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Abstract

Let V be a cyclic covering of the complex projective line with n
branch points. We give necessary and sufficient conditions for (1)
whether V is hyperelliptic (i.e., has gonality 2) for arbitrary n; (2)
whether V is trigonal (i.e., has gonality 3) for n = 3.

1 Introduction

Throughout this thesis, all discussions are over the complex number field
C. The complex projective line is denoted by P1. The term curve means a
complete reduced irreducible (maybe singular) algebraic curve over C. We
denote the normalization of C by C̃. The genus of a curve C means its ge-
ometric genus, i.e., the genus of C̃. A function on a smooth curve means a
meromorphic function, and a function on a singular curve C means a mero-
morphic function on C̃. In both case, the meromorphic function is assumed
to be non-constant unless otherwise stated. An automorphism of a smooth
curve C means a biholomorphic automorphism. An automorphism of a sin-
gular curve C means an automorphism of C̃. The trivial automorphism (i.e.,
the identity map) of a curve C is denoted by idC . The birational equivalence
of curves is denoted by ∼. A linear system with dimension d and degree
r on a curve is denoted by grd. For a positive integer d, let Zd denote the
cyclic group of order d. The cardinality of a finite set S is denoted by #S.

1.1 Cyclic coverings of the projective line

A curve V is a d-cyclic covering of the projective line P1 if the total
automorphism group Aut(V ) of V contains a subgroup Zd such that the
quotient V/Zd is rational (i.e., of genus 0). In this thesis, we consider the
condition for V having gonality 2 or 3, so V can always be assumed to be
non-rational. (See next subsection for the definition of gonality.) Then the
natural map V → V/Zd has least 3 branch points. Hence, the curve V has
the following plane model:

V : yd = (x− λ1)a1(x− λ2)a2 . . . (x− λn)an , ai 6≡ 0 (mod d),

n ≥ 3, gcd(d, a1, . . . , an) = 1, a1 + · · ·+ an ≡ 0 (mod d).
(1.1)

where the branch points {λi ∈ P1}ni=1 are mutually distinct with each other.
If ρ is a projective transformation of P1, and λ′i = ρ(λi), then V is

obviously birational to the curve yd = (x− λ′1)a1(x− λ′2)a2 · · · (x− λ′n)an . If
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some λi, say λn, is just taken to the infinite point of P1, then the equation
of V is written in the shorter form

yd = (x− λ1)a1(x− λ2)a2 · · · (x− λn−1)an−1 .

In this case, the number an is recovered as

an = min{a ≥ 1 : a1 + · · ·+ an−1 + a ≡ 0 (mod d)}.

Moreover, for any six points Q1, Q2, Q3 and Q′1, Q
′
2, Q

′
3 on P1 with Qi 6= Qj

and Q′i 6= Q′j , there exists a projective transformation ρ such that ρ(Qi) =
Q′i. Hence, we can take three of the branch points to be arbitrary three
distinct points on P1.

Definition 1. For the curve V given (1.1), we call (d; a1, . . . , an) the type of
V . And for fixed d and n, two types (d; a1, . . . , an) and (d; a′1, . . . , a

′
n) are said

to be in the same Nielsen class if there exists an integer k relatively prime
to d and a permutation τ ∈ Sn such that (a′1, . . . , a

′
n) ≡kτ (kaτ(1), . . . , kaτ(n))

(mod d). In this case, we write

(a′1, . . . , a
′
n) ≡kτ (a1, . . . , an) (mod d).

Note that for fixed k and τ , this is not an equivalence relation, but we
have (ai) ≡1

id (ai) (mod d); and if (a′i) ≡kτ (ai) (mod d) and (a′′i ) ≡k
′
τ ′ (a′i)

(mod d), then we have (ai) ≡lτ−1 (a′i) (mod d) and (a′′i ) ≡k
′·k
τ ′◦τ (ai) (mod d),

where l is any integer such that kl ≡ 1 (mod d).

Proposition 2 (cf. [8], §1.1). Let V be a curve given in (1.1), a′1, . . . , a
′
n

be positive integers such that (a′1, . . . , a
′
n) ≡kτ (a1, . . . , an) (mod d) for some

k and τ , and ρ be an arbitrary projective transformation of P1. Then V is
birational to the curve Y d = (X − λ′1)a

′
1 · · · (X − λ′n)a

′
n where λ′i = σ(λτ(i)).

Assume additionally that τ is the trivial permutation, ρ is the identity
map, and none of the λi’s is the infinite point, then the birational trans-
formation γ : V → V ′ can be expressed as (X,Y ) 7→

(
x, yk

∏n
i=1(x − λi)bi

)
where bi = (a′i − kai)/d.

Example 3. Let n = 3 and (d, a1, a2, a3) = (2a+1, 1, 1, 2a−1) for a positive
integer a. By taking k = a in Definition 1, we obtain gcd(k, d) = 1 and

{1, 1, 2a− 1} × a = {a, a, 2a2 − a} ≡ {a, a, 1} (mod 2a+ 1).

Thus, the curves y2a+1 = x(x−1) and y2a+1 = x(x−1)a are birational with
each other.
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1.2 Gonality of curves

Let C be a curve with genus g. The minimum degree of functions on C is
called the gonality of C and denoted by Gon(C). We list some equivalent
definition as follows:

Gon(C) := min{deg(f) : function ϕ on C}
= min{deg(ϕ) : non-constant holomorphic map ϕ : C̃→P1}
= min{d : ∃ (base-point-free) linear system g1d on C̃}.

Brill-Noether theory (cf. [1, IV, §1]) implies that Gon(C) ≤ (g + 3)/2. We
do not have a general method to decide the gonality of curves.

Let C0 be a plane model of C. Let d be the degree of C0. Let δ be
delta invariant of C0, and ν be the maximum multiplicity of the points on
C0. By considering the projection from the point with multiplicity ν to a
general-position line on P2, we see that Gon(C) = Gon(C0) ≤ d− ν. Some
sufficient condition for Gon(C) = d− ν have been proved:

• The case where ν = 1, i.e., C0 is a smooth plane curve, is well-known:
We have Gon(C) = d−1, and when d ≥ 3, every g1d−1 on C0 is obtained
by the projection from a point on C0 to a line (cf. [7, Theorem 2.3.1]).

• The case where ν = 2, i.e., the only singular points of C0 are the
double points, is partially solved by Coppens and Kato: If there is a
positive integer k such that d ≥ 2k+ 2 and δ < kd− (k+ 1)2 + 3, then
Gon(C) = d−2. Moreover, if d ≥ 2k+3 and δ < kd−(k+1)2+2, then
every g1d−2 on C0 is obtained by the projection from a double point of
C0 to a line (see [3, Theorems 2.1 and 2.3] and [4]).

• The case where ν = 3 was partially solved by Sakai [10].

• The general case was studied by Coppens [2], Ohkouchi and Sakai [9]
and so on.

However, on the other hand, even in case ν = 2, there exist curves whose
gonality is strictly less then d− ν = d− 2 (see [3] and [4]).

Proposition 4. Let C and C ′ be two smooth curves, and ϕ be a function
on C. If there is a non-constant holomorphic map C→C ′, then there is
a function ϕ′ on C ′ such that deg(ϕ′) = deg(ϕ). In particular, we have
Gon(C ′) ≤ Gon(C).
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1.3 Hyperelliptic and trigonal curves

It is obvious that a curve has gonality 1 if and only if g = 0, and if and only
if the curve is rational. A curve is called hyperelliptic (resp., trigonal) if
its gonality is 2 (resp., 3).

Remark 5. Some authors define hyperelliptic (resp., trigonal) curves with
an additional condition g ≥ 2 (resp., g ≥ 5) in order to make the linear
system g12 (resp., g13) be uniquely determined (see Propositions 6 and 7).
We do not use such additional conditions here. In particular, the elliptic
curves are regarded as hyperelliptic curves with genus 1.

Let C be a hyperelliptic curve of genus g, and let ϕ be a holomorphic
map C→P1 of degree 2. Since every ramification point of ϕ has ramification
index 2, we infer from Riemann-Hurwitz formula that ϕ has exactly 2g + 2
ramification points. Hence, by a birational transformation, the curve C can
be given by the equation

Y 2 = (X − λ1) · · · (X − λ2g+2). (1.2)

This equation is called the Weierstrass normal form of C. Moreover,
note that the map ϕ : C→P1 of degree 2 induces an automorphism σ of
C with order 2 such that C/〈σ〉 ∼= P1, which is called the hyperelliptic
involution of C. The fixed points of σ is just the ramification points of ϕ.
If we write C in the form (1.2), then the hyperelliptic involution is just the
map (x, y) 7→ (x,−y).

Proposition 6 (cf. [5], III.7.3 Theorem, III.7.10 Proposition and III.7.11
Proposition). Let C be a hyperelliptic curve of genus g. If g ≥ 2, then we
have the following facts:

(1) the map ϕ : C→P1 of degree 2 is uniquely determined up to the pro-
jective transformations of P1, and hence the hyperelliptic involution σ
is also unique;

(2) for any function ψ on C, if deg(ψ) ≤ g, then deg(ψ) is even;

(3) for any automorphism τ of C, if τ 6∈ 〈σ〉, then τ fixes at most 4 points;

(4) there are exactly 2g + 2 Weierstrass points on C, which are just the
2g + 2 ramification points of ϕ.

Let C be a trigonal curve of genus g. By a birational transformation, we
can write express C by an equation with form

Y 3 = b(X)Y + c(X), b(X), c(X) ∈ C[X]. (1.3)
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Proposition 7 (cf. [7], Corollary 2.4.4 and [5], III.8.5 Corollary 4). Let C
be a trigonal curve of genus g. We have the following facts:

(1) for any function ψ on C, if deg(ψ) ≤ (g+1)/2, then deg(ψ) is divisible
by 3;

(2) if g ≥ 5, then the map ϕ : C→P1 of degree 3 is uniquely determined
up to the projective transformations of P1.

Proposition 8 (cf. [5], III.7.2 Proposition and III.8.7 Theorem). A curve
of genus 1 or 2 is hyperelliptic; a curve of genus 3 or 4 is either hyperelliptic
or trigonal.

1.4 Main results and remarks

Theorem A. When n = 3, the curve V given in (1.1) is hyperelliptic if
and only if d ≥ 3 and V has the same Nielsen class as one of the following
curves:

(H1) yd = x(x− 1);

(H2) yd = x(x− 1)
d−2
2 (d is even and d ≥ 6).

