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Abstract 

Although it has been generally accepted that nuclear quantum effects, including 

tunneling and vibrational quantization, are playing very important roles in light particle 

transfer reactions, their role has not yet been fully understood in complicated chemical 

systems. This is simply because it is very difficult to solve quantum mechanical 

equations of motions expect for simple chemical systems. In this work, in order to 

understand nuclear quantum effects from the theoretical side, we apply path-integral 

based computational methods, which can be applied to complicated systems.  In 

particular, we would like to demonstrate that various isotope effects seen in many 

chemical dynamical systems cannot be understood without consideration of nuclear 

quantum effects. 

 

Double proton transfer for porphycene and isotopic variants 

Full-dimensional Path-integral molecular dynamics (PIMD) simulations have been 

performed for understanding the double proton transfer tautomerization mechanism of 

the inner two protons in porphycene and its isotopic-substituted molecules. In order to 

reduce computational costs, the semi-empirical PM6 level combined with specific 

reaction parameterization have been employed. The obtained results show that double 

proton transfer of the unsubstituted porphycene at T = 300 K mainly occurs via a 

so-called concerted mechanism through the D2h second-order saddle point. In addition, 

we found that both isotopic substitution and temperature significantly affect the double 

proton transfer mechanism. For example, the contribution of the stepwise mechanism 

increases with a temperature increase. We have also carried out hypothetical 

simulations with the porphycene configurations being completely planar. It has been 

found that out-of-plane vibrational motions significantly decrease the contribution of 

the stepwise proton transfer mechanism. 

 

Diffusion of hydrogen/tritium in Fe (bcc) lattice 

The diffusion coefficients of hydrogen (H) and tritium (T) in -Fe have been computed 

using two approximate quantum dynamical techniques, i.e. centroid molecular 

dynamics (CMD) and ring polymer molecular dynamics (RPMD), in the temperature 

range of T = 1001000 K using the embedded-atom-method (EAM) potential. It has 

been found that the RPMD and CMD methods give very similar results. From a further 

analysis based on quantum transition state theory (centroid density QTST) combined 

with path integral molecular dynamics (PIMD), it has been clear that there is a 



 

 

 

 

crossover between thermal and quantum mechanisms at about T = 500 K and 300 K for 

H and T diffusions, respectively. The importance of nuclear quantum effects at low 

temperatures has been illustrated in terms of the effective free energy surface map. 

 

Nonadiabatic relaxation dynamics of excited hydrated electron cluster 

We have applied a recently-developed hybrid quantum ring-polymer molecular 

dynamics (RPMD) method to nonadiabatic p  s relaxation dynamics in water anion 

clusters in order to understand the isotope effects observed in previous experiments.  

The average relaxation times for (H2O)50

 and (D2O)50


 were calculated to be 120 and 

207 fs, respectively, and are comparable to experimental results.  Therefore, we 

conclude that nuclear quantum effects are playing an essential role in the structural 

rearrangement dynamics of water anion clusters.  The detailed nonadiabatic 

relaxation mechanisms are also discussed. 
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1 

Chapter 1 

 

Introduction 

 

Although it has been generally accepted that nuclear quantum effects, including 

tunneling and vibrational quantization, are playing very important roles in light particle 

transfer reactions, their role has not yet been fully understood in complicated chemical 

reaction systems. This is simply because it is very difficult to solve quantum mechanical 

equations of motions for complicated systems due to huge number of degrees of 

freedom. In this work, in order to understand nuclear quantum effects in general 

chemical reactions containing many atoms from the theoretical side, we apply 

path-integral based computational methods, which can be applied to complicated 

systems. In particular, we would like to demonstrate that various isotope effects seen in 

many chemical dynamical systems cannot be understood without considerations of 

nuclear quantum effects. 

 

Notice that we have used the following constants without notice in this paper; 

ħ Dirac constant 

kB Boltzmann constant 

 

1.1  Importance of nuclear quantum effects in light particle transfer 

reactions 

The importance of nuclear quantum effects in light particle transfer reactions can be 

understood from the schematic potential energy curve presented in Fig. 1-1. In this 

figure, the reactant to transition state region of a typical hydrogen (deuterium) transfer 

reaction H-A (D-A) + B → A + H-B (D-B) is shown. Also shown are quantized 
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zero-point energy levels for the reactant H-A (D-A) and for transition state. Since the 

magnitude of zero-point energy (ZPE) is dependent of atomic mass, the activation 

energy E, which is the difference between the reactant and transition state vibrational 

energy levels between zero-point vibrational energies, is also dependent of atomic mass. 

Fig. 1-2 displays Arrhenius plot of rate constants of a certain chemical reaction. In 

addition to the above-mentioned isotopic ZPE difference, quantum tunneling 

significantly affects thermal physical quantities including rate constants as well 

diffusion coefficients. It is frequently seen that such physical quantities show a linear 

behavior in Arrhenius plot; however, accurate quantum mechanical theory predicts 

strongly curved behaviors in Arrhenius plot at lower temperatures due to quantum 

tunneling. The importance of quantum tunneling at lower temperatures can be 

 

Fig. 1-1  The reaction region of the hydrogen (deuterium) transfer reaction A-H 

(A-D) + B → A + H-B (D-B) with quantized-vibrational energy levels. The E is 

relative energy between the reactant and activated complex with ZPE. The 

zero-point vibrational amplitudes of hydrogen and deuterium in the reactant are 

described as blue and yellow, respectively. 
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understood in terms of thermal de Broglie wavelength, Λ, defined as 

Λ = (2πħ
2
/mkBT)

1/2
  (1-1) 

where m and T are denoted as particle mass and temperature, respectively. As 

temperature is lowered, thermal de Broglie wavelength becomes much longer. Thus, 

light particles, such as hydrogen atoms can easily penetrate a classically forbidden 

region of a potential energy interaction. As a result, for example, Arrhenius plots of rate 

constants obtained from classical mechanics and quantum mechanics frequently show 

completely different behaviors especially at low temperatures. 

Fig. 1-3 shows the two-dimensional proton density distributions in the N2H7
+
 and 

N2D7
+
 ionic molecules obtained from quantum mechanical simulations [13]. This figure 

shows thermal distributions at T = 300 K. It is clearly seen that the proton 

 

Fig. 1-2  The Arrhenius plot of rate constant as a function of inversed temperature 

1/T. Solid line and broken line are denoted as classical and quantum mechanical 

results, respectively. Arrhenius equation is also shown in this figure. 
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distribution in N2H7
+
 is quite different from that in N2D7

+
 because of a large amplitude 

motion of proton. This result indicates that isotopic substitution can sometimes affect 

molecular geometry and thus molecular property. The former phenomenon is called an 

“geometric isotope effect.” 

In summary, it should be emphasized that nuclear quantum effects should be taken 

into account for understanding various isotope effects seen in extensive chemical 

dynamics phenomena. 

 

1.2  Quantum Simulation methods 

An accurate quantum mechanical picture can be obtained by exactly solving the 

Schrödinger equations for a certain system. However, it is very difficult to solve the 

equations except for simple chemical systems containing only a few atoms. In order to 

understand the quantum mechanical nature of complicated chemical reaction systems, 

one has to employ approximate quantum mechanical methods. In this work, we employ 

approximate methods based on path-integral formalism. In the next section, we will 

briefly explain the theoretical methods used in this work, including path integral 

molecular dynamics (PIMD), ring-polymer molecular dynamics (RPMD) and centroid 

molecular dynamics methods (CMD). 

  

Fig. 1-3.  Two-dimensional proton density distributions as a function of RNN vs 

δRNH/ND for (a) N2H7
+
 and (b) N2D7

+
 at 300 K. Notice that δRNH is defined as RN2H – 

RN1H. Crosses and circle indicate a point of equilibrium structure and TS, 

respectively @Copyright 2006 Society of Computer Chemistry, Japan. 
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Chapter 2 

 

Simulation methods for quantum dynamics 

 

In this chapter, we present three quantum mechanical methods, path-integral molecular 

dynamics (PIMD) [1-6], centroid molecular dynamics (CMD) methods [5,6-10] and 

ring-polymer molecular dynamics (RPMD) [5,6,11-14]. All these methods are based on 

Feynman path-integral formalism and quantum nature of a particle is treated with 

ring-polymer beads [1,2]. With the PIMD method, one can obtain thermal-equilibrium 

configuration including nuclear quantum effects but we cannot obtain information of 

time-dependent physical quantities. On the other hand, both the CMD and RPMD can 

give time-dependent physical quantities such as rate constants and diffusion coefficients.  

In the CMD method, time-evolution of the centroid position of the ring-polymer is 

calculated while, in RPMD, time evolution for all polymer beads is calculated. We also 

describe the efficiency and applicability of these three methods. We will apply these 

three simulation methods for the chemical systems presented in Chapters 3-5. 

 

2.1  Path-integral molecular dynamics (PIMD) 

The quantum partition function Z in the canonical (NVT) ensemble for a molecular 

system with inverse thermal energy β = 1/kBT is defined as the trace of Boltzmann 

operator [1-6] as 

)]ˆexp()ˆexp()( HHdxdpZ    Tr[  ,  (2-1) 

where Hamiltonian operator Ĥ  is defined as  xV
m2

p
H

2

ˆˆˆ 


 .  p̂  and x̂  are the 

momentum and position operators, respectively with 
x

ip



 ˆ .  However, it is 
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generally difficult to accurately calculate the value of Z for large systems due to a hyge 

computational cost.  We focus on the path-integral theory (PI) and present the PI 

expression of quantum partition function for single particle.  The position 

representation of Eq. (2-1) is described as 

    xHxdxZ |)ˆexp(|  .   (2-2) 

In order to obtain the quantum partition function, with split-operator method the total 

Hamiltonian of Eq. (2-2) is described as 

 xVTVxxHx |)/ˆexp()ˆexp()/ˆexp(|'|)ˆexp(|' 22    (2-3a) 

=  xVxxTxxVx |)/ˆexp(||)ˆexp(|''|)/ˆexp(|' 22   (2-3b) 

= )/)(ˆexp(|)ˆexp(|')/)'(ˆexp( 22 xVxTxxV     (2-3c) 

=  xppTxxVxVdp ||)ˆexp(|')/))(ˆ)'(ˆ(exp(  2  (2-3d) 

=  xpmppxxVxVdp
2

|)/exp(|')/))(ˆ)'(ˆ(exp( 22   (2-3e) 

= )/)'(exp()//))(ˆ)'(ˆ(exp( 


xxipmpxVxVdp  22
2

1 2




 (2-3f) 

= )
))(ˆ)'(ˆ(

)'(exp(
222

2

22

xVxV
xx

mm 
 

 
 .  (2-3g) 

Here, in order to derive Eq. (2-3g), we have used the following five relations as: 

1 iii
xxdx      (2-4) 

1 iii
ppdp      (2-5) 

)/exp( 


ipxpx
2

1
    (2-6) 

 xxVxV |)(exp(|ˆexp( )    (2-7) 

 pmppmp |)/exp(|)/ˆexp( 22
22

   (2-8) 

In addition, using Suzuki-Trotter decomposition [1-6], the PI representation of quantum 

partition function Zp in Eq. (2-2) can be rewritten as 

    xHxdxZ
P

|)ˆexp(|        (2-9) 

=   xHxxHxdx |)/ˆexp(|''|)/ˆexp(| 22     (2-10) 

=  
1P21P1

22 xHxxHxxdx
PP

|)/ˆexp(||)/ˆexp(|    (2-11) 

where P and 
P

  are the number of beads and /P, respectively. From Eqs. (2-3g) and 

(2-11), we can derive Eq. (2-12) as: 
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      































P

k

kkkPPP

P/

P xV
P

xxmdxdx
mP

Z
1

2

1

2

1

2

2

1

2

1
exp,,

2



 


(2-12) 

where 



P

P   and xk+1 = x1. A conceptual image of Eq. (2-12) is shown in Fig. 2-1.  

Without changing any of the thermal-equilibrium properties of the molecular system, 

we can introduce a set of P uncoupled Gaussian integrals as follows: 

  ),,,,
,,,,,,

),(exp(
11111,11,1 PNPNPPNPNP

HddddZ ppxxxxpp      (2-13) 

=  PNPN
dddd

,,
,,,, xxpp 

1,11,1
       

   























 





P

k

kkPk

k

k
P mV

Pm1

2

1

2
2

2

11

2
exp xxx

p
    (2-14) 

From Eq. (2-13), the effective PI Hamiltonian can be described as: 

   




















P

k
kk

2

P

k

2

k

eff
mV

Pm
H

1

2

12

11

2
xxx

p
k

     (2-15) 

The quantum partition function in the PI representation can be obtained by using an 

effective Hamiltonian in Eq. (2-15). Although PIMD cannot give time-dependent 

dynamical quantities such as rate constants and diffusion constants, it can give 

thermal-equilibrium configurations. 

