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Abstract

Cloud computing is a technology that has gained extremely wide use in last several
years. Initially embraced by major IT companies such as Amazon, Apple, Microsoft,
Oracle and Google, which established themselves as top players in the cloud services
market, it has became common for most companies to move their infrastructure to
the cloud, both public and private. If properly applied, cloud computing not only
can help lower IT costs for the enterprise, but also introduces many other benefits,
such as effective management of peak-load scenarios by scaling the number of in-
stances according to the real (or predicted) demand, dealing with natural disasters
and system outages by seamlessly migrating to other available cloud resources, or
serving as a inexpensive platform for the startups with innovative ideas for new
services.

One of the concerns for the cloud-based solutions is the fact that the components
responsible for service discovery, monitoring and load-balancing still employ cen-
tralized approaches. The presence of central authority entities like service brokers
is often inappropriate, since such solutions lack satisfactory scalability, present a
single point of failure and lead to performance bottlenecks and network congestion.
On the other hand, considering distributed nature of cloud-based architecture, it
is reasonable to use distributed approach to cloud service management and discov-
ery as well, which in turn leads to the idea of using inherently decentralized, fault
tolerant and scalable peer-to-peer paradigm.

One of ideas that can alleviate already existing and potential problems of cen-
tralized cloud is hybrid cloud architecture, that consists in combining both public
and private clouds to get more scalable and robust cloud solution. In this thesis, we
present an approach to building a hybrid cloud system by employing cloud bursting
architecture — an approach that lies in using external cloud resources when local
ones are insufficient. One of major use cases for cloud bursting is managing highly
skewed request distribution for deployed services, mostly characterized by peaks in
load which are sudden and unpredictable, planned but not long, and often exhibit
seasonal behavior.
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Our cloud bursting architecture is based on the peer-to-peer infrastructure for
managing services, which is also an original idea presented in this thesis. This
infrastructure is specifically designed to be an effective and scalable solution for
storing, sharing and discovering services, and unlike most other peer-to-peer based
approaches it allows flexible search queries since all of them are executed against in-
ternal database present at each overlay node. We also present several optimizations
for peer-to-peer overlay which are necessary for utilizing it in the cloud environment.
Evaluation of the peer-to-peer overlay is done by performing a set of experiments
on a simulator that show it can be a viable solution to use in cloud setting and
specifically in hybrid cloud. We also present some considerations about further
cloud architecture evaluation and analysis.

Proposed approach is designed to address various issues of interconnecting several
clouds, problems of resource provisioning, service deployment and provisioning in
the hybrid cloud. Scalability of the approach is attained due to flexibility of service
discovery mechanism, decentralized architecture and modular approach, which al-
lows to leverage existing components. We argue that our approach present viable
solution for managing abrupt peaks in the load and keeping service provider’s QoS
and SLA requirements on the desired level.
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Chapter 1

Introduction

Cloud computing emerged as a novel approach allowing anyone to quickly provision
a large scale IT infrastructure that can be completely customized to the user needs
on a pay-per-use basis. This idea was equally well embraced by small and medium-
scale companies, which frequently face problems of unpredictable IT service demand
and infrastructure cost, as well as large enterprises due to the ease of provisioning
computing and storage resources on-demand in a simple and uniform way, often
involving multi-provider and multi-domain resources, and including integration with
legacy services and infrastructures. In itself, the concept of utility computing was
envisioned by early pioneers of computer science, such as John McCarthy, as early
as in 60’s and gained wide popularity in the form of time-sharing, operated by IBM
and other leading mainframe providers. Nowadays, after the idea re-emerged as
cloud computing in the late 2000s, the market is filled with companies providing
cloud resources, from early adopters of the technology such as Amazon, Google and
Microsoft to providers of traditional hosting services and other major IT players,
such as Rackspace, Oracle or IBM.

Nowadays cloud computing includes not only the provision of resources to third
parties on a leased, pay-per-use basis, but also the private infrastructures main-
tained and utilized by individual organizations. Those constitute two most widely
used cloud deployed models (as per NIST definition [1]), the former case being re-
ferred to as public cloud and the latter as private cloud. Another emerging model
is represented by so called community clouds, which is a cloud infrastructure ex-
clusively used by a specific community of consumers from organizations that have
shared concerns (e.g., mission, security requirements, policy, and compliance con-
siderations). Community clouds exhibit a wide range of possible owner models,
including one or more of the organizations in the community, a third party, or some
combination of them, and may exist on or off premises.
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While being a considerable step forward in building reliable and scalable soft-
ware solutions, widespread usage of the cloud brings about new challenges both
for software engineers and cloud adopters. Ever increasing reliance to the cloud
make applications more vulnerable to cloud power outages and malicious attacks,
as well as creates a need for more flexible strategy for using cloud resources, espe-
cially in cases of highly skewed request distribution for deployed services, mostly
characterized by peaks in load which are sudden and unpredictable, planned but
not long, and often exhibit seasonal behavior. This thesis presents an attempt to
tackle these problems by leveraging another, less known by now type of the cloud
called hybrid cloud, and more specifically, one of the approaches based on it known
as cloud bursting. While cloud bursting successfully addresses most problems men-
tioned above, this thesis main contribution is to propose a way to avoid another set
of problems, which will inevitably arise due to centralized nature of cloud bursting
solutions proposed so far.