Only three of these curves are elliptic: y3 = x(x − 1), y4 = x(x − 1) and
y6 = x(x− 1)2.

Theorem B. When n = 4, the curve V given in (1.1) is hyperelliptic if
and only if d ≥ 3 and V has the same Nielsen class as one of the following
curves:

(H3) yd = x(x− 1)(x− λ)d−1,

(H4) yd = x(x− 1)
d
2 (x− λ)

d
2 (d is even and d ≥ 4),

(H5) yd = x2(x− 1)
d
2 (x− λ)

d
2 (d ≡ 2 (mod 4) and d ≥ 6),

where λ ∈ C\{0, 1}. Only one of these curves is elliptic: y2 = x(x−1)(x−λ).

Theorem C. When n ≥ 5, the curve V given in (1.1) is hyperelliptic if and
only if d is even and V has the same Nielsen class as one of the following
curves:

(H6) y2 = x(x− 1)(x− λ3) . . . (x− λn−1) (n is even),

(H7) yd = x(x− 1)
d
2 (x− λ3)

d
2 . . . (x− λn−1)

d
2 (d ≥ 4),
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(H8) yd = x2(x−1)
d
2 (x−λ3)

d
2 . . . (x−λn−1)

d
2 (n is even, d ≡ 2 (mod 4),

and d ≥ 6),

where the parameters λi ∈ C\{0, 1} are mutually distinct with each other.
None of these curves is elliptic.

Theorem D. When n = 3, the curve V given in (1.1) is trigonal if and only
if d ≥ 3 and V has the same Nielsen class as one of the following curves:

(T1) yd = x(x− 1)2;

(T2) yd = x(x− 1)(d−3)/3 (d ≡ 0 (mod 3) and d ≥ 12);

(T3) yd = x(x− 1)d/3 (d ≡ 0 (mod 3), d 6≡ 0 (mod 9) and d ≥ 12).

Remark 9. By Proposition 2, in every theorems above, the statement “V
has the same Nielsen class as one of the following curves” can be replaced
by “V is birational to a curve with one of the following forms”.

Remark 10. The hyperelliptic involution is (x, y) 7→ (−x + 1, y) for the
curve (H1), is (x, y) 7→ (λ(x− 1)/(x− λ), (λ2 − λ)y/(x− λ)2) for the curve
(H3), and is (x, y) 7→ (x,−y) for the other curves in Theorems A, B and C.

Remark 11. The function of degree 3 is y on the curve (T1), and is y3/(x−
1) on the curves (T2) and (T3).

Remark 12. For the same d, the curves (H1) and (H2) are not birational
with each other, neither are the curves (H3), (H4) and (H5), and neither are
the curves (T1), (T2) and (T3). For the same d and n, the curves (H7) and
(H8) are not birational with each other either either.

Acknowledgment. I would like to express my appreciation to my su-
pervisors, Professor Fumio Sakai and Professor Takashi Kishimoto, for their
precious supervisions and constant encouragements during the preparation
of this thesis. With their warm support and help, I enjoyed the study and
research on the beautiful campus of Saitama University. I am also grate-
ful to everyone in the group of Professor Sakai’s seminar, particularly to
Dr. Masumi Kawasaki and Dr. Keita Tono, for their valuable comments and
suggestions at various stages of my work.
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2 Preliminaries

2.1 A result on gonality

Let C be a plane curve of degree d. Let m1,m2, . . . ,mn ≥ 2 be the mul-
tiplicities of singularities of C (infinitely near points are included). For a
positive integer k, we define (see [9] for the background)

rC(k) := dk −max

{
n∑
i=1

aimi

}
,

where the maximum is taken for non-negative integers a1, . . . , an such that∑n
i=1 a

2
i = k2. Using these notations, we have the following results:

Lemma 13 ([9], Lemma 6). We have the inequality

rC(k) ≥ k

d−
√√√√ n∑

i=1

m2
i

 .

Theorem E. Let C be a reduced irreducible plane curve of degree d. Let
m1, . . . ,mn have the same meaning as above. Take a positive integer r such
that

d2 −
n∑
i=1

m2
i > (r + 1)2. (2.1)

If rC(k) ≥ r + 1 for all integers k in the interval

1 ≤ k ≤ r

d−
√∑n

i=1m
2
i

, (2.2)

then there exist no rational functions ψ on C with deg(ψ) ≤ r.

Proof. Let π : X → P2 be the minimal resolution of the singularities of C.
Here, we do not require that the total transform of C has normal crossings.
Suppose that there is a rational function ψ0 on C with deg(ψ0) = r0 ≤ r.
According to Serrano’s Extension Theorem (see [11, Theorem 3.1]), under
the condition (2.1), there exists a meromorphic function Ψ0 on P2 which
induces ψ0 such that Ψ0 ◦ π : X → P1 becomes a holomorphic map. Let
k0 be the degree of Ψ0. Furthermore, we can obtain non-negative integers
a1, . . . , an such that

r0 = dk0 −
n∑
i=1

aimi,
n∑
i=1

a2i = k20
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(see [9, §2] for details). Since r0 ≥ rC(k0), by using Lemma 13, we have

k0 ≤
r0

d−
√∑

m2
i

≤ r

d−
√∑

m2
i

.

Now by the hypothesis (2.2), we obtain rC(k0) ≥ r + 1 ≥ r0 + 1, which is
absurd.

Example 14. We show that the gonalities of the following four curves are
greater than 3:

y13 = x(x− 1)3, y14 = x(x− 1)3,

y14 = x(x− 1)5, y31 = x(x− 1)5.

Firstly, let C be the forth curve y31 = x(x − 1)5. Using the notations
above, we have d = 31, g = 15, n = 11 and {mi}ni=1 = {25, 64, 56}. Letting
r = 3, we have

d2 −
∑

a2i = 42 > (r + 1)2 = 16, r
/(

d−
√∑

m2
i

)
= 4.37 · · · .

An easy computation shows that (rC(1), rC(2), rC(3), rC(4)) = (6, 12, 14, 10).
Therefore, by Theorem E, we obtain Gon(C31;5) > 3. By the same method,
we can prove that the gonalities of the first curve y13 = x(x − 1)3 and the
third curve y14 = x(x−1)5 are greater than 3. By Proposition 2, the second
curve y14 = x(x− 1)3 is birational to y14 = x(x− 1)5, so its gonality is also
greater than 3.

2.2 Discussion on the curve (1.1)

Now go back to the curve (1.1). By Proposition 2, we can restrict the ai’s
in (1.1) to 1 ≤ ai ≤ d− 1. That is, we only need to consider the curves

V : yd = (x− λ1)a1(x− λ2)a2 . . . (x− λn)an , 0 < ai < d, n ≥ 3,

gcd(d, a1, . . . , an) = 1 and a1 + · · ·+ an ≡ 0 (mod d).
(2.3)

Let ci = gcd(d, ai) for 1 ≤ i ≤ n. By the conditions gcd(d, a1, . . . , an) = 1
and a1 + · · ·+ an ≡ 0 (mod d), we must have

gcd(c1, . . . , ĉi, . . . , cn) = 1, for 1 ≤ i ≤ n, (2.4)

where ĉi means to remove the ci. It is easy to see that the ci’s are invariant
under the transformation given in Proposition 2. Let let Pi be the points
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(λi, 0) on V for 1 ≤ i ≤ n, and Ṽ denote the normalization of the curve V .
There are ci points on Ṽ lying over Pi, which will be denoted by Pi,1, . . . ,
Pi,ci . Then the Riemann-Hurwitz formula implies that Ṽ has genus

g = (n− 2)d/2 + 1−
(
c1 + · · ·+ cn

)/
2. (2.5)

Let W denote the set of Weierstrass points of Ṽ . Note that automor-
phisms of curves map Weierstrass points to Weierstrass points. Thus, for
a fixed i, either all or none of the Pi,j ’s are contained in W . Moreover, we
have #(W\{Pi,j ’s}) ≡ 0 (mod d). Hence, we obtain

#W = δ1c1 + · · ·+ δncn + δd,

where δ = #(W\{Pi,j ’s})/d ≥ 0 and δi = 1 (resp., 0) if {Pi,j}cij=1 ⊆ W
(resp., {Pi,j}cij=1 ∩W = ∅). If V is a hyperelliptic curve, then we infer from

Proposition 6 (4) that #W = 2g + 2. Therefore, with the help of (2.5), we
conclude that

n∑
i=1

(δi + 1)ci = (n− 2− δ)d+ 4, hence δ ∈ {0, 1, . . . , n− 2}. (2.6)

2.3 Other useful facts

Let ξ be a primitive d-root of unity. The map σ : (x, y) 7→ (x, ξy) is an
automorphism the curve V given in (2.3). Thus, the cyclic group 〈σ〉 of
order d is a subgroup of the total automorphism group of V . In what
follows, when we say the subgroup Zd of Aut(V ), we refer to the subgroup
〈σ〉 unless otherwise stated.

Proposition 15 ([6], Theorem 1). Let V be the curve given in (2.3), and
let n = 3 and g ≥ 2. We have Aut(V ) = Z except the cases where there
exist positive integer k and permutation τ such that gcd(k, d) = 1 and that
(a1, a2, a3) ≡kτ (1, b, c) (mod d) for the integers 1 ≤ b, c ≤ d − 1 listed in
Table 1. In particular, if min{c1, c2, c3} ≥ 2, then we have Aut(V ) = Zd.

Another fact which will be repeatedly used in our proof is the Castelnuovo-
Severi inequality:

Proposition 16 (cf. [1], VIII, C-1). Let C1, C2 and C be curves of genus
g1, g2 and g, and let ϕ1 : C→C1 and ϕ2 : C→C2 be holomorphic map of
degree d1 and d2. If the map ϕ1 × ϕ2 : C→C1 × C2 is birational between C
and its image, then we have

g ≤ (d1 − 1)(d2 − 1) + d1g1 + d2g2.
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2.4 Proof of Remark 12

As the first application of these preliminaries, we prove Remark 12. Firstly,
suppose that d is even and d ≥ 6. Then the genera of the curves (H1) and
(H2) are equal to

g(H1) = d/2− 1 g(H2) =

{
d/4 if d ≡ 0 (mod 4);

d/4− 1/2 if d ≡ 2 (mod 4).

