
Road Network Distance Based Efficient

Algorithms Suitable in Location Based Services

Aye Thida Hlaing

A Thesis Submitted to the

Graduate School of Science and Engineering, Saitama University

in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF ENGINEERING

in

Mathematics, Electronics and Informatics

Supervisor: Professor Yutaka OHSAWA

Saitama University

2015, March

Abstract

This thesis describes the studying of efficient algorithms for real-time monitoring,

shortest path finding and Reverse k nearest neighbor (R-kNN) query applying on

road network distances for Location Based Services (LBS). In recent time, find-

ing shortest path in real road networks is crucial for many applications including

location-based services and mobile computing. Since mobility is constantly increas-

ing, we can observe that also an increase in the time dependency of spatial infor-

mation related to human activities. The role of location-based services is rising as

the increasing numbers of users are requesting the location-based information. The

main idea of LBS is to provide the service that depends on the positional informa-

tion which associated with the user, most importantly, the user’s current location.

The service may also be dependent on other information, such as personal prefer-

ences and interests of the user. For example, finding the cheapest hotel within 20

km, where is the nearest gas station, how long it will take to go to Italy restaurant,

are some specific user’s queries in location-based services. Also a service may inform

its users about traffic jams, weather situation, the position of emergency vehicles,

hazardous materials or public transportation. Moreover, in other related activities

like parcel management, tourism planning, bus routes queries for Urban planning,

checking movement of terrorists in emergency situations for crime prevention, etc.,

require LBS services based on spatial information. For all these requirements, study-

ing on some typical queries like nearest neighbor queries, range queries, spatial join

queries, and reverse nearest neighbor queries has been demanded.

1

2 Aye Thida Hlaing

Various route queries in road networks have gained significant research interests

due to advances in GIS and mobile computing such as car navigation system. The

main challenge of processing such a query is how to efficiently monitor the moving

object and how to retrieve the route rapidly. In recent time, much work has been

conducted on a real time monitoring of moving objects (cars and humans). Some

studies adopted to get high accuracy tracking of moving objects with less com-

munication between moving objects and server. However, their studies assumed

the moving object is moving in Euclidian space or in fixed route. This thesis pro-

poses a real time monitoring method aiming for both thick client and thin client.

We will discuss these two kind of clients detail later. Using the“ frequently used

routes”(FUR) information, we offer high scalability monitoring system with em-

pirical comparisons of the proposed method and the conventional dead-reckoning

on road network method.

Despite the importance of spatial networks in real-life applications, most of the

spatial query methods focus on Euclidean distance, where the distance between two

objects is determined solely by their relative position in space. However, in practice,

objects can usually move only on a pre-defined set of routes as specified by the real

road network (road, railway, river etc.). Thus, the important measure is the network

distance, i.e., the length of the shortest trajectory connecting two objects, rather

than their Euclidean distance. Only using Euclidean distance on spatial network

databases (SNDB) is scarce and too restrictive for emerging applications such as

mobile computing and location-based queries.

The main difference between using Euclidean distance and road-network distance

is based on their calculation costs. As considering, the Euclidean distance between

two arbitrary points can be computed easily, however, in the road-network dis-

tance, it takes longer processing time. For example, if the river or mountain lies

between two points, there is totally difference between the Euclidean distance and

the road-network distance, and the costs of the distance calculation as well. In

the conventional methods, to promptly acquire the distance between two termi-

Efficient Algorithms Suitable in Location Based Services 3

nal points for spatial queries in LBS applications, we can use well-known shortest

path finding algorithms, Dijkstra’s algorithm and A* algorithm. However, due to

the complexity of some queries, for example, ANN (aggregate nearest neighbor)

queries, RNN (reverse nearest neighbor) queries, skyline queries, k-NN queries and

several kind of TPR (trip planning route) queries, needed efficient algorithm to find

the shortest paths between starting point and target point.

Dijkstra’s algorithm and A* algorithm can be directly applied to these queries,

nevertheless these two algorithms take very long processing time and that will

cause high calculation cost. Therefore, we propose another efficient shortest path

finding algorithm, based on materialized-path-view constructed only on partitioned

subgraphs to compute this road network distance.

As a shortest path query is a basic operation in several types of queries, efficient

path computation is essential in such kind of queries, for example, k-NN queries,

ANN queries, R-kNN queries and trip planning queries. In existing path finding

algorithms, Dijkstra’s and A* algorithms, require pre-computed all-pair shortest

paths and store them on-line. A* algorithm can reduce the path computation but

it is not efficient for the re-computation or update of the flat path view for large

networks.

Other Materialize Path View (MPV) approaches also have been proposed for a

shortest path query based on the pre-computed distance table. This method needs

O(n2) space when the given number of the nodes is n. For this reason, it is not

suitable for the large network as well. Distance materialization methods based on

types of roads have been used also in Japan car navigation system. There are several

types of roads according to the road classification in Japan, for example, highways

or express ways, national roads and residential roads etc. In most existing studies,

their methods are suitable for searching long distance trip path and mostly aiming

for using express ways. However, in location based services applications, there are

requested to search shortest path finding in small area and points of interest (POIs)

4 Aye Thida Hlaing

are normally existed on residential roads, and not on highways or express ways.

Therefore, we propose a fast shortest path query strategy suitable for LBS as in

small search area and trip is also considered for usual roads.

Then, several hierarchical representation methods have been proposed to reduce

the amount of data. In HEPV (hierarchical encoded path view) and HiTi graph

methods, using hierarchical representation and semi-materialized approach have

been proposed to reduce the large amount of data. In this thesis, we propose

the shortest path finder with light materialized path view. Our study is closely

related with their works, however, their searching assumes the hierarchical structure

essentially and we will discuss this difference detail in other session.

Using partitioned subgraphs, we study one more efficient algorithm for Reverse

k-Nearest Neighbors (R-kNN) query on road network distance. According to our

knowledge, the existing methods for R-kNN queries required to find kNN search

on every visited node. This causes a large number of node expansions and the

processing time is increase simultaneously. Therefore, we propose a fast R-kNN

search algorithm that running based on a simple materialized path view (SMPV)

structure and we adopted incremental Euclidean restriction strategy for kNN queries

which is the main function in R-kNN queries.

Contents

Abstract 1

1 Introduction 9

1.1 Some Types of Spatial Queries in Location Based Services (LBS) . . 10

1.2 Incremental Euclidean Restriction Framework of LBS 11

1.3 Contributions . 13

1.4 Experimental Environments . 14

1.5 Outline . 14

2 Related Work 15

2.1 Shortest Path Finding Algorithms 15

2.1.1 Dijkstra’s Algorithm . 17

2.1.2 A* Algorithm . 19

2.1.3 Materialized Path View . 23

2.2 Real-time Monitoring for LBS . 28

2.3 RkNN Queries in LBS . 29

5

6 Aye Thida Hlaing

2.4 Spatial Indexing Method . 32

2.4.1 General indexing methods used in spatio-temporal databases 32

2.4.2 R-tree . 33

3 Real-time Monitoring of Moving Objects Using Frequently Used

Routes 37

3.1 Real-time Monitoring of Moving Objects 37

3.2 Preliminaries . 38

3.3 Moving Object Monitoring with FUR 40

3.3.1 System configuration . 40

3.3.2 Frequently used routes . 42

3.3.3 FUR description . 43

3.4 Moving Object Tracking Algorithms for thick client 46

3.4.1 Moving object tracking for thick client 46

3.4.2 Moving object side algorithm for thick client 48

3.4.3 Server side algorithm for thick client 52

3.4.4 Experimental results of thick client model 54

3.5 Monitoring Algorithms for thin client 55

3.5.1 Basic concepts in thin client model 56

3.5.2 Server side Algorithm for thin client 57

3.5.3 Moving object side algorithm for thin client 62

3.5.4 Minimization of data storage capacity and communication cost 66

Efficient Algorithms Suitable in Location Based Services 7

3.6 Experimental results of thin client model 68

3.6.1 Comparison of communication cost 68

3.6.2 Summary . 69

4 Shortest Path Finder With Light Materialized Path View for LBS 71

4.1 Preliminaries . 72

4.2 Shortest Path Finder . 74

4.2.1 Data structure . 74

4.2.2 Simple Path Finder Algorithm 77

4.2.3 Distance calculation method inside subgraph 82

4.3 Experimental results . 84

4.4 Summary . 90

5 Efficient Reverse kNN Query Algorithm on Road Network Dis-

tances Using Partitioned Subgraphs 91

5.1 Preliminaries . 92

5.2 Basic method for RkNN search . 93

5.3 RkNN query algorithm on partitioned subgraph 96

5.3.1 kNN query using an IER framework 96

5.3.2 RkNN query on an SMPV structure 97

5.3.3 Simple Path Finder Algorithm Using in RkNN Query 102

5.3.4 Limitation of referring tables for distance calculation 105

5.4 Experimental results . 106

8 Aye Thida Hlaing

5.5 Summary . 113

6 Conclusion 115

Acknowledgement 119

CHAPTER 1

Introduction

Over the last few decades, spatial databases and mapping services have become

one of the most important applications in queries services based on geographical

positioning system. With the wide usage of location tracking systems, tracking

relationships among moving objects over their location changes is possible and im-

portant to many real applications. The prevalence of Global-Positioning-Devices

(GPS) enables to track and coordinate large numbers of continuously moving ob-

jects, and store their positions in databases. This results in new challenges for

query optimization in such databases because it is no longer sufficient to have a

query processing strategy that is tailored to meet the problems in data storage

and processing cost, may be travelling time or travelling distance. Rather, query

processing in mobile databases needs to consider the problems specific to the be-

havior of mobile devices such as network traffic, etc. Particularly, the main goal in

many applications is to minimize the processing cost of retrieving the shortest path

and, as a consequence, to minimize the data storage . In existing studies, two well

known shortest path finding algorithms are Dijkstra’s algorithm and A* algorithm.

In addition, Incremental Euclidean Restriction (IER) strategy[1] has been applied

in queries algorithm based on road network distance for LBS applications.

9

10 Aye Thida Hlaing

1.1 Some Types of Spatial Queries in Location Based

Services (LBS)

We introduce some kinds of queries for the purpose of well understanding the char-

acteristic of spatial queries in location based services. Depending on the purpose

of users’ preferences, several types of queries can be mainly introduced into spatial

network queries according their requirements. Mostly in LBS, destination points of

a query point(POIs), for example, hotels, banks and grocery stores etc., have been

searched. Especially, POIs which can fulfill the searching requirements are resulted.

Examples of these queries in LBS are described here, k nearest neighbor (k-NN)

queries, reverse nearest neighbor (RNN) queries, aggregate nearest neighbor (ANN)

queries, and trip planning queries.

In k nearest neighbor (k-NN) query, given a query point q and a set of POIs P ,

a k-NN queries are searching for k number of nearest POIs in a specific area. For

example, if someone wants to find one of the nearest gas station, at this situation,

kNN query can find starting from one nearest gas station to kth nearest gas sta-

tion based on the current location area according to the distances (i.e., Euclidean

distance or network distance) or travelling time.

For Reverse nearest neighbor (RNN)query, given a query object q, reverse nearest

neighbor search finds all objects in the network whose nearest neighbors are the

query object. Note that since the relation of NN is not symmetric, the NN of a

query object might differ from its RNN(s). For example, RNN query can find the

set of customers affected by the opening of a new shopping mall location in order to

inform the relevant customers. This query can also be used to identify the location

which maximizes the number of potential customers. Consider another example,

an RNN query may be issued to find the existing shopping malls that are affected

by opening a new shopping mall at some specific locations.

Aggregate nearest neighbor (ANN)query, is a query to satisfy the request of the

Efficient Algorithms Suitable in Location Based Services 11

multiple query points (multiple users) who want to find the shortest routes based

on some aggregate functions (e.g.,sum, min and max) related with travelling times

or distances for all users. For example, Four peoples from different locations desire

to find a cafeteria to meet. By applying a suitable aggregate function, their desire

cafeteria is retrieved as a result which can optimize the total minimum travelling

cost (i.e., distances or time) for four peoples.

In Trip planning query (TPQ), given the starting point, final destination points

and POI categories to visit during the trip, TPQ retrieves the shortest route from

the starting point to the destination point by visiting one POI from each different

POI categories during the trip. In TPQ, the POIs visiting order is not specified.

Due to this complexity, TPQ is difficult to solve. For example, one tourist starts his

trip from airport and to be visited bank, restaurant and convenience store without

specifying visiting order. Then he ends his trip at the hotel. Therefore, TPQ

retrieves the shortest path starting from airport, passing through one bank, one

restaurant and one convenience store in non-specifying order, and terminating at

the hotel.

Shortest path finding is the important function in LBS. Dijkstra’s algorithm and

A* algorithm are well-known algorithm for shortest path finding in spatial queries.

However, these algorithms are not suitable for very large spatial database and some

complicated queries. Therefore, in this study, we propose Simple Materialized Path

View (SMPV) structure for shortest path finding and Incremental Euclidean Re-

striction (IER) adaption.

1.2 Incremental Euclidean Restriction Framework of

LBS

The Incremental Euclidean Restriction (IER) framework is used widely in several

types of queries on road network. IER framework is mainly based on the concept

12 Aye Thida Hlaing

that the Euclidean distance between two terminal points is always a lower bound

of the road network distance. In IER framework, firstly, it searches a set of k-NN

points on the Euclidean distance using the R-tree [2], and then to confirm that

points are truly k-NN points on the road network distance. In k-NN search on the

Euclidean distance are not always same in k-NNs on the road network distance.

As mention in earlier, k Nearest neighbor query retrieves the k-POIs closest to the

query point.

Figure 1.1: Finding the NN in IER [1]

In Fig. 1.1(a), specifically, assuming that only one NN is required, IER first

retrieves the Euclidean nearest neighbor PE1 of q, using an incremental k-NN al-

gorithm on the entity R-tree. Then, it requires to calculate the network distance

between PE1 and q. Following the Euclidean lower bound restriction, other POIs

closer to q than PE1, should be within Euclidean distance dEmax = dN(q, PE1) from

q, i.e., they should exist in the shaded area of Fig. 1.1(a). In Fig. 1.1(b), the

second Euclidean NN PE2 has been retrieved due to exist within the dEmax range.

If dN(q, PE2) < dN(q, PE1), PE2 will become the current NN and dEmax will be up-

Efficient Algorithms Suitable in Location Based Services 13

dated as dN(q, PE2), after the searching area becomes smaller (the shaded area in

Fig. 1.1(b). Then the next Euclidean NN PE3 does not exist in searching area, the

algorithm terminates with PE2 as the final result.

Finding kth nearest neighbors can be performed by the following steps. In the

first step, the k Euclidean NNs are obtained using Rtree, sorted in ascending order

of their network distances to q, and dEmax is set. In second step, similar to the 1NN

case, the subsequent nearest neighbors in Euclidean distance are retrieved incremen-

tally, until the next Euclidean NN has larger Euclidean distance than dEmax. We

apply this IER strategy to our proposed methods. The advantages of IER adaption

is shown by the experiments in other session.

1.3 Contributions

In this thesis, we study a real time monitoring of moving objects based on their

frequently used routes. For this study, we propose an efficient tracking algorithm

for the positions of moving objects. Moreover, we apply an accurate map matching

algorithm in shortest route retrieving algorithm. Our experimental results show how

our proposed methods outperformed the existing dead-reckoning on road network

method in both thick client and thin client.

After that, in our study, we focused on light material path view strategy to re-

trieve the shortest path hierarchically. We present SPF algorithm on three kinds

of methods based on three variations referring different levels of distance materi-

alization. The main difference between three variations of the SPF algorithm is

the materialization level of the distance in the subgraphs. The performance of our

proposed method is evaluated by the experiments compared with the conventional

A* algorithm and the HEPV method.

And then, we proposed an adequate R-kNN queries algorithm based on that

material path view method. Here, we employed IER strategy which used a filtering

mechanism to rapidly generate a set of candidate POIs based on their Euclidean

14 Aye Thida Hlaing

distance from a query point. Then, the Euclidean distance for each candidate is

verified by computing their road network distance. This IER adaption has been

applied in k-NN query which is the main function in R-kNN query. For R-kNN

query on road network distance required in LBS applications, we compare our

proposed methods with the existing works to prove the efficiency and stability of

the proposed algorithms.

1.4 Experimental Environments

In this thesis, we implement the experiments for all proposed methods comparing

with the existing conventional methods. In all experiments, we use a real road

network data. For the experiments, a digitized road map from a 1/25,000 scale

base map that covers Saitama City, Japan is used. Points of interest (POIs) are

randomly generated by a pseudo-random sequence. The probability value indicates

the POIs density on road network map. For example, Prob = 10−2 mean one POI

exists on 100 road segments. And the processing time for both existing methods

and proposed methods are shown in seconds (s).

1.5 Outline

Our main topic is efficient algorithms suitable in LBS based on road network dis-

tances, and some knowledge is described in Chapter (1). In Chapter (2), we discuss

some related works. Proposed algorithms for real time monitoring of moving objects

are presented in Chapter (3). In Chapter (4), shortest path finding algorithm with

materialized path view is expressed. Applied SMPV structure in R-kNN queries

which is suitable for LBS applications, has been discussed in Chapter (5). The

conclusion of our thesis and the future research are contributed in the last Chapter

(6).

CHAPTER 2

Related Work

Shortest path searching on a road network is essential for emerging Location Based

Services (LBS) and many real time Geographic Information Systems (GIS) [[3][4][5][6][7]].

Location Based Service (LBS) is an information services which used in a variety

of applications, especially to verify the location of persons or moving objects, such

as to find the nearest restaurants, movie theatre, gas station or to find where is a

friend. Due to the development of wireless communication and positioning tech-

nologies, in LBS, it is also require to make the improvements to the efficient path

finding algorithms. In this chapter, we present the related work, background knowl-

edge of our thesis and introduce well-known shortest path finding algorithms, query

access indexing method and materialized path view method.

2.1 Shortest Path Finding Algorithms

A road network can be represented in weighted graph as G = V,E, where V is a

set of nodes (that the point which is branching roads or merging roads on actual

road map), and E is a set of edges between two nodes(that the road links between

two network nodes). And attached value on each edge indicates the weight that

15

16 Aye Thida Hlaing

the distance or time travelling along that edge. For example, a person who wants

to search the fastest route from one place to another using a road map, we defined

vertices as locations and edges as the road segments. Then we calculated the weights

of the routes by the time or distance needed to satisfy the user’s requirement. This

is a fundamental processing in navigation system and spatial queries based on the

road network distance.

Fast shortest path search between two points on a road network is essential de-

mand in Location Based Services (LBS). The shortest path finding method can

be categorized into compute-on-demand method using adjacency list and precom-

putation method using road network distance materialization approaches. Among

several different algorithms, Dijkstra’s algorithm [[8][9][10]] and A* algorithm [11]

are well-known algorithms for first method.

Some general terms which are frequently used in the explanation for the queries

on road network are described here. As mention in earlier, the road network can

be represent in a weighted graph G = E, V in which V is a set of nodes and E is a

set of edges between these nodes. Each edge has a weight described the distance or

time to travel along that edge. An edge can be a straight line or a polyline. If two

nodes are directly connected by an edge, these two nodes are defined as adjacent

nodes to each other.

