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Abstract
Linear prediction (LP) analysis has been applied to speech system over the last few

decades. LP technique is well-suited for speech analysis due to its ability to model

speech production process approximately. Hence LP analysis has been widely used

for speech enhancement, low-bit-rate speech coding in cellular telephony, speech

recognition, characteristic parameter extraction (vocal tract resonances frequen-

cies, fundamental frequency called pitch) and so on. However, the performance

of the conventional LP method is degraded by high-pitched harmonic structure

of glottal excitation source and background noise. In order to improve the per-

formance of LP analysis, it is necessary to reduce the effect of these two factors,

which is a most challenging task for LP analysis.

The objective of this dissertation is to develop some approaches to improve

the performance of the LP analysis based on pitch synchronous analysis. We

consider a pitch synchronous LP analysis for high-pitched speech using a weighted

short time energy (STE) function for the purpose of downgrading the effect of

the harmonic structure of the glottal excitation source. Unlike some conventional

techniques, which require the electroglottography (EGG) signal or complicated

epoch extraction algorithms, we utilize a simple STE computation of speech signal

and prediction residual signal to extract the interval of glottal closed phase during a

glottal cycle and do not need to estimate the instant of glottal closure and opening

exactly.

To reduce the influence of the background noise, we propose a noise compen-

sation LP method based on pitch synchronous analysis under white noise envi-

ronment. Exploiting the periodicity of voiced speech and random distribution of

background white noise, a more accurate estimation of noise power is calculated

on each current frame of speech. The advantage, that the noise power is estimated

from each current frame, can avoid the estimation delay and accuracy problem.

Sometimes the background noise could be white or colored signals. A noise whiten-

ing method for the noise compensation LP Method is proposed so that the new

noise estimator can be also applied to colored environment.

We further propose a crosscorrelation sequence-based LP analysis under noisy

environment. The crosscorrelation sequence is utilized to replace the original

speech signal which is sensitive to background noise, and applied to LP analysis.

The approach can improve the performance of LP analysis under noisy environ-

ment.
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In this dissertation, we focus on resolving the two factors that degrade the per-

formance of LP analysis and new approaches have been proposed and implemented.

The experimental results, based on synthetic and real speeches, demonstrate the

effectiveness of the new approaches for improving the performance of the LP anal-

ysis.
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Chapter 1
Introduction

Speech is the most important means for human being’s daily communication.

Speech is composed of phonemes. The phonemes are generated by exhaling air

flow from lungs through the vocal cords and the vocal tract (which include the

mouth and lips) [1]. According to the vibration of vocal cord or not, the speech is

defined as voiced or unvoiced speech. Voiced speech is produced when the vocal

cords vibrate during the pronunciation. The generation process of unvoiced speech

does not involve the use of the vocal cords.

The predominant purpose of speech is communication. Along with technology

development of the mobile communication and computer, the speech communica-

tion exceeds the constraints of time and space and will not be restricted to occur

among human. The speech communication could be also carried out between hu-

man and machine. How accurately and efficiently to transmit, record and model

the speech information is a challenge issue.

LP technique has the ability to model the voiced speech accurately and ef-

ficiently by a small set of parameters closely related to the speech production

transfer function. To be specific, LP technique can model the vocal tract by an

all-pole filter. Unlike the PCM technique which directly transmits the speech wave-

form information, the LP technique can accurately represent the speech waveform

information in terms of a small set of parameters and these parameters can be

computed by highly computationally efficiency algorithms. This is the reason why

the LP technique is widely used for speech research.

Below we will give a brief overview of the LP analysis.

16



1.1 Overview of LP analysis 17

1.1 Overview of LP analysis

Since Atal [2] began to apply the LP technique to speech research in 1968, LP

analysis has become a most powerful tool for speech analysis and has been widely

used for various applications of speech. The LP analysis is summarized to estimate

the predictive coefficients which can represent the model of vocal tract. The opti-

mal predictive coefficients are estimated by minimizing the square of the prediction

error. There are two basic formulations of LP analysis. One is stationary (auto-

correlation) formulation [3] [4] [5]. The other one is nonstationary (covariance)

formulation [6] [7] [8]. The stationary formulation ensures a stable formulation

of autocorrelation equations and leads to a stable all-pole filter. In general, the

nonstationary formulation does not guarantee the stability of the all-pole filter.

Since speech is a highly nonstationary signal and dynamically changes over time,

the speech analysis is implemented by frame to frame. With respect to the length

of analysis frame, LP analysis is classified as pitch synchronous analysis and pitch

asynchronous analysis. Pitch synchronous analysis denotes that the length of anal-

ysis frame is less than or equal to the length of one pitch period. On the other hand

pitch asynchronous analysis denotes that the length of analysis frame is larger than

the length of one pitch period. For the recent decades, pitch synchronous analy-

sis [9] has received considerable attention and has been widely used for spectrum

analysis [10], speech recognition [11] [12], speech modification [13], speech synthe-

sis [14], code-excited LP coder [15] [16] and so on. Pitch synchronous LP analysis

is suitable for vocal tract and speech source analysis. In [17], the authors show

that for pitch synchronous analysis the non-stationary formulation provides a more

accurate performance of LP analysis. For pitch asynchronous analysis with a large

length of analysis frame, the performances of these two formulations are almost

the same.

Although LP analysis has been widely used for speech processing, two factors,

high pitch and additive background noise, deteriorate the performance of the LP

analysis. For some females and children, high pitch is inborn and unavoidable.

During the transmission process of speech communication, the original clean speech

is also unavoidable to be corrupted by the additive background noise. For instances,

in the case of human interface communication system, with the presence of the

above two factors the recognition accuracy of the speech recognition system would

be degraded and the machine may not recognize what people said, which leads to

interruption of conversation. For a mobile speech communication system, if the



1.2 Research Objectives 18

additive background corrupts the original speech, the listener can not understand

the accurate information involved in the original speech. For a smooth speech

communication system, the acoustic characteristics as like resonance frequencies

of the vocal tract should be estimated accurately.

Hence to improve the performance of LP analysis has an axiomatic importance

in numerous speech fields such as speech enhancement, low-bit-rate speech coding,

speech recognition, speech synthetic and so on.

1.2 Research Objectives

The general objective of this dissertation is to propose improved methods for LP

analysis of voiced speech based on pitch synchronous analysis. Pitch synchronous

LP analysis is suitable for analyzing the vocal tract and speech source [6]. Further-

more, it can realize an efficient transmission in speech communication system [18].

However, comparing with the pitch asynchronous LP analysis, the research about

pitch synchronous LP analysis is relatively few and insufficient. Particularly the

pitch synchronous LP analysis research which involves the additive noise is not

commonly seen. The proposed methods in this dissertation expand the LP tech-

nique in pitch synchronous analysis aspect so that the LP technique can have more

options to be selected when it is applied to the realistic environment.

In order to decrease the effect of high pitch and additive background noise

and improve the performance of the LP analysis, we aim to propose the following

methods:

• Develop a pitch synchronous LP analysis using a STE function based on

residual signal: This approach can remove the effect of the harmonic struc-

ture of the glottal excitation source for high-pitched speech and lead to a

more accurate frequency estimation of formants.

• Derive a noise estimator based on pitch synchronous analysis for noise com-

pensation LP analysis for white noise environment: This noise estimator can

compute the noise power in each current frame so that it can avoid noise

tracking delay caused by some conventional noise compensation methods.

• Extend the above noise estimator to pink noise environment by a whitening

method: This whitening method can change the pink noise to white noise

and almost keep the vocal tract natures of voiced speech signal. It results
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in that the proposed noise compensation method can be implemented more

efficiently for pink environment.

• Develop a crosscorrelation sequence based LP analysis: This method can

provide an improved performance of LP analysis without a prior knowledge

of the noise power and can decrease squared spectral distortion caused by

the LP analysis of autocorrelation sequence.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. The pitch synchronous

linear prediction analysis for high-pitched speech using a weighted short time en-

ergy function is presented in Chapter 2. Chapter 3 derives a noise compensation

LPC method based on pitch synchronous analysis for white noise environment.

Chapter 4 presents a pink whitening method for changing the additive pink noise

to white noise so that the proposed method in Chapter 3 can be extended to ap-

ply to pink noise environment. LP analysis of crosscorrelation sequence for voiced

speech is proposed in Chapter 5. Finally, Chapter 6 concludes the dissertation.



Chapter 2
Pitch Synchronous Linear Prediction

Analysis of High-Pitched Speech Using

Weighted Short-Time Energy Function

A new approach, the pitch synchronous LP analysis using STE function, is pro-

posed in this chapter for removing the effect of the harmonic structure of the glottal

excitation source for high-pitched speech.

2.1 Problem Description

Conventional LP analysis is known to suffer from problems in estimating the for-

mant frequencies (vocal tract resonances) of high-pitched speech signals [19] [20].

The performance of conventional LP analysis deteriorates due to the harmonic

structure of the glottal excitation source, especially in the case of high-pitched

speech signals. The pitch period causes aliasing to take place in the autocorre-

lation domain, resulting in the estimation of formant frequency being degraded

due to the neighbouring harmonics. The degradation becomes especially severe in

the case of high-pitched speech. When the pitch increases, the harmonic structure

becomes more sparse and results in a poor estimation performance of the formant.

In particular, the estimation of the lower formants would be more easily biased by

the spectral components generated by the harmonic structure [21].

In order to accurately study the acoustic characteristics of the vocal tract for

a high-pitched case , it thus becomes imperative to eliminate the effect of the

harmonic structure.

20
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2.2 Related Works

Attempting to resolve this problem of high-pitched harmonic structure, many mod-

ifications to conventional LP analysis for high-pitched speech have been developed

in the last few decades. Miyoshi et al. presented a sample-selective linear pre-

diction (SSLP) method [22] for the analysis of high-pitched speech signals, which

discards speech samples whose residual values exceed a threshold to decrease the

effect of the pitch period. The threshold is determined by an absolute maximum

value of residual signal.

Rahman and Shimamura [23] proposed an improvement to LP technique by

employing homomorphic deconvolution in the autocorrelation domain to eliminate

the aliasing effect, which is caused by that the autocorrelation of vocal tract im-

pulse response is repeated periodically due to the pitch harmonic. In the case of

high-pitched speech, the pitch is very short and the increased overlapping causes

severe spectral distortion. This technique is titled as LP using refined autocorre-

lation (LPRA).

In the last few decades, weighted LP (WLP) has received considerable atten-

tion. The basic concept of WLP is to estimate the all-pole filter by applying

temporal weighting of the square of the residual signal. The temporal weighted

function aims to emphasize the speech samples during the glottal closed phase and

attenuates the effect of the glottal excitation source. Several weighted functions

have been designed. Yanagida et al. devised a weighted function based on an expo-

nential function [24]. Ma et al. chose the short-time energy (STE) as the weighted

function [25]. The WLP method based on STE weighting has been verified to en-

able spectral models to be less vulnerable to the influence of the pitch period than

conventional LP. However, the STE weighted function based on speech signal is not

capable of completely attenuating the contribution of the residual peaks. Alku and

Pohjalainen [26] proposed a weighted function called the attenuated main excita-

tion (AME) function. The WLP-AME method requires the instants of the glottal

closure to be identified to determine the locations of the main excitations by using

either an electroglottography (EGG) signal or epoch extraction techniques [27].

Another way to remove the influence of the pitch harmonic structure of the

glottal excitation source is to extract only an interval included within the duration

of the closed phase of a glottal cycle. This is known as pitch synchronous analysis.

For the pitch synchronous analysis of voiced speech, the duration of the analysis

segment is less than or equal to one pitch period (glottal cycle) [28]. In [9], a
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Fourier transform was applied to perform pitch synchronous analysis using succes-

sive approximations to find the poles and zeros characterizing glottal excitation to

approximate the spectra. However, the resulting spectra with a harmonic structure

adversely affected the extraction accuracy of formants, especially for high-pitched

speech. A well-known speech system named TANDEM-STRAIGHT [29] [30],

which is a speech analysis, modification and synthesis framework, provides a stable

power spectrum and can eliminate the temporal and spectral variance caused by

time window positioning [31] and the harmonic structure [32], respectively. The

process for extracting the F0 (pitch) adaptive spectral envelope, which is based

on consistent sampling theory and consists of the procedures of smoothing, anti-

aliasing and compensating for spectral envelope recovery, is complicated. It is well

known that the exclusion of areas known to correspond to an open glottis will lead

to more accurate estimation of the vocal tract. The key point is how to find such

intervals. Wong et al. utilized the minimum of the normalized total squared error

to locate the instants of glottal closure and opening [34].

In this chapter, our purpose is to find the duration of glottal closure for ac-

curate estimation of the vocal tract by exploiting the STE function. Rather than

estimating the instants of glottal closure and opening exactly, we utilize the simple

STE computation of the speech signal and the predicted residual signal to extract

the interval of the glottal closed phase during a glottal cycle. Since nonstationar-

ity is a better assumption than stationarity [17] for pitch synchronous analysis, we

apply a nonstationarity formulation of LP to the extracted interval.