Thus, the curves (H1) and (H2) are not birational with each other. In
the same way, for an even integer d ≥ 4, the genera of (H3) and (H4) are
d− 1 and d/2, respectively, while for an integer d ≥ 6 with d ≡ 2 (mod 4),
the genus of (H5) is d/2 − 1. Thus, the curves (H3), (H4) and (H5) are
not birational with each other. Similarly, for an even integer n ≥ 6 and
an integer d ≥ 6 with d ≡ 2 (mod 4), the genera of (H7) and (H8) are
(n− 2)d/4 and (n− 2)d/4− 1, respectively. Thus, the curves (H7) and (H8)
are not birational with each other.

Secondly, suppose that d is divisible by 3 and d ≥ 12. We write e = d/3,

d b c G = Aut(C) |G|
A.1 d is odd 1 d− 2 Z2n 2n

A.2 d is even 1 d− 2 (central Z2) : D2n 4n

B.1 d 6≡ 0 mod 8, d 6= 12
b 6= 1,

b2 ≡ 1 mod d
d− b− 1 Zd n Z2 2n

B.2 d ≡ 0 mod 8, d 6= 8 d/2− 2 d/2 + 1 (Zd n Z2) : Z2 4n

B.3 8 2 5 (Z4 ⊕ Z4)n S3 96

C.1
d ≥ 8, d is odd,
d ≡ 0 mod p

for p ≡ 1 mod 3

b 6= 1,
gcd(b, d) = 1

b2 Zd n Z3 3n

C.2 7 2 4 PSL(2, 7) 168

D.1 12 3 8 (central Z4) : A4 48

E.1 8 3 4 GL(2, 3) 48

E.2 12 4 7 (central Z3) : A4 72

E.3 24 4 19 (central Z6) : S4 144

Table 1: Exception cases in Proposition 15
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then the genera of the curves (T1), (T2) and (T3) are equal to

g(T1) =

{
(3e− 4)/2 if e is even;

(3e− 3)/2 if e is odd;
g(T2) =

{
e− 1 if e ≡ 1 (mod3);

e− 2 if e 6≡ 1 (mod3);

g(T3) =

{
e if e ≡ 1 (mod3);

e− 1 if e ≡ 2 (mod3).

From the distinct genera, we can see that the curves (T1), (T2) and (T3)
are not birational with each other possibly except C12;3 and C12;4. But by
Proposition 15, we have |Aut(C12;2)| = 12 and |Aut(C12;4)| = 72, and hence
C12;2 6∼ C12;4.
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3 Proof of Theorems A, B and C

Lemma 17. For the curve V given in (2.3), if d is even and d ≥ 4, then
we define the curve:

V0 : yd/2 = (x− λ1)a1 · · · (x− λn)an . (3.1)

Then the following conditions are equivalent:

(1) the curve V0 is rational;

(2) #{ai : ai = d/2, 1 ≤ i ≤ n} = n− 2;

(3) V is birational to the curve (H2), (H4), (H5), (H7) or (H8) in The-
orems A, B and C;

(4) one of the following conditions holds:

(4-1) {ci}ni=1 = {1, 1, d/2, . . . , d/2},
(4-2) {ci}ni=1 = {1, 2, d/2, . . . , d/2},
(4-3) {ci}ni=1 = {2, 2, d/2, . . . , d/2}.

Moreover, when (4-2) holds, we have d ≡ 2 (mod 4), and when (4-3) holds,
we have d ≡ 2 (mod 4) and n is even. The conditions (4-1) and (4-2) corre-
spond to the curve (H2), (H4) or (H7), and the condition (4-3) corresponds
to the curve (H5) or (H8).

Proof. It is clear that (1) ⇒ (2) and that (3) ⇒ (1). Note that since 1 ≤
ai ≤ d− 1, we have ci = d/2 if and only if ai = d/2.

(2) ⇒ (4). By Proposition 2, we may assume that c3 = · · · = cn = d/2
and c1, c2 6= d/2. We infer from (2.4) that gcd(c1, d/2) = gcd(c2, d/2) = 1,
so {c1, c2} = {1, 1}, {1, 2} or {2, 2}, and if 2 ∈ {c1, c2}, then d/2 is odd, i.e.,
d ≡ 2 (mod 4). Moreover, when c1 = c2 = 2, both a1 and a2 are even, but
d/2 is odd. Thus, we have a1 + a2 6= d/2. Since a1 + a2 + (n − 2)d/2 =
a1 + · · ·+ an ≡ 0 (mod d), we see that n is even.

(4-1) or (4-2) ⇒ (3). Similarly, we may assume that c1 = 1 and
a2 = · · · = an−1 = d/2. Hence, there is a positive integer k0 such that k0a1 ≡
1 (mod d) and hence gcd(k0, d) = 1. By taking k = k0 in Definition 1,
we can make a1 = 1 and a2 = · · · = an−1 = d/2. Now by a projective
transformation of P1, we can make (λ1, λ2, λ3) = (0,∞, 1) when n = 3 or
(λ1, λ2, λn) = (0, 1,∞) when n ≥ 4, which implies that V is birational to
(H2), (H4) or (H7).
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(4-3) ⇒ (3). Similarly, we may assume that c1 = cn = 2, a2 = · · · =
an−1 = d/2 and (λ1, λ2, λn) = (0, 1,∞). Thus, there is a positive integer k0
such that k0a1 ≡ 2 (mod d) and gcd(k0, d/2) = 1. Now taking k = k0 (resp.,
k = k0 + d/2) when k0 is odd (resp., when k0 is even) in Definition 1, we
make a1 = 2 and a2 = · · · = an−1 = d/2, which implies that V is birational
to (H5) or (H8).

3.1 Proof of Theorems A

When n = 3, the conditions (2.4), (2.5) and (2.6) become

gcd(ci, cj) = 1, if i 6= j; (3.2)

g = (d+ 2− c1 − c2 − c3)/2; (3.3)

(δ1 + 1)c1 + (δ2 + 1)c2 + (δ3 + 1) = (1− δ)d+ 4, hence δ = 0 or 1. (3.4)

The “if” part of Theorems A follows from Remark 10. Since all the ci’s are
divisors of d, by (3.2), we can write d = d′c1c2c3 for some integer d′ ≥ 1.
Hence, from (3.3), we deduce that g = 1 if and only if one of the following
three conditions holds: (1) d = 3 and {ci}3i=1 = {1, 1, 1}; (2) d = 4 and
{ci}3i=1 = {1, 1, 2}; (3) d = 6 and {ci}3i=1 = {1, 2, 3}. It is easy to check that
all of the corresponding curves are birational to the elliptic curves listed in
Theorem A, and hence satisfy Theorem A. Therefore, in what follows of
this subsection, we may assume that g ≥ 2.

Lemma 18. When n = 3, if the curve V given in (1.1) is hyperelliptic, then
min{ci}3i=1 = 1.

Proof. Assume that min{ci} ≥ 2. Since g ≥ 2, we infer from the “in particu-
lar” part of Proposition 15 that the cyclic group Zd is the full automorphism
group of V . Then V is hyperelliptic if and only if d is even and the map
(x, y)→(x,−y) is the hyperelliptic involution, that is, the condition (1) of
Lemma 17 holds. By our assumption min{ci} ≥ 2, this implies the condition
(4-3) of Lemma 17. But the condition (4-3) holds only when n is even, a
contradiction.

Now by taking a suitable k in Definition 1 and by using Lemma 18, we
may assume that min{ai}3i=1 = 1, and by a projective transformation of P1,
we may assume that a1 = c1 = 1 and a2 ≤ a3. That is, it suffices to consider
the curves with the following form

Cd;a : yd = x(x− 1)a, d ≥ 2a+ 1. (3.5)
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Lemma 19. If d = la for some integer l, then we have

Gon(Cla;a) =


a+ 1 if l > a+ 1,

a if l = a+ 1,

l if l < a+ 1.

Proof. From the equation of the curve, we see that x = (yl/(x−1))a. Letting
X = yl/(x − 1) and Y = y, the curve Cla;a is birational to the curve Y l =
X(Xa − 1). Then the assertion follows from [10].

On the curve Cd;a, we have a2 = a and a3 = d−a−1, hence c2 = gcd(d, a)
and c3 = gcd(d, a + 1). By Lemma 18, to prove the “only if” part of
Theorems A, it suffices to show that

Theorem A (restatement). If Cd;a is hyperelliptic, then a = 1 or d ∈
{2a+ 1, 2a+ 2}.

Thus, in what follows of this subsection, we assume that there exists a
hyperelliptic curve Cd;a with a ≥ 2 and d ≥ 2a+ 3.

Lemma 20. If c2 ≤ 2 and c3 = 1, then δ3 = 1 in (3.4).

Proof. Review the definition of δi, we need to show that P3,1 is a Weierstrass
point of Cd;a. The divisor of the rational function y on C̃d;a can be written
as

(y) = P1,1 + (a/c2) · (P2,1 + · · ·+ P2,c2)− (a+ 1) · P3,1.

By (3.3), we have g ≥ (d− 2)/2 ≥ (2a+ 1)/2, so g ≥ a+ 1. It follows that
the divisor (y)+g ·P2,1 is effective, and hence P3,1 is a Weierstrass point.

Lemma 21. We have δ = 1 in (3.4).

Proof. Review that d = d′c1c2c3 = d′c2c3 for some integer d′ ≥ 1. Suppose
δ = 0. Then since c1 = 1, we infer from (3.4) that

d′c2c3 = d = δ1 + (δ2 + 1)c2 + (δ3 + 1)c3 − 3 ≤ 2c2 + 2c3 − 2. (3.6)

Since d ≥ 2a+ 3 ≥ 2c2 + 3 and d ≥ 2(a+ 1) + 1 ≥ 2c3 + 1, we have

c2 ≥ 2 and c3 ≥ 3. (3.7)

Case 1: d′ = 1, i.e., d = c2c3. Since d ≥ 2c2 + 1, we have c2 ≥ 3. Then
(3.6) implies that (c2, c3) = (3, 3), (4, 3) or (3, 4). The first pair contradicts
(3.2). The other two pairs give d = 12 and hence a ≤ 4, so the only possible
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corresponding curve is C12;3. However, by Lemma 19 we have Gon(C12;3) =
3.

Case 2: d′ ≥ 2. In this case, the inequality (3.6) implies that d′ = 2
and either c2 or c3 is equal to 1, which contradicts (3.7).

Proof of Theorem A (restatement) for the case (c2, c3) = (1, 1). We
suppose that c2 = c3 = 1. By (3.3), we have d = 2g + 1. We will show
that P1,1 is a Weierstrass point, then with the help of Lemmata 20 and 21,
we have δ = δ1 = δ3 = 1. However, substituting δ = δ1 = δ3 = 1 and
c1 = c2 = c3 = 1 into (2.6), we obtain δ2 = −1, which contradicts the
definition of the δi’s.