Dijkstra’s algorithm and A* algorithm are well-known algorithms to search the

shortest path from a query point to the target point. Although both algorithms

refer an adjacency list of nodes to find the neighboring nodes to a currently noticed

node, A* algorithm is faster than Dijkstra‘ s algorithm. In Dijkstra’s algorithm,

the search are is expended as the wave front in all directions. In A* algorithm, it

uses a heuristic function and only focuses to reach the target node, so as not to

reach every other nodes. Therefore, it can reduce the search area and unnecessary

node expansions comparing with Dijkstra’s algorithm.

Efficient Algorithms Suitable in Location Based Services 17

2.1.1 Dijkstra’s Algorithm

Dijkstra ’s algorithm is also known as the single source shortest path problem. It

can compute the shortest path from the source to each of other vertices in directed

weighted graph and find the shortest path to the target node as well.

Dijkstra ’s algorithm is performed by the following steps:

Initial state: Assign a distance value to every node i.e., set it to zero for initial

node and to infinity for all other nodes

Step 1. Mark all nodes as unvisited. Set the initial node as a current node.

Step 2. For the current node, consider all of its unvisited neighboring nodes and

calculate their distances. And compare that distances and choose one has minimum

value. Then selected node is marked as visited and never be checked again.

Step 3. If the target node has been marked visited or if the minimum distance is

infinity (if there is no connection between the initial node and remaining unvisited

nodes), then search is stop and the algorithm is terminated.

Step 4. Iteration of the algorithm by selecting the unvisited node that is marked

with minimum tentative distance, and set it as new current node then go back to

step 2.

The example will briefly explain each step that is taken and how to find the

shortest path in Dijkstra’s algorithm using Fig. 2.1.

In Fig. 2.1, there are 5 vertices (node A, B, C, D and E). The value between the

two vertices is defined as the weight of that two nodes. Using this figure, Dijkstra’s

algorithm will determine the shortest path from starting point (node A as shown

in green color) to target point (node E as shown in red color).

In initial state, node A is set as an initial node and assign distance value to all

nodes in figure, i.e., 0 for node A and ∞ for other nodes. For step 1, node A is set

18 Aye Thida Hlaing

Figure 2.1: Weighted graph example in Dijkstra’s Algorithm

as current node and other nodes are marked as unvisited. In step 2, checking the

adjacent nodes of node A (node B and C), then the distances of adjacent nodes of

node A are computed. The distance between A and B is 4 and the distance between

A and C is 2. Then select node C and mark as visited due to minimum value. In

step 3, the target node has not been examined yet. Therefore go to step 4, set up

the node C as current node and go back to step 2. By iteration, node C is a current

node and it is computed the distances of adjacent nodes of node C (now node B and

node D) from source node A. Then compute their distances, the distance between

A to B via C is 5 and the distance between A to D via C is 7. However, the direct

link distance between A and B is only 4. Therefore selecting the direct link between

A and B comparing other links via C and set node B as visited. Same iteration

of node expansion at D, the distance between A to E via B is 7 and the distance

between A to E via D is 9. Finally, target node E is visited and searching algorithm

is terminated after node expansion at D. The node expansion and paths are shown

in Fig. 2.2.

In Dijkstra’s algorithm, it takes long processing times if number of nodes are large

because it visits the nodes in wave front in all directions. Therefore, A* algorithm

Efficient Algorithms Suitable in Location Based Services 19

Figure 2.2: Paths finding in Dijkstra’s Algorithm

has been proposed to overcome the Dijkstra’s algorithm using heuristic function.

2.1.2 A* Algorithm

The A* algorithm combines features of uniform cost search and pure heuristic search

to efficiently compute optimal solutions. A* algorithm is a best-first search algo-

rithm in which the cost associated with a node is f(n) = g(n)+h(n), where g(n) is

the cost of the path from the initial state to node n and h(n) is the heuristic estimate

or the cost or a path from node n to a goal. Thus, f(n) estimates the lowest total

cost of any solution path going through node n. At each point a node with lowest f

value is chosen for expansion. The algorithm terminates when a goal is chosen for

expansion. Due to compose with heuristic function h(n), A* algorithm can greatly

reduce path finding cost (decrease search area) than Dijkstra’s algorithm. A* uses

a best-first search and finds a least-cost path from a given initial node to target

node. As A* traverses the graph, it follows a path of the lowest known heuristic

cost, keeping a sorted priority queue of alternate paths along the way. A* search

20 Aye Thida Hlaing

only expand a node if it seems promising. It only focuses to reach the goal node

from the current node, not to reach every other nodes. It is optimal, if the heuristic

function is admissible.

A* works by maintaining two sets, one containing nodes which may be a next

visited nodes in the path (called the ‘open’ set) and one containing nodes that have

already been visited (called the ‘closed’ set). In A* algorithm; initially set a start

node S.

(1) Put the neighbor nodes of start node S into ‘open’ set as unexpanded nodes

(2) If ‘open’ is not empty, the following steps are continued. Otherwise, search

algorithm is terminated

(3) Remove a node n with minimum f value from ‘open’ set , and place it into a

‘closed’ set to be used for expanded nodes

(4) If n is a target node, exit successfully with updating path back along from n

to S

(5) Expand node n, generating all its adjacent nodes with point back to previous

node (node n)

(6) For every adjacent nodes n′ of n;

a. Calculate f(n′)

b. If n′ is not include in ‘open’ set, then add it to ‘open’. After that, assign the

newly computed f(n′) to node n

c. If n′ already exists in ‘open’ set, compare the newly computed f(n′) with that

previously assigned to n′. If the new value is lower, substitute it for the old (n′ now

points back to n instead of to its predecessor), i.e., update the cost of getting to

this node and to any successors that this node may already have. Then add node

n′ to ‘closed’ set.

Efficient Algorithms Suitable in Location Based Services 21

(7) Go back to Step 2.

Figure 2.3: Example figure for A* Algorithm

Fig. 2.3 is an example of path finding in A* algorithm and it uses all algorithm

steps described above. There are six nodes (A, B, C, D, E, F) in figure, A is start

node and F is target node. The value attached between two nodes is the cost g(n)

of the path and the value attached each node is the estimated cost h(n) of that node

to target node. The cost function f(n) is obtained by g(n)+h(n), for example, if

A is a start node, f(B) of node B is g(B)+h(B)=4. Initially, set A as a start node

and then all its neighbor nodes are added into ‘open’ set for node expansion orderly

due to their cost function f(n). In this figure, start node A has two neighbor nodes,

node B and node C. The cost of node B (f(B)) is 4 and the cost of node C (f(C))

is 8. Therefore B is selected to expand and added to ‘closed’ set. In this time, B is

not a target node. Therefore, neighbor nodes of B (node D) is added to ‘open’ list.

However, C has lower function Cost (3+5=8) than D (6+3=9). For this reason, C

22 Aye Thida Hlaing

is selected to expand. The neighbor of C is E (7+5=12) and D (5+3=8) and D is

selected for next step. However, D is exist in ‘open’ set already by node expansion

at B. Therefore, an algorithm compares the old value of D via B (6+3=9) and new

value of D via C (5+3=8). New value of D is lower than the old value, therefore

the path and its function cost is updated at node D with a successor node C. After

node expansion at D, finally reached to the target node F, a path is updated and a

search is terminated. The paths which finding in an algorithm is shown in Fig. 2.4.

Figure 2.4: Obtained Paths in A* Algorithm

Fig. 2.5 compares the search areas of Dijkstra’s algorithm and A* algorithm in

real road map. In these figures, red dot represents the start point and green dot

represents the destination point. And the expanding search area is shown in blue

color. The red lines between the start and destination points show the shortest path

finding by both algorithms. In Dijkstra’s algorithm (see in Fig. 2.5(a)), the search

Efficient Algorithms Suitable in Location Based Services 23

area is expanded in front wave for all nodes and that takes long processing time to

find the shortest path. However, A* algorithm finds a path from a given start node

to a destination node by employing a heuristic estimate. Each node is arranged by

an estimate of the best route that goes through that node. A* visits the nodes only

in order of the heuristic estimate and it decreases not only the search area but also

the processing time (see in Fig. 2.5(b)).

Figure 2.5: Comparison of search area in two SPF algorithms

2.1.3 Materialized Path View

A shortest path query is a basic operation in several types of queries based on the

road network distance, for example, kNN queries, ANN queries, R-kNN queries, and

trip planning queries. Shortest path query algorithms have been studied since 1950’s

and several data structures and algorithms [12] have been proposed for this query.

They can be categorized into, (1) methods compute-on-demand using adjacency list

of nodes, and (2) methods used pre-computed optimal path.

24 Aye Thida Hlaing

Dijkstra’s algorithm [8] and A* algorithm [13] are representative algorithms for

the former type. A* algorithm is usually faster than Dijkstra’s algorithm.

Materialized path view (MPV) approaches belong the latter type. It retrieves the

shortest path by a lookup query in the pre-computed distance table. This method

needs O(n2) space when the number of the nodes on the given graph is n. Therefore

it is difficult to use when the network is large. Huang et al. [14] proposed semi-

materialized method of the shortest path route to reduce the data amount. It only

records the next pursued node along the shortest path, and the whole shortest path

route is restored by tracking the next visiting node in sequence. Samet et al. [15]

reduced the data amount to O(n1.5), using semi-materialized approach.

The shortest path can be retrieved fast on MPV, however, it has a problem in a

huge data amount as mentioned above. Therefore, several hierarchical representa-

tion methods have been proposed to reduce the amount of data. For example, Jing

et al. [14] proposed the hierarchical encoded path view (HEPV) using hierarchi-

cal representation and semi-materialized approach. The principle of this method is

partitioning a given graph G into several subgraphs SGi. Distances between every

two possible combination of nodes are calculated to compose a locally materialized

distance table. Next, merging the neighboring subgraphs, it constructs the higher

level subgraphs in a stepwise fashion. In a higher level, the distance table is built

only for the border nodes between the subgraphs.

Hierarchical Materialized Path View

Efficient path computation is essential for applications such as intelligent trans-

portation systems (ITS) and network routing [[16][17][18]]. In ITS navigation sys-

tems, many path requests can be submitted over the same, typically huge, trans-

portation network within a small time window. While path precomputation (path

view) would provide an efficient path query response, it raises three problems which

must be addressed:

Efficient Algorithms Suitable in Location Based Services 25

1) precomputed paths exceed the current computer main memory capacity for

large networks;

2) disk-based solutions are too inefficient to meet the stringent requirements of

these target applications;

3) path views become too costly to update for large graphs (resulting in out-of-

date query results).

Hierarchical encoded path view (HEPV) model that addresses all three problems.

By hierarchically encoding partial paths, HEPV reduces the view encoding time,

updating time and storage requirements.

HEPV generates a hierarchical structure from a Flat Path View (FPV) structure

based on fragmentation . Flat Path View (FPV) stores the all-pair shortest paths

for a given graph. Because storing all shortest paths in their entirety requires an

unrealistically large amount of storage, FPV only stores the origin, destination,

direct successor node (called next-hop), and the weight for a shortest path for this

O-D pair [[19][20]]. If there exist more than one shortest path between an O-D

pair, each is stored for a different next-hop. The computation of the FPV, equal

to calculating all-pair shortest paths, is computationally expensive, and the space

requirement for the FPV is also high. For large maps, computing or updating the

FPV may take a long time, therefore can only be performed with longer, possibly

unacceptable, delays. Fig. 2.6 described the encoded flat path view structure.

HEPV generates a hierarchical graph from a flat graph based on fragmentation. It

then pushes up all border nodes, the nodes that belong to more than one fragment,

to generate a map at the next higher level. A higher-level map consists of only

border nodes. Therefore it is a much more compact graph which represents all

cross-partition points on the map at the level below. Fig. 2.7 described a simple

example of creating a two level hierarchical graph from a flat graph.

After the hierarchical graph is created, HEPV generates a FPV for each frag-

26 Aye Thida Hlaing

Figure 2.6: Encoded flat path view structure [14]

ment at all levels by precomputing all-pair shortest paths within this fragment.

This collection of FPVs across all levels in the hierarchy is called the Hierarchical

Path Views (HPV). And then the encoded HPV algorithm encodes the HPV for

a hierarchical graph starting from the ground level upwards to the top-most level.

At each level, it encodes all path views at this level by invoking an all-pair shortest

path algorithm.

The hierarchical representation, such as HEPV, is suitable for the fast calculation

of the shortest path between two points. However, the tables size in a higher

hierarchy increase rapidly, then the total memory size of this structure becomes

very large. Adding this, when a weight of the link is changed by a traffic accident

or road maintenance, changing of weights (for example, distance) in the table affects

a wide area in the table.

Jung et al. proposed another hierarchical materialized path view named HiTi

graph [[21][22]]. This method also materializes distance between two nodes in the

Efficient Algorithms Suitable in Location Based Services 27

Figure 2.7: Two level hierarchical graph structure [14]

graph, and constructs the hierarchy. The big difference between HiTi and HEPV is

that HiTi does not materialize in the leaf level subgraphs. Therefore, the total data

amount of the HiTi graph is smaller than HEPV. The HiTi prunes the hierarchical

tree leaves by using A* algorithm. Shekhar et al. [16] analyzed hierarchical-MPV in

terms of the storage/computation-time trade offs. Their paper is closely related with

our work, however, their investigation assumes the hierarchical structure essentially.

The amount of data used in our methods decrease by comparing with the existing

methods, HEPV and HiTi.

28 Aye Thida Hlaing

2.2 Real-time Monitoring for LBS

Location tracking of moving objects (MO) has been studied actively for such ap-

plications as wildlife animal monitoring, child-care systems, intelligent transport

systems, logistics, and fleet management. These studies are roughly categorized

into two groups: one targeting MOs that can move freely in the Euclidean space,

and the other one targeting MOs for which the trajectories are restricted to a road

network.

Although frequent reports improve the accuracy of monitoring MO position, it

increases location update cost. To reduce this cost, several policies, including time-

based [23], distance-based [24], dead-reckoning [25], and safe range adjustment [26]

algorithms, have been proposed. The tracking method described in this paper

belongs to the category of MOs restricted to a road network. Therefore, this will

be the focus of the rest of this section.

The most of the efficient methods proposed in the literature are based on the

prediction of movement of MO on a road network. Wolfson et al. [[27][28]] studied

this problem under the assumption that objects move along a pre-specified route.

They proposed location update policies based on several types of dead-reckoning.

In their study, deviations from the pre-specified route are not considered. Tiesyte

et al. [[29][30]] proposed a monitoring method targeting buses that strictly follow a

predetermined route. However, their algorithm also does not allow any divergence

from the specified route. Thus, these studies have different objectives than our

study.

Ding and Güting [31] studied MO management on a road network. They assumed

that objects could move freely on the road network. In their work, they proposed

three location update policies: ID-triggered location update, distance-threshold-

triggered location update, and speed-threshold-triggered location update. Čivilis et

al. [[32][33]] proposed a tracking method for MOs based on a client-server architec-

Efficient Algorithms Suitable in Location Based Services 29

ture. A client (MO) is equipped with a GPS receiver and a communication device.

A client predicts its own position, and when the difference between the current

and predicted positions exceeds a threshold value, the client sends an update to

the server. In their work, three simple prediction policies were proposed. However,

these studies do not use knowledge about objects’ patterns of motion.

Spatio-temporal access methods to manage the moment-to-moment changes in an

object’s position have also been studied actively. Frentzos [34] proposed a spatio-

temporal data structure for MOs on a road network. Ding et al. [31] proposed

a suitable method for managing object positions on a road network. Usually, a

road network is divided into several short segments that connect intersection to

intersection. However, to manage the object positions on such short segments is

not efficient. Thus, they proposed a data structure named Moving Objects on

Dynamic Transportation Networks in which road segments are connected to form

a route. The proposed FUR method follows this suggestion.

In addition to acquiring the MO positions, a spatio-temporal query method is

also essential for real-time monitoring applications. Ku et al. [35] proposed a k-NN

search for MOs. Mouratidis et al. [36] also proposed a k-NN MO search method.

Hsueh et al. [37] proposed an MO management method using a location information

table. These techniques are necessary to serve LBS based on MO monitoring.

To create an MO monitoring method, a technique for matching a location ac-

quired by a device such as GPS with a position on a road network is essential. This

technique is called map matching, and has been actively studied in [[38][39][40][41]].

In this thesis, we applied the map-matching technique to acquire initial FUR, and

to determine deviation from the FUR and the dead-reckoning route.

2.3 RkNN Queries in LBS

When a set of points P is given, a query to find the nearest neighbor of a point q

(∈ P) is called a nearest neighbor (NN) query. Many studies have been conducted

30 Aye Thida Hlaing

for nearest neighbor (NN) query based on Euclidean distances [[42][43][44]], network

distances [[45][46][47][48]] and high dimensional distances [[49][50][51]]. Several effi-

cient algorithms for NN query in spatial indexing structure [[52][53][54][55][56]] also

have been proposed as the major importance of NN query in some areas, for exam-

ple, databases and mining, statistics and data analysis, information retrieval, etc.

Most well-know variants of NN queries are k-NN queries [[42][57][58][43][59][60]],

k-NN join queries [61], approximate nearest neighbor (ANN) query [62], continuous

nearest neighbor (CNN) queries [[36][63][64]], range NN queries [[65][66][67][68][69]]

and reverse nearest neighbor (RNN) queries [[70][71]]. In this thesis, we propose an

efficient algorithm for RkNN query on road network distances.

Fig. 2.8 is a simple example of nearest neighbors and reverse nearest neighbors.

In Fig. 2.8, the values along the dotted line indicate the distances between two

points. In this figure, the NN of A is B, and the NN of B is A. In this case, one

NN is searched for; however, when a number k (an arbitrary number) of NNs are

sought, the query is called a kNN query. Fig. 2.8(b) shows the 1NN and 2NN of

each point in the figure.

Figure 2.8: Example of an NN and RNN

Conversely, when q (∈ P) is the NN of p (∈ P), p is called a reverse nearest

neighbor (RNN) of q. The result of an RNN query is given as a set. For example, if

Efficient Algorithms Suitable in Location Based Services 31

A is the NN of B, then A is included in the RNN of B. To broaden the definition,

when q is included in the kNN of p, q is called an RkNN of p. Fig. 2.8(c) shows

the R1NN and R2NN of each point.

Query algorithms for RkNN have been actively studied on the basis of the Eu-

clidean distance. The reverse nearest neighbor (RNN) query and its corresponding

algorithm was first proposed by Korn et al. [70]. The RNN algorithm required

precomputed data, in which the distance from each POI to its nearest neighbor

(NN) is calculated. Next, POIs are registered in an R-tree with the distance to

the NN; furthermore, the circle centered at a POI with the distance to the NN is

called a vicinity circle. The RNN of the query point q is searched in the R-tree by

searching the POIs in which vicinity circles overlap with q. However, this method is

not suitable for RkNN query because the R-tree must be constructed with vicinity

circles of predefined k-th NN distances, but the value of k is usually determined

when a query is issued. Therefore, the distance to k-th NN cannot be determined

when the structure is actually constructed.

Stanoi et al. [71] proposed an approach without precomputation called SAE.

Tao et al. [72] proposed another efficient algorithm called TPL, which recursively

prunes the search space using the bisector between query point q and its NN. These

methods do not require any precomputation; therefore, they are applicable to gen-

eral RkNN queries, however, these efficient methods cannot be applied to RkNN

queries involving road network distances.