 

2.2  Harmonic oscillator 

Eq. (2-15) can be rewritten as 

 

Fig. 2-1. Conceptual image of a diatomic molecular system with 4 beads. Red 

straight and green break lines are denoted as harmonic oscillators and interactions of 

atoms, respectively. 
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    　
 
















P

k
kPkk

k

k mxV
Pm

H
1

22

2

eff 2

11

2
qQ

p
    (2-16a) 

11
xq         (2-16b) 

 
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where   Q
k

x  is the inverse transformation. The third term in Eq. (2-16a) means the 

quantum harmonic oscillator and is expressed as 
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where 
ki

U is a unitary matrix which can diagonalize Aij = (2i,j - i,j+1 - i,j-1) with Aij+1 = 

Ai1, Ai0 = A1P and its eigenvalue is k. Eqs. (2-16b)-(2-16e) are rewritten as 
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Here, 1 = 0 and P = 4P.  The fictitious masses m’k in Eq. (2-15) are chosen according 

to m’k = mk and m’1 = m.  By transforming the harmonic oscillator formula, PIMD can 

efficiently yield the quantum partition function of many-body systems. 

 

2.3  Centroid molecular dynamics (CMD) 

Cao and Voth have developed CMD as a quasi-classical approximation method to 

calculate real-time quantum correlation functions [5,6,11,12].  CMD is based on the 

concept of centroid variables which are the center-of-mass positions of the ring 

polymers (see also Eq. (2-20)). The time-evolution of CMD is described by using the 

equation-of-motion of the centroid as follows: 
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where m is physical mass.  V0(xc) is the mean-field potential acting on the centroid, and 

defined as 

          





















 

  /

/

ln







xS

c0

21
2

c0
exxxx

m

21
xV D  (2-24) 

      



P

i
i0

x
P

dxxx
0

1

11








  (2-25) 

Eq. (2-22) is also rewritten as 
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In addition, the partition function in the CMD method is described as 
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The quantum expressions of CMD are exact but Eqs. (2-24)-(2-26) are of limited use. 

Their evaluation is not feasible for complex systems due to necessary of a full PI 

calculation at each centroid configuration. 

 

2.4  Ring-polymer molecular dynamics (RPMD) 

RPMD is an approximate real-time quantum dynamics simulation method and has been 

developed recently by Craig and Manolopoulos [5,6,13-16].  There have been three 

differences between CMD and RPMD.  First, physical mass is used in RPMD while 

PIMD and CMD employ the fictitious mass (see also Eq. (2-18)).  Second, expectation 
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values in RPMD are estimated by using the average of ring-polymer beads. 
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RPMD can approximately describe the Kubo-transformed velocity autocorrelation 

function as 
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This means that RPMD can yield simulation results in quantum dynamics manner.  

Third, the equation-of-motion of all polymer beads in RPMD obeys Newton’s law. 
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2.5  Efficiency and applicability 

The MD methods based on the PI theory are very useful because these methods can 

yield quantum-mechanical results from classical-like MD simulations although a large 

number of beads is generally required to obtain converged results.  Fortunately, 

parallel efficiency of PIMD, CMD and RPMD simulations is very high.  Fig. 2-2 

shows the parallel efficiency with 16-96 beads [17]. The computational time of these 

simulations can be reduced as the number of processor increases.  Fig. 2-3 displays the 

plots of the energy of an isolated water monomer as a function of the number of beads 

[18].  The energy convergence can clearly be seen as the number of beads increases. 

Therefore, PIMD, CMD and RPMD are powerful tools for understanding quantum 

nature of hydrogen and proton dynamics as well as of other isotopes. 

Fig. 2-4 shows radial distribution functions of rOO, rOH and rHH [18].  We can see 

that radial distribution functions of PIMD are consistent with the experimental results, 
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and are much broader than classical MD results.  In order to compare RPMD with 

CMD, self-diffusion coefficients for low pressure liquid para-hydrogen at T = 25 and 

14 K are shown in Table. 2-1 [19].  Diffusion coefficients of RPMD and CMD are 

consistent with available experiments and the RPMD results are very similar to those 

from CMD. Therefore, hydrogen and proton dynamics can be described by using these 

simulation methods.  We willapply these simulation tools to three systems; (1) 

porphycene (Chapter 3), (2) hydrogen and tritium diffusion in Fe (Chapter 4) and (3) 

hydrated electron cluster (Chapter 5). 

 

 

 

Fig. 2-2.  The parallel efficiency for the number of beads with calculation times. 

These results are obtained from calculations of 32 SPC/F2 water molecules with 16 

beads (Left column), 64 beads (middle column) and 96 beads (right column). Notice 

that calculation time is 2.22 sec on 1 processor. @ Copyright Columbia University. 
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Fig. 2-4.  The radial distribution functions of (a) rOO, (b) rOH, (c) rHH as the same 

molecular system in Fig. 2-3 @ Copyright 2001 American Institute of Physics. 

 

 

Fig. 2-3. Energy of an isolated water monomer, E, as a function of the number of 

beads P used in a PIMD simulation in the canonical ensemble at 298.15 K. The 

number of water molecules is 125. @ Copyright 2001 American Institute of Physics. 
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TABLE 2-1.  Calculated and experimental self-diffusion coefficients for low 

pressure liquid para-hydrogen at 25 and 14 K. (The numbers in parentheses are the 

estimated errors in the last digit in cases where these are available.) @ Copyright 

2005 American Institute of Physics. 

Method N 25 K 14 K 

MEAC
a
 108 1.47 0.28 

QMCT
b
 108 1.69 0.30 

FBSD
c
 108 1.68(5) 0.75(7) 

CWM
d
 125 1.73  

CMD
e
 180 1.52(8) 0.35(5) 

RPMD
f
 ∞ 1.59(1) 0.33(1) 

Expt.
g
   0.4 

a 
Maximum entropy analytic continuation (Ref. 20). 

b 
Quantum mode-coupling theory (Ref. 21). 

c 
Forward-backward semiclassical dynamics (Ref. 22). 

d 
Classical Wigner model (Ref. 23). 

e 
Centroid molecular dynamics (Ref. 24). 

e 
Ring-polymer molecular dynamics (Ref. 19). 

g 
Experimental results from (Ref. 25). 
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Chapter 3 

 

Double Proton Transfer Mechanism in 

Porphycene 

 

In this chapter, full-dimensional path-integral molecular dynamics (PIMD) simulations 

have been performed for understanding the double proton transfer tautomerization 

mechanism of the inner two protons in porphycene and its isotopic-substituted 

molecules. In order to reduce computational costs, the semi-empirical PM6 level 

combined with specific reaction parameterization have been employed. The obtained 

results show that double proton transfer of the unsubstituted porphycene at T = 300 K 

mainly occurs via a so-called concerted mechanism through the D2h second-order saddle 

point. In addition, we found that both isotopic substitution and temperature significantly 

affect the double proton transfer mechanism. For example, the contribution of the 

stepwise mechanism increases with a temperature increase. We have also carried out 

hypothetical simulations with the porphycene configurations being completely planar. It 

has been found that out-of-plane vibrational motions significantly decrease the 

contribution of the stepwise proton transfer mechanism. 

 

3.1  Multiple proton transfer 

Multiple proton transfer is one of the fundamental chemical reactions and plays a very 

important role in many physical, chemical and biological processes [1,2]. For cases 

composing more than one proton, a basic question to be solved is whether the transfer 

occurs in a concerted or stepwise manner. In the concerted mechanism, multiple protons 

(or hydrogen atoms) simultaneously move. On the other hand, in the stepwise 

mechanism single proton transfers consecutively occur with each transfer process being 

an independent event. There have been many discussions of the mechanism of double 
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proton transfer processes, which is the simplest of the multiple proton transfer. For 

example, the question has been frequently addressed by using static electronic structure 

calculations of the potential energy surface of the system. However, the preferred 

mechanism cannot be determined from the barrier height which the dynamics of nuclei 

are not considered. Moreover, it should be mentioned that the potential energy surface 

of the double proton transfer reaction often contains second-order saddle points. In this 

case, it is sometimes difficult to locate such stationary points using standard quantum 

chemistry calculations. 

 

3.2  Intramolecular double proton transfer in porphycene. 

Porphycene, which is a constitutional isomer of porphyrin, is a suitable molecule for 

studying the detailed mechanism of intra-molecular double proton transfer processes. 

This molecule has four pyrrole rings that form four proton-bound sites inside an inner 

cavity. The tautomerization of porphycene is summarized in Fig. 3-1, which is showing 

the proton transfer pathways among the lowest four stationary points on the 

ground-state potential energy surface. The C2h trans structure is the most stable 

tautomer and that the energy of the C2v cis structure is slightly higher than that of the 

trans structure. Thus, the C2v cis configuration is the intermediate on the potential 

energy surface. The D2h SS structure is a second-order saddle point (or hilltop) and is 

the most probable transition state along the concerted double proton transfer pathway 

between the two trans structures. The Cs TS structure is the transition state (first-order 

saddle point) of the stepwise single proton transfer process between the trans and cis 

configurations. 

The experimental studies have already been reported for proton transfer in 

porphycene after the first synthesis of porphycene by Vogel and co-workers [3-11]. For 

example, Limbach and co-workers have studied the tautomerization for porphycene and 

its isotope-substituted molecules using a combination of NMR spectroscopy and 

relaxometry in that temperature range of 50 ~ 403 K in solid state [4,5]. The motion of 

the inner two protons is too rapid to be frozen in the NMR time scale. Electronic 

absorption and fluorescence spectra have been measured by Sepioł and co-workers for 
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porphycene isolated in low-temperature supersonic molecular beams [6,7]. Vdovin and 

co-workers have performed the spectroscopic experiments in superfluid helium 

nanodroplets [8]. They revealed quantum delocalization of inner two protons by 

observing the tunneling splitting 4.4 cm
1

 in molecular vibrational spectra.  They also 

found that there are vibrational modes that enhance and suppress the concerted proton 

transfer tunneling probability. 

On the other hand, there have been also theoretical works for the tautomerization in 

porphycene [12−22]. Kozlowski and co-workers have carried out systematic 

calculations for the inner-proton transfer of porphycene at the B3LYP and MP2 levels 

of theory [15]. They have theoretically shown that the C2v cis intermediate structure is 

2.4 kcal/mol higher in energy than the most stable C2h trans structure at the 

B3LYP/TZ2P level without zero-point harmonic vibrational energy correction. Also, 

the barrier heights for the concerted and stepwise pathways were reported to be 7.6 and 

4.9 kcal/mol at the B3LYP/TZ2P, respectively. This indicates that the stepwise 

mechanism is energetically favorable. However, it should be emphasized that zero-point 

 

Fig. 3-1.  Concerted (C2h trans D2h SS C2h trans) and stepwise (C2h trans Cs 

TS C2v cis) double proton transfer pathways for the tautomerization in porphycene. 
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vibrational energy correction significantly changes this energetic behavior. 

Kozlowski et al. have already pointed out that the barrier heights for the two 

pathways become comparable (~1.6 kcal/mol) after zero-point vibrational energy 

correction based on harmonic frequency analyses [15]. This result comes from the fact 

that the D2h second-order saddle point has one more imaginary frequency than the Cs 

first-order transition state structure. This implies that nuclear quantum effects could 

play an important role in the selection of dominant pathway of the proton transfer 

process as well as the reaction rate. In order to understand the nuclear quantum effects 

for the double proton transfer, full-dimensional PIMD simulations have been performed 

employing semiempirical PM6 potential function improved by specific reaction 

parameters method (SRP) for porphycene and its isotope-substituted molecules. 

 

3.3  Methods 

The most robust approach would be "on-the-fly" ab initio PIMD [23-26], where ab 

initio electronic structure theory calculations are directly employed to obtain potential 

energy values and their derivatives during the course of the PIMD propagation. 

However, it is still very expensive to use ab initio (or DFT) PIMD methods for the 

present porphycene system.  

  Computational costs of many integral calculations, especially two electron integrals, 

in ab initio molecular orbital method are high. In order to reduce the costs, the integrals 

in the semiempirical molecular orbital methods are approximated by functions with 

empirical parameters while Hartree-Fock equation is solved as well as ab initio 

calculation. These parameters can be adjusted to improve the agreement with 

experiment. 

 

3.3.1  Semiempirical PM6 method 

The PM6 is a recently-developed semiempirical method by Stewart [27,28]. That can 

predict geometries and heat of formation consistent with DFT results and experimental 

observations. However, accurate evaluation of the dispersion energy and hydrogen 

bonding by this method is still difficult. 
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3.3.2  Application of specific reaction parameter method to the PM6 

The specific-reaction-parameter (SRP) method approach selected parameters of a 

semiempirical method are adjusted to fit ab initio (or DFT) results for a specific 

reaction (or a small range of reactions) [30-32]. First, trial semiempirical parameters 

have been randomly generated within appropriate ranges and then geometry 

optimization of the four stationary points performed. More specifically, in the case of 

the parameters used in molecular integrals, we generated a trial value in the range of (1 

+ eV and (1+ ) eV, where is the original PM6 parameter. In the case of the three 

 

Fig. 3-2.  Comparison of the optimized PM6-SRP stationary point geometries on 

the potential energy surface for porphycene to the B3LYP/TZ2P (italic) and 

MP2/6-31+G(d, p) (bold) results [15,20,21,29]. Selected bond lengths (in Å) and 

bond angles (in degrees) are shown. 
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parameters for the gaussian function used in the core-core repulsion energy [27], we 

have generated trial values within 150 %. A total of 200 sets of parameters were 

randomly generated and then obtained energies were compared to that obtained from 

various electronic structure calculations. Here, obtained SRP parameters are 

summarized in Table 3-1. Notice that parameters of nitrogen atom is not fitted. Fig. 3-2 

compares some PM6-SRP geometric parameters to those obtained at the B3LYP/TZ2P 

and MP2/6-31G(d, p) levels. The PM6-SRP results are good agreement with The MP2 

and B3LYP [15,19-21]. 

