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Abstract

Nonlinear dynamical systems often produce complicatedwiehdue to interaction between the
systems. Such complicated behavior usually depends orectmity in networks, that is, network
topology. Thus, to analyze, model or predict complicatdublveor produced from the networks, it
is essential to understand the network structures as wtieasonlinear dynamics. Although it is
not so easy to investigate the interactions directly, redemelopments in measurement technique
makes it possible to observe multivariate time series. Thes possible to estimate the network
structure through the multivariate time series. If an obs@time series is continuous and smooth,
and sampled by a fixed interval, the network structures cagsbmated through statistical mea-
sures applied to the continuous time series. However, théngar dynamical systems are often
observed as event sequences, for example, firing of newoosrence timing in seismic tremors,
transaction timing in stock markets, lightning strike, awdon. Such event sequences are often
referred as point processes. It igfdiult to directly apply the conventional statistical me&suio
such point processes. Then, it is an important issue to deeeimethod to estimate network struc-
tures in case that the point processes are observed. lin#sistwe proposed estimation methods
of network structures only from the point processes.

In the proposed methods, we introduced three strategig¢s$rafisformation of point processes
into continuous time series, (2) using normalized distdretgveen point processes and (3) using
multi-dimensional scaling with the distance between ppmtesses.

In the first strategy, we applied the method of transformioigipprocesses into continuous time
series to detect the connectivity between elements. Asdhsfbrmation method, we used a kernel
density estimator. In the kernel density estimator, we hawselect the optimal kernel bandwidth
because the transformed time series depends on the bahdwWlitn we proposed two selection
methods of the kernel bandwidth: a kernel bandwidth opttnin method for estimating firing
rates and a selection method of an optimal time delay in ttiacabr reconstruction which is a
basic technique in chaotic time series analysis. By usinggthandwidth selection methods in the
kernel density estimator, we could reconstruct input imfation applied neurons from the point
processes, and estimate network structures from the pmoegses. In addition, we treat point
processes which have the information of the amplitude aadt¢giming as marked point processes.



If we use not only the information of the event timing but aflse amplitude information, we can
estimate more precisely the network structures. Then weneeid the transformation method and
the estimation method of network structure to marked paiotgsses.

Although these methods work well, one should be careful fdyafhese methods, because it
is possible to lose essential information of point procedsetransforming point processes into
continuous time series. Then, as the second strategy, weg$&d new methods for estimating net-
work structures from point processes by using normalizethdce between point processes. Using
the distance between point processes, we proposed two rasaatspike time metric céiecient
and a partial spike time metric ciiieient. The spike time metric céiecient defined by using the
normalized distance is a similar measure to the correlatafiicient. Then we applied partializa-
tion analysis to the spike time metric ¢beient. We experimentally confirmed that these measures
can estimate true connectivities from point processespveng spurious correlations. However,
these measures are heuristically defined. Then, to cadctilabretically, we proposed another es-
timation method by using multi-dimensional scaling witle tistance between point processes as
the third strategy. We also proposed estimation methodstwfark structures from marked point
processes by using distance between marked point procelSsgbermore, we proposed meth-
ods of estimating evolving network structures by dividihg point processes into small temporal
epochs and applying the method of estimating static netstctures. As a result, the proposed
method can estimate the evolving neural network structaneisthe direction of couplings with
high estimation accuracy.
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Chapter 1

| ntroduction

Interactions among elements in nonlinear dynamical syst#ten produce complicated behav-
ior. Such complicated behavior usually depends on conngctf elements in networks, that is,
network topology. Thus, to analyze, model or predict theavedr, it is inevitable and essential to
understand the network structures as well as the nonlingemdics. Although it is not so easy to
investigate the interactions between elements dire@btemt developments in measurement tech-
nologies make it possible to observe multivariate timeesediata. Then it is possible to estimate
the network topology through the multivariate time seriatad

On the other hand, complex phenomena are ubiquitous in heveeld and often observed as
event sequences, for example, firing of neurons, occurr@magy in seismic tremors, transaction
timing in stock markets, lightning strike, and so on. Suclrgsequences are often referred as
point processes. In the point processes, a point process Wwas information of only event timing,
such as a spike sequence, is called a simple point procesgeudn the amplitude information with
event sequences can be essential for several phenomeeaafople, financial systems, seismic
events, and so on [1, 2]. Such sequences are often referradréed point processes [3]. If the
observed time series from systems are smooth and contintieusonnectivity of the system can
be identified with several statistical measures [4, 5, 60rle of the most popular measures in the
partialization analysis is a partial correlation ffagent which is based on a correlation €ioaent
and the partialization analysis. Frenzel et al. proposetigbanutual information which is based
on mutual information and partialization analysis [4]. 8ktér et al. proposed a partial phase
synchronization index which is based on phase synchroaizanhd the partialization analysis [5].



Sameshima et al. proposed partial directed coherence wicased on the Granger causality
[6, 7] and the partialization analysis. Although the methdéscribed in Refs. [4, 5, 6, 7] work
well for the smooth and continuous time series, the applinatf these point processes remain
unclear. Then itis an important issue to develop methodsgtimating network structures in case
that point processes are observed. From this point of viethis thesis, we proposed estimation
methods of network structures only from point processes.

As a conventional method, Sameshima et al. proposed anat&timmethod of connectivity
between neurons by transforming spike sequences intoncanits time series and using the par-
tial directed coherence[7]. Although this conventionakimeel has good performance to estimate
connectivity between neurons from spike sequences, thisadénas an issue that the method how
to select the kernel bandwidth has not proposed. To tramsfigrthe spike sequence into the con-
tinuous time series, it is important to select an optimahkébandwidth because the transformed
time series depend on the optimal kernel bandwidth. To vedbis issue, first, we proposed two
selection methods of the kernel bandwidth: a kernel banitivagtimization method for estimating
firing rates and a selection method of an optimal time delayhénattractor reconstruction which
is a basic technique in chaotic time series analysis. By usiege bandwidth selection methods
in the kernel density estimator, we could reconstruct inpigrmation applied neurons from the
point processes and estimate network structures from thd pmcesses. In addition, we treat
point processes which have the information of the amplitaié event timing as marked point
processes. If we use not only the information of the evenngnbut also the amplitude informa-
tion, we can estimate more precisely the network structuresn we extended the transformation
method and the estimation method of network structure td&eakpoint processes. Second, we in-
troduced a new strategy to estimate network structures finh@point processes: we used distance
between point processes. Victor et al. proposed a spikertigtac which is one of the statistic to
guantify a distance between two point processes [13]. Bygubia spike time metric, we proposed
a spike time metric caicient which is similar measure to a correlation fméent and applied the
partialization analysis to the spike time metric fitment. We checked the performance of the
proposed method in numerical simulations, and the redutiw $hat the proposed method exhibits
high performance. However, we have not theoretically pnavhy the measure works well. Then
we proposed a new method to estimate network structures fiaint processes by using multi-
dimensional scaling with the distance between point psEesThe multi-dimensional scaling is
a classical method for representing arrangement in theideasl space from a distance relation
[8]. Using the distance between point processes which kel by the spike time metric, we
can obtain the position vectors which represent the linelationship among spike sequences in
the Euclidean space, and applied a linear regression modtlet tobtained position vectors. Then



we could use the statistical measures of the partializati@alysis such as the partial correlation
codficient and the partial directed coherence because theseirasase based on the linear re-
gression model. We also proposed methods of estimatingonetstructures from marked point
processes by using distance between marked point procésseklition, we proposed estimation
methods of not only static network structures but also eéaglmetwork structures. It is important
to estimate dynamic structures, or to detect how the newtavark structure changes, because
one of the intrinsic properties in neural networks is leagni When the neural networks accept
external stimulation, neural networks change their stmast by learning. In the proposed method,
we divided the observed multi-spike sequences into smalbteal epochs. Then, we applied the
estimation method of the static network structure to theptamlly divided multi-spike sequences
and estimated their connectivities.

Figure 1.1 shows relation to chapters in this thesis. In Ghdhtwe reviewd the partialization
analysis and explained several statistical measures: d@ti@lpcorrelation cogicient, the partial
mutual information and the partial directed coherence. lapgiér 3, the methods of estimating
the network structures from point processes by transfaymint processes into continuous time
series was proposed. First, we proposed selection methdlle optimal kernel bandwidth. By
using the selection methods of the optimal kernel bandwidgthreconstructed input information
applied to a neuron from a point process. Next, we estimageslark structures only from simple
point processes using the transforming method. Furthegxtended the transforming method to
the marked point process and proposed the estimation methetwork structures from marked
point processes. In Chapter 4, we proposed the method ofastgmetwork structures by using
normalized distance between point processes. As the destaatween point proccesses, the spike
time metric proposed by Victor et al. [13] is introduced. Wegosed two measures, a spike time
metric codficient and a partial spike time metric ¢beient, using the spike time metric. In Chapter
5, the estimation method of network structures by usingadist between point processes and the
multi-dimensional scaling. We proposed the estimationhmgs of network structures from not
only simple point process but also marked point process.dtfitian, the estimation method of
evolving network structures is also proposed. Finally thesis is concluded with Chapter 6.
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Chapter 2

Partialization Analysis

In recent years, the several partialization analysis fotinoaous time series are proposed [4, 5,
6, 7]. In this chapter, we explain the partialization analysd several statistical measures.

2.1 Spurious Correlation

To estimate the connectivity between elements from timesewe quantify the similarity be-
tween two time series. However, we cannot estimate the cbritg between elements because
of the spurious correlation.

For example, if two elements,and j, are not connected, the correlation between two time
series takes zero because these time series fieeetit so much (Fig. 2.1(a)). However, if two
elements are driven by a common input, or indirectly coreetiut not directly connected, their
time series can have spurious correlation (Fig. 2.1(b), (W remove such a common influence,
the partialization analysis idfective. In the next section, we explain several statistitadsures.
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2.2 Statistical M easures

2.2.1 Partial Correlation Coefficient

The most general measure in the partialization analyskeipartial correlation cdgcient. Let

us consider time series dag(t), yo(t), ..., ym(t), (t = 1,2,...,n) are observedy, = %Z{‘zlyi(t),

Sj =+ X (i) — ¥)(y;(t) — ;). Then, a correlation cdicient is defined as

S12
o= . (2.1)
o V1152
Let us define linear multiple regression models as follows:
Yi(t) = a0+ agys(t) + asya(t) + -+ - + amym(t) + ex(t), (2.2)
Ya(t) = Do+ bays(t) + baya(t) + - - + brnym(t) + ex(b), (2.3)

wherea;, b are regression cdigcients, ande;, e, are residuals. The linear multiple regression
models can be written as:

8o + Agys(t) + &uya(t) + - - - + amym(b), (2.4)
bo + Days(t) + baya(t) + - - - + brym(t). (2.5)

ya(t)
ya(t)

Next, we estimate the regression fia@ents of linear multiple regression models as follows:

DEWM = D W)~ (@0 + AaYs(t) + Aaya(t) + -+ + Amym(t)))?, (2.6)
t=1 t=1
DM = > (3alt) - (00 + boys(t) + baya(t) + - - + brym(t)))? 2.7
t=1 t=1

Let us denote tha(ag, 8z, - - - , am) = Xty (Ya(t) — (80 + AsYa(t) + aaya(t) + - - - + amym(1)))®. Then
we calculate

0am

From these calculations, the estimated regressioffic@ats are obtained as:

oF oF oF oF
~ -0 —=0 =0 ---
aao > aag ’ aa4 » ’

So21+
& = _ 2221+ (2.8)

S22,11 '

11



whereS is defined by the equation

S11 S12 0+ Sim
S = 1 S 0 Sm . 2.9)
St S ** Smm

Here,S;; is the (, j)th-cofactor matrix ofS, andS;;y is the k, I)th-cofactor matrix ofS;;. In the
same way, the regression ¢eientb; are estimated as follows:

™ S i+
b = — =22t (2.10)
S11,22
From the Egs. (2.23) and (2.10), we can dengtgandv(t) as follows:
ut) = ya(t) - (8o + agys(t) + - - - + @mym(1)),
V(t) = Yo(t) — (Bo + Daya(t) + - - - + Drym(t)).
The correllation cofficient between(t) andv(t) is defined by the equation
Suwv
Fw = , (2.11)
RERVEPCY

andr,, is the partial correlation cdiécient. Therefore, partial correlation deient betweery; (t)
and y,(t) is the correlation cdé&cient betweery;(t) andy,(t) which removed regression from
ya(t),...,Ym(t). The partial correlation cdicient can be rewritten by using elements of the in-
verse matrix of the correlation matrix. Becalsg s, ands,, are rewitten as follows:

1< _
Sw o= - ;(yu(t) ~ Vo)
_ % t_zl((yi ) - 97 — (@) - Y0))°

= 000 0P~ 28040 - IOAO) ~ 58 + &) ~ )
t=1

= S — 26 Sk + & °S«

2 Sd ~
= S§i— (SiS2211 — SkS2213 — SiS2211) + _|a13<k
82211 Sik
_ 2 Shi o
= Si— =—(SiS2211 — SkS2213 — SiS2211) + — &1 S«
So211 Skk
S22
= S§i— Sy - 25 — + Si
I So211 2 I So11 I
So
= , 2.12
So211 ( )

12



Sw

Sw = Su (2.13)
S2211

LY 00 - (0 - 50
t=1

L300 - ) ~ i) ~ TN - 57) ~ Bul(®) - 50)
t=1

1< _ . e _
- Z((yi () = ¥ (yi(0) = ¥p) — a((y;(t) = ¥p) = ba(yk(®) = %) — - -
t=1
ba (Y (1) — ) (Yic(t) — Vi) + &b (yie(t) — )P
Sj — &1Sjk — 61$k + 516134«
« X P
Sj — &1Sjk — — Sk + a1b1 S«
Skk A
Sj — 281 Sjk + a1 S«
2

Si— g, (SiS2211 — SiSaa13 + S Sz211) + A1Sq
2211

S12
- S12-25j+ — + S

S2211 2 : S22,11 :
S12

822,11.

