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Abstract

Nonlinear dynamical systems often produce complicated behavior due to interaction between the

systems. Such complicated behavior usually depends on connectivity in networks, that is, network

topology. Thus, to analyze, model or predict complicated behavior produced from the networks, it

is essential to understand the network structures as well asthe nonlinear dynamics. Although it is

not so easy to investigate the interactions directly, recent developments in measurement technique

makes it possible to observe multivariate time series. Then, it is possible to estimate the network

structure through the multivariate time series. If an observed time series is continuous and smooth,

and sampled by a fixed interval, the network structures can beestimated through statistical mea-

sures applied to the continuous time series. However, the nonlinear dynamical systems are often

observed as event sequences, for example, firing of neurons,occurrence timing in seismic tremors,

transaction timing in stock markets, lightning strike, andso on. Such event sequences are often

referred as point processes. It is difficult to directly apply the conventional statistical measures to

such point processes. Then, it is an important issue to develop a method to estimate network struc-

tures in case that the point processes are observed. In this thesis, we proposed estimation methods

of network structures only from the point processes.

In the proposed methods, we introduced three strategies: (1) transformation of point processes

into continuous time series, (2) using normalized distancebetween point processes and (3) using

multi-dimensional scaling with the distance between pointprocesses.

In the first strategy, we applied the method of transforming point processes into continuous time

series to detect the connectivity between elements. As the transformation method, we used a kernel

density estimator. In the kernel density estimator, we haveto select the optimal kernel bandwidth

because the transformed time series depends on the bandwidth. Then we proposed two selection

methods of the kernel bandwidth: a kernel bandwidth optimization method for estimating firing

rates and a selection method of an optimal time delay in the attractor reconstruction which is a

basic technique in chaotic time series analysis. By using these bandwidth selection methods in the

kernel density estimator, we could reconstruct input information applied neurons from the point

processes, and estimate network structures from the point processes. In addition, we treat point

processes which have the information of the amplitude and event timing as marked point processes.



If we use not only the information of the event timing but alsothe amplitude information, we can

estimate more precisely the network structures. Then we extended the transformation method and

the estimation method of network structure to marked point processes.

Although these methods work well, one should be careful to apply these methods, because it

is possible to lose essential information of point processes by transforming point processes into

continuous time series. Then, as the second strategy, we proposed new methods for estimating net-

work structures from point processes by using normalized distance between point processes. Using

the distance between point processes, we proposed two measures, a spike time metric coefficient

and a partial spike time metric coefficient. The spike time metric coefficient defined by using the

normalized distance is a similar measure to the correlationcoefficient. Then we applied partializa-

tion analysis to the spike time metric coefficient. We experimentally confirmed that these measures

can estimate true connectivities from point processes by removing spurious correlations. However,

these measures are heuristically defined. Then, to calculate theoretically, we proposed another es-

timation method by using multi-dimensional scaling with the distance between point processes as

the third strategy. We also proposed estimation methods of network structures from marked point

processes by using distance between marked point processes. Furthermore, we proposed meth-

ods of estimating evolving network structures by dividing the point processes into small temporal

epochs and applying the method of estimating static networkstructures. As a result, the proposed

method can estimate the evolving neural network structuresand the direction of couplings with

high estimation accuracy.
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Chapter 1

Introduction

Interactions among elements in nonlinear dynamical systems often produce complicated behav-

ior. Such complicated behavior usually depends on connectivity of elements in networks, that is,

network topology. Thus, to analyze, model or predict the behavior, it is inevitable and essential to

understand the network structures as well as the nonlinear dynamics. Although it is not so easy to

investigate the interactions between elements directly, recent developments in measurement tech-

nologies make it possible to observe multivariate time series data. Then it is possible to estimate

the network topology through the multivariate time series data.

On the other hand, complex phenomena are ubiquitous in the real world and often observed as

event sequences, for example, firing of neurons, occurrencetiming in seismic tremors, transaction

timing in stock markets, lightning strike, and so on. Such event sequences are often referred as

point processes. In the point processes, a point process which has information of only event timing,

such as a spike sequence, is called a simple point process. However, the amplitude information with

event sequences can be essential for several phenomena, forexample, financial systems, seismic

events, and so on [1, 2]. Such sequences are often referred asmarked point processes [3]. If the

observed time series from systems are smooth and continuous, the connectivity of the system can

be identified with several statistical measures [4, 5, 6, 7].One of the most popular measures in the

partialization analysis is a partial correlation coefficient which is based on a correlation coefficient

and the partialization analysis. Frenzel et al. proposed partial mutual information which is based

on mutual information and partialization analysis [4]. Schelter et al. proposed a partial phase

synchronization index which is based on phase synchronization and the partialization analysis [5].
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Sameshima et al. proposed partial directed coherence whichis based on the Granger causality

[6, 7] and the partialization analysis. Although the methods described in Refs. [4, 5, 6, 7] work

well for the smooth and continuous time series, the application of these point processes remain

unclear. Then it is an important issue to develop methods forestimating network structures in case

that point processes are observed. From this point of view, in this thesis, we proposed estimation

methods of network structures only from point processes.

As a conventional method, Sameshima et al. proposed an estimation method of connectivity

between neurons by transforming spike sequences into continuous time series and using the par-

tial directed coherence[7]. Although this conventional method has good performance to estimate

connectivity between neurons from spike sequences, this method has an issue that the method how

to select the kernel bandwidth has not proposed. To transforming the spike sequence into the con-

tinuous time series, it is important to select an optimal kernel bandwidth because the transformed

time series depend on the optimal kernel bandwidth. To resolve this issue, first, we proposed two

selection methods of the kernel bandwidth: a kernel bandwidth optimization method for estimating

firing rates and a selection method of an optimal time delay inthe attractor reconstruction which

is a basic technique in chaotic time series analysis. By usingthese bandwidth selection methods

in the kernel density estimator, we could reconstruct inputinformation applied neurons from the

point processes and estimate network structures from the point processes. In addition, we treat

point processes which have the information of the amplitudeand event timing as marked point

processes. If we use not only the information of the event timing but also the amplitude informa-

tion, we can estimate more precisely the network structures. Then we extended the transformation

method and the estimation method of network structure to marked point processes. Second, we in-

troduced a new strategy to estimate network structures fromthe point processes: we used distance

between point processes. Victor et al. proposed a spike timemetric which is one of the statistic to

quantify a distance between two point processes [13]. By using the spike time metric, we proposed

a spike time metric coefficient which is similar measure to a correlation coefficient and applied the

partialization analysis to the spike time metric coefficient. We checked the performance of the

proposed method in numerical simulations, and the results show that the proposed method exhibits

high performance. However, we have not theoretically proven why the measure works well. Then

we proposed a new method to estimate network structures frompoint processes by using multi-

dimensional scaling with the distance between point processes. The multi-dimensional scaling is

a classical method for representing arrangement in the Euclidean space from a distance relation

[8]. Using the distance between point processes which calculated by the spike time metric, we

can obtain the position vectors which represent the linear relationship among spike sequences in

the Euclidean space, and applied a linear regression model to the obtained position vectors. Then
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we could use the statistical measures of the partializationanalysis such as the partial correlation

coefficient and the partial directed coherence because these measures are based on the linear re-

gression model. We also proposed methods of estimating network structures from marked point

processes by using distance between marked point processes. In addition, we proposed estimation

methods of not only static network structures but also evolving network structures. It is important

to estimate dynamic structures, or to detect how the neural network structure changes, because

one of the intrinsic properties in neural networks is learning. When the neural networks accept

external stimulation, neural networks change their structures by learning. In the proposed method,

we divided the observed multi-spike sequences into small temporal epochs. Then, we applied the

estimation method of the static network structure to the temporally divided multi-spike sequences

and estimated their connectivities.

Figure 1.1 shows relation to chapters in this thesis. In Chapter 2, we reviewd the partialization

analysis and explained several statistical measures: the partial correlation coefficient, the partial

mutual information and the partial directed coherence. In Chapter 3, the methods of estimating

the network structures from point processes by transforming point processes into continuous time

series was proposed. First, we proposed selection methods of the optimal kernel bandwidth. By

using the selection methods of the optimal kernel bandwidth, we reconstructed input information

applied to a neuron from a point process. Next, we estimated network structures only from simple

point processes using the transforming method. Further, weextended the transforming method to

the marked point process and proposed the estimation methodof network structures from marked

point processes. In Chapter 4, we proposed the method of estimating network structures by using

normalized distance between point processes. As the distance between point proccesses, the spike

time metric proposed by Victor et al. [13] is introduced. We proposed two measures, a spike time

metric coefficient and a partial spike time metric coefficient, using the spike time metric. In Chapter

5, the estimation method of network structures by using distance between point processes and the

multi-dimensional scaling. We proposed the estimation methods of network structures from not

only simple point process but also marked point process. In addition, the estimation method of

evolving network structures is also proposed. Finally, this thesis is concluded with Chapter 6.
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Figure 1.1: Relation to chapters in this thesis.
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Chapter 2

Partialization Analysis

In recent years, the several partialization analysis for continuous time series are proposed [4, 5,

6, 7]. In this chapter, we explain the partialization analysis and several statistical measures.

2.1 Spurious Correlation

To estimate the connectivity between elements from time series, we quantify the similarity be-

tween two time series. However, we cannot estimate the connectivity between elements because

of the spurious correlation.

For example, if two elements,i and j, are not connected, the correlation between two time

series takes zero because these time series are different so much (Fig. 2.1(a)). However, if two

elements are driven by a common input, or indirectly connected but not directly connected, their

time series can have spurious correlation (Fig. 2.1(b), (c)). To remove such a common influence,

the partialization analysis is effective. In the next section, we explain several statisticalmeasures.
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low correlation

high correlation

high correlation

(a)

(b)

(c)

Figure 2.1: Three coupling ways and the correlation: (a) elementi and elementj are independent,

(b) elementi and elementj are driven by a common input from another elementk, and (c) element

i and elementj are indirectly connected.
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2.2 Statistical Measures

2.2.1 Partial Correlation Coefficient

The most general measure in the partialization analysis is the partial correlation coefficient. Let

us consider time series datay1(t), y2(t), . . . , ym(t), (t = 1,2, . . . , n) are observed.yi =
1
n

∑n
t=1 yi(t),

si j =
1
n

∑n
t=1(yi(t) − yi)(y j(t) − y j). Then, a correlation coefficient is defined as

r12 =
s12√

s11s22

. (2.1)

Let us define linear multiple regression models as follows:

y1(t) = a0 + a3y3(t) + a4y4(t) + · · · + amym(t) + e1(t), (2.2)

y2(t) = b0 + b3y3(t) + b4y4(t) + · · · + bmym(t) + e2(t), (2.3)

whereai, bi are regression coefficients, ande1, e2 are residuals. The linear multiple regression

models can be written as:

y1(t) = â0 + â3y3(t) + â4y4(t) + · · · + âmym(t), (2.4)

y2(t) = b̂0 + b̂3y3(t) + b̂4y4(t) + · · · + b̂mym(t). (2.5)

Next, we estimate the regression coefficients of linear multiple regression models as follows:

n
∑

t=1

e2
1(t) =

n
∑

t=1

(y1(t) − (a0 + a3y3(t) + a4y4(t) + · · · + amym(t)))2, (2.6)

n
∑

t=1

e2
2(t) =

n
∑

t=1

(y2(t) − (b0 + b3y3(t) + b4y4(t) + · · · + bmym(t)))2. (2.7)

Let us denote thatF(a0, a3, · · · , am) =
∑n

t=1 (y1(t) − (a0 + a3y3(t) + a4y4(t) + · · · + amym(t)))2. Then

we calculate

∂F
∂a0
= 0,

∂F
∂a3
= 0,

∂F
∂a4
= 0, · · · , ∂F

∂am
= 0.

From these calculations, the estimated regression coefficients are obtained as:

âi = −
S 22,1(i+1)

S 22,11
. (2.8)
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whereS is defined by the equation

S =

s11 s12 · · · s1m

s21 s22 · · · s2m

· · · · · · · · · · · ·
sm1 sm2 · · · smm

. (2.9)

Here,S i j is the (i, j)th-cofactor matrix ofS , andS i j,kl is the (k, l)th-cofactor matrix ofS i j. In the

same way, the regression coefficientbi are estimated as follows:

b̂i = −
S 11,2(i+1)

S 11,22
. (2.10)

From the Eqs. (2.23) and (2.10), we can denoteu(t) andv(t) as follows:

u(t) = y1(t) − (â0 + â3y3(t) + · · · + âmym(t)),

v(t) = y2(t) − (b̂0 + b̂3y3(t) + · · · + b̂mym(t)).