1.1 Contributions

Principal contributions of this thesis include a) an architecture for cloud bursting
that facilitates decentralized management of cloud resources and provides end-users
with fault-tolerant and reliable services in large, autonomous, and highly dynamic
environments; b) discovery architecture based on structured peer-to-peer overlay
network, which utilizes platform-independent attribute-value based method for de-
scribing services and an algorithm for service discovery that allows execution of
range and multidimensional queries; c) application of proposed service sharing and
discovery approach to streamline the execution of single jobs and entire workflows
in the cloud; and c) introducing a modular framework for composing cloud bursting
solutions, allowing adoption of various standards and tools.

1.2 Structure of this thesis

This thesis is divided into 6 chapters and is structured as follows:

Chapter 1 provides an introduction and outlines main contributions done in this
thesis.

Chapter 2 gives more detailed overview on intercloud and cloud bursting topics.

Chapter 3 presents a detailed description of peer-to-peer overlay for service shar-
ing and discovery: an original idea which constitutes the basis for the cloud bursting
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architecture.

Chapter 4 extends idea of peer-to-peer based service provisioning to the cloud
scenario by addressing cloud-specific shortcomings of the original idea, and besides
provides the experimental evaluation of this approach.

Chapter 5 presents a comprehensive description of cloud bursting architecture,
and provides some analysis and guidelines and consideration for its experimental
evaluation.

Chapter 6 contains ideas about future research topics and other concluding re-
marks.
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Chapter 2

Cloud computing and emergence
of the Intercloud

Nowadays cloud computing is already widely adopted by multiple kinds of clients,
from small IT startups to big enterprises to governments. However, wide adoption
and growing reliance on the technology are at the same time among the main rea-
sons for situations where one cloud (or cloud provider) becomes not enough. Such
cases include a) outages within cloud provider premises; b) insufficient or partially
ineffective geographical distribution of cloud provider resources; c) malicious attacks
which can partly or fully incapacitate the cloud; d) added complexity of migrating
the infrastructure from one cloud provider to another, and as a result, e) the possi-
bility of vendor lock-in. These problems are well known and constantly addressed
by both researchers and enterprises. Yet, the biggest problem that emerge from
using single cloud provider is the limits in scalability, which most often manifests
itself in form of poor handling of abrupt fluctuations in the load, when permanent
scaling out is not economically reasonable, and at the same time peaks in the load
must be handled as prompt as possible. Flash crowds can be named as a prominent
example [2].

Recently, there is an increasing research effort concerning concomitant use of two
or more cloud services to minimize the risk of widespread data loss or downtime
due to a failure in a cloud computing environment. Although the terminology is
not quite fixed yet due to the freshness of the research domain, most authoritative
sources [3–5] tend to use the term inter-cloud computing which is formally defined
as “a cloud model that, for the purpose of guaranteeing service quality, such as
the performance and availability of each service, allows on-demand reassignment
of resources and transfer of workload through a interworking of cloud systems of
different cloud providers based on coordination of each consumers requirements for
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service quality with each providers SLA and use of standard interfaces.’ [6]. This
model, in turn, can be further divided into two more specific categories — cloud fed-
eration and multi-cloud. According to most definitions, cloud federation is achieved
when a set of cloud providers voluntarily interconnect their infrastructures to allow
sharing of resources among each other, while multi-cloud denotes the usage of mul-
tiple, independent clouds by a client or a service. Unlike federation, multi-cloud
environment does not imply volunteer interconnection and sharing of providers in-
frastructures. One special case of multi-cloud, named hybrid-cloud is of particular
interest. It is formally defined as “composition of two or more distinct cloud in-
frastructures (private, community, or public) that remain unique entities, but are
bound together by standardized or proprietary technology that enables data and
application portability” [1], and more informally as a composition of two or more
different cloud infrastructures, for example, a private and a public cloud. This
model currently gains popularity among cloud solutions. According to the recent
report by Enterprise Strategy Group [7], share of hybrid cloud model usage among
enterprises rose to 14% in 2014, while strictly on-premises model occupies only 2%.
Current most popular use cases for hybrid cloud are as follows:

1. Separation of workloads: Client can deploy an on-premises private cloud
to host sensitive or critical workloads, but use a third-party public cloud
provider, such as Google Compute Engine, to host less critical resources, such
as test and development workloads.