Sij

(2.14)

13



From Egs. (2.12),(2.13),(2.14), the partial correlatioaficient is rewritten as follows:

Swv
VSuwSw

S1
S2,

Yw =

5% o
S2211 S2211
S12
VS11S2,
3 SjSk — SkSjk
V(81180 S35~ )

(S Sk — SkSik)/A/ Si Sjj Si
\/(Sjjskk ~ S5 )(SiSk - S.Zk)/\/SiSjj§k
_ (siAVsiS;i) — (Sk/VSi S (Sik/y/Sj; S)

\/(1 ~ S5/Sii (L — S/ SiSw)
V12
\Y 511V22

012 Vij
VO 11022 V]
whereg;j is the , j)th element of inverse matrix of the correlation matvixvhich is defined as
follows:

Fi I Tk
V= lij T Tkj b (215)
Mk Tk Tk

The partial correlation cdicient measures the degree of association between two tines se
with removing spurious linear influences. However, in thed systems, it is often the case that the
influences are not only linear but also nonlinear. In thigieagcwe proposed a nonlinear partial
correlation co#ficient which removes spurious nonlinear influences. We ddrihe nonlinear
partial correlation co@cient from a multivariable nonlinear regression model.

We defined the nonlinear multivariable regression modgl(ofwith a set of 20— 2) controlling
variablesY = {y(t),y2(t)}.(k # i # j,k = 1,2,...,n) and that ofy;(t) with a set of 24 — 2)

14



controlling variables as follows:

Vi) = a0+ ) (3acayk(t) + Bak(t) + &(t), (2.16)
k=1
k;ti;tj

Yit) = bo+ Z(bZk 1Y) + bayR(D) + €(0), (2.17)
k¢|¢1

wheree (t) ande;(t) are residuals.

The averaged; is described by, = %Zfﬂyi(t), and the covariance betwegit) andyj(t) is
described bys; = %Zle(yi(t) = ¥)(y;(t) - ;). To estimate the unknown parametegsand by
of multivariable regression model, we use the method oft legqsares. The sum of squares to be

minimized are
T

]
DM = D) - (@o+ Z (Bac1yi(t) + aayZ(O))1 (2.18)
t=1 t=1

k;tl;&
T T J
D €M = Dyt - (bo+ Z (ba2Yk(t) + bayE(t)1 (2.19)
t=1 t=1
k¢|¢j
Let us denote tha (8o, &y, -~ ,an) = T 4fyi(t) — (20 + Z:k:,l_(azmyk(t) + axyg(h))}?, then we
calculate .
oF u
G = 22000+ Z (B 2Yidlt) + B2 V)) = (2.20)
k;tl;t
oF u |
Gy = 2O~ (@ Z(aZk Yilt) + 22O = (2.21)
k;tl;t
OF L |
el 2; Yi(t) - (80 + Z (Bak-1K(1) + AR ON WP = O, (2.22)
k;el;tj
forl #i# j,1=21,2,---,n. For Eq.(2.20),
T n T T
DN 80T = > (Baca ) WD) +ax ) W) =0, (2.23)
t=1 = t=1 t=1
k#i#]
Z (Azk-1Yk + azkyz) (2.24)
k:ﬁl¢]

15



We substituteay for Eqgs.(2.20), (2.21) and (2.22), and obtain the followatgiations folt # i #

L1=12--,n.
T n
DGO -F) = D (Bacabk(® — %) + 3y - 7)) = O, (2.25)
= porss
T n
DUGO -5 - D @acalk(®) - Y + 2RO - o)) = O, (2.26)
= JorEs
T n
Z{(yi(t)_yi)_ Z(azk—l(Yk(t)—Vk)+azk(Yﬁ(t)—?ﬁ))})nz(t) = 0 (2.27)
= orss
Subtracting Eq.(2.25) timés from Eq.(2.25) fol #i # j,| =1,2,--- ,n, we obtain
n
> (@acisa + aasa) = si. (2.28)
oty
In the same way, we also obtain from Egs. (2.25) and (2.27),
n
Z (Aok-1S02 + axSei2) = Sz, (2.29)
o
forl =1,2,---,n#1i # j. Here, let us describe the variance-covariance m&as
[S11 Sie - Sk Swe 0 S S
Si21 S22 o0 Sizk Sz v Sizn Spze
S - Sa Sz ot Sk Sk ot S Sm? ' (2.30)
Se1 Se1z 0 Sek Sae 0 Sen Sew
St S - Sk Sk - Sm Sw
[S1 Swiz o0 Sek Swae 0 Sen Ser?)

16



Then Egs. (2.28) and Eq. (2.29) are solved with the Cramerudtam

S11 Sz Sy Sin S1m2
S121 $p212 S12i Si2n S122
S1 Si2 S Sin Sin2
S21  §eg2 Sei S2n S22
St Sz Sni Sn S
5 = Sv1  Swea2 Swei Sven Swen2
S11. Sip2 Sik S Sin = Sip2
i1 Sz Sk Size Sizn Stz
Sa Sk Sk S SRS 0
Se1 Ser2 Sk Skekz Sen  Senz
Siu Sn2 Sk Swe S Sw2
Se1 S Sk S Sen S

Sei-2@i-2.@2i-1)

S(Zj—2)(2j—2),(2i—1)(2i—1) ’

whereS;;y is the K, I)th-cofactor matrix of thei( j) cofactor matrix ofS.

17
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In the same way, we obtain the following equation:

Si1 S12 0 S1j S S
Sip Sz 0 Sizj ccc Sizn Siwe
St S22 - St Sn S
S21 S22 v Sej ot S2n S
Si1 Sz 0 S S Sz
: Se1 Szt Sej 0 Sen Sere
I =
S11 S112 0 Sk Swe ot Sin S
Se1 S22 v Sk Skt Sizn Sz
Sa Sz 0 Sk S ot S Saw
Se1 Ser v Sek S@ke ot Sen Sew
St Sz 0 Sk Swe o S Swe
Ser Sviz 0 Sk S@e 0 Sen S
S - - .
@-H@-DEI- (2.32)

S2i-1)(2-1),2)-2)2j-2)

We substitutey"andby for Egs. (2.16) and (2.17) respectively and obtain the fathg equations,

LM = i) — B+ D (Bacayk(t) + (D), (2.33)
k=1
k#i#]
ui) = i) - Bo+ Y (Bacayil®) + bayZ(D). (2.34)
k=1
k#i#]
The variance of the residuai(t) and covariance between the residua($) andu;(t) are denoted
as
_ 1y 1) — T2 2.35
I DI CICEE (235)
1 T
Vi = W -T)> (2.36)
t=1
1 T
Vi o= 3 D) - T - T). (2.37)
t=1

18



The correlation coéicient between(t) andu;(t) is defined as

.. Vij
Pro(i, j) = . (2.38)

Eq. (2.38) is the nonlinear partial correlation fio@ent betweery;(t) andy;(t) resulting from the
nonlinear regression of(t) with Y and that ofy;(t) with Y. Because

1 ¢ i
i = o= () - 6) (2:39)
t=1
Sioi_2\2i_
_ (2j-2)(2j-2) , (2_ 40)
S@j-2)@i-2),2-1)@-1)
1 T
Vij = fZ(Uj(t)_Uj)z (2.41)
t=1
_ Si-1)@-1) (2.42)
Sei-1)@-1).0i-2@-2)
1 T
Vi o= U0 - T - 1) (2.43)
t=1
Si2i_1)(2i—
- (2i-1)(2j-2) ’ (244)
S(2i-1)(@-1),2i-2)(2i-2)
then we have
.. Vij
Pra(i, j) = (2.45)
___ S@-nei-2
_ S(2i-1)(2-1).(2j-2)(2j-2) (2.46)
\/ Si-2)2i-2) Si-1@-1)
S(2J'*2)(2J'*2)’(2i*1)(25*1) S(Zi*1)(2*1%(2]*2)(2]*2)
_ -S@i-1)2j-2) (2.47)
V(S@j-2)2i-2))(Si-1)@-1))
~Se-1er-2/y S8 ok e .49

N (S<21—2)(21—2))(S<2i—1)(z—1))/\/ $iSjj [ ket keizj Sz
_ —Rai-1)@j-2) (2.49)
V(R2j-2)2j-2)) (Razi-1)@-1)
—0(2i-1)(2j-2) (2.50)

\/O-(Zi—1)(2—1)0_(21—2)(21'—2)

19



wherec; is the {, j)th element of inverse matrix of the correlation matrix of E2,51).

a1 rzz oo+ Fin Ty oo Moo Tgapar oo o ez
r112 292 --- Tjp2 r(i+1)12 s rj]_z r(j+1)12 e I'yp2 212
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2.2.2 Partial Mutual Information

The mutual information can measure nonlinear dependebeirgeen two random variables.
Let us define a random variab¥ewith probabilitiesp, of outcomesx. Then entropy is defined by
H(X) = = 3, pxIn px. The mutual information between two random varia{eendY is described

by:
1(X,Y) = H(X) + H(Y) = H(X.Y) (2.52)

whereH(X, Y) is the joint entropy betweeK andY, defined byH(X,Y) = — 3., PxyIn pxy. The
mutual information is non-negativé(¥, Y) > 0), and bounded & 1(X,Y) < min{H(X), H(Y)}. If
X andY are independent, the mutual information takes zero.

However, the mutual information can be spuriously biasedidf elements are indirectly con-
nected. Then, partial mutual information i$extive to remove such spurious bias [4]. The part of
(X, Y) that is not inZ is the partial mutual informatioh(X, Y|Z) (Fig. 2.2(b)) given by:

1(X, Y1Z) = H(X, Z) + H(Y,Z) = H(X, Y, Z) — H(Z). (2.53)
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This partial mutual information can measure the mutual ddpace of the two time series with
removing spurious bias.

(@)

)

N T

(b)

Figure 2.2: Concepts of (a) the mutual information and (b)ghadial mutual information. The
partial mutual information (X, Y|Z) selects the part of mutual informatid(X, Y) which is not in

Z.

2.2.3 Partial Directed Coherence
The partial directed coherence (PDC) [6] is a frequency donsaunterpart of the Granger
causality [38] which is based on a multiple linear regressimdel.

The PDC [6] is defined by
A (f
Au( ) " (2.54)

0 = |

21



where

. 2.55
—aje’>  otherwise; (2.55)

Kaj(f)Z{

anda;(f) = (Aj, Ajz. ..., Ajn)T, andH stands for the Hermitian transpose.

The PDC takes values between 0 and 1. The PDC can quantifylardiyrbetween the two time
series with removing spurious correlations between thengxXample, in a case that two elements
are driven by a common input from another elements.
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Chapter 3

Estimation Method of Network Structure
by Transforming Point Processes into

Continuous Time Series

To estimate network structures from point processes, wpgsed methods of transforming
point processes into continuous time series in this chapter

First, we proposed a method for reconstructing hidden imgatmation applied to neurons by
transforming point processes into continuous time sehkext, we proposed estimation methods
of network structures by the transformation method fromps@npoint processes into continuous
time series. Third, we also proposed methods of estimattgoark structures from marked point
processes. In this method, we proposed a method of transignmarked point processes into
continuous time series.
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3.1 Reconstruction of Input Information from Point Process

Neurons code input information and generate spike traine.generated spike trains reflect the
input information. To understand how the information is eddby the neurons, it is an important
issue to reconstruct input information from spike trains.

Some methods for reconstructing input information fronkegequences are proposed. Sauer
proved that there is one-to-one correspondence betweesystem states and interspike interval
(ISI) vectors of stiiciently large dimension, and show that attractors of thgioal dynamical
systems can be reconstructed only from an output spikedfain integrate-and-fire neuron model
[26, 27]. Suzuki et al. examined fundamental charactegsif ISI reconstruction with a leaky
integrated-and-fire neuron model, and applied ISI recanstm to output of cricket wind receptor
cells[28]. Although these study are approaches to reaactstiput information from spike trains
which use information of ISI directly, Hori et al. proposednathod for reconstructing input in-
formation from spike trains as aftBrent approach [31]. In the Ref. [31], the method estimate
continuous input information from interspike intervalsumsing a sampling function. This method
can reconstruct input information with broader case thaShuer's method. However, they as-
sumed that a membrane time constant and a threshold of amatednown. Then it is dicult
to reconstruct input information only from spike trains.