To obtain the results of several queries that compute road network distances

without precomputation, Papadias et al. [1] proposed the following two methods:

incremental network expansion (INE) and IER. They weighted the pros and cons

of each method by applying them to range queries, k nearest neighbor queries,

closest pair queries, and distance joins. INE searches POIs on the road network

using Dijkstra ’s algorithm [8] without any foreknowledge. In contrast, IER can

apply a more efficient shortest path search algorithm, such as an A* algorithm [13]

32 Aye Thida Hlaing

and network distance materialization method [14], because two terminal points to

determine the shortest path are given by the Euclidean distance search.

Yiu et al. [73] first proposed RkNN algorithms applicable to road networks.

The basic idea here is that the area in which RkNN exists is searched by gradually

enlarging the search area via Dijkstra’s shortest path algorithm. They proposed two

algorithms (called the Eager and Lazy algorithms) that differ in their respective

pruning methods. Between these methods, the Eager algorithm searches RkNN

significantly faster, especially when the value of k is small and POIs are densely

distributed. In other words, it is efficient when the search area is small. In contrast,

for large k or sparsely distributed POIs, it requires long processing times because the

Eager algorithm gradually enlarges the search area, similar to Dijkstra’s algorithm,

and the kNNs are searched at every visited road network node. To cope with this

performance problem, Yiu et al. also proposed a path materialization method. In

addition to the work of Yiu et al. Safer et al. [74] proposed algorithms using

network Voronoi diagrams. Cheema et al. [75] proposed an RkNN algorithm on a

road network.

In location based services (LBS), reverse nearest neighbor (RkNN) query is re-

quired in a wide variety of applications, including facility management, taxi allo-

cation, decision making and marketing plan, etc. Therefore, we build upon the

RkNN algorithm and materialized path views (MPVs) which is suitable for LBS.

The next section is described about the spatial indexing method which is one of the

important function in spatial queries.

2.4 Spatial Indexing Method

2.4.1 General indexing methods used in spatio-temporal databases

As it is obvious, the improvement of a spatio-temporal access method suitable

for the moving objects on the road networks is a very attractive challenge be-

Efficient Algorithms Suitable in Location Based Services 33

cause a great number of real-world spatiotemporal database applications have to

work mainly with objects (e.g. cars) moving on the road networks. In both typ-

ical queries and complicated queries, for some examples, range queries [[76][77]],

nearest neighbor queries [[78][79][80][81][82][83]] as in typical queries and such kind

of complicated queries as skyline queries [[84][85][86]], k nearest neighbor queries

[[87][88][89]], Reverse k nearest neighbor queries [[70][71][72][73] etc., needed index-

ing method to manage spatio-temporal information. Much work has been recently

conducted in the domain of indexing spatiotemporal data and several spatiotempo-

ral access methods have been proposed, B-tree[90], the B+ tree[91], R-tree structure

and variants [[92][93][94][95]], 3D R-Tree [96], HR-Tree [97], TB-Tree, STR-Tree[98]

and so on. Among all indexing methods, R-tree is basically used in spatial query

processing.

2.4.2 R-tree

R-tree is most popular tree data structure used for spatial access methods, for

example, indexing multi-dimensional information such as geographical coordinates,

rectangles or polygons and so on. An R-tree is a height-balanced tree similar to a

B+ tree[91] with index records in its leaf nodes containing pointers to data objects.

A complex spatial object is represented by minimum bounding rectangles while

preserving essential geometric properties. The index is completely dynamic, i.e,

inserts and deletes can be intermixed with searches and no periodic reorganization

is required. The basic idea of the data structure is to group nearby objects and

represent them with their minimum bounding rectangle (MBR); the ‘R’ in R-tree

is for rectangle. As mention earlier, R-tree is height-balanced search tree, therefore

all leaf nodes are at the same level in R-tree. All entries in R-tree has an index

record of the form

I, tuple− identifier

34 Aye Thida Hlaing

where tuple− identifier refers to a tuple in the database and I is an n-dimensional

rectangle which is the bounding box of the spatial object indexed

I = (I0, I1, ..., In−1).

Non-leaf nodes in R-tree have a structure of entries as;

I, child− pointer

in which child− pointer is the address of a lower node in R-tree and I covers all

rectangles in the lower node’s entries.

If M is the maximum number of entries fixed in one node, m <= M/2 should be

the minimum number of entries in a node. Properties of R-tree are;

(1) Every leaf node contains between m and M index records unless it is the root

(2) For each index record (I, tuple− identifier) in a leaf node, I is the smallest

rectangle that spatially contains the n-dimensional data object represented by the

indicated tuple

(3) Every non-leaf node has between m and M children unless it is the root

(4) For each entry (I, child−pointer) in a non-leaf node, I is the smallest rectangle

that contains all rectangles in the child node

(5) The root node has at least two children unless it is a leaf

(6) All leaves appear on the same level.

Fig. 2.9 and Fig. 2.10 show the tree structure and minimum bounding rect-

angles (MBRs) in R-tree. The search in R-tree descends the tree from the root.

Every internal node (non leaf node) contains a set of rectangles and pointers to

the corresponding child node and every leaf node contains the rectangles of spatial

Efficient Algorithms Suitable in Location Based Services 35

entries.

Figure 2.9: Searching in MBRs

Figure 2.10: Searching in R-tree Structure

36 Aye Thida Hlaing

(1)[Search subtree] If T is not a leaf, check each entry E to determine whether

EI overlaps S. For all overlapping entries, invoke search on the tree whose root

node is pointed to by EP .

(2)[Search leaf node]If T is a leaf, check all entries E to determine whether EI

overlaps S. If it is correct, E becomes a result record.

In Fig. 2.9, assume that search entries are in rectangle R10, then the desire

rectangle R10 is overlapped in root entry R1. For this reason, the algorithm checks

all entries of R1 and finds overlapped rectangles with a search rectangle R10. In

this step, R3 and R4 is overlapped by search rectangle R10. T is not still leaf node,

therefore search in subtree R3 and R4 is continued. Finally, the search reaches

to the search rectangle R10 as the result. Fig. 2.10 shows the searching in tree

structure and the rectangles in blue color indicates the searching order in overlapped

MBRs. Now T is a leaf node, therefore check all entries where it is cover with result

rectangle or not. And if it is correct, record the result index entries and search is

terminated. Due to its effectiveness, for example, query indexing applied in IER

adaption, R-tree becomes most useful indexing method for spatial queries in LBS.

CHAPTER 3

Real-time Monitoring of Moving Objects Using

Frequently Used Routes

3.1 Real-time Monitoring of Moving Objects

Recently, real-time monitoring of moving objects (MOs), such as cars and humans,

has attracted interest. In these systems, tracking trajectories and positions of MOs

accurately and for the least communication cost is an important goal. To achieve

this, MO position prediction is important. Some studies have proposed real-time

monitoring systems that share route information between MOs and a server to

predict MO position; however, these systems target public transportation, such as

buses, for which the route is always fixed. To the best of the our knowledge, a

real-time monitoring method for sharing route information between passenger cars

and a central server does not exist. This paper proposes such a method using the

sharing of frequently used routes (FUR) data between each MO and the server.

The server and the MO predict near-future position of MO on the basis of the FUR

information using a common algorithm. When the position of the MO deviates from

the prediction, it sends a message to the server to maintain position synchronization.

37

38 Aye Thida Hlaing

In this thesis, we evaluate the advanced method using real trajectories of cars and

shows that the proposed method outperforms the conventional method, that is,

dead-reckoning on a road network.

3.2 Preliminaries

Efficient transportation systems for human travel and logistics are required for

both environmental and resource-saving reasons. In addition, the diversification of

information services required for comfortable and efficient car driving has increased.

In particular, the popularity of in-car navigation systems is increasing, as well

as pedestrian navigation systems using mobile phones. Using these devices, it is

possible to track moving objects and deliver to them various types of location-based

services (LBS).

Car position monitoring is an essential technology for management of taxis, home

delivery vehicles, patrol cars, and ambulances . Such moving objects (MOs) can get

their positions easily by using GPS (Global Positioning System). If MOs send their

position to a server every Tu seconds, the server can monitor the positions of the

fleet in real time. However, this method requires very frequent reports to maintain

high accuracy of the MO positions. On the other hand, when Tu is large and an MO

moves a large distance during Tu seconds, the server cannot know the real trajectory

of that MO during this interval. However, if the trajectory information is known,

then the state of traffic congestion on the road where the MO is moving can be

estimated. Therefore, efficient real-time monitoring of MO position and trajectory

is required .

To reduce the overhead of position updating, several shared-prediction-based ap-

proaches have been proposed [99] . These approaches share a prediction of MO’s

near-future position between each MO and the server. The MO sends a message to

the server when the MO’s real position deviates from the predicted position. When

the server receives the message, it modifies the prediction based on the parameters

Efficient Algorithms Suitable in Location Based Services 39

in the message and then continues monitoring.

Over the previous two decades, several methods have been reported for the pre-

diction of MO movement; however, most of these have targeted MOs freely moving

in Euclidian space. The most common applications are tracking for cellular phone

networks and LBSs, which are not constrained to movement on a road network.

Scheduled vehicles, for example buses, are an important application target of

real-time monitoring. In this case, the MO moves strictly along the predetermined

route, and therefore the arrival time to bus stops can be easily estimated from the

schedule and deviations from the route do not need to be considered. Late and

early deviations from the schedule are the only cases that require a location update

to be sent to the server.

Dead-reckoning on a road network is the second method for MO position predic-

tion. This method predicts MO near-future position based on the assumption that

the MO is moving along a road with a constant speed. When the MO reaches the

end of the road or a T-junction, the MO sends the information about the newly

selected road.

The third method uses prediction from the trajectory history of the individual

MO. For example, a delivery car that goes around to franchise stores can be assumed

to follow a similar route every day. By accumulating the routes day by day, the

car’s position can be predicted using this frequently used routes (FUR) information.

The proposed method is based on this observation. This idea is straightforward,

and Liu et al. [100] have proposed such a trajectory prediction method based on

FUR information. However, their work is limited to future trajectory prediction

to serve LBS, and they do not apply this method to prediction for the real-time

monitoring of MOs.

The contributions are the following:

• This is the first work to adopt FUR information to real-time monitoring of

40 Aye Thida Hlaing

MO locations.

• The adaptive Level of Detail (LoD) setting for monitoring has been proposed.

• Its efficiency was demonstrated experimentally and we show that the proposed

method outperforms dead-reckoning on a road network by the results from

experiments using real movement paths.

3.3 Moving Object Monitoring with FUR

3.3.1 System configuration

This section describes the fundamental ideas of the proposed real-time monitoring

system. Fig. 3.1 shows the configuration of the system. A MO has a terminal

equipped with a GPS receiver, a wireless communication device, a road map, and

a computer. This configuration consists of almost the same components as the in-

car navigation systems common in Japan, except for the wireless communication

device. Due to the requirement of road map data inside, large storage capacity is

required for MO, therefore, we defined it as a thick client.

The MO acquires its position every 1 second using the GPS, and this position

is matched to the map to determine the position on the road network. The MO

also predicts its own position. The predicted position is compared with the position

matched on the map, and the difference between them is calculated. If the difference

exceeds a predetermined threshold value (θD), the MO sends a message to the server.

If the difference is less than θD, the MO does not send any message to the server

and continues prediction and map matching.

The server monitors several MOs simultaneously. The monitoring of an MO

starts when the server receives the start-of-trip message from the MO, after which

the server starts a thread for monitoring the MO. In the thread, the location of the

MO is predicted by the same algorithm and the parameters of the MO. Therefore,

Efficient Algorithms Suitable in Location Based Services 41

Frequently Used Route

M ap m atching

positional

correction data

position prediction

M oving O bjects Server

LBS application

programs

Figure 3.1: General concept of the proposed system

the prediction is synchronized between the MO and the server. When the server

receives a message (usually a position correction) from an MO, the server corrects

the parameters for the MO, and then continues the prediction.

In parallel with this monitoring, the server also sends MO locations to the LBS

application programs. The sent locations have uncertainties which depend on the

threshold θD. When a small θD is specified, the communication cost is likely to

be high. Usually, a large θD is specified, for example 1 km. When the application

program requests a more precise location, the server sends a message to MOs to

decrease θD. This operation is called the “LoD (Level of Detail) control”. LoD

control is necessary to control some location requests that need more precision and

also occasionally when communication capacity becomes limited. Usually, high LoD

is requested only for a limited number of MOs, for example, for MOs that are inside

a special area of the town or neighborhood of a designated position.

For location prediction on a road network, the road segments along which each

MO is passing must be determined. This is determined by two methods, one based

42 Aye Thida Hlaing

on FUR and the other based on dead-reckoning on the road network.

3.3.2 Frequently used routes

When one drives a car daily, a trip starts from one location, then ends at another

location. For example, one can start the trip from home and go to a shopping center,

stay there for some time, and then go to the office. During this trip, one may stop

at a gas station for refueling or stop at a convenience store to buy a magazine.

Hereafter, we call the start location of a trip or any place at which the MO stays

for long periods of time a “Base Point (BP)”. In the above example, home, the

shopping center, and the office are BPs. Furthermore, places at which one stops

for relatively short periods of time are called “Points of Interest (POIs)”. In the

same example, the gas station and the convenience store are POIs. To summarize,

a trip starts at a BP aiming for another BP, with some POIs being visited during

the trip.

It can be assumed that there are several target BPs for a trip starting from an

origin BP. For example, when a trip starts from home, it can be assumed that the

office, the usual shopping centers, and favorite restaurants may be target BPs. In

daily life, the number of possible target BPs can be assumed to be limited. In a

daily drive, the drivers are likely to take their favorite routes between two BPs, and

so the routes can be assumed to be similar. The proposed method is based on this

assumption.

As another example, a delivery car going around franchise chain stores would

consider the office, the warehouse, and the garage as BPs, and the stores as POIs.

On a given day, it can be assumed that the driver takes a similar route connecting

the stores in order because the driver knows the most efficient or comfortable roads

for driving; however, deviations due to traffic jams, road repair, or a sense of ad-

venture may occur. Hereafter, we call a set of historical routes starting from a BP

a FUR.

Efficient Algorithms Suitable in Location Based Services 43

Fig. 3.2 shows an example of a FUR. The FUR consists of a series of BP to

BP paths. Each FUR has a start BP (S in this example) and several destination

BPs (B, C, and D). The thickness of roads shows the frequency at which the given

route is used. Thus, this figure shows that the car often goes to B from A and only

occasionally to C or D.

Figure 3.2: Example of frequently used routes

3.3.3 FUR description

A FUR is initially acquired using one of the methods described below. When many

historical trajectories of an MO are available, the FUR can be extracted from this

information. When an MO has a recommended route, for example a shortest route

or a route that is easy to drive, this can be set as the initial FUR. The most probable

situation is incremental acquisition starting from an empty FUR.

44 Aye Thida Hlaing

Figure 3.3: Construction of a FUR

Independent of how the routes in the FUR are acquired, an MO can have many

different FURs, each with a different starting BP. Once the starting BP is specified,

the FUR is determined. Usually, a FUR is not only a tree rooted at the starting

BP, but also a network that contains closed loops. This network is a subgraph

of the background road network, which consists of a graph whose nodes represent

intersections and links represent road segments.

Because the length of each road segment connecting intersections is not long,

a route can contain an enormous number of road segments. Therefore, a simple

expression is used to describe the formation of the route network. A FUR has

branching paths and merging paths. The intersections at which these paths branch

or merge are called control nodes. The network denoting a FUR consists of BPs

and control nodes. A path on the network connecting the control points with each

other or between a control point and a BP is called a subroute. A subroute consists

of several road segments.

Efficient Algorithms Suitable in Location Based Services 45

Fig. 3.3(a) shows an example of the branches in a FUR network. In this figure,

sr0, sr1, and sr2 indicate the subroute links, and p1 and p2 indicate the probabilities

that the subroute will be taken if the MO arrives at node n1 from sr0. At node

n1, subroute sr0 is followed by sr1 with probability p1, and turns right to sr2 with

probability p2. Fig. 3.3(b) shows a more complicated example. At node n2, the

subroute sr3 branches into sr4 and sr7, and the subroute sr4 branches again at

node n3 into sr5 and sr6. The subroute reaching node n2 from sr6 always continues

to sr7. As this example shows, a subroute should be expressed by a directed graph

that includes the probabilities of the next selected subroute for a given trip. Karimi

and Liu [101] proposed a method using probability matrices to express the trajectory

choice at each intersection. They considered all combinations of the coming links

and going links at each intersection. On the other hand, the proposed method can

reduce the number of combinations and still obtain an expression of the trajectory

choice. On the FUR network, the intersections that need an expression of the

trajectory choice are restricted to the FUR network nodes, that is, the control

nodes.

Table 3.1: Subroute structure

SR ID subroute ID
v average velocity
SN start node ID of subroute
EN end node ID of subroute
f choosing frequency of SR ID
n number of links
Vtx[0] vertex ID[0]
.
Vtx[n–1] vertex ID[n–1]
Dist[0] distance from SN to Vtx[0]
.
Dist[n–1] distance from SN to Vtx[n–1]

The subroutes in the network are expressed in the format shown in Table 3.1. In

46 Aye Thida Hlaing

this table, SR ID is the ID assigned to the subroute. SN and EN are the start node

ID and the end node ID of the subroute, and f is the frequency with which the

subroute is selected. Each subroute is assigned the average velocity (v) of the MO.

Vtx[i] is a vertex ID forming the subroute. Dist[i] expresses the distance along the

road in meters from the start of the subroute (SN) to Vtx[i]. This value is used for

rapid calculation of the distance between the MO’s current and expected positions

on a FUR.

Environments

For the experiments, a digitized road map from a 1/25,000 scale base map that

covers Saitama City, Japan was used. The trajectory of the MO was captured by

a GPS logger (Global Sat, BT-335) placed in the car. The GPS logger recorded

longitude, latitude, and time of measurement every 1 second.

Many trajectories were collected using the GPS logger for 1 year. These trajec-

tories are mainly the commuting route from the home of one of the authors to the

office (about 10 km). Most of the trips were made from home to the office between

08:00 and 09:30 and from the office back home between 21:00 and 22:30. Fig. 3.2

shows an example of the FUR obtained from the accumulated log by map matching.

3.4 Moving Object Tracking Algorithms for thick client

3.4.1 Moving object tracking for thick client

As mentioned earlier, the MO and the server share FURs and the algorithm predict-

ing the MO’s position. Each MO continuously acquires its current position using

GPS measurements. Thus, an attempt is made to match the position of an MO

with the current predicted position on the route. When late arrival, early arrival,

or deviation from the predicted route is detected, the MO reports it to the server.

When the server receives this message from the MO, the server can capture the

Efficient Algorithms Suitable in Location Based Services 47

position of the MO within a predetermined allowance.

Two prediction modes are used in the algorithm. One predicts the position based

on a FUR (On Route (OR) mode), and the other one is dead-reckoning on the road

network (Dead-Reckoning (DR) mode). Tracking of MOs primarily begins in the

OR mode. Then, when an MO diverges from the FUR, the prediction mode is

shifted to the DR mode. The outline of the prediction algorithm is as follows:

(1) Match the object’s position with the most frequently used subroute. Find the

distance between the current and predicted positions on the route. If this

exceeds the threshold value due to late or early arrival, the MO sends its

current position to the server for position synchronization.

