
Doctoral Dissertation

Automated Theorem Finding
by Forward Reasoning

Based on Strong Relevant Logic:
Methodology and Case Studies

Hongbiao Gao

Graduate School of Science and Engineering,
Saitama University

Supervisor: Professor Jingde Cheng

March 2015

Abstract

The problem of automated theorem finding is one of the 33 basic research
problems in automated reasoning which was originally proposed by Wos in 1988.
The problem of automated theorem finding is “What properties can be identified
to permit an automated reasoning program to find new and interesting theorems,
as opposed to proving conjectured theorems?”. The most important and difficult
requirement of the problem is that, in contrast to proving conjectured theorems
supplied by the user, it asks for the criteria that an automated reasoning program
can use to find some theorems in a field that must be evaluated by theorists of the
field as new and interesting theorems. The significance of solving the problem is
obvious because an automated reasoning program satisfying the requirement can
provide great assistance for scientists in various fields.

The problem of automated theorem finding is still an open problem. Although
there have been valuable works on the research of automated theorem proving,
those works cannot be applied to the problem of automated theorem finding. On
the other hand, a few works aimed to automated theorem discovery and auto-
mated theorem generation have been done. However, the problem of automated
theorem finding which is to pursue properties to find new and interesting theorems
is different from the automated theorem discovery and automated theorem gener-
ation. In fact, Wos’s problem can be regarded as an attempt to find a systematic
methodology in automated reasoning area, but the works on automated theorem
discovery and automated theorem generation are not. The works on automated
theorem discovery and automated theorem generation almost aimed to one cer-
tain mathematical field and current results of those works are only rediscovery of
some simple known theorems in some certain fields, rather than finding new and
interesting theorems.

Cheng proposed that forward reasoning based on strong relevant logic is a hope-
ful approach to solve the automated theorem finding problem. Reasoning is the
process of drawing new conclusions from some premises which are already known
facts and/or previously assumed hypotheses. Because reasoning is the only way to
draw new, previously unknown conclusions from given premises, there is no dis-
covery process that does not invoke reasoning. On the other hand, by using strong
relevant logic as the fundamental logic to underlie reasoning for automated theo-
rem finding, one can avoid paradoxical theorems in using classical mathematical
logic, various conservative extensions of classical mathematical logic, and tradi-
tional relevant logics. However, no one showed how to use a systematic method by
forward reasoning based on strong relevant logic to do automated theorem finding.

This thesis proposed a systematic methodology for automated theorem finding
by forward reasoning based on strong relevant logic. The methodology consists of
five phases. The first phase is to prepare logical fragments of strong relevant logic
for various empirical theories. The second phase is to prepare empirical premises
of a target empirical theory. The third phase is to reason out empirical theorems
in the target empirical theory. The fourth phase is to abstract these empirical

theorems. The fifth phase is to find interesting theorems from the empirical the-
orems. The methodology holds generality so that we can use it to do automated
theorem finding in various fields.

In order to show the effectiveness of our methodology, we did three case studies
of automated theorem finding in three different mathematical fields by using our
methodology. The first mathematical field is NBG set theory, the second one
is Peano’s arithmetic and the third one is graph theory. For each case study,
we elaborated how to apply our methodology, showed the results and gave an
evaluation. After we presented three case studies, we evaluated the methodology
from viewpoint of generality.

This work has following contributions. The first contribution is that we pro-
posed a systematic methodology for automated theorem finding based on the semi-
lattice of formal theories in which the core is strong relevant logic, and the mini-
mum element is the formal theory of axiomatic set theory, above it other formal
theories can be established like number theory, graph theory, and lattice theory, so
the methodology holds generality for various mathematical fields. The second con-
tribution is that we proposed a method to do automated theorem finding based on
the abstraction process of mathematical concept such that we can systematically
find theorems from simple theorems to complex theorems. The third contribution
is that we proposed a method to generate hypothesis by using forward reasoning
approach by strong relevant logic and then combine automated theorem proving
approach to systematically find those theorems proved by mathematical induction.
The fourth contribution is that we performed three case studies of automated the-
orem finding in three different mathematical fields by using our methodology and
clearly showed our method and results. Before our works, it is only in theory to use
forward reasoning approach based on strong relevant logic to perform automated
theorem finding in different mathematical fields, but our works showed the detail
and systematic procedure of automated theorem finding clearly.

This thesis is organized as follows. Chapter 1 presents the background and
purpose of this research. Chapter 2 explains the basis of the strong relevant logic
and the terminology of automated theorem finding. Chapter 3 presents our sys-
tematic methodology for automated theorem finding. Chapter 4 presents the case
study of preparation of logical fragments. Chapter 5 presents the case study of
automated theorem finding in NBG set theory. Chapter 6 presents the case study
of automated theorem finding in Peano’s arithmetic. Chapter 7 presents the case
study of automated theorem finding in graph theory. Chapter 8 gives a discussion
about our methodology. Finally, concluding remarks are given in Chapter 9.

ii

Acknowledgments

I would like to express special thanks first of all to my research supervisor
Professor Jingde Cheng for his patience, invaluable guidance, and suggestions on
all aspects of my academic life. In fact, Professor Jingde Cheng is not only a
supervisor for my academic life, but also the most important tutor in my life. The
things I learnt from him is not only limited in the academic field, but he taught
me how to become a wise and good man.

I am very grateful to my thesis committee: Professor Norihiko Yoshida, As-
sociate Professor Noriaki Yoshiura, Associate Professor Takeshi Koshiba, and As-
sociate Professor Takashi Horiyama for their support, invaluable advice and com-
ments to my research.

I am grateful to Assistant Professor Yuichi Goto for teaching me so much in
my research and helping me in all respects. I would also like to thank other AISE
lab members who have helped me in my research.

I also express my special thanks to Saitama University, and all of those teachers
and staffs of the university who have helped me in my life studying abroad.

Finally, I would like to express my special thanks to my parents, who financed
and support me to live and study in Japan. It would be impossible for me to
pursue my doctoral degree in Japan without their support.

iii

Contents

Abstract i

Acknowledgments iii

List of figures vi

List of tables vii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Purpose and objectives . 3
1.3 Structure of the thesis . 3

2 Basic notions and notations 5
2.1 Logic-based reasoning . 5
2.2 Strong relevant logics . 6
2.3 Forward deduction engine . 10
2.4 The semi-lattice model of formal theories 11

3 A systematic methodology for automated theorem finding 13
3.1 Overview . 13
3.2 Systematic methodology . 13

4 Preparation of logical fragments 21

5 Case study: Automated theorem finding in NBG set theory 24
5.1 Overview . 24
5.2 Perform the methodology . 24
5.3 Case study for explicitly epistemic contraction by predicate abstracton 31
5.4 Evaluation . 34

6 Case study: Automated theorem finding in Peano’s arithmetic 36
6.1 Overview . 36
6.2 Perform the methodology . 36
6.3 Evaluation . 43

iv

7 Case study: Automated theorem finding in graph theory 45
7.1 Overview . 45
7.2 Perform the methodology . 45
7.3 Evaluation . 51

8 Discussion 52

9 Conclusions 55
9.1 Contributions . 55
9.2 Future works . 55

Publications 57

Bibliography 59

v

List of Figures

2.1 The semi-lattice model of formal theories 11

3.1 The activity diagram of the systematic method for ATF 19
3.2 The semi-lattice of logical fragments of EcQ 20

5.1 The semi-lattice of fragments of premises in NBG set theory 35

6.1 The semi-lattice of fragments of premises in Peano’s arithmetic . . . 44

7.1 The semi-lattice of fragments of premises in graph theory 49

8.1 Excavation problem of ATF . 54

vi

List of Tables

3.1 Degree of collected theorems . 18

4.1 Prepared logical fragments . 22
4.2 Prepared logical fragments by adding quantifiers 22

5.1 Used definitions of NBG set theory 27
5.2 Predicate abstract level in NBG set theory 28
5.3 Function abstract level in NBG set theory 28
5.4 The abstract level of axioms and definitions in NBG set theory . . . 29
5.5 ATF in NBG set theory by prepared logical fragments 31
5.6 The abstract level of axioms and definitions in NBG set theory . . . 32
5.7 The number of theorems included intermediate results 33
5.8 The number of theorems of (i,m)-level theorems (4 ≤ i ≤ 6) 33
5.9 The number of theorems in case study 1 34

6.1 Used definitions of predicates in Peano’s arithmetic 37
6.2 Used definitions of functions in Peano’s arithmetic 38
6.3 Predicate abstract level in Peano’s arithmetic 39
6.4 Function abstract level in Peano’s arithmetic 40
6.5 The abstract level of axioms and definitions in Peano’s arithmetic . 41
6.6 ATF in Peano’s arithmetic by prepared logical fragments 43

7.1 Predicate abstract level in graph theory 48
7.2 Function abstract level in graph theory 48
7.3 The abstract level of definitions in graph theory 48
7.4 ATF in graph theory by prepared logical fragments 51

vii

Chapter 1

Introduction

1.1 Background and motivation

The problem of automated theorem finding (ATF for short) is one of the 33 basic
research problems in automated reasoning which was originally proposed by Wos
in 1988 [40, 41]. The problem of ATF is “What properties can be identified to
permit an automated reasoning program to find new and interesting theorems,
as opposed to proving conjectured theorems?” [40, 41]. The most important and
difficult requirement of the problem is that, in contrast to proving conjectured
theorems supplied by the user, it asks for the criteria that an automated reasoning
program can use to find some theorems in a field that must be evaluated by
theorists of the field as new and interesting theorems [4, 5]. The significance of
solving the problem is obvious because an automated reasoning program satisfying
the requirement can provide great assistance for scientists in various fields [4, 5].

The ATF problem is still an open problem until now [20]. Although there
have been valuable works on the research of automated theorem proving (ATP
for short), those works have nothing to do for the ATF problem [11]. On the
other hand, a few works aimed to automated theorem discovery (ATD for short)
[12] and automated theorem generation (ATG for short) [3, 13] have been done,
however, the ATF problem which is to pursue properties to find new and inter-
esting theorems is different from ATD and ATG. In fact, Wos’s problem can be
regarded as an attempt to find a systematic methodology in automated reasoning
area, but the works on ATD and ATG are not. Those works on ATD and ATG
almost aimed to one certain mathematical field. The earlier work of ATG is about
a conceptual framework for discovery of theorems in geometry and a mechanism
which systematically discovers such theorems [3]. After that, some works of ATD
and ATG in geometry field were also done [14, 33, 35]. Besides of the geometry
fields, automatic generation of classification theorems for finite algebras was per-
formed by Colton, et al. [13]. McCasland, et al. [32] have also proposed a method
for automated discovery of inductive theorems and performed some experiments
in the natural numbers, positive natural numbers, and group theory. ATD in the
field of game theory has been also performed in recent years [38]. Besides of the
research of ATD or ATG on those certain fields, to deal with the problem about
evaluation of “interesting” theorems, Puzis, et al. [34] described the techniques

1

which used filters and ranking to identify interesting theorems among the logical
consequences. The works of ATD and ATG are ongoing, because the current works
cannot find new theorems and can only rediscover some simple known theorems
in some certain fields.

The approaches of current works of ATD and ATG are hard to solve the ATF
problem generally [20]. First, all of the works are based on classical mathematical
logic (CML for short) or its various conservative extensions. However, CML and
its various conservative extensions are not suitable logic systems for underlying
reasoning in ATF, because they have the well-known “implicational paradoxes”
[5, 7]. Second, the works on ATD and ATG rely on generating hypotheses or
conjectures as candidates of interesting theorems, and then use the method of ATP
to prove them. However, those methods are not suitable for ATF. In fact, ATF is a
kind of discovery which is a process to find out the unknown theorems. Therefore,
we cannot have any target before we find a new theorem. The big problem of the
current approaches is how to find those unknown and complex theorems which are
hard to be generated as hypotheses or conjectures, because it is very difficult to
automatically generate hypotheses and conjectures for those unknown and complex
theorems. Third, all of the generating approaches of hypotheses or conjectures in
the works depend on the specific knowledge of the certain fields. However, if we
use the approaches to do ATF, then the methods of ATF are limited in one certain
field, and are very hard to be modified to do ATF in other fields.

Cheng proposed a forward reasoning approach based on strong relevant logic
to solve the ATF problem [4, 5]. ATF is a kind of discovery such that it cannot be
solved by any automated theorem proving approach, and the reasoning is the only
way to fit for ATF [4, 5]. Reasoning is the process of drawing new conclusions
from some premises which are already known facts and/or previously assumed
hypotheses. In contrast, proving is the process of finding a justification for an
explicitly specified statement from given premises which are already known facts
or previously assumed hypotheses. Discovery is the process to find out or bring
to light of that which was previously unknown. For any discovery, the discovered
thing and its truth must be unknown before the completion of discovery process.
Because reasoning is the only way to draw new, previously unknown conclusions
from given premises, there is no discovery process that does not invoke reasoning
[7, 9]. On the other hand, not all logics can serve well as the fundamental logic
underlying reasoning. In order to avoid the implicational paradoxes in CML or its
various conservative extensions, relevant logics T, E, and R were constructed [1, 2].
However, there are still some paradoxes in theorems of the relevant logics from the
viewpoint of relevant reasoning. Cheng named them “conjunction-implicational
paradoxes” and “disjunction-implicational paradoxes” [7], and proposed strong
relevant logics Tc, Ec, and Rc for relevant reasoning [7]. Tc, Ec, and Rc reject all
the conjunction-implicational and disjunction-implicational paradoxes in T, E, and
R, respectively, and therefore, by using strong relevant logics as the fundamental
logic to underlie reasoning for ATF, one can avoid those problems in using CML,
various conservative extensions of CML, and relevant logics T, E, and R. Cheng
also proposed predicate strong relevant logics, named TcQ, EcQ, and RcQ [7]. The
forward reasoning approach based on strong relevant logic is to use strong relevant

2

logic as the fundamental logic to underlie the reasoning in ATF.
The forward reasoning approach based on strong relevant logic is hopeful to

solve the problem of ATF. First, by using strong relevant logic as the fundamental
logic to underlie reasoning in ATF, we can avoid lots of boring theorems holding
paradoxes deduced by using classical mathematical logic, because strong relevant
logic is a paradox-free logic system [4, 5]. Second, by using Cheng’s approach
to do ATF, it is not necessary to generate hypotheses first and we can directly
to reasoned out theorems. Third, Cheng’s approach is hopeful to establish a
systematic method for ATF in multi-fields, because Cheng’s approach separates
the empirical parts and logical parts to do ATF. In other words, Cheng’s reasoning
approach is independent from the specific knowledge of one certain field. Therefore,
we can do ATF in different fields by using same fragments of theorems of strong
relevant logics, the only difference is inputting empirical premises of different fields.
To support Cheng’s approach to do ATF in multi-fields, a semi-lattice model of
formal theories was proposed [8], in which the formal theory of axiomatic set
theory is seen as the minimum elements in the semi-lattice model, and other formal
theories can be established above the axiomatic set theory level by level.

To confirm the effectiveness of the approach, we presented a case study of
ATF in von Neumann-Bernays-Godel (NBG) set theory by automated forward
deduction based on the strong relevant logics [24, 25]. In the case study, by
using Cheng’s approach, we rediscovered some known theorems of NBG set theory.
However, in the experiment, our ATF method is ad hoc, but not systematic and
general so that our method cannot be used in other case study or other fields
[24, 25]. To solve the ATF problem, it is necessary to establish a systematic and
general methodology for ATF based on Cheng’s approach.

1.2 Purpose and objectives

Our purpose is to propose a systematic methodology for ATF by forward reasoning
based on strong relevant logic. The methodology holds generality so that we can
use it to do ATF in various fields.

Our work involves following objectives. First, we propose the systematic method-
ology for ATF. Second, we show the effectiveness of our methodology by performing
three case studies of ATF in three different mathematical fields [19, 21, 23]. The
first field is NBG set theory, the second one is Peano’s arithmetic, and the third
one is graph theory. For each case study, we elaborated how to apply our method-
ology, showed results and gave a evaluation. After we presented three case studies,
we evaluated the methodology from viewpoint of generality.