2.3 STE Function Based on Residual Signal

As mentioned earlier, the temporal weighted function was calculated from the

speech signal using the STE function

wn =
M∑
i=1

s2n−i (2.1)

where sn is a speech signal and M is the length of the STE window. The use

of STE weighting based on a speech signal has been successfully verified for fea-

ture extraction in automatic speech recognition [35], glottal flow estimation [36]

and speaker verification [37]. From Eq. (2.1), the STE function emphasizes the

duration where the speech samples have a large amplitude. A speech signal with

a larger amplitude appears in a glottal closed phase interval. Hence, the STE
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Figure 2.1: Speech signal and residual signal with STE weighted function: (a)
Waveforms of synthetic vowel /o/ (thin curve) and STE weighted function (thick
curve), (b) Predicted residual signal (thin curve) using speech signal in (a) and
STE weighted function (thick curve)

weighted function can be used to focus on the glottal closed phase and emphasize

the contribution of the speech samples in the glottal closed phase interval [35].

However, the purpose of the method is not to try to define the glottal closed

phase interval precisely. Hence, sometimes the STE weighted function calculated

directly from the speech signal cannot completely attenuate the influence of the

glottal excitation source as shown in Fig. 2.1. Figure 2.1(a) illustrates that the

STE weighted function calculated from a speech signal using Eq. (2.1), where M

is 10, emphasizes the duration where the speech waveform has a larger amplitude.

However, a drawback appears in Fig. 2.1(b). The STE weighted function cannot

completely attenuate the contribution of the residual peaks. The remainders of the

residual peaks produce a biased spectrum and affect the estimation of the formant

frequency, especially in the case of high-pitched speech.
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In order to resolve this problem, we devise an STE function based on the

predicted residual signal. An STE function based on residual signal is computed

as

w′
n =

D∑
i=1

e2n+i−1 (2.2)

where en is a residual signal (prediction error) and D is the length of the STE

window. The residual signal en is computed as

en = sn − ŝn = sn −
p∑

i=1

aisn−i (2.3)

where ŝn is the estimated value, p is the linear predictor order and ai are the

predictive coefficients. In Eq. (2.3), ai are obtained by the covariance method as

follows:
p∑

i=1

aiϕji = ϕj0 (2.4)

where

ϕji =
N−1∑
n=p

sn−jsn−i (2.5)

Here N denotes time sequence samples of each speech frame.

Comparing Eq. (2.2) with Eq. (2.1), there is a difference. In Eq. (2.2), the

value of the current weighted function is computed from the future residual signal.

Our proposal is to avoid a computation delay. For a high-pitched speech signal,

the duration of the glottal closed phase interval is very short. A computation delay

will thus cause a severe extraction error. The use of the STE function based on

the residual signal is justified by two aspects. Firstly, unlike the speech signal, the

residual signal has a direct relationship with the glottal excitation source. The

residual signal, en, is an approximation of the second derivative of the glottal

waveform [38]. Secondly, the prediction error will be large in the main excitation

interval. In particular, at the instant of glottal closure, the amplitude of the speech

signal has the largest increase [39]. In the glottal closed phase interval, the values

of the residual signal are assumed to be small [40] [41]. Hence, calculating the STE

function from the residual signal can emphasize the main excitation interval. As

shown in Fig. 2.2, the STE weighted function calculated from the residual signal

using Eq. (2.2), where D = 8, includes the residual peaks even for the main

glottal excitation duration. It can be considered that the STE weighted function

calculated from the residual signal can be used to locate the interval of the main

excitation.
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Figure 2.2: Predicted residual signal (thin curve) and STE weighted function (thick
curve) based on predicted residual signal

2.4 Pitch Synchronous Analysis Based onWeighted

STE Function

Here we normalize the STE function w′
n by w′

nn = w′
n

max(w′
n)

for each frame. Here

max(w′
n) denotes the maximum value in each current frame. Then we subtract it

from 1 to give

W ′
n = 1− w′

nn (2.6)

For the following computation, a small value of d (e.g., 0.01) is introduced here

and Eq. (2.6) is rewritten as

W ′
n =


W ′

n W ′
n ≥ d

d W ′
n < d

(2.7)

so that W ′
n can be a positive real nonzero value.

We combine Eqs. (2.1) and (2.7) to derive a new weighted function for locating

the glottal closed phase interval. The new weighted function is expressed as:

Wn = wn ×W ′
n (2.8)

The new weighted function has two advantages. Firstly, Wn inherits the merit

of wn of emphasizing the speech signal occurring during the glottal closed phase.

Secondly, by multiplying by the W ′
n function, Wn can also avoid the influences of

the main glottal excitation source.
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We considered how to extract the glottal closed phase interval by using the

proposed weighted function Wn. Actually, instead of extracting the glottal closed

phase interval directly from the speech signal domain, we search for the correspond-

ing duration in the proposed weighted function domain. A threshold is introduced

here to assist in extracting the most suitable duration. The threshold θ is experi-

entially designed as

θ =


mean(Wn) F0 ≥ 200 Hz

1
2
×mean(Wn) F0 < 200 Hz

(2.9)

where mean(·) denotes an average value. The value of 200 Hz is set as the boundary

between male and female speech. For female speech with a high F0 ≥ 200 Hz, it

is known that the wide spacing of harmonics leads to degradation of the formant

estimation. However, the influence of the harmonic structure can basically be

ignored for male speech. It has been shown that the relative estimation error of

the formant is not affected significantly when F0 is less than 200 Hz [23]. Since

the formant estimation of male speech, whose F0 is less than 200 Hz, can ignore

the influence of the harmonic structure, we reduced the value of θ so that more

speech samples could be extracted. For the pitch synchronous analysis of LP, a

long interval can provide greater temporal stability of formant estimation.

Then, in the Wn domain we locate the intervals whose values exceed the thresh-

old θ. Next, we compute the length of each located interval and choose the interval

with the largest length, L, as the most suitable duration. We extract the speech

signal duration corresponding to the location of the most suitable duration in the

Wn domain as the glottal closed phase interval. The extracted glottal closed phase

interval is denoted as {sq, sq+1, ···, sq+L−1}, where q is the position number of the

first sample in the extracted glottal closed phase interval, which corresponds to

the location of the original speech frame in the sn domain. Figure 2.3 illustrates

this procedure. In Fig. 2.3, the proposed weighted function Wn in the upper panel

corresponds to the speech signal sn for a frame in the lower panel. From Wn,

we locate the intervals whose values exceed the threshold θ, corresponding to the

thick horizontal line, and select the interval with the largest length L as the most

suitable duration. The speech signal {sq, sq+1, ···, sq+L−1} corresponding to the

location of the most suitable duration is obtained. Then, based on the extracted

speech interval, the LP parameters can be computed.

The computation steps in the proposed method are summarized below:
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Figure 2.3: Extraction of glottal closed phase interval {sq, sq+1, ···, sq+L−1} (the
thick horizontal line denotes the threshold θ)

Step 1 Perform the STE computation of the speech signal and residual signal.

The residual signal is estimated using the covariance method for frames.

Step 2 After normalizing and implementing Eqs. (2.6), (2.7) and (2.8), a new

weighted function Wn is obtained.

Step 3 Extract intervals for which the amplitudes of the proposed weighted func-

tion Wn exceed the threshold θ and calculate the length of each extracted

interval.

Step 4 Select the interval with the largest length as the glottal closed phase in-

terval, that is, {sq, sq+1, ···, sq+L−1}. Actually, the length, L, may be smaller

than the prediction order p in the case of high-pitched speech. Hence, it is

necessary to compare their sizes. If L < p, we extend the length of the glot-

tal closed phase interval by adding speech samples in the reverse direction of

time until L ≥ p is satisfied.

Step 5 Compute the LP parameter by the following formulation [22]:

Y TY â = Y T δ (2.10)
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Figure 2.4: Block diagram of the proposed method

where

Y =



sq−1 sq−2 ... sq−p

sq sq−1 ... sq−p+1

sq+1 sq ... sq−p+2

. . ... .

. . ... .

sq+L−2 sq+L−3 ... sq+L−p−1


(2.11)

â = [a1, a2, a3, ..., ap]
T (2.12)

δ = [sq, sq+1, sq+2, ..., sq+L−1]
T (2.13)

and T denotes transposition.

The LP parameter, â, is obtained by

â = [Y TY ]−1Y T δ (2.14)

A block diagram of the proposed method is depicted in Fig. 2.4.

2.5 Experimental Results

To verify the effectiveness of the proposed method, several experiments have been

conducted for synthetic vowels and real vowels.
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2.5.1 Results for Synthetic Speech Excited by Impulse Trains

A synthetic vowel /o/ [28] was generated from an impulsive sequence excitation

with a known value of the pitch period using the gain and autoregressive parame-

ters G=0.1354, a1=-1.53527, a2=0.97789, a3=-1.48396, a4=1.78023, a5=-0.71704,

a6=0.73514, a7=-0.76348, a8=-0.12135, a9=0.15552, a10=0.17814. The sampling

frequency was 10 kHz. Depending on the pitch, various synthetic vowels /o/ can

be generated. We utilized the generated vowels to evaluate the proposed method.

Figure 2.5 shows the average LP power spectra of 95 consecutive frames estimated

by three methods: the covariance method, WLP [25] and the proposed method.

The four vertical lines represent the true formant values. The prediction order p

of the all-pole model is set to 10 so that it is equal to the system order of the

generated model. The frame length is set to 25.6 ms to include 256 samples and

the frame shift is half of the frame length. The lengths of the STE window, M

and D, in Eqs. (2.1) and (2.2) are set to p and 8, respectively.

Figure 2.5 illustrates some noteworthy features. Firstly, the shapes of the

LP power spectra estimated by the proposed method are stable and invariant

regardless of the fundamental frequency F0. This means that the performance of

the proposed method is basically not affected by the value of F0. Secondly, with

increasing F0, the shapes of the LP power spectra estimated by the covariance

method vary. It is observable that the performance of the covariance method is

easily influenced by the value of F0. Although the first formant peak estimated

by the covariance method occurs at nearly the true value at a high pitch with

F0 = 400 Hz, it cannot be claimed that the formant estimation is not influenced

by the value of F0. The reason why the first formant estimated by the covariance

method is close to the true value is that the high-pitched F0 at 400 Hz happens to

be close to the true F1 at 410 Hz. The LP power spectra estimated by the WLP

can be seen to be less affected by the value of F0.

The average estimated prediction parameters for 95 consecutive frames at F0 =

400 Hz are summarized in Table 2.1. It can be seen from Table 2.1 that the

estimation accuracy is highest for the proposed method.

2.5.2 Results for Synthetic Speech Excited by Realistic Ex-

citation

Rather than using impulse trains, we utilized more a realistic excitation wave-

form that can be used as an approximate human glottal source model to generate



2.5 Experimental Results 30

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Frequency (Hz)

Po
we

r S
pe

ctr
um

 (d
B)

 

 

Covariance Method
WLP
Proposed Method

400 Hz

350 Hz

300 Hz

250 Hz

200 Hz

150 Hz

100 Hz

True Spectrum

Figure 2.5: LP power spectra estimated by the covariance method (blue lines),
WLP (red lines) and proposed method (black lines) from the synthetic vowel /o/
whose fundamental frequencies F0 range between 100 Hz and 400 Hz in seven steps

synthetic speech. Here, the Liljencrants-Fant (LF) model [42] was introduced to

generate synthetic vowels. The LF model has been proved to be suitable for de-

scribing glottal area functions and capable of producing natural-sounding synthetic

speech [43], [44]. We utilized the LF model as the glottal excitation source to gen-

erate five synthetic vowels whose sampling frequency was 10 kHz. The formant

frequencies specified for the five synthetic vowels are listed in Table 2.2 [23], [38].

Then the generated speech is preemphasized by a 1− z−1 filter to simulate the lip

radiation characteristics.

We experimentally compare the estimation accuracy of the formant frequency

of the proposed method with that of the covariance method, WLP [25] and LPRA

[23]. The speech is preemphasized by a 1− z−1 filter before analysis. The formant

frequencies are estimated using the peak-picking technique to extract the peaks

of the all-pole spectrum except for LPRA. The peak-picking technique has been

shown to be reliable, especially when handling formants that are located at low

frequencies or close to each other [45]. For consistency with the original LPRA

method in [23], the formant frequencies for LPRA in this chapter are also estimated

using the root-solving method from the estimated AR parameters. The lowest three

formant values in 95 consecutive frames are obtained and used for evaluation. The

other experimental specifications are summarized as follows:

• frame length: 25.6 ms
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Table 2.1: Estimated parameters for synthetic vowel /o/ at F0=400 Hz

Estimated parameters
Parameters True values Covariance Method WLP Proposed Method

a1 -1.53527 -1.52722 -1.37631 -1.52569
a2 0.97789 0.88255 0.46616 0.95886
a3 -1.48396 -1.42887 -0.61737 -1.46692
a4 1.78023 1.86355 0.89122 1.76031
a5 -0.71704 -0.78345 -0.03677 -0.69407
a6 0.73514 0.87863 0.07798 0.71971
a7 -0.76348 -1.05215 -0.22942 -0.75231
a8 -0.12135 0.13832 -0.29240 -0.13138
a9 0.15552 -0.03390 0.18248 0.15710
a10 0.17814 0.27303 0.15253 0.18046

Table 2.2: Formant frequencies specified (in Hz) for five synthetic vowels

vowels F1 F2 F3 F4 F5

/a/ 813 1313 2688 3438 4438
/i/ 375 2188 2938 3438 4438
/u/ 375 1063 2188 3438 4438
/e/ 438 1813 2688 3438 4438
/o/ 438 1063 2688 3438 4438

• frame shift: 12.8 ms

• prediction order: p = 12

• length of the STE window: M = p (used in WLP and proposed method)

• length of the STE window: D = 8 (used in proposed method)

• window function: Hamming (used in LPRA)

• Number of FFT points: 1024 (used in LPRA)

The relative estimation error (EE) [23] is introduced to evaluate the performance

of the proposed method. EE for five vowels is expressed by

EEi =
1

5×K

5∑
j=1

K∑
k=1

|F̂ij,k − Fij|
Fij

× 100% (2.15)
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Figure 2.6: Average EE for the first formant of the five vowels estimated by covari-
ance (squares, dashed line), WLP (asterisks, dotted line), LPRA (circles, dash-dot
line) and proposed method (pentagrams, solid line)

where F̂ij,k is the estimated ith formant frequency of the jth vowel at the kth

frame, Fij denotes the true value of the ith formant frequency of the jth vowel and

K is the frame number.