Then, in this section, we proposed a method for reconstgdtidden input information ap-
plied to neurons. The information we used is only observekiespequences. In the proposed
method, we used a kernel density function to transform treeded spike trains to an instan-
taneous mean-firing-frequency time-series. Furthermweeeproposed selection methods of an
optimal kernel bandwidth. Then we reconstructed the hiddpuat information through this trans-
formation method. Consequently, we found that high corn@tatodficients and low normalized
mean square errors are evaluated between the input tines-serd its reconstructed time-series
by the proposed method.

3.1.1 Methods

Transformation from a spike sequence to a continuoustime series

To transform an observed spike train to a continuous timesewe used a kernel density
function. Using the kernel function, we can transform frospie train to an instantaneous mean-
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Figure 3.1: Transformation from a spike train to an instaatais mean-firing-rate time series

using a kernel function.

firing-rate time series (Fig. 3.1). Let us define a spike tamsi, (t; < t, < --- < ty). The
transformed time serielt) is described by the following equation:

N .
f(t) = N—lT > k(t;—t'), (3.1)
i=1

wherek(:) is a kernel function and is a bandwidth. As the kernel function, we used the Gaussian
function defined as follows:

k(t) = L ex (—f) (3.2)
= \/Z p > .

Selection Method of Optimal Bandwidth

We have to select the optimal bandwidth because the transtbtime series depends on the
bandwidth. To optimize the kernel bandwidth, we used a Kdyaedwidth optimization method
which is proposed by Shimazaki et al. [25]. The method is usspike rate estimation.

Method 1 The optimal kernel bandwidth is obtained by minimizing theam integrated squared
error (MISE) between the underlying rateand the kernel density estimate The MISE
is described by the following equation:

MISE = f ’ E[(A — 4)]dt, (3.3)

whereE[] is ensemble mean and interval of spike traireigy]. A cost function is defined by
subtracting the term of the MISE does not depend on the clubiakernel and assumption
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of Poisson point process as follows:
C(W) = E l//w(ti,tj) -2 E kW(ti - tj), (34)
0 i)

where

b
Yw(tis 1)) =f Ka(t — 1)k (t — t;)dt.

The optimal fixed kernel bandwidth is obtained as a minimafehe cost function.

Method 2 Attractor reconstruction[34] is a basic technique in clatiine series analysis. In the
attractor reconstructiomith dimensional state space is constructed for a time sgfieas
follows:

v(t) = {X(t), x(t + 7),--- , X({t + (M- L)1)}, (3.5)

wherer is delay.

It is known fact that states of finite dimensional dynamigeitems correspond in a one-to-
one manner with delay-coordinate vectors [29, 30].

To select an optimal time delay, the selection method usiatyat information betweer(t)
andx(t+7) is used [35]. In this method, the time delay that produceditkt local minimum
of mutual information betweer(t) andx(t + 7) is selected as an optimal time delay.

3.1.2 Numerical Simulation

To evaluate our method, we used a leaky integrate-and-fiF§ (hodel [34]. The LIF model is
described by following equation:
. v
v=——+I(t), (3.6)
To

wherev is the membrane potentialy is a membrane time constanand| (t) is the input at time
t. After the membrane potentiglreaches a thresholt] the membrane potentiglis reset tov. In
the simulations, we sét= 1,vy = 0, andrg = 5[ms].

In the simulations, we used periodic time series, quasog&rtime series, chaotic time series,
and real time series of Japanese vowel sgahds input time serielt).

In the simulations, we normalized time series data to a révegween 0 and 1. In accordance
with this, we sef) = 1 andvy = 0.

26



Case 1 Periodic Time Series

As the periodic time series, we used the sinusoidal funatibich is described by:
1 .
[(t) = > (sin(2rft) + 1). (3.7)
We set the frequencl = 100[Hz].

Case 2 Quasi-Periodic Time Series

As the quasi-periodic time series, we $@) to the variablex of the Langford systems [36]
which are described by the following equations:

X = (z-B)x—wy,

y = wx+ (z—ﬁs)y, (3.8)
= Al+az- % - (% +Y9)(1.0 + p2) + 2.

N*

We set the parametetis= 1,8 = 0.7,1 = 0.6, w = 3.5,p = 0.25, ande = 0.
Case 3 Chaotic time series

We set the input time seridt) to the variablex of the Lorenz systems [37] as the chaotic
time series. The Lorenz equations are described by thenimlgpequations:

X = —0X+ 0y,
y = —=XZ+IX-Y, (3.9)
z = xy—-bhz

We set the parametets = 10,b = 8/3, andr = 28. These parameters lead to chaotic
behavior of the systems.

To calculate Egs. (3.8), (3.9), we applied a fourth order RuKgtta method with integration
step 0001. We used 1Q@O00 data after a period of transition.

Case4 Real time series

The above mentioned time series are generated from nurhmackels. Then we sé(t) to a
time series of Japanese vowel soufadga male subject, sampled at 44[kHz]) as a real time
series.

3.1.3 Realts

We show the results of the bandwidths calculated by the ndsthoand 2 for each input time
series in Fig. 3.2. Fig. 3.2(a) shows results of the costswthe bandwidth is changed in the
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method 1. Fig. 3.2(b) shows results of the mutual inforrmatidnen the bandwidth is changed in
the method 2. The optimal bandwidth is obtained when the@@sand the mutual information are
minimum in the method 1 and the method 2, respectively. Flemesults, the optimal bandwidths
are calculated as shown in Table 3.1.

C(v)
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-2000
0

guasi-periodic
chaos
real -
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15 20
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25

30

Mutual information

periodic -
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10

15 20
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(b)

Figure 3.2: (a) Costs and (b) mutual information when the tédiths are changed.

Table 3.1: The optimal bandwidths calculated by the metioaisd 2.

method 1 | method 2

periodic 10.02 [ms]| 3.80[ms]
quasi-periodic 2.85[ms] | 4.81 [ms]
chaos 5.27 [ms] | 3.92[ms]
real 0.51 [ms] | 0.36 [ms]

Next, in Fig. 3.3, we show results of transformed time sedrni@s each input time series using
the obtained bandwidth. In Fig. 3.3, upper figures show itipug¢ series and transformed time
series, and bottom figures show spike trains obtained freni.th model. In the case of periodic
time series (Fig. 3.3(a)), we can see that the input timesamd the transformed time series with

28
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the method 1 and 2 are overlapped. However, in the case ofuth&-geriodic time series (Fig.
3.3(b)), the transformed time series are not similar totipeli time series because the bandwidths
are fixed. On the other hand, in the case of the chaotic timessand real time series (Fig. 3.3(c),
(d)), the transformed time series are similar to the inpnétseries in spite of complicated behavior.
To evaluate the calculated bandwidth quantitatively, westigated correlation céfecients and
normalized mean square error (NMSE) between the input teniesand transformed time series
when the bandwidtA is changed (Fig. 3.4). From the results. the correlatiorffoents are
low and the NMSEs are large when the bandwidth is too smalborddrge However, when the
bandwidths are calculated by the method 1 and method 2, thelation codficients are close to
unity, and the NMSEs are close to zero.

We also show correlation diagrams between the input timesand the transformed time
series and the correlation d&eients in Fig. 3.5. From the results, we can identify thatitppes
correlations exist.

In addition, we compared reconstructed attractors in detardinates [29, 30, 34] from the
input time series with these of the transformed time sef&$.3.6). In Fig. 3.6(3) (b), we set
time delayr = 1.0[ms]. In Fig. 3.6(c), we set the time delay= 1.9[ms]. In Fig. 3.6(d), we set
the time delayr = 1.2[ms].

On the other hand, the results of quasi-periodic time sare$w accuracy. In the simulations,
we set the low firing rates. We confirmed that, if we set the Hiighg rates, we can reconstruct
the input time series with high accuracy.
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Figure 3.3: Input time series and transformed time serighi®ynethods 1 and 2. Bottom figures
show spike trains obtained from the LIF model.

30



1 T 1
- - """“"‘l‘"‘-“"
@ Q@
Qo 0.5 | ©
=] =
[} [}
o w o W
c 0 e {os5 2
IS % & Correlation coefficient —a— : %
E El NMSE ——
© o5l °
5] ' S
O O |
M
R L VU UUTTOUY 4 W | By S . SOUTUOUOUTUUN , 0
0 5 10 15 20 25 30
T [ms] T [ms]
(a) periodic (b) quasi-periodic
1 M ! 1 T T T T 1
E 1 E 1
(] (V]
S 05 r ' 8 05 r "I"\‘-—.““M
= 1 b= 1
(] (0]
3 ' o3 ' . - o
5 0 . Correlation coefficient —s— | 0-5 Z 5 0 . Correlation coef’\f‘l&grg 2105 2
3 | NMSE —+— B | |
2 057 : 2 057 :
o ! [e] !
© M O 1
-1 L L L L 0 -1 L L L L 0
0 5 10 15 20 25 30 0 0.5 1 1.5 2 2.5 3
T [ms] T [ms]
(c) chaos (d) real
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Figure 3.6: Reconstructed attractors in delay coordinates input time series (left), transformed

time series by the method 1 (middle), and the transformed semies by the method 2 (right) with

To = 5.0.
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3.2 Estimation Method of Networ k Structurefrom Simple Point

Pr ocesses

In the previous section, we used the transforming methad &spike sequence to a continuous
time series. Using the transforming method from a spike eecgl to a continuous time series,
we can use the time series analysis method for continuouwsdaries. Then, in this section, we
use the transforming method to estimate network structuoesspike sequences. We applied two
methods to transform spike sequences into continuous tness The first one is an interpolation
of inter-spike intervals by sinusoidal waves. The secoraisa kernel density estimator [25] with
theoretical optimization of its kernel bandwidth. In adulitt we applied the partial correlation
analysis to the transformed continuous time series.

3.2.1 Methods of Transforming Point Processes into Continuous Time Se-
ries

In order to transform the spike sequences into continuouws $eries, we applied two transform-
ing methods to the spike sequences.

Let us describe thgth spike in theith spike sequence a’; Then, theith spike sequence is
described as = {t!, t‘z,...,t:i} wherel; is the last index ofs. Firstly, we interpolate thgth

segment (inter-spike interval, 1SI) bounded by two adjamsqzr'rkes,t‘j andtij+1, by the following

equation:
. 1 1 2« o .
X;(t) = 5t5 cosﬁ(t —t), ( <t<ty,), (3.10)
j
whereT; =t , —t. Then,x(t) (j = 1,2,...,li-1) is concatenated to produce a transformed

j+1
continuous time series from tind spike sequence. In Fig. 3.7, a spike sequence and conaisgo

transformed continuous time series are shown. In metho@ Zamsformed continuous time series
from spike sequences by using the kernel density estimator.

We used the Gaussian function as the kernel function. Theekdensity function is described
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X(t)

Figure 3.7. Example of transformation of a spike sequenteancontinuous time series by the
method 1. Blue lines indicate spike timings and the red cumdecates transformed continuous

time series.

by the following equation:

. Lot—t
fi (t) = |.iw Z K(T’) (3.11)

=1

wherew is the band width an#(-) is the kernel function. The Gaussian function with mear zer

and unit variance as a kernel function is defined as:
K(t) = L e (3.12)
Vor '

In Fig. 3.8, an observed spike sequence and correspondingfdrmed continuous time series
are shown. Here, the bandwidthused for the kernel estimation is optimized by the method for
selecting a fixed kernel bandwidth [25] (refer to the methaad Sec. A.2).

3.2.2 Simulations

We examined the validity of the proposed method using a madtieal model. In our numerical
experiments, we assumed that we can only observe asynawepike sequences while the true
network structure is unknown.

In our experiments, to evaluate the validity of the proposeghsure, we used the Izhikevich
neuron model [14]. The dynamics of th# neuron in the neural network is described by the
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Figure 3.8: Example of transformation of a spike sequenteancontinuous time series by the

method 2. Blue lines indicate spike timings and the red cumndecates transformed continuous

time series.

following equations:

d\gI ft) = 0.04v(t) + 5w(t) + 140— wi(t) + li(t),

dui(t) _ ) T

g = Abv®) - u),

if vi(t) > 30 [mV], then{ ::'E?):Z © +d (3.13)

wherev;(t) is the membrane potentiali(t) is the membrane recovery variable; amd, ¢, andd
are dimensionless parameters. The parameters areaet @02,b = 0.2, ¢ = —-65, andd = 8.
If vi(t) > 30[mV], v; andy; are reset according to Eqg. (3.13). The varidhf is the sum of the
external and synaptic inputs from coupled neurons whickeimdd as follows:

nm
li(t) = ZzgijVVij(S(t—tlj(—Tij)+577i(t) (3.14)

j=1 k=1
whereg;; is a coupling strength fromto i, 7;; is a delay time betweeinand j which is randomly
set to a value between 1 [ms] to 4 [ms], amglis the {, j)th element of the connection matrix of
the network structure. If the neurons are coupled fiaimi, wi; takes unity. Otherwisey;; takes
zero. The amplitude of the external inputs is set to 5 timé@¥ wheren;(t) is a Gaussian random
number with a mean value and standard deviation of zero aity] tespectively.