2. Big data processing: Company could use hybrid cloud storage to retain
its accumulated business, sales, test and other data, and then run analytical
queries in the public cloud, which can scale to support demanding distributed
computing tasks.

3. Managing peaks in load: Applicable to systems that experiences significant
demand spikes that are, however, rare, unpredictable or seasonal. Services
could run in private cloud, but lease additional external cloud resources when
computing demands significantly increase.

The last scenario is often referred to as cloud bursting. Though previously the
term cloud bursting was used to describe an extension of grids and clusters by the
means of clouds [8], currently its definition is extended to the private clouds. One
of the characteristics that makes cloud bursting scenario increasingly appealing for
enterprises is that it offers a reasonable alternative to leasing versus buying and
combines the scalability and ubiquity of public cloud with high security and total
control of the private one. Illustration of how cloud bursting works in a nutshell is
shown in Figure 2.1
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Figure 2.1: Cloud bursting.

In general, researchers analyze cloud bursting from two perspectives: service
provider perspective, which concerns usage of public cloud resources when pri-
vate cloud resources are insufficient, and cloud provider perspective, which
concerns usage of other cloud provider resources by a cloud provider when its own
are insufficient. Since we consider the latter as the special case of more general
research on interclouds, in this thesis we will use term “cloud bursting“ only in the
former meaning.

There are the following concerns that can be identified for successfully deploying
cloud bursting solutions:

� Security and isolation The pivotal point here is that enterprises are hesi-
tant to trust a third party service provider to host applications or components,
therefore service providers must prove that they meet compliance and audit
requirements as specified by the enterprise customer. This particularly in-
cludes satisfactory level of security for data in transit, in use and at rest, the
implementation of access control mechanisms, and establishing bilateral trust
between cloud data centers.

� Network performance and data architecture. Since the connectivity
between the clouds look like a “horizontal hourglass”, even given the best
WAN networks and WAN performance optimization, the throughput and la-
tency usually have significant impact on application performance. Besides,
the connectivity of choice for cloud bursting data centers is almost invariably
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a VPN connection with encryption, which further increases the latency.

� Data locality and compliance The major concern in this category is the
lack of transparency as to the exact physical location of clients’ data, especially
when it is subject to legal restrictions. Furthermore, even when the migration
of workloads to a public cloud does not involve moving the data, possibility of
failing to meet legal and regulatory requirements for handling sensitive infor-
mation, such as guaranteed shutting down of previously instantiated virtual
machines and secure wiping of attached temporary storage, cannot be ruled
out completely.

� Management and federation. This group of concerns arguably present the
widest area with the most ongoing research, including the one presented in this
thesis. It comprises resource allocation and management, their optimization
and life cycle management between a virtualized data center and the overflow
capacity in a remote data center, as well as conceiving effective architecture
for provisioning and orchestrating services, that are provided upon those re-
sources. Given the difficulties that currently emerge when trying to move
workloads quickly and easily across different cloud service providers due to
the various manifestations of vendor lock-in, many researchers argue that first
and foremost there is a need of common API standardization and providing
third-party tools that are independent from software vendors.

However, as for inherently distributed system, cloud bursting potential becomes
limited when such vital tasks as resource management and allocation, service pro-
visioning and life cycle management are implemented in a traditional centralized
way, usually utilizing some kind of brokering architecture, which introduces typical
issues such as existing of single point of failure, performance bottlenecks, network
congestion and synchronizing problems. This leads to the need of making at least
part of the cloud bursting solution decentralized, therefore increasing its robustness,
scalability and fault tolerance. Since our research interest mostly lies in the area of
management and federation, architecture proposed in this thesis is designed to deal
with the following problems: a) general approach to interconnecting several clouds;
b) resource provisioning in the hybrid cloud; c) service deployment and provisioning
in the hybrid cloud. This corresponds, by and large, to problems addressed in other
proposed solutions related to building cloud bursting architecture. As we already
mentioned, virtually all the solutions that we are aware of introduce certain cen-
tralized component that play the role of a broker, which usually combine multiple
responsibilities, such as a) acting a marketplace where clouds can sell or advertise
resources [6]; b) mapping user requests to cloud resources [9]; c) maintains the reg-
istry of collaborating clouds’ services [10], etc. We argue that existence of such
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component makes the system vulnerable to all kind of intrinsic failures to which
centralized systems are susceptible to, as already described in the introduction.
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Chapter 3

Peer-to-peer overlay for service
sharing and discovery

In this chapter, we describe a service discovery architecture based on structured
peer-to-peer overlay network, which utilizes platform-independent attribute-value
based method for describing services and an algorithm for service discovery that
allows execution of range and multidimensional queries. Among ideas that inspired
us to propose this system, we can name PWSD (Peer-to-Peer based Web service
discovery) architecture, presented in [11] and Intentional Name System, described
in detail in [12]. We propose a lightweight approach that could be based on any
DHT overlay, uses attribute-value based service description without resorting to
complex data description frameworks (e.g. Semantic Web) and is designed with
modular approach in mind. While being inherently a framework for building reliable
and scalable network for providing, discovering and using services, the approach
presented in this thesis is designed to be applied to the problem of efficient service
provisioning in cloud-based solutions, that is, for building an overlay network that
makes cloud-based services resilient, scalable and managed in a distributed manner.