Case 1: a is even. Write a = 2b for some 1 ≤ b ≤ (g− 1)/2, and write
ϕ1 for the rational function (x− 1)b/yg on C̃d;a. We have

(ϕ1) = −g · P1,1 + b · P2,1 + (g − b) · P3,1.

We see that (ϕ1) + g · P1,1 ≥ 0, so P1,1 is a Weierstrass point.
Case 2: a is odd. Write a = 2b+ 1 for some 1 ≤ b ≤ g/2− 1, write

m0 = (2g + 1)b/(2b+ 1), m =
[
m0

]
,

where [ ] denotes the greatest integer, and write ϕ2 for the rational function
(x− 1)b/ym. We have

(ϕ2) = −m · P1,1 + (2b+ 1)(m0 −m) · P2,1 +
(
m− (2b+ 1)(m0 −m)

)
· P3,1.

Now we claim that (ϕ2) + g · P1,1 ≥ 0, i.e., P1,1 is a Weierstrass point.
Indeed, by the definitions of m0 and m, it is easy to see that the coefficients
of P1,1 and P2,1 in (ϕ2) + g · P1,1 are non-negative. Moreover, we have
m0 −m ≤ 2b/(2b+ 1), which implies that

(2b+1)(m0−m) ≤ 2b =
(4b+ 4)b− 2b

2b+ 1
<

(2g + 1)b− 2b

2b+ 1
= m0−

2b

2b+ 1
≤ m.

Hence, the coefficient of P3,1 is also non-negative.

Remark 22. Note that if d is a prime number, then we always have c2 =
c3 = 1. Thus, we have proved Theorem A for the case where d is prime. In
fact, this special case is implicit in [12, Theorems 1 and 3].

Proof of Theorem A (restatement). We prove it by induction on d.
Note that the minimum d we need to consider is 7, a prime number, which
has been solved. Now, we assume that d ≥ 8, (c2, c3) 6= (1, 1), and Theo-
rem A holds for any integer d′ with 3 ≤ d′ < d.
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Since δ = 1 (Lemma 21) and (c2, c3) 6= (1, 1), from (3.4), we deduce that
δ1 = δ2 = δ3 = 0 and (c2, c3) = (1, 2) or (2, 1). But the second pair of (c2, c3)
contradicts Lemma 20. Hence, we see that d is even, a is odd, gcd(d, a) = 1
and gcd(d, a+ 1) = 2. Write d = 2t for some integer t. Since d ≥ 2a+ 3 and
a ≥ 2, we have

t ≥ a+ 2 ≥ 4, gcd(t, a) = 1,

gcd(t, a+ 1) ≤ 2, t 6= 2a or 2a+ 2.
(3.8)

By these conditions, it is easy to see that the following curve is irreducible
and not rational

C ′ : yt = x(x− 1)a.

Since there is a surjective map Cd;a → C ′ of degree 2, we infer from Propo-
sition 4 that Gon(C ′) ≤ Gon(Cd;a) = 2, and hence C ′ is hyperelliptic.

In order to apply the inductive hypothesis on C ′, we need to write C ′

in the form (3.5). In case t ≥ 2a + 1, the condition in (3.5) holds, so C ′

can be written as Ct;a directly. In case a + 2 ≤ t ≤ 2a − 1, the curve C ′ is
birational to the curve yt = x(x − 1)t−a−1 and t ≥ 2(t − a − 1) + 1, so we
have C ′ ∼ Ct;t−a−1. That is, either Ct;a (with t ≥ 2a+ 1) or Ct;t−a−1 (with
a+ 2 ≤ t ≤ 2a− 1) is hyperelliptic. By the inductive hypothesis and (3.8),
we obtain t = a+ 2 or 2a+ 1, and hence d = 2a+ 4 or 4a+ 2. Note that a
must be odd and hence a ≥ 3, because gcd(d, a) = 1.

Since both Cd;a and C ′ are hyperelliptic, the hyperelliptic involution of
Cd;a is not contained in the subgroup Zd of Aut(Cd;a). In particular, we
obtain Aut(Cd;a) 6= Zd, so Cd;a is in the same Nielsen class with one of the
curves listed in Table 1 of Proposition 15. In order to apply Proposition 15,
we need to find all of integers b and c such that 1 ≤ b, c ≤ d − 1 and
(1, a, d) ≈ (1, b, c) (mod d).

In case d = 4a + 2, we have {b, c} = {a, 3a + 1} or {2a − 1, 2a + 2}.
The conditions from A.1, A.2, B.2–E.3 are not satisfied obviously, so we
only have to check the condition B.1. Suppose a2 ≡ 1 (mod 4a+ 2). Then
there is a positive integer k such that a2 − 1 = k(4a + 2), which yields
a = 2k±

√
4k2 + 2k + 1. But this is not an integer. Using the same method,

we can check that (3a+1)21 6≡ 1, (2a−1)21 6≡ 1 and (2a+2)21 6≡ 1 (mod 4a+2).
In case d = 2a+ 4, we have {b, c} = {a, a+ 3} or {(a+ 1)/2, (3a+ 5)/2}.

The conditions from A.1, A.2, B.2–E.1 and E.3 are not satisfied obviously,
and by the same way as above, we can check that the condition B.1 is not
satisfied either. Finally, by Lemma 19 we have Gon(C12;4) = 3, which means
the condition E.2 is not satisfied.
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3.2 Proof of Theorems B and Theorems C

Lemma 23. Assume that the curve V in (2.3) is hyperelliptic. If n ≥ 4,
d ≥ 3 and V does not satisfy the equivalent conditions in Lemma 17, then
we have n = 4 and c1 = c2 = c3 = c4 = 1.

Proof. Step 1: to show max{ci}ni=1 ≤ 4. Suppose that ci ≥ 5 for some i.
Consider the automorphism σ1 : (x, y) 7→ (x, ξciy), where ξ is the d-th root
of unity. It is easy to see that σ1 fixes the points Pi,1, . . . , Pi,ci . Since ci ≥ 5
and σ1 6= idV , by Proposition 6 (3), we see that σ1 is just the hyperelliptic
involution. Then ci = d/2 and V satisfies the condition (1) in Lemma 17,
which contradicts the assumption.

Step 2: to show max{ci}ni=1 ≤ 3. Suppose that ci = 4 for some i.
Consider the automorphism σ2 : (x, y) 7→ (x, ξ4y). We have σ2 6= idV , and
if some cj = 1, 2 or 4, then the points Pj,1, . . . , Pj,cj are fixed by σ2. Hence,
if there is a j such that j 6= i and cj = 1, 2 or 4, then σ2 fixed at least 5, 6
or 8 points, respectively. Similarly as Step 1, this is impossible. Hence, we
obtain cj = 3 unless j = i, but this contradicts (2.4).

Step 3. Let nk = #{ci : ci = k} for k = 1, 2, 3. Consider the auto-
morphisms σ3 : (x, y) 7→ (x, ξ2y) and σ4 : (x, y) 7→ (x, ξ3y). When d ≥ 4,
we have σ3 6= idV 6= σ4. Using the same method as above, we deduce that
n1 + 2n2 ≤ 4 and n1 + 3n3 ≤ 4. Since n1 + n2 + n3 = n ≥ 4, we conclude
that n1 = 4 and n2 = n3 = 0, which is just what we need. When d = 3,
we have ci = 1 for all i, and by considering σ3 6= idV , we obtain the same
result.

Proof of Theorem C. The “if” part is clear from Remark 10. When d =
2, the only curve given in (2.3) is the curve (H6), which it is hyperelliptic
obviously and satisfies Theorem C. Hence, it remains to show the “only if”
part for d ≥ 3. By (2.4), we have c1 + · · ·+ cn ≤ (n−2)d/2 + 2d/3. Then by
(2.5), we obtain g ≥ (3n−10)d/12+1. Hence, when n ≥ 5, we have g ≥ 2. If
V is hyperelliptic, then by Lemma 23, the equivalent conditions in Lemma 17
are satisfied. By Proposition 2, we may assume that a2 = · · · = an−1 = d/2
and c1 = 1. Then by taking a suitable k in Definition 1 (note that since d
is even, k must be odd), the assertion follows.

It remains to consider Theorem B. The “if” part follows from Remark 10.
When n = 4, by (2.4) and (2.5), we have g = 1 iff 2d = c1 + c2 + c3 + c4
iff d = 2. (The second “iff” comes from (2.4) and the condition ci ≤ d/2.)
In this case, the only possible curve is y2 = x(x− 1)(x− λ), which satisfies
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our assertion. Thus, in what follows of this subsection, we may assume that
g ≥ 2 and d ≥ 3.

Now by taking a suitable k in Definition 1 and by using Lemma 23, we
may assume that min{ai} = 1, and by a projective transformation of P1, we
may assume that a1 = 1 and a2 ≤ a3 ≤ a4. That is, it suffices to consider
the curves with the following form

Cd;a,b(λ) : yd = x(x− 1)a(x− λ)b, 1 + a+ b 6≡ 0 (mod d),

d ≥ 3, 1 ≤ a ≤ b ≤ c ≤ d− 1,

gcd(d, a) = gcd(d, b) = gcd(d, c) = 1,

(3.9)

where c is defined to be min{c′ ≥ 1 : 1 + a+ b+ c′ ≡ 0 (mod d)}. Then by
Lemmata 17 and 23, to prove the “only if” part of Theorem B, it suffices to
show that

Theorem B (restatement). If Cd;a,b(λ) is hyperelliptic, then a = 1 and
b = d− 1.

Lemma 24. For an even integer e ≥ 4, we have Gon(C2e;e−1,e+1(λ)) = 4.

Proof. We write C for the curve C2e;e−1,e+1(λ), and use the notations in
[10]. The data of multiplicities of singularities on C is [e+ 1, (e− 1)3, 2e−2].
We have η = 4(e− 1)/(e+ 1). Let dC = 2e+ 1, ν = e+ 1, q = e− 4. Here
we write dC for d in [10], i.e., the degree of C. Then we have

h(η, ν, q) =
8e2 − 12e+ 5

2(e+ 1)(2e− 3)
.

Since σ = 3(e−1)/(e+ 1), we find that dC/ν = σ− q/ν, so k0 = 3. We have

f3(η, ν, q) =
3
√
e2 − 1

e+ 1
− e− 1

e+ 1
.