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 1 presents the background and purpose
of this research. Chapter 2 explains the basis of the strong relevant logic and the
terminology of ATF. Chapter 3 presents our systematic methodology for ATF.
Chapter 4 presents the case study of preparation of logical fragments. Chapter 5

3

presents the case study of ATF in NBG set theory. Chapter 6 presents the case
study of ATF in Peano’s arithmetic. Chapter 7 presents the case study of ATF
in graph theory. Chapter 8 gives a discussion about our methodology. Finally,
concluding remarks are given in Chapter 9.

4

Chapter 2

Basic notions and notations

2.1 Logic-based reasoning

Reasoning is the process of drawing new conclusions from some premises which are
known facts and/or assumed hypotheses [9]. Therefore, reasoning can enlarging or
extending somethings, or adding to what is already known or assumed. A logically
valid reasoning is a reasoning such that its process of drawing new conclusions from
premises is justified based on some logical criterion in order to obtain correct con-
clusions. Therefore, a reasoning may be valid on a logical criterion but invalid on
another. The most essential and central concept in logic is the logical consequence
relation that relates a given set of premises to those conclusions, which validly
follow from the premises.

A formal logic system L is an ordered pair (F (L),⊢L) where F (L) is the set of
well formed formulas of L, and ⊢L is the consequence relation of L such that for a
set P of formulas and a formula C, P ⊢L C means that within the framework of
L taking P as premises we can obtain C as a valid conclusion. Th(L) is the set of
logical theorems of L such that ϕ ⊢L T holds for any T ∈ Th(L). According to the
representation of the consequence relation of a logic, the logic can be represented
as a Hilbert style system, a Gentzen sequent calculus system, a Gentzen natural
deduction system, and so on [7].

Let (F (L),⊢L) be a formal logic system and P ⊆ F (L) be a non-empty set
of sentences. A formal theory with premises P based on L, called an L-theory
with premises P and denoted by TL(P), is defined as TL(P) =df Th(L) ∪ The

L(P)
where The

L(P) =df {A|P ⊢L A and A /∈ Th(L)}, Th(L) and The
L(P) are called

the logical part and the empirical part of the formal theory, respectively, and any
element of The

L(P) is called an empirical theorem of the formal theory [7].
Based on the definition above, the problem of ATF can be defined as “for any

given premises P , how to construct a meaningful formal theory TL(P) and then
find new and interesting theorems in The

L(P) automatically?”[5]
The notion of the degree [10] of a connective is defined as follows: Let θ be an

arbitrary n-ary (1 ≤ n) connective of logic L and A be a formula of L, the degree
of θ in A, denoted by Dθ(A), is defined as follows: (1) Dθ(A) = 0 if and only
if there is no occurrence of θ in A, (2) if A is in the form θ(a1, a2, ..., an) where
a1, a2, ..., an are formulas, then Dθ(A) = max{Dθ(a1), Dθ(a2), ..., Dθ(an)} + 1, (3)

5

if A is in the form σ(a1, a2, ..., an) where σ is a connective different from θ and
a1, a2, ..., an are formulas, then Dθ(A) = max{Dθ(a1), Dθ(a2), ..., Dθ(an)}, and (4)
if A is in the form QB where B is a formula and Q is the quantifier prefix of B,
then Dθ(A) = Dθ(B).

The notion of a fragment of a logic [10] is defined as follows: Let θ1, θ2, ..., θn be
connectives of logic L and k1, k2, ..., kn be natural numbers, the fragment of L about
θ1, θ2, ..., θn and their degrees k1, k2, ..., kn, denoted by Th(θ1,k1,θ2,k2,...,θn,kn)(L), is a
set of logical theorems of L which is inductively defined as follows (in the terms
of Hilbert style axiomatic system): (1) if A is an axiom of L and Dθ1(A) ≤
k1, Dθ2(A) ≤ k2, ..., Dθn(A) ≤ kn, then A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L), (2) if A is the
result of applying an inference rule of L to some members of Th(θ1,k1,θ2,k2,...,θn,kn)(L)
and Dθ1(A) ≤ k1, Dθ2(A) ≤ k2, ..., Dθn(A) ≤ kn, then A ∈ Th(θ1,k1,θ2,k2,...,θn,kn)(L),
(3) Nothing else are in Th(θ1,k1,θ2,k2,...,θn,kn)(L). Similarly, the notion of degree
of formal theory about conditional can also be generally extended to other logic
connectives, and a fragment of a formal theory with premises P based on the logical
fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L) denoted by T

(η1,j1,...,ηs,js)

Th(θ1,k1,...,θn,kn)(L)
(P) is also similarly

defined as the notion of a fragment of a logic.

2.2 Strong relevant logics

In the literature of mathematical, natural, social, and human sciences, it is proba-
bly difficult, if not impossible, to find a sentence form that is more generally used
for describing various definitions, propositions, and theorems than the sentence
form of ‘if ... then ...’. In logic, a sentence in the form of ‘if ... then ...’ is usu-
ally called a conditional proposition or simply conditional which states that there
exists a relation of sufficient condition between the ‘if’ part and the ‘then’ part
of the sentence. Scientists always use conditionals in their descriptions of various
definitions, propositions, and theorems to connect a concept, fact, situation or
conclusion to its sufficient conditions. The major work of almost all scientists is
to discover some sufficient condition relations between various phenomena, data,
and laws in their research fields [7].

The notion abstracted from various conditionals is called “entailment”. In an
entailment there are two propositions which called the antecedent and the conse-
quent. The truth and/or validity of an entailment depends not only on the truths
of its antecedent and consequent but also essentially on a necessarily relevant,
conditional, and/or causal relation between its antecedent and consequent.

A logical conditional that is considered to be universally true, in the sense
of that logic, is also called an entailment of that logic. Indeed, the most intrin-
sic difference between various different logic systems is to regard what class of
conditionals as entailments.

An obvious candidate for the logic to be used to underlie ATF is CML. How-
ever, CML was established in order to provide formal languages for describing the
structures with which mathematicians work, and the methods of proof available
to them; its principal aim is a precise and adequate understanding of the notion
of mathematical proof. CML is not a suitable fundamental tool for ATF because

6

of the well-known “implicational paradox problem” [7].
In CML, the notion of conditional, which is intrinsically intensional but not

truth-functional, is represented by the truth-functional extensional notion of ma-
terial implication (denoted by → in this thesis) that is defined as A → B =df

¬(A∧¬B) or A→ B =df ¬A∨B, where ∧, ∨, and ¬ denote the notion of conjunc-
tion, disjunction, and negation, respectively. However, the material implication is
intrinsically different from the notion of conditional in meaning (semantics). As
a result, for example, propositions “snow is white → 1+1=2”, “snow is black →
1+1=2”, and “snow is black → 1+1=3” are all right in logic. If we read “→” as
‘if... then...” then “if snow is white then 1+1=2”, “if snow is black then 1+1=2”,
and “if snow is black then 1+1=3” are so strange in human logical thinking, be-
cause there is no necessarily relevant, conditional, and/or causal relation between
the “if” part and the “then” part of each sentence [5]. Obviously, the notion of
entailment in human logical thinking is intrinsically different from the notion of
material implication in CML.

In order to avoid the “implicational paradox problem”, traditional relevant
logics T, E, and R were constructed [1, 2]. However, traditional relevant logics are
also not suitable for ATF. Although traditional relevant logics have rejected the
“implicational paradox problem”, there are still some logical axioms or theorems
in the logics which are not natural in the sense of entailment. Cheng named them
“conjunction-implicational paradoxes” and “disjunction-implicational paradoxes”.
For example, “(A∧B)⇒ A”, “A⇒ (A∨B)”, and so on [5]. Let us consider “(A∧
B) ⇒ A”, B in the antecedent may have no relevance with A in the consequent
so that this formular are not natural in the sense of entailment. The propositions
in this form such as “if snow is white and 1+1=2 then snow is white”, “if snow
is white and 1+1=3 then snow is white”, “if snow is white and snow is not white
then snow is white” and so on. Obviously, those propositions are not natural in
the sense of entailment.

In order to avoid those paradoxes in traditional relevant logics, Cheng proposed
strong relevant logics, named Tc, Ec, and Rc, for conditional relation representa-
tion and reasoning [7]. As a modification of T, E, and R, Tc, Ec and Rc reject
all conjunction-implicational and disjunction-implicational paradoxes in T, E and
R, respectively, so that they are free of not only implicational paradoxes in CML,
but also conjunction-implicational and disjunction-implicational paradoxes in tra-
ditional relevant logics. What underlies the strong relevant logics is the strong
relevance principle: If A is a theorem of Rc, Ec, or Tc, then every sentential
variable in A occurs at least once as an antecedent part and at least once as a con-
sequent part. Therefore, strong relevant logics are the most suitable candidates as
the fundamental logic to underlie ATF [7]. Besides, Cheng also proposed predicate
strong relevant logics, named TcQ, EcQ, and RcQ [7].

The logical connectives, axiom schemata, and inference rules of strong relevant
logics are shown as follows:

Primitive logical connectives:

⇒: entailment

¬: negation

7

∧: extensional conjunction

Defined logical connectives:

⊗: intensional conjunction, A⊗B =df ¬(A⇒ ¬B)

⊕: intensional disjunction, A⊕B =df ¬A⇒ B

⇔: intensional equivalence, A⇔ B =df (A⇒ B)⊗ (B ⇒ A)

∨: extensional disjunction, A ∨B =df ¬(¬A ∧ ¬B)

→: material implication, A→ B =df ¬(A ∧ ¬B) or ¬A ∨B

↔: extensional equivalence, A↔ B =df (A→ B) ∧ (B → A)

Quantifiers:

∀: universal quantifier

∃: existential quantifier

These quantifiers are not independent and can be defined as follows:

∀xA =df ¬∃x¬A,
∃xA =df ¬∀x¬A.

Axiom schemata

E1: A⇒ A

E2: (A⇒ B)⇒ ((C ⇒ A)⇒ (C ⇒ B))

E2’: (A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))

E3: (A⇒ (A⇒ B))⇒ (A⇒ B)

E3’: (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

E3”: (A⇒ B)⇒ ((A⇒ (B ⇒ C))⇒ (A⇒ C))

E4: (A⇒ ((B ⇒ C)⇒ D))⇒ ((B ⇒ C)⇒ (A⇒ D))

E4’: (A⇒ B)⇒ (((A⇒ B)⇒ C)⇒ C)

E4”: ((A⇒ A)⇒ B)⇒ B

E4”’: (A⇒ B)⇒ ((B ⇒ C)⇒ (((A⇒ C)⇒ D)⇒ D))

E5: (A⇒ (B ⇒ C))⇒ (B ⇒ (A⇒ C))

E5’: A⇒ ((A⇒ B)⇒ B)

N1: (A⇒ (¬A))⇒ (¬A)
N2: (A⇒ (¬B))⇒ (B ⇒ (¬A))
N3: (¬(¬A))⇒ A

C1: (A ∧B)⇒ A

C2: (A ∧B)⇒ B

C3: ((A⇒ B) ∧ (A⇒ C))⇒ (A⇒ (B ∧ C))

C4: (LA ∧ LB)⇒ L(A ∧B), where LA =df (A⇒ A)⇒ A

8

D1: A⇒ (A ∨B)

D2: B ⇒ (A ∨B)

D3: ((A⇒ C) ∧ (B ⇒ C))⇒ ((A ∨B)⇒ C)

DCD: (A ∧ (B ∨ C))⇒ ((A ∧B) ∨ C)

C5: (A ∧ A)⇒ A

C6: (A ∧B)⇒ (B ∧ A)

C7: ((A⇒ B) ∧ (B ⇒ C))⇒ (A⇒ C)

C8: (A ∧ (A⇒ B))⇒ B

C9: ¬(A ∧ ¬A)
C10: A⇒ (B ⇒ (A ∧B))

IQ1: ∀x(A⇒ B)⇒ (∀xA⇒ ∀xB)

IQ2: (∀xA ∧ ∀xB)⇒ ∀x(A ∧B)

IQ3: ∀xA ⇒ A[t/x] (if x may appear free in A and t is free for x in A, i.e. free
variables of t do not occur bound in A)

IQ4: ∀x(A⇒ B)⇒ (A⇒ ∀xB) (if x does not occur free in A)

IQ5: ∀x1 · · · ∀xn(((A⇒ A)⇒ B)⇒ B) (0 ≤ n)

Inference rules:

⇒E: “from A and A⇒ B to infer B” (Modus Ponens)

∧I: “from A and B infer A ∧B” (Adjunction)

∀I: “if A is an axiom, so is ∀xA” (Generalization of axioms)

Thus, various relevant logic systems may now defined as follows, where we use
‘A | B’ to denote any choice of one from two axiom schemata A and B.

Te = {E1, E2, E2’, E3| E3” } + ⇒E

Ee = {E1, E2 | E2’, E3 | E3’, E4 | E4’} + ⇒E

Ee = {E2’, E3, E4”} + ⇒E

Ee = {E1, E3, E4”’} + ⇒E

Re = {E1, E2 | E2’, E3 | E3’, E5 | E5’} + ⇒E

Ten = Te + {N1, N2, N3 }
Een = Ee + {N1, N2, N3 }
Ren = Re + {N2, N3 }

T = Ten + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I
E = Een + {C1 ∼ C4, D1 ∼ D3, DCD } + ∧I
R = Ren + {C1 ∼ C3, D1 ∼ D3, DCD } + ∧I

Tc = Ten + {C3, C5 ∼ C10}

9

Ec = Een + {C3 ∼ C10}
Rc = Ren + {C3, C5 ∼ C10}

TeQ = Te + {IQ1, IQ3 ∼ IQ4 } + ∀I

EeQ = Ee + {IQ1, IQ3 ∼ IQ5 } + ∀I

ReQ = Re + {IQ1, IQ3 ∼ IQ4 } + ∀I

TenQ = Ten + {IQ1, IQ3 ∼ IQ4 } + ∀I

EenQ = Een + {IQ1, IQ3 ∼ IQ5 } + ∀I

RenQ = Ren + {IQ1, IQ3 ∼ IQ4 } + ∀I

TcQ = Tc + {IQ1 ∼ IQ4 } + ∀I
EcQ = Ec + {IQ1 ∼ IQ5 } + ∀I
RcQ = Rc + {IQ1 ∼ IQ4 } + ∀I

Here, Te, Ee, and Re are the purely implicational fragments of T, E, and
R, respectively. Ten, Een, and Ren are the implication-negation fragments of T,
E, and R, respectively; TcQ, EcQ, and RcQ are predicate strong relevant logics
proposed by Cheng [7].

2.3 Forward deduction engine

Reasoning can be classified into three forms, deduction, induction and abduction.
Deduction is the process of deducing or drawing conclusions from some general
principles already known or assumed. Induction is the process of inferring some
general laws or principles from the observation of particular instances. Abduction
is the process whereby a surprising fact is made explicable by the application to it
of a suitable proposition. The deduction guarantees that the conclusions deduced
in the process are true if all premises are true, but induction and abduction do not.
Thus, automated forward deduction is an indispensable component for above com-
puting systems with purposes of prediction and/or discovery. Automated forward
deduction is a process of deducing new and unknown conclusions automatically by
applying inference rules to premises and previously deduced conclusions repeatedly
until some previously specified condition is satisfied [16]. All of backward reason-
ing engines, including backward deduction engines, cannot use to automatically
discover new theorems [10].

Cheng has proposed an automated forward deduction system for general-purpose
entailment calculus, named “EnCal” [6]. EnCal supports automated forward de-
duction based on strong relevant logics as well as other logics, but the logic systems
and application fields which EnCal can supports is limited and EnCal cannot per-
form inductive and abductive reasoning. Based on the experiences of development
and applications of EnCal, FreeEnCal [10, 27] has been designed and developed
which can interpret and perform inference rules defined and given by its users,

10

Graph

Theory

SRL

Axiomatic

Set Theory

Lattice

Theory

Group

Theory

Number

Theory
...