3.1 Overview

The idea of building service sharing and discovery network based on peer-to-peer
overlay itself is not innovative, since it allows avoiding many problems that arise
in centralized scenarios, such as single point of failure, poor scalability or lack of
robustness. Nevertheless, even nowadays most of peer-to-peer based systems deal
with simple content sharing, which is fundamentally different from functionality of
sharing services. Still, there is a range of problems in common that are present in
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both cases, most important of them being appropriate descriptions of items shared
(content or services), and creating flexible and efficient search functionality that
provide results as relevant to the users’ criteria as possible.

The pivotal point of the system is an original platform-independent format of ser-
vice descriptions. This approach was first introduced in paper [13] with extended
analysis of the related research, however, at that time we did not yet consider its
possible application to the cloud environment. As was noted earlier, it is based on
Intentional Name System naming approach described in [12] and utilizes abstract
graph-based attribute-value description mechanism of services which is called (a, v)-
graph. The underlying serialization format of the graph is actually not important,
since it is not the part of the framework itself. We also propose several ways
for building description graph, including utilization of existing descriptions, auto-
matic description building and manual description input. While (a, v)-graph uses
the attribute-value structure, it serves as basic format for the service description
itself, which, among other ways, could be obtained by transforming correspond-
ing service descriptions, including XML-based ones. Besides, (a, v)-graph structure
contains only information meaningful for the service discovery, and also can be eas-
ily extended to contain the value type specification, so that search queries could
be executed in a type-aware way. Also it is important to note that service owner
and binding information are included in the (a, v)-graph as a special vertex1 which
is essential to the execution of discovered services. The main point which makes
(a, v)-graph approach useful in distributed services storing and discovering is that
the hash is computed only for attribute vertex and corresponding subgraph of the
(a, v)-graph is copied to the responsible overlay node according to obtained hash
value. This way the structure stored at the responsible node is still an (a, v)-graph,
which allows for the queries to be more flexible, making possible using range and
multidimensional queries in the application. Flexibility of the queries is also ensured
by the fact that actual mechanism of (a, v)-graph storage is not defined, so different
implementations can choose the best one for specific needs. While we have chosen
to implement our idea using Chord DHT [14], the approach for storing and discov-
ering service descriptions proposed in this thesis is actually overlay-independent.
That is, the algorithms of storing, removing, updating and locating the services are
defined in the layer more abstract than DHT one, and thus deal only with abstract
notions such as ”responsible node”. This way it is possible to have multiple lay-
ers of overlays for service storage (for instance, to increase reliability or distribute
the load), and those overlays, in fact, do not have to be based on the same DHT.
Finally, we present abstract format of querying the distributed database of service
descriptions which makes executing range and multidimensional queries possible.

1We use the term ”vertex” meaning ”node of a graph” in situations when there might be a
confusion between terms ”overlay node” or ”cloud node”.
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The approach described above bears some similarities with distributed scalable
content discovery system, proposed in [15] in that both use attribute-value based
content registration and discovery mechanism (influenced by [12]), and propose
similar mechanism of storing multidimensional data in the peer-to-peer overlay.
However, the approach for resolving range queries in the paper mentioned above is
based on Range Search Tree and due to the complexity of this structure includes
various optimization and adaptation protocols, making the actual implementation
of the approach difficult and error-prone.

3.2 Related work

Despite the fact that peer-to-peer approach is successfully used for content stor-
age and management for about 15 years, service management systems based on it
are still quite sparse and, as a general rule, they either remain within academia
or even do not evolve further than proof-of-concept stage. The earliest successful
peer-to-peer based service discovery networks include Hypercube [16] and Speed-R.
Traditionally, many proposed solutions are based on Semantic Web approach for
describing services. For instance, in the approach shown in [17], services are de-
scribed using DAML-S, while service publishing and discovery mechanism is based
on JXTA technology. Similar approach is used in [18], but Gnutella peer-to-peer
overlay is used instead of JXTA. Generally speaking, all peer-to-peer based solutions
for service management and discovery can be divided in two groups, depending on
approach for building an overlay (structured or unstructured). While unstructured
overlays are easy to implement and exhibit many interesting characteristics like
small-world phenomenon, they suffer from significant drawbacks such as inefficient
routing, unnecessary network congestion or inability to locate rare objects. More-
over, if we take into account the fact that cloud usually consists of a homogeneous
set of hardware and software resources in a single administrative domain, we can
argue that using DHT overlay presents an efficient approach due to its ability to
adapt to dynamic system expansion or contraction, high scalability and autonomy
features. However, since DHTs originally lack the ability to execute queries other
than key-based lookup, their application in scenarios that require range and multi-
dimensional queries was always a challenging task, leading to various approaches to
storing and locating objects in DHT, such as locality preserving mapping based on
Space Filling Curves in [19], sliding window partition method in [20] or tree-based
solutions such as MX-CIF quad tree in [21] to name a few.
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Figure 3.1: Lifecycle of client request in peer-to-peer network.