 

Atom Parameter PM6 PM6-SRP  

H USS (eV) 11.247 10.8118 0.4352 

 S (eV) 8.353 8.018 0.335 

 GSS (eV) 14.4487 14.7724 0.3237 

 a1 (none) 0.0242 0.0357 0.0115 

 b1 (Å
2

) 3.056 5.2628 2.2068 

 c1 (Å) 1.786 1.9837 0.1977 

C USS (eV) 51.0897 51.0995 0.0098 

 UPP (eV) 39.9379 39.9334 0.0045 

 S (eV) 15.3852 15.7835 -0.3983 

 P (eV) 7.4719 7.5395 -0.0676 

 GSS (eV) 13.3355 13.5478 0.2123 

 GPP (eV) 10.7783 10.0116 -0.7667 

 GSP (eV) 11.5281 11.9605 0.4324 

 GP2 (eV) 9.4862 9.6319 0.1457 

 HSP (eV) 0.7173 0.3891 -0.3282 

 

TABLE 3-1.  Original PM6 parameters and specific reaction parameters 

determined in this work for porphycene. 
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Level trans (C2h) cis (C2v) TS (Cs) SS (D2h) 

B3LYP/6-31G(d)
 a 0.0 (0.0) 2.6 (2.1) 5.4 (2.1) 8.2 (2.2) 

B3LYP/6-31G(d, p)
 b,e 0.0 (0.0) 2.23 (1.59) 4.10 (1.01) 6.13 (0.55) 

B3LYP/6-31+G(d, p)
 c 0.0 (0.0) 2.30 (0.59) 4.68 (5.54) 6.45 (3.03) 

B3LYP/TZ2P
a 0.0 (0.0) 2.4 (1.9) 4.9 (1.6) 7.6 (1.6) 

PZB/PW
d 0.0 2.5 4.9 7.5 

BLYP/PW
d
 0.0 2.1 3.9 5.9 

PBE/PW
d
 0.0 1.5 2.4 3.5 

BP/PW
d
 0.0 1.6 2.5 3.6 

MP2/6-31G(d)
 a
 0.0 (0.0) 5.1 (4.6) 5.7 (2.4) 7.6 (1.6) 

MP2/6-31+G(d, p)
 c,e

 0.0 2.65 3.75 5.23 

MPW1K/6-31+G(d, p)
 c
 0.0 1.68 2.42 3.41 

SCC-DFTB
b
 0.0 3.7 11.1  

PM3
e
 0.0 (0.0) 6.1 (6.1) 18.5 (14.4) 29.8 (22.1) 

PM6
e
 0.0 (0.0) 5.7 (5.8) 10.9 (8.0) 12.4 (7.5) 

PM6-SRP
e 0.0 (0.0) 1.1 (3.7) 4.4 (4.8) 5.5 (1.8) 

a
Ref. 15 

b
Ref. 19 

c
Ref. 20 

d
Ref. 21 

e
This work 

 

TABLE 3-2.  Comparison of relative energies (in kcal/mol) between stationary 

points on the porphycene potential energy surface obtained with various electronic 

structure levels of theory. Numbers in parentheses are relative energies including 

zero-point vibrational energy correction obtained from harmonic vibrational 

frequency analyses. The relative energy of trans-porphycene (C2h) is taken to be 

zero. 
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3.3.3  Simulation conditions 

The PIMD simulations were carried out with P = 24-64 beads depending on the system 

temperature as well as isotopic substitution. The massive Nóse-Hoover chain thermostat 

technique was implemented in the velocity Verlet algorithm (see also Appendix A) to 

the control system temperature [24-26,33]. The time increment was set to t = 5−10 

atomic unit (0.12−0.24 fs). These numerical parameters were carefully chosen to obtain 

fully converged results. It was found that the double proton transfer processes in 

porphycene dominantly occur via the concerted mechanism at T = 300 K. Based on the 

comparison between classical MD and PIMD calculations, it has also been concluded 

that the concerted pathway is emphasized by nuclear quantum effects. In this paper, we 

discuss the effect of isotopic substitution of the inner protons on the double proton 

transfer mechanism in porphycene. The semiempirical calculations were performed 

using the MOPAC2009 code, which has been interfaced to our PIMD simulation code 

[34]. 

 

3.4  Potential energy surface of double proton transfer for 

porphycene 

First, we mention the features of the PM6-SRP potential energy surface of porphycene. 

Fig. 3-3 displays the two-dimensional contour map plotted as a function of r1−r2 and 

r3−r4 distance differences, where ri represents the N-H distance defined in the same 

figure. Notice that the r1−r2 and r3−r4 distances are able to characterize both concerted 

and stepwise pathways of the proton transfer reaction. All other internal coordinates 

were optimized with respect to total energy. Four potential minima are seen in Fig. 3-3 

corresponding to the C2h trans and C2v cis structures; the two minima at (−0.59, −0.59) 

and (0.59, 0.59) correspond to the most stable C2h trans structures, while the two 

minima at (−0.59, 0.59) and (0.59, −0.59) to the intermediate C2v cis structures. Note 

that the relative energy is measured from the energy level of the C2h trans minimum. 

The PM6-SRP potential gives the relative energy between the C2h trans and C2v cis 

structures to be 1.1 kcal/mol (see also Table 3-2). This value is somewhat smaller than 

the previously reported values obtained at the DFT-B3LYP and ab initio MP2 levels 
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(2.2−2.7 kcal/mol) [15,19-21,29] but is close to the value obtained at the DFT-PBE 

level (1.5 kcal/mol) [21]. The barrier height for the first-order stepwise pathway 

(trans−cis inter-conversion) was obtained to be 4.4 kcal/mol at the PM6-SRP method, 

which is also in the range of previously reported results (2.4−5.7 kcal/mol) [15,19-21]. 

Notice that the corresponding transition states are seen at (−0.51, 0.04), (0.51, −0.04), 

(−0.04, 0.51) and (0.04, −0.51) in Fig. 2. The coordinate origin at r1−r2 = r3−r4 = 0 

corresponds to the D2h second-order saddle point configuration of porphycene. The 

barrier height for the concerted pathway via the D2h second-order saddle point is 

 

Fig. 3-3.  Two-dimensional potential energy surface as a function of r1−r2 and r3−r4 

coordinates obtained at the PM6-SRP semiempirical level, where ri is the distance 

between the inner proton and nitrogen atom. Contour increments are 0.5 kcal/mol. 

Circles and squares indicate C2h trans and C2v cis minima, respectively. The saddle 

points for the stepwise process and the second-order saddle point for the concerted 

process are also shown as crosses. The intrinsic reaction coordinates for the stepwise 

process are also shown. 



 

28 

 

obtained to be 5.5 kcal/mol, which is thus slightly larger than the stepwise barrier height. 

Again, the obtained value is in the range of the previously reported results (3.4−8.2 

kcal/mol) at various electronic structure levels [15,19-21]. In summary, it is found that 

these PM6-SRP results are either within or close to the error bars of previous electronic 

structure calculations. Of course, for a more reliable assessment, one should wait for ab 

initio calculations with higher accuracy to truly determine the barrier heights, such as 

CCSD(T) or MRCI level of theory with large basis sets. Such a calculation is not 

currently available, unfortunately, within our computer facility. 

 

3.5  Proton density distribution for HH-porphycene 

Fig. 3-4 displays a representative three-dimensional perspective plot of the nuclear 

distribution function obtained from the PIMD simulation for the unsubstituted 

porphycene (HH-porphycene). In this plot, Cartesian coordinates are transformed so as 

that overall translational and rotational motions are removed. Large fluctuation motion 

can be seen for all hydrogen atoms due to the large zero-point vibrational amplitude of 

light atoms. However, qualitative trend in their motions is clearly different between the 

outer and inner hydrogen (H) atoms. We can see that out-of-plane motions are 

significant for the outer 12 hydrogen atoms, while the inner two hydrogen atoms are 

mainly vibrating within the molecular plane due to hydrogen-bonding although small 

out-of-plane amplitudes are also seen. 

 

3.6  PIMD vs classical MD for two-dimensional proton density 

distribution in HH-porphycene 

Fig. 3-5 shows the two-dimensional contour plots of the inner proton distributions as a 

function of the r1  r2 and r3  r4 coordinates obtained from the PIMD simulations at T 

= 300 and 500 K. Notice that the coordinate origin (r1  r2 = r3  r4 = 0) corresponds to 

the D2h second-order saddle point structure of HH-porphycene (see Figs. 3-1 and 3-2). 

From the density distribution plots presented in Fig. 3-5a, it is seen that double proton 

transfer between trans–trans structures in HH-porphycene at T = 300 K occurs mainly 

through the concerted mechanism due to the higher distribution around the coordinate 
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origin, (r1  r2, r3  r4) = (0, 0). At T = 300 K the population of the cis form is seen to 

be very small. Thus, the contribution of the stepwise mechanism is less important. On 

the other hand, one can notice that the population of the cis form clearly increases at T = 

500 K. Therefore, we can see that the double proton transfer reaction also occurs via the 

stepwise mechanism from the density plot present in Fig. 3-5b although the dominant 

mechanism is the concerted one. 

  It should be emphasized that the trend seen in Fig. 3-5 can qualitatively be predicted 

from the zero-point corrected barrier heights; however, the present PIMD result 

definitely indicates the importance of the vibrational quantization for understanding the 

double proton transfer mechanism in HH-porphycene. In order to understand the 

importance of the nuclear quantum effect, we have also performed standard constant 

temperature classical molecular dynamics simulations on the same PM6-SRP potential 

energy surface. The classical result is presented in Fig. 3-5c. Notice that the classical 

distribution function is completely different from the quantum distributions. In the 

 

Fig. 3-4.  Three-dimensional perspective plots of the PIMD nuclear distributions of 

the HH-porphycene at T = 300 K. Right panels show the distributions projected on 

the X−Y plane. 
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classical case, we have found that the double proton transfer process always occurs via 

the Cs first order saddle point structure, i.e., via the stepwise mechanism. Therefore, we 

conclude that the dominant concerted double proton transfer mechanism is a result of 

nuclear quantum effects 

 

Fig. 3-5.  Two-dimensional contour plots of the inner proton distributions in 

porphycene as a function of r1  r2 and r3  r4 obtained from the PIMD simulations 

at T = 300 K (a) and T = 500 K (b). The same plot but obtained from the classical 

MD simulation at T = 500 K is shown in (c). Circles and squares indicate C2h trans 

or C2v cis minima on the PM6-SRP potential energy surface, respectively. The 

saddle points for the stepwise process and the second-order saddle point for the 

concerted process are also shown as crosses. The intrinsic reaction coordinates 

(IRCs) for the stepwise pathways are also shown. 
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3.7  Proton density distribution for isotopic-substituted porphycenes 

Figs. 3-6a and 3-6b display isotopic-substituted porphycene molecules, where one of the 

inner protons were replaced into deuteron (HD-porphycene) or muon  

(HMu-porphycene), whose mass is about 1/9 of the proton mass. Large fluctuation 

 

Fig. 3-6.  Three-dimensional perspective plots of the PIMD nuclear distributions of 

the isotopic-substitued porphycene molecules: (a) HD-porphycene at T = 300 K and 

(b) HMu-porphycene at T = 500 K. In both cases, one of the two inner protons of 

porphycene is isotopic-substituted into deuteron or muon. Right panels show the 

distributions projected on the X−Y plane. 
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motion can be seen for both the inner proton and deuteron in Fig. 3-6a, but the 

fluctuation for the inner proton is somewhat broader than that for the inner deuteron. 

The corresponding PIMD simulation was performed with 64 beads at T = 500 K due to 

its very light mass of muon. Fig. 3-6b shows the nuclear distributions of the substituted 

porphycene, where one of the inner protons was replaced into muon. It is interesting to 

note that, although the muon distribution is significantly broader than the proton 

distribution, and its density maximum is located around the midpoint of the two 

nitrogen atoms. This is an expected result since the zero-point energy of the 

corresponding muon vibration is very large. In this case, even when the potential energy 

surface has a double-minimum character, the particle is mainly located around the 

saddle point region. In fact, as is shown in Table 3-3, the zero-point corrected energy 

level of the D2d structure is lower than that of the C2h trans structure for the 

HMu-porphycene molecule. 