(2) When the MO diverges to another subroute on a FUR of lower trip frequency,

the MO reports to the server the newly selected subroute for synchronization.

(3) When the MO diverges to a road segment that is not on a FUR, both the server

and the MO predict the route and the position using dead-reckoning on the

road network.

Usually, dead-reckoning predicts the future position under the assumption that

the MO continues in the same direction at the same speed. However, under the

conditions dealt with in this paper, the locus of MOs is restricted to the road

network. Thus, dead-reckoning is restricted to the road network (dead-reckoning on

the road network: DRRN). Namely, the MO moves in the same direction along the

road until it reaches a dead-end or a T-junction. There, the MO sends information

about its change in direction to the server, and then continues with dead-reckoning.

Ding and Güting [31] and Čivilis et al. [32] also use a similar prediction method.

The following summarizes the method used for dead reckoning.

• An MO’s motion is restricted to the road network.

48 Aye Thida Hlaing

• When an MO encounters an intersection, it selects the road segment going

straight ahead.

• When an MO encounters a T-junction, DRRN is suspended until the road

link on which the selection of MO can be determined.

It is often the case that a road does not have a unique name. This is especially

common in Japan, but rarer in most European and North American countries.

Thus, DRRN is defined as above. If each road has a unique name, DRRN can be

defined as an MO continuing on the same named road at a constant speed.

As described above, the server and the MO share the FUR, the prediction algo-

rithm, and the parameters. When the distance between the MO’s actual and the

predicted positions exceeds a threshold value or the MO deviates from the predicted

route, the MO sends the current parameters and maintains the synchronization with

the prediction.

3.4.2 Moving object side algorithm for thick client

Algorithm 4 shows the procedure executed on the MO side for following the above-

described method. In this algorithm, the send function sends a message to the

server. The first parameter of send is op-code, the meaning of which is shown in

Table 3.2.

Each car (MO) is assigned an individual ID to identify the car uniquely in the

system. getPosition in the first line returns the location (p) of the MO captured by

GPS, and getBPID searches for the BP that is the nearest neighbor of p and returns

its ID. getFUR in the third line reads the FUR whose starting BP matches BP#.

Then, the most frequent subroute (rt) starting from BP# is determined from the

FUR. Then, the MO sends op-code 0 with the current position to the server to

signal the beginning of the trip (Line 4). mode in line 5 shows the tracking mode

that takes either the value OR (on route) or DR (dead-reckoning). At the beginning

Efficient Algorithms Suitable in Location Based Services 49

Table 3.2: op-codes

code meaning parameters
0 start of trip carID and BPID
1 send position (OR-mode) carID and position
2 another subroute is selected (OR-mode) carID, position, and subrouteID
3 enter to dead-reckoning mode carID,new RoadID,

direction, and position
4 send position (DR-mode) carID and position
5 another road segment is selected carID, new RoadID,

(DR-mode) direction, and position
6 recover to OR-mode carID, position, and subrouteID
7 end of trip carID and position

of the tracking, the mode is set to OR. As described later, when the server receives

this message, the server also starts the monitoring of the MO. Lines 6 to 41 are

repeated until the end of the trip.

The position of the MO is updated every 1 second (Line 7). The position is

checked to determine whether it is still on the predetermined subroute. OnRoute(p, rt)

in line 9 does this check and returns a Boolean value, where the value true shows

the MO’s current position p is located on rt, and false shows p has deviated from

the subroute rt. When the result is true, the distance between p and the predicted

position of rt at the current time is calculated by the function distNow(p, rt).

Then, if the distance d is greater than a predetermined threshold value (θD), the

MO informs the server that it is late or early with respect to the expected time of

arrival.

Lines 15 to 21 correspond to the situation of the MO deviating from the predicted

subroute, usually at an intersection. When p diverges from the currently predicted

route, a new predicted route is determined by the function getSubroute(p) (line

15). getSubroute(p) first checks whether p is adjacent to the end node (EN) of the

subroute. If it is, other subroutes connected to EN are retrieved, and the subroute

50 Aye Thida Hlaing

(sr) to which p can be best matched p is determined. When a matching subroute

(or any subroute connected at the intersection) does not exist, getSubroute returns

NULL.

If the search for a branch to which p can be matched on a FUR succeeds, the

MO informs the server about the route change (line 17), and the MO’s position is

matched to this newly selected subroute(rt). On the other hand, when rt is NULL

(i.e., the search fails), the tracking mode shifts to DR mode. getDRRoute returns a

tuple consisting of rt, newRoad#, and dir, where rt is the path for dead-reckoning

composed of the chain of road segments which has the best match with the position

p, newRoad# is the uniquely assigned road segment ID on which dead-reckoning

is started, and dir is the direction of movement on the road segment. To inform

the server of this mode change, op-code 3 with car#, newRoad#, and position p is

sent (line 21).

Lines stating from line 25 of the algorithm correspond to DR mode. In this mode,

the MO’s position is predicted based on the assumption that the MO continues

straight ahead on the road. As with OR mode, whether the MO is still on the

predicted route is checked (line 25). When p is on the route (rt), the difference

between the MO’s current position and the predicted position is calculated. When

the difference exceeds the specified value θD, the MO sends the real position to the

server (line 28). When the server receives this information, it corrects the MO’s

current position. When the MO diverges from the current route inferred by dead-

reckoning, the part of the route from the start of rt to the current intersection is

added to the FUR (line 31). This function also returns a Boolean value. true

indicates that the MO has returned to a known FUR, in which case, the mode is

switched to OR mode. On the other hand, when the return value is false, DR mode

continues.

Efficient Algorithms Suitable in Location Based Services 51

Algorithm 1 Moving Objects

1: p← getPosition()
2: BP#← getBPID(p)
3: rt← getFUR(BP#)
4: send(0,car#, BP#)
5: mode← OR {On Route}
6: repeat
7: p← getPosition()
8: if mode = OR then
9: if OnRoute(p,rt) then
10: d← distNow(p, rt)
11: if d > θD then
12: send(1,car#,p)
13: end if
14: else
15: {rt, rt#} ← getSubRoute(p)
16: if rt is not NULL then
17: send(2,car#,rt#) {rt# is the selected subrouteID}
18: else
19: mode← DR {Dead-Reckoning}
20: {rt, newRoad#, dir} ← getDRRoute(p)
21: send(3,car#,newRoad#, dir, p)
22: end if
23: end if
24: else
25: if OnRoute(p, rt) then
26: d← distNow(p, rt)
27: if d > θD then
28: send(4,car#,p)
29: end if
30: else
31: if addNewLinkToFUR(rt) then
32: {rt, rt#} ← getSubRoute(p)
33: mode← OR
34: send(6,p,rt#)
35: else
36: {rt, newRoad#, dir} ← getDRRoute(p)
37: send(5,car#,newRoad#, dir, p)
38: end if
39: end if
40: end if
41: until end of trip
42: send(7,car#)

52 Aye Thida Hlaing

Then, the newly rt is searched (line 36). Next, the MO sends the newly selected

road ID, the direction of motion(dir), and the current position to the server (line

37). When the MO reaches a T-junction or cannot find a road segment going

straight, the MO also sends this format of signal to the server.

When the trip ends, the MO sends OP-code 7, which terminates the monitoring

(line 42).

For simplifying the description of the algorithm, the frequency update for selected

subroute is omitted. However, every time a new subroute is selected on the FUR,

the frequency attached to the subroute is incremented.

3.4.3 Server side algorithm for thick client

Monitoring the system on the server side consists of three kinds of modules. One

is the communication module, which monitors the data sent from each MO. When

the server receives an op-code 0 message, this module starts a thread that tracks

a new MO, which is a tracking module. The communication module distributes

the messages from each MO to the corresponding tracking module. The third

module is a location observer to provide the MOs’ position to several types of LBS

applications. This module receives the individual MO route and the latest positions,

and responds to LBS applications based on their requests, for example, range query

or k-NN query. This module also directs the communication module to alter LoD

according to the LBS application’s requests.

Algorithm 3 shows the pseudocode carried out on the tracking module. This

module is started with two parameters, car# and BP#. This module retrieves the

database, gets FUR for car# starting from BP#, sets the current car position at

the BP# position, and selects the initial route that has the highest frequency on

the FUR. This tracking module watches the data received from the MO and alters

the MO’s state according to the received data.

Efficient Algorithms Suitable in Location Based Services 53

Algorithm 2 Tracking Module

Require: car# and BP#
1: Retrieve the FUR of the car# starting from BP#, then set the result to tr.
2: cp←BP#’s position
3: mode← OR {On Route}
4: repeat
5: {code, args} ←receive()
6: if code = 1 then
7: cp←reported position by args.
8: else if code = 2 then
9: Set tr to the new subroute specified by the SubrouteID in args.
10: cp←reported position by args.
11: else if code = 3 then
12: mode← DR {Dead-Reckoning}
13: tr ← getDRRoute(args)
14: cp←reported position by args.
15: else if code = 4 then
16: cp←reported position by args.
17: else if code = 5 then
18: addNewLinkToFUR(rt)
19: tr ← getDRRoute(args)
20: cp←reported position by args.
21: else if code = 6 then
22: mode← OR
23: cp←reported position by args.
24: Set tr to the new subroute specified by SubrouteID in args.
25: end if
26: send car#, tr, currentT ime, cp to the location observer.
27: until code = 7

The individual tracking module in charge of each MO sends a tuple that consists

of tr, ct, and cp to the location observer every time when the tracking module

receives a message from the MO. tr is the route along which the MO will progress,

ct is the current time, and cp is the current position when the update is received.

tr and cp are altered based on the messages from the MO.

The location observer integrates the message sent from the tracking modules and

provides the MO locations to LBS applications, depending on their request. This

54 Aye Thida Hlaing

module estimates the current position of MOs periodically (e.g., every 1 minute)

based on tr, ct, and cp of each MO.

3.4.4 Experimental results of thick client model

Position monitoring

The communication cost of the proposed method was compared with that using

dead-reckoning on road network (DRRN) for the entire trip to evaluate the efficiency

of the proposed method. In the method described in Section 3.4.1, MOs send a

small amount of data for all eight types of information. It was assumed that one

communication requires only one packet, and therefore, the efficiency was evaluated

using the number of packets sent.

First, the FUR information described in Section 3.3.3 with about 100 trajectories

was obtained. Next, the MO position monitoring using the other 70 trajectories that

were not used to create the FURs were tested. Figure ?? compares the proposed

method and DRRN. In the proposed method, the speed obtained from the historical

data can be used in OR mode. However, DRRN lacks this information. Thus, the

MO’s speed was varied from 10 to 30 km/h in increments of 10 km/h.

The horizontal axis in Fig. 3.4 is the permissible positional error (θD), and

the vertical axis is the average number of communication packets needed to keep

tracking under a θD value from 100 m to 1 km. As shown in this figure, though

the best result was obtained when the speed was set 10 or 20 km/h, the packet

number with dead-reckoning is not so sensitive to the MO’s speed, especially when

the θD value is large. This is because most packets in DRRN are only used to report

road changes. Our proposed method outperforms the conventional method DRRN

by factors from 2 to 4. As described in subsection 3.3.1, the positional update

threshold value θD usually can be set with a large value, and then the precise

location is requested for a limited number of MOs to satisfy the needs of LBS. This

Efficient Algorithms Suitable in Location Based Services 55

control can be performed by a suitable setting of LoD. Whenever this assumption

is true, the update cost can be quite low.

0

10

20

30

40

50

60

70

80

90

100 200 300 400 500 600 700 800 900 1000

positional error (m)

n
u

m
b
e
r

o
f

p
a
ck

e
ts

Proposed Method

DR(10km/h)

DR(20km/h)

DR(30km/h)

Figure 3.4: Comparison of communication cost

In this proposed method, it was assumed that the MOs possess a road map and

sufficient computation power. However, the equipment that required in this system

is expensive. Therefore, research into developing appropriate economical terminals,

for example, equipped only with a GPS receiver and a communication device but

without the road map data inside, is needed.

3.5 Monitoring Algorithms for thin client

The popularity of car navigation system as well as pedestrian navigation system

using mobile phones has led to an interest in studying of efficient real time moni-

toring. In this session, we describe about a real time monitoring method aiming for

thin client (e.g. mobile phones)which has small data storage size and convenience

to use.

56 Aye Thida Hlaing

In the rich client model, both client and server sides share the route information

which MO often used and predict the MO position by the same algorithm. The

difference between the actual position obtained by the GPS receiver and the pre-

dicted position exceeds a predefined permissible error, or when it deviates from a

predicted route, MO sends a message to the server. At the server side, based on the

information sent from a MO, the parameter of MO position is corrected and it has

been answered to the various inquires. The equipment that required in rich client

model is expensive and it is impossible to have same road map in both server and

client sides. For these reasons, we further develop the rich client model method in

thin client model which MO has a terminal like a mobile phone with GPS receiver.

The main differences of thin client and the previous rich client are the existence of

the road map, storage size and the less of prediction route of MO in thin client side.

In thin client model, it does not exit road map data inside, so it is necessary

to receive the route information from the server. For this reason, comparing with

a rich client model, the communication times are increased in thin client model.

On the other hand, a thin client model should just be a terminal like a mobile

phone and it can perform real time monitoring in very simple and convenience.

Moreover, nowadays, mobile phones have been used widely for many purposes and

many applications. Therefore, we propose the efficient method enabling to reduce

the communication times and route data storage size which are the main problems

in thin client model.

3.5.1 Basic concepts in thin client model

When MO begins its trip, it sends the message to the server with its current lo-

cation. At once the server received the starting trip message from MO, it starts

to setup the thread for the monitoring of MO. The server checks the route history

that corresponds with the usually used routes, the speed and the direction of MO,

and then it predicts the position of MO and offers the predicted route for MO.

The predicted position is compared with the actual position and the calculation

Efficient Algorithms Suitable in Location Based Services 57

of the difference between them is also required. If the difference exceeds the pre-

defined threshold value (θD), it is regarded as deviation from a predicted route,

the server requests the current position of MO, corrects the parameters of MO and

continues the monitoring. At the same time, the server informs that information

to LBS server for the requirements of the requested application. As recall from the

rich client model, usually large (θD) value is defined, e.g., 1km. If the application

program requests a more precise location, the server sends the message to MO to

decrease (θD), it is regarded as deviation from a predicted route, the server requests

the current position of MO, corrects the parameters of MO and continues the mon-

itoring. At the same time, the server informs that information to LBS server for

the requirements of the requested application. As recall from the rich client model,

usually large (θD), it is regarded as deviation from a predicted route, the server

requests the current position of MO, corrects the parameters of MO and continues

the monitoring. At the same time, the server informs that information to LBS

server for the requirements of the requested application. As recall from the rich

client model, usually large (θD) value. This LOD (Level of Detail) control is used

in this thin client model as well.

The server extracts the information of usually used routes of MO from the his-

torical data, and offers the predicted route to MO. However, MO may pass through

a route which does not exist in route history, i.e; MO uses this route for the first

time. In this condition, since there is no route history, the predicted position and

the predicted route is done by DRRN (Dead Reckoning on Road Network) method.

The server has been updated the route history by adding this new route information

for the future use. Therefore, the high accuracy monitoring can be expected just

using a mobile phone for communication with the server.

3.5.2 Server side Algorithm for thin client

A server monitors the individual MOs concurrently. Moreover, it offers the pre-

dicted route to the MO and submits the information of MO to the application for

58 Aye Thida Hlaing

the requirement of LBS requests. There are three kinds of modules consist in server

side algorithm, communication module, tracking module and API module. Com-

munication module is aiming for communication with MO and LBS application.

Tracking module is purposing for tracking individual MO and retrieving the pre-

dicted route. API module is planning to answer an inquiry from LBS application.

The details of tracking module and API module are shown in next section.

Communication Module for thin client

The algorithm of communication module is defined next and explained in the fol-

lowing.

Algorithm 3 Communication Module algorithm
1: repeat
2: if receiving message from MO then
3: {code, args} ← receive message from MO
4: if code = 0 then
5: Create a new thread to monitoring with args
6: Inform car# to API module
7: else if then
8: Send args to corresponding thread
9: Inform to API module
10: end if
11: end if
12: if receiving message from API module then
13: {LoDinfo,MOlist} ← receive message from API module
14: Send LoDinfo to designated MOs
15: end if
16: if receiving message from thread then
17: {path, car#} ← receive message from thread
18: Inform to API module
19: end if
20: until true

When receiving message from MO, the communication module verifies the com-

munication code and the position information of MO (Line 2-3). If communication

code is 0, it sets up the tracking module to create a new thread to monitoring the

Efficient Algorithms Suitable in Location Based Services 59

related MO. Moreover, it sends the individual ID of MO to API module to inform

that MO begins its trip (Line 4-6). Otherwise, the communication module sends

the position information of MO to the corresponding thread and notifies the API

module that MO is deviated from the prediction route (Line 8-9). (Line 12-14)

will be taken when the communication module receives LoD information from API

module. Next, it transmits LoD information to the designated MOs which specified

with MOlist. When receiving a message from the tracking module, the commu-

nication module informs a new predicted route information to API module (Line

16-18).

Tracking Module for thin client

This section will describe the server side processing of individual MO tracking mod-

ule. The op-code using for communication module between MO and server is shown

in Table 3.3.

Table 3.3: Communication Module Recieving Codes

code contents parameters
0 Starting trip MO ID, Position Information
1 Synchronization with MO ID, Position Information

the predicted position
2 Deviation from the MO ID, Position Information,

predicted route and the Movement direction
3 Stopping temporary MO ID, Position Information
4 Restarting trip MO ID, Position Information
5 Ending trip MO ID and position information

When MO starts its trip, it sends Code 0 to the server that including individual

ID and the current location of MO. After receiving the signal, the server set up

the thread for monitoring and loading the corresponding route history. In addition,

sever offers the predicted route upon the requested destination and the historical

data. If there is no historical data, server will retrieve the predicted route using

60 Aye Thida Hlaing

DRRN. Code 1 is the signals for communication that occurs when the difference

between the predicted position and the actual position getting from GPS receiver

exceeds the permissible error. This signal consists of moving object ID and the

current location. At this time, server corrects the parameter of MO and synchro-

nizes with the current position of MO. If MO deviates from the predicted route,

it transmits Code 2 to the server with moving object ID, current location and the

movement direction. According the receiving data, server attempts to predict the

new route by the map-matching and sends the new predicted route to MO. When

MO stops temporary because of the traffic points, the construction areas or the

traffic jams etc., MO sends Code 4 to the server with its ID and current position.

By that time, server suspends the monitoring until it receives the restarting trip

message from MO (Code 5). If MO reaches its destination, it will generate Code 5

to server with its ID and current location, to inform the ending of its trip. Follow-

ing this signal, server updates the route history of MO, stops the monitoring and

terminates the thread.

Algorithm 5 shows the pseudo code of tracking module. This algorithm is ini-

tialized with pos (current position of MO acquires from GPS receiver), car# (MO

ID) and BP# (ID of starting BP). Server verifies the FUR from the historical data

of MO, retrieves the predicted route and set it in rt. After that server informs the

designated MO ID and the predicted route to communication module (Line1-3). As

described before, server synchronizes the position and predicts the new route if late

arrival, early arrival or deviation from the predicted route based on the op-code

(1-4) of communication module (Line 4-19). Server will stop the monitoring when

receives op-code (5) and terminate the thread (Line 20).