3.3 Differences between content and services in

peer-to-peer networks

In this section I present a brief outline of the differences between content sharing
and service sharing in peer-to-peer networks. In my opinion, proper understanding
of these differences is a key to designing efficient and scalable service sharing and
discovery architecture. First, let us look on the process of typical client request
that happens in the network. While content request always ends with discovering
and passing the desired content to the requester (or its absence), service request’s
lifecycle is considerably more complex in that discovering the service ends only the
first, preliminary phase of the request, which is then must be continued with job
scheduling, service execution and returning the result to the client. Besides, all
these steps can be considerably distant in time. You can see two flows compared in
Figure 3.1. Other differences are summarized in Table 3.1.

3.4 Service description

In this and next several sections we show how services are described, stored and
discovered in the proposed peer-to-peer based architecture. Each service in the
network is described using attribute-value format, forming so called (a, v)-pairs,
where attribute stands for the arbitrary property of a service. While attributes can
be only strings, value types can be of any type which is queryable, serializable and
can be efficiently stored by the underlying DHT storage mechanism. All (a, v)-pairs
form a connected graph, called (a, v)-graph, which always includes one extra vertex,
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Table 3.1: Differences between content sharing and service sharing in peer-to-peer
networks.

Content sharing Service sharing

Nature of data various types of files services description and services
endpoint description

Data volatility content changes frequently services are stable and usually
provided for a long period time

Data volume
� usually there is a lot of files be-

ing shared
� content may be (and usually is)

very large (GB, TB)

� usually peer exposes only up to
several services

� service descriptions are text-
based and therefore not large in
size

Metadata
� exact metadata depends on

type of file shared (MP3,
JPEG, PSD, ZIP etc)

� usually not human readable,
most often in binary format
(unless input by the user him-
self or extracted from the file
using some transformation)

� may be absent at all or be
present only as the name of the
file

� owner is not particularly con-
cerned

� done by the service owner us-
ing some well-known format
(WSDL, OWL-S)

� more accurate and complete
service description makes it
more discoverable and usable,
so owner is highly concerned

� text-based

Peer identity
� most file sharing peer-to-peer

networks users prefer to remain
anonymous

� there is a strong emphasis on a
means to protect user privacy
and anonymity

services are provided by some
well-known identity
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Figure 3.2: (a, v)-graph for service description.

that represents routing and binding information for the service itself. In real life
situations it is not uncommon when one node provides access to several services,
and each service is described using (a, v)-graph. Example of (a, v)-graph is shown
in Figure 3.2. The service is described using the following attributes: service type,
location, CPU utilization, game region and OS. The rest of graph vertices consist
of values of attributes mentioned above and one more special vertex which contains
low-level service info, such as IP address, port and network protocol.

From the viewpoint of the multidimensional objects representation theory, in-
dexing methods can be divided into two broad categories [22]: relatively low-
dimensional data, which usually arises in domains such as geographic information
systems, spatial databases, solid modeling, computer vision, computational geom-
etry, and robotics; and high-dimensional data, which is seen as a direct result of
trying to describe objects via a collection of features (also known as feature vector).
In our case, the feature vector is represented by a set of (a, v)-pairs. The queries,
which are to be supported in the application that uses such kind of data, usually
fall into the following categories [22]:

1. Finding objects having particular feature values (point queries).

2. Finding objects whose feature values fall within a given range or where the
distance from some query object falls into a certain range (range queries)

3. Finding objects whose features have values similar to those of a given query
object or set of query objects (nearest neighbor queries). In order to reduce
the complexity of the search process, the precision of the required similarity
can be an approximation (approximate nearest neighbor queries).
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4. Finding pairs of objects from the same set or different sets sufficiently similar
to each other (all-closest-pairs queries). This is also a variant of a more
general query commonly known as a spatial join query.

The algorithm for service discovery ensures that all query types mentioned above
are possible to execute and that the efficiency of answering to such queries, in
fact, depends only on the efficiency of the node’s internal database, therefore being
independent from the service discovery approach itself.

One of the most challenging issues for any new approach or framework is to
provide compatibility with existing technologies, which are already widely used.
It is important to note once more that (a, v)-graph approach is just an abstract
model of service description, therefore it should be seen as an output of some model
transformation function. Possible ways of obtaining the resulting (a, v)-graph model
are at least as follows:

Manual Input: the simplest case where user enters all service description infor-
mation manually, usually with some kind of GUI, though batch information
input (for instance, by uploading the file with multiple attribute-value pairs)
is also possible. Regardless of how the data is put into the system, it always
can be processed and transformed to the underlying (a, v)-graph serialization
format.