...

Figure 2.1: The semi-lattice model of formal theories

can deal with various logic systems including classical mathematical logic, its var-
ious classical conservative extensions, and various philosophical logics in principle
[26, 30], draw empirical theorems of various formal theories constructed based on
various logic systems, and perform deductive, inductive, and abductive reasoning
automatically [10]. FreeEnCal [10] is a forward reasoning engine for general pur-
pose, that provides an easy way to customize reasoning task by providing different
axioms, inference rules and facts. Users can set the degree of logical connectives
to make FreeEnCal to reason out in principle all logical theorem schemata of the
fragment Th(θ1,k1,θ2,k2,...,θn,kn)(L). FreeEnCal can also reason out in principle all

empirical theorems of T
(η1,j1,...,ηs,js)

Th(θ1,k1,...,θn,kn)(L)
(P) from Th(θ1,k1,...,θn,kn)(L) and P with

inference rules of L.

2.4 The semi-lattice model of formal theories

Cheng has proposed a semi-lattice model of formal theories [8], which can support
forward reasoning approach based on strong relevant logic to do ATF in multi-
fields. The core of the model is strong relevant logic (SRL) and the formal theory
of axiomatic set theory is seen as the minimum element in the semi-lattice, and
other formal theories can be established above the axiomatic set theory as shown
in Figure 2.1.

On the other hand, theorem finding processes in mathematics must include
some concept/notion abstraction processes. In any mathematical field, definitions
and axioms mean simple concepts. Mathematicians continue to define more com-
plex concepts by using previously given definitions and axioms, and already defined

11

concepts. Then, mathematicians think, assume, prove propositions by using the
defined complex concepts. After that, they obtain new theorems. For example,
predicate “∈” is the most basic predicate in the set theory. Mathematicians define
predicate “⊆” which is a higher level predicate than “∈”, and abstract from “∈”
by the definition of “⊆”: ∀x∀y(∀u((u ∈ x) ⇒ (u ∈ y)) ⇔ (x ⊆ y)). In addition,
they define predicate “=” which is a higher level predicate than “⊆”, and abstracts
from “⊆” by the axiom: ∀x∀y(((x ⊆ y) ∧ (y ⊆ x)) ⇔ (x = y)). Moreover, math-
ematicians think, assume, and prove own beliefs by using simple representation
rather than complex representation if both representation show same meaning.
For example, after mathematicians defined “=”, they will think, assume, and
prove propositions by using ∀x∀y(x = y) rather than ∀x∀y((x ⊆ y) ∧ (y ⊆ x)). In
theorem finding process, a complex representation is replaced with a simple repre-
sentation, but not preserved, after mathematicians define the simple representation
as the complex representation. To do ATF by abstraction of mathematical con-
cepts based on Cheng’s semi-lattice model of formal theories holds generality for
ATF. The definitions of abstraction level are shown as below.

The notion of predicate abstract level is defined as follows: (1) Let pal(X) = k
denote that an abstract level of a predicate X is k where k is a natural number, (2)
pal(X) = 1 if X is the most primitive predicate in the target field, (3) pal(X) =
max(pal(Y1), pal(Y2), ..., pal(Yn))+1 if a predicate X is defined by other predicates
Y1, Y2, ..., Yn in the target field where n is a natural number. A predicateX is called
k-level predicate, if pal(X) = k. If pal(X) < pal(Y), we call the abstract level of
predicate X is lower than Y , and Y is higher than X.

The notion of function abstract level is defined as follows: (1) Let fal(f) = k
denote that an abstract level of a function f is k where k is a natural number,
(2) fal(f) = 1 if f is the most primitive function in the target field, (3) fal(f) =
max(fal(g1), fal(g2), ..., fal(gn)) + 1 if a function f is defined by other functions
g1, g2, ..., gn in the target field where n is a natural number. A function f is k-level
function, if fal(f) = k. If fal(f) < fal(g), we call the abstract level of function
f is lower than g, and g is higher than f .

The notion of abstract level of a formula is defined as follows: (1) lfal(A) =
(k,m) denote that an abstract level of a formula A where k = pal(A) and m =
fal(A), (2) pal(A) = max(pal(Q1), pal(Q2), ..., pal(Qn)) where Qi is a predicate
and occurs in A (1 ≤ i ≤ n), or pal(A) = 0, if there is not any predicate in A,
(3) fal(A) = max(fal(g1), fal(g2), ..., fal(gn)) where gi is a function and occurs
in A (1 ≤ i ≤ n), or fal(A) = 0, if there is not any function in A. A formula A is
(k,m)-level formula, if lfal(A) = (k,m). (k,m)-level formula is also called k-level
predicate formula, or m-level function formula.

(k,m)-fragment of premises P , denoted by P(k,m), is a set of all formulas in P
that consists of only (j, n)-level formulas where m, n, j and k are natural number
(0 ≤ j ≤ k and 0 ≤ n ≤ m).

If two theorems are same theorems when we use the most primitive predi-
cate and function of the target field to represent them, then we defined them as
“equivalent theorems”.

12

Chapter 3

A systematic methodology for
automated theorem finding

3.1 Overview

We proposed a systematic methodology for ATF by forward reasoning based on
strong relevant logic. The methodology is aimed to do ATF in various mathe-
matical fields based on the proposed semi-lattice model of formal theories. In the
target field of ATF, we defined the abstract levels of predicates and functions and
the whole procedure of the methodology can be seen as reasoning, abstracting and
finding theorems systematically so that we can do ATF from simple theorems to
complex theorems. The methodology holds generality so that we can use it to do
ATF in various fields.

3.2 Systematic methodology

The methodology consists of five phases. The first phase is to prepare logical
fragments for various empirical theories. The second phase is to prepare empirical
premises of the target theory. The third phase is to reason out empirical theorems
in the target theory. The fourth phase is to abstract empirical theorems. The
fifth phase is to find interesting theorems from the empirical theorems. Figure 3.1
shows the procedure flow of the systematic methodology.

Phase 1 Prepare logical fragments for various empirical theories

The first phase is to prepare various logical fragments of strong relevant logics.
Logical fragments of strong relevant logics are independent from any target field.
Thus, the prepared logical fragments can be reused for ATF in different fields.

Phase 1.1 Define a semi-lattice of logical fragments

In this phase, we define a semi-lattice [15] of logical fragments of EcQ such
that we can prepare logical fragments systematically [8, 11]. EcQ is a suitable
logic system for reasoning in ATF, because EcQ is the logic system of strict and

13

relevant implication [7]. To define the semi-lattice of logical fragments of EcQ,
we use the elements of the semi-lattice to represent the different logical fragments
respectively, and use the partial order of the semi-lattice to represent the inclusion
relation between two logical fragments [8]. Firstly, we define the minimum element
of the semi-lattice. All of the logical fragments of EcQ conclude the axioms of
strong relevant logic system Ee, so we can define Th(⇒,1)(Ee) as the minimum
element. Then, we define the semi-lattice of logical fragments according to the
inclusion relation of the logic systems in EcQ, i.e., Th(Ee) ⊂ Th(Een) ⊂ Th(Ec),
Th(EeQ) ⊂ Th(EenQ) ⊂ Th(EcQ), Th(Ee) ⊂ Th(EeQ), Th(Een) ⊂ Th(EenQ),
and Th(Ec) ⊂ Th(EcQ). After that, we define the degree of each logic connective
for each above logic system from low degree to high degree. For example, we
can define the degree for the logical fragments of EeQ in this order: first the
logical fragment Th(⇒,1)(EeQ), then Th(⇒,2)(EeQ), finally the logical fragment
Th(⇒,3)(EeQ) and so on. A defined semi-lattice of logical fragments of EcQ is
shown in Figure 3.2.

Phase 1.2 Deduce logical theorems

In this phase, we deduce logic theorems according to the partial order of the
defined semi-lattice of logical fragments. We input the axioms and inference rule
of EcQ, set the degree of each logic connective, and use FreeEnCal to deduce
logical theorems automatically. Cheng conjectured that almost all new theorems
and questions of a formal theory can be deduced from the premises of that theory
by finite inference steps concerned with finite number of low degree entailments
[5, 7, 8]. We set the degree of ⇒ below 4, and set the degree of ¬ and ∧ below
2. We can start to deduce the logical fragments from Th(⇒,1)(EeQ), but not
start from Th(⇒,1)(Ee), because ATF in all of mathematical fields need to use
logical fragments of predicate strong relevant logic. In detail, first we input all the
axioms of EeQ and set the degree of ⇒ by 1 to deduce the logical fragment of
Th(⇒,1)(EeQ). Second, we input the deduced logical theorems of Th(⇒,1)(EeQ) as
new premises and set the degree of ⇒ by 2 to deduce Th(⇒,2)(EeQ). Thirdly, we
input the deduced logical theorems of Th(⇒,2)(EeQ) as new premises to deduce
Th(⇒,3)(EeQ). After that, we combine the axioms of N1 − N3 of EenQ with
deduced logical theorems in the logical fragments Th(⇒,k)(EeQ) (1 ≤ k ≤ 3) and
set the degree of ¬ by 1 to deduce the logical fragments Th(⇒,k,¬,1)(EenQ) (1 ≤
k ≤ 3). Finally we combine the axioms C3 − C10 of EcQ with deduced logic
theorems in Th(⇒,k,¬,1)(EenQ) (1 ≤ k ≤ 3) and set the degree of ∧ by 1 to deduce
the logical fragments Th(⇒,k,¬,1,∧,1)(EcQ) (1 ≤ k ≤ 3).

Phase 2 Prepare empirical premises

The second phase is to prepare empirical premises. In the phase, we collect the
definitions and axioms in the target field and draw up a plan to use those collected
empirical premises to do ATF.

Phase 2.1 Collect empirical premises

14

In this phase, we collect the formalized definitions and axioms of the target
field as empirical premises. We also collect the known theorems of the target
field as more as possible, because the possibility to reason out new and interesting
theorems will be increased, if we use the known theorems as empirical premises.

Phase 2.2 Define the semi-lattice of fragments of empirical premises

In this phase, we prepare (k,m)-fragments of collected empirical premises in
the target field. A set of the prepared fragments and inclusion relation on the set
is a partial order set, and is a finite semi-lattice. Moreover, a set of formal theories
with the fragments and inclusion relation on the set is also a partial order set,
and is also a finite semi-lattice. Partial order of the set of the prepared fragments
can be used for a plan to reason out fragments of formal theories with collected
empirical premises. According to the partial order, we can systematically do ATF
from simple theorems to complex theorems. In detail, first, we summarize all the
predicate abstract levels of all of the predicates in collected empirical premises.
Second, we summarize all the function abstract levels of all of the functions in
collected empirical premises. Third, we summarize the abstract level of all of
the collected empirical premises, i.e., axioms and definitions. Fourth, we use the
elements of the semi-lattice to represent (k,m)-fragments of the premises in the
target field, use the partial order to represent the inclusion relation between two
fragments such that the semi-lattice of fragments of empirical premises is defined.

Phase 3-5 ATF loop by loop

We reason out empirical theorem, abstract empirical theorems, and find in-
teresting empirical theorems loop by loop from Phase 3 to Phase 5 as shown in
Figure 3.1 such that we can do ATF systematically according to the partial or-
der of defined semi-lattice of logical fragments and the partial order of defined
semi-lattice of fragments of collected premises. In detail, we firstly choose the
prepared minimum logical fragment to do ATF. After we chose logical fragment,
we also use minimum abstract level fragment of premises to reason out empirical
theorems rather than inputting all of premises. Then we enter into Phase 4 to
abstract empirical theorems and Phase 5 to find interesting theorems from empir-
ical theorems. After that, we come back to the Phase 3 and input the premises in
the least upper bound of the inputted fragment of premises in the last loop and
also input the reasoned out empirical theorems in the last loop to reason out next
higher abstract level empirical theorems by using same logical fragment. Then, we
enter into Phase 4 and Phase 5 to abstract theorems and find interesting theorems
again. We deduce the empirical theorems by the method again and again until
all of empirical premises have been inputted. After we input all of premises, we
choose the bigger logical fragment according to the partial order in the defined
semi-lattice to do ATF continuously. Because there is not a maximum element
in the defined semi-lattice of the logical fragments, the ATF process should be
continued until we can find new and interesting theorems or we used all of the
prepared logical fragments.

15

Phase 3 Reason out empirical theorems

In this phase, we reason out empirical theorems by forward deduction with
strong relevant logics, substitution, simplifying terms, and mathematical induc-
tion. The reason why we separate substitution from forward deduction is that
substitution as forward deduction is a quite time and memory consuming process.
Substitution as forward deduction is to get formulas by substituting all terms in
vocabulary of a target field for individual variables in each obtained formula. Our
methodology specifies cases to do substitution. Mathematical induction is indis-
pensable process to get empirical theorems in several fields, e.g., number theory.
However, mathematical induction is a proving method because we have to prepare
a proof target before doing mathematical induction. Thus, it is impossible to di-
rectly use mathematical induction for ATF. Our methodology provides a method
to generate proof targets of mathematical induction from drawn formulas.

Phase 3.1 Deduce empirical theorems

In this phase, we use FreeEnCal to deduce empirical theorems automatically.
We input empirical premises, chosen logical fragment, inference rule, and set the
degree of each logic connective to deduce empirical theorems. We choose logical
fragment according to the partial order of defined semi-lattice of logical fragments.
We input empirical premises according to the partial order of defined semi-lattice
of fragments of empirical premises. We deduce empirical theorems according to
the partial order of the defined semi-lattice of fragments of premises loop by loop,
rather than deducing empirical theorems one time. The deduced lower abstract
level empirical theorems in the last loop should be also inputted as new empirical
premises to deduce the higher abstract level empirical theorems.

Phase 3.2: Substitute terms

The phase is to choose those empirical theorems whose terms should be sub-
stituted, and to substitute their terms. Our method is to search those empirical
theorems which by substitution can deduce new empirical theorems with other
deduced theorems by using modus ponens, and then we perform the substitution
of terms. For example, if the empirical theorems ∀x∀y((x = y) ⇒ (x ⊆ y)) and
∀x((x = (x ∩ x)) exist in deduced empirical theorems, the term “y” in the first
empirical theorem should be substituted by function “x ∩ x” such that a new
empirical theorem “∀x(x ⊆ (x ∩ x))” can be found.

Phase 3.3: Simplify terms

In this phase, from the deduced and substituted empirical theorems, we find
the A = B type empirical theorems as simplifying rules, in which the degree of
nested function in A is higher (or lower) than B, then we use the lower one to
replace the higher one in all of the empirical theorems. For example, if a deduced
empirical theorem is like the formula ∀x(g(x, x) = g(x, g(x, x)))) then we can
simplify g(x, g(x, x)) with g(x, x) in the other empirical theorems. As another
example, if an empirical theorem is like (0 + 0) = 0, we simplified the terms 0 + 0
in all of the empirical theorems with 0.

16

Phase 3.4 Perform mathematical induction

In this phase, we reason out empirical theorems by mathematical induction.
This phase consists of two processes. The first one is a process to generate proof
targets of mathematical induction from obtained theorems in previous sub-phases.
The second one is a process to prove the targets by mathematical induction. Gen-
erating proof targets is done as follows. At first, we substitute the base element
and the successor of the base element in a target field, e.g., 0 (zero) and s(0) in
number theory, for obtained theorems that form ∀xA where A is a formula. In
other words, we get all A[x/0] and A[x/s(0)] from obtained formulas ∀xA where
A[x/t] means a term t substitutes for occurrence of x in sub-formula A. Secondly,
we find all couples of formulas B[x/0] and B[x/s(0)] where B is a closed formula
and ∀xB is not included in a set of obtained formulas. Finally, we generate ∀xB
as a proof target of mathematical induction if we can find the couple of formulas
B[x/0] and B[x/s(0)]. For generating proof targets, we have to do substitution and
simplification again in this phase. Obtained proof targets are proved by mathemat-
ical induction. We can use already existing automated theorem proving systems,
e.g., OTTER [39]. If we succeed to prove the target, we adopt the target as an
empirical theorem.

