

We estimate the critical temperature by using eq.(3-2-16) and Tab.3.1 as follows,

Tc|He ≃
Ebin|He

40
= 7.8keV,

Tc|Li ≃
Ebin|Li

40
= 23.8keV,

Tc|Be ≃
Ebin|Be

40
= 37.3keV,

(3-2-18)

and these values mainly depend on the charge number of nucleus.

Figure 3.3: Evolution of the bound ratio of the nuclei 4He,7 Be, and 7Li. We vary the abundance
of the stau at the time of the formation of the bound state from 10−10 to 10−16 in each figure.
In Fig.3.3(a), we also plotted lines corresponding curves predicted using the Saha equation for
reference [45].

3.3 Exotic Nuclear Reactions

We explain exotic nuclear reactions induced by the long lived stau. We take into account following
three reactions;

• Stau-Catalyzed Fusion Reaction [33, 37],

• Internal Conversion Reaction [40],
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• 4He Spallation Reactions [58].

In following subsections, we show how to calculate timescale of these reactions in details.

3.3.1 Stau-Catalayzed Fusion

Lithium 6 is produced by following reactions in Standard BBN scenario,

4He + d →6 Li + γ. (3-3-1)

The reaction rate is smaller than those of reactions producing other light elements.
If the stau has sufficient lifetime to survive the BBN era, the stau makes bound state with 4He

and then reacts with d as follows,
(τ̃4He) + d →6 Li + γ. (3-3-2)

Here the stau act as catalyst and enhance the reaction rate about six times larger than that of
Eq.(3-3-1). The cross section of the reaction Eq.(3-3-2) is expressed as follows,

NA⟨σCFv⟩ = 2.37 × 108 × (1 − 0.34T9)T
− 2

3
9 exp

(
−5.33T− 1

3
9

)
[cm3s−1mol], (3-3-3)

where NA is the Avogadro constant and T9 is dimensionless quantity defined as follows,

T9 =
T

109K
. (3-3-4)

3.3.2 Internal Conversions

When a stau forms a bound state with a nucleus, the bound state decays through as follows,

τ̃ + 7Be → (τ̃ 7Be) → χ̃0
1 + ντ +7 Li,

τ̃ + 7Li → (τ̃ 7Li) → χ̃0
1 + ντ +7 He.

(3-3-5)

Fig.(3.3.2) show these reactions.

Figure 3.4: The Feynmann diagrams of internal conversion of 7Be (7Li).
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After these reactions, 7Li and 7 He are broken to another particles due to a reaction with back
ground particles.

The reaction rates of Eqs. (3-3-5) is given by

ΓIC = |Ψ|2σICv, (3-3-6)

where |ψ|2 expresses the overlap of the wave function between a stau and a nucleus. When we
assume that the bound state is in S-state of hydrogen-like atom, the overlap of the wave function is
expressed as follows,

|ψ|2 =
1

πr3
X

, (3-3-7)

where rX is a nuclear radius and σICv is a cross section of the reactions. The cross secton is fiven
by

σICv =
1

2Eτ̃2EBe

∫
dLIPS|⟨χ̃0

1ν
7
τ Li|Lint|τ̃7Be⟩|2

× (2π)4δ(4)(pτ̃ + pBe − pχ̃0
1
− pντ − pLi).

(3-3-8)

where

dLIPS =
∏

i

d3pi

(2π)32Ei
(3-3-9)

, and i ∈ χ̃0
1, ντ ,7 Li in the case.

We calculate the reaction rates of Eqs. (3-3-5) by using the Lagrangian in Eq. (3-1-4). The
squared amplitude in the Eq. (3-3-8) is expressed as follows

⟨χ̃0
1ν

7
τ Li|Lint|τ̃7Be⟩ = ⟨7Li|Jµ|7Be⟩⟨χ̃0

1ντ |τ̃∗χ̃0
1(gLPL + gRPR)τ ×

√
2GFντγµPLτ |τ̃⟩. (3-3-10)

Here the matrix element of the hadronic part is given by

|⟨7Li|Jµ|7Be⟩|2 =
(1 + 3g2

A)16π3EBeELilog102
m5

eG
2
F

1
ft

, (3-3-11)

where we fixes ft = 103.3 sec. In thsi equation, we approximately calculate only temr of µ = 0 and
we omit other terms. Then we calculate the matrix element of the leptonic part as follows

⟨χ̃0
1ντ |τ̃∗χ̃0

1(gLPL + gRPR)τ ×
√

2GFντγµPLτ |τ̃⟩ =
4mχ̃0

1
G2

F|gR|2Eντ

m2
τ

. (3-3-12)

We calculate the cross section of the reactions by using these equations as follows,

σICv =
(1 + 3g2

A)2|gR|2log102
105

p7
Max

mτ̃m2
τm2

Lim
5
e

1
ft

,

pMax =
√

2mLi(mτ̃ − mχ̃0
1
+ mBe − mLi − Ebin;Be)

(3-3-13)

These reactions occur more efficiently than standard nuclear reactions due to two reasons: i) the
overlap of the wave functions of the two becomes large since the stau and particle are packed in the
small space, ii) the small difference between the two allows virtual exchange of the hadronic current
even if δm < mπ.

We show the timescales of internal conversion processes as the function of δ m in Fig.(3.5). We
see from the figure that the timescales in δm ∼ 1.0(0.1) GeV is about 10−6(10−3) sec. Meanwhile
the timescales of forming bound state between the stau and 7Li/7Be are about 103 sec. From the
fact we see that the bound state is broken to other state soon after forming.
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Figure 3.5: The timescales of internal conversion processes as the function of δ m. Left pane;:
(τ̃7Be) → χ̃0

1 + ντ +7 Li, right panel:(τ̃7Li) → χ̃0
1 + ντ +7 He. We take mχ̃0

1
= 300GeV, θτ = π/3,

and γτ = 0 in both figures.

3.3.3 4He Spallation Reactions

The exotic nuclear reaction through the bound state between stau-4He is not only the 6Li catalyzed
fusion reaction. The bound state, (τ̃4He), is also broken to other states as follows,

(τ̃4He) → χ̃0
1 + ντ + t + n, (3-3-14a)

(τ̃4He) → χ̃0
1 + ντ + d + n + n, (3-3-14b)

(τ̃4He) → χ̃0
1 + ντ + p + n + n + n. (3-3-14c)

These reactions are expressed as Fig. 3.6. The reaction rates of Eq. (3-3-14) are calculated from

Figure 3.6: The spallation processes of 4He induced by the long-lived stau.

the Lagrangian in Eq. (3-1-4).
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(τ̃4He) → χ̃0
1 + ντ + t + n

First we consider the process Eq. (3-3-14a). The rate of this process is expressed as

Γtn =
1

τtn
= |ψ|2σtnv (3-3-15)

where |ψ|2 stands for the overlap of the wave functions of the stau and the 4He nucleus, and τtn is
the timescale of this reaction. We estimate the overlap by

|ψ|2 =
(ZαmHe)3

π
(3-3-16)

where Z and mHe represent the atomic number and the mass of 4He, respectively, and α is the fine
structure constant. We assumed that the stau is pointlike particle and is much heavier than 4He
nucleus so that the reduced mass of the bound state is equal to the mass of 4He nucleus itself. The
cross section of the elementary process for this reaction is denoted by sigmatnv and calculated as

σtnv ≡ σv((τ̃4He) → χ̃0
1ντ tn)

=
1

2Eτ̃

∫
d3pν

(2π)32Eν

d3pχ̃0
1

(2π)32Eχ̃0
1

d3qn

(2π)3
d3qt

(2π)3

× |M((τ̃4He) → χ̃0
1ντ tn)|2

× (2π)4δ(4)(pτ̃ + pHe − pν − qt − qn).

(3-3-17)

Here pi and Ei are the momentum and the energy of the particle species i, respectively.
We briefly show the calculation of the amplitude of this process. The amplitude is deconstructed

as

M((τ̃4He) → χ̃0
1ντ tn) = ⟨tnχ̃0

1ντ |Lint|4Heτ̃⟩
= ⟨tn|Jµ|4He⟩⟨χ̃0

1ντ |jµ|τ̃⟩.
(3-3-18)

Here we omitted the delta function for the momentum conservation and the spatial integral . The
weak current Jµ consists of a vector current Vµ and an axial vector current Aµ as Jµ = Vµ + gAAµ,
where gA is the axial coupling constant. The relevant components of the currents in this reaction
are V 0 and Ai (i = 1, 2, 3). We take these operators as a sum of a single-nucleon operators as

V 0 =
4∑

a=1

τ−
a eiq·ra , Ai =

4∑
a=1

τ−
a σi

aeiq·ra , (3-3-19)

where q is the momentum carried by the current, ra is the spatial coordinate of the a−th nucleon
(a ∈ {1, 2, 3, 4}), and τ−

a and σi
a denote the isospin ladder operator and the spin operator of the

a−th nucleon, respectively. Each component leads to a part of hadronic matrix element:

tn⟨tn|V 0|4He⟩ =
√

2Mtn, (3-3-20)

⟨tn|gAA+|4He⟩ =
√

2gAMtn, (3-3-21)

⟨tn|gAA+|4He⟩ = −
√

2gAMtn, (3-3-22)

⟨tn|gAA3|4He⟩ = −
√

2gAMtn, (3-3-23)

where A± = (A1 ± iA2)/
√

2. Given the relevant wave functions of a 4He nucleus, a triton, and a
neutron, we obtain the hadronic matrix element as

Mtn =
(

128π

3
aHea

2
t

(aHe + at)4

)3/4 {
exp

[
− q2

t

3aHe

]
− exp

[
− q2

n

3aHe
− (qt + qn)2

6(aHe + at)

]}
(3-3-24)
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Table 3.2: Input values of the matter radius Rmat for d, t, and 4He, the magnetic radius Rmag for
p and n, nucleus mass mX , excess energy ∆X for the nucleus X, and each reference.

nucleus Rmat(mag) [fm]/[GeV−1] mX [GeV] ∆X [GeV]
p 0.876 / 4.439 [83] 0.9383 [88] 6.778 × 10−3 [89]
n 0.873 / 4.424 [84] 0.9396 [88] 8.071 × 10−3 [89]
d 1.966 / 9.962 [85] 1.876 [89] 1.314 × 10−2 [89]
t 1.928 / 9.770 [86] 2.809 [89] 1.495 × 10−2 [89]
4He 1.49 / 7.55 [87] 3.728 [89] 2.425 × 10−3 [89]

Here qt and qn are three-momenta of the triton and the neutron, respectively, and aHe and at are
related to the mean square matter radius Rmat by

aHe =
9
16

1
(Rmat)2He

, at =
1
2

1
(Rmat)2t

. (3-3-25)

We list in Tab. 3.2 input values of the matter radius for the numerical calculation in this article.
The remaining part is straightforwardly calculated to be

|⟨χ̃0
1ντ |j0|τ̃⟩|2 = |⟨χ̃0

1ντ |jz|τ̃⟩|2 = 4G2
F|gR|2

mχ̃0
1
Eν

m2
τ

, (3-3-26)

|⟨χ̃0
1ντ |j±|τ̃⟩|2 = 4G2

F|gR|2
mχ̃0

1
Eν

m2
τ

(
1 ∓ pz

ν

Eν

)
, (3-3-27)

where Eν and pz
ν are the energy and z−component of the momentum of the tau neutrino, respectively.

We assumed that the stau and the neutralino are non-relativistic. This equation includes not only
all the couplings such as GF, gL, and gR, but also the effect of the virtual tau propagation in the
Fig. 3.6. Note here that gL coupling does not contribute. This is because the virtual tau ought to be
left-handed at the weak current, and it flips its chirality during the propagation since the transferred
momentum is much less than its mass.

Combining hadronic part with the other part, we obtain the squared amplitude as

|M((τ̃4He) → χ̃0
1ντ tn)|2 =

8mχ̃0
1
G2

F|gR|2

m2
τ

(1 + 3g2
A)M2

tnEν (3-3-28)

Integrating on the phase of the final states, we obtain the cross section as

σtnv =
8
π2

(
32
3π

)3/2

g2 tan2 θW sin2 θτ (1 + 3g2
A)G2

F

× ∆4
tn

mtmn

mτ̃m2
τ

a
3/2
He a3

t

(aHe + at)5
Itn,

(3-3-29)

Itn = 12
∫ 1

0

ds

∫ √
1−s2

0

dt(1 − s2 − t2)2st

×
{1

6
ktkn

aHe + at
st exp

[
−2

3
k2
t

aHe
t2

]
+

1
4

exp
[
−2

3
k2
n

aHe
s2 − 1

3
k2
ns2 + k2

t t
2

aHe + at

]
sinh

[
2
3

ktkn

aHe + at
st

]
− exp

[
−1

3
k2
ns2 + k2

t t
2

aHe
− 1

6
k2
ns2 + k2

t t
2

aHe + at

]
sinh

[
1
3

ktkn

aHe + at
st

] }
(3-3-30)
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Here ∆tn, kt, and kn are defined as

∆tn ≡ δm + ∆He − ∆t − ∆n − Eb, (3-3-31)

kt =≡
√

2mt∆tn, (3-3-32)

kn =≡
√

2mn∆tn (3-3-33)

where ∆X is the excess energy of the nucleus X, and Eb is the binding energy of (τ̃4He) system.

(τ̃4He) → χ̃0
1 + ντ + d + n + n

The rate of another spallation process of Eq. (3-3-14b) is similarly calculated. The cross section is
calculated to be

σvdnn =
192
π4

g2 tan2 θW sin2 θτG2
F∆4

dnn

mnmd

mτ̃m2
τ

(
2ad

aHe(ad + aHe)2

)3/2

Idnn, (3-3-34)

where

Idnn =
∫ 1

0

ds

∫ √
1−s2

0

dt

∫ √
1−s2−t2

0

du(1 − s2 − t2 − u2)2

×
{

(1 + 3g2
A)aHek

3
nst2u exp

[
−3k2

ds2 + 4k2
nu2

4aHe

]
sinh

[
knkd

aHe
su

]
−
√

2(1 + g2
A)aHek

3
nstu2 exp

[
−3k2

ds2 + 2k2
nt2 + 2k2

nu2

4aHe

]
sinh

[
1√
2

knkd

aHe
st

]
+ 2

√
2g2

A(aHe + ad)k3
nstu2 exp

[
−k2

n(2t2 + u2)
2aHe

− k2
ds2 + 2k2

nt2

4(aHe + ad)

]
sinh

[
1√
2

kdkn

aHe + ad
st

]
− 16

√
2g2

A

a2
He

aHe + ad

√
5a2

He + 6aHead + 2a2
dknsu

× exp(−A1k
2
ds2 − A2k

2
nt2 − A3k

2
nu2) sinh(A4kdknst) sinh(A5k

2
ntu)

}

(3-3-35)

Here ∆dnn, kd, kn and Ai(i = 1 − 5) are defined as follows:

∆dnn ≡ δm + ∆He − ∆d − 2∆n − Eb,

kn ≡
√

2mn∆dnn,

kd ≡
√

2md∆dnn,

A1 ≡ 4aHe + 3ad

8aHe(aHead)
,

A2 ≡ 22a3
He + 44a2

Head + 30aHea
2
d + 7a3

d

4aHe(aHe + ad)(5a2
He + aHead + 2a2

d)
,

A3 ≡ 8a2
He + 9aHead + 3a2

d

4aHe(5a2
He + aHead + 2a2

d)
,

A4 ≡ 1
4aHe(aHe + ad)

√
10a2

He + 12aHead + 4a2
d,

A5 ≡ (aHe + ad)2

2aHe(5a2
He + 6aHead + 2a2

d)
.

(3-3-36)

(τ̃4He) → χ̃0
1 + ντ + p + n + n + n

The cross section of spallation process of Eq. (3-3-14c) is calculated to be

σvpnnn =
8
π9

(
32π3

a3
He

)3/2

g2 tan2 θW sin2 θτ (1 + 3g2
A)G2

F aHe∆7
pnnn

m5
N

mτ̃m2
τ

Ipnnn, (3-3-37)
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where

Ipnnn =
∫ 1

0

ds

∫ √
1−s2

0

dt

∫ √
1−s2−t2

0

du

∫ √
1−s2−t2−u2

0

dv(1 − s2 − t2 − u2 − v2)2st2uv2

×

{
1√
2

exp
[
− k2

N

2aHe
(3s2 + t2 + 2u2)

]
sinh

[√
2k2

N

aHe
su

]
− exp

[
− k2

N

2aHe
(3s2 + t2 + u2 + v2)

]
sinh

[
k2
N

aHe
su

]}
(3-3-38)

where ∆pnnn and kN are defined as follows:

∆pnnn ≡ δm + ∆He − ∆p − 3∆n − Eb,

kn ≡
√

2mN∆pnnn.
(3-3-39)

In this calculation, we assumed proton and neutron have an identical kinetic energy, and then the
factor kp and kn, which are introduced to factorize their kinetic energies, are also identical. kN is
the identical factor, and here we took mN = mn.

3.3.4 Comparing the rate of spallation reaction with that of stau-catalyzed
fusion
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Figure 3.7: Timescale of spallation processes as a function of δm and the stau-catalyzed fusion at
the universe temperature T = 30keV [37]. The lifetime of free τ̃ (solid line) is also depicted. Here
we took mτ̃ = 350GeV, sin θτ = 0.8, and γτ = 0.