API Module

API module has aimed to offer the MO information to LBS application and to

receive the permissible error value if more precise location is required. The op-code

using in API module is illustrated in Table 3.4.

Efficient Algorithms Suitable in Location Based Services 61

Algorithm 4 Individual tracking module algorithm

Require: pos,car# and BP#
1: Read the FUR of the car# according starting BP#
2: Retrieve the most usually used route from pos in FUR, and then set the result

to rt.
3: Inform {car#, rt} to communication module
4: mode ← moving
5: repeat
6: {code, args} ← receive from communication module
7: if code = 1 then
8: pos← convert args into position information
9: else if code = 2 then
10: {pos, dir} ← convert args into position information and direction
11: Retrieve the most usually used route from pos and dir in FUR, then set

the result to rt.
12: Inform {car#, rt} to communication module
13: else if code = 3 then
14: pos← convert args into position information
15: mode← suspend
16: else if code = 4 then
17: pos← convert args into position information
18: mode← moving
19: end if
20: until code = 5
21: Exit Thread

Algorithm (2) describes the pseudo code for API module. (Line 1-3) corresponds

to acquire the request message from LBS application including API module op-code

and MO information (MO ID and position). If LBS application requires a more

precise location, Code 0 has been transmitted. At this time, server receives the

range of the monitoring area and LoD information with threadshold value which

determined by LBS application (Line 4-5). Server investigates the list of MOs which

are entering into the range of monitoring area, and then informs range, LoD infor-

mation and MO list to communication module (Line 6-7). When LBS application is

necessary to have the MO position, it sends Code 1 to the server with user ID and

MO ID. Server replies the current position of MO to the related user (Line 8-10).

If a server receives the location update information from communication module, it

62 Aye Thida Hlaing

Table 3.4: API module receving codes

CODE Content Parameter
0 Request to change range of monitoring area and

the permissible error (LoD) the value of permissible error
1 Request to send the MO position user ID and MO ID

will modify the prediction with this information (Line 13-15).

Algorithm 5 API module
1: repeat
2: if receiving message from LBS then
3: {code, args} ← receive message from LBS
4: if code = 0 then
5: {range, LoDinfo} ← convert args into range of application and LoD

information
6: MOlist← find all MO which has possibility of enter range
7: Inform range, LoDinfo and MOlist to Communication module
8: else if code = 1 then
9: {user#, car#} ← convert args into user ID and car ID
10: Send current position of car# to user#
11: end if
12: end if
13: if receiving message from communication module then
14: Modify prediction
15: end if
16: until true

3.5.3 Moving object side algorithm for thin client

Moving object has been matched its position acquired by GPS receiver to the road

map, and it has a restraint to move along on the specified route which sent from a

server. When delay or advance or deviate from the predicted route, or if exceeds the

predefined permissible error, MO sends the signal to the server as shown in Table

3.3.

Efficient Algorithms Suitable in Location Based Services 63

As for the MO in thin client model, the road map of the route is accepted from

the server. Moreover, MO also received the related request for the permissible error.

This request is due to the requirements from the real-time LBS application and it

is necessary to decrease the value of permissible error if MO is in a special area of

the town or nearness of the specified position. Table 3.5 shows the op-code that

using when MO receives the new predicted route or the LoD information. Table 3.6

denotes the structure of the predicted route. That is composed with the number

of nodes (n) of the predicted route and the (x,y) coordinates of node 0 to node (n-

1). The storage capacity for the predicted route is directly related to the number

of nodes in 8(n)+2. Therefore, the proposed method attempts to decrease the

transmission cost and data storage capacity by reducing the number of accessing

nodes in the predicted route. The details of nodes compression will be explained in

next session.

Table 3.5: Content of client receiving code

Code Content Parameter
0 New predicted route structure of the predicted route
1 Request to change range of monitoring area and

the permissible error (LoD) the value of permissible error

Table 3.6: Structure of the predicted route

n Number of nodes (2B)
x0 x coordinates of node 0 (4B and unit of ms)
y0 y coordinates of node 0 (4B and unit of ms)
.
xn−1 x coordinates of node n-1 (4B)
yn−1 y coordinates of node n-1 (4B)
.
Range Total range
Capacity 8n+2

64 Aye Thida Hlaing

Algorithm 6 Moving Objects (Thin Client) Algorithm

Require: car#,θD
1: {pos, dir} ←getPosition()
2: send(0, car#, pos) , synpos← pos
3: dp←true , mode←moving
4: repeat
5: if received code then
6: {code, args} ←receive()
7: if code = 0 then
8: rt← args , dp←false
9: else if code = 1 then
10: LoD info← args
11: end if
12: end if
13: if dp =false then
14: {pos, dir} ←getPosition()
15: if OnRoute(pos, rt) then
16: d←distNow(pos, synpos, rt,mode)
17: if d > θD then
18: if mode=suspend then
19: send(4, car#, pos) , mode←moving , synpos← pos
20: else
21: if distNow(pos, synpos, rt,true) < θD then
22: send(3, car#, pos) , mode←suspend, synpos← pos
23: else
24: send(1, car#, pos) , synpos← pos
25: end if
26: end if
27: end if
28: else
29: send(2, car#, pos, dir) , dp←false , synpos← pos
30: end if
31: end if
32: until end of trip
33: send(5, car#)

Algorithm 7 illustrates the process executed on thin client side.

When starting a trip, MO acquires its position by GPS receiver and informs to

Efficient Algorithms Suitable in Location Based Services 65

the server using code 0 from Table 2. Server receives the individual ID and current

position of MO, and initializes the thread (Line1-2). MO switches to the waiting

state until a new predicted route is received (Line 3).

The following procedure (Line 4-33) is repeated until the end of the trip of MO.

MO will receive either the route information or LoD information from a server, and

it is described in (Line 5-11) of Algorithm 3. As defined in Table 4, MO obtains a

new predicted route from a server if the receiving code is 0. MO releases its waiting

state after collecting the route information (Line 7-8). If the receiving code is 1,

MO seizes the LoD request with the value of permissible error (Line 9-10). (Line

13-31) denoted the processing when MO arrives early or late, or deviates from the

predicted route. Meanwhile, MO acquires its current position by GPS receiver(Line

14).

If the current position of MO is located on the predicted route, (Line15-27) will

be processing, and this part is necessary to obtain more accurate monitoring. Server

collects the position information of MO and determines the difference between the

actual position and the predicted position. (Line 17-27) will be manipulated if the

difference exceeds the predefined threshold value (θD). At this situation, server

will synchronize the current position and the predicted position of MO (Line 24).

To maintain the accuracy of monitoring, if MO stops temporarily, MO informs its

current position to a server for position synchronization (Line 21-22). Similarly,

starting again its trip, MO sends its current position to the server for the same

process (Line 18-19).

On the other hand, if MO deviates from the predicted route (i.e. the current

position of MO is not located on the predicted route), (Line 28-29) will be executed

for a new predicted route.

The above processes are repeated until MO informs to a server about the end of

its trip (Line 33).

66 Aye Thida Hlaing

3.5.4 Minimization of data storage capacity and communication

cost

The server processing in the thin client model is similar to the rich client model.

However, in thin client model, MO unable to predict the route and it is always

necessary to obtain the route information from a server. As a result, the communi-

cation times will increase in thin client model and it will cause the low scalability

of the system. This section evaluates the method to reduce the communication cost

between MO and a server which is the main problem in thin client model.

Generally, the road segment that connects the intersections (i.e. nodes) is defined

as a straight line and it is expressed to the road shape on the map. Accordingly, the

predicted route is also expressed by two or more nodes. Therefore, the capacity of

route information sent to MO can be reduced by minimizing the number of nodes

which including in the predicted route. The reduction of nodes number will be

simplified by selecting the node which has the error margin exceeds the length of

predefined threshold value (dthr). It will be explained the details in the following

section.

For example, Fig. 3.5 is represented as a predicted route segment which com-

posed with the number of six nodes. First of all, selecting only the start point and

the end point of the route and assume that the straight line connecting between

them. The selecting node will be indicated in red and the others will be in blue.

And then calculating the distance between the rest of nodes and the straight line

connecting the start and end point. That distance is defined as the error margin of

the individual node and the maximum distance among them is denoted as dmax.

All of these steps are described in Fig. 3.6. The process will be continue with the

comparison of dthr and dmax. If the node that has the value of dmax outreaches

the predefined dthr, that note is selected and added to the simplification of the road.

After that selecting again the maximum error margin and compare with dthr until

there is no more dmax exceeds dthr. Fig. 3.7 summarizes the steps for selecting

Efficient Algorithms Suitable in Location Based Services 67

the nodes.

Figure 3.5: Nodes of the predicted route segment

Figure 3.6: Define and choose the maximum error margin

Figure 3.7: Process of selecting nodes added to the predicted route

Figure 3.8: Simplification of node reduction

Finally, the road segment is simplified with the reducing number of nodes as

shown in Fig. 3.8. When permissible error dthr set to 10m, and applied to the

actual predicted route, data storage capacity will be able to reduce to one fourth

of the original storage approximately by this simplification.

68 Aye Thida Hlaing

3.6 Experimental results of thin client model

3.6.1 Comparison of communication cost

Figure 3.9: Comparison of communication cost

As in thin client model, a similar experiment was done in thin client model.

Fig shows the result of the experiment. Here also, the communication cost of the

proposed method was compared with that using dead-reckoning on road network

(DRRN) for the entire trip to evaluate the efficiency of the proposed method. During

experiment, it was assumed that one communication requires only one packet, and

therefore, the efficiency was evaluated using the number of packets sent. And the

MO’s speed was varied from 9 to 27 km/h in increments of 9 km/h.

The horizontal axis in Fig. 3.9 is the permissible positional error (θD), and

Efficient Algorithms Suitable in Location Based Services 69

the vertical axis is the average number of communication packets needed to keep

tracking under a θD value from 100 m to 1 km. As in both experiments, though the

best result in thin client was obtained when the speed was set 9 or 18 km/h, the

packet number with dead-reckoning is not so sensitive to the MO’s speed, especially

when the θD value is large. This is because most packets in DRRN are only used

to report the deviations of the route (i.e. the road changes).

3.6.2 Summary

Here, we proposed a method for the real-time monitoring of MOs on a road network

using FURs. Because conventional real-time monitoring does not use knowledge

about routes, scalability remains low and the accuracy of tracking is also low. On

the other hand, using FURs extracted from historical trajectories decreases the

communication cost and achieves highly accurate monitoring. Our proposed method

outperforms the conventional method DRRN by factors from 2 to 4 in thick client

and 4 to 6 in thin client.

CHAPTER 4

Shortest Path Finder With Light Materialized

Path View for LBS

With the popularity of location based services (LBS), most existing work on path

computation has been mainly focused on the shortest path search problem. There-

fore, fast shortest path search between two points on a road network is essential

demand in location based services (LBS). For this purpose, Dijkstra’s algorithm,

A* algorithm, and several types of road network distance materialization meth-

ods have been studied. The distance materialization approach is faster than the

former two algorithms, however, it results in a huge amount of data. Besides, it

requires a huge amount of operations when a change is occurred on the road net-

work by, for example, traffic accident or road maintenance. In this thesis, we pro-

pose a shortest path search algorithm based on materialized-path-view constructed

only on partitioned subgraphs, and its three variations referring different levels of

distance materialization. A road network is partitioned into the subgraphs, and

the distance materialization is performed only in the subgraphs. Therefore, the

amount of pre-computed data is greatly reduced. The shortest path is retrieved by

a best-first-search using a priority queue. The difference between three variations

71

72 Aye Thida Hlaing

of the algorithm is the materialization level of the distance in the subgraphs. The

performance of them is evaluated comparing with A* algorithm and HEPV exper-

imentally. In this thesis, through the results, we show that our proposed algorithm

outperforms the conventional methods.

4.1 Preliminaries

Point of interest (POI) queries based on the road network distance become an

important role on location based services (LBS). For example, queries to find the

nearest neighbor POIs to a specified query point (kNN query), and to find all POIs

within a specified distance from a query point (range query). For these queries,

the optimization on the distance or the time of travel along the road network is

important besides the Euclidean distance.

A shortest path query finds the shortest distance route between specified two

points (s and d) on a road network. For this purpose, Dijkstra’s algorithm and

A* algorithm have been used. These algorithms refer an adjacency list to find

the neighboring nodes to a currently noticed node. When two specified points (s

and d) are located on a long distance, they need much repetitive processing (node-

expansions). Therefore, the processing time increases rapidly in accordance with

the length of the shortest path.

Several methods based on materialized path view (MPV) have also been proposed

for the fast road network distance computation. They retrieve the distance by

looking up a pre-computed distance table. When two points are located on the

road network nodes, the distance can be obtained by only one access to the table.

Generally, two points are not always located on nodes, therefore, at most 4 times

access is required. In any case, the road network distance can be determined in a

constant time by using the MPV.

However, this MPV has the following problems: (1) Usually, a road network

contains a large amount of nodes, and the data size of the MPV is proportional

Efficient Algorithms Suitable in Location Based Services 73

to the square of the number of nodes. Therefore, the data amount of the distance

table becomes huge for a large size of the road network. (2) Very long processing

time is necessary to construct MPV table, because the distance must be calculated

over all combinations of node pairs. As concerns to the data amount of the table,

when the total number of nodes in a graph is 1, 000, 000 (it corresponds to a road

network over the range about 100km square), the number of elements in MPV table

becomes 1012, therefore several TB memory is required. (3) When the weight values

(e.g. length) of some links in the network are changed by a traffic accident or a

construction, these changes affect the wide area on the table. This update also

requires a long processing time.

To cope with these problems, hierarchical MPV methods have been proposed.

These methods alleviate the problems described above, however, the problems can-

not be avoided authentically. A change in a leaf level affects to the upper levels.

Long computation time is necessary for the upper level distance calculation. The

data amount in a high level layer is not always smaller than that of the leaf level,

in opposition to a usual hierarchical tree structure.

Car navigation systems sometimes search the shortest paths between two points

located very far away. In this situation, the most suitable search method can

be considered as a hierarchical structure based on the types of roads [102]. For

example, roads are divided into the highway and the usual road. First, we search

a rough shortest path on the highway network, and then search the path between

each given terminal point and the access point of the highway on the usual road

network. Though this method may not give the shortest path, the result is adequate

for the usual purpose.

In a query for LBS, on the other hand, the shortest path must be determined

from a large number of candidates, and the area where candidates exist is limited in

a confined area, for example, the searching in an area having 50km radius centered

the query point. Moreover, point of interests (POIs) as query targets are usually

74 Aye Thida Hlaing

located on the usual road network. Therefore, it is not suitable to adopt the method

based on the road attribute hierarchy to LBS.

In this thesis, we propose a shortest path search algorithm based on a lightweight

local distance materialization, which is constructed on a partition of a road net-

work. These methods outperform A* algorithm, and they reduce the data amount

drastically comparing with the conventional hierarchical distance materialization

methods. And then, the proposed methods and the conventional methods are eval-

uated experimentally.

4.2 Shortest Path Finder

4.2.1 Data structure

A road network is modeled as a directed graph G(V,E,W), where V is a set of

nodes (intersections), E is the set of edges (road segments), and W is the set of

link weights. A fragment SGi(Vi, Ei,Wi) of a graph G(V,E,W) is a partitioned

subgraph, where Vi ∈ V , Ei ∈ E, and Wi ∈ W . If the end points of an edge

ejk ∈ Ei are vj and vk, then vj ∈ Vi and vk ∈ Vi. This subgraph is denoted as SGi

starting from here.

Fig. 4.1(a) shows an example of a road network graph, here small circles are nodes

and lines are edges. Fig. 4.1(b) depicts a partition of the graph shown Fig. 4.1(a).

In this partition, the nodes shown by full-colored inside small circles belong to at

least two neighboring subgraphs; i.e., the nodes belonged to the plural subgraphs

are called the border nodes. Two subgraphs are defined adjacent if they have at

least one common border node. The set of border nodes of SGi is denoted by BVi.

In this partition, each edge belongs to only one subgraph. The nodes shown in

white circles in the figure are referred as inner nodes: they are the rest of the nodes

in a subgraph except the border nodes.

Efficient Algorithms Suitable in Location Based Services 75

Figure 4.1: Partitioning on flat graph

Figure 4.2: Extraction of SG2

76 Aye Thida Hlaing

Fig. 4.2 extracts SG2 from Fig. 4.1. The numerical value attached each link

shows the weight of the link, for example, the length of the link or the travel time

to pass through the link. In our proposed method, we assume the weight as the

length of the link.

Figure 4.3: Distance tables used for SG2

Fig. 4.3(a) shows the shortest path length between every two border nodes in

SG2. The lengths are calculated by traveling inside of the subgraph, therefore these

values are not always global shortest path lengths. If there is no connected path

between a paired nodes inside the subgraph, the infinity value is assigned to the

related element of the table. Though the matrix is symmetry in this example, it

is not always symmetrical in the real road network because of the existence of one

Efficient Algorithms Suitable in Location Based Services 77

way road. In the rest of the paper, we refer this table as a border-to-border distance

table (BBDT).

Fig. 4.3(b) shows another table, the inner-to-border node distance table (IBDT),

which shows the distance from an inner node to a border node. This table is used

to retrieve the distance from the starting point as an inner node to a border node.

Since the distance on the road network is not symmetric, the transposed matrix of

Fig. 4.3(b) is also necessary to obtain the distance between a border node and the

destination point.

Fig. 4.3(c) shows the node-to-node distance table (NNDT), listed distances of all

combinations of the nodes in SG2. This table is used to know the distance between

two arbitrarily specified nodes. Either IBDT or NNDT is used alternatively in the

SPF algorithms described in next section.

4.2.2 Simple Path Finder Algorithm

Fig. 4.4 to Fig. 4.7 shows the processing flow of the shortest path finder (SPF)

algorithm in each state. In the following description, s and d denote the starting

point and the destination point of the shortest path to be retrieved. The SPF is

controlled by a best-first search using a priority queue (PQ).

The PQ manages the records constructed by the following items.

< p,Cost, dfs, fSG, phase >

Here, p is the currently noticed point; s, d, or a border node. Cost is the lower

bound road network distance between s and d. The PQ returns the record by as-

cending order of this value. dfs (distance-from-source) is the shortest road network

distance between s and the currently noticed node p.

78 Aye Thida Hlaing

Figure 4.4: Initial state (PHASE0)

fSG is the subgraph ID in which p belongs. The last item, phase is a value to

show the progress of the processing. It is changed from PHASE0 (initial state) to

PHASE3 (final state) according to the progress of the processing.

At first, the subgraph, SGs, which contains the road segment under s, is deter-

mined. Next, Cost is calculated by the equation, Cost = dE(s, bi) + dE(bi, d), for

all border nodes bi ∈ BVs of SGs. Here, dE(x, y) denotes the Euclidean distance

between x and y. In this initial stage, the following records are composed and

enqueued to the PQ. In this processing stage, the records have PHASE0 as the

phase value and the processing state is shown in Fig. 4.4.