 

 

 

Relative energy / kcal mol
−1

 trans (C2h) cis (C2v) TS (Cs) SS (D2h) 

PES
a
 0.0 1.1 4.4 5.5 

HH
b
 0.0 3.7 4.8 1.8 

DD
b
 0.0 3.7 5.6 3.1 

HD
b
 0.0 3.8 5.0 2.7 

HMu
b
 0.0 3.8 4.6 2.5 

a
 Relative energies without zero-point vibrational energy correction. 

b
 Relative energies with zero-point vibrational energy correction for isotopic- 

substituted porphycenes. 

 

TABLE 3-3.  Relative energies of the stationary point configurations of 

porphycene with and without zero-point vibrational energy correction obtained on 

the PM6-SRP potential energy surface. The energies are measured from the energy 

of the most stable C2h trans structure. 
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3.8  Two-dimensional proton density distributions for isotopic 

substituted porphycenes 

In order to understand the effect of isotopic substitution as well as temperature on the 

double proton transfer mechanism in porphycene more clearly, we show 

two-dimensional contour plots of the inner proton/deuteron distributions as a function of 

the r1−r2 and r3−r4 coordinates in Fig. 3-7. At T = 300 K, in the case that both the two 

protons are replaced by deuterons (DD-porphycene), the obtained distributions are 

similar to the unsubstituted HH-porphycene case although the density around the cis 

configuration is larger than that for the HH case. This suggests that the contribution of 

the stepwise mechanism becomes more important for the DD-porphycene molecule. 

Notice that the obtained distribution becomes asymmetric with respect to the r1  r2 = r3 

 r4 line when one proton is replaced by a deuteron (HD-porphycene) or muon 

(HMu-porphycene). It is interesting note that, in the HD-porphycene case at T = 300 K, 

the contribution of the concerted and stepwise mechanisms is seen to be comparable to 

the DD-porphycene case. Although the present PIMD simulations give only thermal 

statistical nuclear distributions, the asymmetric position of H and D must be relevant to 

the asynchronous motions of H and D transfer, and thus it should affect the trajectories 

of the reaction. Similar to the HH-porphycene case, it can be seen that the system 

temperature somewhat affects the density distributions, and hence the proton transfer 

mechanism. 

 

3.9  Free energy surface for the double proton transfer 

In order to characterize the rate of chemical reactions, it is sometimes useful to compute 

a free energy surface F(q) along an appropriate reaction coordinate q [33,34]. The free 

energy F(q) is rigorously defined as F(q) = −kBT ln (q), where (q)is the probability to 

observe a given value of q while sampling molecular configurations in the PIMD 

simulation. 

Fig. 3-9 shows the free energy surfaces associated with r1−r2 and r3−r4 coordinates. 

First, it should be emphasized that the features of all the free energy surfaces obtained 

are very different from those of the bare potential energy surface (see Fig. 3-3). In the 
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Fig. 3-7.  Two-dimensional contour plots of the inner proton/deuteron distributions 

for prophycene and its isotopic variants as a function of r1−r2 and r3−r4 coordinates 

obtained from the PIMD simulations at T = 300 and 500 K. Symbols (circles, 

squares, and crosses) indicate the stationary points on the PM6-SRP potential energy 

surface. The result obtained from the 2D-PIMD simulation for HH-prophycene at T 

= 500 K with porphycene configurations being planar structures is also shown. 
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case of HH-porphycene at T = 300 K, one can see that the free energy barrier (1.5 

kcal/mol at the D2h second-order saddle point) for the concerted pathway is lower than 

that for the cis configuration (1.8 kcal/mol at the cis minima). The former value is 

comparable to the zero-point energy corrected barrier height (1.8 kcal/mol) for the 

concerted pathway (see Table 1). At T = 500 K, the free energy barrier for the concerted 

pathway is estimated to be ~ 2.5 kcal/mol for HH-porphycene. Thus, the free energy 

barrier is higher for the concerted pathway as the temperature is higher. One of the 

important origins for this temperature dependence in the barrier height may be large 

quantum fluctuation at lower temperatures, which is characterized by the radius of 

gyration of the ring polymer in the transition state [35]. However, further analysis must 

be done to study this issue in detail, which is beyond our scope here. 

As an independent issue from the discussions above, another interesting one is on the 

role of broken planarity of the porphycene molecule at finite temperatures. In order to 

investigate this issue, we have also performed similar PIMD simulations with the 

porphycene configurations restricted to be always planar (hereafter, we call it 

"2D-PIMD"). Fig. 3-7c displays the nuclear distribution plotted as a function of the 

r1−r2 and r3−r4 coordinates obtained from the 2D-PIMD simulations at T = 500 K. 

Compared with the "3D-simulations" at T = 500 K presented in Fig. 3-7b, the concerted 

proton transfer mechanism is enhanced while the stepwise mechanism is somewhat 

suppressed in the 2D-simulation. This result qualitatively suggests that the out-of-plane 

 

Fig. 3-8.  Inner proton/deuteron distributions along the r1−r2 = r4−r3 line 

(corresponding to the qr-axis in Fig. 3-7) obtained from the PIMD simulations at T = 

300 and 500 K 
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motions of porphycene have the influence of suppressing the concerted proton transfer 

mechanism. In this case, the out-of-plane motions could be considered as mainly 

entropic effects since the vibrational frequencies of the corresponding normal modes are 

in the range of 50−200 cm
−1

 which is smaller than thermal energy, kT. Recently, there 

has been an interesting experimental report by Vdovin et al.
 
that for porphycene 

embedded in superfluid helium nanodroplets there are vibrational modes that enhance 

and suppress the concerted proton transfer tunneling probability [8]. However, as far as 

we are aware, there has been no such experimental information on the gas phase 

porphycene. We hope that the present computational study would stimulate future 

experiments along this line. 

 

 

Fig. 3-9. Two-dimensional contour plots of free-energy surfaces as a function of 

r1−r2 and r3−r4 coordinates obtained from the PIMD simulations at T = 300 and 500 

K for HH-porphycene, DD-porphycene, and HD-porphycene 
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3.10  Correlation of the inner nitrogen motion with the proton 

transfer and its isotope effects 

Fig. 3-10 displays the two-dimensional contour plots of the inner (a) proton and (b) 

deuterium distributions as a function of the N1–N2 (or N3–N4) distance and r1–r2 (or 

r3–r4). Since the r1–r2 distance difference qualitatively corresponds to the reaction 

coordinate of proton transfer, these plots indicate that the proton transfer process 

strongly correlates with the N1–N2 stretch motion. We can see that proton transfer 

effectively occurs when the N1–N2 distance is small indicating that the N–N stretch 

vibration is a promoting mode of proton transfer, as expected. This behavior is 

frequently seen in the proton transfer process in water [33]. However, note that the N–N 

distance difference between the transition state and the equilibrium structures (0.12 A) 

is not so large as the case of O–O distance of water. In addition, the proton distribution 

spreads in broader range of r(N1-N2) than the deuteron. 

Fig. 3-11 shows the two-dimensional contour plots of the inner proton/deuteron 

distributions as a function of the r1−r2 coordinate and angle  (N−H(D)−N) obtained 

from the PIMD simulations at T = 300 K for the HH-porphycene and DD-porphycene 

molecules. It can be seen that the proton/deuteron transfer mainly occurs with bent 

configurations. From these plots, one can see that the proton transfer occurs with a 

somewhat a wider range of  than the deuteron transfer. 

 

 

Fig. 3-10.  Two-dimensional contour plots of the proton distribution as a function of 

the N1–N2 distance and the difference between H1–N1 and H1–N2 (or H2–N3 and 

H2–N4) distances obtained from the PIMD simulations at T = 300 K for (a) 

HH-porphycene and (b) DD-porphycene. Horizontal lines indicate the N–N distances 

at the trans equilibrium structure and the SS saddle point. 
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Fig. 3-11.  Two-dimensional contour plots of proton/deuteron distributions for 

HH-porphycene and DD-porphycene as a function of r1−r2 coordinate and angle  

(N−H(D)−N) obtained from the PIMD simulations at T = 300 K. 
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Chapter 4 

 

Diffusion of Hydrogen/Tritium in Fe (bcc) lattice 

 

The diffusion coefficients of hydrogen (H) and tritium (T) in -Fe have been computed 

using two approximate quantum dynamical techniques, i.e. centroid molecular 

dynamics (CMD) and ring polymer molecular dynamics (RPMD), in the temperature 

range of T = 1001000 K using the embedded-atom-method (EAM) potential. It has 

been found that the RPMD and CMD methods give very similar results. From a further 

analysis based on quantum transition state theory (centroid density QTST) combined 

with path integral molecular dynamics (PIMD), it has been clear that there is a 

crossover between thermal and quantum mechanisms at about T = 500 K and 300 K for 

H and T diffusions, respectively. The importance of nuclear quantum effects at low 

temperatures has been illustrated in terms of the effective free energy surface map. 

 

4.1  Hydrogen/Tritium in Metal 

Safe control of tritium is one of the technological challenges in the development of 

next-generation deuterium-tritium fusion reactors where tritium is used as nuclear fuel 

[1,2]. Tritium should be strictly confined to prevent from contamination by contacts to 

external environment via isotopic exchange with hydrogen in water or hydrocarbons.  

However, the fundamental database for the properties of tritium that supports such 

investigations is far from being complete. For instance, the migration rates of tritium in 

metallic materials which constitute the reactor, as well as the underlying physics of 

migration, have not been discussed thoroughly from a scientific viewpoint. This status 

is highly in contrast to the case of hydrogen/deuterium migration, which has been a 

long-standing research field associated to scientific interest and technological problems 
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such as hydrogen storage and hydrogen embrittlement [3-6]. The difference is 

presumably due to the experimental difficulty in dealing with strongly radioactive 

tritium. Thus, the computational approach would be an alternative that is free of such an 

experimental limitation. In particular, it is expected that molecular simulation is a useful 

way that has access to microscopic mechanisms on the atomistic level for a given form 

of inter-atomic forces, in principle. 

 

4.2  Diffusion of hydrogen and tritium atom in pure Fe metal 

In this chapter, we investigate the rate and the mechanism of hydrogen (H) and tritium 

(T) diffusion in the  phase of iron (-Fe). In addition to the technological importance 

of Fe and Fe alloys as major structural materials for nuclear reactor plants, it is pointed 

out that the diffusion coefficients of H in -Fe are the highest among the values 

reported thus far for any metal [7], and thus H interstitials in Fe are extremely mobile 

even at low temperatures. Detailed information on the behavior of H isotopes in Fe is 

important for understanding the fundamental processes of fast solid-state diffusion and 

transport in metal-H isotope systems. Previous studies for H (and deuterium) in Fe and 

other body-centered cubic (bcc) metals suggest that the diffusion mechanisms depend 

on the quantum and temperature effects [8-20]. In particular, very recently, Kimizuka et 

al. have applied centroid molecular dynamics simulations including quantum 

mechanical nature of nuclei for the H-atom diffusion processes in Fe [18-20]. They 

found a curved non-Arrhenius behavior for the temperature dependence of the 

calculated diffusion coefficients below T ~ 500 K and concluded that quantum nature of 

H atoms is playing an essential role in diffusion mechanisms. Therefore, it is necessary 

to use a simulation method where both thermal and quantum diffusion processes are 

taken into account. 

For this purpose, we use two distinct methods based on the approximate quantum 

dynamics theories relevant to the imaginary-time path integral formulation [21-23], i.e. 

centroid molecular dynamics (CMD) [24-30], and ring polymer molecular dynamics 

(RPMD) [31-34]. It should be mentioned that the RPMD method has been recently 

applied to hydrogen atom diffusion on the Ni(100) surface [35]. We here compare the 
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CMD and RPMD results with those from quantum transition state theory 

(centroid-density QTST) where the free energy barrier along the diffusive reaction path 

is estimated numerically by path integral molecular dynamics (PIMD) [17,36-40].  

Moreover, we have also carried out classical molecular dynamics (classical MD) where 

quantum effect is switched off, i.e. only the thermal effect is included. All these 

simulations have been done systematically within the temperature range of T = 

1001000 K. We note that this is the first report on the quantum molecular dynamics 

simulation of T-diffusion in metals, according to the authors' knowledge. It generally 

requires more computational effort to obtain the trajectory of T-diffusion whose rate is 

much slower than H- or D-diffusion. 

 

4.3  Methods 

DFT calculations under periodic boundary conditions can obtain reasonable results with 

experimental data for solid state molecular systems. However, computational costs of 

the calculation are very high. In order to reduce the costs, the embedded-atom-method 

(EAM) developed by Kimizuka et al. has been employed [18,19]. The EAM potential 

function includes many-body effects while it is formed by simple formula. RPMD and 

CMD (see also chapter 2) with the EAM potential function have been applied to Fe128H 

supercell under periodic boundary conditions (lattice constant lc = 2.8553 Å and 4 × 4 × 

4 unit cells) in the temperature range of 1001000 K. We have performed PIMD 

simulations in order to understand the diffusion mechanism. 