Figures 2.6 - 2.8 respectively show the average relative EE of the first, second

and third formant frequencies for the five synthetic vowels. Comparing these re-

sults, it is worth noting that although F0 varies, the proposed method provides

stable and small EE values for each formant. In other words, the influence of the

pitch is eliminated in the proposed method. As can be seen in these figures, the

frequency estimation error for the first formant is more severe than those for the

second and third formants for most values of F0. Namely, frequency estimation of

the first formant is much more easily influenced by F0 than that of the second and

third formants.

Furthermore, we averaged the estimation errors of the first three formants of

the five vowels as follows:

EE =
1

3

3∑
i=1

EEi (2.16)

Figure 2.9 shows the average error for the first three formants of the five vowels

obtained from Eq. (2.16). The results suggest that the proposed method produces

the smallest formant estimation error in general. This indicates that the proposed

method is capable of eliminating the influence of glottal excitation. In general,
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Figure 2.7: Average EE for the second formant of the five vowels estimated by
covariance (squares, dashed line), WLP (asterisks, dotted line), LPRA (circles,
dash-dot line) and proposed method (pentagrams, solid line)
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Figure 2.8: Average EE for the third formant of the five vowels estimated by
covariance (squares, dashed line), WLP (asterisks, dotted line), LPRA (circles,
dash-dot line) and proposed method (pentagrams, solid line)
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Figure 2.9: Average error for the first three formants of the five vowels estimated
by covariance (squares, dashed line), WLP (asterisks, dotted line), LPRA (circles,
dash-dot line) and proposed method (pentagrams, solid line)

the estimation accuracy of WLP and LPRA is better than that of the covariance

method, which implies that the WLP and LPRA methods are less vulnerable to

changes in F0 than the covariance method.

The proposed method is also applied to analyze speech signals including both

poles and dips. Two high-pitched speech signals are synthesized by exciting pole-

zero resonators with a glottal waveform generated using the LF model. The fre-

quencies and bandwidths of the poles are set to 800, 1200 and 3500 Hz and 50,

100 and 120 Hz, respectively. The frequency and bandwidth of the zero are set to

2200 and 100 Hz, respectively [46]. Two sounds are synthesized with F0 = 300 Hz

and F0 = 350 Hz. The synthesized sounds are pre-emphasized by a 1− z−1 filter.

The experimental specifications are similar to those of the five synthetic vowels.

Figures 2.10 and 2.11 show the average spectra of ten consecutive frames

estimated by four methods. The vertical dotted line and thick line represent the

locations of 2F0 and the first formant, respectively. Since one assumption of LP

analysis is that the vocal tract model in LP analysis is an approximation of an

all-pole model, all four methods based on the LP formulation failed to extract the

zero location. We compared the formant (pole) estimation performance of these

four methods. In Fig. 2.10, the first formant estimated by WLP, LPRA and the

proposed method is close to the true value. However, the first formant estimated

by the covariance method clearly deviates from the true location and is close to
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Figure 2.10: Spectra estimated from synthetic sound with F0=300 Hz using pole-
zero model

the second harmonic structure expressed by the vertical dotted line. It can be seen

that the performance of the covariance method is more seriously affected by the

pitch structure than other methods.

Some similar phenomena can be seen in Fig. 2.11. Firstly, both the covariance

method and the WLP fail to accurately exhibit the first and second formant peaks.

In particular, the location of the first formant peak estimated by these methods

is near to the second harmonic structure denoted by the vertical dotted line. Sec-

ondly, although the LPRA estimates the second formant peak accurately, the first

formant peak deviates from the true location represented by the vertical black line.

On the other hand, the proposed method exhibits basically accurate formant peaks

that are near the true ones due to its ability to exclude the influence of the pitch

harmonic structure. These results indicate that even if the proposed method is

applied to high-pitched speech consisting of poles and zeros, the proposed method

is effective for extracting the formants (poles).
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Figure 2.11: Spectra estimated from synthetic sound with F0=350 Hz using pole-
zero model

2.5.3 Results for Real Speech

Real vowels are also used to verify the effectiveness of the proposed method. Two

real vowels uttered by female speakers are used to evaluate the performance of the

method. The two speech data are as follows:

• /u/ in /bu/ at F0
∼= 300Hz

• /o/ in /bo/ at F0
∼= 340Hz

The experimental specifications are similar to those for synthetic vowels in Sec-

tion 2.5.2. Figures 2.12 and 2.13 show the spectra of /u/ and /o/ estimated by

the covariance, WLP, LPRA and proposed methods for 10 consecutive frames,

respectively.

In Fig. 2.12, it can be seen that all the methods extract formants well at

the high-pitched vowel. However, the disparity in the performance among these

methods is clearly reflected in Fig. 2.13. From Fig. 2.13, it is observed that the

LPRA and proposed methods succeeded in tracking the first and second formants,
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Figure 2.12: Spectra of /u/ in /bu/ at F0
∼= 300 Hz estimated by covariance (a),

WLP (b), LPRA (c) and proposed method (d)

0 5000
Frequency (Hz)

Po
w

er
 S

pe
ct

ru
m

 [
dB

]

0 5000
Frequency (Hz)

0 5000
Frequency (Hz)

0 5000
Frequency (Hz)

(a) (b) (c) (d)

Figure 2.13: Spectra of /o/ in /bo/ at F0
∼= 340 Hz estimated by covariance (a),

WLP (b), LPRA (c) and proposed method (d)
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while the covariance and WLP methods failed to separate the first and second

formants when their frequencies were close.

Since the exact formant frequencies of real vowels are not known, we cannot

provide an EE to evaluate the estimation performance of these methods. Here

we summarize the estimation performance in terms of the mean and standard

deviation, as introduced in [73]. Table 2.3 shows the estimation performance of

/u/ in /bu/ at F0
∼= 300 Hz for 48 consecutive frames in terms of the mean and

standard deviation . The mean followed by the standard deviation are shown in

the parenthesis.

Unlike the case of /u/, in which all the methods can successfully extract the five

formants, in the case of /o/ the methods cannot estimate all five formants. Here we

introduce well-estimated numbers 1 to evaluate the performance. Then the mean

and standard deviation were computed from the well-estimated formants. The es-

timation performance of /o/ in /bo/ at F0
∼= 340 Hz in terms of the well-estimated

numbers, mean and standard deviation for 52 consecutive frames is shown in Ta-

ble 2.4. The mean and standard deviation are shown in the parenthesis. From

Table 2.4, it can be seen that the mean values of the first formant computed by

the covariance method and WLP are close to 680 Hz, which is 2F0. However,

the mean value of the first formant computed by the proposed method is close to

that estimated by the LPRA, which has been verified to be capable of eliminating

the effects of the pitch harmonic structure. Hence, the results indicate that the

proposed method can also exclude the influence of the pitch harmonic structure.

From the well-estimated values for the second formant, it is evident that the co-

variance method and WLP basically failed to extract the second formant, while

the LPRA and the proposed method could successfully estimate the second for-

mant in most cases. Note that the interval applied to compute the LP parameters

by the proposed method is short, especially in the case of high-pitched speech.

Sometimes a short interval causes a temporal stability problem and fluctuation at

high frequencies. From Table 2.4, the standard deviation for the proposed method

is clearly larger than that for the other three methods. However, for the most im-

portant lower formants (first, second and third formants), the performance of the

proposed method is competitive with that of the LPRA. According to the results,

1Well-estimated numbers are the numbers of well-estimated formants. From the distribution
of formants for female speech, the well-estimated formants are defined as follows: the peaks
extracted in the region [0, 1500] Hz are defined as the first and second formants in a sequence;
the peaks extracted in the region [2000, 4000] Hz are defined as the third and forth formants in
a sequence; the peak extracted in the region [4000, 5000] Hz is defined as the fifth formant.
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Table 2.3: Estimated means and standard deviations for /u/ in /bu/ at F0
∼= 300

Hz

Fi Cov. WLP LPRA Prop.
F1 (428,17) (440,23) (433,38) (429,23)
F2 (1563,10) (1576,10) (1556,38) (1609,16)
F3 (2712,30) (2640,15) (2618,129) (2619,17)
F4 (3720,31) (3685,32) (3676,63) (3680,53)
F5 (4223,23) (4235,19) (4232,33) (4213,25)

Table 2.4: Estimated well-estimated numbers, means and standard deviations for
/o/ in /bo/ at F0

∼= 340 Hz

Fi Cov. WLP LPRA Prop.
F1 52 52 52 52

(685,9) (689,11) (627,57) (630,21)
F2 4 7 50 50

(979,8) (953,14) (990,73) (1014,60)
F3 52 52 50 52

(2910,46) (2908,35) (2821,70) (2932,20)
F4 13 9 44 18

(3758,39) (3804,49) (3657,74) (3703,208)
F5 52 52 52 52

(4382,52) (4390,36) (4380,55) (4402,39)

the proposed method can be applied to high-pitched real speech.

2.5.4 Stability of the Resulting All-Pole Filter

The LP analysis tends to focus on the stability of the resulting all-pole filter. The

proposed method, which is based on a nonstationary formulation, cannot guarantee

the stability of the resulting all-pole filter. However, the stability of the resulting

all-pole filter is an important issue, especially when applied to applications such

as speech synthesis. The transfer function of the all-pole filter can be modeled as

H(z) =
G

1 +
∑p

i=1 aiz
−i

=
G

Πp
i=1(1− piz−1)

(2.17)
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where pi represents the ith pole. For a stable all-pole filter, all poles must be strictly

inside a unit circle, which means that |pi| ≤ 1. As a nonstationary formulation for

LP analysis, the resulting all-pole filter estimated from the proposed method may

become unstable. When |pi| > 1, pi is replaced with pi/|pi|2 so that the all-pole

filter becomes stable [48].

2.6 Discussion and Summary

There are two important parameters, D and θ, in this chapter. The parameter

D is considered as the length of the main glottal excitation areas. The length of

the main glottal excitation areas varies with F0 and is a certain proportion of a

glottal cycle. For real speech, it is difficult to extract the interval exactly. Even for

an equivalent glottal cycle length, some factors such as the stress accent will also

affect the length of the main glottal excitation areas. The optimal proportion of

the main excitation areas for the glottal cycle used in [26], 32% of T , is introduced

here to compute the length of D, where T denotes the length of a glottal cycle.

For a female speech signal with the upper limit F0 = 400 Hz sampled at a rate

of 10 kHz, the length of the main glottal excitation areas is calculated as 32% of

(10000/400) = 8. General speaking, D increases when F0 decreases. However, the

setting of D = 8 was used in all the above experiments. This is because the final

proposed weighted function Wn is the product of wn and W ′
n. wn can compensate

the influence of W ′
n caused by the insufficient length of D so that the performance

of the desired duration extracted by Wn is not affected.

The other important parameter θ is the threshold, which is used to determine

the interval of glottal closed phase areas. Under the most common condition,

the length of the glottal closed phase interval is assumed to be equal to that of

the glottal open phase interval for a glottal cycle. Since the amplitude of speech

samples in a glottal closed phase interval is larger than that in a glottal open phase

interval, the average value can be utilized as a threshold to extract the glottal

closed interval easily. This is why θ is experientially fixed to the average value

of Wn for female speech (F0 ≥ 200 Hz) in this paper. The experimental results

show that setting the parameter θ to the average value of Wn for female speech is

effective. The setting of θ is certainly under a trade-off condition between formant

estimation accuracy and temporal stability. A more effective and automatic way

of setting the threshold θ is under investigation.

A pitch synchronous analysis technique for linear prediction in this chapter
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was proposed by employing the STE function based on speech and residual sig-

nals. The proposed method locates a duration of glottal closure that excludes the

speech samples when the glottis is open and leads to the more accurate frequency

estimation of formants. Based on the experimental results, the proposed method is

shown to be suitable for analyzing high-pitched speech signals and robust against

changes in the glottal excitation source.



Chapter 3
Noise Compensation LP Method Based

on Pitch Synchronous Analysis

As a most effective communication means, speech signal generated from a talker

is transmitted to the receiver. During the transmission process, the original clean

speech is unavoidable to be corrupted by the additive background noise. The

resulting received signal is not the original signal but a noisy speech signal. As

mentioned earlier, although in a noise-free environment, the predictive coefficients

can be accurately estimated and the voiced speech signal can be also accurately

represented by the LP analysis, in noisy environments, it becomes very difficult for

conventional methods such as autocorrelation method [3] to estimate the predictive

coefficients. The accuracy of the methods is significantly degraded in the presence

of additive noise [49].

For improving the performance of LP analysis, noise reduction is a very im-

portant and essential task. There have been numerous methods which have been

proposed to solve the problem in noisy environments. Tierney [50] increased the

LP order to improve the spectral resolution when the observation noise is added.