We generated a complex network structure having a reguigrtapology with 100 neurons
by a random rewiring of the synaptic connections betweemamsuin the same manner as that
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described in Ref. [15]. We set the parametefthe number of edges in the regular network) to
four andp (rewiring probability) to O1.

We conducted numerical experiments according to the fatigyprocedures. First, to generate
multi-spike sequences, we constructed a neural netwonlguise Izhikevich simple neuron model
and applied external inputs to the neural network. Secoedransformed the spike sequences into
continuous time series. Third, we calculated the partialetation codicient of the transformed
continuous time series. If théh and thejth neurons are coupled, the partial correlationfcoent
becomes large. On the other hand, if these neurons are noiedpit becomes small. Finally, we
classify coupled pairs and uncoupled pairs by the Otsultiotdgg [17] which is based on a linear
discriminant analysis.

To evaluate an overall estimation accuracy, we comparedstimated network structure with
the true network structure. For this evaluation, we useddhawing index:

Yhilensdi; + (1 - ai)(d = &j))
N(N -1)

whereq;; anda; ; are the directional connectivity of the true network staetand the estimated

network structure, respectively. If thth and jth elements are (estimated to be) couplegand

@;j take a value of unity. If they are nat;; anda;; take a value of zero. [E approaches unity, the

estimation accuracy increases.

E (3.15)

3.2.3 Reaults

To compare the proposed methods which transform spike segsénto continuous time series
and the conventional method which uses APSTMC, we also apphl APSTMC [12] to the same
network structure.

Figure 3.9 shows histograms of APSTMC and partial corretatiodticients. Although the
conventional method and the method 1 can separate couptedremoupled pairs of neurons, a
few uncoupled pairs are estimated as coupled pairs. Howewapled and uncoupled pairs of
neurons are more clearly distinguished by the method 2.

In Fig. 4.7, we show the results when the rewiring probabistchanged. In the method 1, the
estimation accuracy for the random netwopk= 1.0) is low. However, the conventional method
and the method 2 show high estimation accuracy for all regigrobabilities.

We examined how the estimation accuracy depends on the tahgpmch for observing spikes
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(Fig. 5.6). The conventional method exhibits higher accythan other methods when the tempo-
ral epoch of the spike sequences is shorter than 20 [s]. Hawer the method 2, the estimation
accuracy is higher than the other methods when the tempuoaheof the spike sequences is longer
than 20 [s].

In Fig. 3.12, we show the results when the coupling strerggthanged. If the coupling strength
becomes larger than four, the estimation accuracy of theecgional method is high. If the cou-
pling strength becomes larger than five, the estimationracguecomes higher in the method 2.
If the coupling strength becomes larger than six, the estimaccuracy of the method 1 is the
highest.

In addition, we show the results forftérent network sizes (Fig. 4.9). In the method 1, the
estimation accuracy worsens as the network size incre&i®gever, the estimation accuracy in
the method 2 and the conventional method are still high eviine inetwork size is large.

From these results, the estimation accuracy in the methsdb@tier than the other methods. In
this neural network model, we usedtdrent dynamics of neurons; regular spiking, intrinsically
bursting, and chattering neurons. If two neurons @edent dynamics are coupled, the correlation
between the two transformed continuous time series dexs@aghe conventional method [12] and
the method 1. However, in the method 2, true relation candmtified if observed spike sequences
of two neurons are transformed with an optimal bandwidtepahough the dynamics of the two
neurons diers (Fig. 3.14).
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Figure 3.9: Histograms of (a) PSTMC in the conventional rod{tpartial correlation cd&cients
by (b) the method 1 and (c) the method 2. The number of neuso®80. The temporal epoch
of spike sequences used for estimation is 50 [s]. Histogi@nadl of the PSTMC and the patrtial
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blue. The black vertical lines show thresholds decided byatsu thresholding. If the PSTMC and
the partial correlation cdicients are less than the threshold, corresponding neurertdassified

into the uncoupled class.
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Figure 3.10: Estimation accurady of the network structure for rewiring probabilitigs The
number of neurons, the temporal epoch and the couplinggttrere 100, 50 [s] and 6. The red
line indicates the conventional method, the green lineciagis the method 1 and the blue line

indicates the method 2. Error bars with 20 trials are alswigeal.
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method, green line indicates the method 1 and blue line aelscthe method 2. Error bars with 20

trials are also provided.
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Figure 3.13: Estimation accura&yof the network structure for several network sizes. The tem-
poral epoch and the coupling strength are 50 [s] and 6. Thédirredndicates the conventional
method, the green line indicates the method 1 and the blaerldicates the method 2. Error bars

with 20 trials are also provided.
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Figure 3.14: Observed spike sequences (blue) and transfbtimes series (red) in case that the
regular spiking (RS) neuron and the chattering (CH) neurorcaueling.
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3.3 Estimation Method of Network Structures from Marked

Point Processes

In the Sec. 3.2, we have treated observed event sequencgsoag process, which means that
the observed event sequences do not have amplitude informiatt only event timing. However,
the amplitude information can be essential for several phnama, for example, financial systems
and seismic events. Such sequences are often referred akedrpaint process. If we use not
only the information of the event timing but also the amplgunformation, we can estimate more
precisely the network structures. In this section, we psepa method for transforming a marked
point process into a continuous time series. In additionap@ied the partialization analysis to
the transformed continuous time series and estimated cowigof nonlinear dynamical systems:
the coupled Lorenz systems [37].

3.3.1 Method of Transforming M ar ked Point Processesinto ContinuousTime
Series

We used a kernel density estimator for transforming an esequence into a continuous time

series in Sec. 4.2. To apply this method to a marked pointgssave modified the kernel density

estimator by using the amplitude of marks. Let us definetihe@vent timing of theéth marked

point process data d¢l = 1,2,..., N), and the amplitude atash(t\). Then, we use the following
equations to transform the marked point process data inbm@ncious time series:

N
fi(t) = Z K(ﬂ)h(t;), K(t) = %(1 + cOS tt), (3.16)

whereT is the bandwidth an&(t) is the Hann window function. Here, the bandwidths opti-
mized by a method for selecting a fixed kernel bandwidth [25].
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3.3.2 Simulations

To confirm the &ectiveness of our method, we produced marked point proaadrdm the three
coupled Lorenz systems [37] described by the following équa:

xi(t) —pXi(t) + pyi(h),
yi(t) —Xi(0z(t) + rxi(t) — yi(t) + 2 kijyit — 7ij), (3.17)
z(t) % (Oyi(t) — bz(t),
with i, j = 1,2, 3. We set the parametess= 10,r = 28, andb = 8/3. The delays are settq, = 5
andr,3 = 15. The coupling strengths are sekig = ko3 = 8 andk;s = 0. The coupling structure
of the systems is shown in Fig. 3.15. We definedIthesvent timingt as the time whey;(t)|

takes thdth local maxima and the amplitude of thl event asy;(t))!.

£ L

(@) (b)

Figure 3.15: Coupling structures: (@) true structure andnfl®estimated results for the three

coupled Lorenz systems.

3.3.3 Results

First, we examined how the mutual information and the cati@h codficients between the orig-
inal continuous time serigg and the transformed time series depend on the band Widgg.
3.16). When the bandwidth is equal t®7which is calculated by the method for selecting a fixed
kernel bandwidth [25], the correlation d@eients and the mutual information are high.
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Second, we estimated the connectivity of systems only freemtetimings (we selu(ti') =1 for
i=123andl =1,2,---,N). We show the results of the cross mutual information (Fid.83
(a)—(c)) and partial mutual information (Fig. 3.18 (d)}(ffrrom the results, it is dicult to detect
coupling because no peaks are found. In contrast, if we useniyevent timingd! but also the
additional informatiorh(t)), the results show clear peaks (Fig. 3.19). From the restittse cross
mutual information (Fig. 3.19 (a)—(c)), we can identify gh@eaks. These results indicate the
connectivity of the coupled Lorenz systems as Fig. 3.15(mwever, the connectivity between
the systems 1 and 3 is misestimated because of a spuriousibiasmove the spurious bias, we
used the partial mutual information. In Fig. 3.19(d)—(fg show the results of the partial mutual
information. The results shown in Fig. 3.19(e) indicatet tha connection exists between the
systems 1 and 3. These results indicate that we can estihatmhnectivity of the systems as
Fig. 3.15(a) which is the true connectivity of the systenmsaddition, we can clearly identify the
delaysri, = 5 andry3 = 15 (Fig. 3.19(d)—(f)), because the peaks occur at thesesalu

Correlation coefficient —a—
Mutual information —— ;¢

g O 14 ¢
g 09 13 2
S 085 e g
*% 08 3.9 Tz
e o075 0.8 g
8§ o5 0.7

2 4 6 8 10 12 14 16 18 20
T

Figure 3.16: Correlation c@iécients and mutual information between the original corgimitime

series and the transformed time series with the bandwidth
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Marked point process data 4

y(@®, (0

Figure 3.17: Example of the marked point process data gttefeom the coupled Lorenz sys-

tems. The transformed time series by using Eq. (3.16) wetogtimal bandwidth = 1.5 from

Fig. 3.16) and the original continuous time series.
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Figure 3.18: Averaged mutual information for 20 trials: (&l f), (b) I(f1, f3) and (c)I(f,, f3)

and averaged partial mutual information for 20 trials: (dji, f2|f3), (e) 1(fy, f3|f2) and (f)

| (2, f3lf1) when we use only event timingsfor the coupled Lorenz systems.
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Figure 3.19: Averaged mutual information for 20 trials: (&, f,), (b) 1(fy, f3) and (c)I(fy, f3),

and averaged partial mutual information for 20 trials: ({ji, f2|f3), (e) I(fy, fa|fx) and (f)

| (2, f3lf1) when we use not only event timingsbut also the amplitude informatidn(t)) for the

coupled Lorenz systems.
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3.4 Summary of Chapter 3

In this chapter, we proposed method of estimating netwarkctires by transforming point
processes into continuous time series.

To transform point processes into continuous time seriesysed the kernel density function.
When the kernel function is used, we have to select the opbaradwidth because the transformed
time series depends on the bandwidth. Then we used two iselenethods of the kernel band-
width. As the first method, we used a kernel bandwidth opttinin method which is proposed by
Shimazaki et al. [25]. The method is used in spike rate esitimaAs the second method, we also
used the attractor reconstruction[34] which is a basicriighe in chaotic time series analysis. By
using these methods, we found that high correlatiorffcents and low normalized mean square
errors are evaluated between the input time-series anglatgstructed time-series.

Using the transformation method, we estimated networlcgiras from simple point processes.
To evaluate the validity of the proposed method, we used aaheetwork constructed from a
mathematical model of the Izhikevich simple neuron modd] [@nd generated multi-spike se-
guences. The results show that our method exhibits higlopeance.

In additon, for marked point processes, we extended theogempmethod. We proposed a
method of transforming marked point processes into coatisuime series which is based on
the kernel density estimator. Then, we applied the pazatibn analysis to the transformed time
series. As a result, we can estimate the connectivity of thupled Lorenz systems from marked
point processes.
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Chapter 4

Estimation Method of Network Structure
Using Distance between Point Processes and

Partialization Analysis

In Chapter 3, we proposed estimation methods of network tstree by transforming point
processes into continuous time series. Although theseadstivork well, one should be careful
to apply these methods, because it is possible to lose edgafdrmation of spike sequences by
transforming spike sequences into continuous time seFigan this point of view, we proposed
methods for estimating network structures only from ponocess data without transforming point
process into continuous time series. In the proposed msthed use distance between point
processes.
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4.1 Estimation Method of Network Structurefrom Simple Point

Pr ocesses

In Section 4.2, we propose an estimation method of netwouksires from spike sequences as
simple point processes. In the proposed method, we use @ #pi& metric which is one of the
statistic to quantify a distance between two spike sequeeand apply the partialization analysis
to the spike time metric..