We compare the rate of the spallation and that of the stau-catalyzed fusion. We first note that
the rate of stau-catalyzed fusion strongly depends on the temperature [37], and we fix the reference
temperature to be 30keV. Staus begin to form a bound state with 4He at this temperature, which
corresponds to cosmic time of 103s. Thus the bound state is formed when the lifetime of staus is
longer than 103s.

Figure 3.7 shows the timescale of the spallation processes as a function of δm. The lifetime of
free stau is plotted by a solid line. We took the reference values of mτ̃ = 350GeV, sin θτ = 0.8,
and γτ = 0. The inverted rate of the stau-catalyzed fusion at the temperature of 30keV is also
shown by the horizontal dashed line. Once a bound state is formed, as long as the phase space
of spallation processes are open sufficiently that is δm & 0.026GeV, those processes dominate over
other processes. There τ̃ property is constrained to evade the over-production of d and/or t. For
δm . 0.026GeV, the dominant process of (τ̃ 4He) is stau-catalyzed fusion, since the free τ̃ lifetime
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is longer than the timescale of stau-catalyzed fusion. Thus light gray region is forbidden due to the
over-production of 6Li.

This interpretation of Fig.2 is not much altered by varying the parameters relevant with τ̃ . First
cross sections of spallation processes are inversely proportional to mτ̃ , and then the timescale of
each process linearly increases as mτ̃ increases. Thus, even when mτ̃ is larger than mτ̃ = 350GeV
by up to a factor of ten, the region of 6Li over-production scarcely changes. Next we point out
that our result depend only mildly on the left-right mixing of the stau. Indeed, cross section of
the 4He spallation is proportional to sin2 θτ . Its order of magnitude will not change as long as the
right-handed component is significant.

3.4 Relic density of Stau at the BBN era

In this subsection, we calculate the relic density of stau at the BBN era. Firstly, we briefly review
the Boltzmann equations for the number density of stau and neutralino based on the thermal relic
scenario. Then, we discuss the number desnisty evolution of stau and neutralino quantitatively. In
subsec.3.4.2, we investigate the significant processes for the calculation of the relic density of stau.
Finally, we obtain the Boltzmann equations for the relic density of stau in a convenient form.

3.4.1 Boltzmann equations for the number density evolution of stau and
neutralino

In this subsubsection, we show the Boltzmann equations of stau and neutralino.
We are interested in the relic density of stau in the coannihilation scenario. In this scenario, stau

and neutralino are quasi-degenerate in mass and decouple from the thermal bath almost at the same
time. Thus the relic density of stau is given by solving a coupled set of the Boltzmann equations
for stau and neutralino as simultaneous differential equation. For simplicity, we use the Maxwell-
Boltzmann statistics for all species instead of the Fermi-Dirac for fermions and the Bose-Einstein
for bosons, and assume T-invariance. With these simplifications, the Boltzmann equations of them
are given as follows,

dnτ̃−

dt
+ 3Hnτ̃− = −

∑
i

∑
X,Y

⟨σv⟩τ̃−i↔XY

[
nτ̃−ni − neq

τ̃−neq
i

(
nXnY

neq
X neq

Y

)]
−

∑
i ̸=τ̃−

∑
X,Y

{⟨σ′v⟩τ̃−X→iY [nτ̃−nX ] − ⟨σ′v⟩iY →τ̃−X [ninY ]} , (3-4-1)

dnτ̃+

dt
+ 3Hnτ̃+ = −

∑
i

∑
X,Y

⟨σv⟩τ̃+i↔XY

[
nτ̃+ni − neq

τ̃+neq
i

(
nXnY

neq
X neq

Y

)]
−

∑
i ̸=τ̃+

∑
X,Y

{⟨σ′v⟩τ̃+X→iY [nτ̃+nX ] − ⟨σ′v⟩iY →τ̃+X [ninY ]} , (3-4-2)

dnχ̃0
1

dt
+ 3Hnχ̃0

1
= −

∑
i

∑
X,Y

⟨σv⟩χ̃0
1i↔XY

[
nχ̃0

1
ni − neq

χ̃0
1
neq

i

(
nXnY

neq
X neq

Y

)]
−

∑
i ̸=χ̃0

1

∑
X,Y

{
⟨σ′v⟩χ̃0

1X→iY

[
nχ̃0

1
nX

]
− ⟨σ′v⟩iY →χ̃0

1X [ninY ]
}

. (3-4-3)

Here n and neq represent the actual number density and the equilibrium number density of each
particle. Index i denotes stau and neutralino, and index X and Y denote SM particles. Note that
if relevant SM particles are in thermal equilibrium, nX = neq

X , nY = neq
Y , and (nXnY /neq

X neq
Y ) = 1
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then these equations are reduced into a familiar form. ⟨σ′v⟩ and ⟨σv⟩ are the thermal averaged cross
sections, which is defined by

⟨σv⟩12→34 ≡ g12

∫
d3p1d3p2f1f2(σv)12→34∫

d3p1d3p2f1f2

= g12

∫
d3p1d3p2f1f2(σv)12→34

neq
1 neq

2

(3-4-4)

where f is the distribution function of a particle, v is the relative velocity between initial state
particles, and g12 = 2(1) for same(different) particles 1 and 2. In this work, we assume that all of
the supersymmetric particles except for stau and neutralino are heavy, and therefore do not involve
them in the coannihilation processes.

The first line on the right hand side of Eqs. (3-4-1), (3-4-2) and (3-4-3) accounts for the anni-
hilation and the inverse annihilation processes of the supersymmetric particles (ij ↔ XY ). Here
index j denotes stau and neutralino. As long as R-parity is conserved, the final number density
of neutralino DM is controlled only by these processes. The second line accounts for the exchange
processes by scattering off the cosmic thermal background (iX ↔ jY ). These processes exchange
stau with neutralino and vice versa, and thermalize them. Consequently, the number density ratio
between them is controlled by these processes. Instead, these processes leave the total number den-
sity of the supersymmetric particles. Note that in general, although there are terms which account
for decay and inverse decay processes of stau (τ̃ ↔ χ̃0

1XY...) in the Boltzmann equations, we omit
them. It is because we are interested in solving the 7Li problem by the long-lived stau, and the whole
intention of this work is to search parameters which can provide the solution for the 7Li problem.
Hence we assume that the stau is stable enough to survive until the BBN era, and focusing on the
mass difference between stau and neutralino is small enough to make it possible.

In this subsection, we discuss the evolution of the number density of each species. Firstly, we dis-
cuss the number density evolution of neutralino DM. Since we have assumed R-parity conservation,
all of the supersymmetric particles eventually decay into the LSP neutralino. Thus its final number
density is simply described by the sum of the number density of all the supersymmetric particles

N =
∑

i

ni. (3-4-5)

For N, that is the number density of the neutralino, we get the Boltzmann equation by summing
Eqs (3-4-1), (3-4-2) and (3-4-3),

dN

dt
+ 3HN = −⟨σv⟩sum [NN − NeqNeq] (3-4-6)

⟨σv⟩sum ≡
∑

i=χ̃0
1,τ̃

∑
X,Y

⟨σv⟩χ̃0
1i↔XY (3-4-7)

Solving the Eq. (3-4-6), we obtain N and find the freeze out temperature of the total number density
of all the SUSY particles Tf by using the standard technique [25]:

mχ̃0
1

Tf
= ln

0.038gmplmχ̃0
1
⟨σv⟩

g
1/2
∗ (mχ̃0

1
/Tf )

≃ 25. (3-4-8)

Here, g and mχ̃0
1

are the internal degrees of freedom and the mass of neutralino, respectively. The
Plank mass mpl = 1.22×1019 GeV, and g∗ are the total number of the relativistic degrees of freedom.
Consequently, we see that 4GeV ≤ Tf ≤ 40GeV for 100GeV ≤ mχ̃0

1
≤ 1000GeV.

To obtain the relic density of stau, we solve a coupled set of the Boltzmann equations, (3-4-1),
(3-4-2) and (3-4-3) as simultaneous differential equation. Each Boltzmann equation contains the
contribution of the exchange processes. These processes exchange stau with neutralino and vice
verse. At the temperature Tf , the interaction rate of the exchange processes is much larger than
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that of the annihilation and the inverse annihilation processes. This is because the cross sections
of the exchange processes are in the same order of magnitude as that of the annihilation and the
inverse annihilation, but the number density of the SM particles is much larger than that of the
supersymmetric particles which is suppressed by the Boltzmann factor. Thus even if the total
number density of stau and neutralino is frozen out at the temperature Tf , each number density of
them continue to evolve through the exchange processes.

Thus, to calculate the relic density of stau, we have to follow the two-step procedures. As a first
step, we calculate the total relic density of the SUSY particles by solving the Eq. (3-4-6). We use
the publicly available program micrOMEGAs [90] to calculate it. The second step is the calculation
of the number density ratio of stau and neutralino. The second step is significant for calculating the
relic density of stau at the BBN era, and hence we will discuss it in detail in latter.

3.4.2 The exchange processes and Lagrangian for describing them

After the freeze-out of the total number density of stau and neutralino, each of them is exchanged
through the following processes

τ̃ γ ←→ χ̃0
1τ, χ̃0

1γ ←→ τ̃ τ. (3-4-9)

These processes Eq. (3-4-9) are described by the Lagrangian

L = τ̃∗χ̃0
1(gLPL + gRPR)τ − ie(τ̃∗(∂τ̃) − (∂µτ̃∗)τ̃)Aµ + h.c., (3-4-10)

where e is the electromagnetic coupling constant, and l ∈ {e.µ}. gL and gR are the coupling
constants defined by Eq. (3-1-5).

The evolution of the stau number density is governed only by the exchange processes (Eq. (3-4-
9)) after the freeze-out of the total relic density of stau and neutralino. When we calculate it, we
should pay attention to two essential points relevant to the exchange processes.

One is the competition between the interaction rate of the exchange processes and the Hubble
expansion rate, since when these interaction rates get smaller than the Hubble expansion rate, the
relic density of stau would be frozen out. The other is whether tau leptons are in the thermal bath
or not. The interaction rate of the exchange processes strongly depends on the number density of
tau leptons. When tau leptons are in the thermal bath, the number density ratio between stau and
neutralino are given by the thermal ratio,

nτ̃

nχ̃0
1

≃ e−mτ̃ /T

e
−m

χ̃0
1
/T

= exp
(
−δm

T

)
, (3-4-11)

through the exchange processes. On the contrary, once tau leptons decouple from the thermal bath,
the ratio cannot reach this value. To calculate the relic density of stau, we have to comprehend the
temperature of tau lepton decoupling.

To see whether tau leptons are in the thermal bath or not, we consider the Boltzmann equation
for its number density,

dnτ

dt
+ 3Hnτ = −⟨σv⟩

[
nτnX − neq

τ neq
X

(
nY nZ

neq
Y neq

Z

)]
− ⟨Γ⟩

[
nτ − neq

τ

(
nXnY ...

neq
X neq

Y ...

)
,

]
⟨σv⟩ =

∑
X,Y,Z

⟨σv⟩τX↔Y Z , ⟨Γ⟩ =
∑

X,Y,...

⟨Γ⟩τ↔XY...,
(3-4-12)

where indices X,Y, andZ denote the SM particles, and ⟨Γ⟩ represents the thermal averaged decay rate
of tau lepton. When the SM particles X,Y,and Z are in the thermal equilibrium, (nY )nZ)/(nY )eqneq

Z ) =
(nX)nY ) · · · /(nX)eqneq

Y · · · ) = 1, and hence tau leptons are sufficiently produced through the in-
verse annihilation and/or the inverse decay processes as long as these interaction rates are larger
than the Hubble expansion rate. Therefore, whether tau leptons are in the thermal bath or not

29



can be distinguished by comparing the Hubble expansion rate H with the inverse annhilation rate
of tau lepton ⟨σv⟩neq

X , and the inverse decay rate of tau lepton ⟨Γ⟩. In other words, the inequality
expression

⟨σv⟩neq
X > H and/or⟨Γ⟩ > H (3-4-13)

indicates that tau leptons are in the thermal bath. Fig.3.8 shows ⟨Γ⟩neq
X , ⟨Γ⟩, and H as a function

of the thermal bath temperature. As shown in Fig.3.8, the inverse decay rate of tau lepton is much
larger than the Hubble expansion rate. Thus, we can conclude that tau leptons remain in the
thermal bath still at the beginning of the BBN.

Figure 3.8: The evolution of the number density of negative charged stay. Each line attached [δm]
shows the actual evolution of the number density of stau, while the one atattched [δm(thermal)]
shows its evolution under the equilibrium determined given by Eq. (3-4-11) and the total relic
abundance. Yellow band represents the allowed region from the WMAP observation at the 2 σ
level.

3.4.3 Calculation of the number density ratio of stau and neutralino

The right-hand side of the Boltzmann equations (Eqs.(3-4-1), (3-4-2) and (3-4-3)) depends only
on temperature, and hence it is convenient to use temperature T instead of time t as independent
variable. To do this, we reformulate the Boltzmann equations by using the ratio of the number
density to the entropy density s :

Yi =
ni

s
. (3-4-14)

Consequently, we obtain the Boltzmann equations for the number density evolution of stau and
neutralino

dYτ̃−

dT
= [3HTg∗(T )]−1

[
3g∗(T ) + T

dg∗(T )
dT

]
s

×
{
⟨σv⟩τ̃−γ→χ̃0

1τ−Yτ̃−Yγ − ⟨σv⟩χ̃0
1τ−→τ̃−γYχ̃0

1
Yτ− + ⟨σv⟩τ̃−τ+→χ̃0

1γYτ̃−Yτ+ − ⟨σv⟩χ̃0
1γ→τ̃−τ+Yχ̃0

1
Yγ

}
(3-4-15)
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dYτ̃+

dT
= [3HTg∗(T )]−1

[
3g∗(T ) + T

dg∗(T )
dT

]
s

×
{
⟨σv⟩τ̃+γ→χ̃0

1τ+Yτ̃+Yγ − ⟨σv⟩χ̃0
1τ+→τ̃+γYχ̃0

1
Yτ+ + ⟨σv⟩τ̃+τ−→χ̃0

1γYτ̃−Yτ− − ⟨σv⟩χ̃0
1γ→τ̃+τ−Yχ̃0

1
Yγ

}
(3-4-16)

dYχ̃0
1

dT
= [3HTg∗(T )]−1

[
3g∗(T ) + T

dg∗(T )
dT

]
s

×
{
⟨σv⟩χ̃0

1τ−→τ̃−γYχ̃0
1
Yτ− − ⟨σv⟩τ̃−γ→χ̃0

1τ−Yτ̃−Yγ + ⟨σv⟩χ̃0
1γ→τ̃−τ+Yχ̃0

1
Yγ − ⟨σv⟩τ̃−τ+→χ̃0

1γYτ̃−Yτ+

+ ⟨σv⟩χ̃0
1τ+→τ̃+γYχ̃0

1
Yτ+ − ⟨σv⟩τ̃+γ→χ̃0

1τ+Yτ̃+Yγ + ⟨σv⟩χ̃0
1γ→τ̃+τ−Yχ̃0

1
Yγ − ⟨σv⟩τ̃+τ−→χ̃0

1γYτ̃+Yτ−

}
(3-4-17)

Here g∗(T ) is the relativistic degrees of freedom, and we use

s =
2π2

45
g∗(T )T 3, H = 1.66g

1/2
∗

T 2

mpl
. (3-4-18)

We obtain the relic density of stau at the BBN era by integrating these equations from Tf to
the temperature for beginning the BBN under the initial condition of the total number density of
stau and neutralino. These equations make it clear that if the tau number density is out of the
equilibrium, the ratio between those of stau and neutralino does not satisfy the Eq. (3-4-11).

,

3.4.4 Long-lived stau and BBN

We numerically calculate the primordial abundances of light elements including 4He spallation pro-
cesses and τ̃ catalyzed nuclear fusion. Then we can search for allowed regions of the parameter space
to fit observational light element abundances.

So far it has been reported that there is a discrepancy between the theoretical value of 7Li
abundance predicted in the standard BBN (SBBN) and the observational one. This is called 7Li
problem. SBBN predicts the 7Li to H ratio to be Log10(7Li/H) = −9.35 ± 0.06 when we adopt
a recent value of baryon to photon ratio η = (6.225 ± 0.170) × 10−10 (68% C.L.) reported by the
WMAP satellite [72], and experimental data of the rate for the 7Li or 7Be production through
3He + 4He → 7Be + γ [75] (7Li is produced from 7Be by its electron capture, 7Be + e− → 7Li + νe

at a later epoch). On the other hand, the primordial 7Li abundance is observed in metal-poor halo
stars as absorption lines [64]. Recent observationally-inferred value of the primordial 7Li to hydrogen
ratio is Log10(7Li/H) = −9.63 ± 0.06 [119] for a high value, and Log10(7Li/H) = −9.90 ± 0.09 [120]
for a low value. (See also Refs. [74, 121, 122] for another values.) Therefore there is a discrepancy at
more than three sigma between theoretical and observational values even when we adopt the high
value of [119]. This discrepancy can be hardly attributed to the correction of the cross section of
nuclear reaction [123, 124]. Even if we consider nonstandard astrophysical models such as those
including diffusion effects [125, 126], it might be difficult to fit all of the data consistently [127].