The correllation coefficient betweenu(t) andv(t) is defined by the equation

ruv =
suv√

suusvv

, (2.11)

andruv is the partial correlation coefficient. Therefore, partial correlation coefficient betweeny1(t)

and y2(t) is the correlation coefficient betweeny1(t) and y2(t) which removed regression from

y3(t), . . . , ym(t). The partial correlation coefficient can be rewritten by using elements of the in-

verse matrix of the correlation matrix. Becausesuu, svv andsuv are rewitten as follows:

suu =
1
n

n
∑

t=1

(yu(t) − yu)
2

=
1
n

n
∑

t=1

((yi(t) − yi) − (â1(yk(t) − yk)))
2

=
1
n

n
∑

t=1

((yi(t) − yi)
2 − 2â1(yi(t) − yi)(yk(t) − yk) + â1(yk(t) − yk)

2)

= sii − 2â1sik + â1
2skk

= sii −
2

S 22,11
(siiS 22,11− sikS 22,13− siiS 22,11) +

ski

skk
â1skk

= sii −
2

S 22,11
(siiS 22,11− sikS 22,13− siiS 22,11) +

ski

skk
â1skk

= sii −
2

S 22,11
S 22− 2sii −

S 22

S 22,11
+ sii

=
S 22

S 22,11
, (2.12)
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svv =
S 11

S 22,11
, (2.13)

suv =
1
n

n
∑

t=1

(yu(t) − yu)(yv(t) − yv)

=
1
n

n
∑

t=1

((yi(t) − yi) − (â1(yk(t) − yk)))((y j(t) − y j) − (b̂1(yk(t) − yk)))

=
1
n

n
∑

t=1

((yi(t) − yi)(y j(t) − y j) − â1((y j(t) − y j) − b̂1(yk(t) − yk)) − · · ·

b̂1(yi(t) − yi)(yk(t) − yk) + â1b̂1(yk(t) − yk)
2)

= si j − â1s jk − b̂1sik + â1b̂1skk

= si j − â1s jk −
sk j

skk
sik + â1b̂1skk

= si j − 2â1s jk + â1b̂1skk

= si j −
2

S 22,11
(si jS 22,11− s jkS 22,13+ si jS 22,11) + â1sk j

= si j −
2

S 22,11
S 12− 2si j +

S 12

S 22,11
+ si j

= − S 12

S 22,11
. (2.14)
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From Eqs. (2.12),(2.13),(2.14), the partial correlation coefficient is rewritten as follows:

γuv =
suv√

suusvv

=
− S 12

S 22,11
√

S 22
S 22,11

S 11
S 22,11

= − S 12√
S 11S 22

= −
si jskk − siks jk

√

(s j jskk − s2
jk)(siiskk − s2

ik)

= −
(si jskk − siks jk)/

√

siis j js2
kk

√

(s j jskk − s2
jk)(siiskk − s2

ik)/
√

siis j js2
kk

= −
(si j/

√

siis j j) − (sik/
√

siiskk)(s jk/
√

s j jskk)
√

(1− s2
jk/s j jskk)(1− s2

ik/siiskk)

= − V12√
V11V22

= − σ12√
σ11σ22

, (
Vi j

|V |
= σi j)

whereσi j is the (i, j)th element of inverse matrix of the correlation matrixV which is defined as

follows:

V =

rii r ji rki

ri j r j j rk j

rik r jk rkk

. (2.15)

The partial correlation coefficient measures the degree of association between two time series

with removing spurious linear influences. However, in the real systems, it is often the case that the

influences are not only linear but also nonlinear. In this section, we proposed a nonlinear partial

correlation coefficient which removes spurious nonlinear influences. We derived the nonlinear

partial correlation coefficient from a multivariable nonlinear regression model.

We defined the nonlinear multivariable regression model ofyi(t) with a set of 2(n−2) controlling

variablesY = {yk(t), y2
k(t)}, (k , i , j, k = 1,2, . . . , n) and that ofy j(t) with a set of 2(n − 2)
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controlling variables as follows:

yi(t) = a0 +

n
∑

k=1
k,i, j

(a2k−1yk(t) + a2ky
2
k(t)) + ei(t), (2.16)

y j(t) = b0 +

n
∑

k=1
k,i, j

(b2k−1yk(t) + b2ky
2
k(t)) + e j(t), (2.17)

whereei(t) ande j(t) are residuals.

The averagedyi is described byyi =
1
T

∑T
t=1 yi(t), and the covariance betweenyi(t) andy j(t) is

described bysi j =
1
T

∑T
t=1(yi(t) − yi)(y j(t) − y j). To estimate the unknown parametersak andbk

of multivariable regression model, we use the method of least squares. The sum of squares to be

minimized are
T

∑

t=1

e2
i (t) =

T
∑

t=1

{yi(t) − (a0 +

n
∑

k=1
k,i, j

(a2k−1yk(t) + a2ky
2
k(t)))}2, (2.18)

T
∑

t=1

e2
j(t) =

T
∑

t=1

{y j(t) − (b0 +

n
∑

k=1
k,i, j

(b2k−1yk(t) + b2ky
2
k(t)))}2. (2.19)

Let us denote thatF(a0, a1, · · · , a2n) =
∑T

t=1{yi(t) − (a0 +
∑n

k=1
k,i, j

(a2k−1yk(t) + a2ky2
k(t)))}2, then we

calculate

∂F
∂a0

= −2
T

∑

t=1

{yi(t) − (a0 +

n
∑

k=1
k,i, j

(a2k−1yk(t) + a2ky
2
k(t)))} = 0, (2.20)

∂F
∂a2l−1

= −2
T

∑

t=1

{yi(t) − (a0 +

n
∑

k=1
k,i, j

(a2k−1yk(t) + a2ky
2
k(t)))}yl(t) = 0, (2.21)

∂F
∂a2l

= −2
T

∑

t=1

{yi(t) − (a0 +

n
∑

k=1
k,i, j

(a2k−1yk(t) + a2ky
2
k(t)))}y2

l (t) = 0, (2.22)

for l , i , j, l = 1,2, · · · , n. For Eq.(2.20),
T

∑

t=1

yi(t) − a0T −
n

∑

k=1
k,i, j

(a2k−1

T
∑

t=1

yk(t) + a2k

T
∑

t=1

y2
k(t)) = 0, (2.23)

a0 = yi −
n

∑

k=1
k,i, j

(a2k−1yk + a2ky
2
k). (2.24)
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We substitutea0 for Eqs.(2.20), (2.21) and (2.22), and obtain the followingequations forl , i ,

j, l = 1,2, · · · , n.

T
∑

t=1

{(yi(t) − yi) −
n

∑

k=1
k,i, j

(a2k−1(yk(t) − yk) + a2k(y
2
k(t) − y2

k))} = 0, (2.25)

T
∑

t=1

{(yi(t) − yi) −
n

∑

k=1
k,i, j

(a2k−1(yk(t) − yk) + a2k(y
2
k(t) − y2

k))}yl(t) = 0, (2.26)

T
∑

t=1

{(yi(t) − yi) −
n

∑

k=1
k,i, j

(a2k−1(yk(t) − yk) + a2k(y
2
k(t) − y2

k))}y2
l (t) = 0. (2.27)

Subtracting Eq.(2.25) timesyl from Eq.(2.25) forl , i , j, l = 1,2, · · · , n, we obtain

n
∑

k=1
k,i, j

(a2k−1skl + a2ksk2l) = sli. (2.28)

In the same way, we also obtain from Eqs. (2.25) and (2.27),

n
∑

k=1
k,i, j

(a2k−1skl2 + a2ksk2l2) = sl2i, (2.29)

for l = 1,2, · · · , n , i , j. Here, let us describe the variance-covariance matrixS as

S =


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


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


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
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

















s11 s112 · · · s1k s1k2 · · · s1n s1n2

s121 s1212 · · · s12k s12k2 · · · s12n s12n2

... · · · · · · · · · · · · · · · ...
...

sk1 sk12 · · · skk skk2 · · · skn skn2

sk21 sk212 · · · sk2k sk2k2 · · · sk2n sk2n2

... · · · · · · · · · · · · · · · ...
...

sn1 sn12 · · · snk snk2 · · · snn snn2

sn21 sn212 · · · sn2k sn2k2 · · · sn2n sn2n2


















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












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
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


































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

. (2.30)
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Then Eqs. (2.28) and Eq. (2.29) are solved with the Cramer formula:

âl =

∣
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sl21 sl212 · · · sk2i · · · sl2n sl2n2

... · · · · · · · · · · · · ...
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∣

=
S (2 j−2)(2j−2),(2i−1)l

S (2 j−2)(2j−2),(2i−1)(2i−1)
, (2.31)

whereS i j,kl is the (k, l)th-cofactor matrix of the (i, j) cofactor matrix ofS .
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In the same way, we obtain the following equation:

b̂l =
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∣

∣

∣

∣
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... · · · · · · · · · · · · · · · ...
...

sk1 sk12 · · · skk skk2 · · · skn skn2

sk21 sk212 · · · sk2k sk2k2 · · · sk2n sk2n2

... · · · · · · · · · · · · · · · ...
...

sn1 sn12 · · · snk snk2 · · · snn snn2

sn21 sn212 · · · sn2k sn2k2 · · · sn2n sn2n2
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −
S (2i−1)(2i−1),(2 j−2)l

S (2i−1)(2i−1),(2 j−2)(2j−2)
. (2.32)

We substitute ˆal andb̂l for Eqs. (2.16) and (2.17) respectively and obtain the following equations,

ui(t) = yi(t) − (â0 +

n
∑

k=1
k,i, j

(â2k−1yk(t) + â2ky
2
k(t))), (2.33)

u j(t) = y j(t) − (b̂0 +

n
∑

k=1
k,i, j

(b̂2k−1yk(t) + b̂2ky
2
k(t))). (2.34)

The variance of the residualui(t) and covariance between the residualsui(t) andu j(t) are denoted

as

vii =
1
T

T
∑

t=1

(ui(t) − ui)
2, (2.35)

v j j =
1
T

T
∑

t=1

(u j(t) − u j)
2, (2.36)

vi j =
1
T

T
∑

t=1

(ui(t) − ui)(u j(t) − u j). (2.37)
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The correlation coefficient betweenui(t) andu j(t) is defined as

Pr2(i, j) =
vi j

√

viiv j j

. (2.38)

Eq. (2.38) is the nonlinear partial correlation coefficient betweenyi(t) andy j(t) resulting from the

nonlinear regression ofyi(t) with Y and that ofy j(t) with Y. Because

vii =
1
T

T
∑

t=1

(ui(t) − ui)
2 (2.39)

=
S (2 j−2)(2j−2)

S (2 j−2)(2j−2),(2i−1)(2i−1)
, (2.40)

v j j =
1
T

T
∑

t=1

(u j(t) − u j)
2 (2.41)

=
S (2i−1)(2i−1)

S (2i−1)(2i−1),(2 j−2)(2j−2)
, (2.42)

vi j =
1
T

T
∑

t=1

(ui(t) − ui)(u j(t) − u j) (2.43)

= −
S (2i−1)(2j−2)

S (2i−1)(2i−1),(2 j−2)(2j−2)
, (2.44)

then we have

Pr2(i, j) =
vi j

√

viiv j j

(2.45)

=
− S (2i−1)(2j−2)

S (2i−1)(2i−1),(2 j−2)(2j−2)
√

S (2 j−2)(2j−2)

S (2 j−2)(2j−2),(2i−1)(2i−1)

S (2i−1)(2i−1)

S (2i−1)(2i−1),(2 j−2)(2j−2)

(2.46)

=
−S (2i−1)(2j−2)

√

(S (2 j−2)(2j−2))(S (2i−1)(2i−1))
(2.47)

=

−S (2i−1)(2j−2)/
√

siis j j
∏n

k=1,k,i, j s2
kks2

k2k2

√

(S (2 j−2)(2j−2))(S (2i−1)(2i−1))/
√

siis j j
∏n

k=1,k,i, j s2
kks2

k2k2

(2.48)

=
−R(2i−1)(2j−2)

√

(R(2 j−2)(2j−2))(R(2i−1)(2i−1))
(2.49)

=
−σ(2i−1)(2j−2)

√

σ(2i−1)(2i−1)σ(2 j−2)(2j−2)

, (2.50)
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whereσi j is the (i, j)th element of inverse matrix of the correlation matrix of Eq. (2.51).

R =
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(2.51)

2.2.2 Partial Mutual Information

The mutual information can measure nonlinear dependenciesbetween two random variables.

Let us define a random variableX with probabilitiespx of outcomesx. Then entropy is defined by

H(X) = −
∑

x px ln px. The mutual information between two random variablesX andY is described

by:

I(X,Y) = H(X) + H(Y) − H(X,Y) (2.52)

whereH(X,Y) is the joint entropy betweenX andY, defined byH(X,Y) = −
∑

xy pxy ln pxy. The

mutual information is non-negative (I(X,Y) ≥ 0), and bounded 0≤ I(X,Y) ≤ min{H(X),H(Y)}. If

X andY are independent, the mutual information takes zero.

However, the mutual information can be spuriously biased iftwo elements are indirectly con-

nected. Then, partial mutual information is effective to remove such spurious bias [4]. The part of

I(X,Y) that is not inZ is the partial mutual informationI(X,Y |Z) (Fig. 2.2(b)) given by:

I(X,Y |Z) = H(X,Z) + H(Y,Z) − H(X,Y,Z) − H(Z). (2.53)
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This partial mutual information can measure the mutual dependence of the two time series with

removing spurious bias.

(a)

(b)

Figure 2.2: Concepts of (a) the mutual information and (b) thepartial mutual information. The

partial mutual informationI(X,Y |Z) selects the part of mutual informationI(X,Y) which is not in

Z.