411 SpikeTimeMetric

The spike time metric was proposed by Victor and Purpura. [[iBihe spike time metric, two
operations are used to quantify the distance between twe spguences; then, the costs incurred
to carry out these operations are defined to measure thendasiy between spike sequences.
The first operation is deletion or insertion of a single spike cost of both of which is unity. The
second operation is a movement or temporal shift of a singgke sthe cost of which is proportional
to the interval for which the single spike is moved. For exlnib a spike sequenck is the same
as a sequencA’ except for single spikes that occurtdtin A andt3, in A, the costcy(A, A)
corresponds tajjty — t;‘{,l. The parameteq determines which operation takes precedence in the
deletion and insertion, or the movement. In the spike tim&imEL3], a metric distance between
two spike sequencesandZ’ is defined as

N-1
Dy(Z.2') = min {Z ca(Vio vm)} , (4.1)
k=1

whereV,, V,,...,Vy are elementary steps froito Z’ [13]. The metric distance between the
two spike sequences is the minimum total cost of a set of eleangsteps that transforms a spike
sequence into another spike sequence. An example of tramsfpZ to Z’ is shown in Fig. 4.1.
FromV; (=Z) to V3, we move two spikes. Frov; to V4, we insert one spike (the fifth one). From
V4 to Vs (=2'), we move a single spike to reagh Consequently, the cost of transformidgnto
Z'is 1+ q(At; + Aty + At3) in this example.
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Vi =2 I
.\ cq(Vi,Va) = q x Aty
Vo ;
Aty
, Cq(VQ, Vg) =q X Ato
V3 ;
AtQ. .
isertion cq(V3, Vi) =1
Va |
/. Cq(V4, V5) =q X Ats3
Vs =2’ ;

Ats

Figure 4.1: Example of transforming the spike sequehioeo Z'.

Spike time metric coefficient and partial spike time metric coefficient

Let us denote théth and jth spike sequences observed from a neural systeX| asd X,
respectively. Using Eqg. (5.8), the spike time metric fGogent (STMC) between the two spike
sequenceX; andX; is defined as:

Dy(Xi, X))
max(Dq(%. X))}

Sq(Xi, X)) = 1- (4.2)

The STMC is a normalized measure of the spike time metric,itatattes a value between 0 and
1. The STMC is similar to a function of the correlation Gosent betweerX; andX; whereas the
spike time metric (Eq. (5.8)) is a function of the distanceasenX; andX;. If two neurons that
produceX; and X; are coupledSy(X;, X;) is expected to become greater than that in the case in
which the two neurons are uncoupled, because the distahgedseX; andX; in the coupled cases
becomes less than that in the uncoupled cases.

Although the STMC is a measure similar to the correlationfiocient, it can be spuriously
biased if the two neurons are driven by a common input froreratieurons. To avoid such a bias,
as in the case of deriving a partial correlationf@i@gent from the correlation cdicient, the partial
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spike time metric (PSTMC) between the two spike sequeKcaadX; is defined as

a(i, j) ‘
Va(i. e I
wherea(i, j) is the (, j)th entry of the inverse matrix d,(X;, X;). The PSTMC can reveal the
unbiased correlation between the two spike sequences lvnegnany spurious correlation as the
partialization analysis does. In other words, the PSTMCkev@s a partial correlation cfigient

between the two spike sequences based on the spike timemdsing the PSTMC, we can find
hidden relations between neurons and estimate the netivodtige.

Py(X, X)) = \

4.1.2 Simulations

We examined the validity of the proposed measures using laamettical model. In our numer-
ical experiments, we assumed that we can only observe ampmuls spike sequences while the
true network structure is unknown. To evaluate the validftthe proposed measures, we used the
Izhikevich neuron model.

We checked the validity of our method under the following twemditions. The first condition
is that the network is homogeneous; the neurons are onlyjaregpiking (RS) neurons whose
parameters are = 0.02 b = 0.2, ¢, = —65, andd, = 8. The second condition is that the network is
heterogeneous; the neurons are RS, intrinsically burstB)g &nd chattering (CH) neurons. The
parameters were set go= 0.02b = 0.2,¢; = —-65+ 15r2, andd; = 8 — 6r? wherer; are uniform
random numbers between,[[]. The synaptic weight was set to six and the amplitude of the
external inputs was five timés, whereG was a Gaussian random number with a mean value and
standard deviation of zero and unity, respectively. Forstiee of simplicity, we did not consider
conduction delays.

To apply our proposed measures to the spike sequencesnpastant to decidg appropriately,
because it determines a relative weight between the twaatpas in the spike time metric: dele-
tion and insertion, or the movement. Then, we pre-examB€s;, X;) andP,(X;, X;) by changing
g, as shown in Fig. 4.2. From Fig. 4.2(b), if we sgibetween 50 and 100, the network structure
can be accurately estimated By, because the disparity between the coupled and uncoupled el
ements is clearly distinguished B4. Then, we experimentally decidponly with the observed
asynchronous spike sequences in the following manner.

First, let us assume that we have two spike sequeAcesd A’ that are identical except for a
single spike that occurs & in A andt, in A’. To transformA into A, we have two operations.
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The first one is the insertion and deletion whose cost is the ¢bst of each is unity). The second
one is the movement whose costjj§ — t& |. Then, solving the equation=2qt3 — t& | (in the case
in which the costs are same), we obtain a critical valug ¢f 2 < gt — t&|, the insertion and
deletion are selected, otherwise the movement is selectedjecideq appropriately, we have to
define a possible range for the movement of a single sfjjket3,, because it decides the critical
values ofg. Then, we evaluate a maximum value of the average minimum difference by

1Y
N kzz; rn||n|tik -t

whereN; is the number of spikes in thith sequence antf is the kth spike timing in theith
spike sequence. Figure 4.3 shows an example. From Fig.n& 3p&aximum value of the average
minimum time diference is 0.025 [s]. To obtain the critical valuegpfwe solve the equation
2 = glt3 — t§| by substituting 0.025 it} — t3,.. Then, we have = 80; this agrees well with the fact
that if we setg between 50 and 100, the disparity between the coupled araliplex elements is
clear (Fig. 4.2(b)). Although this determination proceslig heuristic, we have confirmed that it
works well in other cases.
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Figure 4.2: Relation betweeq and (a)S, and (b) P4 for the 100 regular ring topology of a
homogeneous network. Blue solid lines indic&teand P, between coupled elements. Red dotted
lines indicateS, and P, between uncoupled elements. Error bars which indicatermimi and

maximum values with 30 trials are also provided.

If the ith and thejth neurons are couple&,(X;, X;) and Pq(X;, X;) might increase. On the
other hand, if these neurons are not coupled, these measigltsdecrease. Thus, to find coupled
neuron pairs, we extracted higher values of these measyrdgstriminating the coupled and
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Figure 4.3: Frequency histogram of an average minimum tirs&mkce between two spikes for
the 100 regular ring topology of a homogeneous network. Beréoal line indicates a boundary
between the deletion and the insertion or the movementsdt iadicates the maximum value of

the histogram.

uncoupled pairs by calculating a threshold. To exclude abjestive discrimination, the threshold
is decided by the Otsu thresholding [17], which is based oneat discriminant analysis.

To evaluate the overall estimation accuracy, we compareéstimated network structure with
the true network structure. For this evaluation, we intamtlitwo evaluation indices, G-and
U-U, defined as follows:

C_é - M’ and
i ) Wij
U-0 Zi,j(l_wij)(l_VNVij)’
2ii(1—wij)

wherew;; andw; are the connectivity of the true network structure and theneded network
structure, respectively. If thih and thejth elements are (estimated to be) coupleg,andw;
take unity. If they are notw; andw; take a value of zero. If G5 and U-U approach unity, the
estimation accuracy increases.
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4.1.3 Results

We checked the validity of our method in simple networks. Aspie networks, we used 3-
neuron and 4-neuron network structures (Fig. 4.4).

We compared the values &; and P, (Fig. 4.5, blue and red). In the case of three neuron
network, the STMC of uncoupled pairs is zero (Fig. 4.5(ayaupled, red), because the uncoupled
pair is the most dissimilar in all neuron pairs. Howeverncoupled pairs of neurons, the PSTMC
is larger than the STMC. In the case of four neuron networkStAIC of the uncoupled pairs is as
large as that of the coupled pairs by spurious correlatibigs @.5(b)). However, the large STMC
becomes small in the PSTMC. As same as the case of the threenneetwork, the PSTMC is
larger than the STMC in the case that the STMC is small. Theeefwe used the STMC and
the PSTMC adaptively. In the adaptive measurdRqfX;, X;) is larger thanS,(X, X;), we used
Sq¢(Xi, Xj). The adaptive measure, called the adaptive partial sjke metric (APSTMC), is
defined as:

Aq(Xi, Xj) = min(Sq(X;, X)), Pq(Xi, X)), (4.3)

where min(, -) takes the value of smaller orfg,(X;, X;) or P4(Xi, X;). In the three neuron network,
Aq¢(Xi, X;) of uncoupled pairs is zero (Fig. 4.5(a), pink). In the foauron network, the APSTMCs
of uncoupled pairs are distributed within the range wheeevillue is small (Fig. 4.5(b), pink). In
the followir

(a) (b)

Figure 4.4: Network structures which are composed of (@etland (b) four neurons. The neurons

are mutually connected.

Next, to evaluate the performance of the proposed measergewerated a complex network
structure having a regular ring topology with 100 neuronsalmandom rewiring of the synaptic
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connections between neurons in the same manner as thaibeesier Ref. [15]. We also intro-
duced another complex network structure, namely, a sca&retwork [16]. We set the parameters
my (number of nodes in an initial network) to four amnumber of edges attached to the network)
to two, as in the case of Ref. [16]. In these networks, the meuape mutually connected.

For a small-world network whose components are homogenatinsugh our method can sep-
arate coupled (blue) and uncoupled (red) pairs of neurotis 8y, a few uncoupled pairs are
estimated as coupled pairs (Fig. 4.6(a)). However, couphetluncoupled pairs are more clearly
distinguished when we us&, (Fig. 4.6(b)). In the heterogeneous case, the distributionn-
coupled and coupled pairs widely overlap (Fig. 4.6(c)). Aeven in Fig. 4.6(d), coupled and
uncoupled pairs areftectively discriminated. In the homogeneous case of a Soagenetwork,
the discrimination of coupled and uncoupled pairs is imptbas in the case of the small-world
network when we uséy, (Figs. 4.6(e) and (f)). However, as compared to the smaildvcase,
coupled pairs are misestimated (Figs. 4.6(b) and (f)). l&ntyj the use ofA, realizes more clear
separation than the use 8§ (Figs. 4.6(g) and (h)). Then, the estimation accuracy ostae-free
network becomes lower than that of the small-world network.

In Fig. 4.7, we show the results of the small-world networkewhhe rewiring probability is
changed. The results show that the estimation of the sn@ldwtructure with the STMC depends
on the rewiring probabilityp (Fig. 4.7). In particular, the estimation accuracy for thadom
network (o = 1.0) is low. However, if we use APSTMC, the estimation accurawproves. In
addition, there is significant fierence in C€ and U-U between the STMC and the APSTME (
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< 0.05; two-sample-test) (Fig. 4.7).

In Fig. 5.6, we examined how the estimation accuracy dependthe temporal epoch for
observing spikes. @ of APSTMC for a small-world network is similar to that of ST\ and
C-C in both STMC and APSTMC is high even if the temporal epochhef $pike sequences is
short (Fig. 5.6(a)). However, the accuracy bylexhibits a significant dierence (Fig. 5.6(b)).
The estimation accuracy with APSTMC is high, whereas th#ét @iTMC is low. If the temporal
epoch becomes longer than 20 [s], the estimation accuratyARSTMC is high. On the other
hand, for the scale-free network, we obtain the same terdeitic the small-world case; however,
at least 30 [s] are required to obtain high accuracy efA{Fig. 5.6(d)). The estimation accuracy
of C-C is not improved (the value is less tha®0(Fig. 5.6(c)).

In Fig. 4.9, we show the results forftBrent network sizes. For all the network sizes, even
though the network is small-world or scale-free, the APST&ABibits a high estimation accuracy
of C—C and U-U (Figs. 4.9(a)—(d)). However, the estimation accuracy e€Gvorsens slightly
as the network size increases even if APSTMC is used.

We also examined how stable our method under noise influéige4.10). In this simulation,
the noise is classification error in spike sorting, and thisenoateu is the ratio of the number
of spikes replaced with other spike sequences randomlyl tin@lnumber of spikes in a spike
sequence. For the small-world network, the estimationraeyuwf G-C and U-U with APSTMC
is high if the noise rate is smaller than 0.2. On the other hand, for the scale-fremar&f the
APSTMC exhibits a high estimation accuracy ofU when the noise rate is smaller than 0.1.

Fig. 4.11 shows correlation diagrams between PSTMC andiogugtrength. From the results,
there is a correlation between PSTMC and coupling strefidtls. results indicate that we can see
a distribution of coupling strength from the distributiohtioe PSTMC.

In this thesis, we evaluated the performance of the estimaiethod for network structures by
the proposed measure using only spike sequences. Oursreloll that the estimation accuracy
of the small-world network is much better than that of theleséeee network. This result is at-
tributable to the large elierence between the firing rates of neurons in the scale-éweork (Fig.
4.12). In Fig. 4.12, we show the results of local estimaticcuaacy G-C; and U-U;, respectively
defined as

~ 2 (WijWik ;)
G-CG = ——.
2 Wij
~ 255((1 = wij) (1 — Wij))
U-u;, = .
Zj(l_Wij)

Even though a neuron has small connectivity or small degreestimation accuracy of;6C;
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decreases if the average degree of its adjacent neuronghiqfig. 4.12(a)). If the dierence
between the firing rates is large, the value of the spike tiragimincreases because the spike time
metric determines the insertion and deletion of spikes.rdfbee, the reduction in the estimation
accuracy of the scale-free network originates from thedaliference between the firing rates of
neurons.