Transformation of Existing Service Descriptions: to address the issue of com-
patibility, the system must have a way to obtain (a, v)-based descriptions from
existing ones. In our case this is achieved by applying necessary model trans-
formations, exact nature of which depends on the representation of existing
models. But since in most cases existing services are described using XML-
based industry standards like WSDL or OWL-S, Extensible Stylesheet Lan-
guage Transformations (XSLT) language seems to be the most appropriate
choice for model transformation in this case, due to its high expressive power
and ability to output virtually any kind of data format using XML data as
input. It is important to note that in most cases existing service description
need to be transformed to (a, v)-based one only partly, since low-level details
of a service (like protocol name, input parameters enumeration, IP address
etc) are generally not searched upon. However, those low-level details can
still be present in (a, v)-graph in the service description vertex to facilitate
the process of binding and routing when the service is actually used.

Automatic Augmentation: among service description properties there are often
ones that are highly important as a search criteria but normally are neither
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supposed to be input by humans nor present in traditional static service de-
scriptions. Examples of such properties are current geographical location of
the service, status of the job queue, various QoS data (like performance or
latency) and sharing network data (like current node’s reputation). All those
data can be obtained automatically using various means, including automatic
location detection, internal monitoring functionality or network monitoring
and QoS protocols. However, storing and querying such kind of values cor-
rectly requires additional efforts because of their dynamic nature. We will
elaborate more on that in Section 4.4.

3.5 Service description storing

In the original set of experiments we conducted to support this approach, Chord
DHT peer-to-peer overlay was used to store service descriptions in a distributed
manner. Again, since this idea does not depend on actual DHT implementation, it
can be changed anytime (as we did later by switching to Kademlia DHT). As usual,
in order to store content in DHT we need to define what will act as a key and what
will be stored at the node. In our system, we apply hash function to each attribute
name and decide the node which is responsible for this attribute — in case of Chord
DHT it is successor of a key. In terms of our approach, this node is called responsible
node for the attribute and therefore will store subgraphs of a form [attribute, value,
service description], that is, subgraphs based on given attribute, of all (a, v)-graphs
in the network. In the result, we obtain a structure called merged (a, v)-graph in
each node that is responsible at least for one attribute. Example of merged (a, v)-
graph is shown in Figure 3.3. Here, the node responsible for attributes A1, A2

and A3 holds merged (a, v)-graph which consists of those attributes, all their values
found in the network and respective service descriptions, which include routing
information about service owner node.

Next, we present formalized version of service description storing algorithm. Each
node P in the overlay owns two graphs, namely, P.OS — graph for the services it
owns, and P.SS — graph for the services from other nodes it stores. The formal
definition of both graphs is as follows: P.OS = (VV ∪ VA ∪ {sd}, EA,V ∪EV,SD) and
P.SS = (VV ∪VA∪SD,EA,V ∪EV,SD), where VV — set of vertices that correspond to
the attributes of the service, VA — set of vertices that correspond to the values of the
attributes, sd — vertex which contains the low-level service description (including
information about owner node), SD — set of sd vertices, EA,V — set of edges
(vA, vV )|vA ∈ VA, vV ∈ VV and EV,SD — set of edges (vV , sd

∗)|vV ∈ VV , sd
∗ ∈

SD ∨ sd∗ = sd. The only difference between formal definitions of P.OS and P.SS
given above is the number of service definitions, included as vertices in the graph:
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Figure 3.3: Merged (a, v)-graph.

in P.SS there potentially will be multiple service definitions corresponding to owner
nodes of each stored service, while P.OS contains one and only one service definition
vertex, which contains information of a node that owns P.OS itself. Then, we
assume that for each node in the overlay the following two functions are defined:
h — hash function used to build an overlay, and find — function that returns
the node from the overlay by hash value. The pseudocode for service description
storing algorithm is shown in Figure 3.4. First, we evaluate hash function against
each attribute name in the service description. Having found the node, which is
responsible for storing that value, we send the graph which is comprised of the
attribute, its values and service description vertex to responsible node. When the
graph is received, we join it to merged (a, v)-graph (if it is already present at the
node).

It is not essential to the architecture of the system how exactly merged (a, v)-
graphs are stored at the node, but storage mechanism should be chosen in a way that
makes possible answering range and multidimensional queries. Therefore, the most
appropriate choices for storage mechanism are relational databases or document-
oriented databases, although both of them have their own advantages and draw-
backs.