2.2.3 Partial Directed Coherence

The partial directed coherence (PDC) [6] is a frequency domain counterpart of the Granger

causality [38] which is based on a multiple linear regression model.

The PDC [6] is defined by

|π̄i j( f )| =
∣

∣

∣

∣

Āi j( f )
√

ā j( f )Hā j( f )

∣

∣

∣

∣

, (2.54)
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where

Āi j( f ) =















1− ai je−i2π f r, if i = j;

−ai je−i2π f r, otherwise;
(2.55)

andā j( f ) = (Ā j1, Ā j2, . . . , Ā jN)T, andH stands for the Hermitian transpose.

The PDC takes values between 0 and 1. The PDC can quantify a similarity between the two time

series with removing spurious correlations between them, for example, in a case that two elements

are driven by a common input from another elements.
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Chapter 3

Estimation Method of Network Structure

by Transforming Point Processes into

Continuous Time Series

To estimate network structures from point processes, we proposed methods of transforming

point processes into continuous time series in this chapter.

First, we proposed a method for reconstructing hidden inputinformation applied to neurons by

transforming point processes into continuous time series.Next, we proposed estimation methods

of network structures by the transformation method from simple point processes into continuous

time series. Third, we also proposed methods of estimating network structures from marked point

processes. In this method, we proposed a method of transforming marked point processes into

continuous time series.
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3.1 Reconstruction of Input Information from Point Process

Neurons code input information and generate spike trains. The generated spike trains reflect the

input information. To understand how the information is coded by the neurons, it is an important

issue to reconstruct input information from spike trains.

Some methods for reconstructing input information from spike sequences are proposed. Sauer

proved that there is one-to-one correspondence between thesystem states and interspike interval

(ISI) vectors of sufficiently large dimension, and show that attractors of the original dynamical

systems can be reconstructed only from an output spike trainof an integrate-and-fire neuron model

[26, 27]. Suzuki et al. examined fundamental characteristics of ISI reconstruction with a leaky

integrated-and-fire neuron model, and applied ISI reconstruction to output of cricket wind receptor

cells[28]. Although these study are approaches to reconstruct input information from spike trains

which use information of ISI directly, Hori et al. proposed amethod for reconstructing input in-

formation from spike trains as a different approach [31]. In the Ref. [31], the method estimate

continuous input information from interspike intervals byusing a sampling function. This method

can reconstruct input information with broader case than the Sauer’s method. However, they as-

sumed that a membrane time constant and a threshold of a neuron are known. Then it is difficult

to reconstruct input information only from spike trains.

Then, in this section, we proposed a method for reconstructing hidden input information ap-

plied to neurons. The information we used is only observed spike sequences. In the proposed

method, we used a kernel density function to transform the observed spike trains to an instan-

taneous mean-firing-frequency time-series. Furthermore,we proposed selection methods of an

optimal kernel bandwidth. Then we reconstructed the hiddeninput information through this trans-

formation method. Consequently, we found that high correlation coefficients and low normalized

mean square errors are evaluated between the input time-series and its reconstructed time-series

by the proposed method.

3.1.1 Methods

Transformation from a spike sequence to a continuous time series

To transform an observed spike train to a continuous time series, we used a kernel density

function. Using the kernel function, we can transform from aspike train to an instantaneous mean-
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Figure 3.1: Transformation from a spike train to an instantaneous mean-firing-rate time series

using a kernel function.

firing-rate time series (Fig. 3.1). Let us define a spike trainas ti, (t1 < t2 < · · · < tN). The

transformed time seriesf (t) is described by the following equation:

f (t) =
1

NT

N
∑

i=1

k(
t − ti

T
), (3.1)

wherek(·) is a kernel function andT is a bandwidth. As the kernel function, we used the Gaussian

function defined as follows:

k(t) =
1
√

2π
exp(− t2

2
) (3.2)

Selection Method of Optimal Bandwidth

We have to select the optimal bandwidth because the transformed time series depends on the

bandwidth. To optimize the kernel bandwidth, we used a kernel bandwidth optimization method

which is proposed by Shimazaki et al. [25]. The method is usedin spike rate estimation.

Method 1 The optimal kernel bandwidth is obtained by minimizing the mean integrated squared

error (MISE) between the underlying rateλt and the kernel density estimateλ̂t. The MISE

is described by the following equation:

MISE =
∫ b

a
E[(λ̂t − λt)

2]dt, (3.3)

whereE[]̇ is ensemble mean and interval of spike train is [a, b]. A cost function is defined by

subtracting the term of the MISE does not depend on the choiceof a kernel and assumption
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of Poisson point process as follows:

C(w) =
∑

i, j

ψw(ti, t j) − 2
∑

i, j

kw(ti − t j), (3.4)

where

ψw(ti, t j) =
∫ b

a
kw(t − ti)kw(t − t j)dt.

The optimal fixed kernel bandwidth is obtained as a minimizerof the cost function.

Method 2 Attractor reconstruction[34] is a basic technique in chaotic time series analysis. In the

attractor reconstruction,mth dimensional state space is constructed for a time seriesx(t) as

follows:

v(t) = {x(t), x(t + τ), · · · , x(t + (m − 1)τ)}, (3.5)

whereτ is delay.

It is known fact that states of finite dimensional dynamical systems correspond in a one-to-

one manner with delay-coordinate vectors [29, 30].

To select an optimal time delay, the selection method using mutual information betweenx(t)

andx(t+τ) is used [35]. In this method, the time delay that produces the first local minimum

of mutual information betweenx(t) andx(t + τ) is selected as an optimal time delay.

3.1.2 Numerical Simulation

To evaluate our method, we used a leaky integrate-and-fire (LIF) model [34]. The LIF model is

described by following equation:

v̇ = − v
τ0
+ I(t), (3.6)

wherev is the membrane potential,τ0 is a membrane time constant，andI(t) is the input at time

t. After the membrane potentialv reaches a thresholdθ, the membrane potentialv is reset tov0. In

the simulations, we setθ = 1, v0 = 0, andτ0 = 5[ms].

In the simulations, we used periodic time series, quasi-periodic time series, chaotic time series,

and real time series of Japanese vowel sound/a/ as input time seriesI(t).

In the simulations, we normalized time series data to a rangebetween 0 and 1. In accordance

with this, we setθ = 1 andv0 = 0.
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Case 1 Periodic Time Series

As the periodic time series, we used the sinusoidal functionwhich is described by:

I(t) =
1
2

(sin(2π f t) + 1) . (3.7)

We set the frequencyf = 100[Hz].

Case 2 Quasi-Periodic Time Series

As the quasi-periodic time series, we setI(t) to the variablex of the Langford systems [36]

which are described by the following equations:






























ẋ = (z − β)x − ωy,

ẏ = ωx + (z − β)y,

ż = λ + αz − x3

3
− (x2 + y2)(1.0+ ρz) + ǫzx3.

(3.8)

We set the parametersα = 1, β = 0.7, λ = 0.6, ω = 3.5, ρ = 0.25, andǫ = 0.

Case 3 Chaotic time series

We set the input time seriesI(t) to the variablex of the Lorenz systems [37] as the chaotic

time series. The Lorenz equations are described by the following equations:


























ẋ = −σx + σy,

ẏ = −xz + rx − y,

ż = xy − bz.

(3.9)

We set the parametersσ = 10, b = 8/3, andr = 28. These parameters lead to chaotic

behavior of the systems.

To calculate Eqs. (3.8), (3.9), we applied a fourth order Runge-Kutta method with integration

step 0.001. We used 100,000 data after a period of transition.

Case 4 Real time series

The above mentioned time series are generated from numerical models. Then we setI(t) to a

time series of Japanese vowel sounds/a/ (a male subject, sampled at 44[kHz]) as a real time

series.

3.1.3 Results

We show the results of the bandwidths calculated by the methods 1 and 2 for each input time

series in Fig. 3.2. Fig. 3.2(a) shows results of the costs when the bandwidth is changed in the
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method 1. Fig. 3.2(b) shows results of the mutual information when the bandwidth is changed in

the method 2. The optimal bandwidth is obtained when the costC(t) and the mutual information are

minimum in the method 1 and the method 2, respectively. From the results, the optimal bandwidths

are calculated as shown in Table 3.1.
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Figure 3.2: (a) Costs and (b) mutual information when the bandwidths are changed.

Table 3.1: The optimal bandwidths calculated by the methods1 and 2.

method 1 method 2

periodic 10.02 [ms] 3.80[ms]

quasi-periodic 2.85 [ms] 4.81 [ms]

chaos 5.27 [ms] 3.92[ms]

real 0.51 [ms] 0.36 [ms]

Next, in Fig. 3.3, we show results of transformed time seriesfrom each input time series using

the obtained bandwidth. In Fig. 3.3, upper figures show inputtime series and transformed time

series, and bottom figures show spike trains obtained from the LIF model. In the case of periodic

time series (Fig. 3.3(a)), we can see that the input time series and the transformed time series with
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the method 1 and 2 are overlapped. However, in the case of the quasi-periodic time series (Fig.

3.3(b)), the transformed time series are not similar to the input time series because the bandwidths

are fixed. On the other hand, in the case of the chaotic time series and real time series (Fig. 3.3(c),

(d)), the transformed time series are similar to the input time series in spite of complicated behavior.

To evaluate the calculated bandwidth quantitatively, we investigated correlation coefficients and

normalized mean square error (NMSE) between the input time series and transformed time series

when the bandwidthT is changed (Fig. 3.4). From the results. the correlation coefficients are

low and the NMSEs are large when the bandwidth is too small or too large However, when the

bandwidths are calculated by the method 1 and method 2, the correlation coefficients are close to

unity, and the NMSEs are close to zero.

We also show correlation diagrams between the input time series and the transformed time

series and the correlation coefficients in Fig. 3.5. From the results, we can identify that positive

correlations exist.

In addition, we compared reconstructed attractors in delaycoordinates [29, 30, 34] from the

input time series with these of the transformed time series (Fig.3.6). In Fig. 3.6(a)，(b), we set

time delayτ = 1.0[ms]. In Fig. 3.6(c), we set the time delayτ = 1.9[ms]. In Fig. 3.6(d), we set

the time delayτ = 1.2[ms].

On the other hand, the results of quasi-periodic time seriesare low accuracy. In the simulations,

we set the low firing rates. We confirmed that, if we set the highfiring rates, we can reconstruct

the input time series with high accuracy.
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Figure 3.3: Input time series and transformed time series bythe methods 1 and 2. Bottom figures

show spike trains obtained from the LIF model.
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Figure 3.4: Cross correlation coefficients and normalized mean square errors between input time

series and transformed time series for the band widthT . The red line shows the bandwidth calcu-

lated by the method 1, and the blue line shows the bandwidth calculated by the method 2.
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Figure 3.5: Correlation diagrams between input time series and transformed time series by the

method 1 (left) and the method 2 (right) withτ0 = 5.0[ms].
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3.2 Estimation Method of Network Structure from Simple Point

Processes

In the previous section, we used the transforming method from a spike sequence to a continuous

time series. Using the transforming method from a spike sequence to a continuous time series,

we can use the time series analysis method for continuous time series. Then, in this section, we

use the transforming method to estimate network structuresfrom spike sequences. We applied two

methods to transform spike sequences into continuous time series. The first one is an interpolation

of inter-spike intervals by sinusoidal waves. The second one is a kernel density estimator [25] with

theoretical optimization of its kernel bandwidth. In addition, we applied the partial correlation

analysis to the transformed continuous time series.

3.2.1 Methods of Transforming Point Processes into Continuous Time Se-

ries

In order to transform the spike sequences into continuous time series, we applied two transform-

ing methods to the spike sequences.

Let us describe thejth spike in theith spike sequence asti
j. Then, theith spike sequence is

described assi = {ti
1, t

i
2, . . . , t

i
li
} where li is the last index ofsi. Firstly, we interpolate thejth

segment (inter-spike interval, ISI) bounded by two adjacent spikes,ti
j and ti

j+1, by the following

equation:

xi
j(t) =

1
2
+

1
2

cos
2π

T i
j

(t − ti
j), (ti

j ≤ t ≤ ti
j+1), (3.10)

whereT i
j = ti

j+1 − ti
j. Then, xi

j(t) ( j = 1,2, . . . , li−1) is concatenated to produce a transformed

continuous time series from theith spike sequence. In Fig. 3.7, a spike sequence and corresponding

transformed continuous time series are shown. In method 2, we transformed continuous time series

from spike sequences by using the kernel density estimator.

We used the Gaussian function as the kernel function. The kernel density function is described
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xi (t
)

t

Figure 3.7: Example of transformation of a spike sequence into a continuous time series by the

method 1. Blue lines indicate spike timings and the red curve indicates transformed continuous

time series.

by the following equation:

f i
K(t) =

1
liw

li
∑

j=1

K

( t − ti
j

w

)

. (3.11)

wherew is the band width andK(·) is the kernel function. The Gaussian function with mean zero

and unit variance as a kernel function is defined as:

K(t) =
1
√

2π
e−

1
2 t2. (3.12)

In Fig. 3.8, an observed spike sequence and corresponding transformed continuous time series

are shown. Here, the bandwidthw used for the kernel estimation is optimized by the method for

selecting a fixed kernel bandwidth [25] (refer to the method 1in Sec. A.2).