However, the resulting spectral envelopes derived by LP technique overestimate

the underlying speech spectrum when the LP order increases. A high-order Yule-

Walker estimator [52] takes advantage of the property of contaminated noise and

does not involve the zeroth-lag autocorrelation of a speech signal. However, the

chief shortcoming of this method is that the estimated autocorrelation matrix can-

not be constrained to a positive definite matrix and becomes singular, resulting

in the nonstability of the resulting all-pole filter. Utilizing the periodicity of the

autocorrelation function, Shimamura et al. [53] proposed a method to improve the

42
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performance of LP analysis, in which the autocorrelation function of the noisy

speech is transformed into its noiseless autocorrelation function. Unfortunately,

the method cannot guarantee the stability of the all-pole filter. Shimamura and

Kuroiwa [54] proposed a noise reduction method based on pitch synchronous ad-

dition for pitch synchronous LP analysis. The method was shown to provide a

superior performance in the presence of white noise. However, the performance is

affected by the length of the pitch. Although it provides a good performance in

the case of high-pitched female speech and the speech of children, in the case of

low-pitched male speech, it does not provide a desirable performance. Morales-

Cordovilla et al. [12] have proposed a robust autocorrelation estimator for voiced

speech signals, which is based on pitch synchronous signal averaging. They applied

the method to the problem of feature extraction in recognizing speech contami-

nated by additive noise. This approach shows clear superiority for robust speech

recognition. However, when the method is applied to pitch synchronous LP anal-

ysis, because of the modified biased autocorrelation estimator, the autocorrelation

matrix cannot retain the positive definite property and the all-pole filter may be-

come unstable.

As an attractive noise reduction technique for LP analysis, noise compensation

technique, which is widely used in signal processing field, has been received con-

siderable attention. In the presence of additive white noise environment, the noise

compensation technique can provide an improvement of the estimation of the AR

spectrum. Various approaches around noise compensation technique have been

proposed for LP analysis.

3.1 Problem Description of Noise Compensation

and Related Works

The principle of the noise compensation technique [51] [52] is briefly described

here. Let us assume that a noisy speech signal is given by

x(n) = s(n) + w(n) (3.1)

where s(n) and w(n) are the original speech signal and additive noise, respectively.

Under white noise environment and speech signal is considered to be uncorre-
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lated with additive white noise, we obtain an equation as follows:

Rx(k) =


Rs(k) + σ2

w, k = 0

Rs(k), otherwise

(3.2)

where Rx(k), Rs(k) represent the biased autocorrelation function of noisy speech

x(n), clean speech s(n) and σ2
w denotes the noise power of w(n). From Eq. (3.2),

it is known that the noise power of white noise concentrates on zeroth lag. If the

noise power component σ2
w could be removed from the zeroth lag, the approximated

autocorrelation of clean speech, R̂s(k), can be obtained as like

R̂s(k) =


Rx(k)− σ̂2

w, k = 0

Rx(k), otherwise

(3.3)

Here σ̂2
w denotes the estimated noise power. It is the basic concept of the noise

compensation technique.

From Eq. (3.3), it is noticed that the key point is how to accurately estimate

the noise power. The noise power estimation is a very difficult issue. If the es-

timated noise power is calculated too small, the noise power can not be removed

sufficiently and the performance of LP analysis will degrade. On the other hand,

if the estimated noise power is computed excessively, the resulting all-pole filter

becomes unstable. In [52], the estimated noise power is calculated from non-speech

frames.

To make sure the stability of the resulting all-pole filter, improved noise com-

pensation method for estimating the AR coefficients has been proposed in [55].

The formulation is expressed as follows:

R̂s(k) =


Rx(k)− (β − αi)σ̂2

w, k = 0

Rx(k), otherwise

(3.4)

where i is an iterative number with initial value zero. In Eq. (3.4), parameters

β and α are set to 1 and a small value (e.g. 0.1), respectively. By gradually

subtracting the noise power, the problem of the excessive estimation of noise power

could be avoid and the resulting all-pole filter becomes stable.

Actually in the low SNR condition, the power of the additive noise will not

only concentrate on the zeroth lag but also exist in other lags. Zhao et al. [56]
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improved the approach in [55] and the noise components should be subtracted at

not only zeroth lag but other lags as

R̂s(k) = Rx(k)− (β − αi)σ̂2
w, k = 0 ∼ p (3.5)

where p denotes the LP order.The technique of noise compensation still utilizes

non-speech segments to estimate the noise power. However, when the noise statis-

tics are time-varying, the estimated noise power from the non-speech segments

may be different from that from the current analysis frame.

Trabelsi and Boukadoum [57], [58] proposed an iterative noise compensation

method, in which an estimation of the noise power is computed by using the

simplified noise power spectrum estimator proposed by Martin [59]. The noise

estimation approach is based on optimal smoothing to track the minimum power of

the noisy speech. However, the high computational complexity and noise tracking

delay inherently involved are major drawbacks.

In this chapter, a new noise compensation LPC method based on pitch syn-

chronous analysis is presented. In contrast to some conventional noise compensa-

tion methods, which estimate the noise power from non-speech frames [52], [56] or

several previous frames [57], [58], the proposed method estimates the noise power

in each current frame so that a more accurate estimate of the noise power can be

extracted. In addition, the proposed method is also considered as an improvement

of the pitch synchronous addition method in [54]. The proposed method utilizes

the pitch synchronous addition method, in common with that in [54]. However,

unlike the method in [54], the proposed method also performs iterative noise com-

pensation by utilizing the estimated noise power so that the performance cannot

be easily affected by the length of the pitch and can be robust against noise.

The remainder of this chapter is organized as follows. Section 3.2 explains

the proposed method for speech analysis in noise. In Sect. 3.3, we verify the

effectiveness of the proposed method by comparing it with some other methods

on the basis of experimental results. Finally in Sect. 3.4, the proposed method in

this chapter is summarized.

3.2 Noise Estimation Based on Pitch Synchronous

Analysis

In this section, we explain the pitch synchronization method utilized in this chapter

and define the enhanced speech and modified noise signals using one pitch period.
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Figure 3.1: Pitch synchronization

Through the modified signal, we estimate the noise power in the current analysis

frame. Then we use the estimated noise power to improve the performance of the

pitch synchronous addition method in [54].

3.2.1 Pitch Synchronization

Pitch synchronization is very important for pitch synchronous analysis. In this

chapter, the speech sample with the maximum amplitude in a period is taken as

the first sample in the analysis frame [28], [60].

Figure 3.1 shows the waveform of a clean voiced speech signal sampled at a

rate of 10 kHz. From Fig. 3.1, we see that the clean voiced speech signal has clear

periodicity, which corresponds to the pitch period. The length of the analysis frame

is limited to about 20-25 ms, where the voiced speech is assumed to be stationary

and the properties of voiced speech hold.

According to the pitch period, we divide one analysis frame of the noisy speech

signal into K blocks as

xi(j) i = 1, 2...K j = 0, 1, 2...P − 1 (3.6)

where K is the number of pitch periods and P is the number of samples in each

pitch period [54]. In Fig. 3.1, an example of the pitch synchronization used here
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is illustrated. x1(j), x2(j) and x3(j) in Fig. 3.1 represent each full pitch period.

Actually, a real consecutive speech signal has nonstationary as well as quasi-

periodic properties of the speech wave. Pitch synchronization suffers from these

limitations. However, some techniques can be utilized to overcome these limita-

tions. As mentioned before, we limit the length of every analysis frame to a short

time interval of about 20-25 ms. Thus, the frame of the speech signal can maintain

the stationary property of the speech wave [6] and the characteristics of the speech

are not changed in the stationary state. We can also ignore the effect of different

amplitudes in a very short duration. Because of the quasi-periodic property of

a speech wave, P might vary from period to period in the analysis frame. Here

we fix the length of each pitch period signal in the current analysis frame to a

number T , which is the pitch length estimated from the current analysis frame.

Then we extract the speech sample with the maximum amplitude in the range

[T −d, T +d],1 where d corresponds to a deviation, and we take the speech sample

as the first sample of the second pitch period signal, similarly to x2(j) in Fig. 3.1.

Then by the same technique, we extract the next pitch period signal in the analysis

frame. In the following experiments in Sect. 3.3, d is set to 1 and 2 for real vowels

and continuous speech, respectively, while d is not unnecessarily set for synthetic

vowels, which have a completely periodic structure.

3.2.2 Enhanced Speech and Modified Noise Signals

Here, we describe the pitch synchronous addition and subtraction operation used to

obtain the enhanced speech and modified noise signals with one pitch period. The

enhanced speech signal is derived from an averaging operation of pitch synchronous

addition, while the modified noise signal is derived from an averaging operation

of pitch synchronous addition and subtraction. The averaging operation of pitch

synchronous addition is performed for j = 0, 1, 2, ..., P − 1 by

xave(j) =
1

K

K∑
i=1

xi(j)

=
1

K

K∑
i=1

si(j) +
1

K

K∑
i=1

wi(j) (3.7)

where si(j) and wi(j) are the speech and noise components for xi(j), respectively.
1Because of the quasi-periodic property of speech waves, the peak of the second pitch period

signal x2(j) might not appear at an exact location T , i.e., it has some deviation d from T .
Actually the deviation d is a small number in an analysis frame with a short time interval of
about 20-25 ms and can be set to 1 or 2.
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Figure 3.2: Enhanced speech signal
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Figure 3.3: Modified noise signal

The averaging pitch synchronous addition and subtraction operation is per-

formed for j = 0, 1, 2, ..., P − 1 by

was(j) =
1

K

K∑
i=1

(−1)i+1xi(j)

=
1

K

K∑
i=1

(−1)i+1si(j) +
1

K

K∑
i=1

(−1)i+1wi(j)

(3.8)

In Eq. (3.8), it should be noted that when K is odd in one analysis frame, K − 1

pitch periods are used to calculate was(j).
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As an example, Figs. 3.2 and 3.3, which are obtained by Eqs. (3.7) and (3.8),

respectively, show the enhanced speech and modified noise signals with one pitch

period, respectively, for the case of a noisy version of the waveform in Fig. 3.1.

Here, the clean speech signal in Fig. 3.1 was corrupted by white noise and utilized.

The signal-to-noise ratio (SNR) was 10 dB.

3.2.3 Proposed Noise Estimator

We discuss the autocorrelation relationship between the noise signals in the en-

hanced speech and the modified noise signals. The enhanced speech signal xave(j)

has one full pitch period. The autocorrelation function of the enhanced speech

signal, Rxx(k), can be reduced to

Rxx(k) =
1

P

P−k−1∑
j=0

xave(j)xave(j + k)

=
1

P

P−k−1∑
j=0

[s(j) + w(j)][s(j + k) + w(j + k)]

= Rss(k) +Rsw(k) +Rws(k) +Rww(k) (3.9)

where

s(j) =
1

K

K∑
i=1

si(j) (3.10)

and

w(j) =
1

K

K∑
i=1

wi(j) (3.11)

In Eq. (3.9), P is the number of samples for each pitch period. Here let us

assume that the clean speech signal s(n) is uncorrelated with the noise w(n) in

Eq. (3.1). In this case, since the voiced speech signal s(j) and noise signal w(j)

are uncorrelated, Rsw(k) and Rws(k) can be considered to be almost zero for a

sufficiently large P . This results in

Rxx(k) = Rss(k) +Rww(k) (3.12)

approximately. Therefore, the autocorrelation function of the enhanced speech

signal can be treated as a sum of the autocorrelation function of the clean speech

signal and that of the noise signal. When the noise signals in each pitch period

are assumed to be mutually uncorrelated, the autocorrelation function of w(j),
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Rww(k), can be expressed by

Rww(k) =
1

P

P−k−1∑
j=0

w(j)w(j + k)

=
1

K

K∑
i=1

Rwiwi
(k) (3.13)

This is valid when w(j) is a random signal such as white noise.

On the other hand, let us focus on the autocorrelation function of the modi-

fied noise signal was(j) in Eq. (3.8). In a short duration where the voiced speech

signal is assumed stationary, we can almost ignore the effect of the averaged am-

plitude difference of each clean pitch speech signal. Then according to the additive

property of the autocorrelation function,

Rwaswas(k)
∼=

1

P

P−k−1∑
j=0

w̃(j)w̃(j + k)

=
1

K

K∑
i=1

Rwiwi
(k) (3.14)

is also derived, where

w̃(j) =
1

K

K∑
i=1

(−1)i+1wi(j) (3.15)

From Eqs. (3.13) and (3.14), it is clear that the noise power of the modified

noise signal is approximately equivalent to that of the enhanced speech signal (see

Appendix A). That is

Rww(k) ∼= Rwaswas(k) (3.16)

Therefore, a new noise estimator is proposed here that is based on Eq. (3.16).

Using the new method of noise estimation, we can estimate the noise power in

every analysis frame. As a result, noise reduction can be carried out in each

analysis frame.

We utilize the new noise estimator to improve the pitch synchronous addition

method in [54]. In this case, the noise reduction performance achieved will not be

easily affected by the addition time K in one analysis frame, unlike in [54]. The

new noise reduction can be realized as follows:

Rss(k) = Rxx(k)−Rww(k)

∼= Rxx(k)−Rwaswas(k) (3.17)
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To avoid subtracting the noise power excessively and to ensure the stability of

the all-pole filter, Eq. (3.17) is modified to

Rss(k) = Rxx(k)− λRwaswas(k) (3.18)

where 0 ≤ λ ≤ 1. The initial value of λ is set to 1. The absolute value of the

reflection coefficients obtained from the Levinson-Durbin algorithm is used to easily

check the positive-definiteness of the autocorrelation matrix produced by Rss(k). If

the initial absolute value of the reflection coefficients is larger than 1, λ is decreased

by 0.1. λ is updated until the absolute value of the reflection coefficients becomes

less than 1 (λ is updated at most 10 times). Then the predictive coefficients ai can

be estimated accurately in a stable form.