3.6 Service discovery

Among one of the most significant drawbacks of DHT-based peer-to-peer overlays is
that the principles of content storage and its association with a key usually allows
processing only exact match queries when searching. There are some elaborate
approaches addressing this issue, but they usually offer only wildcard matching
level queries. The approach we propose in this thesis is based on the way service
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foreach service s from P.OS
foreach vA ∈ s.VA

H := h(vA) ;
P := find(H) ;
i f not exists v∗A ∈ P.SS.VA where v∗A = vA

P.SS.VA := P.SS.VA ∪ {vA} ;
end i f
sd∗ := get sd∗ from P.SS.SD

where sd∗ = s.sd ;
i f sd∗ i s NULL

P.SS.SD := P.SS.SD ∪ {s.sd} ;
sd∗ := s.sd ;

end i f
V := {vV ∈ s.VV |(vA, vV ) ∈ s.E} ;
foreach v ∈ V

P.SS.VV := P.SS.VV ∪ {v} ;
P.SS.E := P.SS.E ∪ {(vA, v)} ;
P.SS.E := P.SS.E ∪ {(v, sd∗)} ;

end foreach
end foreach

end foreach

Figure 3.4: Service description storing algorithm.

descriptions are stored in the overlay network, that is, using merged (a, v)-graph.

op1(A1) LOP1 op2(A2) LOP2 . . . LOPn−1 opn(Am)

Figure 3.5: Generic search query format.

Firstly, we assume that each search query in the system is submitted in the form,
shown in Figure 3.5 or can be represented as such. Here we let opi(Ai) be operators
=, 6=, contains,>,< etc., defined on the sequence of attributes Ai as parameters, Ai

— sequence of attributes [a1, a2, . . . , an] (where n is arity of the operator opi) and
LOPi denote logic operators OR or AND. This format itself is very generic, so we
argue that it represents most of meaningful search queries submitted in peer-to-peer
networks. You can see a concrete example of the query in Figure 3.6. Here, we
search for a game server, running on the machine with at least two processor cores,
having two possible operating systems installed and located somewhere in South
America.

The algorithm of search query routing and execution is formalized below. Note
that the algorithm actually does not require any extensions for the underlying DHT
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servicetype =′ GameServer′

AND

(OS =′ Windows 2008 Server′ OR OS =′ Windows 2012 Server′)

AND

processorcores ≥ 2 AND location =′ South America′

Figure 3.6: Example of search query.

algorithm. The query issued by the node in the form shown in Figure 3.5 can be
represented as a graph QU = (Q ∪ LOP,E), where Q = {qi = (ai, opi)|i = 1 . . . n}
— the set of query terms, LOP = {lopi|i = 1 . . . n} — the set of logical op-

erators, and E =
n⋃

i=1

{{(qi, lopi)} ∪ {(lopi, qi+1)}}. In addition to node functions

h and find introduced in the Section 3.5, we assume that each node have func-
tion evaluate, which returns the result of evaluating a query term again internal
database of the node. Similarly, we define graph RES = (R ∪ LOP,E), where
R = {ri|i = 1 . . .m} — initially empty set of results obtained from nodes after
evaluating a query term, LOP = {lopi|i = 1 . . . n} — the set of logical opera-

tors, and E =
n⋃

i=1

{{(ri, lopi)} ∪ {(lopi, ri+1)}}. Also we define the set of pairs

C = {(OR,∩), (AND,∪)} which contains the one-to-one correspondence between
logical operators and set-theoretical operations. Pseudocode for the algorithm is
shown in Figure 3.7. To put it simply, the process of search query routing and
executing basically consists of the following steps:

1. Query is split by logical operators, forming a set of attribute expressions.

2. Attribute expressions are grouped according to the hash function value of each
attribute present in the group, thus forming attribute groups.

3. Each attribute group is sent to the node, responsible for it in the peer-to-peer
overlay.

4. Each attribute expression in the attribute group is evaluated against the data
in merged (a, v)-graph stored at responsible node and the result (i.e. list of
service descriptions) is propagated back to the originating node.

5. Originating node merges all query results from responsible nodes according
to the logical operators and forms final result.
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foreach q ∈ QU.Q
H := h(q.a) ;
P := find(H) ;
R := P.evaluate(q) ;
RES.R := RES.R ∪ {R} for corresponding lop ∈ LOP ;

end foreach
return r1 C[lop1] r2 C[lop2] . . . C[lopn−1] rn

where ri ∈ RES.R, lopi ∈ RES.LOP ;

Figure 3.7: Search query routing and execution algorithm.