We also compared estimation accuracy which estimated fremlmnane potentials with that
which estimated from spike sequences. In case of membraastjads, we estimated the network
structure by using a partial correlation ¢ogent. The results of estimation accuracy for several
temporal epochs are shown in Fig. 4.13. When the temporahapd®[s], the estimation accuracy
is high in case of membrane potentials. However, when th@deahepoch is longer than 20[s],
the result of PSTMC is almost same estimation accuracy astih@embrane potentials. Fig. 4.14
shows the results of estimation accuracy for several cogmtrengths. From the results, when
the coupling strength is smaller than 3, PSTMC exhibits @igéstimation accuracy than partial
correlation cofficient between membrane potentials. Although the estimatoguracy in case of
PSTMC is lower than the partial correlation ¢déaent between membrane potentials, the result of
PSTMC is almost same estimation accuracy as that of theapadirelation cofficient between
membrane potentials. The results of estimation accuracgeieeral sizes are shown in Fig. 4.15.
Similarly, the result of PSTMC is almost same estimatioruagcy as that of the partial correlation
codficient between membrane potentials.
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Figure 4.6: Histograms of (€4 and (b)A, for the small-world network, and (&4 and (f) A,

for the scale-free network comprising only RS neurons, ap&{@nd (d)A, for the small-world
network, and (g)Sq and (h)A, for the scale-free network comprising RS, 1B, and CH neurons.
The number of neurons is 100. The temporal epoch of spikeesegis used for estimation is 50
[s]. Histograms of all ofS, and A are indicated in red, and those of the coupled elements are
superimposed by blue. The vertical lines indicated a thoielsthecided by Otsu thresholding. ¥,

andA, are less than the threshold, corresponding neurons assfidesnto the uncoupled class.
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Figure 4.7: Estimation accuracy of the small-world netwsitkicture: (a) CE and (b) UL for
rewiring probabilitiesp. The number of neurons is 100. The temporal epoch of spikecsegs
used for estimation is 50 [s]. The network is comprising RS,dBd CH neurons. Red lines
indicate Sy and blue linesAq. * indicates a significant dierence between the STMC and the
APSTMC (P < 0.05, two-samplet-test). Error bars which indicate minimum and maximum

values with 20 trials are also provided.
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Figure 4.8: Estimation accuracy of the network structureséweral temporal epochs: (a) C-and
(b) U-U for small-world network, (c) CE and (d) UL for scale-free network. The number of
neurons is 100. The network is comprising RS, IB, and CH neurBesl lines indicat&S,; and
blue lines A;. * indicates a significant dierence between the STMC and the APSTNRG{0.05,
two-samplet-test). Error bars which indicate minimum and maximum valuéth 20 trials are

also provided.
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Figure 4.9: Estimation accuracy of the network structureseveral network sizes: (a) G-and

(b) U-U for small-world networks, (c) G and (d) UY for scale-free networks. The temporal

epoch of spike sequences used for estimation is 50 [s]. Timrkeis comprising RS, 1B, and CH

neurons. Red lines indicaf, and blue linesA,. * indicates a significant dlierence between the

STMC and the APSTMCR < 0.05, two-samplé-test). Error bars which indicate minimum and

maximum values with 20 trials are also provided.
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Figure 4.10: Estimation accuracy of the network structuréen noise influence: (a) G-and (b)
U-0 for small-world networks, (c) G5 and (d) UL for scale-free networks. The number of
neurons is 100. The temporal epoch of spike sequences usestifmation is 50 [s]. The network
is comprising RS, IB, and CH neurons. Red lines indic&jeand blue linesA,. * indicates a
significant diference between the STMC and the APSTMC 0.05, two-sampld-test). Error

bars which indicate minimum and maximum values with 20dr&ke also provided.

63



=
o

coupling strength

Figure 4.11: Correlation diagrams between PSTMC and cogiglirength for (a) the small-world

network and (b) scale-free network. The number of neuroa®@ The temporal epoch of spike

OFRP NWPHMOUUIO N OO
— T T

0.1

0.2
PSTMC

(@)

0.3

coupling strength

[y
o

OFRP NWHMOUUTO N OO
— T T T

sequences used for estimation is 50 [s]. The network is cemgrRS neurons.

64

+ g
.. .
N
s .
* :s. bt
.
.o
.
.
.. x’x
Saoat
MR
o e
o, s
4.0,
AT
AN
SN
‘:0)‘30’
bk,
PR
-ad i L L L
0 0.1 0.2 0.3 0.4
PSTMC



(a) 1 2 L (b) 1 W
“ea ..' (]
AN 30 30
08 (&1 2 10 32 08 10 32
. 20 20
- 0.6 . 15 — 06 : 15
G s 10 13 10
) 5 ) 5
© 04| 1 0 > 04t y 0
0.2 - b 0.2 b
°
0 I Y TR N R N 0 T Y TR N R N
0 5 1015202530354045 0 5 10152025 30354045
Degree Degree

Figure 4.12: Estimation accuracy when we #geand connectivity of théh neuron for the scale-
free network: (a) &-C; and (b) U-U;. The number of neurons is 300. The temporal epoch of
spike sequences used for estimation is 50 [s]. The netwadigrising RS, 1B, and CH neurons.

Color bars indicate the average degree of adjacent neurons.
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Figure 4.13: Estimation accuracy of the network structoreséveral temporal epochs: (a)-C;,
(b) Ui-U; and (c)E. Green lines indicate partial correlation @dgents between membrane po-
tentials and blue line®). The number of neurons is 50. The coupling strength is 6. Eteark

is comprising RS, 1B, and CH neurons.
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Figure 4.14: Estimation accuracy of the network structarséveral coupling strengths: (a)-C;,
(b) Ui—-U; and (c)E. Green lines indicate partial correlation gigients between membrane po-
tentials and blue lined?,. The number of neurons is 50. The temporal epoch of spikecsegs
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Figure 4.15: Estimation accuracy of the network structareséveral network sizes: (a)-€;, (b)
Ui-U; and (c)E. Green lines indicate partial correlation @dgients between membrane potentials
and blue linesP,. The temporal epoch of spike sequences used for estimatibf [s]. The

coupling strength is 6. The network is comprising RS, 1B, and @€Hlrans.
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4.2 Estimation Method of Networ k Structures and direction of

couplings from Simple Point Processes

In this section, we propose a new estimation method of doef connectivity between neu-
rons in neural networks only from multiple spike sequendds proposed method is based on a
spike time metric, or a statistical measure to quantify aeegf dissimilarity between two spike
sequences, and the partialization analysis. Although thioa of the Section can estimate net-
work structures, the direction of connectivity cannot binested. To resolve this issue, we modify
the definition of the conventional cost in the spike time mefFhen the proposed method can ef-
fectively estimate direction of connectivity between rang. To check the validity, we applied the
proposed method to multiple spike sequences that are peddyca mathematical neural network
model. As a result, our method could estimate the neuralorktatructure and the direction of
couplings with high accuracy.

4.2.1 Proposed measure

We introduce a new measure for estimating the direction apling between neurons. If we
use the spike time metric, the direction of coupling canretibtected although we can estimate
connection between two neurons, because the spike timécrhetds a condition of symmetry:
D(A, B) = D(B, A). Then, we adapt the cost of the movement of a single spikedtimating the
direction of coupling. The movement of a single spike in thie time metric, the spike can be
shifted both forward and backward. Here, we consider thatileess shifted only forward, and
define the cost of the movement as follows:

v, V) =qt, -t),), t, >t (4.4)

Figure 4.16(b) shows an example of transforming a spikeesazpA to B by the proposed measure.
By using the cost of Eq.(4.4), if a neuradkis unidirectionally coupled to a neurds, D(A, B)
exhibits a smaller value thdd(B, A) (Fig. 4.17). Then, we can determine the direction of coupli
by using this proposed measure.
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Figure 4.16: Examples of transforming a spike sequéexiceo B in (a) the spike time metric and

(b) the proposed measure.
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Figure 4.17: The dierence of the total cost between (A, B) and (b)D(B, A) in the case that a

neuronA is unidirectionally connected to a neurBn(a) D(A, B) takes a small value. (lD)(B, A)

takes a larger value thdn(A, B).

4.2.2 Smulations

To evaluate the validity of our method, we used a neural netwonstructed from a mathemat-
ical model of the Izhikevich simple neuron model [14] and ggated multiple spike sequences.
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The dynamics of theh neuron in the neural network is described by the folloneqgations:

Vi = 0.047+5v; + 140 u; + I,
Ui = a(bvi — Ui),
if v > 30[mV], then{ s
U« u +d,

wherey; is the membrane potential, is the membrane recovery variable; amd, ¢, andd are
dimensionless parameters. The parameters were sett0.02,b = 0.2, ¢ = —-65, andd = 8.
The variabld; is the sum of the external and synaptic inputs from couplediores. The synaptic
weight is set to 8 and the amplitude of the external inputs tngsG, whereG is a Gaussian
random number with a mean value and standard deviation of a&a unity, respectively. The
neural network is composed of only excitatory neurons wilaighregular spiking neurons. The
neurons are unidirectly connected. We set delays betwagometo 2[ms] to 4[ms] randomly.

To apply our proposed measures to the spike sequencesip@tant to decide appropri-
ately, because it determines a relative weight betweemntb@perations in the spike time metric:
deletion and insertion, or the movement. We experimentidigidedq only with the observed
asynchronous spike sequences in the following mannert, Fetsus assume that we have two
spike sequences andV’ that are identical except for a single spike that occut} at V andt!,
in V” under the condition that, < t\‘, To transformV into V’, we have two operations. The first
operation is the insertion and deletion. Its cost is two ljeast is unity). The second operation is
the movement. Its cost it), — t,). Then, if we solve the equation=2q(t., —t) (in the case that
both costs are same), we obtain a critical valug ¢f 2 > q(tj, —t), the movement is selected,
otherwise the insertion and deletion are selected). Tadéerappropriately, we have to define a
possible range for the movement of a single spi\i;eu, t', because it decides the critical values of
g. Then, we evaluate an average minimum tin@edence by

5= N5 2, AT (4.5)

— 1% ST, L
whereAT;; = N Z mlln(tik — 1), (0 < tf—t) < 7), N; is the number of spikes in thth sequence,
)
N is the number of spike sequenctss thekth spike timing in theth spike sequence, andl is

the mean interspike interval for all the multiple spike seges. To exclude long timeftérence,
we applied the condition that -t < 15t

To obtain the critical value af, we solve the equation 2 gAT. Although this determination
procedure is heuristic, we have confirmed that it works wedither cases.
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Using g decided by the abovementioned method, we applied the STMICP&TMC to the
multiple spike sequences. If two neurons are coudealhndP might be large. Then, we calculate
a threshold that classifies the coupled and the uncouplesd. pahe threshold is decided by the
Otsu thresholding method [17] which is based on a lineardscant analysis.

To evaluate the estimation accuracy, we compared the dstimatwork structure with the true
network structure. For this evaluation, we define an indebolé@wvs:

N
Z(a'ija’ij + (1 - aij)(1 - @)
i

E = - N=T) : (4.6)

whereN is the number of elements;; ande;; are the directional connectivity of the true network
structure and the estimated network structure, respégtilfehe ith element is (estimated to be)

connected to thgth elementp;; anda;; take a value of unity. If they are nat;; anda;; take a
value of zero. IfE approaches unity, the estimation accuracy increases.

42.3 Resaults

First, we checked the validity of our proposed method andpayed with the conventional
method. As a network structure, we generated a small-watdiork structure? ], which has
initially ring lattice topology with 50 neurons and degreefdeach neurons. The temporal epoch
of spike sequences is 50[s], and the coupling strength i®s&t We examined the case that the
neurons are unidirectly coupling. Figure 4.18(a) and (lmnshhistograms o6 andP in the con-
ventional method, respectively. Figure 4.18(c) and (dishlnistograms o6 andP in the proposed
method. In Fig. 4.18(a) and (b), some pairs coupled with goosie direction are misestimated
as a coupled class, becau3, j) equalsS(j,i). Thus, the direction of couplings cannot be well
estimated in the conventional method. On the other h&nd,the proposed method can estimate
the direction of couplings although the threshold is notropt (Fig. 4.18(c)). However, by using
P in the proposed method, we can estimate the coupled pairthardirection of couplings. In
addition, the threshold is optimally calculated (Fig. 4d)$

To check the validity of the proposed method, we evaluatedpirformance of the proposed
method in case of changing rewiring probability in the spnadrld network model P ], network
sizes, temporal epochs for observed spikes, and couplieggihs. We show the results when the
rewiring probability is changed (Fig. 4.19(a)). If we uSethe estimation accuracy is low. In
particular, when the rewiring probability isQl, the estimation accuracy is low. On the other hand,
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Figure 4.18: Histograms of (&§ and (b)P in the conventional method, and those of &and
(d) P in the proposed method. The number of neurons is 50. Histogct all of S and P are
shown by red bars, and those of the coupled elements aramsppsed by blue. The vertical lines

indicate a threshold decided by the Otsu thresholdings #nd P are larger than the threshold,

corresponding neurons are classified into the coupled.class

if we useP, the estimation accuracy is high for all the rewiring prabghb

In Fig. 4.19(b), we show the results when the network sizé@nged. The estimation accuracy
in P is high although the estimation accuracySmlecreases as the network size increases.