 

4.3.1  Embedded atom model potential function for Fe lattice. 

For the Fe−H interaction, we have used the EAM potential to describe the interaction 

among hydrogen/tritium in the bcc-Fe-lattice [18,19]. The EAM is an empirical 

implementation of effective-medium theory for the binding energy of a metal [42,43], 

which includes many-body effects. The energy of a system is given by: 


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   (4-1) 

where the former term corresponds to pair interactions as a function of the distance rij 



 

46 

 

between the atoms i and j, and the latter term is an atomic embedding energy F as a 

function of the electron density ρi which is the electron density at atom i due to the 

remaining atoms in the system. Thus, the EAM potential for FeH is specified by seven 

functions: FeFe, Fe, , FFe, FH, ρFe and ρH. According to the EAM model in refs 18 

and 19, we used the functions of FeFe, FFe and ρFe that were developed by Mendelev et 

al. [44] and the functions of , FH and ρH that were developed by Angelo et al. [45]. 

For the function of φFeH, we used the model recently-developed by Kimizuka et al. with 

reference to work of Jiang and Carter [18,19,46]. The pair interactions are defined as 

))](())(([)(
32321FeH

2exp2exp   rrrφ   (4-2) 

where, 1, 2, and 3 are fitting parameters for DFT calculation [46]. The pair potential 

φ (r) is described as potential energy function added cutoff energy to φFeH and is given 

by. 

brrarφrφ  )()()(
cutFeH

    (4-3) 

where rcut is the cutoff distance and a = 
dr

rd
cut
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where, ρi is denoted as the local electron density of atom i and SH is the relative scaling 

factor for ρH. EAM parameters using by our simulation are shown in Tables 4-1. 
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4.3.2  Potential energy surface on Fe (100) plane 

The geometry and potential energy profile of the FeH system obtained from this 

potential is presented in Figs. 4-1a and 4-1b. The contour plot of the potential energy in 

Figure 4-1b is shown as a function of the H position on the (100) plane of the bcc-Fe 

lattice. Notice that the four corners correspond to the Fe positions in the lattice.  The 

most stable trapping site of H is located at the tetrahedral site (Tsite, closed circle) and 

is at (L ± L/2, L) and (L, L ± L/2) of the (100) plane where L = lc/2. The H diffusion 

microscopically consists of the migration of the H atom from one Tsite to another 

neighboring Tsite (dotted line). The saddle-point site (Ssite, closed triangle) is a 

transition state for the H migration, which is located around the midpoint between the 

two neighboring Tsites. The energy of an H atom at the Ssite is 0.088 eV higher than 

that at the Tsite. The H atom diffusion may also occur through the octahedral site 

(Osite, cross), corresponding to the second-order saddle point on the potential energy 

surface. The Osite is at the center of (100) plane. The energy state of the H atom at the 

Osite is lying at 0.144 eV above that at the Tsite. These values are comparable with 

potential energy barriers obtained from density function theory [46].  This suggests 

that the most energetically favorable diffusion pathway should be that from the Tsite 

to the neighboring Tsite via the Ssite. However, notice that this simple idea cannot be 

applied when quantized zero-point vibrational energy is taken into account. Since the 

Osite corresponds to the second-order saddle point as mentioned above, it has two 

Parameter φFeH 

SH 32.0 

1 (eV) 0.0968 

2 (Å
1

) 4.33 

3 (Å) 1.65 

a (10
5

 eV/Å) 1.34315 

b (10
5

 eV) 3.10198 

rcut (Å) 4.2 

TABLE 4-1.  Parameters for the mixed two-body potential φFeH [18,19]. 
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imaginary vibrational frequencies, while the Ssite has only one imaginary vibrational 

frequency. This implies that the energy difference between the Ssite and Osite may 

become significantly smaller when quantized vibrational frequencies are taken into 

account. Interestingly, Kimizuka et al. found that the two diffusion pathways for H 

through the Ssite and Osite have a comparable free-energy barriers at T = 100200 K, 

while the diffusion pathway through the Ssite becomes more important as temperature 

increases [19]. Therefore, one should take into account the nuclear quantum effects in 

order to discuss the H/T diffusion processes in Fe more quantitatively. The lattice 

constant lc and dissolution energy Es at the most stable structure of Fe128H obtained 

from this potential are 2.8553 Å and 0.20 eV (not include zero-point correction), 

respectively. Table 4-2 shows the comparison of the EAM results with DFT calculations. 

The dissolution energy including zero-point vibrational energy is 0.30 eV [46]. Notice 

that the corresponding experiment values are 2.86 Å and 0.30 eV respectively [47]. 

Therefore, our EAM potential energy interaction reasonably reproduces experimental 

physical quantities. 

 

 

 DFT EAM 

Em (eV) 0.088 0.088 

δs (A) 0.407 0.407 

ET−O (eV) 0.13 0.144 

Es (eV) 0.2 0.201 

V (%) 0.06 0.108 

 

TABLE 4-2.  Calculated values of the migration energy (Em), distance between the O-site 

and S-site (δs ), the difference between the energies of the H atom (ET−O = EO − ET) at the 

O-site and T-site, dissolution energy (Es ) of H at the T-site, and percentage change in 

volume (V ). The target DFT energies in the literature [46] are not ZPE-corrected values 

[18,19] 
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4.3.3  Estimation of diffusion constant 

The diffusion constant of CMD and RPMD is given by the mean square displacement 

2

XX
0

6

1
|)()(|lim qq 


t

t
D

t
  (4-7) 

where the angular bracket denotes the statistical average obtained from the CMD and 

RPMD trajectory, and X is the diffusive atom, H or T. In practice, the time interval t is 

chosen to be large such that the mean square displacement increases linearly in time. 

 

4.3.4  Simulation conditions 

For each temperature condition (1001000 K), the PIMD simulation were carried out 

for 2,000,000 steps with a time increment t = 0.1 fs which was enough to equilibrate 

the system. For the PIMD (CMD) runs, the massive Nóse-Hoover chain thermostats 

 

Fig. 4-1.  (a) Three-dimensional perspective plots of the stationary points and (b) 

two-dimensional potential energy surface as a function of Cartesian (X, Y) coordinates 

(in Å) obtained from the EAM interaction potential on the Fe (100) plane.  Contour 

increments are set to 0.02 eV. Closed circles, closed triangle and cross indicate Tsite, 

Ssite and Osite, respectively. Dotted line represents the minimum energy path via 

the Ssite and broken line represents the diffusion pathway through the Osite. 
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were attached to all the degrees of freedom (the non-centroid degrees of freedom only) 

to control the temperature strongly. In all the calculations, we have employed the Fe128H 

supercell under periodic boundary conditions (lattice constant lc = 2.8553 Å and 4 × 4 × 

4 unit cells). After some test calculations, we have chosen the number of beads to be P 

= 24128 (24 for 1000 K and 128 for 100 K) which give converged results. Then, using 

those initial positions and velocities, the CMD and RPMD simulations were restarted 

with a time increment being t = 0.1 fs. For the CMD runs, the adiabatic parameter  

was set to 0.1. The total step for each CMD or RPMD trajectory was taken to be Ns = 

4,000,000 (t = 0.4 ns) at each temperature. The final results were averaged over 15 

independent trajectories for both the CMD and RPMD simulations. Since the RPMD 

dynamics does not use thermostats, one can employ a larger time step for RPMD 

simulations than that for CMD simulations [52]. In order to confirm this, we have 

carried out the RPMD calculations with larger time steps of t = 0.5 and 1.0 fs. As a 

result, we found that the obtained diffusion coefficients were comparable to that 

obtained with t = 0.1 fs. This suggests that the RPMD simulations are more efficient 

for obtaining a large number of trajectories than the CMD simulations. However, we 

here report computational results with t = 0.1 fs for both RPMD and CMD simulations 

since the final results were averaged over the same number of trajectories. The details of 

our computational code are also described in Refs. 5355. 

 

4.4  Diffusion constants obtained from RPMD, CMD and classical 

MD simulations 

First, we present the results of diffusion coefficients obtained from our simulations.  

Table 4-3 summarized the diffusion coefficients of H and T (DH and DT) in Fe 

calculated with the CMD and RPMD methods at several temperatures in the range of T 

= 1001000 K. We have also calculated the diffusion coefficients from classical MD 

simulations (i.e. with P=1) and the corresponding results are also included in Table 4-3.  

The statistical error estimated from the standard deviation of diffusion coefficients 

obtained from 15 independent trajectories. It can be seen that the both CMD and RPMD 

results are in very good agreement within statistical uncertainty [8-15]. It is also found 
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that the classical MD simulations give much smaller diffusion coefficients than the 

CMD and RPMD results at low temperatures, as expected, due to the lack of quantum 

mechanical tunneling. On the other hand, the classical MD results are close to the 

quantum ones of CMD/RPMD at high temperatures. In particular, the diffusion 

coefficients for T obtained from the classical MD agree well with both the CMD and 

RPMD values in the temperature range of T = 7001000 K. 

In the previous CMD work of Kimizuka et al. [18,19], the H diffusion coefficients 

with the same EAM potential were in reasonable agreement with experimental 

measurements over the temperature range of T = 300−1000 K [8-15]. This suggests that 

both the CMD and RPMD simulations using the present EAM potential energy surface 

can give reliable estimates of diffusion coefficients for hydrogen. Therefore, it is 

suggested that the present CMD and RPMD simulations give reasonable diffusion 

coefficients also for tritium. As far as we are aware, there has been only one report on 

the experimental diffusion coefficients for T; Hagi and Hayashi have estimated the 

diffusion coefficients for T and H in Fe at T = 286 K to be DT = 0.09 × 10
8

 m
2
 s
1

 and 

DH = 0.4 × 10
8

 m
2
 s

1
 using an indirect electrochemical permeation method [56]. It 

seems that this value of H diffusion coefficient seems to be underestimated since it is 

almost one half of our CMD and RPMD values (0.83−0.84 × 10
8

 m
2 
s
1

 at T = 300 K) 

as well as other experimental values reported in the literature (0.74−0.89 × 10
8

 m
2
 s
1

 

at T = 300 K, see Table 4-3) [8-15]. In general, measurements of diffusion coefficients 

in Fe−H system strongly depend on the purity of the specimen, i.e., concentration of 

vacancies and impurities, while the specimen of Hagi and Hayashi contains somewhat 

more impurities (> 0.1 mass %) than in other measurements [8-15,56]. Thus, it might be 

due to the trapping effects that the estimated tritium diffusion coefficient is 

underestimated in the study of Hagi and Hayashi [56]. Their experimental DT value is 

also about one half of our CMD and RPMD calculations give DT at T = 300 K to be 

0.17 × 10
8

 m
2
 s

1
 and 0.18 × 10

8
 m

2
 s

1
, respectively, although the temperature is 

slightly different from the experimental temperature. However, the ratio for DT and DH 

is in agreement between the computational and experimental results. 
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 Hydrogen     

T / K CMD
 
  CMD

a 
  RPMD classical MD exp. (DH/DT) 

100 0.36 ± 0.22 0.43 0.44 ± 0.10 NA - 

200 0.55 ± 0.01 - 0.48 ± 0.01 (2.98 ± 0.04) × 10-2 - 

300 0.83 ± 0.33 0.83 0.84 ± 0.24 0.32 ± 0.17 0.74-0.87
b,c

/0.09
b,d

 

500 1.08 ± 0.15 1.15 1.24 ± 0.25 0.92 ± 0.13 1.5-1.7
b
 

700 1.75 ± 0.26 - 1.87 ± 0.05 1.92 ± 0.16 1.9-2.2
b
 

800 1.99 ± 0.12 - 1.95 ± 0.11 2.21 ± 0.06 2.0-2.4
b
 

900 2.18 ± 0.08 - 2.04 ± 0.18 2.30 ± 0.02 - 

1000 2.50 ± 0.16 2.37 2.32 ± 0.04 2.37 ± 0.11 2.45 – 2.63
b,e

 

      

 Tritium     

T / K CMD
 
  CMD

a 
  RPMD classical MD exp. (DH/DT) 

100 0.03 ± 0.02 - 0.03 ± 0.01 NA - 

200 0.08 ± 0.02 - 0.07 ± 0.03 (1.78 ± 0.12) × 10-2 - 

300 0.17 ± 0.07 - 0.18 ± 0.06 (13.1 ± 0.09) × 10-2 - 

500 0.64 ± 0.09 - 0.72 ± 0.15 0.60 ± 0.02 - 

700 1.21 ± 0.12 - 1.19 ± 0.11 1.17 ± 0.12 - 

800 1.33 ± 0.30 - 1.28 ± 0.15 1.25 ± 0.08 - 

900 1.55 ± 0.21 - 1.52 ± 0.10 1.41 ± 0.16 - 

1000 1.56 ± 0.04 - 1.53 ± 0.15 1.58 ± 0.12 - 

a
Previous CMD results taken from refs 18 and 19. 

b
Experimental data taken from refs 815 and 54. 

c
Measured at 293 K. 

d
Measured for tritium in Fe at 286 K. 

e
Measured at 973 K. 