3.2.2 Simulations

We examined the validity of the proposed method using a mathematical model. In our numerical

experiments, we assumed that we can only observe asynchronous spike sequences while the true

network structure is unknown.

In our experiments, to evaluate the validity of the proposedmeasure, we used the Izhikevich

neuron model [14]. The dynamics of theith neuron in the neural network is described by the
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Figure 3.8: Example of transformation of a spike sequence into a continuous time series by the

method 2. Blue lines indicate spike timings and the red curve indicates transformed continuous

time series.

following equations:

dvi(t)
dt

= 0.04v2
i (t) + 5vi(t) + 140− ui(t) + Ii(t),

dui(t)
dt

= a(bvi(t) − ui(t)),

if vi(t) ≥ 30 [mV], then















vi(t)← c,

ui(t)← ui(t) + d,
(3.13)

wherevi(t) is the membrane potential,ui(t) is the membrane recovery variable; anda, b, c, andd

are dimensionless parameters. The parameters are set toa = 0.02, b = 0.2, c = −65, andd = 8.

If vi(t) ≥ 30[mV], vi andui are reset according to Eq. (3.13). The variableIi(t) is the sum of the

external and synaptic inputs from coupled neurons which is defined as follows:

Ii(t) =
n

∑

j=1

m j
∑

k=1

gi jwi jδ(t − tk
j − τi j) + 5ηi(t) (3.14)

wheregi j is a coupling strength fromj to i, τi j is a delay time betweeni and j which is randomly

set to a value between 1 [ms] to 4 [ms], andwi j is the (i, j)th element of the connection matrix of

the network structure. If the neurons are coupled fromj to i, wi j takes unity. Otherwise,wi j takes

zero. The amplitude of the external inputs is set to 5 timesηi(t), whereηi(t) is a Gaussian random

number with a mean value and standard deviation of zero and unity, respectively.

We generated a complex network structure having a regular ring topology with 100 neurons

by a random rewiring of the synaptic connections between neurons in the same manner as that
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described in Ref. [15]. We set the parametersk (the number of edges in the regular network) to

four andp (rewiring probability) to 0.1.

We conducted numerical experiments according to the following procedures. First, to generate

multi-spike sequences, we constructed a neural network using the Izhikevich simple neuron model

and applied external inputs to the neural network. Second, we transformed the spike sequences into

continuous time series. Third, we calculated the partial correlation coefficient of the transformed

continuous time series. If theith and thejth neurons are coupled, the partial correlation coefficient

becomes large. On the other hand, if these neurons are not coupled, it becomes small. Finally, we

classify coupled pairs and uncoupled pairs by the Otsu thresholding [17] which is based on a linear

discriminant analysis.

To evaluate an overall estimation accuracy, we compared theestimated network structure with

the true network structure. For this evaluation, we used thefollowing index:

E =

∑N
i, j(αi jα̃i j + (1− αi j)(1− α̃i j))

N(N − 1)
(3.15)

whereαi j andα̃i, j are the directional connectivity of the true network structure and the estimated

network structure, respectively. If theith and jth elements are (estimated to be) coupled,αi j and

α̃i j take a value of unity. If they are not,αi j andα̃i j take a value of zero. IfE approaches unity, the

estimation accuracy increases.

3.2.3 Results

To compare the proposed methods which transform spike sequences into continuous time series

and the conventional method which uses APSTMC, we also apply the APSTMC [12] to the same

network structure.

Figure 3.9 shows histograms of APSTMC and partial correlation coefficients. Although the

conventional method and the method 1 can separate coupled and uncoupled pairs of neurons, a

few uncoupled pairs are estimated as coupled pairs. However, coupled and uncoupled pairs of

neurons are more clearly distinguished by the method 2.

In Fig. 4.7, we show the results when the rewiring probability is changed. In the method 1, the

estimation accuracy for the random network (p = 1.0) is low. However, the conventional method

and the method 2 show high estimation accuracy for all rewiring probabilities.

We examined how the estimation accuracy depends on the temporal epoch for observing spikes
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(Fig. 5.6). The conventional method exhibits higher accuracy than other methods when the tempo-

ral epoch of the spike sequences is shorter than 20 [s]. However，in the method 2, the estimation

accuracy is higher than the other methods when the temporal epoch of the spike sequences is longer

than 20 [s].

In Fig. 3.12, we show the results when the coupling strength is changed. If the coupling strength

becomes larger than four, the estimation accuracy of the conventional method is high. If the cou-

pling strength becomes larger than five, the estimation accuracy becomes higher in the method 2.

If the coupling strength becomes larger than six, the estimation accuracy of the method 1 is the

highest.

In addition, we show the results for different network sizes (Fig. 4.9). In the method 1, the

estimation accuracy worsens as the network size increases.However, the estimation accuracy in

the method 2 and the conventional method are still high even if the network size is large.

From these results, the estimation accuracy in the method 2 is better than the other methods. In

this neural network model, we used different dynamics of neurons; regular spiking, intrinsically

bursting, and chattering neurons. If two neurons of different dynamics are coupled, the correlation

between the two transformed continuous time series decreases in the conventional method [12] and

the method 1. However, in the method 2, true relation can be identified if observed spike sequences

of two neurons are transformed with an optimal bandwidth, even though the dynamics of the two

neurons differs (Fig. 3.14).
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Figure 3.9: Histograms of (a) PSTMC in the conventional method, partial correlation coefficients

by (b) the method 1 and (c) the method 2. The number of neurons is 100. The temporal epoch

of spike sequences used for estimation is 50 [s]. Histogramsof all of the PSTMC and the partial

correlation coefficients are indicated in red, and those of the coupled elements are superimposed by

blue. The black vertical lines show thresholds decided by the Otsu thresholding. If the PSTMC and

the partial correlation coefficients are less than the threshold, corresponding neurons are classified

into the uncoupled class.
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Figure 3.14: Observed spike sequences (blue) and transformed times series (red) in case that the
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3.3 Estimation Method of Network Structures from Marked

Point Processes

In the Sec. 3.2, we have treated observed event sequences as apoint process, which means that

the observed event sequences do not have amplitude information but only event timing. However,

the amplitude information can be essential for several phenomena, for example, financial systems

and seismic events. Such sequences are often referred as a marked point process. If we use not

only the information of the event timing but also the amplitude information, we can estimate more

precisely the network structures. In this section, we proposed a method for transforming a marked

point process into a continuous time series. In addition, weapplied the partialization analysis to

the transformed continuous time series and estimated connectivity of nonlinear dynamical systems:

the coupled Lorenz systems [37].

3.3.1 Method of Transforming Marked Point Processes into Continuous Time

Series

We used a kernel density estimator for transforming an eventsequence into a continuous time

series in Sec. 4.2. To apply this method to a marked point process, we modified the kernel density

estimator by using the amplitude of marks. Let us define thelth event timing of theith marked

point process data astl
i(l = 1,2, . . . ,N), and the amplitude attl

i ash(tl
i). Then, we use the following

equations to transform the marked point process data into a continuous time series:

fi(t) =
N

∑

l=1,
t− T

2≤tli≤t+ T
2

K
( t − tl

i

T

)

h(tl
i), K(t) =

1
2

(1+ cos 2πt), (3.16)

whereT is the bandwidth andK(t) is the Hann window function. Here, the bandwidthT is opti-

mized by a method for selecting a fixed kernel bandwidth [25].
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3.3.2 Simulations

To confirm the effectiveness of our method, we produced marked point process data from the three

coupled Lorenz systems [37] described by the following equations:


























ẋi(t) = −ρxi(t) + ρyi(t),

ẏi(t) = −xi(t)zi(t) + rxi(t) − yi(t) +
∑

j,i ki jy j(t − τi j),

żi(t) = xi(t)yi(t) − bzi(t),

(3.17)

with i, j = 1,2,3. We set the parametersρ = 10, r = 28, andb = 8/3. The delays are set toτ12 = 5

andτ23 = 15. The coupling strengths are set tok12 = k23 = 8 andk13 = 0. The coupling structure

of the systems is shown in Fig. 3.15. We defined thelth event timingtl
i as the time when|yi(t)|

takes thelth local maxima and the amplitude of thelth event as|yi(tl
i)|.

(a) (b)

Figure 3.15: Coupling structures: (a) true structure and (b)misestimated results for the three

coupled Lorenz systems.

3.3.3 Results

First, we examined how the mutual information and the correlation coefficients between the orig-

inal continuous time seriesy1 and the transformed time series depend on the band widthT (Fig.

3.16). When the bandwidth is equal to 7.0, which is calculated by the method for selecting a fixed

kernel bandwidth [25], the correlation coefficients and the mutual information are high.
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Second, we estimated the connectivity of systems only from event timings (we seth(tl
i) = 1 for

i = 1,2,3 andl = 1,2, · · · ,N). We show the results of the cross mutual information (Fig. 3.18

(a)–(c)) and partial mutual information (Fig. 3.18 (d)–(f)). From the results, it is difficult to detect

coupling because no peaks are found. In contrast, if we use not only event timingstl
i but also the

additional informationh(tl
i), the results show clear peaks (Fig. 3.19). From the resultsof the cross

mutual information (Fig. 3.19 (a)–(c)), we can identify sharp peaks. These results indicate the

connectivity of the coupled Lorenz systems as Fig. 3.15(b).However, the connectivity between

the systems 1 and 3 is misestimated because of a spurious bias. To remove the spurious bias, we

used the partial mutual information. In Fig. 3.19(d)–(f), we show the results of the partial mutual

information. The results shown in Fig. 3.19(e) indicate that no connection exists between the

systems 1 and 3. These results indicate that we can estimate the connectivity of the systems as

Fig. 3.15(a) which is the true connectivity of the systems. In addition, we can clearly identify the

delaysτ12 = 5 andτ23 = 15 (Fig. 3.19(d)–(f)), because the peaks occur at these values.
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series and the transformed time series with the bandwidthT .
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3.4 Summary of Chapter 3

In this chapter, we proposed method of estimating network structures by transforming point

processes into continuous time series.

To transform point processes into continuous time series, we used the kernel density function.

When the kernel function is used, we have to select the optimalbandwidth because the transformed

time series depends on the bandwidth. Then we used two selection methods of the kernel band-

width. As the first method, we used a kernel bandwidth optimization method which is proposed by

Shimazaki et al. [25]. The method is used in spike rate estimation. As the second method, we also

used the attractor reconstruction[34] which is a basic technique in chaotic time series analysis. By

using these methods, we found that high correlation coefficients and low normalized mean square

errors are evaluated between the input time-series and its reconstructed time-series.

Using the transformation method, we estimated network structures from simple point processes.

To evaluate the validity of the proposed method, we used a neural network constructed from a

mathematical model of the Izhikevich simple neuron model [14] and generated multi-spike se-

quences. The results show that our method exhibits high performance.

In additon, for marked point processes, we extended the proposed method. We proposed a

method of transforming marked point processes into continuous time series which is based on

the kernel density estimator. Then, we applied the partialization analysis to the transformed time

series. As a result, we can estimate the connectivity of the coupled Lorenz systems from marked

point processes.
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Chapter 4

Estimation Method of Network Structure

Using Distance between Point Processes and

Partialization Analysis

In Chapter 3, we proposed estimation methods of network structures by transforming point

processes into continuous time series. Although these methods work well, one should be careful

to apply these methods, because it is possible to lose essential information of spike sequences by

transforming spike sequences into continuous time series.From this point of view, we proposed

methods for estimating network structures only from point process data without transforming point

process into continuous time series. In the proposed methods, we use distance between point

processes.
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4.1 Estimation Method of Network Structure from Simple Point

Processes

In Section 4.2, we propose an estimation method of network structures from spike sequences as

simple point processes. In the proposed method, we use a spike time metric which is one of the

statistic to quantify a distance between two spike sequences and apply the partialization analysis

to the spike time metric..

4.1.1 Spike Time Metric

The spike time metric was proposed by Victor and Purpura [13]. In the spike time metric, two

operations are used to quantify the distance between two spike sequences; then, the costs incurred

to carry out these operations are defined to measure the dissimilarity between spike sequences.

The first operation is deletion or insertion of a single spike, the cost of both of which is unity. The

second operation is a movement or temporal shift of a single spike, the cost of which is proportional

to the interval for which the single spike is moved. For example, if a spike sequenceA is the same

as a sequenceA′ except for single spikes that occur atta
A in A and ta′

A′ in A′, the costcq(A, A′)

corresponds toq|ta
A − ta′

A′ |. The parameterq determines which operation takes precedence in the

deletion and insertion, or the movement. In the spike time metric [13], a metric distance between

two spike sequencesZ andZ′ is defined as

Dq(Z,Z
′) = min















N−1
∑

k=1

cq(Vk,Vk+1)















, (4.1)

whereV1,V2, . . . ,VN are elementary steps fromZ to Z′ [13]. The metric distance between the

two spike sequences is the minimum total cost of a set of elementary steps that transforms a spike

sequence into another spike sequence. An example of transforming Z to Z′ is shown in Fig. 4.1.