It follows that

dC/ν − h(η, ν, q) =
4e− 11

2(e+ 1)(2e− 3)
> 0,

dC/ν − f3(η, ν, q) =
3(e−

√
e2 − 1)

e+ 1
> 0.

From [10, Theorem 3], we deduce that Gon(C) ≥ dC − ν − q = 4. Since
deg(y2/(x−1)(x−λ)) = 4, we conclude that the gonality of C is just 4.
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Proof of Theorem B (restatement). By (2.5), the curve Cd;a,b(λ) has
genus d− 1. We divide the proof into three cases as follows:

Case 1: 1 + a + b < d. It follows that c = d − a − b − 1. The rational
functions y, y/(x− 1) and y/(x− λ) have degrees 1 + a+ b, d− a and d− b,
respectively. It is easy to see that none of them is greater than g, and at
least one of them is odd, which contradicts Proposition 6 (2).

Case 2: 1 + a+ b > d and d is odd. It follows that c = 2d− a− b− 1
and the degree of Cd;a,b(λ) is a+b+1. Then the conditions in (3.9) becomes

1 ≤ a ≤ b ≤ d− 1, a+ b ≥ d, a+ 2b ≤ 2d− 1,

a ≤ d− 2, b ≥ (d+ 1)/2.
(3.10)

The rational functions induced by the projections from (1, 0) and (λ, 0) to a
line of P2 have degrees b+ 1 and a+ 1, respectively. By Proposition 6 (2), a
must be odd, and either b is odd or b = d− 1. By (3.10), we have b = d− 1
if and only if a = 1, which is just what we need. We consider the remaining
cases where a and b are odd and 3 ≤ a ≤ b ≤ d− 2.

In case a ≤ (d − 1)/2, we have deg(y2/(x − 1)(x − λ)) = 2b − d + 2,
which is odd and not greater than g. In case a ≥ (d + 1)/2, we have
deg(yd−2/(x − 1)a−1(x − λ)b−1) = d − 2, which is also odd and not greater
than g. Both cases contradict Proposition 6 (2).

Case 3: 1 + a + b > d and d is even. Like Case 2, we have c =
2d− a− b− 1, and the conditions in (3.9) becomes

1 ≤ a ≤ b ≤ d− 1, a+ b ≥ d, a+ 2b ≤ 2d− 1,

a ≤ d− 2, b ≥ d/2.
(3.11)

We prove Case 3 by induction on d. When d = 4, by (3.9) and (3.11), we
have (a, b) = (1, 3), which satisfies our assertion. Now assume that d ≥ 6
and Theorem B holds for every integer less than d (because of the results
of Cases 1 and 2, the inductive hypothesis is based on the whole theorem
instead of only on Case 3).

Write d = 2e for some e ≥ 3. There is a natural double covering from
C2e;a,b(λ) to the following curve:

C ′ : ye = x(x− 1)a(x− λ)b.

Since d is relatively prime to a, b and c, so is e. Thus, the curve C ′ is
an e-cyclic covering of P1 with 4 branch points, and its genus is equal to
e − 1 ≥ 2. Furthermore, since there is a covering map C2e;a,b(λ) → C ′, we
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infer from Proposition 4 that Gon(C ′) ≤ Gon(C2e;a,b(λ)) = 2, so C ′ is also
hyperelliptic.

In order to apply the inductive hypothesis on C ′, we try to find integers
a′ ≤ b′ ≤ c′ and µ ∈ C such that the curve Ce;a′,b′(µ) is birational to C ′

and satisfies the condition of (3.9). By (3.11) and the condition that e is
relatively prime to a, b and c, we have a ∈ [1, e − 1] ∪ [e + 1, 2e − 1] and
e + 1 ≤ b ≤ c ≤ 2e − 1. In case a < e, letting (X,Y ) = (x, y/(x − 1)), the
curve C ′ is birational to the curve Y e = X(X − 1)a(X − λ)b−e. Hence, we
can take

(a′, b′, c′) =


(a, b− e, c− e) if a < e and a ≤ b− e,
(b− e, a, c− e) if a < e and b− e < a < c− e,
(b− e, c− e, a) if a < e and a ≥ c− e.

(3.12)

In case a > e, similarly C ′ is birational to the curve Y e = X(X−1)a−e(X−
λ)b−e. Hence, we can take

(a′, b′, c′) = (a− e, b− e, c− e) if a > e. (3.13)

Because of the distinct genera, the curve C ′ cannot be birational to the
curve ye = x(x− 1)e/2(x− µ)e/2 or ye = x2(x− 1)e/2(x− µ)e/2 for any µ ∈
C\{0, 1}. Hence, by the inductive hypothesis, we obtain (a′, b′) = (1, e− 1).
Combining it with (3.12) and (3.13), we conclude that (a, b) = (1, 2e − 1)
or (e − 1, e + 1). The former pair is just what we need, and the latter pair
corresponds to the curve C2e;e−1,e+1(λ), where e is even since gcd(d, a) =
gcd(2e, e− 1) = 1. By Lemma 24, this curve is not hyperelliptic.
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4 Proof of Theorems D

4.1 Preliminaries

Lemma 25. For the curve V given in (2.3), if d is divisible by 3 and d ≥ 6,
then we define the curve:

V0 : yd/3 = (x− λ1)a1 · · · (x− λn)an . (4.1)

Then the following conditions are equivalent:

(1) the curve V0 is rational;

(2) let k1 = #{ai : ai = d/3} and k2 = #{ai : ai = 2d/3}, then k1 + k2 =
n− 2;

(3) one of the following conditions holds:

(3-1) {ci}ni=1 = {1, 1, d/3, . . . , d/3},
(3-2) {ci}ni=1 = {1, 3, d/3, . . . , d/3},
(3-3) {ci}ni=1 = {3, 3, d/3, . . . , d/3}.

Moreover, when (3-2) holds, we have d ≡ 3 or 6 (mod 9); and when (3-3)
holds, we have d ≡ 3 or 6 (mod 9) and k1 + 2k2 is divisible by 3.

Proof. Similarly as Lemma 17.

Lemma 26. Let V be the curve given in (2.3). Then V is trigonal and has
genus 3 if and only if it has one of the following Nielsen classes:

• n = 3: (7; 1, 2, 4), (8; 1, 2, 5), (9; 1, 2, 6), (12; 1, 3, 8);

• n = 4: (4; 1, 1, 1, 1), (6; 1, 3, 4, 4);

• n = 5: (3; 1, 1, 1, 1, 2);

And V is trigonal and has genus 4 if and only if it has one of the following
Nielsen classes:

• n = 3: (10; 1, 2, 7), (12; 1, 2, 9), (12; 1, 4, 7), (15; 1, 5, 9);

• n = 4: (5; 1, 1, 1, 2), (5; 1, 2, 3, 4), (6; 1, 1, 1, 3), (6; 1, 1, 2, 2), (6; 1, 2, 4, 5);

• n = 5: (4; 1, 1, 1, 2, 3), (6; 2, 2, 2, 3, 3), (6; 3, 3, 4, 4, 4);

• n = 6: (3; 1, 1, 1, 1, 1, 1), (3; 1, 1, 1, 2, 2, 2);
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Proof. Let k = #{ai : ai = d/2}. By (2.4), we have k ≤ n−2. By Lemma 17,
if k = n− 2, then V is hyperelliptic. Hence, we may assume that k ≤ n− 3.
When n = 3, the ci’s are distinct with each other, so

g = d/2 + 1− (c1 + c2 + c3)/2

≤ d/2 + 1− (d/3 + d/4 + d/5)/2 = 13d/120 + 1.

Thus, if g ≤ 4, then d ≤ 28. When n ≥ 4, since k ≤ n− 3, we have

g = (n− 2)d/2 + 1− (c1 + · · ·+ cn)/2

≤ (n− 2)d/2 + 1− (d/2× (n− 3) + d/3× 2)/2 = (3n− 7)d/12 + 1.

Thus, if g ≤ 4, then n ≤ 7, and when n = 4, 5, 6 and 7, we have d ≤
12, d ≤ 6, d ≤ 4 and d ≤ 3, respectively. That is, there is only finitely
many (d; a1, . . . , an)’s to check. Then by combining the types in the same
Nielsen class, and by excluding those corresponding to hyperelliptic curves,
we obtain the assertion.

Assume the curve V given in (2.3) is trigonal. Let c be a divisor of d,
then there is a natural (d/c)-cyclic covering ϕ from V to the curve

V ′ : yc = (x− λ1)a1(x− λ2)a2 . . . (x− λn)an . (4.2)

If we additionally assume that V ′ is rational, then there is a map ψ of degree
3 from V to V ′.

Lemma 27. Use the assumptions and notations in the preceding paragraph.
If g ≥ 5 and the map (ϕ,ψ) : V → V ′ × V ′ is not birational between V and
its image, then d is divisible by 3 and V satisfies the equivalent conditions
in Lemma 25.

Proof. Let s = d/c, and let U ′ ⊂ V ′ be a connected compact open subset
such that ϕ−1(U ′) is a union of distinguished open subsets U1, . . . , Us in
V , and that U ′ does not contain branch points of ψ. For a point p ∈ V ′,
write ϕ−1(p) = p1 + · · · + ps, where pi ∈ Ui. Since the map (ϕ,ψ) is not
birational, at least two of the pi’s are contained in the same fiber of ψ. Set
U ′i,j = {p ∈ U ′ : ψ(pi) = ψ(pj)} for 1 ≤ i < j ≤ s, then we have U ′ =

⋃
U ′i,j .

Hence, by an rearrangement of the indexes if necessary, we may assume that
U ′1,2 is an infinite set.

There is an automorphism σ ∈ Zd ⊆ Aut(V ) mapping U1 to U2. Since
g ≥ 5, by Proposition 7 (2), the map V → V ′ with degree 3 is uniquely
determined up to the birational transformations of V ′. That is, we have
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ψ ◦ σ = ρ ◦ ψ for an birational transformation ρ of V ′. Now for any p1 ∈
U1 ∩ϕ−1(U ′1,2), let p2 = U2 ∩ϕ−1(ϕ(p1)). Then by the definition of U ′1,2, we
have ρ(ψ(p1)) = ψ(σ(p1)) = ψ(p2) = ψ(p1). That is, we obtain ρ = id on
the set ψ(U1 ∩ ϕ−1(U ′1,2)).