In Figs. 3.4.4 and 3.4.4, we plot the allowed parameter regions which are obtained by comparing
the theoretical values to observational ones for the high and low 7Li/H, respectively. Vertical axis is
the yield value of τ̃ at the time of the formation of the bound states with nuclei, Yτ̃ = nτ̃/s (s is the
entropy density), and horizontal axis is the mass difference of τ̃ and χ̃0

1. We have adopted following
another observational constraints on the light element abundances: an upper bound on the 6Li to 7Li
ratio, 6Li/7Li < 0.046+0.022 [121], the deuteron to hydrogen ratio, D/H=(2.80±0.20)×10−5 [128],
and an upper bound on the 3He to deuteron ratio, 3He/D < 0.87 + 0.27 [129].

The solid line (orange line) denotes a theoretical value of the thermal relic abundance for staus [53]
while keeping observationally-allowed dark matter density ΩDMh2 = 0.11 ± 0.01 (2 σ) [72] as total
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χ0
1 + τ̃ abundance. For reference, we also plot the observationally-allowed dark matter density in

the figures by a horizontal band.
At around δm ∼ 0.1 GeV, we find that 7Li/H can be fitted to the observational value without

conflicting with the other light element abundances. 1 As shown in Fig. 3.4.4, it should be impressive
that the relic density is consistent with the allowed region at Yτ̃ = 2 × 10−13 at 3 σ in case of the
high value of 7Li/H in [119].

Figure 3.9: Left Panel: Allowed regions from observational light element abundances at 2 σ. Here
we have adopted the higher value of the observational 7Li/H in [119] denoted by (7Li/H)H, and have
plotted both the 2σ (thin line) and 3σ (thick line ) only for 7Li/H. The horizontal band means the
observationally-allowed dark matter density. We have adopted mτ̃ = 350 GeV, sin θτ = 0.8, and
γτ = 0, respectively. Right Panel:Same as left panel, but for the lower value of observational 7Li/H
reported in [120], which is denoted by (7Li/H)L.

1See also [30, 38, 55, 57, 130] for another mechanisms to reduce 7Li/H.
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Chapter 4

The discovery potential of the
CMSSM at the LHC

We have shown the solution of the Li problem and the DM abundance in the MSSM. From now
on, we will explain the solusion in the constrained MSSM. Furthermore, we simultaneously explain
125 GeV Higgs boson mass.

In the CMSSM, all of the observables are described by only five parameters. We constrain the
five parameters to be consistent with the phenomenological requirements, e.g., the success of the
BBN, suitable DM abundance, and 125 GeV Higgs boson mass. Therefore we narrow the parameter
space of the CMSSM.

In addition, we give predictions to the anomalous magnetic moment of muon, branching fractions
of the B-meson rare decays, the direct detection of the neutralino dark matter, and the number of
SUSY particles produced in 14 TeV run at the LHC experiment in the allowed region. We compare
these predictions with current bounds, and thus we show the predictability of this scenario.

4.1 Constraints

In this section, we start our discussion to briefly review the CMSSM and show our constraints to
derive the allowed region of the parameter space in the CMSSM.

The CMSSM is described by four parameters and a sign,

m0,M1/2, A0, tanβ, sign(µ), (4-1-1)

where the first three parameters are the universal scalar mass, the universal gaugino mass, and the
universal trilinear coupling at the scale of grand unification, respectively. Here, tanβ is the ratio
of the vacuum expectation values of two Higgs bosons, and µ is the supersymmetric Higgsino mass
parameter. In the CMSSM, we describe all observables by these parameters, and, hence, we can
derive the favored parameter space by putting the experimental/observational constraints on the
calculated observables.

From now on, we explain in more detail our constraints and how to apply those to our numerical
calculations. The first requirement comes from the Higgs boson mass. The latest reports on its
mass mh are

mh = 125.8 ± 0.4(stat) ± 0.4(syst) GeV, (4-1-2)

by the CMS Collaboration [91], and

mh = 125.2 ± 0.3(stat) ± 0.6(syst) GeV, (4-1-3)

by the ATLAS Collaboration [92]. It is known that the Higgs boson mass calculated by each public
code fluctuates by about ±3 GeV [93, 94, 95, 96]. Taking into account these uncertainties, we apply
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a more conservative constraint as
mh = 125.0 ± 3.0 GeV. (4-1-4)

The second constraint comes from the observation for the relic abundance of dark matter. The
WMAP satellite reported the value at the 3 σ level [18],

0.089 ≤ ΩDMh2 ≤ 0.136. (4-1-5)

In most of the CMSSM parameter space, the relic abundance of the neutralino LSP is overabun-
dant against the measured value. The correct dark matter abundance requires unique parameter
space where the bino-like neutralino LSP and the stau NLSP are degenerate in mass so that the
coannihilation mechanism works well [24, 25].

The third and fourth constraints are required from solving the lithium-7 problem. The stau
NLSP is long-lived if the mass difference is smaller than the mass of the tau lepton [28, 29]. In
the case where the stau survives until the BBN epoch, the lithium-7 density can be reduced to the
measured value with the exotic nuclear reactions induced by the stau. As the third condition, we
impose the mass difference δm to be

δm ≡ mτ̃1 − mχ̃0
1
≤ 0.1 GeV, (4-1-6)

where mτ̃1 and mχ̃0
1

are the masses of the stau NLSP and the neutralino LSP, respectively. With
this mass difference, the stau NLSP is sufficiently long-lived so that it can survive until the BBN
era [40, 53, 58]. In our numerical calculation, we use the pole mass of the top quark as an input
which involves an uncertainty of O(1) GeV. It is expected that the SUSY spectrum also includes
the same order of uncertainties. For this reason, in the numerical results in the next section, we
show also the case of

δm ≤ 1 GeV (4-1-7)

to make a more conservative prediction of the CMSSM parameters.1

The forth constraint is the upper bound on the mass of the neutralino LSP,

mχ̃0
1
≤ 450 GeV. (4-1-8)

This upper bound is derived from the requirement of the abundances of both dark matter and light
elements.

We showed in Ref. [58] that a yield value of the negatively charged stau Yτ̃ = nτ̃/s (s is the
entropy density) must be larger than a minimum value

Yτ̃ ,m = 1.0 × 10−13 (4-1-9)

to obtain the appropriate abundance of light elements, mainly, that of lithium 7, as

Yτ̃ ,m ≤ Yτ̃ . (4-1-10)

At the same time, the abundance of stau is bound from above by the abundance of dark matter.
From Eq.(4-1-5), we obtain the following bound as

mχ̃0
1
nDMh2

ρc
≤ 0.136. (4-1-11)

1In a precise sense, a too small mass difference makes the stau too long-lived. If the stau lives long, sufficient to
form a bound state with helium, the stau converts it into other nuclei, a triton (or a deuteron) and neutron(s). Those
reactions make the number densities of the converted nuclei too large compared with those of the observations [58].
The number densities of these nuclei, therefore, become inconsistent with the observed values through those reactions,
and the too small mass difference is not allowed. This is, however, considerably relaxed by introducing a tiny lepton
flavor violation [60].
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Here, nDM is today’s number density of the dark matter, ρc is the critical density of the Universe,
ρc = 1.054 × 10−5 GeV cm−3, and h is the scale factor for the Hubble expansion rate, h = 0.710.
We express nDM by using the Yτ̃ to be

nDM = 2s0(1 + eδm/Tf)Yτ̃ . (4-1-12)

Here, s0 is today’s entropy density, s0 = 2889.2 cm−3, and Tf is the freeze-out temperature for the
exchange process between the stau and the neutralino and given by

Tf ≃
mτ − δm

25
. (4-1-13)

Here, mτ = 1.777 GeV and we took δm = 0.1 GeV as a reference value. Using Eqs.(4-1-9)-(4-1-12),
we obtain the lower and upper bounds for the yield value of the stau as follows:

1.0 × 10−13 ≤ Yτ̃ ≤ ρc

2(1 + eδm/Tf)s0h2

0.136
mχ̃0

1

. (4-1-14)

From the equation, we put the following bound as

mχ̃0
1
≤ 450 GeV (4-1-15)

on the mass of the neutralino.

4.2 Allowed region in the CMSSM

In this section, we show the allowed region in the CMSSM parameter space by imposing the con-
straints explained in Sec. 4.1. Throughout this paper, we take tanβ = 10, 20, and 30 as illustrating
examples. In the case of the tan β <∼ 10, the Higgs boson mass hardly reaches 125 GeV because its
tree-level mass is proportional to | cos 2β| and radiative corrections are not large enough. On the
other hand, in the case of tanβ >∼ 30, the dark matter abundance lowers the observational value. This
is because the annihilation rates are enhanced by large tanβ. As is shown in Eq. (4-1-8), the mass
of the neutralino LSP is bound from above and cannot compensate the small number density. Thus,
it is expected that most of the allowed parameter space is obtained in this range of tan β. We cal-
culate the SUSY spectrum, the DM abundance, and the other observables using micrOMEGAs [90]
implementing SPheno [97, 98] and the lightest Higgs mass using FeynHiggs [99, 100, 101, 102].

4.2.1 A0 - m0 plane

In Fig. 4.1, we show the allowed region in the m0-A0 plane for tan β = 10, 20, and 30 from top to
bottom and δm ≤ 1 and 0.1 GeV in the left and right panels, respectively. Color represents M1/2.

Notably, one can see that A0 and m0 have an almost linear relation for fixed M1/2. The relations
can be parametrized as

m0 =


(−5.5 × 10−3A0 + 5.15) tanβ + 67.67
for lower line,
(−5.5 × 10−3A0 + 4.65) tanβ + 140.67
for upper line,

(4-2-1)

for tanβ ∋ (10, 20, 30). These linear relations come from the tight degeneracy in mass between the
stau and the neutralino. We explain the linear relation as follows. First, we note that the signs of µ
and A0 are opposite from each other due to obtaining the large Higgs boson mass, as we will explain
later. In this scenario, we choose µ > 0 and A0 < 0. For a fixed mχ̃0

1
, in response to an increasing

m0, the mass of the lighter stau is also increased. In order to keep the mass difference smaller than
1 GeV (0.1 GeV), |A0| has to be increased also. Increasing of |A0| makes a nondiagonal element of
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the stau mass matrix large, and, hence, the mass eigenvalue of the lighter stau is decreased after
diagonalization to be within the small mass difference. As a result, the linear behavior in the A0-m0

plane is found.
One can see in Fig. 4.1 that m0 in the allowed region increases as tan β increases. This is because

the soft masses of the staus are decreased more for larger tan β in the renormalization group (RG)
running due to the tau Yukawa couplings. The terms with a tau Yukawa coupling in RG Equation
(RGE) decrease the soft masses in the running [103]. These become significant when tan β is large
because the tau Yukawa coupling is proportional to 1/ cos β. Thus, a larger m0 is required for a
larger tanβ to obtain the stau mass satisfying Eqs. (4-1-6) or (4-1-7).

The upper and lower edges of the allowed region in all panels of Fig. 4.1 are determined by the
constraints of the correct abundances of dark matter and the light elements. This can be understood
as follows. Since the dark matter abundance depends on the neutralino LSP mass as shown in Eq. (4-
1-5), the dark matter abundance gives the lower bound on the neutralino mass. On the other hand,
the light element’s abundance gives the upper bound as shown in Eq. (4-1-8). The bounds for the
lighter stau mass are nearly the same as that for the neutralino mass due to the tight degeneracy.
Therefore, once A0 is fixed, m0 can vary in a range that satisfies the bound for the lighter stau mass.
Thus, the upper and lower edges are determined by the constraints.

On the other hand, the right side of the allowed region is determined by the lower bound on the
Higgs boson mass. We can see from the left panel of Fig. 4.2 that the Higgs boson mass reaches
122 GeV. The mass squared of the Higgs boson with one-loop corrections is given by

m2
h = m2

Z cos2 2β

+
3m4

t

16π2v2

[
log

(
m2

t̃

m2
t

)
+

X2
t

m2
t̃

(
1 − X2

t

12m2
t̃

)]
, (4-2-2)

(Xt = At − µcotβ, mt̃ = √
mt̃1

mt̃2
),

where the first line represents the tree-level mass square, and the second one is the one-loop correc-
tions [11, 10, 9, 12]. The tree-level contribution is simply given by the Z-boson mass mZ , while the
radiative corrections are given by the masses of the top mt, the lighter/heavier stop mt̃1/t̃2

, the stop
mixing parameter Xt, and the vacuum expectation values of the Higgs bosons, v =

√
v2

u + v2
d; here,

vu and vd are the vacuum expectation values of up-type and down-type Higgs bosons, respectively.
The radiative corrections are sensitive to the stop mixing parameter. As is well known, the second
term in the bracket decreases quadratically from its maximum at

|Xt| =
√

6mt̃. (4-2-3)

To obtain the maximum value of |Xt|, the signs of µ and A0 have to be opposite each other, and
we choose µ > 0 and A0 < 0 in this paper. The right panel of Fig. 4.2 shows |Xt|/

√
6mt̃ in the

allowed region for tanβ = 20 and δm ≤ 1 GeV. It can be seen that |Xt| is smaller than
√

6mt̃ at the
right side edge, and, hence, the one-loop corrections are not so large that mh is pushed up to the
lower bound. Similarly, the left side edge is also determined by the Higgs boson mass bound. The
value of |Xt|/

√
6mt̃ gradually becomes large as |A0| increases. At a large (|A0|,m0) point, the value

of |Xt|/
√

6mt̃ is equal to 1, and, therefore, mh receives the maximal loop correction. In the region
where |Xt|/

√
6mt̃ > 1, the loop corrections to mh are smaller and mh decreases from the maximal

value. Therefore, mh is smaller than 122 GeV again at the left side edge, as can be seen in the right
panel of Fig. 4.2.
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Figure 4.1: The allowed region in the A0-m0 plane. We fix tanβ to 10, 20, and 30 from top to
bottom and δm ≤ 1 and 0.1 GeV from left to right, respectively. A gradation of colors represents
M1/2. Light color indicates large value, and dark color indicates small value.
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Figure 4.2: Left panel:the value of the Higgs boson mass. Right panel: the ratio of |Xt| to
√

6mt̃. A
gradation of colors represents each value. Light color indicates large value and dark color indicates
small value. We fix tanβ to 20 and δm ≤ 1 GeV in each figure.
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4.2.2 m0 - M1/2 plane

We show in Fig. 4.3 the allowed region in the m0-M1/2 plane for tanβ = 10, 20, and 30 from top to
bottom and δm ≤ 1 and 0.1 GeV in the left and right panels, respectively. Color and the contours
represent A0. Figure 4.4 shows the Higgs boson mass in the left panel and the relic abundance of
the dark matter in the right panel by color on the allowed region. We fix tanβ to 20 and δm ≤ 1
GeV in the panels.

In Fig. 4.3, it can be seen that |A0| gets larger as m0 gets larger while it is slightly dependent
on M1/2. This is because the lighter stau mass is mainly determined by m0 and A0 as explained in
Sec. 4.2.1. In the figure, we obtain mh ≃ 126 GeV, at (m0,M1/2) = (350, 1000) GeV for tan β = 10,
(640, 1050) GeV for tanβ = 20, and (800, 1050) GeV for tanβ = 30, respectively. These points are
located at the middle of m0 and the upper edge of M1/2 in the allowed region. The value of |Xt| is
equal to

√
6mt̃ at these points, and, hence, mh receives the large loop corrections. Furthermore, the

logarithmic term in Eq. (4-2-2) becomes large as M1/2 increases since the stops become heavy, as we
show later in Fig. 4.6. Thus, the Higgs boson mass is pushed up to 126 GeV. The Higgs boson mass
decreases as the parameters deviate from these points. In the left panel of Fig. 4.4, it is clearly seen
that the lower bound on the Higgs boson mass determines the left and right edges in the allowed
region. Since |A0| is small at the left edge, the value of |Xt| is smaller than

√
6mt̃. Therefore, mh

receives a small one-loop correction. On the contrary, |A0| is large at the right edge, and |Xt| is
larger than

√
6mt̃. This means that mh receives a small one-loop correction, as we explained in the

previous subsection.
Note that the minimum value of M1/2 in the allowed region is different in each panel. The

minimum value is determined by the lower bound on the relic abundance of the dark matter. In
the right panel of Fig. 4.4, we can see that the neutralino relic abundance reaches the lower bound
at the bottom edge of the allowed region.2 The minimum value of M1/2 becomes large as tan β
increases and/or the mass difference becomes small.

The tanβ dependence on the relic abundance is understood as follows. In the favored parameter
region, the stau NLSP consists mostly of the right-handed stau. Then the dominant contribution
to the total coannihilation rate of the dark matter is the stau-stau annihilation into tau leptons
via Higgsino exchange for large tanβ [104]. The interactions of the stau-tau lepton Higgsino is
proportional to tanβ, and so the large tanβ leads the large coannihilation rate of the dark matter.
Larger tanβ, therefore, makes the relic abundance smaller.

The dependence of the relic number density on the mass difference is understood in terms of the
ratio of the number density of the stau to the neutralino. At the freeze-out of the total number of
all SUSY particles, the ratio is proportional to e−δm/T total

f . Since the freeze-out temperature T total
f

is almost the same for δm = 0.1 and 1 GeV as long as mχ̃0
1

is fixed, the stau number density is
relatively large for δm = 0.1 GeV. This leads to a larger total coannihilation rate and, hence, the
relic number density of the neutralino is reduced. Such a reduction of the number density can be
compensated by increasing the neutralino mass. Thus, the minimum value of M1/2 should be larger
for larger tanβ and smaller δm to meet the lower bound for the dark matter abundance.