FromV1 (=Z) to V3, we move two spikes. FromV3 to V4, we insert one spike (the fifth one). From

V4 to V5 (=Z′), we move a single spike to reachZ′. Consequently, the cost of transformingZ into

Z′ is 1+ q(∆t1 + ∆t2 + ∆t3) in this example.
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V1 = Z

V2

V3

V4

V5 = Z′

cq(V1, V2) = q × ∆t1

cq(V2, V3) = q × ∆t2

cq(V3, V4) = 1

cq(V4, V5) = q × ∆t3

∆t1

∆t2

∆t3

insertion

Figure 4.1: Example of transforming the spike sequenceZ into Z′.

Spike time metric coefficient and partial spike time metric coefficient

Let us denote theith and jth spike sequences observed from a neural system asXi and X j,

respectively. Using Eq. (5.8), the spike time metric coefficient (STMC) between the two spike

sequencesXi andX j is defined as:

S q(Xi, X j) = 1−
Dq(Xi, X j)

max
i, j
{Dq(Xi, X j)}

. (4.2)

The STMC is a normalized measure of the spike time metric, andit takes a value between 0 and

1. The STMC is similar to a function of the correlation coefficient betweenXi andX j whereas the

spike time metric (Eq. (5.8)) is a function of the distance betweenXi andX j. If two neurons that

produceXi andX j are coupled,S q(Xi, X j) is expected to become greater than that in the case in

which the two neurons are uncoupled, because the distance betweenXi andX j in the coupled cases

becomes less than that in the uncoupled cases.

Although the STMC is a measure similar to the correlation coefficient, it can be spuriously

biased if the two neurons are driven by a common input from other neurons. To avoid such a bias,

as in the case of deriving a partial correlation coefficient from the correlation coefficient, the partial
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spike time metric (PSTMC) between the two spike sequencesXi andX j is defined as

Pq(Xi, X j) =
∣

∣

∣

∣

∣

α(i, j)
√

α(i, i)α( j, j)

∣

∣

∣

∣

∣

,

whereα(i, j) is the (i, j)th entry of the inverse matrix ofS q(Xi, X j). The PSTMC can reveal the

unbiased correlation between the two spike sequences by removing any spurious correlation as the

partialization analysis does. In other words, the PSTMC works as a partial correlation coefficient

between the two spike sequences based on the spike time metric. Using the PSTMC, we can find

hidden relations between neurons and estimate the network structure.

4.1.2 Simulations

We examined the validity of the proposed measures using a mathematical model. In our numer-

ical experiments, we assumed that we can only observe asynchronous spike sequences while the

true network structure is unknown. To evaluate the validityof the proposed measures, we used the

Izhikevich neuron model.

We checked the validity of our method under the following twoconditions. The first condition

is that the network is homogeneous; the neurons are only regular spiking (RS) neurons whose

parameters area = 0.02, b = 0.2, ci = −65, anddi = 8. The second condition is that the network is

heterogeneous; the neurons are RS, intrinsically bursting (IB), and chattering (CH) neurons. The

parameters were set toa = 0.02, b = 0.2, ci = −65+ 15r2
i , anddi = 8− 6r2

i whereri are uniform

random numbers between [0,1]. The synaptic weight was set to six and the amplitude of the

external inputs was five timesG, whereG was a Gaussian random number with a mean value and

standard deviation of zero and unity, respectively. For thesake of simplicity, we did not consider

conduction delays.

To apply our proposed measures to the spike sequences, it is important to decideq appropriately,

because it determines a relative weight between the two operations in the spike time metric: dele-

tion and insertion, or the movement. Then, we pre-examinedS q(Xi, X j) andPq(Xi, X j) by changing

q, as shown in Fig. 4.2. From Fig. 4.2(b), if we setq between 50 and 100, the network structure

can be accurately estimated byPq, because the disparity between the coupled and uncoupled el-

ements is clearly distinguished byPq. Then, we experimentally decideq only with the observed

asynchronous spike sequences in the following manner.

First, let us assume that we have two spike sequencesA andA′ that are identical except for a

single spike that occurs atta
A in A andta′

A′ in A′. To transformA into A′, we have two operations.
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The first one is the insertion and deletion whose cost is two (the cost of each is unity). The second

one is the movement whose cost isq|ta
A − ta′

A′ |. Then, solving the equation 2= q|ta
A − ta′

A′ | (in the case

in which the costs are same), we obtain a critical value ofq (if 2 < q|ta
A − ta′

A′ |, the insertion and

deletion are selected, otherwise the movement is selected). To decideq appropriately, we have to

define a possible range for the movement of a single spike,ta
A − ta′

A′ , because it decides the critical

values ofq. Then, we evaluate a maximum value of the average minimum time difference by

1
Ni

Ni
∑

k=1

min
l

∣

∣

∣tk
i − tl

j

∣

∣

∣,

where Ni is the number of spikes in theith sequence andtk
i is the kth spike timing in theith

spike sequence. Figure 4.3 shows an example. From Fig. 4.3, the maximum value of the average

minimum time difference is 0.025 [s]. To obtain the critical value ofq, we solve the equation

2 = q|ta
A − ta′

A′ | by substituting 0.025 inta
A − ta′

A′ . Then, we haveq = 80; this agrees well with the fact

that if we setq between 50 and 100, the disparity between the coupled and uncoupled elements is

clear (Fig. 4.2(b)). Although this determination procedure is heuristic, we have confirmed that it

works well in other cases.
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Figure 4.2: Relation betweenq and (a)S q and (b) Pq for the 100 regular ring topology of a

homogeneous network. Blue solid lines indicateS q andPq between coupled elements. Red dotted

lines indicateS q and Pq between uncoupled elements. Error bars which indicate minimum and

maximum values with 30 trials are also provided.

If the ith and thejth neurons are coupled,S q(Xi, X j) and Pq(Xi, X j) might increase. On the

other hand, if these neurons are not coupled, these measuresmight decrease. Thus, to find coupled

neuron pairs, we extracted higher values of these measures by discriminating the coupled and
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Figure 4.3: Frequency histogram of an average minimum time distance between two spikes for

the 100 regular ring topology of a homogeneous network. Blue vertical line indicates a boundary

between the deletion and the insertion or the movement. It also indicates the maximum value of

the histogram.

uncoupled pairs by calculating a threshold. To exclude any subjective discrimination, the threshold

is decided by the Otsu thresholding [17], which is based on a linear discriminant analysis.

To evaluate the overall estimation accuracy, we compared the estimated network structure with

the true network structure. For this evaluation, we introduced two evaluation indices, C–C̃ and

U–Ũ, defined as follows:

C−C̃ =

∑

i, j wi jw̃i j
∑

i, j wi j
,and

U−Ũ =

∑

i, j(1− wi j)(1− w̃i j)
∑

i, j(1− wi j)
,

wherewi j and w̃i j are the connectivity of the true network structure and the estimated network

structure, respectively. If theith and thejth elements are (estimated to be) coupled,wi j andw̃i j

take unity. If they are not,wi j andw̃i j take a value of zero. If C–̃C and U–̃U approach unity, the

estimation accuracy increases.
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4.1.3 Results

We checked the validity of our method in simple networks. As simple networks, we used 3-

neuron and 4-neuron network structures (Fig. 4.4).

We compared the values ofS q and Pq (Fig. 4.5, blue and red). In the case of three neuron

network, the STMC of uncoupled pairs is zero (Fig. 4.5(a), uncoupled, red), because the uncoupled

pair is the most dissimilar in all neuron pairs. However, foruncoupled pairs of neurons, the PSTMC

is larger than the STMC. In the case of four neuron network, theSTMC of the uncoupled pairs is as

large as that of the coupled pairs by spurious correlations (Fig. 4.5(b)). However, the large STMC

becomes small in the PSTMC. As same as the case of the three neuron network, the PSTMC is

larger than the STMC in the case that the STMC is small. Therefore, we used the STMC and

the PSTMC adaptively. In the adaptive measure, ifPq(Xi, X j) is larger thanS q(Xi, X j), we used

S q(Xi, X j). The adaptive measure, called the adaptive partial spike time metric (APSTMC), is

defined as:

Aq(Xi, X j) = min(S q(Xi, X j), Pq(Xi, X j)), (4.3)

where min(·, ·) takes the value of smaller one,S q(Xi, X j) or Pq(Xi, X j). In the three neuron network,

Aq(Xi, X j) of uncoupled pairs is zero (Fig. 4.5(a), pink). In the four neuron network, the APSTMCs

of uncoupled pairs are distributed within the range where the value is small (Fig. 4.5(b), pink). In

the following simulations, we usedS q andAq.

(a) (b)

Figure 4.4: Network structures which are composed of (a) three and (b) four neurons. The neurons

are mutually connected.

Next, to evaluate the performance of the proposed measure, we generated a complex network

structure having a regular ring topology with 100 neurons bya random rewiring of the synaptic
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Figure 4.5: Transition fromS q to Pq andAq for (a) three and (b) four neuron networks. The blue

points indicate average value ofS q, the red points,Pq, and the pink points,Aq with 20 trials. Error

bars which indicate minimum and maximum values are also provided.

connections between neurons in the same manner as that described in Ref. [15]. We also intro-

duced another complex network structure, namely, a scale-free network [16]. We set the parameters

m0 (number of nodes in an initial network) to four andm (number of edges attached to the network)

to two, as in the case of Ref. [16]. In these networks, the neurons are mutually connected.

For a small-world network whose components are homogeneous, although our method can sep-

arate coupled (blue) and uncoupled (red) pairs of neurons with S q, a few uncoupled pairs are

estimated as coupled pairs (Fig. 4.6(a)). However, coupledand uncoupled pairs are more clearly

distinguished when we useAq (Fig. 4.6(b)). In the heterogeneous case, the distributionof un-

coupled and coupled pairs widely overlap (Fig. 4.6(c)). As shown in Fig. 4.6(d), coupled and

uncoupled pairs are effectively discriminated. In the homogeneous case of a scale-free network,

the discrimination of coupled and uncoupled pairs is improved as in the case of the small-world

network when we useAq (Figs. 4.6(e) and (f)). However, as compared to the small-world case,

coupled pairs are misestimated (Figs. 4.6(b) and (f)). Similarly, the use ofAq realizes more clear

separation than the use ofS q (Figs. 4.6(g) and (h)). Then, the estimation accuracy of thescale-free

network becomes lower than that of the small-world network.

In Fig. 4.7, we show the results of the small-world network when the rewiring probability is

changed. The results show that the estimation of the small-world structure with the STMC depends

on the rewiring probabilityp (Fig. 4.7). In particular, the estimation accuracy for the random

network (p = 1.0) is low. However, if we use APSTMC, the estimation accuracy improves. In

addition, there is significant difference in C–̃C and U–̃U between the STMC and the APSTMC (P
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< 0.05; two-samplet-test) (Fig. 4.7).

In Fig. 5.6, we examined how the estimation accuracy dependson the temporal epoch for

observing spikes. C–̃C of APSTMC for a small-world network is similar to that of STMC, and

C–C̃ in both STMC and APSTMC is high even if the temporal epoch of the spike sequences is

short (Fig. 5.6(a)). However, the accuracy by U–Ũ exhibits a significant difference (Fig. 5.6(b)).

The estimation accuracy with APSTMC is high, whereas that with STMC is low. If the temporal

epoch becomes longer than 20 [s], the estimation accuracy with APSTMC is high. On the other

hand, for the scale-free network, we obtain the same tendency with the small-world case; however,

at least 30 [s] are required to obtain high accuracy of U−Ũ (Fig. 5.6(d)). The estimation accuracy

of C−C̃ is not improved (the value is less than 0.9) (Fig. 5.6(c)).

In Fig. 4.9, we show the results for different network sizes. For all the network sizes, even

though the network is small-world or scale-free, the APSTMCexhibits a high estimation accuracy

of C−C̃ and U−Ũ (Figs. 4.9(a)–(d)). However, the estimation accuracy of C−C̃ worsens slightly

as the network size increases even if APSTMC is used.

We also examined how stable our method under noise influence (Fig. 4.10). In this simulation,

the noise is classification error in spike sorting, and the noise rateµ is the ratio of the number

of spikes replaced with other spike sequences randomly to all the number of spikes in a spike

sequence. For the small-world network, the estimation accuracy of C−C̃ and U−Ũ with APSTMC

is high if the noise rateµ is smaller than 0.2. On the other hand, for the scale-free network, the

APSTMC exhibits a high estimation accuracy of U−Ũ when the noise rateµ is smaller than 0.1.

Fig. 4.11 shows correlation diagrams between PSTMC and coupling strength. From the results,

there is a correlation between PSTMC and coupling strength.This results indicate that we can see

a distribution of coupling strength from the distribution of the PSTMC.

In this thesis, we evaluated the performance of the estimation method for network structures by

the proposed measure using only spike sequences. Our results show that the estimation accuracy

of the small-world network is much better than that of the scale-free network. This result is at-

tributable to the large difference between the firing rates of neurons in the scale-free network (Fig.

4.12). In Fig. 4.12, we show the results of local estimation accuracy Ci−C̃i and Ui−Ũi, respectively

defined as

Ci−C̃i =

∑

j(wi jw̃i j)
∑

j wi j
,

Ui−Ũi =

∑

j((1− wi j)(1− w̃i j))
∑

j(1− wi j)
.