< bi, dE(s, bi) + dE(bi, d), 0, SGs, PHASE0 > for all bi ∈ BVs

Next, a record (e) that has minimum Cost value is dequeued from the PQ as

shown in Fig. 4.5. At the beginning of the processing, e.phase is PHASE0.

Efficient Algorithms Suitable in Location Based Services 79

Figure 4.5: Changing state (PHASE0 to PHASE1)

For the border node e.p, the road network distance dN(s, e.p) is calculated. Here,

dN(x, y) denotes the road network distance between x and y. The way to determine

the road network distance is described in Sect. 4.2.3. Cost value for this node is

calculated by the equation Cost = dN(s, e.p) + dE(e.p, d), composing the following

record, and then it is enqueued in the PQ.

< e.p, Cost, dN(s, e.p), e.fSG, PHASE1 >

In Fig. 4.6, when the phase value of the obtained record (e) from the PQ is

PHASE1, the road network distance from s to the current node (e.p) has already

been determined. All subgraphs that contain e.p as a border node is also deter-

mined. And then, for each subgraph SGn, Cost is calculated by the following

equation.

Cost = e.dfs+ dN(p, bi) + dE(bi, d) (bi ∈ BVn)

80 Aye Thida Hlaing

Figure 4.6: Processing in neighboring subgraph (PHASE1)

Here, BVn is a border node set of SGn. The following record is composed, and

then it is enqueued in the PQ.

< bi, Cost, e.dfs+ dN(p, bi), SGn, PHASE1 >

Continuing the processing, when a record obtained from the PQ reaches a border

node of the subgraph containing d, the record shown below is composed and it is

enqueued in the PQ.

< e.p, e.dfs+ dE(e.p, d), e.dfs, e.fSG, PHASE2 >

In this case, the value of the road network distance from s to e.p plus the Euclidean

distance between e.p and d is assigned to Cost value, and PHASE2 is assigned to

phase value.

Efficient Algorithms Suitable in Location Based Services 81

Figure 4.7: Processing states (PHASE2 to PHASE3)

When the phase value of the dequeued record from the PQ is PHASE2, the road

network distance between e.p and d is calculated. Composing the following record,

and it is enqueued into the PQ.

< e.p, e.dfs+ dN(e.p, d), e.dfs, SGd, PHASE3 >

The way how to determine dN(e.p, d) is described in next session.

When the phase value of the dequeued record is PHASE3, the shortest path

distance between s and d has been determined as shown in Fig. 4.7. The fact that

the record is dequeued from the PQ means it has the minimum Cost value among

all records contained in the PQ. It means the shortest path distance is determined.

Therefore, return the distance, and then the searching process is terminated.

Algorithm 7 shows the pseudo-code of the described procedure above.

82 Aye Thida Hlaing

Algorithm 7 SPF: simple path finder

Require: s,d
1: SGs ← determineCell(s)
2: SGd ← determineCell(d)
3: CS ← ∅
4: for all p ∈ BN.SGs do
5: PQ.enqueue(p, dE(s, p) + dE(p, e), 0, SGs, PHASE0)
6: end for
7: while PQ is not empty do
8: e← PQ.dequeue()
9: if e.phase = PHASE3 then
10: break
11: else if e.phase = PHASE0 then
12: c← dN(s, e.p) + dE(e.p, d)
13: PQ.enqueue(e.p, c, dN(s, e.p), SGs, PHASE1)
14: else if e.phase = PAHSE2 then
15: c← e.dfs+ dN(e.p, d)
16: PQ.enqueue(e.p, c, c, SGd, PHASE3)
17: else
18: nCell← e.p
19: for all cell ∈ nCell do
20: for all b ∈ BN.cell do
21: c← e.dfs+ dN(e.p, b) + dE(b, d)
22: PQ.enqueue(e.p, c, e.dfs+ dN(e.p, b), cell, PHASE1)
23: end for
24: end for
25: end if
26: end while
27: path← calculatePATH(s, d, CS)
28: RETURN path

4.2.3 Distance calculation method inside subgraph

This section describes three variations of SPF; SPFLM (SPF with light material-

ization), SPFMM (SPF with medium materialization), and SPFFM (SPF with full

materialization). The difference between these methods is how to determine the

distance between one of the specified points (s and d) and the border nodes of the

subgraph where the point belongs to.

Efficient Algorithms Suitable in Location Based Services 83

SPFLM calculates the distance by A* algorithm referring usual adjacency list

of the road network. Usual A* algorithm, we hereafter refer this as pair-wise A*

(PWA*) algorithm, can search the shortest path efficiently when two terminal points

are located nearly. The extent of the subgraph is small, hence, the distance de-

termination inside a subgraph satisfies this condition. However, this operation is

invoked several times in transition from PHASE0 to PHASE1 and from PHASE2

to PHASE3.

When the target border nodes are located near each other, several nodes are

expanded multiple times. As a consequence, the total processing time of SPFLM

increases. To avoid this, we adopt SSMTA* algorithm [103] that guarantees the

number of times of node-expansions only once for the same nodes during the shortest

paths searching for a set of target points. Though, this algorithm was proposed to

search multiple target points simultaneously, the target point in SPF algorithm is

always added one by one.

When there is no route between n1 and n2, the whole nodes in the subgraph that

belongs to both n1 and n2 are expanded. However, all nodes in a subgraph are once

expanded, the path distance between n1 and the arbitrary boundary node in the

subgraph can be obtained by retrieving the closed set, CS.

SPFMM obtains the distance between s and a border-node and the distance

between a border-node and d by referring the IBDT. However, when s and d are

located in the same subgraph, the distance between s and d cannot be obtained by

the IBDT: the distance is obtained by PWA* algorithm for this case.

The last algorithm, SPFFM, determines the shortest path from a point to a

border node in a subgraph by referring the NNDT, which has all combinations of the

distances between any two inner-nodes. The distances in the NNDT are calculated

only inside a subgraph, therefore they are not always the global minimum distances.

Hence, the shortest path searching by Algorithm 7 is also necessary even when s

and d are located in the same subgraph.

84 Aye Thida Hlaing

To determine the shortest path route between two border nodes, the Next Hop

Table (NHT) is used [14]. An element in this table indicates the direct successor

node on the shortest path from a current node to the destination node. The number

of times to look-up the table to restore the shortest path route is proportional to

the number of nodes on the shortest path.

In the above explanation, s and d are located on the network nodes. However,

in the usual use, these points are located on the road links. To generalize the

suitable situation is easy. When s is located on link es and d is located on link ed

respectively, the shortest path length can be determined to apply SPF algorithms

for four combinations among both endpoints of es and both endpoints of ed. On

this occasion, the minimum of distances from s to d via any endpoint of both links

is added to the results.

Table 4.1 shows the reference tables described in previous section using for three

SPF algorithms.

4.3 Experimental results

This section evaluates the performance of three proposed variations; SPFLM, SPFMM,

and SPFFM, by comparison with two representative conventional methods, PWA*

algorithm and HEPV. All algorithms are implemented by Java, and are evaluated

Efficient Algorithms Suitable in Location Based Services 85

on a PC with an Intel Core i7 CPU 960 (3.2GHz), 9GB memory. Table 4.2 describe

the road network maps dara used in this experiment, and Table 4.3 shows the data

size difference in each map.

The adjacency list was prepared as follows: (1) Peano-Hilbert order [104] was

assigned to all nodes; (2) neighboring nodes in this order were clustered into 8KB

blocks. For the adjacency list management, a 0.5MB (64 block) LRU buffer was

assigned. Partitioning of a road network into the subgraphs are performed by the

following method: (1) we selected nodes (source nodes) on the given road network

for a specified number of divisions: (2) applying multiple sources Dijkstra’s algo-

rithm, we categorized each node into a subgraph that has the same source node as

86 Aye Thida Hlaing

nearest neighbor. Three types of tables, BBDT, IBDT, and NNDT were prepared

for each subgraph. Higher level of HEPV is constructed based on this partition.

Figure 4.8: Processing time when s and d are placed on nodes (MapS)

Fig. 4.8 compares the processing time of the shortest path searching among the

PWA*, SPFLM, SPFFM, and two layered HEPV, using MapS divided into 100

subgraphs. The horizontal axis shows the distance between s and d. We generated

1,000 pairs of s and d by a pseudo-random sequence. For each s−d pair, the shortest
path was searched by five algorithms. (SPFMM is omitted from this figure to avoid

intricacy: it performed almost the same as SPFFM.) This figure presents the results

that is selected one after every 5 queries. All LRU buffers were cleared in advance

Efficient Algorithms Suitable in Location Based Services 87

for every query. The most of processing time by SPFLM, SPFFM, and HEPV stay

under 20 ms over the whole distance range. Meanwhile, the processing time of

PWA* increases almost linearly in accordance with the increase of the distance.

Next, we generate several sets of points by a pseudo-random sequence to simulate

points of interest (POI) on the road network links. The number of generated points

were specified by a probability Prob. For example, when Prob = 0.01, a POI exists

on 100 road links.

Figure 4.9: Finding 10 shortest paths in MapS

We searched 10 nearest neighbor (NN) POIs of a query point (q) in Euclidian

distance. After that, the road network distances are computed for the found POIs by

PWA*, SPFLM, SPFMM, and SPFFM. We determined 10 query points randomly

on the road network. Fig. 4.9 shows the average processing time spent to determine

88 Aye Thida Hlaing

10 shortest paths on MapS.

Figure 4.10: Finding 10 shortest paths in MapM

Then Fig. 4.10 and Fig. 4.11 show the results of the same experiments over

MapM and MapL, respectively. These three results show similar processing times

for the same Prob. For denser than Prob = 0.002, the processing time of the

SPFLM shows almost the same value with PWA*. This is because the path length

is small in high Prob values, and PWA* algorithm can run fast.

Efficient Algorithms Suitable in Location Based Services 89

Figure 4.11: Finding 10 shortest paths in MapL

Fig. 4.12 compares the processing time of SPFLM and SPFFM by varying the

average number of nodes in subgraphs. In SPFFM, the processing time is minimum

when the average number of nodes is 240, On the other hand, in SPFLM, it is

minimum when the average is 150: the processing time increases in accordance

with the number of nodes. SPFLM needs to search the distance between border

nodes of a subgraph, and the distance is calculated by PWA* algorithm. Therefore,

when the size of a subgraph is smaller, the processing cost is shorter.

90 Aye Thida Hlaing

Figure 4.12: Processing time of the routes to 10-NN POIs

4.4 Summary

In this thesis, we propose a shortest path search algorithm and its three variations

using the light distance materialization that are suitable for LBS. The data amount

used in these methods can be reduced in comparing with the conventional hierarchi-

cal network distance materialized methods; HEPV and HiTi. Especially, SPFLM

reduces the data amount drastically. On the other hand, SPFMM and SPFFM

achieve similar time efficiency with the hierarchical encoded path view.

CHAPTER 5

Efficient Reverse kNN Query Algorithm on Road

Network Distances Using Partitioned Subgraphs

Nowadays, with the wide use of location sensing devices (such as GPS receivers),

location based services (LBS) are getting popular. The queries related with loca-

tion information also become an important role in location based services. One

such query type is the Reverse k-Nearest-Neighbor (RkNN) query. In this thesis,

we propose an efficient RkNN search algorithm using a simple materialized path

view (SMPV). In addition, we adopt the incremental Euclidean restriction (IER)

strategy for fast kNN queries which is the main function in RkNN query. A Re-

verse k-Nearest-Neighbor (RkNN) query finds the data points that take the query

point as one of their k nearest neighbors. In most conventional algorithms, kNN

search on every visited node is needed. This causes a large number of node expan-

sions; therefore, RkNN queries on road network distances require long processing

times. The processing time is increased especially when points of interest (POIs)

are sparsely distributed. The key idea we have in our solution is this: the SMPV

used in our proposed algorithm only constructs an individual partitioned subgraph,

therefore the amount of data is drastically reduced in comparison with the con-

91

92 Aye Thida Hlaing

ventional MPVs. According to our experimental results using real road network

data, our proposed method shows processing time that were 100 times faster than

conventional approaches when POIs are sparsely distributed on the road network.

5.1 Preliminaries

A Reverse k-Nearest-Neighbor query finds the data points that are influenced by

the query points. It can be applied in LBSs to answer interesting location related

questions. Therefore, efficient reverse k-nearest neighbor (RkNN) query algorithms

have recently gathered increased attention. This type of query is required in a wide

variety of applications, including decision support, facility management, taxi alloca-

tion, location-based services, advertisement distribution, and games. For example,

in a disaster, a support rescue team may use a RNN query to find other teams for

which is the closest team to get support from it.

Depending on the user’s requirements, RkNN query may need to retrieve an

answer in Euclidean distance or in spatial networks (i.e., a road network); how-

ever, most existing algorithms are based on the Euclidean distance. In contrast,

in location-based services (LBS) using mobile phones or in-car navigation systems,

queries based on road network distances are required. When a river or mountain

lies between two points, the road network distance is apt to substantially differ

from the Euclidean distance. Therefore, we propose an efficient algorithm to obtain

RkNN for road network distances.

When a set of POIs P and query point q (usually with q ∈ P) are given, a RkNN

query finds the POIs for which q is included in their kNN; i.e.

RkNN(q) = {p ∈ P |d(p, q) ≤ d(p, pk(p))}

where pk(p) is the k-th NN of p.

A simple approach to handling the RkNN query is to find kNN for every POI

Efficient Algorithms Suitable in Location Based Services 93

in P in advance; in doing so, the POIs for which q is included in the result list

can be easily found. The cost of this primitive method is bounded by O(n2) when

the number of POI is n. Several algorithms have been proposed to reduce the cost

in Euclidean space; however, very limited research has focused on queries involving

road network distances, and these methods require long processing times, especially

with POIs sparsely distributed on the road network or when k is large.

In this thesis, we propose a fast RkNN query algorithm for road network distances

using simple materialized path view (SMPV) data [105]. This algorithm runs on

SMPV and refers to the SMPV tables to obtain road network distances for pairs of

terminal points. The proposed algorithm searches RkNN approximately 100 times

faster than conventional algorithms when POIs are sparely distributed in the road

network.

5.2 Basic method for RkNN search

A basic method for RkNN search in road networks, followed by an improved method

based on the incremental Euclidean restriction (IER) method, is described in this

section. Yiu et al. [73] presented the following lemma for RkNN search in a road

network.

Lemma 1. Let q be a query point, n be a road network node, and p be a POI which

satisfies dN(q, n) > dN(p, n). For any POI p′(̸= p) whose shortest path to q passes

through n, dN(q, p
′) > dN(p, p

′). That means p′ is not a RNN of q.

This Lemma is proved in [73]. dN(a, b) denotes the road network distance between

a and b.

An example of a simple road network is shown in Fig. 5.1. In this figure, the

circles are represented as road network nodes and the squares overlapped on the

circles are represented as POIs. We assume POIs are located on nodes; however,

this restriction can be easily relaxed [75]. The value attached to edges show the

94 Aye Thida Hlaing

cost (e.g., distance) of the edge. In this figure, query point q exits on the network

node C. When we observe F by query point q, the NN of network node F is data

point E. And the NN of E is other data point D; hence, C is not the NN of E. If

we substitute n for F , p for E, and p′ for D in Lemma 1, we obtain the relations

dN(C,F) > dN(E,F) and dN(C,D) > dN(E,D). Therefore, even if we continue

the search beyond F , we cannot find the RNN of q. When the search reaches F ,

there are two edges connected to F . One edge is connected to E; however, E is

not the RNN of C because E has data point D as its NN. On the other edge,

passing through network node H, there is POI G. However, G cannot be the RNN

of C because the distance from G to E passing through F (dN(G,E)viaF is15) is at

least shorter than the distance from G to C passing through F (dN(G,C)viaF is16).

Therefore, the paths passing through F can be safely pruned from the search.

Figure 5.1: Example of a road network

Yie et al. [73] proposed the Eager algorithm based on Lemma 1 and a branch-

and-bound approach. The Eager algorithm visits road network nodes from q to

surrounding nodes in a method similar to that of Dijkstra’s algorithm. When query

Efficient Algorithms Suitable in Location Based Services 95

q is on C in Fig. 5.1, node B is visited first. Next, at most the number of k NNs of

B is searched within the distance, suggesting that the distance between q and B is

D = dN(B,C). This function is called rangeNN(n, q,D). For simplicity, we assume

k is 1.

In Fig. 5.1, A is found as B’ s NN. Thereafter, we find that the NN of A from

the POI set to verify q(C) is the NN of A. This function is called verify(p, k, q) and

returns true when q is the NN of p; otherwise, it returns false. In this example, the

result of verify(A, 1, q) is true; therefore, A is determined as the RNN of q. The

next visited node is F ; thus, rangeNN(F, q, 6) is issued and E is obtained as the NN

of F . To check whether E is a RNN of q, verify(E, 1, q) is issued; however, false is

obtained in this case. Hence, the edges beyond F are safely pruned. At this time,

there is no search path left; therefore, the search processing is terminated.

Yiu’s Eager algorithm uses Dijkstra’s algorithm for verify(p, k, q) and rangeNN

(n, q,D). For simplicity, these functions are hereafter denoted as verify and rangeNN.

When the density of POIs is high and the search area is small, this algorithm com-

pletes quickly. In contrast, when the density is low or k is large, the processing time

becomes very long because the search area becomes large.

The inefficiency of the Eager algorithm is summarized as follows:

• A large search area for verify and rangeNN functions and

• a large increase of processing time by performing rangeNN on every visited

nodes.

To cope with these problems, we propose a method to adapt an IER framework

for the verify and rangeNN functions. Further, in the next section, we propose a

very efficient method of RkNN search to perform these queries on SMPV structure.

96 Aye Thida Hlaing

5.3 RkNN query algorithm on partitioned subgraph

The problems of the Eager algorithm described in earlier section were that (1) the

rangeNN and verify functions require long processing times and (2) rangeNN is

invoked for every visited road network node. To address these problems, we present

the following two proposals: (1) to adapt an IER framework for both rangeNN and

verify and (2) to run the Eager algorithm on border nodes in SMPV.

5.3.1 kNN query using an IER framework

Incremental euclidean restriction (IER) framework adaptable for several types of

queries on road networks is proposed by Papadias et al. [1]. The basis of this

framework is that the Euclidean distance between two terminal points is always a

lower bound of the road network distance. For example, when point q and distance

r are specified, and the task is to find all POIs to which the distance from q is less

than or equal to r, this query (a range query) can be performed via the following

two steps:

(a) Search all POIs residing in the circle whose center is q and radius is r and

(b) verify the road network distance of each POI obtained by the above step to

eliminate POIs of which road network distances are larger than r.

Queries on Euclidean distance can be performed quickly via a spatial index, e.g.,

R-trees. In addition, the distance verification can be performed quickly by using the

A* algorithm or the algorithm described in Sect. 5.3.3; they are adaptable because

two terminal points are given by the query for Euclidean distance.

For the Eager algorithm, IER can be adapted to both rangeNN and verify. First,

rangeNN(n, k, d(n, q)) is a range query centered at n with range distance d(n, q).

This query can be performed by the method mentioned above. The verify(p, k, q)

function is essentially a kNN query; therefore, this query can also be efficiently

Efficient Algorithms Suitable in Location Based Services 97

performed via IER [1]. The merit of using the IER framework increases when k is

large and the distribution of POIs is sparse.