For the method in [54], the autocorrelation function in Eq. (3.9) is directly

used for the Levinson-Durbin algorithm, resulting in limited noise reduction being

achieved depending on the addition time K.

The proposed method for speech analysis is summarized below:

Step 1 Depending on the pitch period, the speech sample with the maximum

amplitude in a period is taken as the first sample of the analysis frame, and

the length of the analysis frame is limited to 20-25 ms. Then the single

analysis frame signal is divided into K blocks.

Step 2 The enhanced speech signal from Eq. (3.7) and the modified noise signal

from Eq. (3.8) with one pitch period are obtained by performing the pitch

synchronous addition and subtraction operation. Then by calculating the

autocorrelation of the modified noise signal, through Eq. (3.16), the noise

power is estimated.

Step 3 After using Eq. (3.18) to perform the noise reduction, the autocorrelation

function of the clean speech signal, Rss(k), is estimated.

Step 4 Using the Levinson-Durbin algorithm, the predictive coefficients ai and

reflection coefficients ηi are estimated. The accurate λ in Eq. (3.18) is found

until the absolute value of the reflection coefficients ηi becomes less than 1.

Step 5 Applying the accurate predictive coefficients ai to calculate the power

spectrum.
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3.3 Experimental Results

To verify the effectiveness of the proposed method, several experiments were con-

ducted. Some common specifications for the following experiments are shown in

Table 3.1. In accordance with the suggestions in [19] [61] [62], the LP order was

set to 10 with a sampling frequency of 10 kHz.

3.3.1 Simulation for Verifying the Proposed Noise Estima-

tor

A synthetic vowel /o/2 [28] was generated and white noise was added. The pitch

of the synthetic vowel /o/ was 8 ms and the frame shift was one pitch period.

The analysis frame length was set to 25.6 ms to include 256 samples. As is well

known, the autocorrelation function of a white random noise signal is zero every-

where except for the zeroth lag [52]. Hence, we mainly focused on the zeroth-lag

autocorrelation function of noise in the enhanced speech and modified noise sig-

nals. We took the zeroth-lag autocorrelation function of noise as the noise power.

Figure 3.4 illustrates a comparison of the zeroth-lag autocorrelation function of

noise in the enhanced speech and modified noise signals. The enhanced speech

signal and modified noise signal were obtained by computing Eqs. (3.7) and (3.8),

respectively, from the synthetic vowel /o/ contaminated by white noise at SNR=10

dB for 100 consecutive frames. The solid line shows the noise power (the zeroth-

lag autocorrelation function of noise), which is the true value of the noise power,

in the enhanced speech signal. The dotted line in Fig. 3.4 shows the estimated

noise power (the zeroth-lag autocorrelation function of noise) in the modified noise

signal. From Fig. 3.4, it is clear that in most of the frames, the estimated noise

power (dotted line) is close to the true value (solid line).

Next, the average value of the noise power (zeroth-lag autocorrelation) of 100

consecutive frames was evaluated as an estimate of the noise power in the range

of SNR from 0 dB to 20 dB in 5 dB steps. Table 3.2 summarizes the experimental

results. From Table 3.2, we see that the noise power estimated from the modified

noise signal is very close to the true value (the noise power included in the enhanced

speech signal). From these results, the new noise estimator is shown to be effective

2The synthetic vowel /o/ was generated from an impulsive sequence excitation with the fol-
lowing parameters:
G=0.1354, a1=-1.53527, a2=0.97789, a3=-1.48396, a4=1.78023, a5=-0.71704, a6=0.73514,

a7=-0.76348, a8=-0.12135, a9=0.15552, a10=0.178143.



3.3 Experimental Results 53

Table 3.1: Experimental parameter specifications

Sampling frequency 10 kHz
Analysis window Rectangular

LP order 10
Additive noise White
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Figure 3.4: Comparison of zeroth-lag autocorrelation function of noise

and has the capability of accurately estimating the noise power contained in an

enhanced speech signal. Hence, we can estimate the noise power from a modified

noise signal instead of an enhanced speech signal.

3.3.2 Results using Synthetic Speech

We investigated the performance of the proposed method using synthetic and real

vowels. We experimentally compared the performance of the proposed method

with that of the standard autocorrelation method, the pitch synchronous addition

method (PSAM) [54] and the iterative noise compensation method (INCM) [57]

in white-noise environments.

Figure 3.5 shows an example of the power spectra estimated by the PSAM, the

INCM and the proposed method for 10 consecutive frames of the synthetic vowel

/o/. The results were obtained under white noise at SNR=10 dB. From Fig. 3.5,

it is observed that the proposed method produces the closest spectral shape to
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Table 3.2: Performance evaluation of the new noise estimator under white noise

SNR(dB) True values Estimated values
0dB 0.003734 0.003808
5dB 0.001192 0.001223
10dB 0.000377 0.000387
15dB 0.000119 0.000122
20dB 0.000038 0.000039

the true shape (solid red line in Fig. 3.5), but it has a similar performance to

the INCM. Accordingly, in order to investigate the effectiveness of the proposed

method more clearly, we introduce the cepstrum distance measure to evaluate the

performance of the proposed method. The cepstrum distance is calculated by

CD =
10

ln10

√√√√2

p∑
i=1

(ci − c̃i)
2 (3.19)

where ci are the true cepstrum coefficients and c̃i are the estimated cepstrum

coefficients calculated from the noisy speech signal.

Figures 3.6 and 3.7 show comparisons of the average cepstrum distance for

780 consecutive frames under stationary white noise and time-varying white noise,

respectively. For the case of time-varying white noise, the amplitude of the noise

changes with time as shown in Fig. 3.8. In Figs. 3.6 and 3.7, the standard deviation

has been also provided with the average cepstrum distance. The results in both

Figs. 3.6 and 3.7 clearly show the superiority of the PSAM, the INCM and the

proposed method relative to the standard autocorrelation method. In Fig. 3.6,

the performance of the proposed method is similar to that of the PSAM and the

INCM, while it is slightly superior to that of the PSAM and the INCM, which have

a higher standard deviation, in low-SNR cases of 0 dB, 5 dB and 10 dB. Figure 3.7

is similar to Fig. 3.6. In Fig. 3.7, however, it is observed that the performance of

the INCM is worse than that of the PSAM and the proposed method. This is due

to the limitation of the estimation delay inherent in the INCM. The update times

of λ in Eq. (3.18) were also experimentally investigated for the proposed method.

The average update times of λ were {3.9, 3.3, 2.6, 1.8} and {3.8, 3.2, 2.3, 1.6}
under stationary white noise and time-varying white noise at SNR=0 dB, 5 dB,

10 dB and 15 dB, respectively.
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Figure 3.5: Comparison of LP spectra for synthetic vowel /o/ corrupted by white
noise at SNR=10 dB

3.3.3 Results using Real Speech

Next we utilized a real vowel to investigate the performance of the proposed

method. A male vowel /a/, which was sampled at a rate of 10 kHz, was utilized. Its

pitch period was approximately 7.0 ms, that is, T = 70. The maximum deviation

d was 1. This means that the pitch period was T = 69, 70 or 71. Figure 3.9 shows

the power spectra estimated by the PSAM, the INCM and the proposed method

for 10 frames under white noise at SNR=10 dB. The solid red line shown in Fig. 3.9

is the true spectrum obtained by averaging the power spectra of 10 clean frames.

By comparing the resulting curves, we notice that the shape of the first formant

for the proposed method is preserved better and can be estimated more accurately

than that for the PSAM and the INCM. Figures 3.10 and 3.11 show comparisons

of the average cepstrum distance for 150 continuous frames under stationary white

noise and time-varying white noise, respectively. The 150 frames included 152

pitch periods, where 109 pitch periods were with T = 70, and 8 and 35 pitch peri-

ods were with T = 69 and T = 71, respectively. From Figs. 3.10 and 3.11, we see

that the improvement of the proposed method is significant regardless of the SNR.
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Figure 3.6: Comparison of cepstrum distance for synthetic vowel /o/ under sta-
tionary white noise
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Figure 3.7: Comparison of cepstrum distance for synthetic vowel /o/ under time-
varying white noise
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Figure 3.8: Time-varying white noise

The average update times of λ for the proposed method were {5.4, 5.7, 6.0, 6.3}
and {5.5, 5.6, 5.9, 6.2} under stationary white noise and time-varying white noise

at SNR=0 dB, 5 dB, 10 dB and 15 dB, respectively. The reason why the average

update times of the real vowel /a/ were larger than those of the synthetic vowel

/o/ is that, unlike the synthetic vowel which is completely periodic, the amplitude

difference of each pitch signal of a real vowel is not zero, which affects the accuracy

of noise estimation.

From these results for synthetic and real vowels, it is observed that the proposed

method is effective and provides at least an equivalent performance to and, in many

cases a better performance than the conventional methods, regardless of whether

the additive white noise is stationary or time-varying.

The performance of the proposed method was also investigated by using real

continuous speech signals3. The speech signals uttered by one male speaker and

one female speaker were used here. Each of the speech signals consisted of a

Japanese sentence with about 10 s length, which was sampled at a rate of 10 kHz.

For continuous speech, we should distinguish whether or not the analysis frame is a

non-speech segment. In addition, because of the pitch of continuous speech, which

varies from frame to frame, we need to extract the pitch period of every frame. We

accomplished this a priori by the inspection of speech waveforms and used only

3The continuous speech signals were taken from “20 Countries Language Database”from NTT
Advanced Technology.
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Figure 3.9: Comparison of LP spectra for real male vowel /a/ corrupted by white
noise at SNR=10 dB
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Figure 3.10: Comparison of cepstrum distance for real vowel /a/ under stationary
white noise
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Figure 3.11: Comparison of cepstrum distance for real vowel /a/ under time-
varying white noise

the voiced frames with a known pitch period. Here, the maximum deviation d in

every voiced analysis frame was 2. The experimental specifications were as follows:

• male average pitch: 7.9 ms;

• female average pitch: 6.0 ms;

• frame length: 25.6 ms;

• frame shifting: 10 ms.

Using Eq. (3.19), we calculated the cepstrum distance measure of every frame

and averaged them. The calculated average cepstrum distance is shown in Figs. 3.12

and 3.13 in the case of male and female speakers, respectively.

As shown in Fig. 3.12, the proposed method provides better performance than

the standard autocorrelation method and the PSAM, while it is worse than the

INCM except at SNR=0 dB. However, in the case of the female speech signal,

as shown in Fig. 3.13, the proposed method has the best performance except at

SNR=15 dB. Comparing these two results, it can be seen that the superiority the

PSAM and the proposed method provide in average cepstrum distance is greater

in the case of female speech. This is because, in addition to the PSAM, the

performance of the proposed method is also affected by the addition time K in Eq.

(3.7), which is determined by the pitch. In the case of male speech, K was equal



3.3 Experimental Results 60

0 5 10 15
6

8

10

12

14

16

18

SNR [dB]

C
ep

st
ru

m
 d

is
ta

nc
e

 

 

Standard  Autocorrelation Method
PSAM
INCM
Proposed Method

Figure 3.12: Comparison of average cepstrum distance for real continuous male
speech
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Figure 3.13: Comparison of average cepstrum distance for real continuous female
speech



3.4 Summary 61

to 25.6[ms]/7.9[ms] = 3 on average, while in the case of female speech, K was

equal to 25.6[ms]/6.0[ms] = 4 on average. Shimamura and Kuroiwa [54] examined

the relation between the pitch period and the improvement in SNR for the PSAM.

The relation is similar to that for the proposed method here. Simply speaking,

the proposed method is based on the PSAM and performs noise compensation

additively. Hence, the performance of the proposed method is also affected by

the pitch. Along with an increase in the addition time K, the performance of the

proposed method is improved. From these results, it can be concluded that the

proposed method is also applicable to real continuous speech.

The proposed method is implemented on the basis of the periodicity of voiced

speech in a short duration and the uncorrelated relationship between the speech

signal and noise signal. Hence, the performance of the proposed method will be

degraded, when applied to a rapid rate of speech or to speech with some frames

containing two different phonemes. Here is a constraint of the speech signal for the

proposed method. Since the uncorrelated relationship of the noise signal is also

utilized, the noise signal for the proposed method is constrained to white noise.

3.4 Summary

In this chapter, we present a new noise estimator for use in white noise environ-

ments. The new noise estimator is based on the pitch synchronous addition and

subtraction operation. Through this operation, a modified noise signal is obtained.

It has been proved that the power of the modified noise signal is close to the true

noise power. Instead of using the non-speech segments to estimate the noise power,

the new noise estimator can estimate the noise power in every current frame. Us-

ing the new noise estimator, the proposed method improves the pitch synchronous

addition method. From the experimental results, the proposed method has been

verified to be effective.



Chapter 4
Pink Noise Whitening Method for Noise

Compensation LP Method Based on Pitch

Synchronous Analysis

Noise compensation technique is an useful noise reduction approach for speech

analysis for use in white noise environment. However, the technique suffers from a

drawback that it cannot handle well under pink noise environment. In this chapter,

we present a new noise whitening method for pitch synchronous analysis under pink

noise environment. The proposed whitening method not only changes the pink

noise signal to white signal, but also can almost keep the vocal tract and formant

natures of voiced speech signal. By means of the proposed whitening method,

we can improve the noise compensation LP method based on pitch synchronous

analysis under pink noise environment.