We also examined how the estimation accuracy depends oeitigotal epochs for observed
spikes (Fig. 4.19(c)). The estimation accuracies in [&®t#ndP become higher as the temporal
epoch becomes longer. If the temporal epoch is longer thfs), 1be estimation accuracy iis

almost unity.
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respectively. Error bars which indicate standard erroth @0 trials are also provided.

In addition, we show the results in case that values of cogpétrength are changed (Fig.
4.19(d)). If the coupling strength is larger than 8, themation accuracy is high. However,
the estimation accuracy becomes slightly worse as the tgugtirength becomes larger.

4.3 Summary of Chapter 4

In this chapter, we proposed two measures, spike time negdticient and partial correlation
codficient, to estimate network structures only from the infaioraof observed asynchronous
spike sequences. We applied the proposed measures to sietplerks and complex networks
[15, 16]. The results show that network structures can henastd by adaptive application of
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spike time metric ca@icients and partial spike time metric dbeients with high performance.

In Eq. (4.3), we heuristically defined the PSTMC from asstomiaof the conventional partial-
ization analysis. Then, we experimentally confirmed thatR$TMC can measure true relation
between spike sequences by removing spurious correlatldowever, we do not have theoreti-
cally proven why the PSTMC works well yet. As a future work, heve to prove that why the
PSTMC works well.
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Chapter 5

Estimation Method of Network Structure
Using Distance and Multi-Dimensional

Scaling

In Chapter 4, we proposed two measures, the spike time megficaient and the partial corre-
lation codficient. By using these measures, we could estimate netwarktstes only from point
processes. However, we do not have theoretically proventidaySTMC works well. Then, in
this chapter, we propose a new method to estimate netwarktstes from point processes by
using the distance between point processes and multi-dioresd scaling. The multi-dimensional
scaling is a classical method for representing arrangemehée Euclidean space from a distance
relation [8]. Using the distance between point processeshwdalculated by the spike time metric,
we can obtain the position vectors which represents thadireationship among spike sequences
in the Euclidean space and apply a linear regression modkétobtained position vector. Then
we can use the statistical measures of the partializatialysis such as the partial correlation coef-
ficient and the partial directed coherence because thessunesaare based on the linear regression
model.
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5.1 Estimation Method of Networ k Structurefrom Simple Point

Process

In this section, we propose a method of estimating netwankcgires from spike sequences
as simple spike processes. In the proposed method, first, @asure a distance between spike
sequences by using the spike time metric that is proposedidigrvand Purpula [13]. Next,
we apply the multi-dimensional scaling [8] to the distaneén®en spike sequences to represent
a relationship among spike sequences in the Euclidean sgaceising the multi-dimensional
scaling [8], we can obtain position vectors of each spikaisage in the Euclidean space. Then
we can consider that the obtained position vectors reptresiamear relationship among the spike
sequences. Then, the linear regression model can be applied obtained position vectors. To
estimate connectivity between neurons, we use the partedtdd coherence [6] which is based
on the linear regression model and partialization analyBischeck the validity of the proposed
method, we apply the proposed method to observed multiffe spquences from a mathematical
neuron model. In numerical simulations, we show that ourhaetican estimate neural network
structure even though the neurons have many common, oosigumputs from the other neurons.

5.1.1 Multi-Dimensional Scaling

To represent the relationship between point processesse thhe multi-dimensional scaling
(MDS) [8] which is a classical method for representing agement in the Euclidean space from
a distance relation. In the proposed method, we used the STikkalistance relation.

Then a distance matri§ is defined asS' = {s;;}, wheres;j is described as follows:
1. . .
s; = 5D, m)? + D(j, m)? - D(i, j)?), (5.1)
whereD(i, j) is the STM between thigh and thejth point processes.

Next, by applying the eigenvector decomposition&pwe obtain a coordinate matriX as
follows:
S=VAVT = (VA (VA = XX, (5.2)
whereA = diagl1, 12,...,4,), V = (v, vy,...,vp), Nis the number of nonzero eigenvalues of

S, and; andwv; are theith eigenvalue and eigenvector of the matsixrespectively. The matrix
X is a coordinate matrix described B = (z1, x5, ..., xN)", Wherezy = (X, X2, - - - » Xn) -
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Using the STM as the distance, we can obtain the positiorovegtvhich represents the linear
relationship between corresponding marked point prosdssthe Euclidean space. Then we can
apply a linear regression model to the obtained positionoves asx; = Zj'\‘zlaij:n,— + wj,where
wj is a multivariate Gaussian white noise processans a regression cdiécient froma; to ;.

Using the STM as the distance relation, we can obtain thdiposiectorz; which represents
the linear relationship among spike sequences in the Eeattidpace. Then we can apply a linear
regression model to the obtained position veatoas follows:

N
Tk = ) e + Wi, (5.3)

r=1
wherew; is multivariate Gaussian white noise process apds a regression cégcient froma,
to xy.

5.1.2 Numerical Simulations

To evaluate the validity of our method, we used a neural nétwonstructed from a mathe-
matical model, or the Izhikevich simple neuron model [14F ¥énducted numerical experiments
according to the following procedures.

1. We constructed the neural network whose elements arehiteVich simple neuron model,
and observed multiple point processes.

2. We calculated the distan&ebetween point processes by using the STM.
3. We applied the MDS to the distanbe
4. Using observed position vectors in the MDS, we calculéted®DC.

5. If Imj| (Eq. (2.54)) is larger than.D, we decided the neuron pair b&nd j as the coupled
pair [6].

To confirm the estimation accuracy, we compared the streictian estimated network with
that of the original network. We used two measures defined by

Cx o Zigleag)

C-C = —Zi,j P (5.4)
o - Za(@ =) - ai))

vu = Sijl-a) 59
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wherec;; (i) is the {, j)th element of the adjacency matrix of the original (esteaqtnetwork
structure. If thath andjth neurons are coupled;; anda;; take unity. If they are not coupled;;
andd;; take zero. If G-C and U-U are close to unity, our method estimates the original nekwo
structure well.

5.1.3 Reaults

First, we used a simple network structure shown in Fig. 5Snlthé network structure of Fig.
5.1, spurious couplings exist between neurons, and theecteth neurons are mutually connected.
A sample of point processes observed from this network is/shn Fig. 5.2. Figure 5.3 shows
the result of the value of the PDC. From the result, couplets@aid uncoupled pairs are clearly
distinguished. Furthermorg;;| of uncoupled pairs take smaller than the threshold (0.1).

We also investigated the estimation accuracy when the mktsize is changed. In the following
simulations, we generated a ring lattice network structunehich the number of edges is four.
Figure 5.4 shows the-€C and U-U when the network size is changed. The estimation accuracy
is high (both of G-C and U-U are higher than .8) when the network size is smaller than 100.
However, the estimation accuracy-C becomes worse as the network size becomes larger than
100.

We also examined how the estimation accuracy depends orotipdirng strength. The results
are shown in Fig. 5.5. Both of & and U-U are high when the coupling strength is between 4
and 7. On the other hand, the estimation accuracy-6& & worse when the coupling strength is
weaker than 3. If the coupling strength is stronger than ¢ b6C—C and U-U decrease. In this
situation, the STMs take almost same values because thegrotesses are almost identical due
to the strong connection. Then, in this method, it is considehat it is dificult to estimate the
connectivity in the case as spike synchronizes.

We finally examined how the estimation accuracy dependsetetihporal epoch for observed
spikes. The results are shown in Fig. 5.6. The estimatioaracy is close to unity as the temporal
epoch is long. The results show that both ef@and U-U is high ( 0.8) when the temporal epoch
for observed multiple spikes is longer than 35[s]. Then,degkthe high estimation accuracy for
both of G-C and U-U, our method needs point processes for 35[s] at least.
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Figure 5.1: A network structure which is composed of five oesr In this structure, the connected

neurons are mutually connected.

index

5
4
3..............................<
2
1

10000 10500 11000 11500 12000 12500 13000
time [msec]

Figure 5.2: A sample of spike sequences observed from thalneetwork shown in Fig. 5.1.

78



0.5

coupled A
uncoupled ¥
0.4 r %
03+
o X
a}
a
0.2 r
(0 A % ---------------------------- 4
A
0

Figure 5.3: The result of applying the PDC. Red triangles auod bkterisks indicate the PDCs for

uncoupled pairs and coupled pairs, respectively. The diditie shows a threshold far;;| (0.1).

1 T x T
—
08 L I/!
ID. 06 | |
2
1O
O 04 {
02t _
cCc——
0 \U'U . . .
20 40 60 80 100 120

network size

Figure 5.4: Estimation accuracy of the network structureaise of changing the network size. We
set the coupling strength is 6, and the temporal epoch i§.5REd and blue lines representC
and U-U, respectively. Error bars which indicate minimum and maxin values with 20 trials

are also provided.

79



0.2 r

cQ
&

2 4 6 8 10 12
coupling strength

Figure 5.5: Estimation accuracy of the network structureaise of changing the coupling strength.

Red and blue lines representC and U-U, respectively. We set the number of neurons is 50, and

the temporal epoch is 50[s]. Error bars which indicate mummand maximum values with 20

trials are also provided.

1D

18}

0.8

0.6

04 r

0.2 r

0

PE=s S

ciO!

cC
y-u ——— e
25 30 35 40 45 50 55 60 65
temporal epoch [s]

Figure 5.6: Estimation accuracy of the network structurease of changing the temporal epoch.

Red and blue lines represent C and U-U, respectively. We set the number of neurons is 50, and

the coupling strength is 6. Error bars which indicate mimmand maximum values with 20 trials

are also provided.

80



5.2 Estimation Method of Network Structures from Marked

Point Process

In this section, we modified the conventional spike time metr be applicable to marked point
process.

5.2.1 SpikeTimeMetricfor Marked Point Process

The spike time metric [13] is one of the statistics to quanafdistance between two point
processes. The statistic consists of two operations. T$teofseration is deletion or insertion of an
event: their cost is unity. The second operation is a movewiean event: the cost igAt where
g is a parameter andit is the temporal duration. Suzuki et al. proposed a metriofarked point
processes which is extended the spike time metric [28]. st for marked point processes is
modified as follows:

1, (deletion)
Coq(AA) =1 1, (insertion) (5.6)
plh(t) — h(t>)l + git* — t2], (movement)
wherep andq are parameters. The cost of deletion or insertion of an agesgme as that of the
spike time metric. However, the cost of movement is modiflédharked point process dafais
the same as dat& except for an event that occurtdtand its amplitudén(t®) in A andt¥ and its
amplitudeh(t)Y) in A’, the cost of movement igh(t*) — (/)| + git* — t/'].

However, it is also important to consider an amplitude of kmawvhen an event is deleted or
inserted. Then we proposed new costs of deletion and insaas follows:

plh(t)!, (deletion)
Cpg(A A) =< plh(t™), (insertion) (5.7)
plh(t?) — h(tX)l + git* — t%], (movement)

whereh(t?) is a mark of a deleted event, ah(tlA') is a mark of an inserted event. The cost of
movement is same as Eq. (5.6).

Then, a metric between two marked point process datadZ’ is defined as follows:

N-1
D(Z,Z’) = min {Z Coq(Vic vk+1)} , (5.8)

k=1
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whereV; = Z,V,,--- ,Vy = Z’ are elementary steps frothto Z’. The metric between the two
marked point process data is the minimum total cost of a setemhentary steps that transforms
marked point process data into another data.

5.2.2 Numerical Simulations and Results

Evaluation of the proposed method with dynamical noise

To investigate the validity of the proposed method, we usedtnematical model. We observed
marked point process data frondssler systems [24] with dynamical noise, which are desdrib
by the following equations:

X = -—wYi—Z+o,
Vi = wX+ay, (5.9)
z = b+xz-cz

with | = 1, 2, whereo is the noise strength amglis Gaussian noise with a mean value and standard
deviation of zero and unity, respectively. The Gaussiasesy (t) andn,(t) are uncorrelated. We
define thath event timing; as the time whef,(t)| takes theth local maxima and the amplitudhe

of theith event agX(t)|. The corresponding marked point process is representdd by (t;, h;).

To evaluate the validity of the proposed measure, we irnyat&d correlation cdicients between
noise strengtl- and the metrid®(M,, M,) when the parametersandq are changed.

In Fig. 5.7(a), the result of the conventional method shaws ¢orrelation € 0.9) when the
parameterp andqg are small. In Fig. 5.7(b), the result of proposed method shugh correlation
(> 0.95) in all parameters. In addition, the results of relatibesveen distance and noise strength
are shown in Fig. 5.8. When the parametprandq are small (Fig. 5.8(a)), the distance of the
conventional method andthe noise strength have not ctoelaThe distance of the proposed
method and the noise strength have correlation. Thus theopeal measures can quantify the
degree of dissimilarity between two marked point procesa daing broader parameters than the
conventional method.
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Figure 5.7: Correlation cdicients between the noise strengthand the proposed measure

D(M31, M,) when the parametegsandq are changed.