 

Table 4-3.  H/T diffusion coefficients (in 10
8

 m
2
 s

1
) in the temperature range of 

1001000 K in Fe. The statistical errors have been evaluated from the standard error with 

respect to 15 independent trajectories in each condition. 
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4.5  Arrhenius plots of diffusion constants 

Figures 4-2a and 4-2b present Arrhenius plots of the diffusion coefficients of H and T in 

Fe, respectively. The results of the RPMD, CMD and classical MD are shown by closed 

circles, open squares and open triangles, respectively. The experimental data for H are 

presented with cross symbols in Figure 4-2a. The Arrhenius plots of the diffusion 

coefficients of both isotopes calculated with the classical MD method are almost on the 

straight lines within the temperature range considered here. On the other hand, the 

diffusion coefficients of both H and T obtained from the present quantum mechanical 

CMD and RPMD simulations show strong non-linear behaviors at low temperatures.  

More specifically, a deviation from linearity begins around T = 500 K for H diffusion, 

while for T diffusion a deviation can be seen below T ~ 300 K (see Table 4-3). The 

former behavior is in excellent agreement with the previous CMD calculations of 

 

Fig. 4-2.  Arrhenius plots of the diffusion coefficients for hydrogen and tritium in Fe.  

Experimental data are taken from refs 815. Solid, broken and dotted line represents 

results of RPMD, CMD, classical MD simulations, respectively. 
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Kimizuka et al. Similar results can be also observed in other metals and solids 

[16-19,57-59]. These results indicate that a nuclear quantum effect, i.e. quantum 

tunneling, is playing an essential role in the diffusion of H and T in Fe at low 

temperatures. 

In order to understand the isotope effect for H and T diffusion in detail, we plot the 

ratio of the diffusion coefficients DH/DT as a function of 1000/T in Figure 4-3.  It can 

be seen that both the CMD and RPMD methods give very similar curves within 

statistical uncertainty; DH/DT increases with the temperature decrease. The DH/DT value 

is seen to be nearly constant around 1.6−1.8 in the higher temperature range (> 500 K).  

Notice that this value is close to the square root of tritium-hydrogen mass ratio 3.0, in 

agreement with the classical mechanics. In addition, this result is comparable with 

experiments in the range of error at room temperature [8-15,56]. 

 

 

 

4.6  Three dimensional perspective plots 

Figure 4-4 displays representative three-dimensional perspective plots of the nuclear 

distribution function for the H/T (gray color) in Fe (purple color) obtained from the 

 

Fig. 4-3.  The ratio of the diffusion coefficients for hydrogen and tritium as a 

function of 1000/T obtained from the present CMD and RPMD simulations. 
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PIMD simulation at T = 300 K. In Fig. 4-4a, large fluctuation can be seen for H atom.  

In particular, we can see that the hydrogen is distributed around not only the paths 

between Tsites via Ssites but also around the Osites. In Figure 4-4b, however, 

motion of T is clearly different from H atoms and distributions of T around the Osite 

are much less than those of H. This clearly shows that there is a significant difference in 

the mechanisms of H- and T-diffusions on the ability to pass through the Osite. On the 

other hand, the spread of spatial distribution for the Fe atoms are relatively small 

compared to those for the H and T. This suggests that the Fe atom behaves as a classical 

mechanical particle. 

 

4.7  Free energy surfaces on Fe (100) plane 

In order to understand the detailed diffusion mechanisms at a microscopic molecular 

level, it would be useful to present the free-energy surface FT(q) along appropriate 

 

Fig. 4-4.  Three-dimensional perspective plots of nuclear distribution of (a) FeH and (b) 

FeT obtained from the PIMD simulations at T = 300 K.  The purple color is represented 

the iron atoms and the gray color is represented the hydrogen or tritium.  The Tsites are 

at (L ± L/2, L) and (L, L ± L/2) of the (100) plane where L = lc/2 and the Osite is at the 

center of (100) plane. 
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reaction coordinates q at temperature T [60]. The free-energy FT(q) is defined as FT(q) = 

−kBTlnT(q), where T(q) is the nuclear distribution probability to be observed at a 

given set of centroid coordinates q obtained from PIMD at T. Figure 4-5 displays the 

two-dimensional free-energy surfaces at T = 300 and 500 K on the (100) plane of the 

bcc-Fe lattice obtained from the PIMD simulations. The values shown in figures are 

free-energy barriers (in eV) at the Ssite and Osite (see also Figure 4-1). These plots 

are quite useful for understanding the microscopic mechanism of the H/T diffusion 

processes, because such an energy landscape provides the means to analyze the possible 

diffusion pathways at the temperature of our interest. For H diffusion at T = 300 K, the 

quantum free-energy barrier via the Ssite was estimated to be 0.042 eV (measured 

from the Tsite), while the corresponding barrier via the Osite was obtained to be 

 

Fig. 4-5.  Two-dimensional contour plots of free-energy surfaces (in eV) as a function of 

the Cartesian (X, Y) coordinates (in Å) on the Fe(100) plane obtained from the static 

path-integral molecular dynamics simulations at T = 300 and 500 K. 
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0.058 eV (see Figure 4-5a). This result suggests that the H diffusion process mainly 

occurs via the Ssite. However, it should be emphasized that the contribution of the 

diffusion pathway via the Osite at this temperature cannot be ignored since the energy 

difference between the Ssite and Osite barriers is rather small. In the case of T 

diffusion at T = 300 K (see Figure 4-5b), the quantum free-energy barrier via the Ssite 

and Osite were estimated to be 0.066 eV (measured from the Tsite) and 0.099 eV 

(measured from the Tsite), respectively. Thus, comparing the height of the barriers, we 

can confirm that this system clearly shows isotope effects for the H/T migration at 300 

K. Besides, the free-energy barriers obtained from the classical MD simulations are 

much higher than those barriers obtained from the quantum simulations. This also 

indicates importance of quantum effects even at room temperature. Our results are 

consistent with the previous CMD results of Kimizuka et al. although they have given 

one-dimensional free-energy profiles [18,19]. As can be expected, the free-energy 

difference between the Ssite and Osite barriers becomes larger as temperature 

increases (see Figure 4-5d). One of the important origins for this temperature 

dependence in the barrier height may be large quantum fluctuation at low temperatures, 

which is characterized by the radius of gyration of the ring polymer at the transition 

state [17].  In the case of the T diffusion processes, the corresponding energy 

difference becomes larger than in the case of H-diffusion case. In addition, the 

free-energy barriers for H and T diffusion obtained from the quantum mechanical 

simulations are always much smaller than those for H-diffusion obtained from the 

classical MD simulations. This implies that one should employ appropriate methods that 

can account for nuclear quantum effects in order to discuss the diffusion dynamics of 

heavy tritium atoms at a quantitative level. 

It may be interesting to compare the free-energy barrier of Figure 4-5 to the activation 

energy, the slope of Arrhenius plots in Figure 4-2. The activation energies for the H 

diffusion coefficients obtained from the present RPMD simulations can be roughly 

estimated to be 0.03 and 0.04 eV at T = 300 and 500 K, respectively. Similarly, the 

activation energies for the T diffusion coefficients are estimated to be 0.07 and 0.09 eV 

at T = 300 and 500 K, respectively. Thus, the agreement between the free-energy 
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barriers at the Ssite and the above activation energies is seen to be fairly good although 

the statistical uncertainty of the RPMD simulations is somewhat large. Again, this 

rough agreement implies that the dominant bottleneck for the H- and T-diffusion 

processes in Fe is the Ssite at least for T  300 K. We have also estimated imaginary 

vibrational frequencies along the reaction coordinate using the normal mode analysis on 

the present EAM potential. The obtained frequencies are 1460i cm
1

 and 810i cm
1

 at 

the Ssite for the FeH and FeT systems, respectively. Thus, these values can 

qualitatively explain the difference in the cross-over temperature between H and T 

diffusion; the cross-over temperature for H diffusion is much lower than that for T due 

to a larger contribution of quantum tunneling of hydrogen. However, it should be 

mentioned that this is a very simplified picture because the diffusion pathways at lower 

temperatures show broader distributions, as Kimizuka et al. has already shown in their 

previous study [18,19]. 

 

4.8  Quantum transition state theory 

Finally, it will be interesting to compare the results with the centroid density QTST 

based on the traditional QTST [17,36-41,50,51]. This approach assumes the stochastic 

process of crossing over the effective free energy barrier in terms of the centroid 

coordinates 
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)(T  is the pre-exponential factor which is weakly dependent on temperature in 

general. The PIMD simulation is able to provide exp(F/kBT) since it is equal to the 

ratio of the centroid probability distributions at the Ssite (Osite) and Tsite although 

the direct evaluation of )(
QTST

TD  is difficult to obtain )(T  from the PIMD 

simulation result. In this work, )(T  is roughly estimated from the RPMD and CMD 

 

Fig. 4-6.  Plots as a function of D(T) obtained from the quantum simulations and 

exp(F(T)/kBT) obtained from the free-energy. The symbols and lines are the same as 

Fig. 4-2.  Dotted line represents the line connecting classical points. 
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results and is used to discuss a cross-over temperature below [17].
 

In Figure 4-6, the diffusion coefficients from CMD/RPMD are plotted as a function 

of exp(F(T)/kBT), where F was estimated with the ratio between the centroid 

probability densities at the Ssite region and the Tsite region from the PIMD results.  

The thermal-quantum crossover temperature can be roughly estimated from these plots 

[17]. For example, in the case of H diffusion, we can clearly see a significant slope 

change at exp(F(T)/kBT) ~ 0.3, corresponding to T ~ 500 K. This suggests a change in 

the diffusion mechanism between thermal and quantum processes around this 

temperature. On the other hand, in the case of T diffusion, the slope change is not so 

clear compared to the H case; however, we can also see a small slope change around 

exp(F(T)/kBT) ~ 0.08 corresponding to T ~ 300 K. However, the slopes of both 

isotopes calculated with the classical MD method are almost constant. It should be 

emphasized that these crossover temperature values are consistent with Arrhenius plots 

of diffusion coefficients presented in Figure 4-2. We hope our computational result will 

be a stimulus to experiments, although no data has been reported so far for T diffusion. 
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Chapter 5 

 

Non-Adiabatic Relaxation Dynamics of Hydrated 

Electron Cluster 

 

In this chapter, the ring-polymer molecular dynamics (RPMD) method was applied to 

the real-time excess electron dynamics in water clusters within a one-electron 

pseudo-potential model, where the excess electron motion is described with the 

grid-based wave function while nuclear motions of water are described with RPMD. We 

have simulated electronically non-adiabatic relaxation dynamics associated with s  p 

excitation of an excess electron in the (H2O)50

 and (D2O)50


 water anion cluster. The 

average relaxation times for (H2O)50

 and (D2O)50


 were calculated to be 120 and 207 fs, 

respectively, and are comparable to experimental results. Therefore, we conclude that 

nuclear quantum effects are playing an essential role in the structural rearrangement 

dynamics of water anion clusters. The detailed nonadiabatic relaxation mechanisms are 

also discussed. 

 

5.1  Hydrated electron 

The hydrated electron that excess electron attaches to several water molecules is one of 

the simplest chemical species, and is very important in various fields including 

condensed phase chemistry, radiation physics, chemistry and biology [1-4]. Since Hart 

and Boag detected the hydrated electron experimentally at 1962 [5], extensive studies 

have been performed from both experimental and theoretical viewpoints. In particular, 

the relaxation dynamics of the excess electron are well-studied. However, theoretical 

studies cannot interpret experimental results such as excited-state lifetime and vertical 

detachment energy (VDE). In addition, the hydrated electron dynamics are still not fully 

understood. 



 

67 

 

5.2  Non-adiabatic relaxation dynamics of excited-state hydrated 

electron and its isotope effects 

Early experiments had mainly focused on the microscopic structure of hydrated electron 

as shown in Fig. 5-1. However, recent experiments have been performed in order to 

understand the dynamical properties such as the solvation dynamics of an excess 

electron and the relaxation dynamics of electronically excited state of hydrated electron. 

For example, Neumark and his co-workers have extensively studied the non-adiabatic 

relaxation dynamics associated for hydrated electrons in the size-selected water anion 

clusters (H2O)n
−
 using sophisticated ultrafast time-resolved laser techniques [1,6-13]. 

They have measured p  s non-adiabatic internal conversion time in the n = 25–200 

cluster-size range (as shown in Fig. 5-2). They also estimated internal conversion 

lifetime to be 60 fs from extrapolation of the measured values to n  ∞. Interestingly, 

they showed a very strong isotope effects for internal conversion lifetime ( (D2O)/ 

(H2O) ~ 2.8–3.6). 