4.1 Constraint Problem of Noise Compensation

As known, noise compensation technique is wildly and efficiently used for noise

reduction under white noise environment due to the assumption that white noise

power concentrate on the zero-th lag. In practice, the background noise corrupting

the original speech will not only be the white noise but the other kinds of noise. It

is well known that depending on the frequency domain properties, the background

noise is classified into white noise, colored noise, impulsive noise and so on. White

noise is defined as an uncorrelated random signal process that has a flat frequency

spectrum which means that it has equal power in all frequencies, while colored

62
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noise refers to any broadband noise with a non-flat spectrum. Pink noise is a

representation of colored noise, which has predominantly low frequency spectrum.

Under the pink noise environment, the autocorrelation function of pink noise

will not concentrate only on the zero-th lag and exist on other lags. In this case, the

noise compensation technique will not be efficiently implemented for noise reduc-

tion, although it can provide a significant improvement for noise reduction when

applied to white noise environment. That is the constraint problem of the noise

compensation. There is a basic concept for resolving the constraint problem, which

is that if the pink noise could be whitened to white signal, the noise compensation

technique can be utilized for noise reduction. The key point is how to whiten the

pink noise to white signal so that the noise compensation technique can be applied

more efficiently. A proposed prediction whitening filter is presented below.

4.2 Proposed Prediction Whitening Filter

A linear prediction model is an all-pole filter with a transfer function given by

H(z) =
G

A(z)
(4.1)

and

A(z) = 1−
p∑

i=1

aiz
−k (4.2)

where G is the gain function, ai are the predictive coefficients and p is the LPC

order. In the time domain, it means that the future value of a signal s(n) is

forecasted by a linear weighted combination of its past values s(n−i) and a certain

input u(n) as

s(n) =

p∑
i=1

ais(n− i) +Gu(n) (4.3)

where u(n) is a driving noise which is a zero-mean white Gaussian noise. We

transform Eq. (4.3) into

e(n) = s(n)−
p∑

i=1

ais(n− i) (4.4)

where e(n) is the prediction error.

Comparing Eqs. (4.3) with (4.4), we see that they have some similarities in an

equation form. However, there is a totally different point. In Eq. (4.3), u(n) is a

driving noise which behaves as an input to an autoregressive filter and s(n) is an
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Figure 4.1: Waveform of voiced speech synthetic vowel /o/ synthesized by [28]

output of the autoregressive filter, while in Eq. (4.4) s(n) is treated as an input to

a linear prediction error filter and e(n) is an output of the linear prediction process.

In general, the prediction error e(n) can be regarded as a white noise process and

the linear prediction error filter also can be considered to be a whitening filter.

Certainly the coefficients of linear prediction filter in Eq. (4.4) is equivalent to the

coefficients of the autoregressive filter in Eq. (4.3).

We apply the prediction whitening filter in Eq. (4.4) to pitch synchronous

analysis. Based on the pitch synchronous analysis, we develop a new prediction

whitening filter which just whitens the noise signal and almost maintains the fre-

quency properties of voiced speech signal. Let us assume that an observed noisy

speech signal can be expressed by

x(n) = s(n) + w(n) (4.5)

where s(n) denotes a clean voiced speech and w(n) does an adverse pink noise.

Then we utilize a rectangular window with a length of 20-25 ms to extract two

frames whose shifting interval is one pitch period, T , as shown in Fig. 4.1. In

Fig. 4.1, the speech signal is sampled at a rate of 10 kHz. We assume that x1(l)

and x2(l) represent Frame 1 and Frame 2, respectively, where framing is represented

commonly for l = 1, 2, ..., L. L is the length of the frame. According to Eq. (4.5),

x1(l) = s1(l) + w1(l) and x2(l) = s2(l) + w2(l). A new subtraction signal, y(l),

is obtained through the subtraction operation between Frame 1 and Frame 2 as
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Low pass filter
       L(Z)

w(n)v(n)

Figure 4.2: An approximation of pink noise production model

follows:

y(l) = x1(l)− x2(l)

= s1(l) + w1(l)− s2(l)− w2(l) (4.6)

where again l = 1, 2, ..., L.

Since in a short duration, the clean voiced speech signal is assumed stationary

and has a periodicity which corresponds to the pitch period. In this case, s1(l)

can be assumed to be identical to s2(l) and we can almost ignore the effect of

amplitude difference of s1(l)− s2(l). Hence the new signal y(l) can result in

y(l) ∼= w1(l)− w2(l). (4.7)

The subtraction signal y(l) can be a new noise signal without corruption by voiced

speech signal. The signal y(l) can be considered as a pink noise signal and has

similar frequency properties with w1(l) and w2(l). In general, pink noise, which

has a predominantly low frequency spectrum, is an approximation of an output

after a random white noise signal passed through a low pass filter like Fig 4.2.

In Fig. 4.2, the signal v(n) is a white noise signal. Let h(n) be an impulse

response of the low pass filter L(z), so that the pink noise signal w(n) can be

expressed as

w(n) = v(n) ∗ h(n) (4.8)

where ∗ stands for convolution operation. According to Eq. (4.8), w1(l) and w2(l)

are represented as follows:

w1(l) = v1(l) ∗ h(l) (4.9)

w2(l) = v2(l) ∗ h(l) (4.10)
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Then Eq. (4.7) is rewritten by

y(l) ∼= w1(l)− w2(l)

= v1(l) ∗ h(l)− v2(l) ∗ h(l)

= (v1(l)− v2(l)) ∗ h(l) (4.11)

In Eq. (4.11), there is an amplitude difference between the white noise signal v1(l)

and v2(l), but the signal v1(l) − v2(l) is still a random white noise signal. Hence

the signal y(l) is a pink noise signal whose frequency properties are determined by

the low pass filter L(Z). Namely the frequency properties of y(l) are similar to

those of w1(l) and w2(l).

Then we substitute y(l) into s(n) in Eq. (4.4), resulting in

e(l) = y(l)−
q∑

i=1

biy(l − i) (4.12)

with different coefficients bi of order q.

In Eq. (4.12), y(l) is an input signal to linear prediction whitening filter. The

parameters of the prediction whitening filter can be calculated by the autocor-

relation method of LPC technique. The resulting prediction whitening filter is

determined by the noise signal and is uncorrelated with the voiced speech signal.

Thus the new prediction whitening filter can whiten the pink noise. On the other

hand, it is unable to whiten the voiced speech signal. In other words, the vocal

tract and formant natures of voiced speech signal will not be transformed by the

whitening filter. Simply saying, the prediction whitening filter estimated from Eq.

(4.12) is a whitening filter for pink noise. For a voiced speech signal it is merely a

common filter whose frequency characteristics are shifted by the pink noise. In the

case of pink noise, the prediction whitening filter will behave as an approximated

high-pass filter for the voiced speech signal.

For the purpose of showing the behavior of the new prediction whitening filter,

we corrupt a synthetic vowel /o/ [28] with pink noise at SNR=10dB. The reason

for selecting a synthetic vowel /o/ is that the true values of spectral parameters

are known in advance. First we compare the original adverse pink noise with the

whitened pink noise. The results in Fig. 4.3 show the whitening effect clearly.

Fig. 4.3(a) is a segment of the original adverse pink noise, whose frequency charac-

teristics and autocorrelation are shown in Fig. 4.3(b) and Fig. 4.3(c), respectively.

After passing through the proposed prediction whitening filter, a random signal

was obtained in Fig. 4.3(d). Fig. 4.3(e) shows that the frequency characteristics
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Figure 4.3: Whitening of pink noise. (a)Original adverse pink noise. (b)Frequency
characteristics of original adverse pink noise. (c)Autocorrelation of original adverse
pink noise. (d)Adverse pink noise after whitening. (e)Frequency characteristics of
adverse pink noise after whitening. (f)Autocorrelation of adverse pink noise after
whitening.

of the adverse pink noise get close to a flat spectrum of an ideal white noise af-

ter whitening. Furthermore the autocorrelation function of the adverse pink noise

after whitening can be assumed to be zero except for the zero-th lag in Fig. 4.3(f).

Fig. 4.4 shows the frequency characteristics of the resulting proposed prediction

whitening filter for continuous 100 frames. Fig. 4.4 suggests that in the case

of pink noise, the frequency characteristics of the prediction whitening filter is

approximately a high-pass filter.

Next we check the clean voiced speech signal after whitening by using the

proposed prediction whitening filter method. Fig. 4.5(a) shows the spectra for

continuous 100 frames of clean voiced speech after passing through the prediction

whitening filter. Here the red line represents the true spectrum of synthetic vowel

/o/. Fig. 4.5(a) indicates that the spectrum in low-frequency regions is restrained,

while the spectrum in high-frequency regions is strengthened. Although the shapes

of spectra are affected due to the high-pass filter, the vocal tract properties of voiced

speech are almost not altered. In order to eliminate the effect of the prediction
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Figure 4.4: Frequency characteristics of prediction whitening filter

whitening filter, we need to add an inverse filter of the prediction whitening filter

further. In other words, we need to divide the estimated spectrum in Fig. 4.5(a)

by the squared amplitude response of the prediction whitening filter. Then we can

obtain a new spectrum. Compensating for the squared spectrum produces a close

shape to the true one without influence of the prediction whitening filter as shown

in Fig. 4.5(b).

In the next section, we utilize the new prediction whitening filter to ameliorate

the PSAS method under pink noise. As mentioned earlier, the PSAS method

is an iterative noise compensated method based on PSAS for pitch synchronous

LPC analysis. Like most of the noise compensation methods, the PSAS method

could not produce a desirable performance under pink noise circumstances. Unlike

the white noise whose autocorrelation function is assumed to be zero except for

the zero-th lag, the autocorrelation function of pink noise is not a pulse function,

which has the maximum value at zero-th lag, and will decrease at increasing lags.

Hence the noise compensation method can not provide a good noise reduction

under pink noise circumstances. To make the PSAS method adapt to pink noise,

the prewhitening procedure is required. We discuss the properties of the PSAS

method after using the proposed whitening method in the next section.
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Figure 4.5: Spectra of clean voiced speech after whitening

4.3 Improved PSAS Method

Here we introduce the PSAS [63] method briefly, which is described detailedly in

Chapter 3. Pitch synchronization is very significant for pitch synchronous LPC

analysis. The speech signal sample with the maximum amplitude value in a period

is taken as the first sample in one frame [28] [60]. Then according to the pitch

period, one frame noisy speech signal is divided into K blocks such as

xi(j) i = 1, 2...K j = 0, 1, 2...P − 1 (4.13)

where K is the number of pitch period and P is the number of samples in each

pitch period.

Depending on the periodicity of clean voiced speech signal in a short time

interval, an enhanced speech signal, xave(j), is derived from the averaging operation

of pitch synchronous addition as

xave(j) =
1

K

K∑
i=1

xi(j) (4.14)
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while the modified noise signal, was(j), is obtained by the averaging pitch syn-

chronous addition and subtraction operation as

was(j) =
1

K

K∑
i=1

(−1)i+1xi(j) (4.15)

In Eq. (4.15), if the value of K is odd in one frame, K − 1 pitch periods are used

to calculate was(j). It has been proved in [63] that the noise power of the modified

noise signal was(j) is equivalent to the noise power in the enhanced speech signal

under white noise circumstances. That is, the autocorrelation function estimate

of the clean voiced speech, Rss(k), can be approximately obtained by subtracting

the autocorrelation of the modified signal, Rwaswas(k), from the autocorrelation of

the enhanced speech signal, Rxavexave(k) as:

Rss(k) = Rxavexave(k)− λRwaswas k = 1, 2...p (4.16)

where 0 ≤ λ ≤ 1. Iteratively implementing the Levinson-Durbin algorithm, the

value of λ is gradually decreased by a rate of 0.1 until the stability of the LPC

filter is ensured.

To apply the PSAS method to pink noise circumstances, we should whiten the

noisy speech by the proposed prediction whitening filter first. The improved PSAS

method is summarized as the following procedure:

(i) Utilize the rectangular window with a length of 20-25 ms to extract the

analysis frame and auxiliary frame whose shifting interval is a full pitch

period. The two frames are applied to Eqs. (4.6) and (4.12) and the proposed

whitening filter is obtained;

(ii) Whiten the noisy speech signal of the analysis frame by the whitening filter

obtained in (i);

(iii) Divide the whitened speech signal into K blocks, according to pitch period.

Then apply the PSAS method to them;

(iv) Estimate the predictive coefficients by the Levinson-Durbin recursion;

(v) Calculate the power spectrum from the resulting predictive coefficients and

then divide it by the squared amplitude spectrum of the whitening filter

estimated in (i).
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4.4 Experimental Results

In this section, several experiments were carried out to validate the improved

PSAS method. Synthetic vowels, real vowel and continuous speech sentences were

examined. The speech signals were sampled at a rate of 10 kHz. The LPC order

was set to 10 and frame length was set to 25.6 ms. We experimentally compared

the performance of the improved PSAS method with that of the PSAS method

in pink-noise environments to verify the effectiveness of the proposed prediction

whitening method.

4.4.1 Results for Synthetic Speech

Two types of synthetic vowels /o/ whose fundamental frequencies are 125 Hz and

250 Hz were generated [63] to simulate the vowels pronounced by male and female,

respectively. The synthetic vowels /o/ were contaminated by adverse pink noise.