Evaluation of the proposed method with observation noise

We also investigate the validity of the proposed methodgusioserved marked point process
data from Rssler systems [24] with observation noise. In this singtwe seto- = 0 in Eq.
(5.9) (no dynamical noise) and used the first variabtd Eq. (5.9). The observed time series is
defined as follows:

X = X+, (5.10)

with | = 1, 2, wheresis the noise strength anglis Gaussian noise with a mean value and standard
deviation of zero and unity, respectively. The Gaussiarse®},; andn, are uncorrelated. We
define theth event timingt; as the time whefk | takes thath local maxima and the amplitudhg

of theith event agx (t;))|. The corresponding marked point process is representdd| by(t;, h;).

The results of the correlation ciieients between noise strengitand the metridd(My, M,)
when the parametens andq are changed are shown in Fig. 5.9. From the results, caoelat
codficients of the proposed method (Fig. 5.9(b)) are higher thase of the conventional method
(Fig 5.9(a)).
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Figure 5.8: Relations between distance and noise strenggft. vertical axis indicates distance
calculated by the proposed measure. Right vertical axisatels distance calculated by the con-

ventional measure.

Estimation of network structures

Using the proposed measure, we estimated network strgdium® marked point process data.
In the simulation, we used coupledssler systems:

X = —CUYi—Zi+Zkinj,

j
Vi = wX +ayi (-11)
z = b+xz-cz.
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Figure 5.9: Correlation cdicients between the noise strengthand the proposed measure

D(M1, M,) when the parametegsandq are changed.

The parameters are setdao= 0.15 b = 0.2,c = 10. These parameters lead to chaotic behaviors
of the systems. In Eq. (5.11y is Gaussian random number with a mean value and standard
deviation of unity and @1, respectively. The coupling strengths are sd¢;te- 0.2 if the ith and

the jth systems are coupled, otherwise these are dgt£00. Then we translated continuous time
seriesx; into marked point processes. We defined ltheevent timingt! as the time whemn;(t)
takes thdth local maxima or local minima and the amplitude of ttreevent as«(t)).

We conducted numerical experiments according to the fatigwrocedures. First, we generated
marked point processes froryt) of the coupled Rssler systems. Second, we calculated the
STM for marked point processes. Here, although the parasmptandq in the STM have to
been appropriately determined, we have not estimated aptialues of parameters because it is
clarified that the proposed measure does not depend on thmetar values op andg. Thus, in
this paper, we heuristically decided the parameters valligisd, we obtained position vectors by
applying the MDS to the STM. Then we calculated the partiatedation codicients between the
position vectors. If two systems are coupled, the partiatetation codicient is close to unity.
Otherwise, it is close to zero. Then we classified whethespdisystems are coupled or not using
histogram of the partial correlation dhieient by the Otsu thresholding methddl][ If the partial
correlation coéicient is larger than a threshold, we defined the pair as a edygir. Otherwise,
we defined it as an uncoupled pair.

We checked the proposed method with a ring lattice netwatcttre which has 10 nodes and
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Figure 5.10: Histograms of absolute values of (a) the catia codficient and (b) the partial
correlation cofficient in case that only event timings are used. Histogranal abdficients are
shown in red, and those of coupled pairs are superimposeduBy bBhe vertical lines indicate

thresholds.

degree 2 of each node. First, in Fig. 5.10, we show histogrdralssolute values of the correlation
codficients and the partial correlation dheients in case that only event timings are used. In
Fig. 5.10(a) and (b), some pairs are misestimated with latioe codficients, however the partial
correlation coéficients can more clearly distinguish coupled pairs and uplealpairs

Next, we show histograms of the absolute values of the @iroel codficients and the partial
correlation cofficients in case that both event timings and amplitude inftionaf marked point
processes are used. In Fig. 5.11(a), the correlatiofiiceamts of uncoupled pairs take large values.
Thus distributions of coupled pairs and uncoupled pairslageand consequently coupled pairs
and uncoupled pairs are not clearly distinguished. Howeeeipled pairs and uncoupled pairs are
clearly distinguished by using the partial correlation féoeent (Fig. 5.11(b)). The results also
indicate that the proposed measure using mark informatiamaturally appropriate for marked
point processes.
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Figure 5.11: Histograms of absolute values of (a) the catia codficient and (b) the partial
correlation cofficient in case that both event timings and amplitude infolonadre used. His-

tograms of all cofficients are shown in red, and those of coupled pairs are sopesied by blue.

The vertical lines indicate thresholds.
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5.3 Estimation of Evolving Network Structure

In section , we estimated static network structures. Howéis also important to estimate dy-
namic structures, or to detect how the neural network stracthanges, because one of the intrinsic
properties in neural networks is learning. When the neurlor&s accept external stimulation,
neural networks change their structures by learning.

In this thesis, we proposed a method for estimating evailubioneural network structures by
applying the methods of estimating static neural netwarkcstires to the case that neural networks
dynamically evolve. To check the validity of the proposedimed, we conducted numerical exper-
iments by using a neural network model with a learning rulsmke-timing-dependent plasticity
[43]. In the experiments, we first observed the multi-spikguences from the neural network
with the STDP learning [43]. Next, we divided the observedtirgpike sequences into small tem-
poral epochs. Then, we applied the method of section 5.1etdetimporally divided multi-spike
sequences and estimated their connectivities. As a regeltould estimate the evolving neural
network structure with high estimation accuracy.

531 Method

To estimate connectivity of neurons only from spike segaeeneve have already proposed a
spike time metric co@cient (STMC) and a partial spike time metric ¢deent (PSTMC).

To estimate the direction of couplings between neurons, efmed a directional spike time
metric. We calculated the spike time metric between two esgi&quenceX(t) and X;(t + 7)
defined as

Dij(7) = D(Xi(1), Xj(t + 7)), (5.12)

wherer is a temporal dference between two spike sequengsind X;. We distinguish the
direction of couplings by whether theftiirencer at the minimum value oD;;(r) is positive or
not. If the diterencer at the minimum value ob;;(7) is positive, we judged that the direction of
coupling is from thath neuron to thgth neuron.
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5.3.2 Numerical Simulation

To evaluate the validity of our method, we used a neural ndtwonstructed from a mathemat-
ical model of Izhikevich's simple neuron model [14] and getted multi-spike sequences. The
number of neurons is 100. The neural network is composedIgfextitatory neurons which are
regular spiking neurons. Each neuron connects to 10 pagi§gmeurons.

We use an STDP function proposed by Song et al. [43] whichfiaek by

Age MU if At
Ag:{ p& T I AL> 0, (5.13)

—AgeAl/Te otherwise

whereA, andA, are the learning rates of the long-term potentiation (LTiR) depression (LTD),
andr, andry are the time constants that determine the exponential detalye LTP and the LTD.
We set the parametefg, = 0.01,Aq = 0.012, andrp, = 74 = 20 [ms]. In Eq. (5.13), the variablst
represents a relative spike timing between a presynapti@gostsynaptic neuron. The coupling
strength is updated ag« g + Ag at every second. The coupling strength is limited between O t
10. At an initial condition, we set that the coupling strénigt 7 and an initial network structure is
a random network.

We conducted numerical experiments in the following wayrsti-iwe generated multi-spike
sequences by constructing a neural network using Izhikés/gmple neuron model and the STDP
rule of Eq. (5.13). Next, we calculated the PSTMC betweekespequences for 1,000 [s]. Then,
we divided this total temporal length of 1,000 [s] into sntathporal windows. The length of the
small temporal window is 100 [s]. Using multi-spike sequesn this 100 [s] small windows,
we applied the methods of Section 5.1. We classified coupdé® pnd uncoupled pairs by the
Otsu thresholding [17]. Then, we estimated the directioconiplings by calculatin®;;(r) for the
estimated coupled pairs. Finally, we evaluated the estmaiccuracy.

5.3.3 Reaults

Figure 5.12 shows results of histograms of coupling stirerigtom these results, we can see that
the distribution of the coupling strength changes, nantkl/ network structure evolves. We also
show results of estimation accuracy of the evolving neueaivork structures in Fig. 5.13. From
the results, the estimation accuracyCtakes relatively a low value at O [s]. This reason is that
the coupling strength changes rapidly at the initial stagh tihe STDP. Namely, it is relatively
hard to estimate the structure because the evolution oféheonk structure has fast dynamics.
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However, the value of both of LU takes relatively a high value. The temporal epoch proceeds
the estimation accuracy converges to higher values. It st the proposed method can detect

the evolution of STDP neural network structures.
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Figure 5.12: Histograms of coupling strength at each time.
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Figure 5.13: Estimation accuracy of the evolving neuraivoek structures. Red line shows-C
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54 Summary of Chapter 5

In Chapter 5, we proposed the estimation method of netwotktstres only from point pro-
cesses by using distance between point processes and theRUBISwe proposed a new method
for estimating connectivity between neurons only from obaseé multiple spike sequences. In our
method, using the MDS, we represented a relationship ampikg sequences in the Euclidean
space from the STM to adapt observed position vectors teeatdiregression model. By calculat-
ing the PDC from the position vectors, we estimated conviges between neurons. As a result,
we could estimate the connectivity between neurons usingnethod.

In addition, we extended the method for marked point praes#s a result, using not only
event timings but also corresponding amplitude infornmgtiee could estimate more precisely the
connectivity between systems than using only event timings

Furthermore, we proposed a method for estimating evolatioeural network structures through
the spike-timing-dependent plasticity by applying the moels of estimating static neural network
structures to the case that neural networks dynamicallivevés a result, the proposed method
can estimate the evolving neural network structures anditieetion of couplings with high esti-
mation accuracy.
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Chapter 6

Conclusions

In this thesis, we proposed estimation methods of netwoucttres only from point processes.
In the proposed methods, we introduced three strategysfoaming point processes into continu-
ous time series, using normalized distance between pameepses, and using multi-dimensional
scaling with distance between point processes.

In Chapter 3, we proposed a method of estimating network tsires by transforming point
processes into continuous time series. To transform poodgsses into continuous time series,
we used the kernel density function. When the kernel funcisonsed, we have to select an
optimal bandwidth because the transformed time seriesndispan the bandwidth. Then we used
two selection methods of the kernel bandwidth. As the firsthoe, we used a kernel bandwidth
optimization method which is proposed by Shimazaki et &)].[Zhe method is used in spike rate
estimation. As the second method, we used a selection mefhal optimal time delay in the
attractor reconstruction [34] which is a basic techniquehaotic time series analysis. By using
these methods, we found that high correlationfiicoents and low normalized mean square errors
are evaluated between the input time-series and its rected time-series.

Using the transformation method, we estimated networlcgiras from simple point processes.
To evaluate the validity of the proposed method, we usedaheetworks constructed from a math-
ematical model of the Izhikevich simple neuron model [14] generated multi-spike sequences.
The results show that our method exhibits high performance.

In additon, for marked point processes, we extended theogempmethod. We proposed a
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method of transforming marked point processes into coatisdime series which is based on the
kernel density estimator. Then we applied the partialwaginalysis to the transformed time series.
As a result, we can estimate the connectivity of the couplectihz systems from marked point

processes.

In Chapter 4, we proposed two measures, spike time metrigiceat and partial spike time
metric codficient, to estimate network structures only from the infatioraof observed asyn-
chronous spike sequences. We applied the proposed meéswiegple networks and complex
networks [15, 16]. The results show that network structeass be estimated by adaptive appli-
cation of spike time metric cdiécients and partial spike time metric dheients with high perfor-
mance. We heuristically defined the PSTMC from associatfathe conventional partialization
analysis. Then we experimentally confirmed that the PSTMCneaasure true relations between
spike sequences by removing spurious correlations. Hawexgehave not theoretically proven
why the PSTMC works well yet. As a future work, we have to prthet why the PSTMC works
well.

In Chapter 5, we proposed the estimation method of netwoukctstres only from point pro-
cesses by using distance between point processes and themBtSwe proposed a new method
for estimating connectivity between neurons only from obsé multiple spike sequences. In our
method, using the MDS, we represented a relationship ampikg sequences in the Euclidean
space from the STM to adapt observed position vectors toeatdinegression model. By cal-
culating the PDC from the position vectors, we estimatechectivities between neurons. As a
result, we could estimate the connectivity between neuusisg our method. In addition, we
extended the method for marked point processes. As a rasuiig not only event timings but also
corresponding amplitude information, we could estimateenpwecisely the connectivity between
systems than using only event timings. Furthermore, weqeep a method for estimating evo-
lution of neural network structures through the spike-tigadependent plasticity by applying the
methods of estimating static neural network structurei¢ocase that neural networks dynami-
cally evolve. As a result, the proposed method can estirhatevolving neural network structures
and the direction of couplings with high estimation accyrac
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