5.3.2 RkNN query on an SMPV structure

The most time-consuming step in the Eager algorithm is to perform rangeNN at

every expanded node. In the algorithm presented in this subsection, rangeNN is

invoked only on the border nodes of the subgraphs to alleviate this problem.

For RkNN search, the same data structure and two distance tables (BBDT and

IBDT) for the shortest path finding which described in previous chapter have been

used. When query point q is given, the cell in the SMPV structure that q belongs

to is determined and the POIs belonging to the subgraph are searched. Let this

POI set be P . Next, for each element in P , check whether q is a RkNN or not.

This procedure is the same as verify (p, k, q) in the Eager algorithm; verify (p, k, q)

searches kNNs of each p ∈ P , and then if q is included in the kNN set, q is decided

as a RkNN of p. This check requires a wide-area search and is not exclusive to only

a subgraph; it can be efficiently performed using SMPV by IER.

Here, referred Fig. 4.1 from the previous chapter for flat graph and its partitions,

Fig. 5.2 is an extraction of SG2 of Fig. 4.1(b). The numerical value attached to

each edge shows the weight of the edge. Fig. 5.2 shows the example of a subgraph

in which q is a query point and p is a POI included in the subgraph. For simplicity,

the following explanation considers the case in which k is 1. By searching for the

NN of p, q is obtained as the result. Therefore, p is a RNN of q. Consequently, p is

added to the result set.

Next, we enlarge the search area to include the neighboring subgraph. For each

border node bi, the distance from q to bi is obtained by referencing the IDBT of the

subgraph.

98 Aye Thida Hlaing

Figure 5.2: Processing in a cell where belonging q

Thereafter, a record is composed and inserted into priority queue PQ; the record

is composed as

< d, n, p, cid >

where d is the road network distance between q and the concerning border node, p

is the previous node on the shortest path from q to n, and cid is the cell ID that n

belongs to. The first record inserted into PQ is as follows.

< dN(q, bi), bi, q, cid >

For example, for node a of Fig. 5.2, the record < 5, d, q, Cid > is inserted into

PQ. The steps described above comprise the StartCell procedure, shown in detail

in Algorithm 8.

Efficient Algorithms Suitable in Location Based Services 99

Algorithm 8 StartCell

1: procedureStartCell(q,PQ)
2: CellID ← determineCell(q)
3: P ← findPOIinCell(q)
4: for all p ∈ P do
5: if verify(p, k, q) then
6: RS ∪ p
7: end if
8: end for
9: for all b ∈ BN do
10: PQ.enQueue(< dN(q, b), b, q, CellID >)
11: end for
12: endprocedure

Next, the RkNN search starts. When a record is dequeued from PQ, the search

propagates to the neighboring subgraphs. In Fig. 5.3, subgraph SG2 is the cell in

which query point q is included and SG3 is a neighboring subgraph.

Figure 5.3: Border node expansion

100 Aye Thida Hlaing

When record r is dequeued from PQ and r.n is the border node d, POIs in SGb

are searched. In this subgraph, m is included. Next, the kNNs of m are searched,

and if q is included in the kNN set, m is added to the result set. Otherwise, m is

ignored. This subgraph can be visited several times from different border nodes.

Thereafter, SGb is marked as visited to avoid duplicate searches.

Next, rangeNN is invoked from the border node bi to find candidate POIs. If

the result set is not empty, verify is invoked to check whether each POI is truly an

RkNN of q. If the result of verify is true, the POI is added to the result set. If

the size of rangeNN is smaller than k, there can exist other RkNNs on the path

through this node. Therefore, new records from bi to the other border nodes in the

subgraph are created and inserted into PQ.

Algorithm 9 shows the pseudo-code of the proposed method described above.

Lines 3 – 12 are similar to the process described by the Eager algorithm. When the

record v is obtained from PQ, at most k NNs of the network node v.n are searched

and put into KNN . For each element p of KNN , p is checked whether q is included

in its kNN. If so, p is inserted into the result set R.

Efficient Algorithms Suitable in Location Based Services 101

Algorithm 9 RkNN

1: functionRkNN(q)
2: PQ← ∅, R← ∅
3: StartCell(q, PQ)
4: while PQ is not empty do
5: v ← PQ.deQueue()
6: CS.add(v)
7: KNN ← rangeNN(v.n, k, dN(v.n, q), PQ)
8: for all <pinKNN > do
9: if verify(p, k, q) then
10: R← R ∪ p
11: end if
12: end for
13: if |KNN | < k then
14: for all ¡b ∈ BN¿ do
15: if v.cid is visited first time then
16: CP ← findPOIinCell(v.cid)
17: for all p ∈ CP do
18: if verify(p, k, q) then
19: R← R ∪ p
20: end if
21: end for
22: end if
23: PQ.enQueue(< dN(q, b), b, p, v.cid >)
24: end for
25: end if
26: end while
27: return R {RkNN of q}
28: endfunction

Line 13 of Algorithm 9 checks whether the number of elements in KNN is less

than k, i.e., the number of POIs existing in the area whose distance from v.n is less

than k. If so, node v.n is expanded by the procedure ExpandCell and the search

is continued. Otherwise, no more RkNNs exist on the path through v.n; therefore,

node expansion at v.n is not executed.

102 Aye Thida Hlaing

5.3.3 Simple Path Finder Algorithm Using in RkNN Query

The two procedures, rangeNN and verify, need to determine road network distance

between terminal point pairs, s and d, when they are implemented by the IER

framework. This search can be realized by referencing the IBDT and BBDT. Fig.

5.4 to Fig. 5.6 show the process flow of the shortest path finder (SPF)[105]. The SPF

is controlled by best-first search using priority queue PQ, which in turn manages

records constructed as

< p,Cost, dfs, fSG, phase >

where p is the currently noticed point (i.e., s, d, or a border node), Cost is the lower-

bound road network distance between s and d (and is the key used for ordering PQ),

dfs (distance-from-source) is the shortest road network distance between s and the

currently noticed node p, fSG is the subgraph ID in which p belongs. Here, we use

two values of phase to show the progression of the algorithm, PHASE1 (searching

state) and PHASE2 (final state).

Figure 5.4: Initial state

First, subgraph SGs, which contains the road segment under s, is determined.

Next, Cost is calculated by the equation Cost = dN(s, bi) + dE(bi, d) for all border

Efficient Algorithms Suitable in Location Based Services 103

nodes bi ∈ BVs of SGs. Here dE(x, y) denotes the Euclidean distance between x

and y and dN(x, y) denotes the road network distance between x and y. In the

above equation, dN(s, bi) can be obtained by referencing the IBDT of SGs. In this

initial stage (see in Fig. 5.4), the following records are composed and added to PQ.

In this processing stage, the records have PHASE1 as their phase value; i.e.,

< bi, dN(s, bi) + dE(bi, d), 0, SGs, PHASE1 > for all bi ∈ BVs

If s and d are very close and included in the same subgraph, the distance cannot be

obtained via the IBDT. In this case, the distance calculation method is described

in Sect. 5.3.5.

Figure 5.5: Shift to neighboring cell(PHASE1)

As shown in Fig. 5.5, when the phase value of the obtained record (e) from PQ

is PHASE1, the subgraph is shifted to the neighboring subgraph, SGn. For each

subgraph SGn, Cost is calculated as

Cost = e.dfs+ dN(p, bi) + dE(bi, d) (bi ∈ BVn),

where BVn is a border node set of SGn. The following record is composed and

104 Aye Thida Hlaing

added to PQ:

< bi, Cost, e.dfs+ dN(p, bi), SGn, PHASE1 > .

Continuing the process, when a record obtained from PQ reaches a border node

of the subgraph containing d (SGd), the record shown below is constructed and

added to PQ.

< e.p, e.dfs+ dN(e.p, d), e.dfs, e.fSG, PHASE2 >,

where dN(e.p, d) is obtained from the IBDT of SGd and PHASE2 shows the status

that a route between s and d is found.

Figure 5.6: Processing states in PHASE2

As described in Fig. 5.6, when the phase value of the dequeued record is

PHASE2, the shortest path distance between s and d has been determined. The

fact that the record is dequeued from PQ means it has the minimum Cost value

among all records contained in PQ. Therefore, the (shortest) distance is returned

and the search process is terminated.

Efficient Algorithms Suitable in Location Based Services 105

5.3.4 Limitation of referring tables for distance calculation

When s and d are located in the same subgraph, the distance between them cannot

be decided via the BBDT or IDBT. However, in this case, the distance can be

regarded to be small. In general, a modified A* algorithm, which is hereafter

referred to as a pairwise A* (or PWA*) algorithm, can search for the shortest path

efficiently when two terminal points are located close to one another.

Fig. 5.7 shows the example in which s and d belong to the same subgraph, SGa.

The road network distance is 9; however, it becomes 13 when calculated locally

in SGa. Therefore, even if s and d belong to the same subgraph, the procedure

described in Section 5.3.4 above is necessary to find the global shortest path. In this

case, < d, 9, 0, SGa, PHASE2 > is inserted into PQ, besides the record targeting

the border node.

Figure 5.7: Local and global shortest path distance

In the explanation, thus far, s and d are located on network nodes; however, in

the usual use, these points are located on the road edges. Generalizing this, when

s is located on edge es and d is located on edge ed, the shortest path length can

be determined by applying SPF algorithms to the four combinations among both

106 Aye Thida Hlaing

endpoints of es and those of ed. In this case, the minimum value of distances from

s to d via any endpoint of both links is added to the results.

5.4 Experimental results

We evaluated our proposed method by comparing it with the Eager algorithm pre-

sented in [73]. Both algorithms are implemented in Java and evaluated on a PC

with an Intel Core i7 CPU 960 (3.2GHz) and 9GB memory. Table 5.1 shows the

road network maps used in this experiment. In this table, Adj.List shows the size

of the adjacency list, and BBDT and IBDT are the size of the tables described in

previous session.

The adjacency list preparation and the partitioning of the road network into

subgraphs were performed by the same processes described in session 4.3. Then the

BBDT and IBDT tables were prepared for each subgraph. The average number of

Efficient Algorithms Suitable in Location Based Services 107

nodes in a subgraph is approximately 240 for these two types of maps. We used

the POI data generated by a pseudo-random sequence.

Table 5.2 compares the data size of the adjacency list (used primarily by the

Eager and Lazy algorithms), SMPV (total of the adjacency list, BBDT, and IBDT),

and HEPV [22]. The data size of SMPV is approximately 4–5 times larger than

that of the Eager algorithm; however, SMPV drastically reduces the data size in

comparison with usual hierarchical distance materialization method, HEPV.

We generated several POI sets on the road network nodes by pseudorandom

sequences, changing density D. For example, D = 0.01 indicates that a POI exists

once every 100 nodes. The experimental result is shown in Fig. 5.8. The horizontal

line shows the varying of POI density and the vertical line shows the processing

time in second.

Firstly, we performed experiment to evaluate the shortest path finding in SMPV

comparing with pair-wise A* algorithm (PWA*). We searched 10 nearest neighbors

(10NN) based on IER strategy (i.e. candidate points are searched in Euclidean

distance, and then the shortest path between the query point and each candidate

point is searched using A* algorithm and SMPV.

108 Aye Thida Hlaing

Figure 5.8: Processing time for kNN queries

Efficient Algorithms Suitable in Location Based Services 109

Fig. 5.8(a) is the result for MapA and Fig. 5.8(b) is for MapB respectively.

According to this experimental result, the processing time of SMPV to search kNN

is 100 times faster than PWA* algorithm.

Figure 5.9: Varying average nodes numbers in subgraph

Then we have performed experiment on SMPV by varying the average number of

nodes in subgraphs. By comparing the processing time of SMPV, the average nodes

number 240 has the minimum processing time when POI is sparsely distributed

and the average nodes number 800 has the minimum processing time when POI

distribution is denser than 0.01 (see in Fig. 5.9).

110 Aye Thida Hlaing

Figure 5.10: Processing time for varying k value

Efficient Algorithms Suitable in Location Based Services 111

When the POI density is 0.01 and varying k values, the processing times of Eager

algorithm and proposed method are described in Fig. 5.10(a) and 5.10(b) for MapA

and MapB respectively.

In these figures, the horizontal axes show varying k value and the vertical axes

show the processing time in seconds. The tendency of the experimental results

is almost the same in both maps. The processing time of the Eager algorithm

increases sharply with an increase k because of the expandability of the search area.

In contrast, the proposed algorithm increases linearly with increasing k values. In

addition, the difference between the processing times of Eager algorithm and our

proposed method in MapB becomes larger than that difference in MapA.

Then we execute the experiments with varying POI density (D). Here k value

is fixed to 5. Fig 5.11 compares the processing times of Eager algorithm and the

proposed method. When the POI density is low, the processing time of Eager

algorithm increases sharply. However, the processing time of the proposed algorithm

is still low in same condition. When the POI density is high, Eager algorithm

performs well because the size of the search area decreases with increase in POI

density. According to the results in both maps, our proposed algorithm shows

stable characteristics independent of the probability which is essential for query

processing in LBS.

112 Aye Thida Hlaing

Figure 5.11: Processing time for varying Prob value

Efficient Algorithms Suitable in Location Based Services 113

5.5 Summary

We propose an RkNN query algorithm using the simple distance materialization

approach suitable for LBS. Comparing with conventional hierarchical network dis-

tance materialized method, HEPV, the amount of data used in proposed methods

decreases. Referring the experimental results, the proposed method outperforms

the existing method (Eager algorithm) for finding RkNNs on real road network

especially when the data points are sparsely distributed or k value is large. In ad-

dition, the proposed method has stable characteristic and low processing time even

the Eager algorithm increases the processing time in low POI density.

CHAPTER 6

Conclusion

We conclude our studies in this thesis by the following topics

1. We proposed a realtime monitoring on Moving Objects by using frequently

route routes for both thick client and thin client

2. We proposed an efficient shortest path finder algorithm based on materialized

path view method

3. We applied our SPF algorithm with materialized path view to Reverse kNN

query which is essential in LBS

For (1) we proposed the real time monitoring of moving objects based on road net-

work distances. In recent time, studies on a real time monitoring of moving objects

(cars and humans) becomes an active role for some location related applications

such as intelligent transportation system, security system for children, wild animal

monitoring etc. In realtime monitorings, the main issue is how to get high accuracy

tracking of moving objects with less communication between moving objects and

server. Some studies adopted to achieve this goal by sharing routes information

115

116 Aye Thida Hlaing

between moving objects and sever but it is not in road network or moving object is

not in dynamic routes. In this thesis, we proposed a real time monitoring method

aiming for both thick client, such as car navigation system, and thin client, such as

mobile phone user. Using the“ frequently used route”information, we offered high

scalability monitoring system with empirical comparisons of the proposed method

and the conventional dead-reckoning on road network method. And also we ap-

plied an efficient map-matching algorithm to track the moving object’s movements.

According to the experiment results, our proposed method outperformed the con-

ventional method DRRN by factors from 2 to 4 in thick client and 4 to 6 in thin

client.

For (2), we proposed an efficient shortest path finding algorithm using distance

materialization method which is very useful for LBS application. Due to the sizes

of the real road network maps, applied this method in three variations SPFLM,

SPFMM and SPFFM. According to the experimental results, our proposed method

reduced the used data amount comparing with the existing hierarchical network

distance materialized methods; HEPV and HiTi. Moreover, not only SPFLM re-

duced the data amount drastically, SPFMM and SPFFM also achieved similar time

efficiency with the hierarchical encoded path view.

Consequently, when the distance between two points was large, SPFLM out-

performed PWA* substantially, nevertheless the SPFLM used a small amount of

pre-computation data. LBS is apt to request for the shortest path searches over

rather than nearly located points, and the operation is repeated over a large number

of times in a query; for example as in the incremental Euclidean restriction strategy.

In this situation, the relative search speed of PWA* increases, because the hit ratio

in LRU buffer managing adjacency list is increased. kNN queries evaluated in this

paper is for such example. When the density of POI was high, the difference of the

processing times between SPFLM and PWA* became small. On the other hand,

SPFMM and SPFFM outperformed the other methods even in such situation.

Efficient Algorithms Suitable in Location Based Services 117

Regarding (3), we applied our distance materialization method to Reverse kNN

query. For RkNN query, expanding the search area of the proposed method in

concentric circles is similar to that in Eager algorithm. The algorithm finds data

points in the range at every border node (i.e. the radius is same with the distance

between the query point and the border node) which centered at the query point.

If data points are found within the range, the results are checked for whether they

are truly RkNN of the query point using verification step. In most existing methods

for RkNN query, rangeNN searches are performed at every network node and that

causes a long processing time. In our proposed method, the rangeNN procedure was

performed only on border nodes. This limitation drastically reduced the overall total

time of invoking rangeNN. In addition, IER adaptation to the rangeNN and verify

procedures contributed to reduce the overall processing time. Consequently, the

proposed method performed RkNN on a road network significantly well, especially

when the density of POIs was low or k value was large. Moreover, our proposed

method showed stable characteristic independent of the POI density.

We experimentally evaluated all proposed algorithms to prove their accuracy

and efficiency as well. For the future study, if the processing time in distance

materialization method can be advanced applying in some queries, we will attempt

to adopt this method for some spatial queries in real road network.

Acknowledgement

First of all, I would like to thank Saitama University for giving me a chance to

fulfill my dream of being a doctoral student. I would also like to express my sincere

gratitude to my supervisor Professor Yutaka Ohsawa who has the attitude and the

substance of a genius. I could not thank enough for all the kindness he extended

during my study. Without his guidance and persistent help, this dissertation would

not have been possible.

I would like to acknowledge the support of Professor Masao Sakauchi and Pro-

fessor Noboru Sonehara from National Institute of Informatics for my Ph.D study.

I am also grateful to the Co-supervisors and the members of examiners, Professor

emeritus Hitoshi Maekawa, Professor Tetsuya Shimamuya, Professor Toshinori Ya-

mada and Professor Yoshinori Kobayashi who encouraged me to achieve a success

in all presentations and spent extra time to discuss, comment and advice me in the

preparation of my thesis.

In addition, I would like to deepest thank to Heiwa Nakajima Scholarship foun-

dation who had provided the financial support to undertake the fulltime study at

university. I am thankful to my dear seniors, friends and all members of Ohsawa

department for their kind help to all challenges.

Further, I dedicate to my husband and my family members for their support and

help in all hours and days that this thesis consumed. I would like to express my

utmost gratitude to my parents. I am forever grateful for the depth of their love,

119

120 Aye Thida Hlaing

and the warm and gentle care they provided.

Finally, I would like to heartfelt thank to my beloved mother who wanted me to

finish this long journey. If I had a chance to meet her for one last time, I would just

tell her that I fulfill her wish, hug her tightly, rest my head on her shoulder and cry

till my tears run dry.