On the other hand, the maximum value of M1/2 is fixed from the upper bound in Eq. (4-1-8).
Note that the upper bound is derived by the fact that the large number density of the stau is required
to reduce the lithium-7 to the measured abundance. This requirement forbids a too large mass of
the neutralino. As there is a relation between the neutralino mass and M1/2, i.e., mχ̃0

1
≃ 0.43M1/2,

the upper bound of M1/2 is estimated by the neutralino mass and is fixed to be 1.1 TeV in the
present paper.

We emphasize here that the maximum value of M1/2 in the allowed region is unique in the
parameter space. If we do not take into account the lithium-7 problem, a heavier neutralino or M1/2

is allowed, and, hence, the resultant range of M1/2 is wider.

2In the panel, we see moderate stripes on the allowed region. These stripes result from the loss accuracy of the
numerical calculation. We are not able to collect all data with the mass difference within 0.1 GeV. If we collect all
data, these stripes are not on the allowed region.
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Figure 4.3: The allowed parameter region in the m0-M1/2 plane. We fix tanβ to 10, 20, and 30
from top to bottom and δm ≤ 1 and 0.1 GeV from left to right, respectively. A gradation of colors
represents A0. Light color indicates large value and dark color indicates small value.
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4.3 SUSY spectrum, (g−2)µ, B-meson rare decays, and dark
matter detection

In this section, we show our predictions for the SUSY spectrum, the muon anomalous magnetic
moment, rare decays of B mesons, and the dark matter direct detections. We calculate the mass
spectrum of SUSY particles by using SPheno [97, 98] and that of the Higgs boson by using Feyn-
Higgs [99, 100, 101, 102].

4.3.1 Spectra of SUSY particles with current limits

We show the mass spectra of the SUSY particles in the allowed region. Figure 4.5 shows the masses
of the gluino and the first and second generation squarks with respect to the lightest neutralino
mass. From top to bottom, tan β is varied with 10, 20, and 30, and in the left and right panels
δm ≤ 1 and 0.1 GeV. Similarly, the masses of the stop and sbottom are shown in Fig. 4.6, those
of the neutralino, slepton and the heavier Higgs in Figs. 4.7, 4.8, and 4.9, respectively. Note that
in all of the figures we have excluded the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct

bound on the long-lived CHAMP at the LHC [105]. We explain the behaviors of these figures in the
following subsections.

Gluino, neutralinos and heavy Higgs boson masses

In the CMSSM, the gluino mass parameters M3 is related to the bino and the wino mass parameter
M1 and M2 at one-loop RGE as follows:

M3 =
αs

α
sin2 θW M2 =

3
5

αs

α
cos2 θW M1. (4-3-1)

From this relation, we can obtain the ratio

M3 : M2 : M1 ≃ 6 : 2 : 1 (4-3-2)

around the TeV scale. We can see that mg̃ is nearly 6 times larger than mχ̃0
1

in Fig. 4.5, and mχ̃0
2

is about twice as large as that in Fig. 4.7. This means that the second lightest neutralino is almost
the neutral wino. On the other hand, mχ̃0

3
and mχ̃0

4
extend above 1 TeV because these consist of the

neutral Higgsinos. Their masses are given by a µ parameter that is sensitive to m0 for fixed mχ̃0
1
.

The modulus |µ| is determined by the EWSB conditions. At tree level, the corresponding formula
for the correct EWSB reads

|µ|2 =
1
2

[
tan 2β

(
M2

Hu
tanβ − M2

Hd
cot β

)
− m2

Z

]
, (4-3-3)

where MHd
and MHu are the down-type and up-type Higgs soft SUSY breaking masses. For tanβ ≫

1, Eq. (4-3-3) is approximated as follows :

|µ|2 ≃ −M2
Hu

. (4-3-4)

The soft mass M2
Hu

is sensitive to m0. The approximate solution of the one-loop RGE for M2
Hu

is
given by

m2
Hu

≃ −3.5 × 103 cot2 βm′2
0

+ 87 cot βM1/2m
′
0 − 2.8M2

1/2,
(4-3-5)

where m′
0 ≡ m0 − b, and b is defined as b ≃ 5.15 tan β + 67.67(for the lower line) and 4.65 tanβ +

140.67(for the upper line) given by Eq. (4-2-1). Therefore, mχ̃0
3

and mχ̃0
4

become large with increas-
ing m0.

Meanwhile, the mass of the CP-odd Higgs boson mA is given by

m2
A ≃ |µ|2. (4-3-6)

Thus, the masses of the heavy Higgs boson and the CP-odd Higgs boson are determined by |µ|, and
these are close to mχ̃0

3
and mχ̃0

4
as shown in Figs. 4.7 and 4.9.
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First and second generation squarks and sleptons masses

For the first and second generation squarks and sleptons, the effects of the corresponding Yukawa
couplings are negligible in RG evolutions of their soft masses. The soft SUSY breaking masses are
parametrized up to the one-loop order as [103]

m2
q̃L

≃ m2
0 + 4.7M2

1/2, (4-3-7a)

m2
q̃R

≃ m2
0 + 4.3M2

1/2, (4-3-7b)

m2
ẽL

≃ m2
0 + 0.5M2

1/2, (4-3-7c)

m2
ẽR

≃ m2
0 + 0.1M2

1/2. (4-3-7d)

Note that the slepton masses are sensitive to m0 in Fig. 4.8, while the squark masses are insensitive
to m0 in Fig. 4.5. As shown in Fig. 4.3, m0 is smaller than M1/2 in most of the allowed region.
Then, in Eqs. (4-3-7a) and (4-3-7b), the second term is dominant, and, hence, we approximate these
equations more roughly as follows:

mq̃L
≃ 2.2M1/2,

mq̃R ≃ 2.1M1/2.
(4-3-8)

These relations can be clearly seen in Fig. 4.5. The relations lead to the fact that the first and the
second generation squarks are always lighter than the gluino, which results in the production cross
sections of the squarks are larger than that of the gluino. Meanwhile, in Eqs. (4-3-7c) and (4-3-7d),
the contributions to the soft masses from the first term are comparable to those of the second term.
Therefore, the slepton masses are sensitive to m0.

One can see in Fig. 4.5 that the masses of the gluino, sup, and sdown are below 2300 GeV for
tanβ = 10, 20, and 30. This light spectrum is the direct consequence of the constraint on the
lithium-7 abundance, and, hence, on the neutralino mass. The parameter M1/2 is bound below 1.1
TeV. As we will discuss in Sec.4.4, such light spectrum is, indeed, in the range of the 14 TeV run at
the LHC, and the order of 100 − 1000 SUSY events can be expected with luminosity of 100 fb−1.

Stop mass spectra

Figure 4.6 shows the masses of the stops. Unlike in the case of the other sfermions, the distributions
of the stop masses are in nonlinear relation. The spread of the distributions in the lightest neutralino
mass-stop mass plane is understood as follows.

The masses of the stops in the mass eigenstate are given by

m2
t̃1,t̃2

≃ 1
2

(
m2

Q3
+ m2

U3

)
∓ 1

2

√
(m2

Q3
− m2

U3
)2 + 4(m2

t̃LR
)2, (4-3-9a)

m2
t̃LR

= mt(At − µ cot β), (4-3-9b)

where mQ3 and mU3 are the soft SUSY breaking masses, and At is the stop trilinear coupling.
In Eq. (4-3-9a), the first term is dominant, and it is a decreasing function of m2

0 because of the
top and bottom Yukawa couplings. Meanwhile, the second term in Eq. (4-3-9a) is an increasing
function of m2

0. This is because the dominant term in the square root is m2
t̃LR

involving At, and the
coupling At is proportional to m0 due to the relation between A0 and m0 in Eq. (4-2-1). Hence, for
a fixed lightest neutralino mass, stop masses are not simply determined as a function of the lightest
neutralino mass; rather, they are spread depending on the m2

0.
The ATLAS Collaboration gives the bound for the stop mass from the direct stop search at the

8 TeV LHC run [106]. Note that our results of the stop mass are safely above the bound.
We can see in Fig.4.6 that the mass of the lighter stop can be relatively light, 700 to 1400 GeV

for 330 to 450 GeV of the lighter stau, respectively. Again, these light spectra come from the bound
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on M1/2. The mass degeneracy between the stau and the neutralino correlates m0, A0, µ, and tanβ
with M1/2 and sets the scale of the SUSY spectrum. As we will see in Sec. 4.4, the production cross
sections of such light stop are large and comparable to those of sup and sdown.
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Figure 4.5: The mass spectra of the gluino and the first and second generation squarks. The
horizontal axis represents the mass of the LSP neutralino. We fix tanβ to 10, 20, and 30 from top
to bottom and δm ≤ 1 and 0.1 GeV from left to right, respectively. We have excluded the region
with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct bound on the long-lived CHAMP at the LHC [105].
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Figure 4.6: The mass spectra of the stop and the sbottom. The horizontal axis expresses the mass
of the LSP neutralino. We fix tanβ to 10, 20, and 30 from top to bottom and δm ≤ 1 and 0.1 GeV
from left to right, respectively. We have excluded the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is

the direct bound on the long-lived CHAMP at the LHC [105].
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Figure 4.7: The mass spectra of the neutralino. The horizontal axis represents the mass of the LSP
neutralino. We fix tanβ to 10, 20, and 30 from top to bottom and δm ≤ 1 and 0.1 GeV from left to
right, respectively. We have excluded the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct

bound on the long-lived CHAMP at the LHC [105].
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Figure 4.8: The mass spectra of the slepton. The horizontal axis represents the mass of the LSP
neutralino. We fix tanβ to 10, 20, and 30 from top to bottom and δm ≤ 1 and 0.1 GeV from left to
right, respectively. We have excluded the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct

bound on the long-lived CHAMP at the LHC [105].
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Figure 4.9: The mass spectra of the heavy Higgs boson. The horizontal axis represents the mass of
the LSP neutralino. We fix tanβ to 10, 20, and 30 from top to bottom and δm ≤ 1 and 0.1 GeV
from left to right, respectively. We have excluded the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is

the direct bound on the long-lived CHAMP at the LHC [105].
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N f
(N)
Tu

f
(N)
Td

f
(N)
Ts

p 0.0153 0.0191 0.0447
n 0.011 0.0273 0.0447

Table 4.1: The mass fraction of light quarks in a proton p and a neutron n [90, 113].

4.3.2 Muon g − 2

We show the muon anomalous magnetic moment, (g−2)µ, in the allowed region. The latest results on
(g−2)µ have reported that there is a 3.3σ deviation between the SM prediction and the experimental
data [107, 108, 109]:

δaµ = aexp
µ − aSM

µ = (26.1 ± 8.0) × 10−10, (4-3-10)

where aµ ≡ (g − 2)µ/2.
For a fixed tanβ, lighter SUSY particles yield larger contributions. The masses are light as m0

and M1/2 are small. The small m0 is, however, excluded by the constraint on the Higgs boson mass
as shown in Sec. 4.2.2. The sizable contributions to δaµ are obtained in the regions of small M1/2.
When we take into account δm ≤ 1 and 0.1 GeV, the dominant SUSY contributions come from
the smuon-bino like neutraino loop and the muon sneutrino-charged Higgsino loop. Since we took
µ > 0, both contributions are positive. In Fig. 4.10, the SUSY contributions in the allowed region
are shown for δm ≤ 1 and 0.1 GeV in the top and bottom panel, respectively. In the panels, tan β
is taken to be 10, 20, and 30. It should be noted that the muon anomalous magnetic moment is
consistent with current measurements within 3σ levels in this scenario.

4.3.3 Rare decays of B mesons

We show that the branching ratios of Bs → µ+µ− and B → Xsγ are consistent with the experimental
results.

The evidence for the decay Bs → µ+µ− has been discovered by the LHCb Collaboration [110]
and the CMS collaboration [111]. The branching ratio has been measured as

BR(Bs → µ+µ−) = (3.0+1.0
−0.9) × 10−9 (4-3-11)

by the CMS Collaboration, and

BR(Bs → µ+µ−) = 2.9+1.1
−1.0(stat+0.3

−0.1(syst)) × 10−9 (4-3-12)

by the LHCb Collaboration. It is also reported by Ref. [112] that the other important rare decay
B → Xsγ is strongly suppressed as

BR(B → Xsγ) = (3.43 ± 0.21 ± 0.07) × 10−4. (4-3-13)

Figure 4.11 shows the branching ratios of the two rare decays for δm ≤ 1 GeV. The top panel is for
Bs → µ+µ− and the bottom is for Bs → Xsγ. We apply the experimental value reported by the
CMS Collaboration in the top panel[111]. One can see that the branching ratios are within the 3σ
in our allowed region, and, hence, are consistent with the experiments.

4.3.4 Direct detection of neutralino dark matter

One of the promising approaches to the neutralino dark matter is its direct detection. The sce-
nario we are discussing can be examined by the direct detection measurements combining other
measurements for the Higgs boson and the neutralino LSP.

The spin-independent (SI) scatterings are given by the Higgs and squark exchanges. The squark
exchange contributions are suppressed by heavy masses of squarks m−4

q̃ , where mq̃ ≃ 2TeV in the
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Figure 4.10: The allowed values of δaµ for the neutralino mass. The upper and lower figures show the
results corresponding to the cases of δm ≤ 1 GeV and δm ≤ 0.1 GeV, respectively. We have excluded
the region with mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct bound on the long-lived CHAMP at

the LHC [105].
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Figure 4.11: The branching ratios of the decay processes of Bs → µ+µ− and B → Xsγ. We fix tanβ
to 10, 20, and 30, and δm ≤ 1 GeV. The experimental values are indicated with the horizontal dotted
lines. We apply the experimental value reported by the CMS Collaboration in the top panel[111]. We
have excluded the region with mχ̃0
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Figure 4.12: Scatter plots of a SI neutralino-nucleon cross section as a function of the mass of
the neutralino dark matter. Each curve is shown for the current and future limits. A gradation
of colors corresponds to the mass of the heavy Higgs boson. We have excluded the region with
mχ̃0

1
(≃ mτ̃1) <∼ 339 GeV, which is the direct bound on the long-lived CHAMP at the LHC [105].
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scenario (see Fig. 4.5), and, hence, the SI scattering is dominated by the Higgs exchange contribu-
tions. In order to examine the scenario, we have to analyze the dependence of the SI scatterings
on the measurements for the Higgs boson and neutralinos. The SI scattering cross section of the
neutralino and target nucleon (T ) is given by [114]

σSI =
4
π

( mχ̃0
1
mT

mχ̃0
1
+ mT

)2

(npfp + nnfn)2, (4-3-14)

where mT is the mass of the target nucleus. The symbol np(nn) is the number of protons (neutrons)
in the target nucleus, and the effective coupling of the neutralino to a proton fp is given as

fp =
∑

q

fq⟨p|q̄q|p⟩

=
∑

q=u,d,s

fq

mq
mpf

(p)
Tq

+
2
27

fTG

∑
q=c,b,t

fq

mq
mp,

(4-3-15)

where f
(p)
Tq ≡ ⟨p|mq q̄q|p⟩/mp is the mass fraction of light quarks in a proton (listed in Table I), and

fTG
= 1−

∑
u,d,s f

(p)
Tq

. For the neutron, fn is derived in the same manner. The effective coupling of
the neutralino to quarks fq is calculated as follows:

fq = mq
g2
2

4mW

(Chχ̃0
1χ̃0

1
Chqq

m2
h

+
CHχ̃0

1χ̃0
1
CHqq

m2
H

)
. (4-3-16)

Here, Chqq and CHqq are the Yukawa couplings of the lighter and heavier Higgs bosons and quarks
(detailed formulas are given in Ref. [114]). For the bino-like neutralino LSP (M1 ≪ M2, µ), the
coupling of the neutralino and the Higgs bosons, Chχ̃0

1χ̃0
1

and CHχ̃0
1χ̃0

1
, is perturbatively calculated

as follows:

Chχ̃0
1χ̃0

1
≃ mZ sin θW tan θW

M2
1 − µ2

[M1 sin β + µ cos β],

CHχ̃0
1χ̃0

1
≃ mZ sin θW tan θW

M2
1 − µ2

µ sinβ.

(4-3-17)

In the scenario, the mass of the heavier CP-even Higgs boson is much larger than the mass of the
lighter Higgs boson (see Fig. 4.9), and, therefore, the contribution from the H exchange is negligible.

Figure 4.12 shows the SI scattering cross section in the allowed region as a function of the mass of
the neutralino dark matter for δm ≤ 1 GeV, and tanβ is taken to be 10, 20, and 30 from the upper
panel to the lower one. The curves represent the current limit [115] and future limit [116, 117]. The
colors correspond to the mass of the heavier CP-even Higgs boson.