Phase 4 Abstract empirical theorems

In this phase, we perform the k-level abstraction according to the current level
(k-level, k > 0) in the defined semi-lattice of abstract level fragments of empirical
premises [22].

To perform the k-level abstraction, we define i-level abstraction rule ri. An
i-level abstraction rule ri is defined as ri =< pi, wj > where pi is i-level predi-
cate/function, wj is a j-level predicate/function formula, i, j, and k are natural
numbers, and (1 ≤ j < i ≤ k). we define i-level abstraction rule ri according to
definitions of predicates/functions in a certain mathematical field. For example,
if an i-level predicate p is defined as ∀x1 . . . ∀xn(p(x1, . . . , xn) ⇔ B) where B is
j-level predicate formula, i, j, and n are natural numbers, and (1 ≤ j < i), then
an i-level abstraction rule is < p(x1, . . . , xn), B >. Then, the procedure of k-level
abstraction is as follows.

1. S is a set of all i-level abstraction rules.
2. ri ∈ S if S ̸= ∅.
3. if a theorem A includes wj of ri, then replace all wj in A with pi of ri.
4. S ← S − {ri}
5. Go back to 3.2.

Note that the k-level abstraction conclude a process of an explicitly epis-
temic contraction and a process of an explicitly epistemic expansion by predi-
cate/function abstraction. An explicitly epistemic contraction by predicate/function
abstraction is an operation to remove a theorem from the current set of obtained
theorems, if the theorem can be k-level abstraction. An explicitly epistemic expan-
sion by predicate/function abstraction is an operation to add a theorem obtained
by k-level abstraction to a source theorem, if the abstracted theorem does not exist

17

Table 3.1: Degree of collected theorems
⇒, 0 241 56% ∧, 0 359 83% ¬, 0 404 94%
⇒, 1 188 44% ∧, 1 61 14% ¬, 1 25 6%
⇒, 2 0 0% ∧, 2 7 2% ¬, 2 0 0%
⇒, 3 0 0% ∧, 3 1 <1% ¬, 3 0 0%
⇒, 4 0 0% ∧, 4 1 <1% ¬, 4 0 0%

in the current set of obtained theorems. After phase 4, each theorem in the current
set of obtained theorems is checked whether the explicitly epistemic contraction
and expansion can be applied to the theorem or not. By the explicitly epistemic
contraction and expansion, redundant equivalent theorems can be deleted in the
current set of obtained theorems.

Phase 5 Find interesting theorems

In this phase, we use filtering methods to remove uninteresting theorems from
deduced empirical theorems step by step, and then provide the rest theorems as
candidates of interesting theorems [25].

First, to conveniently analyze empirical theorems, we remove the quantifiers of
all the empirical theorems and called those theorems “core empirical theorems” of
deduced empirical theorems. If the core empirical theorem is an interesting theo-
rem, then we can see the primitive theorem as candidate of interesting theorems
[25].

Second, we check whether a formula includes a tautological sub-formula or not.
If a formula includes a tautological sub-formula, the theorem should be filtered,
because if one theorem contains a tautology part, this empirical theorem must not
be an interesting empirical theorem. For example, ((x = x)⇒ (x = x))⇒ (x ⊆ x)
cannot be called an interesting theorem, because it is like (A ⇒ A) ⇒ B which
contains a tautology A⇒ A.

Third, we filter those high degree empirical theorems although they do not
contain tautology patterns. For example, (((y ∈ x) ⇒ (y ∈ (x ∩ x))) ⇒ (y ∈
(x∩ x)))⇒ (((y ∈ (x∩ x))⇒ (y ∈ x))⇒ (y ∈ x)) cannot be called an interesting
theorem. This is based on our conjecture: In empirical theorems of each abstract
level, logical connectives of interesting theorems must be low degree, because it is
very hard for human’s brain to understand those higher degree empirical theorems.
For example, we have analyzed more than 400 known theorems of NBG set theory
recorded in Quaife’s book [39], and recorded our analysis results in Table 3.1. We
can find that the logical connectives of those known theorems are almost lower
than degree 3.

18

Figure 3.1: The activity diagram of the systematic method for ATF

19

Figure 3.2: The semi-lattice of logical fragments of EcQ

20

Chapter 4

Preparation of logical fragments

In our case studies, we chose strong relevant logic system EcQ [7] as fundamental
logic system, and we used the forward reasoning engine FreeEnCal to deduce the
logical theorems automatically. The prepared logical fragments of strong relevant
logics EcQ are independent from any target field and the prepared logical fragments
can be reused for ATF in the three case stuides. Therefore, we show the first phase
of following three case studies by one chapter.

Phase 1 Prepare logical fragments for various empirical theories

According to our methodology, preparation of logical fragments was done by
two sub-phases as follows.

Phase 1.1 Define a semi-lattice of logical fragments

We defined a semi-lattice of logical fragments of EcQ to deduce the logical
theorems and prepare the logical fragments systematically. We showed the defined
semi-lattice in Figure 3.2.

Phase 1.2 Deduce logical theorems

According to the defined semi-lattice of logical fragments of EcQ, we used the
inference rule of generalization of axioms to add one quantifier and used FreeEnCal
to prepare logical fragments of EcQ automatically. We used axioms of EcQ to
deduce logical theorems except C5, N3, and C10. We did not use C5 and N3,
because FreeEnCal provided them as the elimination rules. The axiom C10 was not
used, because C10 can make the logical fragment enlarge too fast. Furthermore, we
did not use IQ3 and IQ4 in the phase of preparation of logical fragments, because
they are used for deducing empirical theorems but not logical theorems. Table 4.1
shows the numbers of logical theorem schemata of the prepared logical fragments.

Then, we added quantifiers for those prepared logical fragments according to
the empirical premises of the target fields so that we can used them to reason out
empirical theorems in the empirical fields of ATF. The quantifiers of the collected
empirical premises of NBG set theory and Peano’s arithmetic are below 4, and the
quantifiers of the collected empirical premises of graph theory are below 6, therefore

21

Table 4.1: Prepared logical fragments
logical fragments Logical theorem schemata Prefix notation Infix notation

Th(⇒,1)(Ee) 10 Ee1.txt Ee1 lf.txt
Th(⇒,2)(Ee) 10 Ee2.txt Ee2 lf.txt
Th(⇒,3)(Ee) 13 Ee3.txt Ee3 lf.txt
Th(⇒,4)(Ee) 17589 Ee4.txt Ee4 lf.txt

Th(⇒,1,¬,1)(Een) 12 Een21.txt Een21 lf.txt
Th(⇒,2,¬,1)(Een) 12 Een21.txt Een21 lf.txt
Th(⇒,3,¬,1)(Een) 40 Een31.txt Een31 lf.txt
Th(⇒,4,¬,1)(Een) 1139516+ Een41.txt Een41 lf.txt
Th(⇒,1,¬,1,∧1)(Ec) 18 Ec111.txt Ec111 lf.txt
Th(⇒,2,¬,1,∧1)(Ec) 23 Ec211.txt Ec211 lf.txt
Th(⇒,3,¬,1,∧1)(Ec) 2013 Ec311.txt Ec311 lf.txt
Th(⇒,1)(EeQ) 21 EeQ1.txt EeQ1 lf.txt
Th(⇒,2)(EeQ) 21 EeQ2.txt EeQ2 lf.txt
Th(⇒,3)(EeQ) 64 EeQ3.txt EeQ3 lf.txt
Th(⇒,4)(EeQ) 543403 EeQ4.txt EeQ4 lf.txt

Th(⇒,1,¬,1)(EenQ) 25 EenQ21.txt EenQ21 lf.txt
Th(⇒,2,¬,1)(EenQ) 27 EenQ21.txt EenQ21 lf.txt
Th(⇒,3,¬,1)(EenQ) 191 EenQ31.txt EenQ31 lf.txt
Th(⇒,1,¬,1,∧1)(EcQ) 39 EcQ111.txt EcQ111 lf.txt
Th(⇒,2,¬,1,∧1)(EcQ) 65 EcQ211.txt EcQ211 lf.txt
Th(⇒,3,¬,1,∧1)(EcQ) 42563 EcQ311.txt EcQ311 lf.txt

Table 4.2: Prepared logical fragments by adding quantifiers
Logical Logical theorem schemata Logical theorem schemata

fragments below 4 quantifiers below 6 quantifiers

Th(⇒,2)(EeQ) 60 91
Th(⇒,3)(EeQ) 970 3199

Th(⇒,2,¬,1)(EenQ) 90 147
Th(⇒,3,¬,1)(EenQ) 3098 10714
Th(⇒,2,¬,1,∧1)(EcQ) 311 575
Th(⇒,3,¬,1,∧1)(EcQ) 1,240,643+ 1,240,643+

22

we added quantifiers for prepared logical fragments below 4 and 6 respectively. In
the step, we did not prepare the logical fragments whose degree of⇒ is 1, because
those logical fragments are not practical for the deducing empirical theorems.
Besides, we tried to deduce Th(⇒,3,¬,1,∧1)(EcQ) after we added four quantifiers,
however, we cannot deduce all of the logic theorem schemata of the logical fragment
because of the current limited memory space. Table 4.2 showed the prepared logical
fragments which were added quantifiers.

23

Chapter 5

Case study: Automated theorem
finding in NBG set theory

5.1 Overview

The purpose of the case study is to confirm the effectiveness of our methodology.
NBG set theory is a choice for the first case study, because almost all mathematics
can be formulated in the language of set theory [28, 36], the set theory has been
regarded as the ultimate proving ground for automated theorem proving programs.
This is also true in ATF. Furthermore, mathematics can provide the language in
which the natural sciences aspire to describe and analyze the universe. There is
a natural link between mathematics and the natural sciences. Thus, if we can
achieve ATF in NBG set theory, it is also hopeful that we can use the approach
in other mathematical fields even other natural science fields to achieve ATF.

On the other hand, in the foundations of mathematics, NBG set theory is
one kind of axiomatic set theory that is a conservative extension of the canonical
axiomatic set theory ZFC [29]. But not like other axiomatic set theory, NBG set
theory is one axiom system for set theory that can in turn be expressed within
the language of the first-order predicate calculus, which can be programmed on a
digital computer. That is the reason why we did the case study in NBG set theory
rather than other axiomatic set theory.

5.2 Perform the methodology

We did ATF based on the proposed methodology phase by phase. We showed each
phase how we did ATF as below.

Phase 1 Prepare logical fragments for various empirical theories

The first phase to prepare various logical fragments of strong relevant logics
has been showed in the Chapter 4. The prepared logical fragments can be reused
in different empirical fields for ATF, so here we did not explained this phase again.

Phase 2 Prepare empirical premises

24

Phase 2.1 Collect empirical premises

Quaife recorded the axioms, definitions, and more than 400 known theorems
of NBG set theory in his book [39]. In our case study, we chose all of the axioms
and definitions in Quaife’s book as empirical premises. We showed all the inputted
axioms as below and also showed used definitions in our case study in Table 5.1.

• Axiom A-1: Sets are classes (omitted because all objects are classes).

• Axiom A-2: Elements of classes are sets.
∀x(x ⊆ V).

• Axiom A-3: Extensionality.
∀x∀y((x = y)⇒ (x ⊆ y)).
∀x∀y((x = y)⇒ (y ⊆ x)).
∀x∀y((x ⊆ y) ∧ (y ⊆ x)⇒ (x = y)).

• Axiom A-4: Existence of unordered pair.
∀u∀x∀y((u ∈ {x, y})⇒ (u = x) ∨ (u = y)).
∀x∀y((x ∈ V)⇒ (x ∈ {x, y})).
∀x∀y((y ∈ V)⇒ (y ∈ {x, y})).
∀x∀y(({x, y} ∈ V)).

• Axiom B-1: E (elementhood relation).
(E ⊆ V × V).
∀x∀y((< x, y >∈ E)⇒ (x ∈ y)).
∀x∀y((< x, y >∈ (V × V)) ∧ (x ∈ y)⇒ (< x, y >∈ E)).

• Axiom B-2: ∩ (binary intersection).
∀z∀x∀y((z ∈ (x ∩ y))⇒ (z ∈ x)).
∀z∀x∀y((z ∈ (x ∩ y))⇒ (z ∈ y)).
∀z∀x∀y((z ∈ x) ∧ (z ∈ y)⇒ (z ∈ (x ∩ y))).

• Axiom B-3: ∼ (complement).
∀z∀x(¬((z ∈∼ (x)) ∧ (z ∈ x))).
∀z∀x((z ∈ V)⇒ (z ∈∼ (x)) ∨ (z ∈ x)).

• Axiom B-4: D (domain).
∀x∀z(¬((restrict(x, {z}, V) = 0) ∧ (z ∈ D(x)))).
∀x∀z((z ∈ V)⇒ (restrict(x, {z}, V) = 0) ∨ (z ∈ D(x))).

• Axiom B-5: × (Cartesian product).
∀u∀v∀x∀y((< u, v >∈ (x× y))⇒ (u ∈ x)).
∀u∀v∀x∀y((< u, v >∈ (x× y))⇒ (v ∈ y)).
∀u∀v∀x∀y((u ∈ x) ∧ (v ∈ y)⇒ (< u, v >∈ (x× y))).

• Axiom B-6: inverse.
∀x(inverse(x) ⊆ (V × V)).
∀u∀v∀x((< u, v >∈ inverse(x))⇒ (< u, v >∈ (V × V))).
∀u∀v∀x((< u, v >∈ inverse(x))⇒ (< v, u >∈ x)).
∀u∀v∀x((< u, v >∈ (V × V)) ∧ (< v, u >∈ x)⇒ (< u, v >∈ inverse(x))).

25

• Axiom B-7: rotate.
∀x(rotate(x) ⊆ ((V × V)× V)).
∀x∀u∀v∀w((<< u, v >,w >∈ rotate(x))⇒ (<< v,w >, u >∈ x)).
∀x∀u∀v∀w((<< v,w >, u >∈ x)∧ (<< u, v >,w >∈ ((V ×V)×V))⇒ (<<
u, v >,w >∈ rotate(x))).

• Axiom B-8: flip.
∀x(flip(x) ⊆ ((V × V)× V)).
∀x∀u∀v∀w((<< u, v >,w >∈ flip(x))⇒ (<< v, u >,w >∈ x)).
∀x∀u∀v∀w((<< v, u >,w >∈ x)∧ (<< u, v >,w >∈ ((V ×V)×V))⇒ (<<
u, v >,w >∈ flip(x))).

• Axiom C-1: Infinity.
INDUCTIV E(ω).
∀y(INDUCTIV E(ω)⇒ (ω ⊆ y)).
(ω ∈ V).

• Axiom C-2: U (sum class).
∀x((x ∈ V)⇒ (U(x) ∈ V)).

• Axiom C-3: P (power class).
∀u((u ∈ V)⇒ (P (u) ∈ V)).

• Axiom C-4: Replacement.
∀x∀xf(FUNCTION(xf) ∧ (x ∈ V)⇒ ((xf“x) ∈ V)).

• Axiom D: Regularity.
∀x((x = 0) ∨ (regular(x) ∈ x)).
∀x((x = 0) ∨ ((regular(x) ∩ x) = 0)).

• Axiom E: Universal choice.
FUNCTION(choice).
∀y((y ∈ V)⇒ (y = 0) ∨ ((choice‘y) ∈ y)).

Phase 2.2 Define the semi-lattice of fragments of empirical premises

To do ATF from the simple theorems to complex theorems, we defined a semi-
lattice of abstract level fragments of collected empirical premises in NBG set the-
ory. First, we summarized all of the predicate abstract levels of the collected
definitions and axioms as shown in Table 5.2. Second, we summarized all of the
function abstract levels of the collected definitions and axioms as shown in Table
5.3. Third, we summarized all of the abstract levels of collected definitions and
axioms as shown in Table 5.4. Finally, according to the abstract level of collected
definitions and axioms, we defined the semi-lattice of abstract level fragments of
empirical premises in NBG set theory as shown in Figure 5.1. In the figure, “NBG”
means all of collected premises of NBG set theory.