Even though a neuron has small connectivity or small degree,its estimation accuracy of Ci−C̃i
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decreases if the average degree of its adjacent neurons is high (Fig. 4.12(a)). If the difference

between the firing rates is large, the value of the spike time metric increases because the spike time

metric determines the insertion and deletion of spikes. Therefore, the reduction in the estimation

accuracy of the scale-free network originates from the large difference between the firing rates of

neurons.

We also compared estimation accuracy which estimated from membrane potentials with that

which estimated from spike sequences. In case of membrane potentials, we estimated the network

structure by using a partial correlation coefficient. The results of estimation accuracy for several

temporal epochs are shown in Fig. 4.13. When the temporal epoch is 10[s], the estimation accuracy

is high in case of membrane potentials. However, when the temporal epoch is longer than 20[s],

the result of PSTMC is almost same estimation accuracy as that of membrane potentials. Fig. 4.14

shows the results of estimation accuracy for several coupling strengths. From the results, when

the coupling strength is smaller than 3, PSTMC exhibits higher estimation accuracy than partial

correlation coefficient between membrane potentials. Although the estimation accuracy in case of

PSTMC is lower than the partial correlation coefficient between membrane potentials, the result of

PSTMC is almost same estimation accuracy as that of the partial correlation coefficient between

membrane potentials. The results of estimation accuracy for several sizes are shown in Fig. 4.15.

Similarly, the result of PSTMC is almost same estimation accuracy as that of the partial correlation

coefficient between membrane potentials.
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Figure 4.6: Histograms of (a)S q and (b)Aq for the small-world network, and (e)S q and (f) Aq

for the scale-free network comprising only RS neurons, and (c) S q and (d)Aq for the small-world

network, and (g)S q and (h)Aq for the scale-free network comprising RS, IB, and CH neurons.

The number of neurons is 100. The temporal epoch of spike sequences used for estimation is 50

[s]. Histograms of all ofS q and Aq are indicated in red, and those of the coupled elements are

superimposed by blue. The vertical lines indicated a threshold decided by Otsu thresholding. IfS q

andAq are less than the threshold, corresponding neurons are classified into the uncoupled class.
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Figure 4.7: Estimation accuracy of the small-world networkstructure: (a) C–̃C and (b) U–̃U for

rewiring probabilitiesp. The number of neurons is 100. The temporal epoch of spike sequences

used for estimation is 50 [s]. The network is comprising RS, IB,and CH neurons. Red lines

indicateS q and blue lines,Aq. * indicates a significant difference between the STMC and the

APSTMC (P < 0.05, two-samplet-test). Error bars which indicate minimum and maximum

values with 20 trials are also provided.
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Figure 4.8: Estimation accuracy of the network structure for several temporal epochs: (a) C–C̃ and

(b) U–Ũ for small-world network, (c) C–̃C and (d) U–̃U for scale-free network. The number of

neurons is 100. The network is comprising RS, IB, and CH neurons.Red lines indicateS q and

blue lines,Aq. * indicates a significant difference between the STMC and the APSTMC (P < 0.05,

two-samplet-test). Error bars which indicate minimum and maximum values with 20 trials are

also provided.

61



(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

C
-C~

network size

* * * * * * * * * * (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

U
-U~

network size

* * * * * * * * * ** * * * * * * * * *

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

C
-C~

network size

* * * * * * * * * (d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200

U
-U~

network size

* * * * * * * * ** * * * * * * * * *

Figure 4.9: Estimation accuracy of the network structure for several network sizes: (a) C–C̃ and

(b) U–Ũ for small-world networks, (c) C–̃C and (d) U–̃U for scale-free networks. The temporal

epoch of spike sequences used for estimation is 50 [s]. The network is comprising RS, IB, and CH

neurons. Red lines indicateS q and blue lines,Aq. * indicates a significant difference between the

STMC and the APSTMC (P < 0.05, two-samplet-test). Error bars which indicate minimum and

maximum values with 20 trials are also provided.
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Figure 4.10: Estimation accuracy of the network structure under noise influence: (a) C–C̃ and (b)

U–Ũ for small-world networks, (c) C–̃C and (d) U–̃U for scale-free networks. The number of

neurons is 100. The temporal epoch of spike sequences used for estimation is 50 [s]. The network

is comprising RS, IB, and CH neurons. Red lines indicateS q and blue lines,Aq. * indicates a

significant difference between the STMC and the APSTMC (P < 0.05, two-samplet-test). Error

bars which indicate minimum and maximum values with 20 trials are also provided.
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network and (b) scale-free network. The number of neurons is100. The temporal epoch of spike
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Figure 4.13: Estimation accuracy of the network structure for several temporal epochs: (a) Ci−C̃i,

(b) Ui−Ũi and (c)E. Green lines indicate partial correlation coefficients between membrane po-

tentials and blue lines,Pq. The number of neurons is 50. The coupling strength is 6. The network

is comprising RS, IB, and CH neurons.
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Figure 4.14: Estimation accuracy of the network structure for several coupling strengths: (a) Ci−C̃i,

(b) Ui−Ũi and (c)E. Green lines indicate partial correlation coefficients between membrane po-

tentials and blue lines,Pq. The number of neurons is 50. The temporal epoch of spike sequences

used for estimation is 50 [s]. The network is comprising RS, IB,and CH neurons.
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Figure 4.15: Estimation accuracy of the network structure for several network sizes: (a) Ci−C̃i, (b)

Ui−Ũi and (c)E. Green lines indicate partial correlation coefficients between membrane potentials

and blue lines,Pq. The temporal epoch of spike sequences used for estimation is 50 [s]. The

coupling strength is 6. The network is comprising RS, IB, and CH neurons.
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4.2 Estimation Method of Network Structures and direction of

couplings from Simple Point Processes

In this section, we propose a new estimation method of direction of connectivity between neu-

rons in neural networks only from multiple spike sequences.The proposed method is based on a

spike time metric, or a statistical measure to quantify a degree of dissimilarity between two spike

sequences, and the partialization analysis. Although the method of the Section can estimate net-

work structures, the direction of connectivity cannot be estimated. To resolve this issue, we modify

the definition of the conventional cost in the spike time metric. Then the proposed method can ef-

fectively estimate direction of connectivity between neurons. To check the validity, we applied the

proposed method to multiple spike sequences that are produced by a mathematical neural network

model. As a result, our method could estimate the neural network structure and the direction of

couplings with high accuracy.

4.2.1 Proposed measure

We introduce a new measure for estimating the direction of coupling between neurons. If we

use the spike time metric, the direction of coupling cannot be detected although we can estimate

connection between two neurons, because the spike time metric holds a condition of symmetry:

D(A, B) = D(B, A). Then, we adapt the cost of the movement of a single spike forestimating the

direction of coupling. The movement of a single spike in the spike time metric, the spike can be

shifted both forward and backward. Here, we consider that a spike is shifted only forward, and

define the cost of the movement as follows:

c(V,V ′) = q(ti
V − t j

V′), ti
V > t j

V′ . (4.4)

Figure 4.16(b) shows an example of transforming a spike sequenceA to B by the proposed measure.

By using the cost of Eq.(4.4), if a neuronA is unidirectionally coupled to a neuronB, D(A, B)

exhibits a smaller value thanD(B, A) (Fig. 4.17). Then, we can determine the direction of coupling

by using this proposed measure.
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Figure 4.16: Examples of transforming a spike sequenceA into B in (a) the spike time metric and

(b) the proposed measure.
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Figure 4.17: The difference of the total cost between (a)D(A, B) and (b)D(B, A) in the case that a

neuronA is unidirectionally connected to a neuronB. (a) D(A, B) takes a small value. (b)D(B, A)

takes a larger value thanD(A, B).

4.2.2 Simulations

To evaluate the validity of our method, we used a neural network constructed from a mathemat-

ical model of the Izhikevich simple neuron model [14] and generated multiple spike sequences.
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The dynamics of theith neuron in the neural network is described by the followingequations:

v̇i = 0.04v2
i + 5vi + 140− ui + Ii,

u̇i = a(bvi − ui),

if vi ≥ 30[mV], then















vi ← c,

ui ← ui + d,

wherevi is the membrane potential,ui is the membrane recovery variable; anda, b, c, andd are

dimensionless parameters. The parameters were set toa = 0.02, b = 0.2, c = −65, andd = 8.

The variableIi is the sum of the external and synaptic inputs from coupled neurons. The synaptic

weight is set to 8 and the amplitude of the external inputs to 5timesG, whereG is a Gaussian

random number with a mean value and standard deviation of zero and unity, respectively. The

neural network is composed of only excitatory neurons whichare regular spiking neurons. The

neurons are unidirectly connected. We set delays between neurons to 2[ms] to 4[ms] randomly.

To apply our proposed measures to the spike sequences, it is important to decideq appropri-

ately, because it determines a relative weight between the two operations in the spike time metric:

deletion and insertion, or the movement. We experimentallydecidedq only with the observed

asynchronous spike sequences in the following manner. First, let us assume that we have two

spike sequencesV andV ′ that are identical except for a single spike that occurs atti
V in V andt j

V′

in V ′ under the condition thatti
V < t j

V′ . To transformV into V ′, we have two operations. The first

operation is the insertion and deletion. Its cost is two (each cost is unity). The second operation is

the movement. Its cost isq(t j
V′ − ti

V). Then, if we solve the equation 2= q(t j
V′ − ti

V) (in the case that

both costs are same), we obtain a critical value ofq (if 2 > q(t j
V′ − ti

V), the movement is selected,

otherwise the insertion and deletion are selected). To decideq appropriately, we have to define a

possible range for the movement of a single spike,t j
V′ − ti

V , because it decides the critical values of

q. Then, we evaluate an average minimum time difference by

∆T =
1

N(N − 1)

N
∑

i=1

N
∑

j=1,i, j

∆T i j, (4.5)

where∆T i j =
1
Ni

Ni
∑

k=1

min
l

(tk
i − tl

j), (0 < tk
i −tl

j <
IS I
2

), Ni is the number of spikes in theith sequence,

N is the number of spike sequences,tk
i is thekth spike timing in theith spike sequence, andIS I is

the mean interspike interval for all the multiple spike sequences. To exclude long time difference,

we applied the condition thattk
i − tl

j <
IS I
2 .

To obtain the critical value ofq, we solve the equation 2= q∆T . Although this determination

procedure is heuristic, we have confirmed that it works well in other cases.
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Using q decided by the abovementioned method, we applied the STMC and PSTMC to the

multiple spike sequences. If two neurons are coupled,S andP might be large. Then, we calculate

a threshold that classifies the coupled and the uncoupled pairs. The threshold is decided by the

Otsu thresholding method [17] which is based on a linear discriminant analysis.

To evaluate the estimation accuracy, we compared the estimated network structure with the true

network structure. For this evaluation, we define an index asfollows:

E =

N
∑

i, j

(αi jα̃i j + (1− αi j)(1− α̃i j))

N(N − 1)
, (4.6)

whereN is the number of elements,αi j andα̃i j are the directional connectivity of the true network

structure and the estimated network structure, respectively. If the ith element is (estimated to be)

connected to thejth element,αi j andα̃i j take a value of unity. If they are not,αi j andα̃i j take a

value of zero. IfE approaches unity, the estimation accuracy increases.

4.2.3 Results

First, we checked the validity of our proposed method and compared with the conventional

method. As a network structure, we generated a small-world network structure [? ], which has

initially ring lattice topology with 50 neurons and degree 4of each neurons. The temporal epoch

of spike sequences is 50[s], and the coupling strength is setto 8. We examined the case that the

neurons are unidirectly coupling. Figure 4.18(a) and (b) shows histograms ofS andP in the con-

ventional method, respectively. Figure 4.18(c) and (d) shows histograms ofS andP in the proposed

method. In Fig. 4.18(a) and (b), some pairs coupled with an opposite direction are misestimated

as a coupled class, becauseS (i, j) equalsS ( j, i). Thus, the direction of couplings cannot be well

estimated in the conventional method. On the other hand,S in the proposed method can estimate

the direction of couplings although the threshold is not optimal (Fig. 4.18(c)). However, by using

P in the proposed method, we can estimate the coupled pairs andthe direction of couplings. In

addition, the threshold is optimally calculated (Fig. 4.18(d)).

To check the validity of the proposed method, we evaluated the performance of the proposed

method in case of changing rewiring probability in the small-world network model [? ], network

sizes, temporal epochs for observed spikes, and coupling strengths. We show the results when the

rewiring probability is changed (Fig. 4.19(a)). If we useS , the estimation accuracy is low. In

particular, when the rewiring probability is 1.0, the estimation accuracy is low. On the other hand,
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Figure 4.18: Histograms of (a)S and (b)P in the conventional method, and those of (c)S and

(d) P in the proposed method. The number of neurons is 50. Histograms of all of S andP are

shown by red bars, and those of the coupled elements are superimposed by blue. The vertical lines

indicate a threshold decided by the Otsu thresholding. IfS andP are larger than the threshold,

corresponding neurons are classified into the coupled class.

if we useP, the estimation accuracy is high for all the rewiring probability.

In Fig. 4.19(b), we show the results when the network size is changed. The estimation accuracy

in P is high although the estimation accuracy inS decreases as the network size increases.