In Fig. 4.12, we can see that the SI scattering cross section is smaller as tan β and/or the
neutralino mass is larger. Such behavior can be easily understood by Eq.(4-3-17). We can also see
from the contour lines that the lighter mass of the heavy Higgs boson leads to larger SI cross sections
for all tanβ. This is understood as follows. The mass of the heavy Higgs boson is determined by
the condition of the radiative electroweak symmetry breaking in the scenario and is almost equal
to mH ≃ µ (see the discussion in Sec. 4.3.1). As is given in Eq. (4-3-17), a smaller µ makes the
neutralino mixing value larger, and, hence, large couplings between the neutralino dark matter and
the Higgs bosons are obtained. Thus a clear correlation of the mass of the heavy Higgs boson and
the cross section appears.

In the end, one can see that future direct detection experiments will reach the sensitivity to
detect the neutralino dark matter in the scenario. The mass of the heavy Higgs boson can be
estimated from the measurements of the cross section and the mass of the neutralino at the direct
detection and the LHC experiments. Thus the interplay of both experiments will play important
roles to examine our scenario.
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4.4 Direct search at the LHC

Here we show the expected number of events of the long-lived stau and the neutralino at the LHC
experiment with center-of-mass energy 14 TeV and luminosity 100 fb−1 and discuss the feasibility
of the verification of the scenario.

We choose 12 sets of the CMSSM parameters in the allowed region for tanβ = 10, 20, and 30.
The parameters of the sample points and the mass spectrum of the SUSY particles are shown in
Tables 4.2, 4.8, and 4.14. These points correspond to the mass of the neutralino, 350, 375, 400,
and 425 GeV for tan β = 10, 350, 375, 400, 425, and 450 GeV for tan β = 20, and 400, 425, and
450 GeV for tan β = 30, respectively. We calculate the branching ratios and the pair production
cross sections of the SUSY particles with CalcHEP 3.4 [118] implementing SPheno [97, 98]. The
branching ratios are shown in Tables 4.3, 4.4, 4.9, 4.10, 4.15, and 4.16. The first column is the
parent particles and the second one is the final states. The production cross sections of the SUSY
particles are shown in Tables 4.5, 4.6, 4.11, 4.12, 4.17, and 4.18. The first column σ(a, b) is
the production cross sections of particles a and b from p-p collision with the center-of-mass energy
14TeV. The last rows of Tables 4.6, 4.12, and 4.18, σ (all SUSY) is the sum of the production cross
sections of SUSY particles.

Using the numbers given in the tables, we calculate the number of the stau from SUSY cascade
decays and direct productions. The branching fraction of the cascade decays of a SUSY particle ψ̃
to the stau is denoted as BR(ψ̃ → τ̃1). The symbol σ(ψ̃) represents the sum of the cross sections of
the SUSY particles. Then, the effective total production cross section of the stau is

σ(τ̃ (∗)
1 ) =

all SUSY∑
ψ̃

σ(ψ̃) × BR(ψ̃ → τ̃
(∗)
1 ). (4-4-1)

Since the long-lived staus penetrate the LHC detectors, the number of missing energy events is
calculated as follows:

N(χ̃0
1) =

{
σ(all SUSY) − σ(τ̃1) − σ(τ̃∗

1 )
}
× Lint, (4-4-2)

where Lint is the integrated luminosity. Assuming the integrated luminosity is Lint = 100fb−1, the
expected number of staus and neutralinos is 1570 and 7200 for mτ̃1 = 350 GeV and 490 and 2100
for mτ̃1 = 425 GeV for tan β = 10 (see Table 4.7), 4270 and 3680 for mτ̃1 = 350 GeV and 790
and 940 for mτ̃1 = 450 GeV for tanβ = 20 (see Table 4.13), 1810 and 1210 for mτ̃1 = 400 GeV
and 790 and 590 for mτ̃1 = 450 GeV for tan β = 30 (see Table 4.19), respectively. Since the stau
is very long-lived in our scenario, it penetrates the detectors leaving the charged tracks. One can
expect that such long-lived stau can be identified easily, and its mass as well as the production cross
section of relatively lighter sup and sdown will be measured. Thus, the number of the events will
be sufficient to compare the predictions with measurements.3

In Tables 4.6, 4.12, and 4.18, one can see that the production cross sections of the stops are
comparable to those of gluino and light squarks. Those are obtained as 5.57 fb for mτ̃1 = 350 GeV
and 1.76 fb for mτ̃1 = 425 GeV for tan β = 10; 4.40 fb for mτ̃1 = 350 GeV and 2.66 fb for
mτ̃1 = 450 GeV for tan β = 20; 0.47 fb for mτ̃1 = 400 GeV and 1.24 fb for mτ̃1 = 450 GeV for
tanβ = 30. It is important to emphasize here that such production cross sections of stops are the
results of our constraint that leads to a relatively heavy SUSY spectrum.

The predictions presented here are based on the CMSSM framework by requiring the constraints
on the relic abundance of lithium-7, dark matter, and Higgs mass. In this scenario, the masses,
hence, the production cross sections, of the sup, sdown, and gluino have clear relations with that
of the stau. Such relations enable us to examine our scenario. Therefore, the early discovery of the
long-lived stau and the light stop at the 14 TeV run is the important prediction in our scenario.

3The efficiency to identify the stau and the neutralino with 350 and 450 GeV is about O(10)% in Ref. [105]. Thus,
it is possible to examine our scenario with Lint = 100 fb−1. Detailed simulation is beyond the scope of this paper
and is left for our future work.
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Input parameters Point 1 (GeV) Point 2 (GeV) Point 3 (GeV) Point 4 (GeV)
M1/2 822.0 878.0 934.0 990.0
m0 266.0 285.0 302.0 325.0
A0 -2264.5 -2418.7 -2540.6 -2759.9
Particle
h 123.7 124.1 124.4 124.8
H 1581.7 1684.0 1777.8 1895.9
A 1582.3 1684.5 1778.2 1896.4
H± 1584.6 1686.7 1780.3 1898.4
g̃ 1823.0 1937.7 2052.0 2165.8
χ̃±

1 665.2 711.9 758.5 805.2
χ̃±

2 1492.1 1586.7 1672.3 1784.0
χ̃0

1 349.6 374.6 399.6 424.8
χ̃0

2 665.0 711.7 758.3 805.2
χ̃0

3 1488.0 1582.9 1668.5 1780.5
χ̃0

4 1491.5 1586.3 1671.8 1783.8
ẽL 611.3 652.4 692.6 735.5
ẽR 409.2 437.2 463.9 494.5
ν̃e 606.0 647.4 687.9 731.0
τ̃1 350.3 375.3 400.1 425.3
τ̃2 597.5 637.3 676.6 717.5
ν̃τ 588.7 629.1 668.8 710.1
ũL 1678.3 1783.4 1887.6 1992.4
ũR 1611.8 1712.0 1811.3 1911.3
d̃L 1680.0 1785.0 1889.1 1993.8
d̃R 1604.8 1704.4 1803.1 1902.5
t̃1 913.8 971.8 1038.7 1075.8
t̃2 1436.3 1519.6 1605.6 1682.4
b̃1 1389.9 1475.5 1563.8 1642.3
b̃2 1583.0 1681.1 1778.6 1875.9

Table 4.2: Input parameters and the mass spectrum of sample points. The value of tan β is fixed to
10 and sign(µ) > 0. We choose these parameters as the mχ̃0

1
is fixed to 350, 375, 400, and 425 GeV,

respectively.
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Particle Final states Point 1 (%) Point 2 (%) Point 3 (%) Point 4 (%)
g̃ t̄, t̃1 20.7 20.7 20.6 20.9

t, t̃∗1 20.7 20.7 20.6 20.9
b̄, b̃1 7.4 7.4 7.3 7.3
b, b̃∗1 7.4 7.4 7.3 7.3
t̄, t̃2 7.1 7.2 7.2 7.2
t, t̃∗2 7.1 7.2 7.2 7.2
b̄, b̃2 2.6 2.6 2.6 2.5
b, b̃∗2 2.6 2.6 2.6 2.5

ũL d, χ̃+
1 65.8 65.8 65.7 65.7

u, χ̃0
2 32.9 32.9 32.9 32.9

u, χ̃0
1 1.4 1.4 1.4 1.4

d̃L u, χ̃−
1 65.6 65.6 65.6 65.6

d, χ̃0
2 32.8 32.8 32.8 32.8

d, χ̃0
1 1.5 1.5 1.5 1.5

t̃1 t, χ̃0
1 80.7 82.7 83.7 86.5

b, χ̃+
1 14.3 12.8 11.8 9.8

t, χ̃0
2 4.9 4.6 4.5 3.7

t̃2 Z, t̃1 43.1 42.7 42.1 42.4
h, t̃1 30.4 31.2 31.7 32.8
b, χ̃+

1 17.3 17.0 17.1 16.2
t, χ̃0

2 8.2 8.1 8.2 7.8

b̃1 W−, t̃1 73.4 73.8 73.7 75.2
t, χ̃−

1 17.1 16.8 17.0 16.0
b, χ̃0

2 9.1 8.9 8.9 8.4

b̃2 b, χ̃0
1 57.2 58.2 59.5 59.6

W−, t̃1 26.2 24.0 22.1 20.4
h, b̃1 6.4 6.8 6.9 7.5
Z, b̃1 4.1 4.4 4.5 5.0

W−, t̃2 3.0 3.7 4.3 5.3
t, χ̃−

1 1.6 1.4 1.3 1.1
ν̃τ W+, τ̃1 62.0 62.7 63.0 63.9

ντ , χ̃0
1 38.0 37.3 37.0 36.1

τ̃2 Z, τ̃1 30.0 30.3 30.5 30.9
h, τ̃1 32.2 32.5 32.8 33.2
τ, χ̃0

1 37.9 37.1 36.8 35.8
χ̃0

2 ν̄τ , ν̃τ 11.5 11.4 11.3 11.3
ντ , ν̃∗

∗ 11.5 11.4 11.3 11.3
τ̄ , τ̃2 9.1 9.3 9.5 9.7
τ, τ̃∗

2 9.1 9.3 9.5 9.7
ν̄e, ν̃e/ν̄µ, ν̃µ 7.1 7.1 7.2 7.1
νe, ν̃

∗
e /νµ, ν̃∗

µ 7.1 7.1 7.2 7.1
ē, ẽ/µ̄, µ̃ 6.0 6.2 6.4 6.4

e, ẽ∗/µ, µ̃∗ 6.0 6.2 6.4 6.4
τ̄ , τ̃1 2.8 2.4 2.0 1.8
τ, τ̃∗

1 2.8 2.4 2.0 1.8

Table 4.3: Branching ratios of the SUSY particles on the sample points for tanβ = 10.
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Particle Final states Point 1 (%) Point 2 (%) Point 3 (%) Point 4 (%)
χ̃0

3 t̄, t̃1 24.7 24.9 24.6 25.8
t, t̃∗1 24.7 24.9 24.6 25.8

W−, χ̃+
1 14.8 14.7 14.9 14.2

W+, χ̃−
1 14.8 14.7 14.9 14.2

Z, χ̃0
2 13.3 13.2 13.4 12.8

Z, χ̃0
1 4.0 4.0 4.1 3.9

h, χ̃0
2 1.3 1.3 1.3 1.3

χ̃0
4 t̄, t̃1 28.5 28.3 27.8 28.4

t, t̃∗1 28.5 28.3 27.8 28.4
W−, χ̃+

1 12.3 12.4 12.8 12.4
W+, χ̃−

1 12.3 12.4 12.8 12.4
h, χ̃0

2 11.6 11.8 12.2 11.9
h, χ̃0

1 3.1 3.2 3.3 3.2
Z, χ̃0

2 1.1 1.1 1.1 1.1
χ̃+

1 τ̄ , ν̃τ 23.3 23.1 22.7 22.8
ντ , τ̃∗

2 18.0 18.4 18.7 19.2
ē, ν̃e/µ̄, ν̃µ 14.4 14.4 14.5 14.3

νe, ẽ
∗
L/νµ, µ̃∗

L 11.9 12.3 12.6 12.7
ντ , τ̃∗

1 5.5 4.7 4.0 3.6
χ̃+

2 b̄, t̃1 51.4 51.5 50.7 52.5
h, χ̃+

1 14.3 14.4 14.6 14.1
Z, χ̃+

1 13.8 13.8 14.0 13.5
W+, χ̃0

2 14.0 14.0 14.2 13.7
W+, χ̃0

1 4.5 4.5 4.6 4.5
H b, b̄ 49.0 48.6 48.4 47.6

t, t̄ 19.4 19.4 19.3 19.1
τ, τ̄ 8.6 8.5 8.5 8.5
h, h 3.4 3.8 4.2 4.7

τ̃1, τ̃
∗
2 8.2 8.3 8.2 8.5

τ̃∗
1 , τ̃2 8.2 8.3 8.2 8.5

A b, b̄ 50.1 50.1 50.3 49.9
t, t̄ 18.8 18.8 18.9 18.8
τ, τ̄ 8.7 8.8 8.9 8.9

τ̃1, τ̃
∗
2 9.0 9.1 9.1 9.4

τ̃∗
1 , τ̃2 9.0 9.1 9.1 9.4

H+ b̄, t 72.1 71.9 71.9 71.4
τ̃∗
1 , ν̃τ 17.5 17.7 17.6 18.1
τ̄ , ντ 8.6 8.6 8.7 8.6

Table 4.4: Branching ratios of the SUSY particles on the sample points for tanβ = 10.
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Cross section Point 1 (fb) Point 2 (fb) Point 3 (fb) Point 4 (fb)
σ(ũL, ũL) 3.285 2.253 1.554 1.072
σ(ũL, ũR) 1.856 1.214 0.800 0.528
σ(ũR, ũR) 3.366 2.332 1.628 1.137
σ(d̃L, d̃L) 0.434 0.279 0.181 0.117
σ(d̃L, d̃R) 0.220 0.135 0.084 0.052
σ(d̃R, d̃R) 0.442 0.288 0.189 0.124
σ(ũL, d̃L) 3.697 2.469 1.657 1.113
σ(ũL, d̃R) 0.625 0.397 0.254 0.163
σ(ũR, d̃L) 0.618 0.392 0.230 0.160
σ(ũR, d̃R) 3.068 2.065 1.400 0.951
σ(g̃, ũL) 2.935 1.717 1.016 0.606
σ(g̃, ũR) 3.407 2.009 1.199 0.720
σ(g̃, d̃L) 0.891 0.506 0.290 0.168
σ(g̃, d̃R) 1.063 0.610 0.354 0.207
σ(g̃, g̃) 0.444 0.232 0.123 0.065
σ(ũL, ũ∗

L) 0.090 0.051 0.029 0.017
σ(ũL, ũ∗

R) 0.257 0.160 0.101 0.063
σ(ũR, ũ∗

L) 0.257 0.160 0.101 0.063
σ(ũR, ũ∗

R) 0.130 0.076 0.046 0.027
σ(d̃L, d̃∗

L) 0.063 0.035 0.021 0.011
σ(d̃L, d̃∗

R) 0.095 0.055 0.032 0.019
σ(d̃R, d̃∗L) 0.095 0.055 0.032 0.019
σ(d̃R, d̃∗R) 0.094 0.048 0.030 0.019
σ(ũL, d̃∗

R) 0.300 0.180 0.104 0.066
σ(ũR, d̃∗

L) 0.294 0.176 0.106 0.064
σ(ũL, d̃∗

L) 0.040 0.026 0.013 0.007
σ(ũR, d̃∗

R) 0.065 0.037 0.022 0.013
σ(d̃L, ũ∗

L) 0.011 0.006 0.003 0.002
σ(d̃R, ũ∗

L) 0.081 0.049 0.030 0.018
σ(d̃L, ũ∗

R) 0.080 0.048 0.029 0.017
σ(d̃R, ũ∗

R) 0.018 0.010 0.006 0.004
σ(g̃, ũ∗

L) 0.055 0.030 0.016 0.009
σ(g̃, ũ∗

R) 0.066 0.036 0.020 0.011
σ(g̃, d̃∗

L) 0.050 0.025 0.013 0.007
σ(g̃, d̃∗

R) 0.062 0.032 0.016 0.009

Table 4.5: Cross sections of SUSY particles on the sample points for tan β = 10. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section Point 1 (fb) Point 2 (fb) Point 3 (fb) Point 4 (fb)
σ(t̃1, t̃∗1) 5.565 3.637 2.264 1.757
σ(t̃2, t̃∗2) 0.186 0.111 0.071 0.046
σ(b̃1, b̃

∗
1) 0.245 0.148 0.089 0.058

σ(b̃2, b̃
∗
2) 0.080 0.046 0.028 0.014

σ(χ̃0
2, χ̃

0
2) 0.106 0.075 0.054 0.038

σ(χ̃0
1, χ̃

0
2) 0.015 0.011 0.008 0.006

σ(χ̃0
1, χ̃

0
1) 0.109 0.083 0.062 0.048

σ(χ̃0
2, g̃) 0.207 0.132 0.085 0.056

σ(χ̃0
1, g̃) 0.235 0.157 0.106 0.072

σ(χ̃+
1 , χ̃−

1 ) 2.406 1.726 1.254 0.922
σ(χ̃+

1 , χ̃0
2) 3.416 2.489 1.834 1.363

σ(χ̃−
1 , χ̃0

2) 1.200 0.849 0.610 0.443
σ(χ̃+

1 , χ̃0
1) 0.025 0.018 0.013 0.010

σ(χ̃−
1 , χ̃0

1) 0.008 0.006 0.004 0.003
σ(χ̃+

1 , g̃) 0.355 0.224 0.143 0.092
σ(χ̃−

1 , g̃) 0.097 0.061 0.039 0.025
σ(τ̃1, τ̃

∗
1 ) 0.853 0.645 0.494 0.381

σ(τ̃1, τ̃
∗
2 ) 0.008 0.005 0.003 0.001

σ(τ̃2, τ̃
∗
1 ) 0.008 0.005 0.003 0.001

σ(τ̃2, τ̃
∗
2 ) 0.187 0.136 0.102 0.076

σ(all SUSY) 43.881 28.767 19.000 13.001

Table 4.6: Cross sections of SUSY particles on the sample points for tan β = 10. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section ×branching ratio Point 1 (fb) Point 2 (fb) Point 3 (fb) Point 4 (fb)
σ(g̃) × BR(g̃ → τ̃1) 0.430 0.235 0.134 0.073
σ(g̃) × BR(g̃ → τ̃∗