Phase 3 Reason out empirical theorems

26

Table 5.1: Used definitions of NBG set theory
Inputted notions Meaning Type

⊆ subclass predicate
{ } singleton set function
V class individual constant

<,> ordered pair function
0 null class individual constant
E elementhood relation individual constant
∪ binary union function
+ symmetric difference function

restrict restriction function
P power class function
U sum class function

inverse inverse function
R range function
“ image function

succ successor function
SUCC successor set individual constant

INDUCTIV E inductive set predicate
ω infinity individual constant
◦ composition function

SINGV AL single-valued class predicate
FUNCTION function predicate

regular Regularity function
‘ functional application function

choice universal choice individual constant
ONEONE one-to-one function predicate

S subset relation individual constant
I identity relation individual constant

diag diagonalization function
cantor Cantor class function

OPERATION operation predicate
COMPATIBLE compatible function predicate

HOM homomorphism predicate

27

Table 5.2: Predicate abstract level in NBG set theory
Predicate Abstract from Level
∈ none 1
⊆ ∈ 2
= ⊆ 3

INDUCTIVE ∈, ⊆ 3
SINGVAL ⊆ 3

FUNCTION ⊆, SINGVAL 4
ONEONE FUNCTION 5

OPERATION FUNCTION, =, ⊆ 5
COMPATIBLE FUNCTION, =, ⊆ 5

HOM OPERATION, COMPATIBLE, =, ∈ 6

Table 5.3: Function abstract level in NBG set theory
Function Abstract from Level
{, } none 1
∩ none 1
∼ none 1
{ } {, } 2
∪ ∼, ∩ 2
+ ∼, ∩ 2

regular ∩ 2
<,> {, }, { } 3
succ ∪, { } 3
× <,> 4

restrict ∩, × 5
rotate <,>, × 5
flip <,>, × 5
D restrict, { } 6

inverse D, flip, × 7
diag ∼, D, ∩ 7
U D, restrict 7
R D, inverse 8
“ R, restrict 9
P “,∼ 10
◦ “, { }, ×, <,> 10
‘ U, “, { } 10

cantor D, diag, inverse, ◦, ∩ 11

28

Table 5.4: The abstract level of axioms and definitions in NBG set theory
Abstract level Axiom and definition

(1, 1) Axiom B2, B3
(1, 4) Axiom B1, B5
(1, 7) Axiom C2
(1, 10) Axiom C3
(2, 0) Axiom A2, Definition of ⊆
(2, 5) Axiom B7, B8
(2, 7) Axiom B6
(2, 10) Definition of ◦
(3, 0) Axiom A3, C1
(3, 1) Axiom A4,
(3, 2) Definition of { }, ∪, +, Axiom D
(3, 3) Definition of <,>, succ
(3, 5) Definition of restrict
(3, 6) Axiom B4,
(3, 7) Definition of inverse, U, diag
(3, 8) Definition of R
(3, 9) Definition of “, INDUCTIVE
(3, 10) Definition of SINGVAL, P, ‘
(3, 11) Definition of cantor
(4, 4) Definition of FUNCTION
(4, 9) Axiom C4
(4, 10) Axiom E
(5, 7) Definition of ONEONE
(5, 8) Definition of OPERATION, COMPATIBLE
(6, 10) Definition of HOM

29

In the case study, we did not use Phase 3.4 of our methodology, because math-
ematical induction is not an axiom of NBG set theory.

Phase 3.1 Deduce empirical theorems

We used the reasoning engine FreeEnCal to deduce empirical theorems of NBG
set theory automatically. We set the degrees of ⇒ to 2, ¬ to 1, and ∧ to 1
to deduce the empirical theorems of NBG set theory. We used all of the pre-
pared logical fragments to deduce empirical theorems except the logical fragment
Th(⇒,3,¬,1,∧1)(EcQ). We did not use Th(⇒,3,¬,1,∧1)(EcQ) because of the limited
memory space. In detail, first we used the logical fragment Th(⇒,2)(EeQ) to deduce
empirical theorems of NBG set theory. We inputted the fragments of empirical
premises according to the defined semi-lattice shown in Figure 5.1. In detail, we
first inputted the axiom A-2 and definition of ⊆ to deduce the empirical theorems
of NBG set theory such that all of deduced empirical theorems were below (2, 0)
abstract level. Then, we came into the next phase to substitute and simplify terms
and to abstract the empirical theorems and find interesting empirical theorems in
the current abstract level. After that, we came back to this phase and combined
the deduced theorems which are below (2, 0) abstract level with the axiom A-3 and
C-1 to deduce the empirical theorems which are below (3, 0) abstract level. We
used the method to deduce empirical theorems again and again such that we de-
duced theorems from simple to complex. After all of empirical premises of NBG set
theory have been used, we used the bigger logical fragment such as Th(⇒,3)(EeQ)
to deduce empirical theorems again. We used the logical fragments according to
the defined semi-lattice shown in Figure 3.2.

Phase 3.2 Substitute terms

In the case study, after we deduced the empirical theorems, we searched all
of the ∀x∀y...(A ⇒ B) style empirical theorems and C style empirical theorems.
For example, the theorem ∀x∀y((x = y) ⇒ (x ⊆ y)) is a ∀x∀y...(A ⇒ B) style
empirical theorem, and ∀x((x = (x ∩ x)) is a C style empirical theorem. Then we
tried to match the empirical theorem C with the A part of the ∀x∀y...(A ⇒ B)
empirical theorems. If we substitute the instance in A part, the two empirical
theorems can deduce new theorems by using modus ponens, then we performed
substitution of terms.

Phase 3.3 Simplify terms

In the case study, we did not found any A = B style empirical theorems
deduced from axioms and definitions of NBG set theory. Although there are some
A = B style definitions in NBG set theory, such as ∀x({x, x} = {x}), we did not
use those definitions as rules to simplified terms but use them as abstraction rule
to abstract empirical theorems in Phase 4. Therefore, we did not simplify terms
for any empirical theorem in the case study.

Phase 4 Abstract empirical theorems

30

Table 5.5: ATF in NBG set theory by prepared logical fragments
Used Obtained empirical Core empirical Filtered

logical fragments theorems theorems results

Th(⇒,2)(EeQ) 199 87 78
Th(⇒,3)(EeQ) 968 128 80

Th(⇒,2,¬,1)(EenQ) 211 91 82
Th(⇒,3,¬,1)(EenQ) 4754 480 363
Th(⇒,2,¬,1,∧1)(EcQ) 415 178 129

According to our methodology, the abstraction phase was not performed only
one time, but performed loop by loop with Phase 3 and Phase 5. After the em-
pirical theorems by inputting the fragment P(k,m) of premises were deduced, we
defined the abstraction rules according to the definitions and axioms of the frag-
ment P(k,m) and performed abstraction automatically by using elimination rules
provided by FreeEnCal. Then, we found interesting empirical theorems and de-
duced next higher abstract level empirical theorems. In detail, after we deduced
the empirical theorems by inputting P(3,0) as premises, we got two abstraction
rules according to axiom A-3 and definition of ⊆. The first abstraction rule is to
abstract sub-formula ((x ⊆ y) ∧ (y ⊆ x)) to (x = y) and the other is to abstract
sub-formula ((u ∈ x) ⇒ (u ∈ y)) to (x ⊆ y). After we used the two abstrac-
tion rules to abstract the empirical theorems, we enter into the next phase to find
interesting theorems in this abstract level.

Phase 5 Find interesting theorems

In the phase, we used our filtering methods to filter uninteresting theorems
step by step and then see the filtered results as candidates of interesting theorems.
First, we removed the quantifiers of all of the obtained empirical theorems to get
“core empirical theorems”. Second, we divided all of core empirical theorems into
sub-formula and used FreeEnCal to check whether or not core empirical theorems
and its sub-formulas are the instances of deduced logical theorem schemata au-
tomatically. If a core empirical theorem includes a tautological sub-formula (or
itself is a tautological formula), we filtered it as uninteresting theorem. In the
case study, all of empirical theorems were obtained as low degree, therefore, it is
not necessary to filter high degree empirical theorems. We showed the obtained
empirical theorems, core empirical theorems and filtered results in Table 5.5.

5.3 Case study for explicitly epistemic contrac-

tion by predicate abstracton

Purpose of the case study is to confirm the effectiveness of explicitly epistemic
contraction in Phase 4 of our methodology. By introducing explicitly epistemic
contraction by predicate/function abstraction to the methodology, we can expect
two positive effects, but it may be a side effect. The first positive effect is that we

31

Table 5.6: The abstract level of axioms and definitions in NBG set theory
Abstract level Axiom and definition

(1,m) Axiom B1, B2, B3, B5, C2, C3
(2,m) Axiom A2, B6, B7, B8, Definition of ⊆, ◦
(3,m) Axiom A3, A4, B4, C1, D, Definition of { }, ∪,

+, <,>, succ, restrict, inverse, U, diag,
R, “, INDUCTIVE, SINGVAL, P, ‘, cantor

(4,m) Axiom C4, Axiom E, Definition of FUNCTION
(5,m) Definition of ONEONE, OPERATION, COMPATIBLE
(6,m) Definition of HOM

can reduce execution time and amount of used memory space of automated forward
reasoning for ATF, because by unifing those equivalent theorems, lots of interme-
diate results in the process of reasoning of ATF have been reduced. The second
positive effect is that we can save the cost of excavation of new and interesting
theorems from obtained theorems, because lots of redundant equivalent theorems
have been removed, and the set of obtained theorems have been contracted. On the
other hand, the explicitly epistemic contraction by predicate/function abstraction
may also lead to a side effect, that is some new and interesting theorems may not
be deduced due to the removed equivalent theorems. Some new and interesting
theorems may be deduced from the removed equivalent theorems or the theorems
deduced from the removed equivalent theorems. Therefore, we have to investi-
gate the effectiveness of the explicitly epistemic contraction approach by a case
study of ATF. Because the processes of k-level function abstraction is similar to
k-level predicate abstraction in Phase 4, we only focus on the explicitly epistemic
contraction by predicate abstraction in the case study.

Method

We tried to investigate two things. First is how amount of redundant results
the explicitly epistemic contraction by predicate abstraction can reduce. Second
is whether the explicitly epistemic contraction has a side effect or not. To inves-
tigate the two things, we did two case studies by using our methodology. One
is not using the explicitly epistemic contraction by predicate abstracton, “case
study 1” for short. The other one is using the explicitly epistemic contraction
by predicate abstraction, “case study 2” for short. In both case studies, we used
same logical fragment and empirical premises. The logic fragment we used is
Th(⇒,2,¬,1,∧1)(EcQ), which has been prepared. The empirical premises are all ax-
ioms and definitions of NBG set theory in Quaife’s book. We summarized all of
the (1,m)-level to (6,m)-level definitions and axioms of NBG set theory as shown
in Table 5.6.

In the both of case studies, we did 6 loops from phase 3 to phase 5 of our
methodology, because of the highest abstract level of predicate is 6 in the case
study. In phase 3, when we were doing i-th loop, we used the (i,m)-level frag-
ments of the axioms and definitions, and results obtained in last loop as empirical

32

Table 5.7: The number of theorems included intermediate results
Case study 1 Case study 2

6th loop 1,855 1,516

Table 5.8: The number of theorems of (i,m)-level theorems (4 ≤ i ≤ 6)
Case study 1 Case study 2

6th loop, (6,m)-level theorems 20 20
5th loop, (5,m)-level theorems 43 37
4th loop, (4,m)-level theorems 21 16

premises, and obtained empirical theorems of NBG set theory by using FreeEnCal
with setting the degree⇒ to 2, ¬ to 1, and ∧ to 1. Note that output of FreeEnCal
includes not only empirical theorems of NBG set theory, but also intermediate
results that are used for reasoning the empirical theorems. In phase 4, when we
were doing i-th loop, we applied i-level abstraction to each of obtained empirical
theorems and intermediate results. In case study 1, both a theorem/intermediate
result and a result of i-level abstraction of the theorem/intermediate result are
preserved. However, in case study 2, only a result of i-level abstraction of the
theorem/intermediate result is preserved because of the explicitly epistemic con-
traction by predicate abstraction.

In both case studies, we counted the number of obtained results (including
intermediate results) after 6th loop for checking how amount of redundant results
the explicitly epistemic contraction by predicate abstraction can reduce. To in-
vestigate whether the explicitly epistemic contraction has a side effect or not, we
counted the number of (i,m)-level theorems obtained after i-th loop (4 ≤ i ≤ 6).
Moreover, we counted the number of each level theorems obtained after each loop
in case study 1.

Result

We showed the results of the two case studies. First, we counted the number
of theorems included intermediate results of the two case stuies in Table 5.7. To
investigate the side effect, we counted the number of (i,m)-level (4 ≤ i ≤ 6)
theorems in i-th loop (4 ≤ i ≤ 6) as shown in Table 5.8, and we also counted the
theorems in i-th loop (1 ≤ i ≤ 6) of case study 1 as shown in Table 5.9.

We analyzed the results from the two aspect. First one is for the two expected
positive effects. The current results show that the number of obtained theorems
and the intermediate results have been indeed reduced by the proposed approach
as shown Table 5.7, that means the approach can reduce a lot of redundant results
and reduce the cost for excavation of new and interesting theorems. Second inves-
tigation is for the side effect. The higher abstract level theorems are more possible
to become new and interesting theorems. Based on the opinion, we counted the
highest abstract level from 4th loop to 6th loop as shown in Table 5.8. We found

33

Table 5.9: The number of theorems in case study 1
(1,m) (2,m) (3,m) (4,m) (5,m) (6,m)

1st loop 111
2nd loop 220 18
3rd loop 228 19 62
4th loop 228 57 98 21
5th loop 228 57 98 41 43
6th loop 228 57 98 41 43 20

almost all of the highest abstract level theroem in each loop were not removed by
our approach, such as the highest abstract level theorems in 6th loop. Although
some theorems cannot be obtained, some of these theorems are removed as equiv-
alent theorems, so it is not side effect. For example, the six highest level theorems
cannot be obtained in 5th loop in the case study 2, but four theorems are removed
as equivalent theorems. Some theorems cannot be deduced due to the removed
equivalent theorems, however, we consider that the possibility of those theorems
found as new and interesting theorems is low, because the removed theorems can-
not successively impact on the deduction of the higher abstract level theorems
as shown in Table 5.9. Therefore, the experiment results shows our approach is
effectiveness.

5.4 Evaluation

The results of the case study show that our methodology is effective. First, from
the viewpoint of systematic method, it is sure that the case study of ATF in NBG
set theory were performed systematically in each phase. Besides, the results of
case study for explicitly epistemic contraction by predicate abstraction showed the
effectiveness of the abstraction approach in our methodology. We can conclude that
the approach is useful for ATF by forward reasoning in many mathematical fields.
From the viewpoint of finding new and interesting theorems, our method provides
the filtering method to filter most of uninteresting theorems based on syntax,
especially more empirical theorems are obtained the effectiveness of the filtering
method is more obvious, for example, near 90% empirical theorems reasoned by
Th(⇒,3)(EeQ) and Th(⇒,3,¬,1)(EenQ) can be removed automatically such that the
scientists can find interesting theorems from the filtered results based on semantics
by accepatable time.

34

Figure 5.1: The semi-lattice of fragments of premises in NBG set theory

35

Chapter 6

Case study: Automated theorem
finding in Peano’s arithmetic

6.1 Overview

The purpose of this case study is to confirm the effectiveness and generality of our
methodology. After we did a case study of NBG set theory, we have to use our
methodology in another field to confirm the generality. The Peano axioms [31, 39]
which are a set of axioms for the natural numbers presented by the 19th century
Italian mathematician Giuseppe Peano, are well formalized by mathematical logic.
We chose Peano’s Arithmetic as the second field of our case study.