We also examined how the estimation accuracy depends on the temporal epochs for observed

spikes (Fig. 4.19(c)). The estimation accuracies in bothS andP become higher as the temporal

epoch becomes longer. If the temporal epoch is longer than 15[s], the estimation accuracy inP is

almost unity.
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Figure 4.19: Estimation accuracy of the network structure for (a) rewiring probabilities, (b) net-

work sizes, (c) temporal epochs, and (d) coupling strength.Red and blue lines representS andP,

respectively. Error bars which indicate standard errors with 20 trials are also provided.

In addition, we show the results in case that values of coupling strength are changed (Fig.

4.19(d)). If the coupling strength is larger than 8, the estimation accuracy is high. However,

the estimation accuracy becomes slightly worse as the coupling strength becomes larger.

4.3 Summary of Chapter 4

In this chapter, we proposed two measures, spike time metriccoefficient and partial correlation

coefficient, to estimate network structures only from the information of observed asynchronous

spike sequences. We applied the proposed measures to simplenetworks and complex networks

[15, 16]. The results show that network structures can be estimated by adaptive application of
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spike time metric coefficients and partial spike time metric coefficients with high performance.

In Eq. (4.3), we heuristically defined the PSTMC from association of the conventional partial-

ization analysis. Then, we experimentally confirmed that the PSTMC can measure true relation

between spike sequences by removing spurious correlations. However, we do not have theoreti-

cally proven why the PSTMC works well yet. As a future work, wehave to prove that why the

PSTMC works well.
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Chapter 5

Estimation Method of Network Structure

Using Distance and Multi-Dimensional

Scaling

In Chapter 4, we proposed two measures, the spike time metric coefficient and the partial corre-

lation coefficient. By using these measures, we could estimate network structures only from point

processes. However, we do not have theoretically proven whythe PSTMC works well. Then, in

this chapter, we propose a new method to estimate network structures from point processes by

using the distance between point processes and multi-dimensional scaling. The multi-dimensional

scaling is a classical method for representing arrangementin the Euclidean space from a distance

relation [8]. Using the distance between point processes which calculated by the spike time metric,

we can obtain the position vectors which represents the linear relationship among spike sequences

in the Euclidean space and apply a linear regression model tothe obtained position vector. Then

we can use the statistical measures of the partialization analysis such as the partial correlation coef-

ficient and the partial directed coherence because these measures are based on the linear regression

model.
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5.1 Estimation Method of Network Structure from Simple Point

Process

In this section, we propose a method of estimating network structures from spike sequences

as simple spike processes. In the proposed method, first, we measure a distance between spike

sequences by using the spike time metric that is proposed by Victor and Purpula [13]. Next,

we apply the multi-dimensional scaling [8] to the distance between spike sequences to represent

a relationship among spike sequences in the Euclidean space. By using the multi-dimensional

scaling [8], we can obtain position vectors of each spike sequence in the Euclidean space. Then

we can consider that the obtained position vectors represent a linear relationship among the spike

sequences. Then, the linear regression model can be appliedto the obtained position vectors. To

estimate connectivity between neurons, we use the partial directed coherence [6] which is based

on the linear regression model and partialization analysis. To check the validity of the proposed

method, we apply the proposed method to observed multiple spike sequences from a mathematical

neuron model. In numerical simulations, we show that our method can estimate neural network

structure even though the neurons have many common, or spurious, inputs from the other neurons.

5.1.1 Multi-Dimensional Scaling

To represent the relationship between point processes, we used the multi-dimensional scaling

(MDS) [8] which is a classical method for representing arrangement in the Euclidean space from

a distance relation. In the proposed method, we used the STM as the distance relation.

Then a distance matrixS is defined asS = {si j}, wheresi j is described as follows:

si j =
1
2

(D(i,m)2 + D( j,m)2 − D(i, j)2), (5.1)

whereD(i, j) is the STM between theith and thejth point processes.

Next, by applying the eigenvector decomposition toS, we obtain a coordinate matrixX as

follows:

S = V ΛV
T = (V Λ

1
2 )(V Λ

1
2 )T ≡XX

T, (5.2)

whereΛ = diag(λ1, λ2, . . . , λn), V = (v1,v2, . . . ,vn), n is the number of nonzero eigenvalues of

S, andλi andvi are theith eigenvalue and eigenvector of the matrixS, respectively. The matrix

X is a coordinate matrix described byX = (x1,x2, . . . ,xN)T, wherexk = (xk1, xk2, . . . , xkn)T.

75



Using the STM as the distance, we can obtain the position vector xi which represents the linear

relationship between corresponding marked point processes in the Euclidean space. Then we can

apply a linear regression model to the obtained position vector xi asxi =
∑N

j=1 ai jx j + wi,where

wi is a multivariate Gaussian white noise process andai j is a regression coefficient fromx j to xi.

Using the STM as the distance relation, we can obtain the position vectorxi which represents

the linear relationship among spike sequences in the Euclidean space. Then we can apply a linear

regression model to the obtained position vectorxi as follows:

xk =

N
∑

r=1

akrxr +wk, (5.3)

wherewi is multivariate Gaussian white noise process andakr is a regression coefficient fromxr

to xk.

5.1.2 Numerical Simulations

To evaluate the validity of our method, we used a neural network constructed from a mathe-

matical model, or the Izhikevich simple neuron model [14]. We conducted numerical experiments

according to the following procedures.

1. We constructed the neural network whose elements are the Izhikevich simple neuron model,

and observed multiple point processes.

2. We calculated the distanceD between point processes by using the STM.

3. We applied the MDS to the distanceD.

4. Using observed position vectors in the MDS, we calculatedthe PDC.

5. If |π̄i j| (Eq. (2.54)) is larger than 0.1, we decided the neuron pair ofi and j as the coupled

pair [6].

To confirm the estimation accuracy, we compared the structure of an estimated network with

that of the original network. We used two measures defined by

C−C̃ =

∑

i, j(αi jα̃i j)
∑

i, j αi j
, (5.4)

U−Ũ =

∑

i. j((1− αi j)(1− α̃i j))
∑

i, j(1− αi j)
, (5.5)
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whereαi j (α̃i j) is the (i, j)th element of the adjacency matrix of the original (estimated) network

structure. If theith and jth neurons are coupled,αi j andα̃i j take unity. If they are not coupled,αi j

andα̃i j take zero. If C−C̃ and U−Ũ are close to unity, our method estimates the original network

structure well.

5.1.3 Results

First, we used a simple network structure shown in Fig. 5.1. In the network structure of Fig.

5.1, spurious couplings exist between neurons, and the connected neurons are mutually connected.

A sample of point processes observed from this network is shown in Fig. 5.2. Figure 5.3 shows

the result of the value of the PDC. From the result, coupled pairs and uncoupled pairs are clearly

distinguished. Furthermore,|π̄i j| of uncoupled pairs take smaller than the threshold (0.1).

We also investigated the estimation accuracy when the network size is changed. In the following

simulations, we generated a ring lattice network structurein which the number of edges is four.

Figure 5.4 shows the C−C̃ and U−Ũ when the network size is changed. The estimation accuracy

is high (both of C−C̃ and U−Ũ are higher than 0.8) when the network size is smaller than 100.

However, the estimation accuracy C−C̃ becomes worse as the network size becomes larger than

100.

We also examined how the estimation accuracy depends on the coupling strength. The results

are shown in Fig. 5.5. Both of C−C̃ and U−Ũ are high when the coupling strength is between 4

and 7. On the other hand, the estimation accuracy of C−C̃ is worse when the coupling strength is

weaker than 3. If the coupling strength is stronger than 9, both of C−C̃ and U−Ũ decrease. In this

situation, the STMs take almost same values because the point processes are almost identical due

to the strong connection. Then, in this method, it is considered that it is difficult to estimate the

connectivity in the case as spike synchronizes.

We finally examined how the estimation accuracy depends on the temporal epoch for observed

spikes. The results are shown in Fig. 5.6. The estimation accuracy is close to unity as the temporal

epoch is long. The results show that both of C−C̃ and U−Ũ is high (> 0.8) when the temporal epoch

for observed multiple spikes is longer than 35[s]. Then, to keep the high estimation accuracy for

both of C−C̃ and U−Ũ, our method needs point processes for 35[s] at least.
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Figure 5.1: A network structure which is composed of five neurons. In this structure, the connected

neurons are mutually connected.
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Figure 5.2: A sample of spike sequences observed from the neural network shown in Fig. 5.1.

78



 0

 0.1

 0.2

 0.3

 0.4

 0.5

P
D

C

coupled
uncoupled

Figure 5.3: The result of applying the PDC. Red triangles and blue asterisks indicate the PDCs for

uncoupled pairs and coupled pairs, respectively. The dotted line shows a threshold for|π̄i j| (0.1).
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Figure 5.4: Estimation accuracy of the network structure incase of changing the network size. We

set the coupling strength is 6, and the temporal epoch is 50[s]. Red and blue lines represent C−C̃

and U−Ũ, respectively. Error bars which indicate minimum and maximum values with 20 trials

are also provided.
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Figure 5.5: Estimation accuracy of the network structure incase of changing the coupling strength.
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5.2 Estimation Method of Network Structures from Marked

Point Process

In this section, we modified the conventional spike time metric to be applicable to marked point

process.

5.2.1 Spike Time Metric for Marked Point Process

The spike time metric [13] is one of the statistics to quantify a distance between two point

processes. The statistic consists of two operations. The first operation is deletion or insertion of an

event: their cost is unity. The second operation is a movement of an event: the cost isq∆t where

q is a parameter and∆t is the temporal duration. Suzuki et al. proposed a metric formarked point

processes which is extended the spike time metric [28]. The cost for marked point processes is

modified as follows:

cp,q(A, A
′) =



























1, (deletion)

1, (insertion)

p|h(tA
i ) − h(tA′

i′ )| + q|tA
i − tA′

i′ |, (movement)

(5.6)

wherep andq are parameters. The cost of deletion or insertion of an eventis same as that of the

spike time metric. However, the cost of movement is modified.If marked point process dataA is

the same as dataA′ except for an event that occur attA
i and its amplitudeh(tA

i ) in A andtA′
i′ and its

amplitudeh(tA′
i′ ) in A′, the cost of movement isp|h(tA

i ) − h(tA′
i′ )| + q|tA

i − tA′
i′ |.

However, it is also important to consider an amplitude of marks when an event is deleted or

inserted. Then we proposed new costs of deletion and insertion as follows:

cp,q(A, A
′) =



























p|h(tA
k )|, (deletion)

p|h(tA′
l )|, (insertion)

p|h(tA
i ) − h(tA′

i′ )| + q|tA
i − tA′

i′ |, (movement)

(5.7)

whereh(tA
k ) is a mark of a deleted event, andh(tA′

l ) is a mark of an inserted event. The cost of

movement is same as Eq. (5.6).

Then, a metric between two marked point process dataZ andZ′ is defined as follows:

D(Z,Z′) = min















N−1
∑

k=1

cp,q(Vk,Vk+1)















, (5.8)
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whereV1 = Z,V2, · · · ,VN = Z′ are elementary steps fromZ to Z′. The metric between the two

marked point process data is the minimum total cost of a set ofelementary steps that transforms

marked point process data into another data.

5.2.2 Numerical Simulations and Results

Evaluation of the proposed method with dynamical noise

To investigate the validity of the proposed method, we used amathematical model. We observed

marked point process data from Rössler systems [24] with dynamical noise, which are described

by the following equations:


























ẋi = −ωyi − zi + σηi,

ẏi = ωxi + ayi,

żi = b + xizi − czi.

(5.9)

with l = 1,2, whereσ is the noise strength andηi is Gaussian noise with a mean value and standard

deviation of zero and unity, respectively. The Gaussian noisesη1(t) andη2(t) are uncorrelated. We

define theith event timingti as the time when|x̃l(t)| takes theith local maxima and the amplitudehi

of the ith event as|x̃l(ti)|. The corresponding marked point process is represented byMl = (ti, hi).

To evaluate the validity of the proposed measure, we investigated correlation coefficients between

noise strengthσ and the metricD(M1,M2) when the parametersp andq are changed.

In Fig. 5.7(a), the result of the conventional method shows low correlation (< 0.9) when the

parametersp andq are small. In Fig. 5.7(b), the result of proposed method shows high correlation

(> 0.95) in all parameters. In addition, the results of relationsbetween distance and noise strength

are shown in Fig. 5.8. When the parametersp andq are small (Fig. 5.8(a)), the distance of the

conventional method andthe noise strength have not correlation. The distance of the proposed

method and the noise strength have correlation. Thus the proposed measures can quantify the

degree of dissimilarity between two marked point process data using broader parameters than the

conventional method.
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Figure 5.7: Correlation coefficients between the noise strengthσ and the proposed measure

D(M1,M2) when the parametersp andq are changed.

Evaluation of the proposed method with observation noise

We also investigate the validity of the proposed method using observed marked point process

data from R̈ossler systems [24] with observation noise. In this simulation, we setσ = 0 in Eq.

(5.9) (no dynamical noise) and used the first variablex of Eq. (5.9). The observed time series is

defined as follows:

x̃l = x + sηl, (5.10)

with l = 1,2, wheres is the noise strength andηl is Gaussian noise with a mean value and standard

deviation of zero and unity, respectively. The Gaussian noisesη1 andη2 are uncorrelated. We

define theith event timingti as the time when|x̃l| takes theith local maxima and the amplitudehi

of theith event as|x̃l(ti)|. The corresponding marked point process is represented byMl = (ti, hi).