1 ) 0.430 0.235 0.134 0.073
σ(ũL) × BR(ũL → τ̃1) 2.394 1.565 1.012 0.678
σ(ũL) × BR(ũL → τ̃∗

1 ) 2.735 1.692 1.087 0.719
σ(d̃L) × BR(d̃L → τ̃1) 1.051 0.661 0.415 0.274
σ(d̃L) × BR(d̃L → τ̃∗

1 ) 0.955 0.612 0.388 0.259
σ(t̃1) × BR(t̃1 → τ̃1) 0.157 0.093 0.054 0.035
σ(t̃1) × BR(t̃1 → τ̃∗

1 ) 0.175 0.101 0.058 0.037
σ(t̃2) × BR(t̃2 → τ̃1) 0.011 0.007 0.004 0.003
σ(t̃2) × BR(t̃2 → τ̃∗

1 ) 0.013 0.007 0.004 0.003
σ(b̃1) × BR(b̃1 → τ̃1) 0.016 0.009 0.005 0.003
σ(b̃1) × BR(b̃1 → τ̃∗

1 ) 0.015 0.009 0.005 0.003
σ(b̃2) × BR(b̃2 → τ̃1) 0.002 0.001 · · · · · ·
σ(b̃2) × BR(b̃2 → τ̃∗

1 ) 0.002 0.001 · · · · · ·
σ(ũ∗

L) × BR(ũ∗
L → τ̃1) 0.083 0.047 0.027 0.017

σ(ũ∗
L) × BR(ũ∗

L → τ̃∗
1 ) 0.072 0.043 0.026 0.016

σ(d̃∗L) × BR(d̃∗
L → τ̃1) 0.079 0.046 0.027 0.016

σ(d̃∗L) × BR(d̃∗
L → τ̃∗

1 ) 0.087 0.050 0.028 0.017
σ(t̃∗1) × BR(t̃∗1 → τ̃1) 0.157 0.093 0.054 0.035
σ(t̃∗1) × BR(t̃∗1 → τ̃∗

1 ) 0.157 0.093 0.054 0.035
σ(t̃∗2) × BR(t̃∗2 → τ̃1) 0.012 0.007 0.004 0.002
σ(t̃∗2) × BR(t̃∗2 → τ̃∗

1 ) 0.011 0.006 0.004 0.002
σ(b̃∗1) × BR(b̃∗1 → τ̃1) 0.015 0.009 0.005 0.003
σ(b̃∗1) × BR(b̃∗1 → τ̃∗

1 ) 0.016 0.009 0.005 0.003
σ(b̃∗2) × BR(b̃∗2 → τ̃1) 0.002 0.001 · · · · · ·
σ(b̃∗2) × BR(b̃∗2 → τ̃∗

1 ) 0.002 0.001 · · · · · ·
σ(χ̃0

2) × BR(χ̃0
2 → τ̃1) 0.787 0.559 0.400 0.297

σ(χ̃0
2) × BR(χ̃0

2 → τ̃∗
1 ) 0.787 0.559 0.400 0.297

σ(χ̃+
1 ) × BR(χ̃+

1 → τ̃1) 0.896 0.645 0.464 0.348
σ(χ̃+

1 ) × BR(χ̃+
1 → τ̃∗

1 ) 1.036 0.725 0.513 0.380
σ(χ̃−

1 ) × BR(χ̃−
1 → τ̃1) 0.620 0.430 0.301 0.222

σ(χ̃−
1 ) × BR(χ̃−

1 → τ̃∗
1 ) 0.536 0.383 0.273 0.203

σ(τ̃2) × BR(τ̃2 → τ̃1) 0.102 0.067 0.049 0.037
σ(τ̃∗

2 ) × BR(τ̃∗
2 → τ̃∗

1 ) 0.102 0.067 0.049 0.037
σ(p → τ̃1) 0.428 0.317 0.245 0.190
σ(p → τ̃∗

1 ) 0.428 0.317 0.245 0.190
Total : σ(τ̃1) 7.714 5.153 3.480 2.439
Total : σ(τ̃∗

1 ) 8.012 5.263 3.543 2.477

Number of produced τ̃
(∗)
1

N(τ̃1) 771 515 348 243
N(τ̃∗

1 ) 801 526 354 247
Number of produced χ̃0

1

N(χ̃0
1) 7203 4711 3097 2108

Table 4.7: Summary of the cross sections and branching ratios and number of the produced staus
and neutralinos for tanβ = 10. We assume the energy in the center-of-mass system as 14 TeV at the
LHC experiment. In the estimation of the number of produced staus and neutralinos, we assume
the luminosity as 100 fb−1.
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Input parameters Point 5 (GeV) Point 6 (GeV) Point 7 (GeV) Point 8 (GeV) Point 9 (GeV)
M1/2 818.6 878.0 932.8 986.0 1038.0
m0 452.0 517.7 557.7 601.7 639.7
A0 -2264.7 -2683.6 -2918.4 -3177.9 -3397.0
Particle
h 123.8 124.4 124.6 124.8 124.9
H 1494.6 1659.5 1775.7 1894.0 2002.0
A 1495.1 1660.3 1776.5 1895.1 2003.3
H± 1497.0 1662.0 1778.1 1896.5 2004.6
g̃ 1822.4 1945.4 2057.8 2166.7 2272.6
χ̃±

1 665.6 716.3 762.4 807.4 851.2
χ̃±

2 1470.6 1638.9 1753.5 1873.7 1981.4
χ̃0

1 349.3 376.3 400.9 425.0 448.5
χ̃0

2 665.3 716.1 762.4 807.4 851.2
χ̃0

3 1466.8 1635.3 1750.1 1870.5 1978.4
χ̃0

4 1469.7 1638.4 1753.1 1873.3 1981.0
ẽL 709.6 781.6 834.9 890.0 940.6
ẽR 547.5 614.2 658.7 706.2 748.6
ν̃e 749.2 777.4 830.9 886.2 937.0
τ̃1 350.3 377.0 401.0 425.6 449.1
τ̃2 656.0 713.7 759.3 805.9 849.4
ν̃τ 642.7 701.2 747.4 794.6 838.7
ũL 1710.9 1834.4 1942.2 2048.0 2149.7
ũR 1646.6 1765.6 1869.0 1970.6 2068.0
d̃L 1712.6 1835.9 1943.7 2049.4 2151.0
d̃R 1639.9 1758.3 1861.1 1962.1 2059.0
t̃1 945.8 936.5 968.6 987.7 1016.3
t̃2 1432.8 1497.5 1573.1 1641.3 1710.8
b̃1 1384.6 1452.8 1528.4 1598.2 1669.3
b̃2 1561.6 1665.8 1760.5 1852.6 1942.0

Table 4.8: Input parameters and the mass spectrum of sample points. The value of tan β is fixed
to 20 and sign(µ) > 0. We choose these parameters as the mχ̃0

1
is fixed to 350, 375, 400, 425, and

450 GeV, respectively.
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Particle Final states Point 5 (%) Point 6 (%) Point 7 (%) Point 8 (%) Point 9 (%)
g̃ t̄, t̃1 21.4 22.6 22.9 23.3 23.6

t, t̃∗1 21.4 22.6 22.9 23.3 23.6
b̄, b̃1 8.3 8.4 8.4 8.5 8.5
b, b̃∗1 8.3 8.4 8.4 8.5 8.5
t̄, t̃2 7.9 8.2 8.3 8.3 8.4
t, t̃∗2 7.9 8.2 8.3 8.3 8.4
b̄, b̃2 3.3 3.1 3.0 3.0 2.9
b, b̃∗2 3.3 3.1 3.0 3.0 2.9

ũL d, χ̃+
1 65.8 65.8 65.8 65.8 65.7

u, χ̃0
2 32.8 32.9 32.9 32.9 32.9

u, χ̃0
1 1.4 1.4 1.4 1.4 1.4

d̃L u, χ̃−
1 65.6 65.6 65.7 65.7 65.7

d, χ̃0
2 32.9 32.9 32.9 32.9 32.9

d, χ̃0
1 1.5 1.5 1.5 1.5 1.5

t̃1 t, χ̃0
1 78.4 86.3 89.4 92.7 94.8

b, χ̃+
1 15.8 10.5 8.3 6.0 4.6

t, χ̃0
2 5.9 3.2 2.4 1.3 0.6

t̃2 Z, t̃1 41.7 43.5 43.7 44.1 44.3
h, t̃1 29.1 32.0 33.2 34.4 35.3
b, χ̃+

1 19.1 16.0 15.1 14.0 13.4
t, χ̃0

2 9.1 7.7 7.2 6.7 6.4

b̃1 W−, t̃1 69.9 83.7 76.9 78.7 79.8
t, χ̃−

1 19.3 15.9 14.9 13.7 13.0
b, χ̃0

2 10.2 8.4 7.8 7.9 6.8

b̃2 W−, t̃1 44.0 39.7 36.5 33.4 30.9
h, χ̃0

1 31.6 30.2 30.2 29.8 29.7
h, b̃1 9.4 12.6 13.8 15.0 15.8
Z, b̃1 5.7 7.7 8.5 9.4 9.9

W−, t̃2 3.3 6.6 8.3 10.2 11.7
t, χ̃−

1 2.9 2.1 1.8 1.5 1.3
b, χ̃0

2 1.5 1.1 0.9 0.8 0.7
ν̃τ W+, τ̃1 81.8 83.0 83.4 83.8 84.0

ντ , χ̃0
1 18.2 17.0 16.6 16.2 16.0

τ̃2 Z, τ̃1 41.3 41.8 41.9 42.0 42.0
h, τ̃1 39.0 39.9 40.5 40.9 41.2
τ, χ̃0

1 19.7 18.3 17.7 14.2 16.8
χ̃0

2 τ̄ , τ̃1 40.1 45.0 45.0 46.1 46.2
τ, τ̃∗

1 40.1 45.0 45.0 46.1 46.2
ν̄τ , ν̃τ 7.3 3.6 3.6 2.6 2.5
ντ , ν̃∗ 7.3 3.6 3.6 2.6 2.5
h, χ̃0

1 2.5 2.5 2.5 2.5 2.4

Table 4.9: Branching ratios of the SUSY particles on the sample points for tanβ = 20.
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Particle Final states Point 5 (%) Point 6 (%) Point 7 (%) Point 8 (%) Point 9 (%)
χ̃0

3 t̄, t̃1 22.6 26.7 26.7 26.9 27.0
t, t̃∗1 22.6 26.7 26.7 26.9 27.0

W−, χ̃+
1 15.0 12.6 11.6 10.7 10.3

W+, χ̃−
1 15.0 12.6 11.6 10.7 10.3

Z, χ̃0
2 13.2 11.0 10.1 9.3 8.9

Z, χ̃0
1 4.0 3.3 3.0 2.8 2.7

h, χ̃0
2 1.6 1.4 1.3 1.3 1.2

t̄, t̃2 · · · · · · 1.8 3.1 3.7
t, t̃∗2 · · · · · · 1.8 3.1 3.7

χ̃0
4 t̄, t̃1 27.0 29.8 29.9 30.0 29.9

t, t̃∗1 27.0 29.8 29.9 30.0 29.9
W−, χ̃+

1 12.3 10.7 10.3 9.8 9.5
W+, χ̃−

1 12.3 10.7 10.3 9.8 9.5
h, χ̃0

2 11.4 9.9 9.6 9.1 8.9
h, χ̃0

1 3.1 2.6 2.5 2.4 2.3
Z, χ̃0

2 1.3 1.2 1.2 1.1 1.1
χ̃+

1 ντ , τ̃∗
1 79.3 89.1 89.2 91.3 91.5

τ̄ , ν̃τ 15.0 7.5 7.3 5.4 5.2
W+, χ̃0

1 3.1 3.2 3.1 3.2 3.2
χ̃+

2 b̄, t̃1 48.4 53.0 53.3 53.9 54.1
h, χ̃+

1 14.2 11.9 11.3 10.6 10.3
Z, χ̃+

1 13.8 11.5 10.9 10.2 9.9
W+, χ̃0

2 14.0 11.7 11.1 10.4 10.0
W+, χ̃0

1 4.7 3.9 3.7 3.5 3.4
t, b̃∗1 4.8 3.4 5.1 6.8 7.8

ντ , τ̃∗
1 2.1 1.8 1.8 1.7 1.6

τ̄ , ν̃τ 1.9 1.6 1.5 1.4 1.4
H b, b̄ 63.3 61.1 60.4 59.6 59.2

τ, τ̄ 11.6 11.4 11.4 11.3 11.3
τ̃1, τ̃

∗
2 10.0 11.3 11.7 12.2 12.6

τ̃∗
1 , τ̃2 10.0 11.3 11.7 12.2 12.6

τ̃∗
1 , τ̃1 1.9 1.8 1.7 1.6 1.4
t, t̄ 1.6 1.6 1.6 1.6 1.6

A b, b̄ 62.4 60.8 60.2 59.5 59.1
τ, τ̄ 11.6 11.4 11.3 11.3 11.3

τ̃1, τ̃
∗
2 11.5 12.7 13.1 13.5 13.7

τ̃∗
1 , τ̃2 11.5 12.7 13.1 13.5 13.7
t, t̄ 1.6 1.5 1.5 1.5 1.5

H+ b̄, t 62.9 63.9 64.8 65.2 66.2
τ̃1, ν̃τ 25.9 24.9 23.9 23.4 22.2
τ̄ , ντ 10.3 10.5 10.6 10.8 11.0

Table 4.10: Branching ratios of the SUSY particles on the sample points for tanβ = 20.
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Cross section Point 5 (fb) Point 6 (fb) Point 7 (fb) Point 8 (fb) Point 9 (fb)
σ(ũL, ũL) 2.915 1.873 1.277 0.879 0.614
σ(ũL, ũR) 1.672 1.024 0.668 0.441 0.296
σ(ũR, ũR) 2.970 1.926 1.327 0.923 0.652
σ(d̃L, d̃L) 0.377 0.225 0.144 0.093 0.061
σ(d̃L, d̃R) 0.194 0.110 0.068 0.042 0.026
σ(d̃R, d̃R) 0.381 0.230 0.149 0.098 0.065
σ(ũL, d̃L) 3.243 2.016 1.335 0.894 0.608
σ(ũL, d̃R) 0.557 0.329 0.208 0.133 0.087
σ(ũR, d̃L) 0.551 0.325 0.205 0.131 0.086
σ(ũR, d̃R) 2.680 1.680 1.124 0.759 0.522
σ(g̃, ũL) 2.735 1.506 0.899 0.537 0.330
σ(g̃, ũR) 3.156 1.750 1.041 0.633 0.391
σ(g̃, d̃L) 0.826 0.440 0.252 0.148 0.088
σ(g̃, d̃R) 0.981 0.527 0.305 0.180 0.109
σ(g̃, g̃) 0.440 0.219 0.118 0.065 0.036
σ(ũL, ũ∗

L) 0.076 0.040 0.024 0.015 0.007
σ(ũL, ũ∗

R) 0.220 0.126 0.078 0.049 0.031
σ(ũR, ũ∗

L) 0.220 0.126 0.078 0.049 0.031
σ(ũR, ũ∗

R) 0.109 0.060 0.034 0.020 0.013
σ(d̃L, d̃∗L) 0.054 0.027 0.016 0.009 0.004
σ(d̃L, d̃∗R) 0.080 0.042 0.024 0.014 0.008
σ(d̃R, d̃∗

L) 0.080 0.042 0.024 0.014 0.008
σ(d̃R, d̃∗

R) 0.078 0.040 0.023 0.013 0.007
σ(ũL, d̃∗R) 0.254 0.139 0.083 0.050 0.030
σ(ũR, d̃∗L) 0.249 0.136 0.083 0.048 0.029
σ(ũL, d̃∗L) 0.035 0.018 0.010 0.005 0.003
σ(ũR, d̃∗R) 0.056 0.029 0.017 0.009 0.006
σ(d̃L, ũ∗

L) 0.010 0.005 0.003 0.002 0.001
σ(d̃R, ũ∗

L) 0.069 0.038 0.023 0.014 0.009
σ(d̃L, ũ∗

R) 0.069 0.037 0.022 0.014 0.008
σ(d̃R, ũ∗

R) 0.015 0.008 0.005 0.003 0.002
σ(g̃, ũ∗

L) 0.051 0.025 0.014 0.008 0.004
σ(g̃, ũ∗

R) 0.061 0.030 0.017 0.009 0.005
σ(g̃, d̃∗

L) 0.045 0.021 0.011 0.006 0.003
σ(g̃, d̃∗

R) 0.056 0.027 0.014 0.007 0.004

Table 4.11: Cross sections of SUSY particles on the sample points for tan β = 20. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section Point 5 (fb) Point 6 (fb) Point 7 (fb) Point 8 (fb) Point 9 (fb)
σ(t̃1, t̃∗1) 4.399 4.704 3.662 3.245 2.655
σ(t̃2, t̃∗2) 0.190 0.128 0.085 0.058 0.039
σ(b̃1, b̃