Since ϕ is 1-1 from U1∩ϕ−1(U ′1,2) onto U ′1,2, and since ψ is a finite map,

the set ψ(U1∩ϕ−1(U ′1,2)) is also infinite. Then since we conclude that ρ = id,
i.e., ψ ◦ σ = ψ on the whole V . This means, on a fiber of ϕ, the number of
points in ϕ−1(p) is divisible by ord(σ). Then deg(ψ) is divisible by ord(σ).
Since deg(ψ) is equal to 3, and since σ is not order 1 (because σ(U1) = U2),
we must have ord(σ) = deg(ψ) = 3. That is, the 3 points of ψ−1(p) are in
the same fiber of ϕ, and σ acts as a permutation on these 3 points, so ψ is
just the natural map V → V/〈σ〉, i.e., the natural map from V to V0 given
in (4.1). Therefore, the curve V0 is rational.

Lemma 28. Assume that the curve V in (2.3) is trigonal, g ≥ 5, d ≡ 0
(mod 3) and d ≥ 6. Let c = max{ci}ni=1. If min{ci}ni=1 6= 1 and the curve
V ′ given in (4.2) is rational, then V satisfies the equivalent conditions in
Lemma 25.

Proof. Since V ′ is rational, we may assume that a3 ≡ · · · ≡ an ≡ 0 (mod c).
It follows that c3 ≡ · · · ≡ cn ≡ 0 (mod c). Since ci ≤ c, we obtain c3 =
· · · = cn = c. If c = d/2, then by Lemma 17, the curve V is hyperelliptic,
which contradicts our assumption; and if c = d/3, then this is what we
need. Hence, we may assume that c ≤ d/4. By Lemma 27, the map (ϕ,ψ) :
V→V ′ × V ′ is birational. Thus, we infer from Proposition 16 that g ≤
2(d/c− 1).

By (2.4), we obtain gcd(c1, c) = 1 and gcd(c2, c) = 1. In particular,
we have c ≥ 3. Let e = gcd(c1, c2), c

′
1 = c1/e and c′2 = c2/e. Then

we can write d = d′cc′1c
′
2e for some positive integer d′, and hence g =

(n−2)d′cc′1c
′
2e/2+1−e(c′1+c′2)/2−(n−2)c/2. We may assume that c1 ≤ c2

and hence c′1 ≤ c′2. Substituting these into the inequality g ≤ 2(d/c− 1), we
obtain

(n− 2)c ≤ 4d′c′1c
′
2e+ (c′1 + c′2)e− 6

d′c′1c
′
2e− 1

= 4 +
(c′1 + c′2)e− 2

d′c′1c
′
2e− 1

=: r(d′, c′1, c
′
2, e)

(4.3)

Since c ≥ 3 and r(d′, c′1, c
′
2, e) ≤ r(1, c′1, c

′
2, e) = 6, we must have n ≤ 4 and

c ≤ 6.
Case 1: n = 3. In this case, by (2.4), we have gcd(c1, c2) = 1. Com-

bining with the conditions on c1, c2 and c above, we deduce that e = 1,
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c′1 = c1 = 2, c′2 = c2 = 3 and c = 5. However, we infer from (4.3) that
6d′ ≤ 4, which is impossible since d′ ≥ 1.

Case 2: n = 4. It follows that c = 3 and c1 = c2 = 2, then e = 2
and c′1 = c′2 = 1. However, we infer from (4.3) that 8d′ ≤ 5, which is also
impossible.

4.2 Proof of Theorems D

When n = 3, review the facts (3.2), (3.3), (3.4) and d = d′c1c2c3 for some
integer d′ ≥ 1.

Lemma 29. When n = 3, if the curve V given in (1.1) is trigonal, then
min{ci}3i=1 = 1.

Proof. Suppose to the converse that min{ci} ≥ 2. By Proposition 2 and
(3.2), we may assume that 2 ≤ c1 < c2 < c3. It follows that c2 ≥ 3 and
c3 ≥ 5, then we have d ≥ c1c2c3 ≥ 6c3 ≥ 2(c1 + c2 + c3) + 6. By (3.3), we
obtain g ≥ (c1 + c2 + c3)/2 + 4 ≥ 9. Since (c1, c2) 6= (3, 3), this contradicts
Lemma 25.

Lemma 30. When n = 3 and min{ci}3i=1 = 1, we have

(1) if max{ci}3i=1 = d/2, then V ∼ C2a+2;a for an integer a;

(2) if max{ci}3i=1 = d/3, then V ∼ C3a;a or V ∼ C3a+3;a for an integer a;

(3) if max{ci}3i=1 ≤ d/4, g ≥ 5 and V is trigonal, then {ci} = {1, 2, 3},
{1, 3, 4} or {1, 1, u}, where u ∈ {1, 2, 3, 4}.

Proof. We may assume that c1 = 1 and c2 ≤ c3.
(1) and (2). (1) follows from Lemma 17. For (2), since c3 = d/3, we

have a3 = d/3 or 2d/3. Write d = 3a for an integer a. Then for any integer
k such that ka1 ≡ c1 = 1 (mod 3a), we have ka3 ≡ a or 2a (mod d). The
former case corresponds the curve C3a;a, and the latter case corresponds the
curve C3a;a−1.

(3). Review the definition of V1 in the proof of Lemma 27, and consider
the natural map ϕ1 : V → V1 of degree d′c2 as well as the map ψ1 : V → V1
of degree 3. Since c3 ≤ d/4, we infer from Lemma 27 that (ϕ1, ψ1) : V →
V1 × V1 is birational between V to its image. Thus, by Proposition 16, we
obtain g ≤ 2(d′c2 − 1), that is,

d′c2(c3 − 4) ≤ c2 + c3 − 5. (4.4)
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Case 1: c2 = 1. It follows that d = d′c3 ≥ 4c3, i.e., d′ ≥ 4, then (4.4)
yields c3 ≤ 4.

Case 2: c2 ≥ 2 and d′ = 1. It follows that d = c2c3 ≥ 4c3, i.e., c2 ≥ 4,
then by (4.4), we obtain (c2, c3) = (4, 5) and hence d = 20. It is easy to see
that all of the possible corresponding curves are birational to C20;4. But by
Lemma 19, we have Gon(C20;4) = 4.

Case 3: c2 ≥ 2 and d′ ≥ 2. By (3.2) and (4.4), we have (c2, c3) = (2, 3)
or (3, 4).

Similarly as the proof of Theorem A, the “if” part of Theorem D fol-
lows from Remark 11, and by Lemma 29, to prove the “only if” part of
Theorem D, it suffices to show that

Theorem D (restatement). If Cd;a is trigonal, then a = 2 or d ∈ {2a +
3, 3a, 3a+ 1, 3a+ 2, 3a+ 3}.

In Theorem A (restatement), we have seen that if Cd;a is hyperelliptic,
then a = 1 or d ∈ {2a+ 1, 2a+ 2}. Thus, in what follows of this subsection,
we assume that there exists a trigonal curve Cd;a with a ≥ 3 and d ∈ [2a+
4, 3a− 1] ∪ [3a+ 4,∞). (Note that [2a+ 4, 3a− 1] is empty unless a ≥ 5.)

It is easy to see that for the (d, a)’s under our assumption, the minimum
d satisfying our assumption is 13, and neither gcd(d, a) nor gcd(d, a + 1)
can be equal to d/2 or d/3. When d = 13, we have c2 = c3 = 1 and hence
g = 6. when d ≥ 14, we have max{c1, c2} ≤ d/4 and min{c1, c2} ≤ d/5, so
g ≥ 11d/40 + 1/4 > 4. Thus, we have g ≥ 5. Therefore, the curve Cd;a must
satisfy the condition (3) of Lemma 30. Hence, we may assume additionally
that

{gcd(d, a), gcd(d, a+ 1)} = {1, u}, {2, 3} or {3, 4}, u ∈ {1, 2, 3, 4}. (4.5)

In particular, by (3.3), we have

g ≥ d/2− 3 =: g0, hence (g + 1)/2 ≥ (g0 + 1)/2 = d/4− 1. (4.6)

We write ϕξ,ζ for the function yξ/(x−1)ζ on C̃d;a. Then the following lemma
is obvious.

Lemma 31. For two integers ξ > 0 and ζ ≥ 0, we have

deg(ϕξ,ζ) =


ξ(a+ 1)− ζd if ξa− ζd ≥ 0 and ζd− ξ(a+ 1) ≤ 0,

ξ if ξa− ζd ≤ 0 and ζd− ξ(a+ 1) ≤ 0,

ζd− ξa if ξa− ζd ≤ 0 and ζd− ξ(a+ 1) ≥ 0.
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Lemma 32. We have Gon(Cd;3) 6= 3 for d ≥ 13, and Gon(Cd;4) 6= 3 for
d ≥ 16.

Proof. Case 1: a = 3 and g ≤ 6. By (2.5), we have 13 ≤ d ≤ 16. We have
shown that the gonalities of C13;3 and C14;3 are greater than 3 in Example 14.
From Proposition 2, we deduce that C16;3 ∼ C16;4. Then by Lemma 19, we
obtain Gon(Cd;3) 6= 3 for d = 15 and 16.

Case 2: a = 3 and g ≥ 7. Suppose that Gon(Cd;3) = 3. Since
deg(ϕ1,0) = 4, there exist functions of degrees both 3 and 4, which contra-
dicts [7, Theorem 2.4.3].

Case 3: a = 4 and g ≤ 8. By (2.5), we have d ∈ {16, 17, 18, 20}.
From Proposition 2, we deduce that C17;4 ∼ C17;3. Then by Lemma 19 and
the result for a = 3 above, we obtain Gon(Cd;4) 6= 3 for d = 16, 17 and
20. On the curve C18;4, since deg(ϕ4,1) = 4 and g = 8, we infer from [7,
Theorem 2.4.3] that its gonality is 4.

Case 4: a = 4 and g ≥ 9. Since deg(ϕ1,0) = 5, the proof is similar as
Case 2.

Lemma 33. We have Gon(Cd;5) 6= 3 for d = 14 or d ≥ 19.

Proof. By Example 14, we have Gon(C14;5) 6= 3 From Proposition 2, we
deduce that C19;5 ∼ C19;3, and by Lemma 32, we have Gon(C19;5) 6= 3. Now
suppose that Gon(Cd;5) = 3 for some d ≥ 20.