The results of the correlation coefficients between noise strengths and the metricD(M1,M2)

when the parametersp andq are changed are shown in Fig. 5.9. From the results, correlation

coefficients of the proposed method (Fig. 5.9(b)) are higher than these of the conventional method

(Fig 5.9(a)).

83



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100
 0

 20

 40

 60

 80

 100

 120

 140

D
is

ta
nc

e

D
is

ta
nc

e

σ

Proposed
Conventional

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  20  40  60  80  100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
is

ta
nc

e

D
is

ta
nc

e

σ

Proposed
Conventional

(a)(p, q) = (0.0001,0.0001) (b)(p, q) = (0.0001,104.8576)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  20  40  60  80  100
 0

 500

 1000

 1500

 2000

 2500

 3000

D
is

ta
nc

e

D
is

ta
nc

e

σ

Proposed
Conventional  0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0  20  40  60  80  100
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

D
is

ta
nc

e

D
is

ta
nc

e

σ

Proposed
Conventional

(c)(p, q) = (104.8576,0.0001) (d)(p, q) = (13.1072,13.1072)
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calculated by the proposed measure. Right vertical axis indicates distance calculated by the con-

ventional measure.

Estimation of network structures

Using the proposed measure, we estimated network structures from marked point process data.

In the simulation, we used coupled Rössler systems:


































ẋi = −ωyi − zi +
∑

j

ki jx j,

ẏi = ωxi + ayi,

żi = b + xizi − czi.

(5.11)

84



 0.001 0.01  0.1  1  10  100

q

 0.001

 0.01

 0.1

 1

 10

 100
p

 0.8

 0.85

 0.9

 0.95

 1

 0.001 0.01  0.1  1  10  100

q

 0.001

 0.01

 0.1

 1

 10

 100

p

 0.8

 0.85

 0.9

 0.95

 1

(a) (b)

Figure 5.9: Correlation coefficients between the noise strengths and the proposed measure

D(M1,M2) when the parametersp andq are changed.

The parameters are set toa = 0.15, b = 0.2, c = 10. These parameters lead to chaotic behaviors

of the systems. In Eq. (5.11),ω is Gaussian random number with a mean value and standard

deviation of unity and 0.01, respectively. The coupling strengths are set toki j = 0.2 if the ith and

the jth systems are coupled, otherwise these are set toki j = 0. Then we translated continuous time

seriesxi into marked point processes. We defined thelth event timingtl
i as the time whenxi(t)

takes thelth local maxima or local minima and the amplitude of thelth event asxi(tl
i).

We conducted numerical experiments according to the following procedures. First, we generated

marked point processes fromxi(t) of the coupled R̈ossler systems. Second, we calculated the

STM for marked point processes. Here, although the parameters p and q in the STM have to

been appropriately determined, we have not estimated optimal values of parameters because it is

clarified that the proposed measure does not depend on the parameter values ofp andq. Thus, in

this paper, we heuristically decided the parameters values. Third, we obtained position vectors by

applying the MDS to the STM. Then we calculated the partial correlation coefficients between the

position vectors. If two systems are coupled, the partial correlation coefficient is close to unity.

Otherwise, it is close to zero. Then we classified whether pairs of systems are coupled or not using

histogram of the partial correlation coefficient by the Otsu thresholding method [? ]. If the partial

correlation coefficient is larger than a threshold, we defined the pair as a coupled pair. Otherwise,

we defined it as an uncoupled pair.

We checked the proposed method with a ring lattice network structure which has 10 nodes and

85



 0

 5

 10

 15

 20

 0  0.1 0.2 0.3 0.4 0.5 0.6

F
re

qu
en

cy

Correlation coefficient

 0

 5

 10

 15

 20

 0  0.1 0.2 0.3 0.4 0.5 0.6

Partial correlation coefficient

Figure 5.10: Histograms of absolute values of (a) the correlation coefficient and (b) the partial

correlation coefficient in case that only event timings are used. Histograms ofall coefficients are

shown in red, and those of coupled pairs are superimposed by blue. The vertical lines indicate

thresholds.

(a) (b)

degree 2 of each node. First, in Fig. 5.10, we show histogramsof absolute values of the correlation

coefficients and the partial correlation coefficients in case that only event timings are used. In

Fig. 5.10(a) and (b), some pairs are misestimated with correlation coefficients, however the partial

correlation coefficients can more clearly distinguish coupled pairs and uncoupled pairs

Next, we show histograms of the absolute values of the correlation coefficients and the partial

correlation coefficients in case that both event timings and amplitude information of marked point

processes are used. In Fig. 5.11(a), the correlation coefficients of uncoupled pairs take large values.

Thus distributions of coupled pairs and uncoupled pairs overlap, and consequently coupled pairs

and uncoupled pairs are not clearly distinguished. However, coupled pairs and uncoupled pairs are

clearly distinguished by using the partial correlation coefficient (Fig. 5.11(b)). The results also

indicate that the proposed measure using mark information is naturally appropriate for marked

point processes.
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5.3 Estimation of Evolving Network Structure

In section , we estimated static network structures. However, it is also important to estimate dy-

namic structures, or to detect how the neural network structure changes, because one of the intrinsic

properties in neural networks is learning. When the neural networks accept external stimulation,

neural networks change their structures by learning.

In this thesis, we proposed a method for estimating evolution of neural network structures by

applying the methods of estimating static neural network structures to the case that neural networks

dynamically evolve. To check the validity of the proposed method, we conducted numerical exper-

iments by using a neural network model with a learning rule ofspike-timing-dependent plasticity

[43]. In the experiments, we first observed the multi-spike sequences from the neural network

with the STDP learning [43]. Next, we divided the observed multi-spike sequences into small tem-

poral epochs. Then, we applied the method of section 5.1 to the temporally divided multi-spike

sequences and estimated their connectivities. As a result,we could estimate the evolving neural

network structure with high estimation accuracy.

5.3.1 Method

To estimate connectivity of neurons only from spike sequences, we have already proposed a

spike time metric coefficient (STMC) and a partial spike time metric coefficient (PSTMC).

To estimate the direction of couplings between neurons, we defined a directional spike time

metric. We calculated the spike time metric between two spike sequencesXi(t) and X j(t + τ)

defined as

Di j(τ) = D(Xi(t), X j(t + τ)), (5.12)

whereτ is a temporal difference between two spike sequencesXi and X j. We distinguish the

direction of couplings by whether the differenceτ at the minimum value ofDi j(τ) is positive or

not. If the differenceτ at the minimum value ofDi j(τ) is positive, we judged that the direction of

coupling is from theith neuron to thejth neuron.
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5.3.2 Numerical Simulation

To evaluate the validity of our method, we used a neural network constructed from a mathemat-

ical model of Izhikevich’s simple neuron model [14] and generated multi-spike sequences. The

number of neurons is 100. The neural network is composed of only excitatory neurons which are

regular spiking neurons. Each neuron connects to 10 postsynaptic neurons.

We use an STDP function proposed by Song et al. [43] which is defined by

∆g =















Ape−|∆t|/τp if ∆t > 0,

−Ade−|∆t|/τd otherwise,
(5.13)

whereAp andAd are the learning rates of the long-term potentiation (LTP) and depression (LTD),

andτp andτd are the time constants that determine the exponential decays of the LTP and the LTD.

We set the parametersAp = 0.01,Ad = 0.012, andτp = τd = 20 [ms]. In Eq. (5.13), the variable∆t

represents a relative spike timing between a presynaptic and a postsynaptic neuron. The coupling

strength is updated asg ← g + ∆g at every second. The coupling strength is limited between 0 to

10. At an initial condition, we set that the coupling strength is 7 and an initial network structure is

a random network.

We conducted numerical experiments in the following way. First, we generated multi-spike

sequences by constructing a neural network using Izhikevich’s simple neuron model and the STDP

rule of Eq. (5.13). Next, we calculated the PSTMC between spike sequences for 1,000 [s]. Then,

we divided this total temporal length of 1,000 [s] into smalltemporal windows. The length of the

small temporal window is 100 [s]. Using multi-spike sequences in this 100 [s] small windows,

we applied the methods of Section 5.1. We classified coupled pairs and uncoupled pairs by the

Otsu thresholding [17]. Then, we estimated the direction ofcouplings by calculatingDi j(τ) for the

estimated coupled pairs. Finally, we evaluated the estimation accuracy.

5.3.3 Results

Figure 5.12 shows results of histograms of coupling strength. From these results, we can see that

the distribution of the coupling strength changes, namely,the network structure evolves. We also

show results of estimation accuracy of the evolving neural network structures in Fig. 5.13. From

the results, the estimation accuracy C−C̃ takes relatively a low value at 0 [s]. This reason is that

the coupling strength changes rapidly at the initial stage with the STDP. Namely, it is relatively

hard to estimate the structure because the evolution of the network structure has fast dynamics.
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However, the value of both of U−Ũ takes relatively a high value. The temporal epoch proceeds,

the estimation accuracy converges to higher values. It means that the proposed method can detect

the evolution of STDP neural network structures.
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Figure 5.12: Histograms of coupling strength at each time.
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5.4 Summary of Chapter 5

In Chapter 5, we proposed the estimation method of network structures only from point pro-

cesses by using distance between point processes and the MDS. First, we proposed a new method

for estimating connectivity between neurons only from observed multiple spike sequences. In our

method, using the MDS, we represented a relationship among spike sequences in the Euclidean

space from the STM to adapt observed position vectors to a linear regression model. By calculat-

ing the PDC from the position vectors, we estimated connectivities between neurons. As a result,

we could estimate the connectivity between neurons using our method.

In addition, we extended the method for marked point processes. As a result, using not only

event timings but also corresponding amplitude information, we could estimate more precisely the

connectivity between systems than using only event timings.

Furthermore, we proposed a method for estimating evolutionof neural network structures through

the spike-timing-dependent plasticity by applying the methods of estimating static neural network

structures to the case that neural networks dynamically evolve. As a result, the proposed method

can estimate the evolving neural network structures and thedirection of couplings with high esti-

mation accuracy.
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Chapter 6

Conclusions

In this thesis, we proposed estimation methods of network structures only from point processes.

In the proposed methods, we introduced three strategy: transforming point processes into continu-

ous time series, using normalized distance between point processes, and using multi-dimensional

scaling with distance between point processes.

In Chapter 3, we proposed a method of estimating network structures by transforming point

processes into continuous time series. To transform point processes into continuous time series,

we used the kernel density function. When the kernel functionis used, we have to select an

optimal bandwidth because the transformed time series depends on the bandwidth. Then we used

two selection methods of the kernel bandwidth. As the first method, we used a kernel bandwidth

optimization method which is proposed by Shimazaki et al. [25]. The method is used in spike rate

estimation. As the second method, we used a selection methodof an optimal time delay in the

attractor reconstruction [34] which is a basic technique inchaotic time series analysis. By using

these methods, we found that high correlation coefficients and low normalized mean square errors

are evaluated between the input time-series and its reconstructed time-series.

Using the transformation method, we estimated network structures from simple point processes.

To evaluate the validity of the proposed method, we used neural networks constructed from a math-

ematical model of the Izhikevich simple neuron model [14] and generated multi-spike sequences.

The results show that our method exhibits high performance.

In additon, for marked point processes, we extended the proposed method. We proposed a
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method of transforming marked point processes into continuous time series which is based on the

kernel density estimator. Then we applied the partialization analysis to the transformed time series.

As a result, we can estimate the connectivity of the coupled Lorenz systems from marked point

processes.

In Chapter 4, we proposed two measures, spike time metric coefficient and partial spike time

metric coefficient, to estimate network structures only from the information of observed asyn-

chronous spike sequences. We applied the proposed measuresto simple networks and complex

networks [15, 16]. The results show that network structurescan be estimated by adaptive appli-

cation of spike time metric coefficients and partial spike time metric coefficients with high perfor-

mance. We heuristically defined the PSTMC from association of the conventional partialization

analysis. Then we experimentally confirmed that the PSTMC can measure true relations between

spike sequences by removing spurious correlations. However, we have not theoretically proven

why the PSTMC works well yet. As a future work, we have to provethat why the PSTMC works

well.

In Chapter 5, we proposed the estimation method of network structures only from point pro-

cesses by using distance between point processes and the MDS. First, we proposed a new method

for estimating connectivity between neurons only from observed multiple spike sequences. In our

method, using the MDS, we represented a relationship among spike sequences in the Euclidean

space from the STM to adapt observed position vectors to a linear regression model. By cal-

culating the PDC from the position vectors, we estimated connectivities between neurons. As a

result, we could estimate the connectivity between neuronsusing our method. In addition, we

extended the method for marked point processes. As a result,using not only event timings but also

corresponding amplitude information, we could estimate more precisely the connectivity between

systems than using only event timings. Furthermore, we proposed a method for estimating evo-

lution of neural network structures through the spike-timing-dependent plasticity by applying the

methods of estimating static neural network structures to the case that neural networks dynami-

cally evolve. As a result, the proposed method can estimate the evolving neural network structures

and the direction of couplings with high estimation accuracy.
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