6.2 Perform the methodology

To confirm the generality of the proposed methodology, we performed ATF in
Peano’s arithmetic by using the proposed methodology as same as the first case
study. We showed in each phase how we did ATF as below.

Phase 1 Prepare logical fragments for various empirical theories

The first phase to prepare various logical fragments of strong relevant logics has
been showed in the Chapter 4. The prepared logical fragments can be reused in
different empirical fields for ATF, so here we did not explained this phase again.

Phase 2 Prepare empirical premises

Phase 2.1 Collect empirical premises

Quaife recorded the axioms, definitions and more than 1200 known theorems
in his book [39]. In our case study, we chose all of the Peano’s axioms recorded in
Quaife’s book as empirical premises (in Quaife’s book, “1+x” means the successor
of “x”, and we used the function s() to represent the successor in our case study).

• Axiom 1: The successor function is one-to-one.
∀x∀y(((1 + x) = (1 + y))⇒ (x = y))

36

Table 6.1: Used definitions of predicates in Peano’s arithmetic
Inputted notions Meaning

< ordering
DIV divisibility
LD linear difference predicate
PR prime
On on second argument
SUB sublist
SET set

SORTED sorted list
PERM perm
PRIMES list of primes

PP prime power predicate
PPOWERS list of prime power
BSORTED base sorted list

≡ congruence
INCONG incongruent

COMPLETE complete
CRS complete residue system
RP relative primality

RCOMPLETE reduced complete
RCRS reduced complete residue system

• Axiom 2: Zero is not a successor.
∀x(¬((1 + x) = 0))

• Axiom 3: First recursion equation for addition.
∀x((0 + x) = x)

• Axiom 4: Second recursion equation for addition.
∀x∀y(((1 + x) + y) = (1 + (x+ y)))

• Axiom 5: First recursion equation for multiplication.
∀x((0 ∗ x) = 0)

• Axiom 6: Second recursion equation for multiplication.
∀x∀y(((1 + x) ∗ y) = (y + (x ∗ y)))

• Axiom 7: The Mathematical Induction.
(P (0) ∧ ∀n(p(n)⇒ p(1 + n)))⇒ ∀n(p(n))

Besides of the seven axioms, we also used all the definitions of Peano’s arith-
metic recorded in Quaife’s book as empirical premises. We recorded the definitions
of predicates and functions we used in our case study in Table 6.1 and Table 6.2.

Phase 2.2 Define the semi-lattice of fragments of empirical premises

37

Table 6.2: Used definitions of functions in Peano’s arithmetic
Inputted notions Meaning

- difference
min minimum
max maximum
mod remainder
/ quotient
ld1 first linear difference coefficient
ld2 second linear difference coefficient
gcd non-zero linear differences
gcd1 gcd coefficient
gcd2 gcd coefficient
lcm least common multiple
lf least factor
gf great factor
! factorial
[|] pairing function
app append
rev reverse
head head
tail tail
at nth tail
len length
ht components
card cardinality
set set function

merge merge function
sort sort function
del delete function∑

sum of a list
const list of length y of identical elements x
xy exponentiation
log logarithm∏

product of a list
pfact list of prime factors of a number
lpp least prime power factor of a number

ppfact prime power factorization
init initial segment

modlist mod of a list
times times
red reduction function
φ Euler’s φ function

38

Table 6.3: Predicate abstract level in Peano’s arithmetic
Predicate Abstract from Level

= none 1
< = 2

DIV = 2
LD = 2
SET = 2

PERM = 2
On = 2
≡ = 2

SORTED <, = 3
PR <, = 3
SUB On 3
PP <, = 3

BSORTED <, = 3
INCONG <, =, ≡ 3

COMPLETE On, =, ≡ 3
CRS PERM 3
RP On, = 3

RCOMPLETE On, =, ≡ 3
RCRS PERM 3

PRIMES =, PR 4
PPOWERS PP, = 4

To do ATF from the simple theorems to complex theorems, we defined a semi-
lattice of abstract level fragments of collected empirical premises in Peano’s arith-
metic. First, we summarized all of the predicate abstract levels of the collected
definitions and axioms as shown in Table 6.3. Second, we summarized all of the
function abstract levels of the collected definitions and axioms as shown in Table
6.4. Third, we summarized all of the abstract levels of collected definitions and
axioms as shown in Table 6.5. Finally, according to the abstract level of collected
definitions and axioms, we defined the semi-lattice of abstract level fragments of
empirical premises in Peano’s arithmetic as shown in Figure 6.1. In the figure,
“Peano” means all of collected premises in Peano’s arithmetic.

Phase 3 Reason out empirical theorems

Phase 3.1 Deduce empirical theorems

In the second case study, the reasoning engine FreeEnCal was chosen as the
tool to deduce empirical theorems automatically. We set the degrees of ⇒ to 2, ¬
to 1, and ∧ to 1 to deduce the empirical theorems of NBG set theory. As same
as the first case study, because of the limited memory space, we also used all of
the prepared logical fragments except the logical fragment Th(⇒,3,¬,1,∧1)(EcQ) to
deduce empirical theorems. The order of using logical fragments was according to
the partial order of the defined semi-lattice of logical fragments shown in Figure

39

Table 6.4: Function abstract level in Peano’s arithmetic
Function Abstract from Level

s none 1
+ none 1
∗ none 1
gcd none 1
lf none 1
− + 2

mod ∗ 2
/ ∗ 2
! *, s 2
xy *, s 2
log /, s 3
min +, - 3
max +, - 3
ld1 *, - 3
ld2 *, - 3
lcm gcd, *, / 3
gf /, lf 3
[|] +, *, /, s 3

head [|] 4
tail [|] 4
app [|] 4
len [|] 4
gcd1 gcd, ld1 4
gcd2 gcd, ld2 4
card s, [|] 4
set [|] 4
del [|] 4∑

[|], + 4
const [|], s 4∏

[|], * 4
pfact lf, gf, [|] 4
lpp lf, log 4
times [|], * 4
red gcd, [|] 4

modlist mod, [|] 4
ppfact [|], lpp, / 5
init app, [|], s 5
rev [|], app 5
at s, tail 5

merge [|], head, tail 5
sort [|], merge 6
ht head, at 6
φ init, red, len 6

40

Table 6.5: The abstract level of axioms and definitions in Peano’s arithmetic
Abstract levels Axioms and definitions

(1, 1) Axioms of Peano’s Arithmetic
(1, 2) Definition of −, mod, /, !, xy

(1, 3) Definition of min, max, ld1, ld2, lcm, gf, [|]
(1, 4) Definition of gcd1, gcd2, app, len, del,

∑
, const,∏

, lpp, modlist, times, red, head, tail
(1, 5) Definition of rev, at, init
(1, 6) Definition of ht, sort, φ
(2, 1) Definition of gcd, lf
(2, 2) Definition of <, DIV, ≡
(2, 3) Definition of LD, ON, log
(2, 4) Definition of card, SET, set, PERM, pfact
(2, 5) Definition of merge, ppfact
(3, 0) Definition of SUB
(3, 1) Definition of COMPLETE, RCOMPLETE, PR, RP
(3, 4) Definition of PP, BSORTED, SORTED
(3, 5) Definition of CRS, RCRS
(3, 6) Definition of INCONG
(4, 4) Definition of PRIMES, PPOWERS

3.2, that is the same as the case study of NBG set theory. After we chose one logical
fragment, we inputted the empirical premises according to the partial order of the
defined semi-lattice of fragments of collected premises shown in Figure 6.1. In
detail, first we inputted the axiom 1-6 of Peano’s arithmetic (except mathematical
induction) to deduce the empirical theorems such that all of the deduced theorems
were below (1, 1) abstract level. Then, we came into the next phase to substitute
and simplify terms, induced empirical theorems, abstracted theorems and found
interesting theorems from empirical theorems below (1, 1) abstract level. After
that, we came back to this phase and combined the reasoned out theorems in the
last loop with the definitions of −, mod(), /, !, xy to deduce empirical theorems
whose abstract level are below (1, 2). We used the method to deduce empirical
theorems again and again such that we deduced theorems from simple to complex.

Phase 3.2 Substitute terms

In the case study, we also use the method to substitute the terms same as
the method we used in the first case study. Besides, we also substituted the
instance 0 and s(0) to the deduced empirical theorems, because we performed the
mathematical induction in this case study.

Phase 3.3 Simplify terms

We collected the A = B type empirical theorems from deduced empirical the-
orems as simplifying rules. For example, after we inputted the fragment P(1,2)

of collected premises, the empirical theorem ∀x((x − x) = 0) was deduced. We

41

collected it as a simplifying rule and replaced all of the terms like x − x with 0
in other deduced empirical theorems. By using the simplifying rule, the deduced
empirical theorem min(0, 0) = (0− (0− 0)) was simplified to min(0, 0) = 0 in the
case study. In the case study, we did not delete the primitive empirical theorems
before we simplified, because they were still useful for reasoning out new empirical
theorems.

Phase 3.4 Perform mathematical induction

In this phase, we used our method to generate proof target by observing the
deduced empirical theorems and to prove the generated target. In Peano’s arith-
metic, the base element is 0, so we substituted 0 and s(0) as an instance to the
deduced theorems that are like ∀xA where A is a formula. Then we tried to find
B[x/0] and B[x/s(0)], and if we can find them in the deduced empirical theorems,
we used mathematical induction to generate a hypothesis ∀xB(x) as a proof tar-
get. For example, we substituted 0 to all of the deduced empirical theorems by
inputting the fragment P(1,1) of empirical premises. Then, we found two empirical
theorems (0 + 0) = 0 and (s(0) + 0) = s(0 + 0). Because the empirical theorem
(0 + 0) = 0 was deduced, we collected it as a simplifying rule and we simplified
the term 0+0 with 0 in the empirical theorems. Therefore, the empirical theorem
(s(0)+0) = s(0) was found. Because we found the theorem(0+0) = 0 (can be seen
as B[x/0]) and the theorem (s(0)+ 0) = s(0) (can be seen as B[x/s(0)]), by using
our method, we generated the proof target ∀x((x + 0) = x). In our case study,
besides of ∀x((x+0) = x), we also generated two proof targets ∀x(min(x, x) = x)
and ∀x(max(x, x) = x). The next phase is to use the existing ATP system to prove
those theorems, such as OTTER. Quaife used OTTER to prove those theorems
and recorded them in his book [39], so we did not prove those known theorems
again.

Phase 4 Abstract empirical theorems

As same as the case study of NBG set theory, we did not perform the abstrac-
tion phase one time, but performed the phase with Phase 3 and Phase 5 loop by
loop. After we reasoned out the empirical theorems by inputting the fragment
P(k,m) of premises, we defined the abstraction rules according to the axioms and
definitions of the P(k,m), and performed abstraction automatically by using elimina-
tion rules provided by FreeEnCal. In this case study, we have defined and used 54
abstraction rules to abstract empirical theorems. For example, after we reasoned
out all of the theorems by inputting the fragment P(2,2) of premises, we changed
all the sub-formula ((y mod x)= 0) to DIV (x, y) according to the definition of
DIV . After we used the abstraction rule to abstract the empirical theorems, we
entered into the next phase to find interesting theorems in this abstract level.

Phase 5 Find interesting theorems

In the phase, we used our filtering methods to filter uninteresting theorems
step by step and then see the filtered results as candidates of interesting theo-
rems. The processes of the phase is same as the case study of NBG set theory

42

Table 6.6: ATF in Peano’s arithmetic by prepared logical fragments
Used Obtained empirical Core empirical Filtered

logical fragments theorems theorems results

Th(⇒,2)(EeQ) 290 145 129
Th(⇒,3)(EeQ) 1216 224 139

Th(⇒,2,¬,1)(EenQ) 328 168 152
Th(⇒,3,¬,1)(EenQ) 4662 821 553
Th(⇒,2,¬,1,∧1)(EcQ) 488 214 186

such that we do not elaborate them again. We showed the obtained empirical
theorems, core empirical theorems and filtered results in Table 6.6. By using our
methodology, some proved theorems by using OTTER indeed can be found by our
methodology, such as the theorem ∀x((x−x) = 0). Besides, some known theorems
were found as proved targets by using our methodology, such as ∀x((x + 0) = x)
and ∀x(min(x, x) = x), which were proved by using OTTER. In the filtered re-
sults, some interesing candidates found by our forward reasoning approach was
not recorded in Quaife’s book, such as ∀x(¬(1 < lf(x)) ⇒ (lf(x) = x)), and to
evaluate the interestingness for those empirical theorems is not a easy work, so
our method is to provide those candidates to mathematicians and make mathe-
maticians to evaluate the interestingness for those empirical theorems found by
our filtering methods.

6.3 Evaluation

The case study shows that our methodology is effective and holds generality, be-
cause we used the same logical fragments used in the case study of NBG set theory
and perform same methodology, we can also find some interesting candidates of em-
pirical theorems, even some known theorems. Besides, the result of the case study
shows that bigger logical fragment is used, the possibility to deduce interesting
theorems is bigger, such as the empirical theorem ∀x(¬(1 < lf(x))⇒ (lf(x) = x))
which was reasoned out by using logical fragment Th(⇒,3,¬,1)(EenQ), but it cannot
be reasoned out by other four lower degree logical fragments in the case study. Be-
cause our methodology provides a continuous and systematic way to prepare the
logical fragments and use them to do ATF, if we do ATF by using our methodology
continuously, it is possible to find a new and interesting theorem in the future.

43

Figure 6.1: The semi-lattice of fragments of premises in Peano’s arithmetic

44

Chapter 7

Case study: Automated theorem
finding in graph theory

7.1 Overview

The purpose of this case study is to confirm the effectiveness and generality of
our methodology. After we did a case study of NBG set theory and Peano’s
arithmetic, we also use our methodology in another field to confirm the generality.
We chose graph theory as the third target field of ATF, because graph theory [17]
can be established above the axiomatic set theory such that we can confirm how
to perform ATF based on the semi-lattice model of formal theories. If we can also
perform ATF well in graph theory by using the methodology, it means that we
can also do ATF in other mathematical fields by using our methodology, because
almost all of mathematical fields can be established above axiomatic set theory.
Besides, graph theory can be used to model many types of relations and processes
in physical, biological, social and information systems and many practical problems
can be represented by graphs theory. Therefore, if the ATF in graph theory is
succeeded, it will attract lots of researchers’ attention and the ATF by computer
program will be a new trend in other fields.

7.2 Perform the methodology

To confirm the generality of the proposed methodology, we performed ATF in
graph theory by using the proposed methodology. The only difference between
this case study and the last case study in Peano’s arithmetic is that we also used
the empirical theorems of NBG set theory as empirical premises in this case study,
because the graph theory is established above axiomatic set theory. We showed in
each phase how we did ATF in graph theory as below.

Phase 1 Prepare logical fragments for various empirical theories

The first phase to prepare various logical fragments of strong relevant logics
has been showed in the Chapter 4. The prepared logical fragments can be reused
in different empirical fields for ATF, so here we did not explained this phase again.

45

Phase 2 Prepare empirical premises

Phase 2.1 Collect empirical premises

The second phase is to prepare empirical premises of graph theory. Diestel
recorded definitions of graph theory in his book [17]. In the case study, we chose
more than 20 definitions in Diestel’s book as empirical premises of the case study
and formalized them by using predicates and functions in the first case study of
NBG set theory. The definitions of graph theory formalized by us are shown as
below.