∗
1) 0.252 0.169 0.108 0.074 0.049

σ(b̃2, b̃
∗
2) 0.089 0.050 0.030 0.018 0.011

σ(χ̃0
2, χ̃

0
2) 0.102 0.069 0.049 0.036 0.027

σ(χ̃0
1, χ̃

0
2) 0.014 0.010 0.008 0.006 0.004

σ(χ̃0
1, χ̃

0
1) 0.103 0.075 0.057 0.043 0.034

σ(χ̃0
2, g̃) 0.202 0.123 0.080 0.053 0.035

σ(χ̃0
1, g̃) 0.227 0.146 0.099 0.068 0.048

σ(χ̃+
1 , χ̃−

1 ) 2.459 1.722 1.274 0.939 0.711
σ(χ̃+

1 , χ̃0
2) 3.510 2.505 1.858 1.403 1.076

σ(χ̃−
1 , χ̃0

2) 1.231 0.852 0.616 0.455 0.341
σ(χ̃+

1 , χ̃0
1) 0.023 0.017 0.012 0.009 0.007

σ(χ̃−
1 , χ̃0

1) 0.008 0.005 0.004 0.003 0.002
σ(χ̃+

1 , g̃) 0.344 0.209 0.134 0.087 0.058
σ(χ̃−

1 , g̃) 0.085 0.057 0.036 0.024 0.016
σ(τ̃1, τ̃

∗
1 ) 0.844 0.626 0.484 0.37 0.298

σ(τ̃1, τ̃
∗
2 ) 0.012 0.007 0.005 0.003 0.002

σ(τ̃2, τ̃
∗
1 ) 0.012 0.007 0.005 0.003 0.002

σ(τ̃2, τ̃
∗
2 ) 0.115 0.075 0.055 0.040 0.036

σ(all SUSY) 39.798 26.761 18.387 13.258 8.681

Table 4.12: Cross sections of SUSY particles on the sample points for tan β = 20. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section × branching ratio Point 5 (fb) Point 6 (fb) Point 7 (fb) Point 8 (fb) Point 9 (fb)
σ(g̃) × BR(g̃ → τ̃1) 1.129 0.464 0.231 0.111 0.062
σ(g̃) × BR(g̃ → τ̃∗

1 ) 1.129 0.464 0.231 0.111 0.062
σ(ũL) × BR(ũL → τ̃1) 3.391 1.779 1.161 0.733 0.284
σ(ũL) × BR(ũL → τ̃∗

1 ) 11.021 7.023 4.600 3.066 1.195
σ(d̃L) × BR(d̃L → τ̃1) 4.349 2.704 1.735 1.136 0.750
σ(d̃L) × BR(d̃L → τ̃∗

1 ) 1.342 0.687 0.439 0.272 0.179
σ(t̃1) × BR(t̃1 → τ̃1) 0.204 0.103 0.060 0.029 0.011
σ(t̃1) × BR(t̃1 → τ̃∗

1 ) 0.755 0.544 0.330 0.207 0.106
σ(t̃2) × BR(t̃2 → τ̃1) 0.020 0.008 0.005 0.003 0.002
σ(t̃2) × BR(t̃2 → τ̃∗

1 ) 0.067 0.037 0.022 0.013 0.007
σ(b̃1) × BR(b̃1 → τ̃1) 0.053 0.029 0.017 0.010 0.006
σ(b̃1) × BR(b̃1 → τ̃∗

1 ) 0.036 0.018 0.008 0.004 0.002
σ(b̃2) × BR(b̃2 → τ̃1) 0.008 0.004 0.002 0.001 0.001
σ(b̃2) × BR(b̃2 → τ̃∗

1 ) 0.010 0.005 0.002 0.001 0.001
σ(ũ∗

L) × BR(ũ∗
L → τ̃1) 0.321 0.184 0.111 0.069 0.041

σ(ũ∗
L) × BR(ũ∗

L → τ̃∗
1 ) 0.099 0.047 0.028 0.017 0.010

σ(d̃∗
L) × BR(d̃∗L → τ̃1) 0.107 0.049 0.028 0.015 0.009

σ(d̃∗
L) × BR(d̃∗L → τ̃∗

1 ) 0.348 0.191 0.111 0.065 0.037
σ(t̃∗1) × BR(t̃∗1 → τ̃1) 0.755 0.544 0.330 0.207 0.106
σ(t̃∗1) × BR(t̃∗1 → τ̃∗

1 ) 0.204 0.103 0.060 0.029 0.011
σ(t̃∗2) × BR(t̃∗2 → τ̃1) 0.064 0.035 0.021 0.013 0.007
σ(t̃∗2) × BR(t̃∗2 → τ̃∗

1 ) 0.019 0.008 0.005 0.003 0.002
σ(b̃∗1) × BR(b̃∗1 → τ̃1) 0.037 0.018 0.009 0.004 0.002
σ(b̃∗1) × BR(b̃∗1 → τ̃∗

1 ) 0.053 0.029 0.017 0.010 0.006
σ(b̃∗2) × BR(b̃∗2 → τ̃1) 0.010 0.005 0.002 0.001 0.001
σ(b̃∗2) × BR(b̃∗2 → τ̃∗

1 ) 0.008 0.004 0.002 0.001 0.001
σ(χ̃0

2) × BR(χ̃0
2 → τ̃1) 2.379 1.742 1.276 0.961 0.730

σ(χ̃0
2) × BR(χ̃0

2 → τ̃∗
1 ) 2.379 1.742 1.276 0.961 0.730

σ(χ̃+
1 ) × BR(χ̃+

1 → τ̃1) 0.777 0.277 0.201 0.111 0.081
σ(χ̃+

1 ) × BR(χ̃+
1 → τ̃∗

1 ) 5.802 4.245 3.125 2.337 1.776
σ(χ̃−

1 ) × BR(χ̃−
1 → τ̃1) 3.464 2.512 1.840 1.362 1.026

σ(χ̃−
1 ) × BR(χ̃−

1 → τ̃∗
1 ) 0.464 0.164 0.119 0.065 0.047

σ(τ̃2) × BR(τ̃2 → τ̃1) 0.102 0.067 0.049 0.036 0.032
σ(τ̃∗

2 ) × BR(τ̃∗
2 → τ̃∗

1 ) 0.102 0.067 0.049 0.036 0.032
σ(p → τ̃1) 0.428 0.317 0.245 0.190 0.150
σ(p → τ̃∗

1 ) 0.428 0.317 0.245 0.190 0.150
Total : σ(τ̃1) 18.026 11.157 7.568 5.182 3.451
Total : σ(τ̃∗

1 ) 24.694 16.009 10.913 7.576 4.502

Number of produced τ̃
(∗)
1

N(τ̃1) 1802 1115 756 518 345
N(τ̃∗

1 ) 2469 1600 1091 757 450
Number of produced χ̃0

1

N(χ̃0
1) 3687 2635 1829 1375 940

Table 4.13: Summary of the cross sections and branching ratios and number of the produced staus
and neutralinos for tanβ = 20. We assume the energy in the center-of-mass system as 14 TeV at the
LHC experiment. In the estimation of the number of produced staus and neutralinos, we assume
the luminosity as 100 fb−1.

65



Input parameters Point 10 (GeV) Point 11 (GeV) Point 12 (GeV)
M1/2 932.6 986.0 1038.0
m0 560.0 704.5 935.0
A0 -1653.9 -2319.8 -3377.8
Particle
h 123.3 124.7 126.3
H 1353.2 1534.9 1811.8
A 1353.2 1535.0 1812.2
H± 1356.1 1537.6 1814.4
g̃ 2060.1 2174.1 2289.8
χ̃±

1 759.1 807.0 855.4
χ̃±

2 1410.4 1621.9 1946.4
χ̃0

1 399.9 425.0 450.3
χ̃0

2 758.9 806.8 855.2
χ̃0

3 1406.1 1618.3 1943.5
χ̃0

4 1408.9 1620.6 1946.0
ẽL 835.5 961.2 1159.7
ẽR 660.7 795.7 1012.1
ν̃e 831.4 957.6 1156.7
τ̃1 400.3 425.6 450.4
τ̃2 763.1 849.1 978.4
ν̃τ 748.3 835.3 966.3
ũL 1941.0 2078.9 2252.2
ũR 1867.3 2002.5 2175.3
d̃L 1942.5 2080.3 2253.4
d̃R 1859.6 1994.4 2166.9
t̃1 1295.1 1272.0 1127.5
t̃2 1666.0 1721.3 1741.8
b̃1 1622.1 1677.6 1697.8
b̃2 1733.6 1829.6 1935.9

Table 4.14: Input parameters and the mass spectrum of sample points. The value of tan β is fixed
to 30 and sign(µ) > 0. We choose these parameters as the mχ̃0

1
is fixed to 400, 425, and 450 GeV,

respectively.
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Particle Final states Point 10 (%) Point 11 (%) Point 12 (%)
g̃ t̄, t̃1 18.1 20.8 24.9

t, t̃∗1 18.1 20.8 24.9
b̄, b̃1 7.4 7.4 7.3
b, b̃∗1 7.4 7.4 7.3
t̄, t̃2 8.1 8.7 9.4
t, t̃∗2 8.1 8.7 9.4
b̄, b̃2 5.0 4.7 3.9
b, b̃∗2 5.0 4.7 3.9

ũL d, χ̃+
1 65.7 65.7 65.8

u, χ̃0
2 32.8 32.8 32.9

u, χ̃0
1 1.4 1.4 1.4

d̃L u, χ̃−
1 65.4 65.6 65.7

d, χ̃0
2 32.8 32.8 32.9

d, χ̃0
1 1.5 1.4 1.4

t̃1 t, χ̃0
1 67.6 75.4 88.4

b, χ̃+
1 22.3 17.0 8.4

t, χ̃0
2 10.1 7.6 3.2

t̃2 Z, t̃1 27.5 35.3 42.2
h, t̃1 19.4 26.0 33.1
b, χ̃+

1 28.6 25.0 16.1
t, χ̃0

2 13.7 12.0 7.8
t, χ̃0

1 1.6 1.3 · · ·
t, χ̃0

3 2.1 · · · · · ·
t, χ̃0

4 4.3 · · · · · ·
b, χ̃+

2 2.8 · · · · · ·
b̃1 W−, t̃1 44.6 58.9 74.9

t, χ̃−
1 32.1 26.3 16.1

b, χ̃0
2 16.8 13.7 8.4

b, χ̃0
1 1.3 · · · · · ·

b, χ̃−
2 3.6 · · · · · ·

b̃2 W−, t̃1 34.5 43.2 39.8
W−, t̃2 - 17.0 10.4
b, χ̃0

1 15.8 20.6 19.4
b, χ̃0

2 · · · 2.4 1.1
b, χ̃0

3 8.3 4.1 · · ·
b, χ̃0

4 8.5 4.2 · · ·
h, b̃1 · · · 6.2 17.0
Z, b̃1 · · · 3.9 10.1
t, χ̃−

1 6.0 4.6 20.7
t, χ̃−

2 22.9 9.1 · · ·
ν̃τ W+, τ̃1 87.2 87.2 81.7

ντ , χ̃0
1 12.8 11.9 10.4

τ̃2 Z, τ̃1 45.6 44.7 41.3
h, τ̃1 40.1 40.5 38.7
τ, χ̃0

1 14.3 12.9 11.8
χ̃0

2 τ̄ , τ̃1 46.9 48.5 48.9
τ, τ̃∗

1 46.9 48.5 48.9
h, χ̃0

1 3.5 2.8 2.1

Table 4.15: Branching ratios of the SUSY particles on the sample points for tanβ = 30.
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Particle Final states Point 10 (%) Point 11 (%) Point 12 (%)
χ̃0

3 W−, χ̃+
1 25.0 19.3 11.3

W+, χ̃−
1 25.0 19.3 11.3

t̄, t̃1 · · · 11.3 24.3
t, t̃∗1 · · · 11.3 24.3
Z, χ̃0

1 7.2 5.3 2.9
h, χ̃0

1 1.8 1.5 · · ·
Z, χ̃0

2 22.6 17.3 9.8
h, χ̃0

2 1.8 1.8 1.4
τ̄ , τ̃1 5.1 3.9 2.3
τ, τ̃∗

1 5.1 3.9 2.3
τ̄ , τ̃2 3.2 2.5 1.5
τ, τ̃∗

2 3.2 2.5 1.5
χ̃0

4 W−, χ̃+
1 24.4 16.6 10.2

W+, χ̃−
1 24.4 16.6 10.2

t̄, t̃1 · · · 16.1 27.3
t, t̃∗1 · · · 16.1 27.3
Z, χ̃0

1 1.9 1.3 · · ·
h, χ̃0

1 6.6 4.3 2.5
Z, χ̃0

2 1.9 1.5 1.2
h, χ̃0

2 23.5 15.8 9.6
τ̄ , τ̃1 4.7 3.3 2.1
τ, τ̃∗

1 4.7 3.3 2.1
τ̄ , τ̃2 3.4 2.3 1.4
τ, τ̃∗

2 3.4 2.3 1.4
χ̃+

1 ντ , τ̃∗
1 93.3 96.5 97.3

W+, χ̃0
1 4.2 3.5 2.7

τ̄ , ν̃τ 2.5 · · · · · ·
χ̃+

2 h, χ̃+
1 23.5 18.2 11.1

Z, χ̃+
1 22.8 17.6 10.7

W+, χ̃0
1 8.1 6.1 3.7

W+, χ̃0
2 23.3 17.9 10.9

b̄, t̃1 6.3 28.1 49.2
ντ , τ̃∗

1 8.3 6.6 4.2
τ, ν̃τ 8.3 4.6 2.5
t, b̃∗1 · · · · · · 5.6

H b, b̄ 74.1 69.6 63.3
τ, τ̄ 14.0 13.5 12.6

τ̃1, τ̃
∗
1 1.4 1.5 1.5

τ̃1, τ̃
∗
2 5.0 7.5 11.0

τ̃∗
1 , τ̃2 5.0 7.5 11.0

A b, b̄ 73.8 69.3 62.9
τ, τ̄ 14.0 13.5 12.6

τ̃1, τ̃
∗
2 5.9 8.4 12.0

τ̃∗
1 , τ̃2 5.9 8.4 12.0

H+ b̄, t 77.5 73.7 68.2
τ̃∗
1 , ν̃τ 12.2 11.7 20.7
τ̄ , ντ 10.2 14.5 11.0

Table 4.16: Branching ratios of the SUSY particles on the sample points for tanβ = 30.
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Cross section Point 10 (fb) Point 11 (fb) Point 12 (fb)
σ(ũL, ũL) 1.283 0.786 0.425
σ(ũL, ũR) 0.670 0.397 0.209
σ(ũR, ũR) 1.336 0.825 0.447
σ(d̃L, d̃L) 0.145 0.082 0.040
σ(d̃L, d̃R) 0.068 0.037 0.018
σ(d̃R, d̃R) 0.150 0.085 0.048
σ(ũL, d̃L) 1.341 0.790 0.406
σ(ũL, d̃R) 0.209 0.119 0.059
σ(ũR, d̃L) 0.206 0.117 0.058
σ(ũR, d̃R) 1.132 0.672 0.347
σ(g̃, ũL) 0.887 0.493 0.255
σ(g̃, ũR) 1.040 0.580 0.299
σ(g̃, d̃L) 0.251 0.135 0.070
σ(g̃, d̃R) 0.304 0.164 0.080
σ(g̃, g̃) 0.112 0.062 0.033
σ(ũL, ũ∗

L) 0.024 0.012 0.005
σ(ũL, ũ∗

R) 0.079 0.043 0.020
σ(ũR, ũ∗

L) 0.079 0.043 0.020
σ(ũR, ũ∗

R) 0.035 0.017 0.007
σ(d̃L, d̃∗L) 0.016 0.007 0.003
σ(d̃L, d̃∗R) 0.024 0.012 0.005
σ(d̃R, d̃∗

L) 0.024 0.012 0.005
σ(d̃R, d̃∗

R) 0.023 0.011 0.004
σ(ũL, d̃∗R) 0.083 0.043 0.018
σ(ũR, d̃∗L) 0.081 0.041 0.017
σ(ũL, d̃∗L) 0.010 0.005 0.002
σ(ũR, d̃∗R) 0.017 0.008 0.003
σ(d̃L, ũ∗

L) 0.003 0.001 0.001
σ(d̃R, ũ∗

L) 0.023 0.012 0.005
σ(d̃L, ũ∗

R) 0.023 0.012 0.006
σ(d̃R, ũ∗

R) 0.005 0.002 0.001
σ(g̃, ũ∗

L) 0.014 0.007 0.003
σ(g̃, ũ∗

R) 0.016 0.008 0.004
σ(g̃, d̃∗L) 0.011 0.005 0.002
σ(g̃, d̃∗R) 0.014 0.006 0.003

Table 4.17: Cross sections of SUSY particles on the sample points for tan β = 30. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section Point 10 (fb) Point 11 (fb) Point 12 (fb)
σ(t̃1, t̃∗1) 0.468 0.494 1.244
σ(t̃2, t̃∗2) 0.052 0.038 0.032
σ(b̃1, b̃