By (4.5), we only need to consider the d’s which are divisible by neither
5 nor 6, that is, gcd(d, 5) = 1 and gcd(d, 6) ≤ 3. By (2.5), we have (g+ 1) ≥
(d − 1)/4. For an integer k ∈ [d/6, d/5] with k 6≡ 0 (mod 3), we have
deg(ϕk,1) = k ≤ (g + 1)/2. Hence, by Proposition 7 (1), such k does not
exist.

In case d ≥ 60, since d/5 − d/6 ≥ 2, there are at least two successive
integers between d/6 and d/5, then at least one of them is not divisible 3, a
contradiction.

In case 20 ≤ d ≤ 59, we can check the d’s one by one, and there are only 5
of them such that the k having the property above does not exist, which are
31, 32, 33, 34 and 49. We have shown that Gon(C31;5) 6= 3 in Example 14.
For the remaining four curves, we have (1) deg(ϕ5,1) = 7, g = 15 on C32;5;
(2) deg(ϕ5,1) = 8, g = 15 on C33;5; (3) deg(ϕ7,1) = 8, g = 16 on C34;5; (4)
deg(ϕ10,1) = 11, g = 24 on C49;5. Thus, by Proposition 7 (1), none of these
curves is trigonal.

By Lemmata 32 and 33, we have dealt with the case a ≤ 5, so in what
follows of this subsection, we assume that a ≥ 6.
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Lemma 34. If Gon(Cd;a) = 3, then d ≤ 4a+ 7.

Proof. Assume that Gon(Cd;a) = 3 for some pair of integers (d, a) such that

a ≥ 6 and d ≥ 4a+ 8. (4.7)

By Lemma 31, we have deg(ϕ1,0) = a+ 1 ≤ (g0 + 1)/2. Thus, from Propo-
sition 7 (2), we deduce that

a ≡ 2 (mod 3), hence a ≥ 8 and d ≥ 40. (4.8)

Under the condition of (4.7), for a positive integer k, we have

deg(ϕk,1) =


d− ka ≤ (g0 + 1)/2 if r1 ≤ k ≤ r2,
k ≤ (g0 + 1)/2 if r2 ≤ k ≤ r3,
ka− d+ k ≤ (g0 + 1)/2 if r3 ≤ k ≤ r4,

(4.9)

where g0 is defined in (4.6) and

r1 =
3d+ 4

4a
, r2 =

d

a+ 1
, r3 =

d

a
, r4 =

5d− 4

4a+ 4
.

Note that the reason for k ≤ (g0 + 1)/2 in the second line of (4.9) is as
follow: Otherwise we have (g0 + 1)/2 < k ≤ r3. But by (4.7), this yields
d < 4a/(a − 4) ≤ 8, which contradicts (4.8). By Proposition 7 (2), the
degree of ϕk,1 in any case is divisible by 3.

Case 1: d ≡ 0 (mod 3). By (4.8), it follows that k ∈ [r1, r3] only if k is
divisible by 3. In particular, we have r3 − r1 < 2, which yields

d ≤ 8a+ 3. (4.10)

By (4.7), we have r3 > 4. Since 4 6∈ [r1, r3], we obtain r1 > 4, which yields

d ≥ (16a− 2)/3. (4.11)

By (4.11), we have r3 > 5. Since 5 6∈ [r1, r3], we obtain r1 > 5, which yields

d ≥ (20a− 1)/3. (4.12)

Now we can prove the inequality

d ≤ 6a+ 10. (4.13)

Suppose that d ≥ 6a+ 11. By (4.12), for a positive integer k, we have

deg(ϕ6k+1,k) =

{
6k + 1 ≤ (g0 + 1)/2 if s1 ≤ k ≤ s2,
kd− 6ka− a ≤ (g0 + 1)/2 if s2 ≤ k ≤ s3,

(4.14)
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where g0 is defined in (4.6) and

s1 =
a

d− 6a
, s2 =

a+ 1

d− 6a− 6
, s3 =

d+ 4a− 4

4d− 24a
.

Note that the reason for 6k + 1 ≤ (g0 + 1)/2 in the first line of (4.14) is as
follow: Otherwise we have (g0 + 1)/2 < 6k + 1 ≤ 6s2 + 1. But this yields

6a+ 11 ≤ d < 3a+ 7 +
√

9a2 + 18a+ 25,

which does not hold for a ≥ 8. Since neither degree in (4.14) is divisible
by 3, we infer from Proposition 7 (2) that there does not exists any integer
k ∈ [s1, s3]. In particular, we have s3 − s1 < 1. Under the supposition
d ≥ 6a + 11, this yields d ≥ 8a − 1, and by (4.10) and (4.11), we obtain
d = 8a − 1 or 8a + 2. However, one checks that 1 ∈ [s1, s3] for either d, a
contradiction. Hence, we obtain (4.13).

From (4.7), (4.8), (4.10)–(4.12), (4.13) and the condition of Case 1, we
deduce that (d, a) = (54, 8), (57, 8), (75, 11) or (93, 14). Note that the first
pair does not satisfy the condition (3) of (4.5). And for the other pairs,
we have (1) g = 27 and deg(ϕ7,1) = 7 on C57;8; (2) g = 36 on C75;11, (3)
g = 45 on C93;14, and deg(ϕ13,2) = 13 on the later two curves. Thus, by
Proposition 7 (2), none of these curves is trigonal.

Case 2: d ≡ 1 (mod 3). By (4.8), it follows that k ∈ [r1, r2] (resp.,
k ∈ [r2, r3]) only if k ≡ 2 (mod 3) (resp., k ≡ 0 (mod 3)), and there dose
not exist an integer k ∈ [r3, r4]. In particular, we have r4 − r3 < 1, which
yields

d < (4a2 + 8a)/(a− 4). (4.15)

By (4.7), we have r4 > 5. Since 5 6∈ [r2, r4], we obtain r2 > 5, which yields

d ≥ 5a+ 6. (4.16)

By (4.16), we have r4 > 6. Since 6 6∈ [r3, r4], we obtain r3 > 6, which yields

d ≥ 6a+ 1. (4.17)

Moreover, since 6 6∈ [r1, r2], i.e., r1 > 6 or r2 < 6, we deduce that

d ≤ 6a+ 5 or d ≥ 8a− 1. (4.18)

Similarly, since 7, 10 6∈ [r1, r4], we deduce that

d ≤ (28a+ 31)/5 or d ≥ (28a− 2)/3,

d ≤ 8a+ 8 or d ≥ (40a− 2)/3.
(4.19)
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From (4.7), (4.8), (4.15)–(4.19) and the condition of Case 2, we deduce that
(d, a) = (49, 8) or (67, 11). However, since C49;8 ∼ C49;5 and C67;11 ∼ C67;5,
by Lemma 33, neither of these curves is trigonal.

Case 3: d ≡ 2 (mod 3). By (4.8), it follows that k ∈ [r1, r2] (resp.,
k ∈ [r2, r3]) only if k ≡ 1 (mod 3) (resp., k ≡ 0 (mod 3)), and there dose
not exist an integer k ∈ [r3, r4]. Hence, the condition (4.15) in Case 2 still
hold. By (4.7), we have r4 > 5. Since 5 6∈ [r1, r4], we obtain r1 > 5, which
yields

d ≥ (20a− 1)/3. (4.20)

By (4.20), we have r4 > 7. Since 7 6∈ [r2, r4], we obtain r2 > 5, which yields

d ≥ 7a+ 8. (4.21)

By (4.20), we have r4 > 8. Since 8 6∈ [r1, r4], we obtain r1 > 8. However,
with the help of (4.15), this yields

(32a− 1)/3 ≤ d < (4a2 + 8a)/(a− 4). (4.22)

which does not hold for a ≥ 8.

Lemma 35. If Gon(Cd;a) = 3, then d ≤ 3a− 1.

Proof. Suppose that the assertion does not hold. By Lemma 34, we assume
that Gon(Cd;a) = 3 for some pair of integers (d, a) such that

a ≥ 6 and 3a+ 4 ≤ d ≤ 4a+ 7. (4.23)

If d = 4a or 4a+4, then either c1 = gcd(d, a) = a ≥ 6 or c2 = gcd(d, a+1) =
a+1 ≥ 7, which contradicts (4.5). Now we will show that if d ∈ [4a+1, 4a+
3] ∪ [4a + 5, 4a + 7], then there is a contradiction to Proposition 7 (2).
Indeed, if 4a + 1 ≤ d ≤ 4a + 3, then deg(ϕ4,1) = 4 but g ≥ 2a − 2 ≥ 10. If
d = 4a + 5 (resp. 4a + 7), then deg(ϕ4,1) = 5 (resp. 7) but g ≥ 2a ≥ 12
(resp. g ≥ 2a+ 1 ≥ 13). If d = 4a+ 6, then we have g ≥ 2a. In case a 6≡ 1
(mod 3), we have deg(ϕ5,1) = a − 1. In case a = 7 (resp. 10), we have
deg(ϕ1,0) = 8 (resp. 11) but g = 16 (resp. 22). In case a ≡ 1 (mod 3) and
a ≥ 13, we have deg(ϕ9,2) = a− 3. To sum up, we obtain

d ≤ 4a− 1. (4.24)

By (4.24), we have deg(ϕ3,1) = d − 3a. When d ≤ 4a − 2, we see that
deg(ϕ3,1) ≤ (g0 + 1)/2. When d = 4a− 1, since c1 = gcd(d, a) = 1, by (4.5),
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we obtain c2 ≤ 4 and hence g ≥ 2a−2, so we still have deg(ϕ3,1) ≤ (g+1)/2.
Thus, we infer from Proposition 7 (2) that

d ≡ 0 (mod 3), hence d ≥ 3a+ 6 and a ≥ 7. (4.25)

Suppose that d = 3a + 6. For an integer k ∈ [a/6, (a − 1)/4], we have
deg(ϕ3k+1,k) = 3k + 1. Hence, by Proposition 7 (2), such k does not exist.
For a ≥ 15, since (a− 1)/4−a/6 ≥ 1, this is impossible. For 7 ≤ a ≤ 14, we
can check the a’s one by one, and only a = 7 and 8 satisfy the non-existence
of k. We have (1) deg(ϕ4,1) = 5 and g = 13 on C27;7; and (2) deg(ϕ7,2) = 7
and g = 13 on C30;8. Thus, neither of these curves is trigonal, and hence we
obtain

d ≥ 3a+ 9 and a ≥ 10. (4.26)

By (4.25) and (4.26), for a positive integer k, we have

deg(ϕ3k+1,k) =


a+ 1− (d− 3a− 3)k ≤ g0+1

2 if t1 ≤ k ≤ t2,
3k + 1 ≤ g0+1

2 if t2 ≤ k ≤ t3,
(d− 3a)k − a ≤ g0+1

2 if t3 ≤ k ≤ t4,
(4.27)

where g0 is defined in (4.6) and

t1 =
4a− d+ 8

4d− 12a− 12
, t2 =

a

d− 3a
, t3 =

a+ 1

d− 3a− 3
, t4 =

d+ 4a− 4

4d− 12a
.