• Definition of graph
G(V,E) =< V,E >

• Definition of empty graph
0 = G(0, 0)

• Definition of incident edge
∀x∀y∀v(({x, y} ∈ E) ∧ (v ∈ {x, y})⇔ ({x, y} = incidentedge(v)))

• Definition of loop
∀x(loop(x) = {x})

• Definition of isomorphism
∀w∀v∀v′∀e∀e′((G(v, e) = G(v′, e′))⇔ (w ∈ e⇒ isomorphism(w) ∈ e′)

• Definition of ∩g

∀x∀x′∀y∀y′(G(x, y) ∩g G(x′, y′) = G(x ∩ x′, y ∩ y′))

• Definition of ∪g

∀x∀x′∀y∀y′(G(x, y) ∪g G(x′, y′) = G(x ∪ x′, y ∪ y′))

• Definition of subgraph
∀x∀x′∀y∀y′(Sub(G(x, y), G′(x′, y′))⇔ ((x ⊆ x′)∧ (y ⊆ y′)∧ (x′ ⊆ V)∧ (y′ ⊆
E)))

• Definition of induced subgraph
∀v∀x∀x′∀y∀y′(InducedSub(G(x, y), G′(x′, y′))⇔ Sub(G(x, y), G′(x′, y′))∧((v ∈
(x ∩ x′))⇒ (incidentedge(v) ∈ y)))

• Definition of super graph
∀x∀x′∀y∀y′(Sup(G′(x′, y′), G(x, y))⇔ Sub(G(x, y), G′(x′, y′))

• Definition of simple graph
∀x∀m∀n∀v∀e(SimpleGraph(G(v, e)) ⇔ (v ⊆ V) ∧ (e ⊆ E) ∧ ((x ∈ v) ⇒
¬(loop(x) ∈ e)) ∧ ((m ∈ e) ∧ (n ∈ e)⇒ ¬(m = n)))

• Definition of adjacent
∀x∀y(Adjacent(x, y)⇔ ({x, y} ∈ E))

46

• Definition of complete graph
∀x∀y∀v∀e(CompleteGraph(G(v, e)) ⇔ SimpleGraph(G(v, e)) ∧ ((x ∈ v) ∧
(y ∈ v)⇒ Adjacent(x, y)))

• Definition of disjoint
∀x∀x′∀y∀y′(Disjoint(G(x, y), G(x′, y′))⇔ (G(x, y) ∩g G(x′, y′) = 0))

• Definition of −
∀x∀y∀u(G(x, y)− u = G(∼ (x ∩ u),∼ (y ∩ incidentedge(u)))

• Definition of connected graph
∀u∀x∀y∀z∀v∀e(ConnectedGraph(G(v, e))⇔ ((G(u, x)∪gG(y, z) = G(v, e))⇒
¬Disjoint(G(u, x), G(y, z)))

• Definition of path
∀e∀v∀x∀m∀n∀p((path(v, e) = G(v, e)⇔ (ConnectedGraph(G(v, e))∧ ((m ∈
e) ∧ (n ∈ e) ∧ (p ∈ e) ∧ ¬(m = n) ∧ ¬(n = p) ∧ ¬(m = p) ∧ (x ∈ m) ∧ (x ∈
n))⇒ ¬(x ∈ p)))

• Definition of cycle
∀v∀e∀x∀m∃n((cycle(v, e) = G(v, e)) ⇔ ((path(v, e) = G(v, e)) ∧ ((m ∈ e) ∧
(x ∈ m)⇒ (x ∈ n) ∧ (n ∈ e) ∧ ¬(m = n)))

• Definition of connectivity
∀x∀y∀e∀v(Connect(x, y)⇔ ((x ∈ v) ∧ (y ∈ v)⇒ ({v} ∈ path(v, e))))

• Definition of forest
∀v∀v′∀e∀e′(Forest(G(v, e))⇔ ¬Sub(cycle(v′, e′), G(v, e)))

• Definition of tree
∀v∀e(Tree(G(v, e))⇔ ConnectedGraph(G(v, e)) ∧ Forest(G(v, e)))

Phase 2.2 Define the semi-lattice of fragments of empirical premises

Then, we defined a semi-lattice of abstract level fragments of formalized empiri-
cal premises according to the proposed methodology. In detail, first we summarized
all of the predicate abstract levels of the formalized definitions of graph theory as
shown in Table 7.1. Second, we summarized all of the function abstract levels
of the formalized definitions of graph theory as shown in Table 7.2. Third, we
summarized all of the abstract levels of formalized definitions of graph theory as
shown in Table 7.3. Finally, according to the abstract level of formalized defini-
tions, we defined the semi-lattice of abstract level fragments of empirical premises
in graph theory as shown in Figure 7.1. In the figure, “NBG” means all of empiri-
cal premises of NBG set theory and “Graph” means all of the collected premises of
graph theory. In this case study NBG set theory is seen as the minimum element
of the semi-lattice, which is different from the last two case studies, because graph
theory is established above axiomatic set theory.

Phase 3 Reason out empirical theorems

47

Table 7.1: Predicate abstract level in graph theory
Predicate Abstract from Level
Adjacent ∈ 2
Connect ∈ 2
Sub ⊆ 3
Forest Sub 4

InducedSub Sub, ∈ 4
Sup Sub 4

SimpleGraph ∈, ⊆, = 4
Disjoint = 4

CompleteGraph SimpleGraph, ∈, Adjacent 5
ConnectedGraph Disjoint, = 5

Tree ConnectedGraph, Forest 6

Table 7.2: Function abstract level in graph theory
Function Abstract from Level

incidentedge unordered pair 2
loop singleton 3
G ordered pair 4

path G 5
∩g ∩, G 5
∪g ∪, G 5

isomorphism G 5
− G, ∩, incidentedge, ∼ 5

cycle G, path 6

Table 7.3: The abstract level of definitions in graph theory
Abstract levels Definitions

(2, 1) Definition of adjacent
(2, 5) Definition of connectivity
(3, 2) Definition of incident edge
(3, 3) Definition of loop
(3, 4) Definition of graph, empty graph, subgraph
(3, 5) Definition of isomorphism, ∩g, ∪g, −
(3, 6) Definition of cycle
(4, 4) Definition of super graph, simple graph, induced subgraph
(4, 5) Definition of disjoint
(4, 6) Definition of forest
(5, 4) Definition of complete graph
(5, 5) Definition of path, connected graph
(6, 4) Definition of tree

48

Figure 7.1: The semi-lattice of fragments of premises in graph theory

In the case study, we did not perform Phase 3.4 of our methodology, because
mathematical induction is not an axiom of graph theory.

Phase 3.1 Deduce empirical theorems

We used the reasoning engine FreeEnCal to deduce empirical theorems of graph
theory automatically. We set the degrees of⇒ to 2, ¬ to 1, and ∧ to 1 to deduce the
empirical theorems of graph theory. We used all of the prepared logical fragments
to deduce empirical theorems except the logical fragment Th(⇒,3,¬,1,∧1)(EcQ). We
did not use Th(⇒,3,¬,1,∧1)(EcQ) because of the limited memory space. In detail,
first we used the logical fragment Th(⇒,2)(EeQ) to deduce empirical theorems of
NBG set theory. We inputted the fragments of empirical premises according to the
defined semi-lattice shown in Figure 7.1. In detail, we first inputted all of obtained
empirical theorems of NBG set theory and the definition of adjacent to deduce the
empirical theorems. Then, we came into the next phase to substitute and simplify
terms and to abstract the empirical theorems to the current abstract level and find

49

interesting empirical theorems. After that, we came back to this phase and com-
bined the obtained empirical theorems of graph theory which are (2, 1) abstract
level with the the definition of incident edge to deduce the empirical theorems of
graph theory which are (3, 2) abstract level. We used the method to deduce empir-
ical theorems again and again according to the defined semi-lattice of fragments
of empirical premises of graph theory. After all of empirical premises of graph
theory have been used, we used the bigger logical fragment such as Th(⇒,3)(EeQ)
to deduce empirical theorems again. We used the logical fragments from small to
big systematically according to the defined semi-lattice shown in Figure 3.2.

Phase 3.2 Substitute terms

In the case study, we also use the method to substitute the terms same as the
method we used in the first case study.

Phase 3.3 Simplify terms

In the case study, we did not found any A = B style empirical theorems of
graph theory. Therefore, we did not simplify terms for any empirical theorem in
the case study.

Phase 4 Abstract empirical theorems

As same as the case study of NBG set theory and Peano’s arithmetic, we did not
perform the abstraction phase one time, but performed the phase with Phase 3 and
Phase 5 loop by loop. After we reasoned out the empirical theorems by inputting
the fragment P(k,m) of premises, we defined the abstraction rules according to the
axioms and definitions of the P(k,m), and performed abstraction automatically by
using elimination rules provided by FreeEnCal. For example, after we reasoned
out all of the theorems by inputting the fragment P(2,1) of premises, we changed
all the sub-formula ({x, y} ∈ E) to adjacent(x, y) according to the definition of
adjacent. After we used the abstraction rule to abstract the empirical theorems,
we entered into the next phase to find interesting theorems in this abstract level.

Phase 5 Find interesting theorems

In the phase, we used our filtering methods to filter uninteresting theorems
step by step and then see the filtered results as candidates of interesting theorems.
The processes of the phase is same as the case study of NBG set theory such that
we do not elaborate them again. We showed the obtained empirical theorems, core
empirical theorems and filtered results in Table 7.4.

50

Table 7.4: ATF in graph theory by prepared logical fragments
Used Obtained empirical Core empirical Filtered

logical fragments theorems theorems results

Th(⇒,2)(EeQ) 1138 102 83
Th(⇒,3)(EeQ) 1662 133 93

Th(⇒,2,¬,1)(EenQ) 1139 103 84
Th(⇒,3,¬,1)(EenQ) 2885 288 216
Th(⇒,2,¬,1,∧1)(EcQ) 1216 122 97

7.3 Evaluation

The case study shows that our methodology is effective and holds generality. From
the viewpoint of effectiveness, it is sure that the case study of ATF in graph theory
were performed systematically in each phase. All of those empirical theorems are
obtained by using forward reasoning method and our filtering method can filter
most of uninteresting theorems based on syntax, more than 90% empirical theo-
rems reasoned out by all of the five prepared logical fragments can be removed as
uninteresting theorems automatically such that the scientists can find interesting
theorems from the filtered results based on semantics by accepatable time. From
the viewpoint of generality, the case study shows that our methodology support
Cheng’s semi-lattice model of formal theories, that is we define the (k,m)-fragment
of empirical premises of axiomatic set theory and we extend them to other mathe-
matical fields. We consider finding process of theorems must include some concept
abstraction processes in other mathematical fields and almost all of mathemat-
ical fields can be represented by axiomatic set theory, so we can conclude that
our methodology is suitable for ATF in other mathematical fields, such as group
theory, lattice theory and number theory.

51

Chapter 8

Discussion

The three case studies shows that our methodology is effective. First, from the
viewpoint of systematic method, it is sure that we systematically performed three
case studies of ATF in each phase by using our methodology. We systematically
prepared and used logical fragments of strong relevant logic from small to big
by defined semi-lattice of logical fragments, systematically reasoned out empirical
theorems from simple to complex by defined semi-lattice of fragments of empirical
premises, and systematically filtered uninteresting theorems step by step. Sec-
ond, from the viewpoint of soundness of our methodology, indeed there is not any
paradoxical theorem obtained by using our methodology. Because our methodol-
ogy choose strong relevant logic as fundamental logic tool to underlie the forward
reasoning.

Based on the performed three case studies, we can conclude our methodology
is a general methodology for ATF in mathematical fields. In three performed case
studies, we prepared logical fragments in one time and then we can performed ATF
in three different mathematical fields by using those logical fragments. Besides,
we defined the semi-lattice of fragments of empirical premises based on abstract
level in three different mathematical fields well, such as the defined independent
semi-lattice in the Peano’s arithmetic and the defined semi-lattice in graph theory
which extends the defined semi-lattice of NBG set theory. Because almost all of
mathematical fields can be represented by axiomatic set theory and have abstrac-
tion processes of mathematical concepts, we can extend the defined semi-lattice of
NBG set theory into other mathematical fields like the method used in our third
case study. Finally, the performed three case studies showed that our filtering
method can filter uninteresting theorems generally in three different mathemati-
cal fields, and we can also conclude that the filtering methods is useful in other
mathematical fields.

On the other hand, the ultimate goal of ATF is to find new and interesting
theorems, but we did not find new and interesting theorems in three case studies.
We consider that the main reason is involved in the restriction of the performance
of our current equipment but not our methodology. In the case study, we only set
the degree below 3 for logic connective⇒, and set degree 1 for logic connectives ¬
and ∧. Besides, we did not input axiom C10 of EcQ which plays an important role
in the reasoning process, because C10 will make the deduced theorems set enlarge

52

so fast.
To find new theorems, we have to get more complex theorems than the theorems

reasoned out in our case studies. A complex theorem is a theorem whose degree
of nested logical connectives and/or functions are high. However, according to
our methodology, it takes long execution time and needs huge amount of memory
space, as obtained theorems become more complex. On the other hand, to find
interesting theorems, a method to excavate interesting theorems is demanded,
but our methods are just to remove explicitly trivial theorems. To solve the ATF
problem completely by using our methodology, the two problems should be solved.

Generating new predicates and functions from obtained empirical theorems is a
way to get more complex theorems. By replacing the generated new predicates and
functions with sub-formulas and nested functions in obtained empirical theorems,
we can continue to reason out empirical theorems and keep the degree of nested
logical connectives and functions low. However, in our methodology, predicates and
functions are defined by scientists before they start to do ATF. Thus, we should
make an environment to automatically or semi-automatically provide candidates
of new predicates and functions for scientists during doing ATF. From viewpoint
of syntax, the environment extracts sub-formulas and nested functions in obtained
empirical theorems according to filtering rules previously given by scientists who
are doing ATF. From viewpoint of semantics, the scientists choose meaningful
sub-formulas and nested functions, and then defines new predicates and functions
to abstract the sub-formulas and functions. The environment and the scientists
work interactively. Epistemic programming approach [7] and its language EPLAS
[18, 37] have been proposed and are hopeful to construct such the environment,
because EPLAS is designed to help scientific discovery by working with scientists
interactively.

Excavating interesting theorems from obtained empirical theorems is the most
difficult problem in ATF. The results of reasoning phase in our methodology can be
classified into 4 classes: intermediates, explicitly uninteresting theorems, implicitly
uninteresting or interesting theorems, and explicitly interesting theorems. Interme-
diates are results that are not closed formulas. Explicitly uninteresting theorems
are closed formulas that are regarded as uninteresting according to some explicit
criteria which have been accepted by scientists of the target field. Implicitly un-
interesting theorems (or implicitly interesting theorems) are closed formulas that
may be uninteresting (or interesting). Explicitly interesting theorems are closed
formulas that are or will be regarded as interesting according to some explicit
criteria that have been accepted by scientists of the target field. Explicitly inter-
esting theorems can be classified into already known theorems and new theorems.
Figure 8.1 shows a partition of results of the reasoning phase from view point of
degree of interesting. Ideal purpose of the finding phase in our methodology is to
find only new and explicitly interesting theorems from the results, and give them
to scientists of the target field. To achieve the purpose, we should find a method
to reduce implicitly uninteresting or interesting theorems in the results, in other
words, make “implicitly” into “explicitly”. Under the consideration, the issues of
excavation of interesting theorems in our methodology are as follows.

53

interm ediate

explicit ly uninterest ing

already

known

explicit ly

interest ing

new

degree of in
terest ing

im plicit ly uninterest ing,

im plicit ly interest ing

Figure 8.1: Excavation problem of ATF

• How can we decide what theorems are explicitly uninteresting?

• How can we decide what theorems are explicitly interesting?

• How can we collect all of already known explicitly interesting theorems?

• How can we measure the degree of interesting of theorems?

54

Chapter 9

Conclusions

9.1 Contributions

This work has following contributions. The first contribution is that we proposed a
systematic methodology for automated theorem finding based on the semi-lattice
of formal theories in which the core is strong relevant logic, and the minimum
element is axiomatic set theory, above it other formal theories can be established
like number theory, graph theory, and lattice theory, so the methodology holds
generality for various mathematical fields. The second contribution is that we
proposed a method to do automated theorem finding based on the abstraction
process of mathematical concept such that we can systematically find theorems
from simple theorems to complex theorems. The third contribution is that we
proposed a method to generate hypothesis by using forward reasoning approach
by strong relevant logic and then combine automated theorem proving approach
to systematically find those theorems proved by mathematical induction. The
fourth contribution is that we performed three case studies of automated theorem
finding in three different mathematical fields by using our methodology and clearly
showed our method and results. Before our works, it is only in theory to use
forward reasoning approach based on strong relevant logic to perform automated
theorem finding in different mathematical fields, but our works showed the detail
and systematic procedure of automated theorem finding clearly.