∗
1) 0.061 0.046 0.039

σ(b̃2, b̃
∗
2) 0.034 0.021 0.011

σ(χ̃0
2, χ̃

0
2) 0.049 0.038 0.024

σ(χ̃0
1, χ̃

0
2) 0.008 0.005 0.003

σ(χ̃0
1, χ̃

0
1) 0.047 0.041 0.030

σ(χ̃0
2, g̃) 0.080 0.050 0.031

σ(χ̃0
1, g̃) 0.098 0.065 0.041

σ(χ̃+
1 , χ̃−

1 ) 1.289 0.959 0.729
σ(χ̃+

1 , χ̃0
2) 1.904 1.439 1.117

σ(χ̃−
1 , χ̃0

2) 0.632 0.466 0.354
σ(χ̃+

1 , χ̃0
1) 0.012 0.009 0.006

σ(χ̃−
1 , χ̃0

1) 0.004 0.003 0.002
σ(χ̃+

1 , g̃) 0.134 0.084 0.051
σ(χ̃−

1 , g̃) 0.036 0.023 0.014
σ(τ̃1, τ̃

∗
1 ) 0.482 0.375 0.295

σ(τ̃1, τ̃
∗
2 ) 0.007 0.003 0.001

σ(τ̃2, τ̃
∗
1 ) 0.007 0.003 0.001

σ(τ̃2, τ̃
∗
2 ) 0.053 0.030 0.004

σ(all SUSY) 15.199 9.842 6.957

Table 4.18: Cross sections of SUSY particles on the sample points for tan β = 30. We assume the
energy in the center-of-mass system as 14 TeV at the LHC experiment.
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Cross section × branching ratio Point 10 (fb) Point 11 (fb) Point 12 (fb)
σ(g̃) × BR(g̃ → τ̃1) 0.555 0.278 0.088
σ(g̃) × BR(g̃ → τ̃∗

1 ) 0.555 0.278 0.088
σ(ũL) × BR(ũL → τ̃1) 0.922 0.553 0.293
σ(ũL) × BR(ũL → τ̃∗

1 ) 4.620 2.754 1.461
σ(d̃L) × BR(d̃L → τ̃1) 1.743 1.010 0.518
σ(d̃L) × BR(d̃L → τ̃∗

1 ) 0.349 0.203 0.104
σ(t̃1) × BR(t̃1 → τ̃1) 0.023 0.018 0.019
σ(t̃1) × BR(t̃1 → τ̃∗

1 ) 0.123 0.099 0.121
σ(t̃2) × BR(t̃2 → τ̃1) 0.006 0.003 0.002
σ(t̃2) × BR(t̃2 → τ̃∗

1 ) 0.026 0.016 0.008
σ(b̃1) × BR(b̃1 → τ̃1) 0.025 0.016 0.008
σ(b̃1) × BR(b̃1 → τ̃∗

1 ) 0.013 0.008 0.004
σ(b̃2) × BR(b̃2 → τ̃1) 0.008 0.004 0.001
σ(b̃2) × BR(b̃2 → τ̃∗

1 ) 0.007 0.005 0.001
σ(ũ∗

L) × BR(ũ∗
L → τ̃1) 0.113 0.059 0.027

σ(ũ∗
L) × BR(ũ∗

L → τ̃∗
1 ) 0.022 0.012 0.005

σ(d̃∗
L) × BR(d̃∗

L → τ̃1) 0.022 0.012 0.005
σ(d̃∗

L) × BR(d̃∗
L → τ̃∗

1 ) 0.111 0.055 0.023
σ(t̃∗1) × BR(t̃∗1 → τ̃1) 0.123 0.099 0.121
σ(t̃∗1) × BR(t̃∗1 → τ̃∗

1 ) 0.023 0.018 0.019
σ(t̃∗2) × BR(t̃∗2 → τ̃1) 0.026 0.016 0.008
σ(t̃∗2) × BR(t̃∗2 → τ̃∗

1 ) 0.006 0.003 0.002
σ(b̃∗1) × BR(b̃∗1 → τ̃1) 0.013 0.008 0.004
σ(b̃∗1) × BR(b̃∗1 → τ̃∗

1 ) 0.025 0.016 0.008
σ(b̃∗2) × BR(b̃∗2 → τ̃1) 0.007 0.005 0.001
σ(b̃∗2) × BR(b̃∗2 → τ̃∗

1 ) 0.008 0.004 0.001
σ(χ̃0

2) × BR(χ̃0
2 → τ̃1) 1.304 0.987 0.759

σ(χ̃0
2) × BR(χ̃0

2 → τ̃∗
1 ) 1.304 0.987 0.759

σ(χ̃+
1 ) × BR(χ̃+

1 → τ̃∗
1 ) 3.202 2.404 1.852

σ(χ̃−
1 ) × BR(χ̃−

1 → τ̃1) 1.881 1.400 1.069
σ(τ̃2) × BR(τ̃2 → τ̃1) 0.051 0.028 0.004
σ(τ̃∗

2 ) × BR(τ̃∗
2 → τ̃∗

1 ) 0.051 0.028 0.004
σ(p → τ̃1) 0.245 0.189 0.148
σ(p → τ̃∗

1 ) 0.245 0.189 0.148
Total : σ(τ̃1) 7.309 4.874 3.224
Total : σ(τ̃∗

1 ) 10.893 7.269 4.758

Number of produced τ̃
(∗)
1

N(τ̃1) 730 487 322
N(τ̃∗

1 ) 1089 726 475
Number of produced χ̃0

1

N(χ̃0
1) 1215 754 593

Table 4.19: Summary of the cross sections and branching ratios and number of the produced staus
and neutralinos for tanβ = 30. We assume the energy in the center-of-mass system as 14 TeV at the
LHC experiment. In the estimation of the number of produced staus and neutralinos, we assume
the luminosity as 100 fb−1.
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Chapter 5

Summary

We have studied the scenario of the CMSSM in which the so-called lithium-7 problem can be solved
via internal conversion processes with long-lived staus. For the abundance of lithium-7 to be reduced
to the observed one, we imposed the following conditions, that (i) the mass difference of the stau
NLSP and the neutralino LSP is smaller than 0.1 (1)GeV, and (ii) the yield value of the stau NLSP
is larger than 10−13. The first condition that guarantees enough long lifetime of the stau constrains
the stau mass for a fixed neutralino mass, hence the scalar soft mass m0 and the trilinear coupling
A0, while the second one that guarantees the sufficient reduction of the lithium-7 constrains the
upper bound on the neutralino mass or the gaugino soft mass M1/2. We analyzed the parameter
space as well as the SUSY spectrum of the CMSSM by taking the recent results on the Higgs mass,
SUSY searches and the dark matter abundance into account.

In Sec. III, we have shown the allowed region on the A0-m0 and m0-M1/2 plane for δm ≤ 0.1
and 1GeV varying tanβ = 10, 20 and 30, respectively. We found a linear relation between A0 and
m0 in all cases as given in Eq.(4-2-1). The relation originates from the tightly degenerate mass of
the stau and the relic abundance of the neutralino. It was also found that the allowed region on
A0-m0 plane shifts to higher scale as tan β increases. Thus the SUSY spectrum is heavier for large
tanβ. On the other hand, as seen in Fig.4.3, M1/2 is constrained between 750(950) and 1050GeV
for tanβ = 10(30). The upper bound comes from the yield value of the stau while the lower one
from the small mass difference and the dark matter abundance. Thus, the conditions required to
solve the lithium-7 problem play an important role to determine the allowed region of the CMSSM
parameters. Notably, these results naturally lead to heavy SUSY spectrum. The bounds on M1/2

lead to the stau mass between 310(400) and 450GeV. Such heavy staus evade the present bound
from direct searches at LHC.

In Figs.4.5-4.9, we have shown the SUSY spectrum and the heavier Higgs mass in the allowed
region. One can see that the whole spectrum is relatively heavy so that it is consistent with the null
results of the SUSY searches at the LHC experiment. Among the spectrum, one of the important
predictions is the masses of the gluino and the 1st/2nd generation squarks. In Fig.4.5, it was shown
that the the masses are clearly correlated with the neutralino mass. This is the direct consequences
from the linear relation of A0 and m0. Thus in our scenario, once one of them is determined, the
others can be predicted. It is important to emphasize here that the masses of gluino and squarks
are constrained between 1.6(1.8) and 2.3TeV for tanβ = 10(30). These gluino and squark masses
are out of reach at 8 TeV LHC run but really in reach of 14TeV LHC run. The expected numbers
of the long-lived staus (nearly degenerate neutralino) to 100fb−1 are about 1570 (7200) for the light
neutralino mass and 490 (2100) for the heavy one in the case of tan β = 10, respectively. With these
numbers, the long-lived stau and the nearly degenerate neutralino will be identified easily. Thus
our scenario explains why SUSY has not been found yet, and at the same time predicts the early
discovery of SUSY in the coming few years. The other important prediction is the stop mass. The
stops are also relatively heavy in our scenario. Such stop masses gives large radiative corrections
to the Higgs mass, and in fact the Higgs mass is pushed up to 125GeV in sizable regions of the
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parameter space. The production cross section of such a lighter stop pair is comparable to those of
the gluino and the squarks, and the expected number of the stops to 100fb−1 are between 880 and
540. Thus we can expect that the lighter stops also will be found at the 14TeV run of LHC.

The SUSY spectrum is consistent with the present results on muon anomalous magnetic moment
within 3 σ and b → s+γ and Bs → µµ within 1 σ. The direct detection cross section of the neutralino
is from 3 × 10−47 to 6 × 10−48cm2 and is in reach of LUX/ZEP 20ton.

In conclusion, our scenario is predictive and indeed testable in the coming 14TeV LHC run.
When SUSY is the solution of the lithium-7 problem and its breaking is controlled in the CMSSM
framework, the time to discover SUSY is coming soon.
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Calculation for changes in yield
values of light elements through
exotic nuclear reactions

We calculate changes in yield values of light elements through exotic nuclear reactions, e.g. internal
conversions, catalyzed fusion reactions, and 4He spallation processes.

Abundances of light elements The observed values of light elements are [119, 121, 128, 129],

nD/np = (2.80 ± 0.20) × 10−5, (-0-1)
n3He/nD = 0.87 ± 0.27, (-0-2)

n7Li/np = (2.34 ± 1.15) × 10−10, (-0-3)
n6Li/n7Li = 0.046 ± 0.022, (-0-4)

We express 6Li/np as follows from Eqs. (-0-4) and (-0-4).

n6Li

np
=

n6Li

n7Li

n7Li

np

= (0.108 ± 0.051) × 10−10. (-0-5)

We calculate production of light elements in the form of yield value, and so we rewrote the
observed abundances as yield value. Firstly we represent yield value of the p. We calculate the value
as follows; Baryon density of the universe is represented in Ref. [131],

Ωbh
2 = 2.207 × 10−2 ≡ ρb

ρcrit
h2, (-0-6)

where h is the scale factor of the Hubble expansion rate, h = 0.673, ρb is the energy density of the
baryon, and ρcrit is the critical density of the universe, ρcrit = 1.054 × 10−5h2(GeV/c2) cm−3. The
energy density of the baryon is defined as follows;

ρb ≃ npmp + n4He + m4He

≃ 2npmp. (-0-7)

Here we approximate n4He ≃ 1/4np and m4He ≃ 4mp. The value of nb is

nb = 2.482 × 10−7cm−3. (-0-8)

Therefore, we calculate the value of np as follows;

np =
Ωbρcrit

2mp
= 1.239 × 10−7cm−3, (-0-9)
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where mp = 938.27 MeV is the mass of a proton. Using np, we can calculate the yield value of p as
follows;

Yp ≡ np

s
= 4.287 × 10−11. (-0-10)

Here s is the entropy density of the universe, and we use the today’s value, s0 = 2891.2 cm−3 [131].
Using Eqs. (-0-1), (-0-4), (-0-3) and (-0-10), we calculate yield value of light elements as follows;

YD = (1.200 ± 0.086) × 10−15, (-0-11)

Y7Li = (1.00 ± 0.49) × 10−20, (-0-12)

Y6Li = (4.63 ± 2.19) × 10−22. (-0-13)

Numder density of p and D at T We need the number density of D at temperature T in a
calculation of the catalyzed fusion, and so we calculate the number density. Firstly we calculate the
numder density of p at T , and then we calculate that of D. Since the yield value of p is same at any
temperature, we express the number density of p as follows;

np(T ) =
s(T )
s0

np,0

=
(

T

T0

)3

np,0, (-0-14)

where T0 is today’s temperature, T0 = 2.725 K. We express T in a unit of keV. Using Boltzmann
constant kB = 8.617 eV K−1, we rewite the first factor at the right hand side of Eq. (-0-14) as
follows;

T

T0
=

T

2.725 × 8.617 × 10−8 keV
= 4.26 × 106TkeV, (-0-15)

where TkeV is dimensionless quantity normalized by keV. Therefore, we calculate the number density
of p as follows;

np(T ) = 7.72 × 1019 × 1.24 × 10−7T 3
keVcm−3

= 9.57 × 1012TkeVcm−3. (-0-16)

Using Eqs. (-0-16) and (-0-1), we also calculate the number density of D.

nD(T ) = 2.68 × 108T 3
keVcm−3. (-0-17)

Timescale of the catalyzed fusion We calculate the timescale of the catalyzed fusion from now.
The analytical expression of the reaction rate is given by [37]

NA⟨σCFv⟩ = 2.37 × 108 × (1 − 0.34T9)T
−2/3
9 exp(−5.33T

−1/3
9 )cm3s−1mol, (-0-18)

where NA is the Avogadro constant, NA = 6.02 × 1023 mol, σ is the cross section of the reaction, v
is relative velocity, ⟨⟩ expresses the thermal average, and T9 is dimensionless temperature in unit of
109 K. Here we express T9 as TkeV as follows;

T9 =
T

109K

=
T

86.17keV
= 1.161 × 10−2TkeV. (-0-19)
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Using the equation, we rewrite Eq. (-0-18) as follows;

⟨σCFv⟩ = 7.68 × 10−15(1 − 3.95 × 10−3TkeV)T−2/3
keV exp(−23.5T

−1/3
keV )cm3texts−1 (-0-20)

Conecting the Eqs. (-0-17) and (-0-20), we obtain the reaction rate of the catalyzed fusion as follows;

ΓCF ≡ ⟨σCFv⟩

= 2.06 × 10−6T
7/3
keV(1 − 3.94 × 10−3TkeV) exp(−23.5T

−1/3
keV )s−1 (-0-21)

The reaction rates at T = 30, 10,and 5 keV are 2.60 × 10−6 s−1, 7.65 × 10−9 s−1 and 9.05 × 10−11

s−1, respectively.

Effect of the catalyzed fusion on the 6Li abundance We roughly calculate the effect of the
catalyzed fusion on the 6Li abundance. The change of the abudance is reperesented as follows;

∆Y6Li = Yτ̃ ,F.O.e
−τB.F./ττ̃

ΓCF

ΓSp. + Γτ̃ + ΓCF
, (-0-22)

where ∆Y6Li is the yield value of the 6Li, τB.F. is a timescale of (4He l̃−) formation, Γl̃ is a decay rate
of the slepton, ΓSp. and ΓC.F. are a reaction rate of the 4He spallation processes and the catalyzed
fusion process, respectively. In the equation, Yl̃−e−τB.F./τl̃ represent a yield value of the bound
state, and the factor at the last of right hand side is the branching ratio of the bound state to the
catalyzed fusion reaction. Here we consider the allowed region in Fig. 3.4.4, δm ≃= 0.1 GeV and
Yτ̃ ≃ 2 × 10−13. We put the constraint from the observed value on the calculated value as follows;

Y6Li,Ob.

Yτ̃
≃ (2.31 ± 1.09) × 10−9 >∼ e−τB.F./τl̃

ΓCF

ΓSp. + Γl̃ + ΓCF
, (-0-23)

We take the timescale of the bound state formation 5×104 s (see the Fig. 3.3), and ΓCF ≃ 7.65×10−9

s−1. We see that ττ̃ ≃ 104 s and ΓSp ≃ 1 s−1 in the allowed region(see Fig. 3.2) and Fig. (3.7)). We
confirm that the calculated yield value of 6Li is consistent with that of the observational value at
the allowed region.

Effect of the 4He spallation processes on the D abundance We calculate the effect same
way as that of the catalyzed fusion. The change of the abudance is reperesented as follows;

∆YD = Yτ̃ ,F.O.e
−τB.F./ττ̃

ΓSP

ΓSp. + Γτ̃ + ΓCF
, (-0-24)

Here we also conside the allowed region in Fig. 3.4.4. We put the constraint from the observed value
on the calculated value as follows;

YD,Ob.

Yτ̃
≃ (6.00 ± 0.43) × 10−3 >∼ e−τB.F./τl̃

ΓCF

ΓSp. + Γl̃ + ΓCF
, (-0-25)

We also confirm that the calculated yield value of D is consistent with that of the observational
value at the allowed region.
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