Frame shift was one pitch period, T . Firstly in the case of synthetic vowel /o/

with fundamental frequency at 125 Hz, Figs. 4.6 and 4.7 show the power spectra

estimated by the PSAS method and improved PSAS method, respectively, for 100

consecutive frames at SNR=10 dB. Compared these two figures, it is observed

that the results estimated by the improved PSAS method in Fig. 4.7 provide more

stable spectral sharps and get closer to the true shape (solid red line in Figs. 4.6

and 4.7) than the ones in Fig. 4.6.

We select cepstrum distance as the performance evaluation criterion to eval-

uate the improvement achieved by the improved PSAS method. The cepstrum

distance is calculated by Eq. (3.19)1. The comparison results of the average cep-

strum distance for 500 consecutive frames are summarized in Fig. 4.8. The vertical

line at the top of the bar exhibits the 95% confidence interval. The input SNR

was varied from 0 dB to 20 dB. The obtained average cepstrum value of improved

PSAS method are lower than that of PSAS method except at SNR = 20 dB. The

results in Fig. 4.8 show that the improved PSAS method has means significantly

different from the PSAS method expect at SNR = 20 dB. The difference in the

cepstrum distance between the improved PSAS method and PSAS method is sta-

tistically different and meaningful. That means after using the proposed whitening

1In order to calculate the c̃i of the improved PSAS method, we need to estimate the pre-
dictive coefficients of the resulting all-pole filter again. The predictive coefficients calculated
from step (iv) are not the resulting coefficients of the all-pole filter. We utilize the compensated
power spectrum in Step (v) to obtain the autocorrelation function. Then the resulting predictive
coefficients are estimated by the Levinson-Durbin method



4.4 Experimental Results 72

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

Frequency [Hz]

P
ow

er
 S

pe
ct

ru
m

 [d
B

]

 

 

(a): True Spectrum
(b): PSAS Method

(a)

(b)

Figure 4.6: LP power spectra of PSAS method for synthetic vowel /o/ contami-
nated by pink noise at SNR=10 dB
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Figure 4.7: LP power spectra of improved PSAS method for synthetic vowel /o/
contaminated by pink noise at SNR=10 dB
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Figure 4.8: Comparison of cepstrum distance for synthetic vowel /o/ with funda-
mental frequency at 125 Hz

method, the PSAS method can be improved under pink circumstance. Table 4.1

summarized standard deviation of cepstrum distance between the PSAS method

and improved PSAS method. In each SNR case, the standard deviation values

estimated from improved PSAS method are smaller than those estimated from

PSAS method. The smaller the standard deviation values are, the more stable the

power spectrum shape become.

Table 4.1: Standard deviation of cepstrum distance for synthetic vowel /o/ with
fundamental frequency at 125 Hz

Improved
SNR (dB) PSAS Method PSAS Method

0 dB 1.940 1.729
5 dB 1.791 1.449
10 dB 1.829 1.257
15 dB 1.868 1.121
20 dB 1.611 0.998

Figure 4.9 and Table 4.2 show the average cepstrum distance and standard

deviation of cepstrum distance for 500 consecutive frames in the case of a synthetic

vowel /o/ with fundamental frequency at 250 Hz, respectively. The results are
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similar to those in the case whose fundamental frequency at 125 Hz.
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Figure 4.9: Comparison of cepstrum distance for synthetic vowel /o/ with funda-
mental frequency at 250 Hz

Table 4.2: Standard deviation of cepstrum distance for synthetic vowel /o/ with
fundamental frequency at 250 Hz

Improved
SNR (dB) PSAS Method PSAS Method

0 dB 1.980 1.678
5 dB 1.808 1.372
10 dB 1.768 1.328
15 dB 1.937 1.303
20 dB 0.544 0.337

4.4.2 Results for Real Speech

Experiments have been also carried out on a real vowel /a/. Its pitch period was

approximately 7.0 ms. Frame shifting was also set to one pitch period. Figure 4.10

and Table 4.3 show the average cepstrum distance and standard deviation of cep-

strum distance for 200 consecutive frame. The obtained average cepstrum value
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Figure 4.10: Comparison of cepstrum distance for real vowel /a/

of improved PSAS method are lower than that of PSAS method in each SNR case

and the difference is statistically different and meaningful.

Unlike the synthetic vowel signal, the real vowel signal is a non-stationary

speech waveform and has time-varying amplitude. Hence in Eq. (4.6), s1(l)−s2(l)

will not be identical to zero and amplitude difference will effect the performance of

the proposed whitening method more or less. However when the length of frame

is limited to the duration about 20 − 25 ms, the voiced speech can be assumed

stationary and the effect of the amplitude difference can be decreased. Therefore,

even for this real vowel case, the prediction whitening filter is expected to have the

capability to whiten the noisy signal.

Table 4.3: Standard deviation of cepstrum distance for real vowel /a/

Improved
SNR (dB) PSAS Method PSAS Method

0 dB 2.455 2.170
5 dB 2.680 2.401
10 dB 2.533 2.141
15 dB 2.516 1.804
20 dB 2.264 1.495
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Real continuous speech sentences with about 10 s length spoken by one male

speaker and one female speaker were used to evaluate the improved PSAS method.

The speech signals were taken from the NTT database [64]. Frame shifting was

10 ms. We only dealt with voiced speech frames and ignored the non-speech

frames. The male and female speech signals contain 545 and 587 voiced frames,

respectively. The average cepstrum distance is shown in Figs. 4.11 and 4.12 in

the case of male and female speakers, respectively. In the case of male speaker,

the average cepstrum distance value of the improved PSAS method are lower than

that of the PSAS method. However, the difference is not statistically significant

at SNR = 0 dB and 5 dB. On the other hand, in the case of female speaker,

the improved PSAS method outperforms the PSAS method with a statistically

significant difference in each SNR case.
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Figure 4.11: Comparison of average cepstrum distance for real continuous male
speech

4.5 Summary

A new prediction whitening method has been proposed in this chapter. According

to the proposed whitening method, an improved PSAS method has been derived.

From experimental results, the new method can improve the PSAS method and
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Figure 4.12: Comparison of average cepstrum distance for real continuous female
speech

provide better performance than the PSAS method under pink noise environment.



Chapter 5
Linear Prediction Analysis of

Crosscorrelation Sequence for Voiced

Speech

There exist plenty of noise reduction methods to eliminate the effect of the additive

noise components, which are based on the idea that the noise power is estimated

in advance as like spectral subtraction algorithms [65] - [68], Wiener filtering algo-

rithms [69] - [71], noise compensation shown in above chapters and so on. Another

popular idea to remove the effect of the additive noise components is to find a more

robust signal sequence against noise, which is used instead of the original speech

signal. As a representation of the original speech signal, the autocorrelation se-

quence has been received extensive attention for the last few decades. Several

approaches around autocorrelation sequence [72] - [81] have been developed .

The reason why the autocorrelation sequence has attracted extensive attention

is that, the autocorrelation sequence possesses two major properties. One is that

the autocorrelation sequence is less affected by additive noise than the speech

signal. The noise components are considered to just occupy zero-th lag or lower lags

of the autocorrelation sequence. Many methods have been proposed based on this

property to implement the noise reduction. Removing or compensating lower lags

of noisy speech autocorrelation sequence, the influence of noise can be considered

to be eliminated and an accurate approximation of clean speech autocorrelation

sequence could be obtained. Noise compensation analysis [56] [63] compensates

the lower lags of noisy autocorrelation so as to attenuate the influence of the noise

by a priori estimate of the noise. The high-order Yule-Walker estimator [52] ,

78
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which removes the lower lags of autocorrelation without a priori estimate of the

noise, utilizes the higher lags of autocorrelation to estimate the AR coefficients.

However, this technique suffers from a singular problem and cannot guarantee the

stability of the AR filter.

The other property of the autocorrelation sequence is pole-preserving [75]. It

means that the AR coefficients estimated by LP of autocorrelation sequence is sim-

ilar to that estimated by LP of speech signal. However, the LP of autocorrelation

sequence causes some problems described below.

5.1 Problem Description of LP Analysis of Au-

tocorrelation Sequence

Some famous LP analysis of autocorrelation sequence such as repeated autocor-

relation function (RACF) method [76] and one-sided autocorrelation LP analysis

(OSALPC) [77] are based on the pole-preserving property of autocorrelation se-

quence. The RACF approach states that the repeated autocorrelation function

could retain the poles of an original AR system. However, the autocorrelation

sequence is a decaying sequence and how to determine the optimum number of

repeated times is very crucial. The OSALPC technique has been applied to noisy

speech recognition [78] [79], pitch determination [80], AR system identification [81]

and so on, though the OSALPC technique actually only performs a partial decon-

volution of speech signal, which may lead to arising some spurious peaks in the

OSALPC envelope. In addition, there is a common problem for LP analysis of

autocorrelation sequence. That is a squared spectral distortion because of the

squared amplitude of each frequency component.

Voiced speech is assumed to be a periodic or quasi periodic waveform and can

be expressed as

s(n) =
∞∑
i=0

aicos(w0in+ θi) (5.1)

where w0 is a fundamental angular frequency. Its autocorrelation sequence is

obtained as

r(τ) =
∞∑
i=0

a2i
2
cos(w0iτ). (5.2)

Comparing these two equations, we should note that the amplitude of autocorrela-

tion sequence is squared. This phenomenon causes the squared spectral distortion
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when autocorrelation sequence is directly applied to linear prediction analysis such

as OSALPC analysis.

In order to avoid the squared spectral distortion produced by autocorrelation

sequence, we introduce a LP analysis of crosscorrelation sequence between speech

signal and its zero-crossings wave. In the next Section, we discuss the proposed

LP analysis of crosscorrelation sequence.

5.2 LP Analysis of Crosscorrelation Sequence

In order to avoid the squared spectral distortion phenomenon, a crosscorrelation

sequence [82] is introduced as follows:

q(m) =
1

N

N−1∑
n=0

sign(s(n)) · s(n+m) m = 0, 1...N − 1. (5.3)

In Eq. (5.3), the length of s(n) is set to 2N so that the amplitude of q(m) is

unbiased. Here sign(s(n)) is a zero-crossings wave of speech signal without specific

amplitude information and preserves information of the original speech. Hence the

amplitude of q(m) is considered to be almost similar to that of original speech

signal s(n).

In LP analysis, the speech sample s(n) is an approximation of a linear weighted

combination of its past samples s(n− i) and a certain input δ(n) as

s(n) =

p∑
i=1

ais(n− i) +Gδ(n) (5.4)

where G is the gain function, ai are the predictive coefficients, p is the LP order

and δ(n) is a driving function.
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Applying Eq. (5.4) to Eq. (5.3) results in

q(m)=
N−1∑
n=0

sign(s(n)) · (
p∑

i=1

ais(n+m− i) +Gδ(n+m))

=
N−1∑
n=0

sign(s(n)) ·
p∑

i=1

ais(n+m− i)

+
N−1∑
n=0

sign(s(n)) ·Gδ(n+m)

=

p∑
i=1

ai

N−1∑
n=0

sign(s(n)) · s(n+m− i)

+G
N−1∑
n=0

sign(s(n)) · δ(n+m)

=

p∑
i=1

aiq(m− i) +G

N−1∑
n=0

sign(s(n)) · δ(n+m). (5.5)

Equation (5.5) is pole-preserving. Hence the LP analysis of crosscorrelation se-

quence has its ability to estimate the AR coefficients. Furthermore, the crosscor-

relation sequence q(m) is similar to a statistical mean computation process. For

additive random noise, this process is capable of reducing the noise level. The noise

power concentrates on the zeroth lag of the crosscorrelation sequence q(m), which

is similar to the case of autocorrelation sequence. Hence like the autocorrelation

sequence, the crosscorrelation sequence has stronger immunity against noise than

the original speech signal.

Utilizing these two properties, we propose an LP analysis of crosscorrelation

sequence.

The specific procedures of the proposed LP analysis of crosscorrelation sequence

are summarized as follows:

(I) Calculate the crosscorrelation sequence until N from one frame speech signal

of length 2N using Eq. (5.3);

(II) Apply Hamming window of length N to crosscorrelation sequence obtained

from (I);

(III) Utilize biased autocorrelation estimator to compute the autocorrelation se-

quence;

(IV) Estimate the predictive coefficients by the Levinson-Durbin algorithm.

A block diagram of the proposed method is depicted in Fig. 5.1.
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Figure 5.1: Block diagram for the proposed LP analysis of crosscorrelation sequence

5.3 Experimental Results

To verify the effectiveness of the proposed LP analysis of crosscorrelation sequence,

several experiments have been conducted for synthetic vowels and real vowels. We

compared the performance of the proposed LP analysis of crosscorrelation sequence

with that of the conventional autocorrelation method and OSALPC [77]. The

experimental specifications for the following simulation are listed as :

• frame length N : 51.2 ms;

• LP order: 12;

• frame shifting: 25.6 ms;

• analysis window: Hamming window;

• Additive noise: white noise.

5.3.1 Results for Synthetic Speech

We utilized a Liljencrants-Fant (LF) model [42], which can be considered to be

an approximation of human being nature glottal source model and be capable

of generating natural sounding synthetic speech [43] [44], to generate synthetic

vowels. The generated synthetic vowels were sampled at a frequency of 10 kHz. In

order to simulate the lip radiation characteristic, we preemphasized these synthetic

vowels by a 1− z−1 filter.
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Firstly power spectra of five synthetic vowels (/a/, /i/, /u/, /o/ and /e/) es-

timated by the conventional autocorrelation method, OSALPC and proposed LP

analysis of crosscorrelation sequence is shown in Fig. 5.2 for 100 consecutive frames

without additive noise. As shown in Fig. 5.2, spurious spectral peaks appear in

the power spectra estimated by OSALPC in the case of vowels /a/ and /o/. This

phenomenon is probably due to the reason that OSALPC technique performs a

partial deconvolution of the speech signal [80]. On the other hand, the proposed

method shows an almost similar spectral performance with the conventional auto-

correlation method in a clean environment.