Note that the reason for 3k + 1 ≤ (g0 + 1)/2 in the second line of (4.27) is
as follow: Otherwise we have (g0 + 1)/2 < 2k + 1 ≤ 3t3 + 1. But by (4.26),
this yields

3a+ 9 ≤ d < (3a+ 11)/2 +
√

9a2 + 18a+ 73/2,

which does not holds for a ≥ 10. By Proposition 7 (2), the degree of ϕ3k+1,k

in any case is divisible by 3.
In case a ≡ 2 (mod 3), by (4.26), there does not exits integer k ∈ [t2, t4].

In particular, we have t4− t2 < 1, which yields d ≤ 3a− 1 or d ≥ 4a− 1. By
the condition (d, a) ≡ (0, 2) (mod 3), we obtain d ≤ 3a − 3 or d ≥ 4a + 1,
which contradicts (4.24) and (4.26).

In case a 6≡ 2 (mod 3), by (4.26), there does not exits integer k ∈ [t1, t3].
In particular, we have t3 − t1 < 1. But this yields d ≤ 3a+ 2 or d ≥ 4a+ 3,
which also contradicts (4.24) and (4.26).

Lemma 36. If Gon(Cd;a) = 3, then d ≥ 3a− 4.
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Proof. Suppose that the assertion does not hold. Then we assume that
Gon(Cd;a) = 3 for an integer d such that

2a+ 4 ≤ d ≤ 3a− 5. (4.28)

Case 1: 2a + 4 ≤ d ≤ 5a/2 − 1/2. It follows that deg(ϕ) = d − 2a ≤
(g0 + 1)/2, then we obtain

d ≡ 2a (mod 3), hence d ≥ 2a+ 6 and a ≥ 13. (4.29)

Suppose d = 2a+ 6. By (4.30), for an integer k ∈ [a/6, (a− 1)/4], we have
deg(ϕ2k+1,k) = 2k + 1 ≤ (g + 1)/2. By Proposition 7 (2), there does not
exist an integer k ∈ [a/6, (a − 1)/4] such that k 6≡ 1 (mod 3). For a ≥ 27,
this is impossible since (a−1)/4−a/6 ≥ 2. For 13 ≤ a ≤ 26, this is possible
only for a = 19 and 20. However, since C44;19 ∼ C44;7 and C46;20 ∼ C46;10,
by Lemma 35, neither of these curves is trigonal. Therefore, we deduce that

d ≥ 2a+ 9 and a ≥ 19. (4.30)

By (4.30) and the condition of Case 1, for a positive integer k, we have

deg(ϕ2k+1,k) =


a+ 1− (d− 2a− 2)k ≤ g0+1

2 if u1 ≤ k ≤ u2,
2k + 1 ≤ g0+1

2 if u2 ≤ k ≤ u3,
(d− 2a)k − a ≤ g0+1

2 if u3 ≤ k ≤ u4,
(4.31)

where g0 is defined in (4.6) and

u1 =
4a− d+ 8

4d− 8a− 8
, u2 =

a

d− 2a
, u3 =

a+ 1

d− 2a− 2
, u4 =

4a+ d− 4

4d− 8a
.

Note that the reason for 2k + 1 ≤ (g0 + 1)/2 in the second line of (4.31) is
as follow: Otherwise we have (g0 + 1)/2 < 2k + 1 ≤ 2u3 + 1. But under the
condition (4.30), this yields 2a+ 9 ≤ d < a+ 5 +

√
a2 + 2a+ 17, which does

not holds for a ≥ 19. By Proposition 7 (2), all degrees in (4.31) are divisible
by 3.

Case 1.1: a ≡ 0 (mod 3). By (4.29), it follows that k ∈ [u1, u3] only if
k ≡ 1 (mod 3). In particular, we have u3 − u1 < 2, which yields

d ≥ (16a+ 13)/7. (4.32)

By (4.32), we have u1 < 2. Since 2 6∈ [u1, u3], we obtain u3 < 2. But this
yields d ≥ 5a/2 + 3, which contradicts the condition of Case 1.
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Case 1.2: a ≡ 1 (mod 3). By (4.30), it follows that k ∈ [u1, u2] (resp.,
k ∈ [u2, u3]) only if k ≡ 2 (mod 3) (resp., k ≡ 1 (mod 3)), and there dose
not exist an integer k ∈ [u3, u4]. In particular, we have u4 − u1 < 2. Under
the condition (4.30), this yields

d >
(

14a+ 1 +
√

4a2 − 68a+ 49
)
/6 ≥ 8a/3− 4. (4.33)

By (4.33), we have u1 < 3. Since 3 6∈ [u1, u4], we obtain u4 < 3. But this
yields d ≥ (28a− 3)/11, which contradicts the condition of Case 1.

Case 1.3: a ≡ 2 (mod 3). By (4.30), it follows that k ∈ [u1, u2] (resp.,
k ∈ [u2, u3]) only if k ≡ 0 (mod 3) (resp., k ≡ 1 (mod 3)), and there dose
not exist an integer k ∈ [u3, u4]. Thus, we obtain u4 − u2 < 2, which yields

d ≥ (16a− 3)/7. (4.34)

By (4.34), we have u1 < 5. Since 5 6∈ [u1, u4], we obtain u4 < 5, which yields

d ≥ (44a− 3)/19. (4.35)

By the condition of Case 1, we have u4 > 2. Since 2 6∈ [u1, u4], we obtain
u1 > 2, which yields

d ≤ (20a+ 23)/9. (4.36)

By (4.30), (4.34)—(4.36) and the conditions of Case 1 and Case 1.3, the only
possible pair (d, a) is (67, 29). Since deg(ϕ5,2) = 16 and g = 33 on C67;29,
this curve is not trigonal.

Case 2: 5a/2 ≤ d ≤ 3a − 5. It follows that a ≥ 10. Suppose that
d ≤ (5a+ 5)/2. Then we have deg(ϕ5,2) = 5 ≤ (g0 + 1)/2, which contradicts
Proposition 7 (2). Thus, we obtain

d ≥ 5a/2 + 3. (4.37)

By (4.37), we have deg(ϕ3,1) = 3a− d+ 3 ≤ (g0 + 1)/2, so we obtain

d ≡ 0 (mod 3), hence d ≤ 3a− 6 and a ≥ 18. (4.38)

By (4.37) and (4.38), for an integer k, we have

deg(ϕ3k−1,k) =


a− (3a− d)k ≤ g0+1

2 if v1 ≤ k ≤ v2,
3k − 1 ≤ g0+1

2 if v2 ≤ k ≤ v3,
(3a− d+ 3)k − a− 1 ≤ g0+1

2 if v3 ≤ k ≤ v4,
(4.39)
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where g0 is defined in (4.6) and

v1 =
4a− d+ 4

12a− 4d
, v2 =

a+ 1

3a+ 3− d
, v3 =

a

3a− d
, v4 =

4a+ d

12a+ 12− 4d
.

Note that the reason for 3k − 1 ≤ (g0 + 1)/2 in the second line of (4.39) is
as follow: Otherwise we have (g0 + 1)/2 < 3k − 1 ≤ 3v3 − 1. But under the

condition (4.37) and (4.38), this yields
(

3a+
√

9a2 − 48a
)
/2 < d ≤ 3a− 6,

which does not holds for a ≥ 18. By Proposition 7 (2), all degrees in (4.39)
are divisible by 3.

In case a ≡ 0 (mod 3), by (4.38), there does not exist an integer k ∈
[v2, v4]. Thus, we obtain v4 − v2 < 1, but this yields d ≤ 12a/5 + 3, which
contradict (4.37).

In case a 6≡ 0 (mod 3), by (4.38), there does not exist an integer k ∈
[v1, v3]. Thus, we obtain v3 − v1 < 1, but this yields d ≥ (12a+ 3)/5, which
also contradict (4.37).

Proof of Theorem D (restatement). It remains to show that Gon(Cd;a) 6=
3 for a ≥ 6 and max{2a+ 4, 3a− 4} ≤ d ≤ 3a− 1. Assume to the contrary
that Gon(Cd;a) = 3 for such (d, a)’s.

In case d = 3a − 1, since deg(ϕ3,1) = 4, we must have 4 > (g0 + 1)/2,
which yields a = 6. Since C17;6 ∼ C17;3, by Lemma 32, it is not trigonal.

In case d = 3a − 2, since deg(ϕ3,1) = 5, we must have 5 > (g0 + 1)/2,
which yields 6 ≤ a ≤ 8. We have (1) deg(ϕ2,1) = 4, g = 7 on C16;6; (2)
deg(ϕ2,1) = 5, g = 9 on C19;7; (3) deg(ϕ3,1) = 5, g = 10 on C22;8. Thus,
none of these curves is trigonal.

In case d = 3a−3, we have a ≥ 7. For an integer k ∈ [(a+1)/6, (a−1)/4],
we have deg(ϕ3k−1,k) = 3k − 1 ≤ (g0 + 1)/2. By Proposition 7 (2), there
does not exist an integer k ∈ [(a + 1)/6, (a − 1)/4]. For a ≥ 17, this is
impossible since (a− 1)/4− (a+ 1)/6 ≥ 1. For 7 ≤ a ≤ 16, this is possible
only for a = 7, 8 and 12. We have (1) deg(ϕ2,1) = 4, g = 8 on C18;7; (2)
deg(ϕ2,1) = 5, g = 9 on C21;8; (3) deg(ϕ8,3) = 8, g = 15 on C33;12. Thus,
none of these curves is trigonal.

In case d = 3a − 4, we have a ≥ 8. Since deg(ϕ3,1) = 7, we must have
7 > (g0 + 1)/2, which yields 8 ≤ a ≤ 11. We have (1) deg(ϕ2,1) = 4, g = 8
on C20;8; (2) C23;9 ∼ C23;4; (3) C26;10 ∼ C26;7; (3) C29;11 ∼ C29;8. Thus, by
Proposition 7 (2), Lemma 32 and 35, none of these curves is trigonal.
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