References

[1] Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial

network databases. In: Proc. 29th VLDB. (2003) 790–801

[2] Guttman, A.: R-Trees: a dynamic index structure for spatial searching. In:

Proc. ACM SIGMOD Conference on Management of Data. (1984) 47–57

[3] Beeri, C., Kanza, Y., Safra, E., Sagiv, Y.: Object fusion in geographic infor-

mation systems. In: Proc. 13th VLDB. (2004) 816–827

[4] George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and

routing algorithms: a summary of results. In: Proc. 10th SSTD. (2007) 460–

477

[5] Samet, H.: Issues, developments, and challenges in spatial databases and geo-

graphic information systems (gis). In: Proc. 9th VLDB. (2001) 1

[6] Shekhar, S., Coyle, M., Goyal, B., Liu, D., Sarkar, S.: Data models in

geographic information systems. In: Commun ACM40(4). (1997) 103–111

[7] Wang, H., Zimmermann, R.: Location-based query processing on moving

objects in road networks. In: Proc. VLDB. (2007) 23–28

[8] Dijkstra, E.W.: A note on two problems in connection with graphs. Nu-

meriche Mathematik 1 (1959) 269–271

121

122 Aye Thida Hlaing

[9] Shekhar, S., Chawla, S.: Spatial databases. In: A Tour. Prentice Hall,

Englewood Cliffs. (2002)

[10] Chen, M., Chowdhury, R., Ramachandran, V.: Priority queues and dijkstra’s

algorithm. In: Technical report, UTCS Technical Report. (2007) 07–54

[11] Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks.

Journal of the ACM 24(1) (1977) 1–13

[12] L.Fu, D.Sun, L.R.Rilett: Heuristic shortest path algorithms for transportation

applications: State of the art. Computers and Operations Research 33 (2006)

3324–3343

[13] Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-

mination of minimum cost paths. IEEE Transactions of Systems Science and

Cybernetics ssc-4(2) (1968) 100–107

[14] Jing, N., Huang, Y.W., Rundensteiner, E.A.: Hierarchical optimization of

optimal path finding for transportation applications. In: Proc. Fifth Int’l

Conf. Information and Knowledge Management. (1996) 268–276

[15] Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance

browsing in spatial databases. In: Proc. of the ACM SIGMOD conference.

(2008) 43–54

[16] Shekhar, S., Fetterer, A., Goyal, B.: Meterialization trade-offs in hierarchical

shortest path algorithms. In: 5th International Symposium on Large Spatial

Databases. (1997) 94–111

[17] Krozel, J., II, D.A.: Intelligent e-optimal path prediction for vehicular travel.

In: Proc. IEEE Trans. (1995) 345–353

[18] Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced

traveler informa. In: Proc. 9th Data Eng. (1993) 31–39

Efficient Algorithms Suitable in Location Based Services 123

[19] Agrawal, R., Jagadish, H.: Materialization and incremental update of path

information. In: Proc. 5th Data Eng. (1989) 374–383

[20] Huang, Y., Jing, N., Rundensteiner, E.: Semi-materialized view approach for

route maintenance in intelligent vehicle highway systems. In: Proc. 2nd ACM

Workshop. (1994) 144–151

[21] Jung, S., Pramanik, S.: HiTi graph model of topographical road maps in

navigation systems. In: Proceedings of the 12th International Conference on

Data Engineering. (1996) 76–84

[22] Jung, S., Pramanik, S.: An efficient path computation model for hierarchically

structured topographical road maps. IEEE Transactions on Knowledge and

Data Engineering 14(5) (2002) 1029–1046

[23] Bar-Noy, A., Kessler, I., Sidi, M.: Mobile users: To update or not to update?

Wireless Networks 1(2) (1995) 175–185

[24] Pitoura, E., Samaras, G.: Locating objects in mobile computing. IEEE Trans.

on Knowledge and Data Engineering 13(4) (2001) 571–592

[25] Wolfson, O., Sistla, A.P., Chamberlain, S., Yesha, Y.: Updating and queying

databases that track mobile units. Distributed and Parallel Databases 7(3)

(1999) 257–287

[26] Zhou, J., Leong, H.V., Lu, Q., Lee, K.C.: Generic adaptive moving object

tracking algorithms. In: International Conference on Parallel Processing.

(2006) 93–100

[27] Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., Mendez, G.: Cost and

imprecision in modeling the position of moving objects. In: Proc. 14th ICDE.

(1998) 588–596

[28] Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects databases:

Issues and solutions. In: Proc 10th SSDBM. (1998) 111–122

124 Aye Thida Hlaing

[29] Tiesyte, D., Jensen, C.S.: Efficient cost-based tracking of scheduled vehicle

journeys. In: The 9th MDM. (2008) 9–16

[30] Tiesyte, D., Jensen, C.S.: Similarity-based prediction of travel times for

vehicles traveling on known routes. In: Proc. ACM GIS’08. (2008)

[31] Ding, Z., Güting, R.H.: Managing moving objects on dynamic transportation

networks. In: Proc. 16th SSDBM. (2004) 287–296

[32] Čivilis, A., Jensen, C.S., Nenortaitė, J., Pakalnis, S.: Efficient tracking of

moving objects with precision guarantees. Technical Report TR-5, Depart-

ment of Computer Science, Aalborg University (2004)

[33] Čivilis, A., Jensen, C.S., Pakalnis, S.: Techniques for efficient road-network-

based tracking of moving objects. IEEE Trans. on Knowledge and Data En-

gineering 17(5) (2005) 698–712

[34] Frentzos, E.: Indexing objects moving on fixed networks. In: Proc. 8th SSTD.

(2003) 289–305

[35] Ku, W.S., Zimmermann, R., Wang, H., Wan, C.N.: Adaptive nearest neigh-

bor queries in travel time network. In: Proc. ACM GIS’05. (2005) 210–219

[36] Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest

neighbor monitoring in road networks. In: Proc. 32th VLDB. (2006) 43–54

[37] Hsueh, Y.L., Zimmermann, R., Wang, H., Ku, W.S.: Partition-based lazy

updates for continuous queries over moving objects. In: Proc ACM GIS ’07.

(2007)

[38] Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On map-matching vehicle

tracking data. In: Proc. 31st VLDB Conference. (2005) 853–864

[39] Greenfeld, J.S.: Matching GPS observations to locations on a digital map.

In: Proc. 81th Annual Meeting of the Transportation Reseach Board. (2002)

Efficient Algorithms Suitable in Location Based Services 125

[40] Quddus, M.A., Ochieng, W.Y., Zhao, L., Noland, R.B.: A general map

matching algorithm for transport telematics applications. GPS Solutions 7

(2003) 157–167

[41] Yin, H., Wolfson, O.: A weight-based map matching method in moving

objects databases. In: Proc. 16th SSDBM. (2004) 437–438

[42] Roussopoulos, N., Kelly, S., Vincent, F.: Nearest neighbour queries. In:

Proceedings ACM SIGMOD Conference on Management of Data. (1995) 71–

79

[43] Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM

Transactions on Database Systems 24(2) (1999) 265–318

[44] Berchtold, S., Keim, D., Seid, H.K.T.: Indexing the solution space: A new

technique for nearest neighbor search in high-dimensional space. In: TKDE.

(2000) 45–57

[45] Jensen, C., Kolarvr, J., Pedersen, T., Timko, I.: Nearest neighbor queries in

road networks. In: Proc.11th ACM International Symposium on Advances in

Geographic Information Systems (GIS’03). (2003) 1–8

[46] Hu, H., Lee, D.L., Xu, J.: Fase nearest neighbor search on road networks.

In: Proceeding of the 10th International Conference on Extending Database

Technology. (2006) 186–203

[47] Kolahdouzan, M., Shahabi, C.: Voronoi-based K nearest neighbor search for

spatial network databases. In: Proc. 30th VLDB. (2004) 840–851

[48] Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. In:

Proc. ACM GIS. (2010)

[49] Berchtold, C.S., Keim, D., Kriegel, F.K.H.: On optimizing nearest neighbor

queries in high-dimensional data spaces. In: Proc.ICDT 2001. (2001) 435–449

126 Aye Thida Hlaing

[50] Uemiya, T., Matsumoto, Y., Koizumi, D., Shishibori, M., Kita, K.: Fast

multidimensional nearest neighbor search algorithm based on ellipsoid dis-

tance. In: International Journal of Advanced Intelligence Volume 1, Number

1. (2009) 89–107

[51] Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimen-

sional nearest neighbor search. In: SIGMOD. (2009)

[52] Ma, X., Shekhar, S., Xiong, H., Zhang, P.: Exploiting a page-level upper

bound for multi-type nearest neighbor queries. In: ACM GIS’06. (2006) 179–

186

[53] Wu, S., Chuang, K., Chen, C., Chen, M.: An itinerary-based knn query

processing algorithm for mobile sensor networks. In: ICDE. (2007) pp.456–

465

[54] Kang, J., Mokbel, M., Shekhar, S., Xia, T., Zhang, D.: Continuus evalua-

tion of monochromatic and bichromatic reverse nearest neighbors. In: Proc.

ICDE’07. (2007) 806–815

[55] Gao, Y., Chen, G., Li, Q., Zheng, B., Li, C.: Processing mutual nearest

neighbor queries for moving object trajectories. In: IEEE 9th MDM. (2008)

116–123

[56] B.Tao, Kumar, F.: Visible reverse k-nearest neighbor queries. In: Proc.

ICDE09. (2009) 1203–1206

[57] Berchtold, S., Ertl, B., Keim, D., Kriegel, H., Seidl, T.: Fast nearest neigh-

bor search in high-dimensional space. In: Proc. 14th Conference on Data

Engineering. (1998) 23–27

[58] Cheung, K.L., chee Fu, A.W.: Enhanced nearest neighbour search on the

R-tree. SIGMOD Record 27(3) (1998) 16–21

Efficient Algorithms Suitable in Location Based Services 127

[59] Lang, C., Singh, A.: A framework for accelerating high-dimensional nn-

queries. In: Technical report, TRCS01.04, Department of Computer Science,

Uni- versity of California, Santa Barbara. (2001)

[60] Ferhatosmanoglu, H., Stanoi, I., Agrawal, D., Abbadi, A.: Constrained near-

est neighbor queries. In: Proc. SSTD,LNCS 2121. (2001) 257–276

[61] Hjaltason, G.R., Samet, H.: Incremental distance join algorithms for spatial

databases. In: Proceedings ACM SIGMOD Conference on Management of

Data. (1998) 237–248

[62] Athitsos, V., Potamias, M., Papapetrou, P., Kollios, G.: Nearest neighbor

retrieval using distance-based hashing. In: Proc. ICDE08. (2008) 327–336

[63] Zhang, Z., Yang, Y., Tung, A., Papadias, D.: Continuous k-means monitoring

over moving objects. In: Proc. IEEE Trans. K and D Eng., Vol.20, No.9.

(2008) 1205–1216

[64] Gao, Y., Z.Baihua: Continuous obstructed nearest neighbor queries in spatial

databases. In: Proc.SIGMOD. (2009) 577–589

[65] Kamel, I., Faloutsos, C.: On packing r-trees. In: Proc. 2nd ACM Intl. Conf.

on Information and Knowledge Management. (1993) 490–499

[66] Faloutsos, C., Kamel, I.: Beyond uniformity and independence: Analysis of

r-trees using the concept of fractal dimension. In: Proc. 13th ACMSIGACT-

SIGMODSIGART Symposium on Principles of Database Systems. (1994) 4–

13

[67] Theodoridis, Y., Sellis, T.: A model for the prediction of r-tree performance.

In: Proc. 15th ACM SIGACT-SIGMODSIGART Symposium on Principles

of Database Systems. (1996) 161–171

[68] Theodoridis, Y., Stefanakis, E., Sellis, T.: An efficient cost model for spatial

queries using r-trees. In: Technical report, KDBSLAB-TR-97-01, Department

128 Aye Thida Hlaing

of Electrical and Computer Engineering, Computer Science Division, National

TechnicalUniversity of Athens. (1997)

[69] Proietti, G., Faloutsos, C.: I/o complexity for range queries on region data

stored using an r-tree. In: Proc. 15th International Conference on Data

Engineering. (1999) 628–635

[70] Korn, F., Muthukrishnan, S.: Infuluence sets based on reverse nearest neigh-

bor queries. In: ACM SIGMOD Record. Volume 29. (2000) 201–212

[71] Stanoi, I., Agawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for

dynamic databases. In: Proc. of 2000 ACM SIGMOD Workshop on Reserch

Issues in Data Mining and Knowledge Discovery. (2000) 44–53

[72] Tao, Y., Papadias, D., Lian, X.: Reverse knn search in arbitrary dimension-

ality. In: Proceedings of the 30th VLDB Conference. (2004) 744–755

[73] Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbor in

large graphs. IEEE Transaction on Knowledge and Data Engineering 18(4)

(2006) 1–14

[74] Safar, M., Ibrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor

query processing on spatial netowrks. Multimedia Systems 15 (2009) 295–308

[75] Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reserse k

nearest neighbors queries in euclidean space and in spatial netowrks. VLDB

Journal 21 (2012) 69–95

[76] Stojanovic, D., Paradopoulos, A., Predic, B., Kajan, S., Nanopoulos, A.:

Continuous range monitoring of mobile objects in road networks. In: Data

and Knowledge Engineering. (2008) 77–100

[77] Hu, H., Lee, D.: Range nearest-neighbor query. In: IEEE Trans. Knowledge

and Data Engineering,Vol18. (2006) 78–91

Efficient Algorithms Suitable in Location Based Services 129

[78] Shekhar, S., Yoo, J.S.: Processing in-route nearest neighbor queries: A com-

parison of alternative approaches. In: Proc. ACM GIS ’03. (2003) 9–16

[79] Gao, Y., Chen, G., Li, Q., Zheng, B., Li, C.: Processing mutual nearest

neighbor queries for moving object trajectories. In: The Ninth International

Conference on Mobile Data Management. (2008) 116–123

[80] Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor

in road networks. In: SIGMOD’09. (2009) 591–602

[81] Jin, C., Guo, W.: Efficiently monitoring nearest neighbors to a moving object.

In: ADMA 2007. (2007) 239–251

[82] Kolahdouzan, M.R., Shahabi, C.: Continuous K nearest neighbor queries

in spatial network databases. In: Proceedings of the Second Workshop on

Spatio-Temporal Database Management. (2004) 33–40

[83] Song, M., Park, K., Im, S., Kong, K.S.: Nearest neighbor queries for R-Trees:

Why not bottom-up? In: 8th International Conference on Database Systems

for Advanced Applications (DASFF 2006). (2006) 910–919

[84] Chen, L., Lian, X.: Dynamic skyline queries in metric spaces. In: Proc. 11th

International conference on Extending database technology. (2008) 333–343

[85] Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in

road networks. In: Proceeding of IEEE 23rd International Conference on

Data Engineering. (2007)

[86] M.Sharifzadeh, C.Shahabi:: The spatial skyline queries. In: Proc. VLDB.

(2006) 751–762

[87] Song, Z., Roussopoulos, N.: K-nearest neighbour search for moving query

point. In: SSTD 2001. (2001) pp.79–96

130 Aye Thida Hlaing

[88] Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-diagram: A query-

dependent approach to moving KNN queries. In: Proc. PVLDB’08. (2008)

1095–1106

[89] Kolbe, D., Zhu, Q., Pramanik, S.: On k-nearest neighbor searching in non-

ordered discrete data spaces. In: ICDE. (2007) 426–435

[90] Comer, D.: The ubiquitous b-tree. In: ACM Computing Surveys, Vol 11,

No.2. (1979) 121–137

[91] Bertino, E., Catania, B., Chiesa, L.: Definition and analysis of index organiza-

tions for object-oriented database systems. In: Proc. International Workshop

on Advances in Databases and Information Systems. (1998) 65–108

[92] de Almeida, V.T., Güting, R.H.: Indexing the trajectories of moving objects

in networks. Technical report, Fernuniversität Hagen (2004)

[93] Wang, L., Y.Zheng, Ma, X.W.: A flexible spatio-temporal indexing schema

for large-scale gps track retrieval. In: Proc. IEEE 9th MDM. (2008) 1–8

[94] Ding, Z.: Utr-tree:an index structure for the full uncertain trajectories of

network-constrained moving objects. In: Proc.IEEE 9th. (2008) 33–40

[95] Saltenis, S., Jensen, C.: Indexing of moving objects for location-based ser-

vices. In: Proc. International Conference on Data Engineering (ICDE). (2002)

463–472

[96] Theodoridis, Y., Vazirgannis, M., Sellis, T.: Spatio-temporal indexing for

large multimedia applications. In: Proceedings of the 3rd IEEE International

Conference on Multimedia Computing and Systems (ICMCS). (1996) 441–448

[97] Nascimento, M., Silva, J.: Towards historical r-trees. In: Proc. 13th ACM.

(1998)

Efficient Algorithms Suitable in Location Based Services 131

[98] Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches to the indexing of

moving object trajectories. In: Proc. 26th International Conference on Very

Large Databases. (2000)

[99] Jensen, C.S., Pakalnis, S.: TRAX – real-world tracking of moving objects.

In: Proceeding of 33rd VLDB. (2007) 1362–1365

[100] Liu, X., Karimi, H.A.: Location awareness through trajectory prediction.

Computers, Environment and Urban Systems 30 (2006) 741–756

[101] Karimi, H.A., Liu, X.: A predictive location model for location-based services.

In: Proc. ACM GIS’03. (2003) 126–133

[102] Liu, B., Tay, J.: Using knowledge about the road network for route finding. In:

Proceedings of the 11th Conference on Artificial Intelligence for Applications.

(1995) 306 –312

[103] Htoo, H., Ohsawa, Y., Sonehara, N., Sakauchi, M.: Aggregate nearest neigh-

bor search methods using SSMTA* algorithm. In: 16th ADBIS, LNCS 7503.

(2012) 181–194

[104] Liu, X., Schrack, G.: Encoding and decoding the Hilbert order. Software –

Practive and Experience 26(12) (1996) 1335–1346

[105] Hlaing, A.T., Htoo, H., Ohsawa, Y., Sonehara, N., Sakauchi, M.: Shortest

path finder with light materialized path view for location based services. In:

Proc. WAIM2013. Volume LNCS7923. (2013) 229–234

Author’s Publications

[1] Yutaka Ohsawa, Kazuhisa Fujino, Htoo Htoo, Aye Thida Hlaing, Noboru Sone-

hara. Real-time Monitoring of Moving Objects Using Frequently Used Routes,

DASFAA2011, LNCS 6588, pp.119-133 (2011)

[2] Aye Thida Hlaing, Yutaka Ohsawa, Htoo Htoo, Noboru Sonehara, Masao

Sakauchi. Shortest path finder with light materialized path view for location

based services, WAIM2013, LNCS7923, pp. 229-234 (2013)

[3] Aye Thida Hlaing, Yutaka Ohsawa, Htoo Htoo. Efficient Reverse kNN Query

Algorithm on Road Network Distances Using Partitioned Subgraph, SeCo-

GIS2014, LNCS 8823, pp.212-217 (2014)

[4] 橋本 知宜・Aye Thida Hlaing・藤野 和久・大沢 裕：道路網上での距離に基づ

く k-NN経路探索,曽根原: 登 第１９回地理情報システム学会 学術研究発表大

会，2D2，(2010.10)

[5] 茂木恭兵, Aye Thida Hlaing, 大沢裕, 経路履歴を用いた車両実時間モニタリン

グ, 曽根原登: 第 20回地理情報システム学会学術研究発表大会, F-5-1,(2011.10)

[6] Yutaka Ohsawa, Aye Thida Hlaing, Light Materialized Path View for Location

Based Services, ICCA2014, pp.210-216, 2014

133