Next we evaluated the performance of the proposed method under a white

noisy environment. Fig. 5.3 shows an example of the power spectra estimated by

the conventional autocorrelation method, OSALPC and proposed LP analysis of

crosscorrelation sequence for 100 consecutive frames of the synthetic vowel /a/ at

SNR = 20 dB, 10 dB, 0 dB. As seen in Fig. 5.3 (b), the proposed method and

OSALPC can basically provide five formants while the forth and fifth formants

disappear from spectra estimated by the conventional autocorrelation method at

SNR = 10 dB. In case of SNR = 0 dB, the power spectra estimated by OSALPC

provides a better sharp of third formants than that estimated by the proposed

method. The reason is that, actually, the autocorrelation sequence is less affected

by additive noise than crosscorrelation sequence.

Here a measurement of the cepstrum distance is introduced to compare these

three methods. Fig. 5.4 shows comparisons of the average cepstrum distance for

100 consecutive frames of synthetic vowel /a/ under white noise. The vertical

line at the top of the bar exhibits the 95% confidence interval. The proposed

method shows a better performance than the conventional autocorrelation method

except at SNR = 20 dB. Meanwhile, the proposed method also provide a better

performance than the OSALPC method except at a low SNR = 0 dB.

5.3.2 Results for Real Vowel

A real vowel /a/ is used to carry out the experiments. Fig. 5.5 shows comparisons

of the average cepstrum distance for 100 consecutive frames. Both the OSALPC

and proposed methods have means significantly different from the conventional au-

tocorrelation method at each SNR case. Although the obtained average cepstrum

value of OSALPC is slightly superior to that of the proposed method at low SNR

, the proposed method is considered to be competitive with the OSALPC.



5.3 Experimental Results 84

0 5000
Frequency (Hz) 

(a)

0 5000
Frequency (Hz)

(i)

0 5000
Frequency (Hz)

(u)

0 5000
Frequency (Hz)

(o)

0 5000
Frequency (Hz)

(e)

Figure 5.2: Spectra of synthetic vowels /a/ (a), /i/ (i), /u/ (u), /o/ (o) and
/e/ (e) at F0 = 150 Hz estimated by OSALPC (red), Proposed LP analysis of
crosscorrelation sequence (black) and conventional autocorrelation method (blue).
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Figure 5.3: Spectra of synthetic vowels /a/ estimated at SNR = 20 dB (a), SNR =
10 dB (b) and SNR = 0 dB (c) by OSALPC (red), Proposed LP analysis of
crosscorrelation sequence (black) and conventional autocorrelation method (blue).
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Figure 5.4: Comparison of average cepstrum distance for synthetic vowel /a/ under
white noise

In addition, it is worth noticing that the proposed method is closely similar to

OSALPC. Their basic concept is to utilize the autocorrelation sequence or cross-

correlation sequence to take place of original signal. However, the computation

process of the proposed method is efficient than that of OSALPC. The reason is

that the calculation of crosscorrelation sequence is only made by addition and de-

tection of polarity [82]. However, the calculation of autocorrelation sequence needs

addition and multiplication.

5.4 Pitch Synchronous LP Analysis of Crosscor-

relation Sequence

The experimental results show the effectiveness of the LP analysis of crosscorrela-

tion sequence (LPCS). The feasibility of pitch synchronous LP analysis of crosscor-

relation sequence (PSLPCS) is investigated in this section. As known, the analysis

frame length of the pitch synchronous LP analysis is less than or equal to the

length of one pitch period, T . The process of the pitch synchronous LP analysis

of crosscorrelation sequence is described as follows:

(I) Calculate the crosscorrelation sequence until T from one frame speech signal

of length 2T using Eq. (5.3) where the length N is changed to T ;
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Figure 5.5: Comparison of average cepstrum distance for real vowel /a/ under
white noise

(II) Compute the autocorrelation sequence from crosscorrelation sequence;

(III) Estimate the predictive coefficients by the Levinson-Durbin algorithm.

Since the windowing causes a serious spectral distortion for a short pitch period,

the hamming window is not applied to the crosscorrelation sequence in (II). For

a finite length of a frame, the crosscorrelation sequence is a decaying function

as well as autocorrelation sequence. The decaying problem will easily affect the

performance of LP analysis when in a short frame length condition. Actually under

the noisy environment, the performance of PSLPCS is inferior to that of LPCS

due to its short length. Hence in order to improve the performance of PSLPCS,

an enhanced speech signal, xave(j), from Eq. (3.7) based on pitch synchronous

addition in Chapter 3.2 is introduced to replace the original one pitch signal so

that the noise reduction can be implemented.

The improved pitch synchronous LP analysis of crosscorrelation sequence (IP-

SLPCS) is proposed as follows:

(I) Extract the enhanced speech signal from Eq. (3.7) by performing the pitch

synchronous addition.

(II) Calculate the crosscorrelation sequence until T from enhanced speech signal
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as

qave(m) =
1

T

T−1∑
j=0

sign(xave(j)) ·mod(xave(j+m), T ) m = 0, 1...T−1. (5.6)

where mod denotes the remainder computation. By this computation, the

decaying problem can be avoid;

(III) Compute the autocorrelation sequence from the qave(m). In order to suppress

the decaying problem, the autocorrelation sequence is also computed by the

same technique in (II);

(IV) Estimate the predictive coefficients by the Levinson-Durbin algorithm.

The synthetic vowels /o/, which were generated from an impulse sequence exci-

tation by the linear parameters: a1=-1.53527, a2=0.97789, a3=-1.48396, a4=1.78023,

a5=-0.71704, a6=0.73514, a7=-0.76348, a8=-0.12135, a9=0.15552, a10=0.17814,

with F0 = 125 Hz and F0 = 250 Hz are utilized to investigate the performance of

the PSLPCS, LPCS and IPSLPCS in white noise environment. The comparison

results of the average cepstrum distance for 100 consecutive frames are summa-

rized in Figs. 5.6 and 5.7 . The vertical line at the top of the bar exhibits the 95%

confidence interval. The input SNR was varied from 0 dB to 20 dB. From these

two results, it is observed that the performance of PSLPCS is worse than that of

the LPCS and IPSLPCS except at SNR = 20 dB. In Fig. 5.6, the performance of

the IPSLPCS is slightly superior to that of the LPCS in high-SNR cases of 20 dB,

15 dB and 10 dB, while it is similar to that of the LPCS in low-SNR cases of 5 dB

and 0 dB. In Fig. 5.7, even in the low-SNR case of 5 dB and 0 dB, the performance

of the IPSLPCS is also slightly superior to that of the LPCS. This is due to the

pitch synchronous addition times, K, which is described detailedly in Chapter 3.

In order to compare the performance of the LPCS and improved IPSLPCS more

clearly in white noise environment, we utilize more vowels, which were generated

by linear parameters shown in Table 5.1 to evaluate. We summarized the average

value of cepstrum distance for five synthetic vowels with 100 consecutive frames

in the case of F0 = 125 Hz and F0 = 250 Hz. The summarized comparison results

are shown in Figs. 5.8 and 5.9, respectively. From the results it shows that the

performance of IPSLPCS is slightly better than that of the LPCS. Furthermore, it

was observed that the IPSLPCS provides a better performance in high pitch case.

From these results, it is shown that although the pitch synchronous LP analysis

of crosscorrelation sequence provides a poor performance , the improved pitch
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Figure 5.6: Comparison of cepstrum distance for synthetic vowel /o/ with F0 = 125
Hz
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Figure 5.7: Comparison of cepstrum distance for synthetic vowel /o/ with F0 = 250
Hz
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Table 5.1: Linear parameters specification for synthetic vowels

Parameters Vowel /a/ Vowel /i/ Vowel /u/ Vowel /e/
a1 -1.52522 0.82995 -0.99116 -1.14856
a2 1.15726 -0.33920 0.52552 1.65428
a3 -0.70212 -1.61389 -0.92721 -1.48358
a4 0.50766 -1.23332 1.12357 1.20239
a5 0.10288 0.00932 -1.09906 -1.15410
a6 -0.03465 1.31354 1.14719 0.74835
a7 0.27252 1.08109 -0.81144 -0.43691
a8 -0.19692 0.12361 0.05872 0.40506
a9 -0.31531 -0.55380 -0.26298 -0.04308
a10 0.50536 -0.17653 0.58394 0.39955

0 5 10 15 20
0

1

2

3

4

5

6

7

SNR [dB]

C
ep

st
ru

m
 D

is
ta

nc
e

 

 

LPCS
Improved PSLPCS

Figure 5.8: Average value of cepstrum distance for five synthetic vowels with
F0 = 125 Hz
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Figure 5.9: Average value of cepstrum distance for five synthetic vowels with
F0 = 250 Hz

synchronous LP analysis of crosscorrelation is competitive to the LP analysis of

crosscorrelation sequence in noisy environment.

5.5 Summary

In this chapter, a new approach for LP analysis has been proposed for use in

noisy environment. This approach for LP analysis is based on crosscorrelation

sequence between speech signal and its zero-crossings wave. Based on the experi-

mental results, the LP analysis of crosscorrelation sequence is shown to be suitable

for performing speech signals analysis in a noisy environment and be capable of

reducing the noise level.



Chapter 6
Conclusions

This chapter concludes the dissertation with a summary of our work. The brief

discussion of the future work is also stated in this chapter.

6.1 Summary of the Work

LP technique is widely used for various applications as like speech enhancement,

low-bite speech coding in cellular telephony, speech recognition, characteristic pa-

rameter extraction and so on due to its close connection to the speech production

transfer function. However, the high-pitched structure and additive background

noise degrade the performance of LP. The degradation of LP performance affects

and constraints its various applications. Hence to decrease the influence of the

high pitch and additive background noise is a very requisite and important task

for LP analysis.

The goal of this dissertation is to develop some methods based on pitch syn-

chronous analysis to reduce the influence of these two factors, the high pitch and

additive noise, and to improve the performance of LP analysis so that the improved

LP analysis can be conveniently and efficiently applied to its various speech appli-

cations. The proposed methods in this dissertation have been shown to be capable

to improve the performance of LP analysis under the high pitch and additive noise

conditions. The work of the dissertation is summarized as follows:

• A pitch synchronous LP analysis using STE function based on residual signal

has been proposed. This technique has been verified to downgrade the effect

of the harmonic structure of the glottal excitation source for high-pitched
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speech and lead to a more accurate frequency estimation of formants for

high-pitched speech signals.

• A new noise estimator based on pitch synchronous analysis for noise compen-

sation LP analysis has been proposed under white noise environment. The

new noise estimator is found to be more effective when compared with some

conventional noise compensation methods.

• A pink whitening method has been proposed based on pitch synchronous

analysis. The whitening method is found to be capable of changing the pink

noise to white noise and almost keeping the vocal tract natures of voiced

speech signal. By this technique, noise compensation method can be also

efficiently applied to pink noise environment.

• A LP analysis based on cross-correlation sequence has been proposed without

a prior estimation power of noise. Instead of utilizing the original speech

signal for LP analysis, the cross-correlation sequence is employed to preserve

the effect of the additive noise for improving the performance of LP.

6.2 Future Work

The work in this dissertation has improved the performance of the LP analysis

under high-pitched and noisy environments. The improvement to the LP analysis

can also be applied to various applications of speech as like speech enhancement,

speech recognition, speech synthetic and so on. However, some spaces are still

required to be investigated for the future work. The setting of the parameter θ

in Chapter 2 is fixed to the average value of weighing function. The parameter θ

is under a trade-off conditions for performance estimation accuracy and temporal

stability. In practice condition, the proportion value between glottal closed phase

and open phase for a glottal cycle is different and depend on the uttering human.

Hence a more effective optimal and automatic setting of the parameter θ is under

investigation. In future we will extend our research to develop a more robust LP

analysis against the additive noise for improving the performance of LP analysis

so that the improved methods can be applied to various applications of speech

effectively.



Appendix A
Discussion of Noise Power When K is

Odd

When K is odd, Eq. (3.16) is not valid. In Eq. (3.8), the modified noise signal

is obtained by using K − 1 pitch periods, while the enhanced speech signal in

Eq. (3.7) is obtained by using K pitch periods. The noise power thus becomes

different. Here we discuss the noise power in these two signals when K is odd.

Let us assume that the contaminated white noise is a random independent

signal and has a normal distribution characterized by its mean µ and standard

deviation σ. In this case,

E(
1

K

K∑
i=1

wi(j)) =
E(

∑K
i=1wi(j))

K

=
K ∗ µ
K

= µ (1)

and

Φ(
1

K

K∑
i=1

wi(j)) =
Φ(

∑K
i=1wi(j))

K2

=
K ∗ σ2

K2

=
σ2

K
(2)

are satisfied, where E and Φ are the expectation and variance, respectively.

From Eqs. (1) and (2), we see that the mean value of averaged white noise

signals is unrelated to the average time K, while the variance of averaged white
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noise signals is related to the average time K. We take the zeroth autocorrelation

as the noise power. Therefore, Eq. (3.16) should be changed to

Rww(k) ∼=
K − 1

K
Rwaswas(k) (3)

when K is odd.
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