9.2 Future works

There are many interesting and challenging research problems in our future works.
First, to find more interesting theorems, we will deduce higher degree logical frag-
ments and then deduce higher degree empirical theorems. Second, we will follow
Cheng’s epistemic programming approach [7] and use EPLAS [18, 37] to provide
an interactive environment for ATF, which can assist us to do ATF automatically
or semi-automatically with our methodology. Finally, the semi-lattice model of
formal theories [8, 11] proposed by Cheng is aimed to do ATF in multi-fields, in
our case studies we have perform ATF in the axiomatic set theory, number theory
and graph theory. We will use our methodology with the semi-lattice of formal

55

theories to do ATF systematically in more fields like combinatorics, lattice theory,
and group theory in the future.

56

Publications

Refereed papers published in journals or books (first author)

• Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng, “Finding The-
orems in NBG Set Theory by Automated Forward Deduction Based on
Strong Relevant Logic,” D.-Z. Du and G. Zhang (Eds.), “Computing
and Combinatorics, The 19th Annual International Conference, CO-
COON 2013, Hangzhou, China, June 21-23, 2013, Proceedings,” Lec-
ture Notes in Computer Science, Vol. 7936, pp 697-704, Springer, Hei-
delberg, June, 2013.

• Hongbiao Gao, Yuichi Goto, and Jingde Cheng, “Research on Auto-
mated Theorem Finding: Current State and Future Directions,” J.
J. Park, Y. Pan, C. Kim, and Y. Yan (Eds.), “Future Information
Technology, The 9th FTRA International Conference, FutureTech 2014,
Zhangjiajie, China, May 28-31, 2014, Proceedings,” Lecture Notes in
Electrical Engineering, Vol. 309, pp 105-110, Springer, Heidelberg, May,
2014.

• Hongbiao Gao, Yuichi Goto, and Jingde Cheng, “A Systematic Method-
ology for Automated Theorem Finding,” Theoretical Computer Science
554, pp 2-21, Elsevier, October, 2014.

• Hongbiao Gao, Yuichi Goto, and Jingde Cheng, “Explicitly Epistemic
Contraction by Predicate Abstraction in Automated Theorem Finding:
A Case Study in NBG Set Theory,” N. T. Nguyen, et al. (Eds.), “Intel-
ligent Information and Database Systems, The 7th Asian Conference,
ACIIDS 2015, Bali, Indonesia, March 23-25, 2015, Proceedings, Part
I,” Lecture Notes in Artificial Intelligence, Vol. 9011, pp. 593-602,
Springer, March, 2015.

• Hongbiao Gao, Yuichi Goto, and Jingde Cheng, “Automated Theorem
Finding by Forward Reasoning Based on Strong Relevant Logic: A
Case Study in Graph Theory,” “Future Information Technology, The
10th FTRA International Conference, FutureTech 2015, Hanoi, Viet-
nam, May 18-20, 2015, Proceedings,” Lecture Notes in Electrical Engi-
neering, Springer, Heidelberg, May, 2015. (to appear)

57

Refereed papers published in international conference proceedings (first au-
thor)

• Hongbiao Gao, Kai Shi, Yuichi Goto, and Jingde Cheng, “Automated
Theorem Finding by Forward Deduction Based on Strong Relevant
Logic: A Case Study in NBG Set Theory,” Proceedings of the 11th In-
ternational Conference on Machine Learning and Cybernetics, ICMLC
2012, Xian, China, pp 1859-1865, The IEEE Systems, Man, and Cy-
bernetics Society, July, 2012.

• Hongbiao Gao, Yuichi Goto, and Jingde Cheng, “Automated Theorem
Finding by Forward Deduction Based on The Semi-lattice Model of
Formal Theory: A Case Study in NBG Set Theory,” Proceedings of
the 9th International Conference on Semantics, Knowledge and Grid,
SKG 2013, Beijing, China, pp 22 - 29, IEEE Computer Society Press,
October, 2013. (Acceptance rate: less than 30%)

Refereed papers published in journals or books (co-author)

• Shunsuke Nanaumi, Kazunori Wagatsuma, Hongbiao Gao, Yuichi Goto,
and Jingde Cheng, “A Bidirectional Transformation Supporting Tool
for Formalization with Logical Formulas,” N. T. Nguyen, et al. (Eds.),
“Intelligent Information and Database Systems, The 7th Asian Confer-
ence, ACIIDS 2015, Bali, Indonesia, March 23-25, 2015, Proceedings,
Part I,” Lecture Notes in Artificial Intelligence, Vol. 9011, pp. 634-643,
Springer, March, 2015.

• Shunsuke Nanaumi, Kazunori Wagatsuma, Hongbiao Gao, Yuichi Goto,
and Jingde Cheng, “Development of a Bidirectional Transformation
Supporting Tool for Formalization with Logical Formulas and Its Ap-
plication,” “Future Information Technology, The 10th FTRA Interna-
tional Conference, FutureTech 2015, Hanoi, Vietnam, May 18-20, 2015,
Proceedings,” Lecture Notes in Electrical Engineering, Springer, Hei-
delberg, May, 2015. (to appear)

Refereed papers published in international conference proceedings (co-author)

• Yuichi Goto, Hongbiao Gao, Takahiro Tsuji, and Jingde Cheng, “Prac-
tical Usage of FreeEnCal: an Automated Forward Reasoning Engine for
General-Purpose,” Proceedings of the 11th International Conference on
Machine Learning and Cybernetics, ICMLC 2012, Xian, China, pp.
1878-1883, The IEEE Systems, Man, and Cybernetics Society, July,
2012.

58

Bibliography

[1] A. R. Anderson and N. D. Belnap Jr: Entailment: The Logic of Relevance and
Necessity. vol. 1, Princeton University Press, 1975.

[2] A. R. Anderson, N. D. Belnap Jr, and J. M. Dunn: Entailment: The Logic of
Relevance and Necessity. vol. 2, Princeton University Press, 1992.

[3] R. Bagai, V. Shanbhogue, J. M. Zytkow, and S. C. Chou: Automatic Theorem
Generation in Plane Geometry. Proceedings of the 7th International Sympo-
sium on Methodologies for Intelligent Systems, Lecture Notes in Computer
Science, vol. 689, Springer, Heidelberg, pp. 415-424, 1993.

[4] J. Cheng: A Relevant Logic Approach to Automated Theorem Finding. Pro-
ceedings of the Workshop on Automated Theorem Proving attached to Inter-
national Symposium on Fifth Generation Computer Systems, pp. 8-15, 1994.

[5] J. Cheng: Entailment Calculus as the Logical Basis of Automated Theorem
Finding in Scientific Discovery. Systematic Methods of Scientific Discovery:
Papers from the 1995 Spring Symposium, AAAI Press-American Association
for Artificial Intelligence, pp. 105-110, 1995.

[6] J. Cheng: EnCal: An Automated Forward Deduction System for General-
Purpose Entailment Calculus. Advanced IT Tools, Proceedings of the 14th
WCC, Canberra, Chapman & Hall, pp. 507-517, 1996.

[7] J. Cheng: A Strong Relevant Logic Model of Epistemic Processes in Scien-
tific Discovery. Information Modelling and Knowledge Bases XI, Frontiers in
Artificial Intelligence and Applications, vol. 61, IOS Press, pp. 136-159, 2000.

[8] J. Cheng: A Semilattice Model for the Theory Grid. Proceedings of the 3rd
International Conference on Semantics, Knowledge and Grid, IEEE Computer
Society, pp. 152-157, 2007.

[9] J. Cheng: Representing, Managing, and Reasoning about Mathematical
Knowledge Based on Strong Relevant Logic. Proceedings of the 7th Interna-
tional Conference on Machine Learning and Cybernetics, the IEEE Systems,
Man, and Cybernetics Society, pp. 299-306, July 2008.

[10] J. Cheng, S. Nara, and Y. Goto: FreeEnCal: A Forward Reasoning Engine
with General-Purpose. Proceedings of the 11th International Conference on

59

Knowledge-Based Intelligent Information and Engineering Systems, Lecture
Notes in Artificial Intelligence, vol. 4693, Springer, Heidelberg, pp. 444-452,
2007.

[11] J. Cheng, S. Nara, Y. Goto, and T. Koh: A Cooperative Grid Computing
Approach to Automated Theorem Finding and Automated Problem Propos-
ing. Proceedings of the 11th International Conference on Knowledge-Based
Intelligent Information and Engineering Systems, Lecture Notes in Artificial
Intelligence, vol. 4693, Springer, Heidelberg, pp. 840-851, 2007.

[12] S. Colton: Automated Theorem Discovery: A Future Direction for Theorem
Provers. Proceedings of the 1st Automated Reasoning: International Joint
Conference, Workshop on Future Directions in Automated Reasoning, pp. 38-
47, 2001.

[13] S. Colton, A. Meier, V. Sorge, and R. McCasland: Automatic Generation of
Classification Theorems for Finite Algebras. Automated Reasoning, Lecture
Notes in Computer Science, vol. 3097, Springer, Heidelberg, pp. 400-414, 2004.

[14] G. Dalzotto and T. Recio: On Protocols for the Automated Discovery of
Theorems in Elementary Geometry. Journal of Automated Reasoning 43.2,
pp. 203-236, 2009.

[15] B. Davey and H. Priestley: Introduction to Lattices and Order, 2nd Edition.
Cambridge University Press, 2002.

[16] M. Davis: The Early History of Automated Deduction. Handbook of Auto-
mated Reasoning, vol. 1, Elsevier Science, pp. 3-15, 2001.

[17] R. Diestel: Graph Theory. Springer, 1997.

[18] W. Fang, I. Takahashi, Y. Goto, and J. Cheng: Practical Implementation of
EPLAS: An Epistemic Programming Language for All Scientists. Proceedings
of the 10th International Conference on Machine Learning and Cybernetics,
the IEEE Systems, Man, and Cybernetics Society, pp. 608-616, 2011.

[19] H. Gao, Y. Goto, and J. Cheng: Automated Theorem Finding by Forward
Deduction Based on the Semi-lattice Model of Formal Theory: A Case Study
in NBG Set Theory. Proceedings of the 9th International Conference on Se-
mantics, Knowledge and Grid, IEEE Computer Society Press, pp. 21-28, 2013.

[20] H. Gao, Y. Goto, and J. Cheng: Research on Automated Theorem Find-
ing: Current State and Future Directions. J. J. Park, Y. Pan, C. Kim, and
Y. Yan (Eds.), Future Information Technology, The 9th FTRA International
Conference, FutureTech 2014, Zhangjiajie, China, May 28-31, 2014, Proceed-
ings, Lecture Notes in Electrical Engineering, vol. 309, Springer, Heidelberg,
pp. 105-110, 2014.

[21] H. Gao, Y. Goto, and J. Cheng: A Systematic Methodology for Automated
Theorem Finding. Theoretical Computer Science 554, Elsevier, pp. 2-21, 2014.

60

[22] H. Gao, Y. Goto, and J. Cheng: Explicitly Epistemic Contraction by Predi-
cate Abstraction in Automated Theorem Finding: A Case Study in NBG Set
Theory. N. T. Nguyen, et al. (Eds.), Intelligent Information and Database Sys-
tems, The 7th Asian Conference, ACIIDS 2015, Bali, Indonesia, March 23-25,
2015, Proceedings, Part I, Lecture Notes in Artificial Intelligence, vol. 9011,
Springer, pp. 593-602, 2015.

[23] H. Gao, Y. Goto, and J. Cheng: Automated Theorem Finding by Forward
Reasoning Based on Strong Relevant Logic: A Case Study in Graph Theory.
Future Information Technology, The 10th FTRA International Conference, Fu-
tureTech 2015, Hanoi, Vietnam, May 18-20, 2015, Proceedings, Lecture Notes
in Electrical Engineering, Springer, Heidelberg, 2015. (to appear)

[24] H. Gao, K. Shi, Y. Goto, and J. Cheng: Automated Theorem Finding by
Forward Deduction Based on Strong Relevant Logic: A Case Study in NBG Set
Theory. Proceedings of the 11th International Conference on Machine Learning
and Cybernetics, ICMLC 2012, Xian, China,The IEEE Systems, Man, and
Cybernetics Society, pp. 1859-1865, 2012.

[25] H. Gao, K. Shi, Y. Goto, and J. Cheng: Finding Theorems in NBG Set
Theory by Automated Forward Deduction Based on Strong Relevant Logic.
D.-Z. Du and G. Zhang (Eds.), Computing and Combinatorics, The 19th An-
nual International Conference, COCOON 2013, Hangzhou, China, June 21-23,
2013, Proceedings, Lecture Notes in Computer Science, vol. 7936, Springer,
Heidelberg, pp. 697-704, 2013.

[26] L. Goble: The Blackwell Guide to Philosophical Logic. Oxford, 2001.

[27] Y. Goto, H. Gao, T. Tsuji, and J. Cheng: Practical Usage of FreeEnCal:
An Automated Forward Reasoning Engine for General-Purpose. Proceedings
of the 11th International Conference on Machine Learning and Cybernetics,
ICMLC 2012, Xian, China, The IEEE Systems, Man, and Cybernetics Society,
pp. 1878-1883, 2012.

[28] P. R. Halmos: Naive Set theory. Springer Science & Business Media, 1960.

[29] K. Hrbacek and T. Jech: Introduction to Set Theory, Third Edition. CRC
Press, 1999.

[30] D. Jacquette: A Companion to Philosophical Logic. Oxford, 2002.

[31] R. Kaye: Models of Peano Arithmetic. Clarendon Press, 1991.

[32] R. McCasland, A. Bundy, and S. Autexier: Automated Discovery of Inductive
Theorems. Journal of Studies in Logic, Grammar and Rhetoric 10.23, pp. 135-
149, 2007.

[33] A. Montes and T. Recio: Automatic Discovery of Geometry Theorems Using
Minimal Canonical Comprehensive Grobner Systems. Proceedings of the 6th

61

International Workshop on Automated Deduction in Geometry, Lecture Notes
in Computer Science, vol. 4869, Springer, Heidelberg, pp. 113-138, 2007.

[34] Y. Puzis, Y. Gao, and G. Sutcliffe: Automated Generation of Interesting
Theorems. Proceedings of the 19th International Florida Artificial Intelligence
Research Society Conference, AAAI press-the Association for the Advancement
of Artificial Intelligence, pp. 49-54, 2006.

[35] T. Recio and M. Z. Velez: Automatic Discovery of Theorems in Elementary
Geometry. Journal of Automated Reasoning 23.1, pp. 63-82, 1999.

[36] P. Suppes: Axiomatic Set Theory. Courier Dover, 2012.

[37] I. Takahashi, S. Nara, Y. Goto, and J. Cheng: EPLAS: An Epistemic Pro-
gramming Language for All Scientists. Proceedings of the 7th International
Conference on Computational Science, Lecture Notes in Computer Science,
vol. 4487, Springer, Heidelberg, pp. 406-413, 2007.

[38] P. Tang and F. Lin: Discovering Theorems in Game Theory: Two-Person
Games with Unique Pure Nash Equilibrium Payoffs. Artificial Intelligence
175.14, pp. 2010-2020, 2011.

[39] A. Quaife: Automated Development of Fundamental Mathematical Theories.
Kluwer Academic, 1992.

[40] L. Wos: Automated Reasoning: 33 Basic Research Problem. Prentice-Hall,
1988.

[41] L. Wos: The Problem of Automated Theorem Finding. Journal of Automated
Reasoning 10.1, pp. 137-138, 1993.

62