On the other hand, recent theoretical studies are addressing time-resolved 

experimental measurements as well as experimental studies [14-20]. Turi and his 

co-workers have extensively studied the non-adiabatic relaxation dynamics. They have 

previously found that nuclear quantum effects are very important on the electronically 

nonadiabatic relaxation within a golden rule approximation. They have obtained 

lifetimes of bulk to be t ~ 100 fs from the quantum time correlation function and the 

mixed quantum/classical MD simulation which water nuclei are treated with classical 

particles. Neria and Nitzan have also carried out the mixed quantum/classical MD 

 

Fig. 5-1. The cavity model of hydrated electron. 
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simulation for (H2O)128
−
 and (D2O)128

−
 anion cluster [4,19]. Lifetimes obtained from the 

simulation for these clusters were t ~ 220 fs and ~ 800 fs, respectively; however 

experiments results are ~ 70 fs and ~ 180 fs, respectively (see also Figure 5-2). This 

indicates that previous theoretical studies cannot explain the isotope effects of lifetime. 

In order to understand nuclear quantum effects for the non-adiabatic relaxation 

dynamics of hydrated electron, we have developed RPMD method and applied to 

(H2O)50
−
 and (D2O)50

−
 water anion cluster. 

Fig. 5-3 shows the simplified scheme of the non-adiabatic relaxation dynamics in 

(H2O)50
−
 anion cluster. The electronic ground state of the excess electron is 

approximately s-like located outside of the water cluster and there are three p-like 

electronically excited states. When the nearly spherical s-like excess electron state is 

excited into the lowest p-like state, the ground state is destabilized as hydrogen atoms of 

water molecules move into the node of the excited p-like wave function. Then, the 

energy difference between the ground s-like and excited p-like states becomes close, 

where an electronically non-adiabatic transition (internal conversion) can eventually 

occur. 

 

Fig. 5-2. The internal conversion lifetime for size-selected water anion cluster 

obtained from experiments [1,10]. @ Copyright 2009 American Institute of Physics. 
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5.3  Development of RPMD method for describing the non-adiabatic 

relaxation dynamics 

In previous theoretical study, the relaxation dynamics of hydrated electron had been 

frequently solved using mixed quantum-classical Ehrenfest (mean field) dynamics 

method [4,21]. However, this method cannot include nuclear quantum effects because 

motion of nuclear degree of freedom is governed by classical Newton’s law. RPMD 

method can consider nuclear quantum effects for nuclear motion while non-adiabatic 

effects cannot be described. In order to include both non-adiabatic and nuclear quantum 

effects in simulation, we have combined RPMD method with the wave packet 

propagation method within the Ehrenfest mean-field formalism. 

 

5.3.1  One electron wave packet propagation method 

In our hybrid simulation method, the motion of an excess electron is described as a 

one-electron wave function . The propagation of the wave function is performed with 

the solution of the time-dependent Schrödinger equation as 

 

Fig. 5-3. The simplified scheme of the non-adiabatic relaxation dynamics. 
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where re and x are denoted as spatial coordinates of an excess electron and nuclear 

coordinates of in water, respectively.  Here, the Hamiltonian in Eq. (5-1) is 

approximately written as 

))(;())(()( tHtHtH
ee

xrxxr
wew-w

)(


 ˆˆ,ˆ    (5-2) 

where 
w-w

Ĥ  is the Hamiltonian of water molecules and 
we

Ĥ  is the Hamiltonian of the 

excess electron-water interaction.  All of the Hamiltonians in Eq. (5-2) are described as 

VTH ˆˆˆ  , where T and V are the kinetic energy term and potential energy term, 

respectively.  If the wave function is normalized, atomic forces can be written with 

Hermann-Feynman force as 
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where 
x

  is gradient of water nuclear coordinates, and 
w-w

V̂  and 
w-e

V̂  are the 

interaction potentials for the water-water and the electron-water, respectively. These 

equations are frequently solved using fewest-switching surface hopping method [21] or 

mixed quantum-classical Ehrenfest (mean field) dynamics method, where motions of 

nuclear degrees of freedom are governed by classical Newton’s law.  Instead of using 

classical mechanics, we apply the RPMD method for nuclear motions. 

 

5.3.2  Hybrid of RPMD with wave packet propagation method 

In chapter 2, the quantum canonical partition function Zp for N-particles system in the 

RPMD method is defined as 

 PNPNP
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where xi,s and pi,s are the Cartesian coordinate and its momentum of the i-th atom in the 

s-th imaginary time slice (i.e., bead).  In the RPMD method, the Hamiltonian in Zp is 

defined by 
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where mi is the i-th atomic mass and P is the number of beads.  Notice that xi,0 = xi,s.  

From Eqs. (5-2) and (5-5), the Hamiltonian can be expressed as 
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where 
e

T̂  and 
e

p  are the kinetic energy operator and momentum of an atom, 

respectively.  Since the excess electron motion is affected by all water beads, the 

potential energy term in Eq. (5-8) is approximated by the mean-field of the excess 

electron-water interaction. 
we

Ĥ is thus described as 
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In this hybrid RPMD, the excess electron motion is described by Eqs. (5-1)-(5-3) and 

(5-9), and the water nuclear motion is described by Eqs. (5-6), (5-7) and (5-9).  Notice 

that the RPMD method includes both quantum mechanical tunneling and quantized 

vibrational energy. 
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5.4  Methods 

We have employed RWK2-M and Turi-Borgis (TB) one electron pseudo-potential 

model functions for interaction of water-water and electron-water, respectively 

[14,22-24]. The ab initio molecular orbital method is often utilized and very useful to 

describe properties of water anion cluster such as structure, hydrogen bonding energy, 

VDE; however, it is computationally too expensive for large-scale water anion cluster 

yet. On the other hand, both of RWK2-M and TB model function have been based on 

very simple formula. All simulation has been performed using these potential energy 

functions. 

 

5.4.1  TB pseudo-potential function for the interaction between an 

excess electron and water molecules 

In previous theoretical studies, TB model function has often been used to understand the 

non-adiabatic relaxation dynamics of hydrated electron [14]. This is an one-electron 

pseudo-potential model function and based on simple formula. 
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where 
He

V


 and 
Oe

V


 are interactions with electron, respectively, and 
pol

V  is 

polarization potential function. In addition, erf is represented as error function. The 

parameters in Eqs. (5-10)-(5-12) are shown in Table 5-1. This model function gives a 

roughly spherical cavity hydrated electron structure which is formed by six water OH 

bonds oriented towards the common center (see Figure 5-1). Accurate VDE values for 
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small water anion cluster can be also given using this model [25-36]. Most of 

previously-developed pseudo-potential models yield a cavity structure [14,25-27,32,36]. 

Jordan and co-workers have recently developed the electron-water interaction potential 

function [25-27,32]. Results of this potential function can be more comparable with 

vertical electron binding energies obtained from high level ab initio MO calculation in 

small water anion cluster; however, this calculation spends highly computational cost 

for RPMD calculation. On the other hand, the recently-developed pseudo-potential 

predicts a non-cavity structure for the hydrated electron [37,38]. However, the structure 

obtained from this model is not consistent with the ab initio calculation result, and the 

fitted non-cavity potential cannot show any properties such as exact model’s Eigen 

energy and VDE [25-27,31,32,36]. In addition, the excess electron for this non-cavity 

model is delocalized over several water molecules in a region where the water density is 

increased relative to that of neat water. Thus, we have carried out simulation using TB 

model given cavity hydrated electron model [39]. 

 

 

 

 

 

Parameters  O atom  H atom 

q  0.820   0.410  

C1  0.575   0.750  

C2  0.620   0.150  

C3  1.000   0.500  

C4  0.400   0.350  

C5  4.400    

a  9.7446   

 

TABLE 5-1. Parameter set for the electron-water TB pseudo-potential function in 

Eq. (5-10) [14]. All quantities are in atomic units. 
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5.4.2  RWK2-M model potential for the interaction between water 

molecules 

We have also employed the modified flexible RWK2-M model potential energy 

functions for water-water interaction [22-24]. RWK potential function described by 

Watts et al. is commonly used for computations of the tunneling splitting pattern before 

the potentials described above were developed [22]. Recently, Weare and co-workers 

have developed RWK2-M based on very simple functions as 
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where all parameters are shown in Table 5-2. The radial distribution functions of rOO, 

rOH and rHH obtained from the RWK2-M are very comparable with experimental results 

and ab initio MD results [23,24]. In addition, the RWK2-M potential gives a better 

potential energy curve for the small (H2O)n
−
 anion cluster so that explicit vibrational 

anharmonicity is considered by using Morse functions [23,24]. Thus, we have carried 

out simulation using RWK2-M model for interaction of water-water. 
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5.4.3  Simulation conditions 

Before the hybrid RPMD simulations were carried out, we firstly performed PIMD 

simulation (100 ps) with a constant temperature of 200 K to obtain thermally 

equilibrium (H2O)50
−
 and (D2O)50

−
 anion cluster structures [39]. In PIMD calculations, 

the massive Nóse-Hoover chain technique in velocity Verlet algorithm was used to 

control the system temperature [40-43]. In the hybrid RPMD simulation, we have 

randomly sampled 60 initial configurations from 50 ps to 100 ps obtained from PIMD 

simulations. We have also randomly sampled 120 initial configurations from 100 ps to 

150 ps obtained from classical molecular dynamics (classical MD) simulations for 

comparison with quantum results. In this chapter, classical MD simulation means that 

nothing of nuclear quantum effects is considered. The time space of nuclear motion in 

Parameters Value (in atomic unit) Parameters Value (in atomic unit) 

R0 1.8088 C6
*
 62.45134 

0 104.52 CS 1344.45317 

D1,2 0.20916 C10 50014.91123 

D3 0.15660 A00 5107.32897 

1,2 1.13315 00 2.63108 

3 0.70600 a 1.99152 

f12 0.00676 b 0.098016 

AHH 1.00703  2.326 

HH 1.73603 c 0.94834 

q 0.6000  0.22188758 

AOH 0.0033045 c

 0.88397 

OH 3.89559 Rm 3.09500 

*Cn=Cn/0.948347
n
 then converted. 

**fd=2×R0×cos(0/2) 

 

TABLE 5-2. Parameter set for RWK2-M potential function in Eqs. (5-13)-(5-18) 

[23,24]. All quantities are in atomic units. 
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the hybrid RPMD trajectory is t = 0.5 fs. On the other hand, initial electron wave 

function is set to the Eigen vector of first excited state in initial structure of the hybrid 

RPMD simulation and the Eigen vector is obtained by solving Hamiltonian in Eq. (5-9) 

using discrete variables representation (DVR) method (see Appendix 3) [44]. Here, we 

have solved the Schrödinger equation expressed with an evenly spaced Cartesian grid in 

three dimensions. 32
3
 grid points were employed in the ranges of −18.2 Å < X, Y, Z < 

18.2 Å, where the origin is the center of mass of the water cluster. Because simulation 

box is adequately larger than water cluster size and electron distribution, we have set 

cut-off distance rc = 17.3 Å. When distance between the mass center of water cluster 

configuration and the electron position is larger than rc, cut-off energy 

|))|exp(1( cwecut rrVV    is add to the potential energy function in Eq. (5-9). The 

Electron wave function is propagated by using split operator method with Fast Fourier 

Transformation algorism. The time space of wave packet propagation is t = 0.05 fs. All 

the PIMD and the hybrid RPMD calculations presented in this chapter were carried out 

with 64 beads, which was determined from convergence tests. 

 

5.5  Snapshots of the relaxation dynamics along the representative 

trajectory 

Fig. 5-4 displays snapshots of the (H2O)50

 anion cluster configurations on a 

representative trajectory obtained from the RPMD simulation. The ground state excess 

electron gives an s-like feature localized on water cluster surface and then the excess 

electron wave function shows a p-like shape when s → p1 excitation occurs (t = 0 fs). 

Here, pi is denoted as the i-th electronic excited state. We notice that the initial p1 wave 

function is localized near a double-acceptor (AA) hydrogen-bonding water molecule as 

similar to previous theoretical studies [4,25-36]. As t increases, the energy gap between 

the s and p1 states become close up to t ~ 50 fs. When this difference is satisfactorily 

small, non-adiabatic p1 → s transition (internal conversion) occurs (t = 50 fs in this 

trajectory), and then the s-like wave function is finally formed. At t = 1000 fs, the wave 

function becomes more compact since the excess electron is surrounded by several 

water molecules. 
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5.6  Temporal changes of physical quantities along the representative 

RPMD trajectory 

Fig. 5-5a shows the adiabatic energies of the lowest four bound states for the excess 

electron. The electronic-state probabilities (contribution of each electronic state) are 

plotted as a function of simulation time in Fig. 5-5b. Here, the probability Pi is defined 

as follows 

2

))(,())(;,()( ttttP
eiei

xrxr     (519) 

where ))(,( t
ei

xr  is denoted as the i-th adiabatic eigenfunction of the excess electron 

for a given water cluster configuration. We can see the s-state probability becomes 

larger than that of the p1-state after t ~ 50 fs. We found that the probabilities of the p2- 

and p3-states are almost zero on this trajectory. Therefore, the relaxation dynamics may 

not be significantly affected by these higher electronic states. 

 

Fig. 5-4. Snapshots of selected cluster configurations along the representative 

RPMD trajectory. The excess electron wave functions are also shown. Notice that all 

the bead positions of water nuclei are plotted in this figure for understanding of 

quantum nature of nuclei. 
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The plots of the vertical detachment energy (VDE) have been shown in Fig. 5-5c. 

Previous studies have already shown that the magnitude of the VDE value is largely 

affected by the number of AA-water molecule directly interacting with the excess 

electron [4,25-36]. Fig. 5-5d shows the potential and kinetic energies for the water 

cluster. It is seen that the potential energy gradually decreases while the kinetic energy 

slightly increases with time. 

 

Fig. 5-5. Representative dynamical history of the trajectory presented in Fig. 5-4 as a 

function of simulation time: (a) the adiabatic energy levels of the lowest four 

electronic states of the excess electron in eV, (b) probabilities for the lowest two 

bound states, (c) VDE in eV and (d) the kinetic energy in the water cluster and the 

water-water potential energy (in eV). For the cluster configurations in figure (a), all 

the bead positions of water nuclei are plotted. 
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5.7  Statistical aspects of the survival probability and VDE for all 

trajectories of both (H2O)50
−
 and (D2O)50

−
 

In order to understand the statistical aspect of the present RPMD simulations of both 

(H2O)50
−
 and (D2O)50

−
, we calculate the survival probability of the electronic excited 

states. The survival probability Ps can be defined as  





1i0,

1(
i

is
tPtP )()    (520) 

Fig. 5-6a shows the survival probabilities averaged over all 60 RPMD and 120 classical 

MD trajectories. The survival probability for each RPMD is given in Fig. 5-7. Figs. 

5-6b and 5-6c display the VDE change and re-w, which is the distance between the 

center of the excess electron density and center-of-mass of the water cluster, also 

averaged over all RPMD and classical MD trajectories. The VDE change for each 

RPMD trajectory is shown in Fig. 5-8. We notice that the magnitude of VDE is well 

correlated with the value of re-w. 

The averaged survival probability has been fitted to the following simple exponential 

function as 

)/(~) ttP
s

exp(    (51) 

It is found that the RPMD survival probability decreases faster than the classical MD 

one for both the (H2O)50

 and (D2O)50


 clusters. The lifetime values of  for the RPMD 

results are estimated to be 120 and 207 fs for (H2O)50

 and (D2O)50


, respectively. These 

values are comparable to experimental results, which are (H2O) ~ 100 fs and (D2O) 

~ 200 fs, respectively [1,6-13]. On the other hand, the lifetime values for the classical 

MD results are obtained to be (H2O) = 205 fs and (D2O) = 304 fs, respectively. Thus, 

it is found that nuclear quantum effects are playing an important role for non-adiabatic 

relaxation dynamics of the excited state in water anion clusters. 
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Fig. 5-6. (a) Survival probability (b) VDE and (c) distance re-w between electron 

density center and mass center of water cluster averaged over all 60 RPMD 

trajectories. Also shown in these figures are the classical MD results averaged over 

all the 120 trajectories. Solid and dotted lines are denoted as a result of RPMD and 

classical MD, respectively. In addition, black and gray colors are denoted as a result 

of (H2O)50

 and (D2O)50


, respectively. 
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Fig. 5-7. The excited-state survival probabilities of the (H2O)50
−
 and (D2O)50

−
 anion 

clusters as a function of the simulation time for all the 60 RPMD trajectories. 5 

RPMD results are shown in the same panel. 
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Fig. 5-8. The VDE change of the (H2O)50
−
 and (D2O)50

−
 clusters as a function of the 

simulation time for all the 60 RPMD trajectories. 5 RPMD results are shown in the 

same panel. 
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5.8  RPMD lifetimes obtained from a different scheme 

We have also calculated the averaged relaxation lifetime using a different scheme. Fig. 

5-9 shows the lifetime distribution histograms obtained from each RPMD and classical 

MD trajectories. The mean values from these distributions are (H2O) = 114 fs and  

(D2O) = 206 fs, respectively, for the RPMD results. These values are quite close to the 

values obtained from the results in Fig. 5-6. 

 

5.9  Detailed nonadiabatic relaxation mechanisms 

It should be quite important to discuss the detailed mechanism of the electronically 

nonadiabatic dynamics. Fig. 5-10a shows the schematic nonadiabatic relaxation 

mechanism. The excess electron wave function is initially localized on the deep 

potential minimum formed by the excess electron-water dipolar interaction, since the 

s-like ground-state wave function is formed on the water cluster. After s →  p1 

excitation occurs, the water molecules move so as to accommodate the p1-like excess 

electron distribution, forming a temporal multiple well-like potential. Thus, there is a 

 

Fig. 5-9. Lifetime distribution functions obtained from each RPMD and classical 

MD trajectory. The results of (H2O)50

 and (D2O)50


 obtained from 60 RPMD 

simulations are shown in Figs. 5-9a and 5-9b. The results for 120 classical MD 

trajectories are shown in Figs. 5-9c and 5-9d. Notice that the box size is 30 fs. 
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large probability that the energy gap between the lowest and excited states becomes 

small. In order to understand this scenario at a more quantitative level, the contour plots 

of the excess electron-water potential energy surfaces at three selected points are 

presented in Fig. 5-10c. The RPMD trajectory chosen here is the same as that used in 

Fig. 5-5. The potential energy surfaces cut along with the plane (defined in Fig. 5-10b) 

are plotted. This plane is intersecting with the nodal plane of the p-like wave function. 

In Fig. 5-10c, the wave function densities are also shown with contour plots. The 

potential energy surface at t = 0 fs shows one deep minimum around the node position, 

 

Fig. 5-10. The relaxation mechanism of p1→s transition obtained from 

representative trajectory. (a) Simplified figures of relaxation dynamics, (b) definition 

of surface plane, (c) potential energy surface of the cut out plane and electron wave 

function. The potential energy and wave function are described as black and red 

lines, respectively. Notice that the potential energy surface is denoted as a function 

of Cartesian coordinates (X, Y) in Å. Solid and dotted lines are denoted as positive 

energy value with contour increments of 0.5 eV and negative with contour 

increments of 0.2 eV, respectively. 
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as expected. At t = 50 fs, a multiple potential well behavior is clearly seen and thus the 

excess electron density show a somewhat delocalized trend. At t = 100 fs, the s-like 

electron density is again formed in a deep potential well after shrinking of the multiple 

well. 
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Chapter 6 

 

General Conclusions 

 

In this work, nuclear quantum effects for dynamical behavior of light particles, such as 

hydrogen and proton, have been discussed from quantum mechanical viewpoints. In 

order to understand the quantum behavior, PIMD, RPMD and CMD methods based on 

the path-integral formalisms have been used. PIMD can obtain the thermal-equilibrium 

configuration while RPMD and CMD can describe dynamical properties, such as rate 

and diffusion constants. These methods have been applied to three hydrogen-bonded 

systems; porphycene (Chapter 3), hydrogen and tritium in Fe (bcc) lattice (Chapter 4) 

and (H2O)50

 and (D2O)50


 anion clusters (Chapter 5). From these results, we conclude 

that the quantum behavior of the hydrogen and proton have a significant impact on the 

reaction mechanism associated with these particles. 

 

6.1  Conclusion for chapter 3 

We have carried out quantum PIMD simulations in order to theoretically understand the 

inner double proton/deuteron transfer mechanisms of porphycene and its isotopic 

variants. We have used the on-the-fly direct dynamics technique at the semiempirical 

PM6 molecular orbital level but with its semiempirical parameters being adjusted so as 

that the stationary point energetics reproduces previous ab initio and DFT results 

reasonably. The PIMD simulation for the unsubstituted HH-porphycene at T = 300 K 

shows that the double proton transfer mechanism dominantly occurs through the 

concerted pathway via configurations around the D2h second-order saddle point. This 

result is in high contrast with the previous classical simulation results. At T = 500 K, the 

contribution of the stepwise mechanism significantly increases. It was found that the 

isotopic substitution of the inner protons into deuterons affects the transfer mechanism. 

We have also carried out the PIMD simulation for HH-porphycene at T = 500 K with 
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the porphycene molecular configurations restricting planar structures. Interestingly, this 

simulation shows that the contribution of the stepwise mechanism decreases compared 

to the full-dimensional simulation result at the same temperature. From this result, we 

can qualitatively conclude that out-of-plane vibrational motions suppress the concerted 

mechanism presumably due to entropic effects. 

 

6.2  Conclusion for chapter 4 

We have carried out approximate quantum dynamical techniques simulations based on 

the CMD and RPMD methods using the EAM potential to study the H/T diffusion 

processes in -Fe in the temperature range of T = 1001000 K.  It has been found that 

the H and T diffusion has the crossover at about T = 500 K and 300 K, respectively, 

which implies that nuclear quantum effects are not negligible at these temperatures or 

lower. The result is quite similar between the CMD and RPMD methods as well as 

centroid density QTST based on the PIMD method, which seems to be convincing. The 

importance of quantum diffusion, even at the room temperature, could be a noticeable 

outcome that might be of help to tritium confinement problems mentioned in the 

introduction. 

 

6.3  Conclusion for chapter 5 

We have combined the RPMD method with the wave packet propagation method within 

the Ehrenfest mean-field formalism and then applied to the electronically nonadiabatic 

relaxation dynamics of the excess electron in the (H2O)50
−
 and (D2O)50


. The 

nonadiabatic relaxation lifetimes averaged over all RPMD trajectories were obtained to 

be (H2O) = 120 fs and  (D2O) = 207 fs, respectively. Our simulation results are 

comparable to the previous experimental results, (H2O) ~ 100 fs and (D2O) ~ 200 fs, 

respectively. It was found that the classical MD results give longer lifetimes and thus 

we conclude that nuclear quantum effects are playing an essential role in the present 

relaxation dynamics. Detailed nonadiabatic relaxation mechanisms are also discussed 

using the potential energy surfaces formed by the excess electron-water dipolar 

interaction. 
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Appendix A 

 

Velocity Verlet algorithm 

 

In this work, PIMD, RPMD and CMD simulations. We employed the Velocity-Verlet 

algorithm, which calculates positions and velocities of particles via Taylor expansion, 

i.e. the Newton’s equation-of-motion is second order in relative position (x) 

    2

dt
m

t
dtttdtt

)(
)(

F
vxx     (B-1) 

    dt
m

t
tdtt

)(F
vv      (B-2) 

)(
)(

t
m

t
a

F
     (B-3) 

where v is velocity, and m and F are mass and force, respectively. This algorithm also 

needs the both x(t) and v(t) at t = 0. The standard implementation scheme of the 

Velocity-Verlet algorithm is shown as follows 

1.   dtttdtt )(avv
2

1

2

1









       (B-4) 

2.     dtdtttdtt )(
2

1
 vxx       (B-5) 

    2

2

1
dtttt )()( avx          (B-6) 

  3. Displace to new positions.            

  4. Calculate the new forces.           

5. 
m

dtt
dtt

)(
)(




F
a        (B-7) 
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2

1
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Appendix B 

Discrete Variable Representation (DVR) 

 

The DVR method can solve accurately the energies and wave functions of bound states 

for any arbitrary one-dimensional potential function. 

First, one-dimensional Hamiltonian is defined as 

)ˆ()ˆ()ˆ()( xV
dx

d

m
xVpTxH 

2

2

2

1
    (C-1) 

Here, )(xΨ i is defined as a wave function obtained by solving this Hamiltonian. Using

)(xΨ i , Schrödinger equation is described as 

jijji EΨHΨ  ||     (C-2) 

The initial and final values of x are denoted as x0 and xN, respectively. Here, the wave 

function iΨ  can be approximated by an expansion in a set of orthogonally and 

linearly-independent basis functions i , 





N

1i

iiji
cΨ      (C-3) 

with cij is denoted as an expansion coefficient. From Eqs. (C-2) and (C-3), we can 

derive Eq. (C-4) as: 

jiijjjijijiij
VTVTHH     (C-4) 

with Kronecker delta function 
ij

 . ji V   in Eq. (C-4) can be obtained by using 

Gaussian quadrature method. This method is one of the numerical integral methods, and 

evaluates an integral as the sum of a finite number of terms: 





n

i

ii

b

a
xfdxxf

1

)()(      (C-5) 

where f(x) is an orthogonally and linearly-independent basis function, and xi is i-th node 

point. In addition,  is represented as weight function. From Eq. (C-5), ji V   is 

described as 
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 






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with )(


 xX
ii

 . x and  is represented as the -th node point and weight, 

respectively. Thus, Hamiltonian in Eq. (4) is rewritten as 
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if V(x) = 0 in Eq. (1), Hamiltonian is 
2

2

2

1

dx

d

m
xH )( . This Eigenfunctions are written 
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From Eq. (C-11), Kinetic energy matrix in DVR is described as 
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with 

Nnxiax
i
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Kinetic energy matrix can be solved analytically, and rewritten as 


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In addition, Hamiltonian are represented as 

ijiijij
xVTH )(     (C-15) 

Eigenvalues and Eigenvectors can be obtained by solving the DVR Schrödinger 

equation in Eqs. (C-8) - (C-15).  