3.7 Comparison analysis of (a, v)-graph structure

Despite the fact that NVTree used in [11] and (a, v)-graph have much in common,
it is the differences that make (a, v)-graph structure more flexible. In order to get
a better view on advantages of the approach proposed in this thesis let us outline
those differences more clearly with NVTree as an example. As can be seen from
the way of building the NVTree, it is basically a tree representation of a XML-
based (actually, WSDL-based) service description which is further split into atomic
attribute-value pairs, where value nodes contain typed data (in case type infor-
mation is not available, the value is assumed to be of string type). Besides, the
information present in NVTree comprises all data found in the original service de-
scription, including the routing, binding and service owner information about the
service itself. On the other hand, while (a, v)-graph uses the same attribute-value
structure, it serves as basic format for the service description itself, which, among
other ways, could be obtained by transforming corresponding service descriptions,
including XML-based ones. Besides, (a, v)-graph structure contains only informa-
tion that is meaningful for the service discovery, and also can be easily extended to
contain the value type specification, so search queries could be executed in a type-
aware way. Also it is important to note that service owner and binding information
are included in the (a, v)-graph as a special node which is essential to the further
execution of discovered services.

Another difference concerns the point of how those attribute-value pairs are used
in the hashing process. The approach in [11] is as follows: attribute and value
string are concatenated and passed as an argument to the hash function which
determines the place where this piece of information is stored in the overlay network.
The approach in the (a, v)-graph is similar but instead of hashing attribute and
value altogether, the hash is computed only for attribute node and corresponding
subgraph of the (a, v)-graph is copied to the responsible node according to obtained
hash value. This way the structure stored at the responsible is still an (a, v)-graph,
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which allows for the queries to be much more flexible, which includes fuzzy and
range queries. Flexibility of the queries is also stipulated by the fact that actual
mechanism of (a, v)-graph storage is not defined, so different implementations can
choose the best one for the specific needs.

The next step for services discoverability after descriptions is the way how they
are stored in a distributed manner in peer-to-peer overlay network. Similarly to [11]
we chose Chord overlay for this purpose, but while the authors of [11] decided to
extend Chord DHT algorithm, scheme for storing and discovering service descrip-
tions proposed in this article is overlay-agnostic. That is, the algorithms of storing,
removing, updating and locating the services are defined in the layer completely
disconnected from the DHT layer and deal with only with abstract notions like
“responsible node”. This way it is possible to have multiple layers of overlays for
service storage (for instance, to increase reliability or distribute the load), and those
overlays, in fact, do not have to be the same. This approach will be described in
more detail in the next sections. Finally, we present abstract format of querying
the distributed database of service descriptions which makes possible wide range of
conditions including fuzzy conditions, range queries and complex values lookup.
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Chapter 4

Peer-to-peer overlay inside the
cloud

4.1 Overview

In this chapter we outline a service provisioning approach which utilizes service
sharing and discovery mechanism described in Chapter 3. Generally, the process of
deploying application services on clouds is known as cloud provisioning and consists
of three primary steps [23]

1. Virtual machine provisioning: instantiation of one or more VMs that match
the specific hardware characteristics and software requirements of the services
to be hosted

2. Resource provisioning: mapping and scheduling of VMs onto distributed phys-
ical cloud servers within a cloud

3. Service provisioning: deployment of specialized application services within
VMs and mapping of end-user’s requests to these services

Although all main players in the cloud computing market provide solutions that
control scalability and reliability of cloud instances, they all rely on traditional
centralized model of operation, thus becoming subject to usual problems of this
approach, such as network congestion, performance bottlenecks and existence of
the single point of failure. At the same time, in order to deliver expected Quality
of Service to customers, minimize maintenance costs and ensure that given cloud
solution is robust and reliable, large-scale cloud systems need scalable and reliable
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service provisioning architecture, which can be attained only if it is built in a decen-
tralized manner, eliminating all disadvantages of centralized approach. Specifically,
two major advantages of using peer-to-peer overlay in cloud service provisioning
can be named as follows:

1. Absence of centralized entity that answers and routes client requests (some-
times called “cloud broker”) and potentially presents a single point of failure

2. Layer of abstraction that eliminates differences between cloud providers and
instances

Since (a, v)-graph mechanism was originally designed as a generic approach for
storing arbitrary services in a non-specialized peer-to-peer overlay, adapting it to
cloud-based solution presents several challenges, most important of them are:

� Proper technique for balanced storing attribute-value pairs that are naturally
skewed in the cloud scenario, since most nodes expose a set of standard at-
tributes, such as operating system, available memory, processor architecture
etc.

� Algorithm for load balancing, i.e. an act of uniformly distributing workload
across one or more service instances in order to achieve performance tar-
gets such as maximize resource utilization, maximize throughput, minimize
response time, minimize cost and maximize revenue [23]

� Scalable and robust queuing approach (such as publish/subscribe) for requests
that cannot be satisfied in the current moment, either due to overload of
existing service providers or due to altogether shortage of service provider
nodes at the moment

� Dealing with dynamic attributes of the cloud service owners such as current
load and network congestion level

4.2 Load balancing of service registrations and

service queries

To address the problem of storing skewed attribute-value pairs, we consider us-
ing an approach called Load Balancing Matrix (LBM) originally proposed in [15]
with slight alterations taking into account specifics of storing service descriptions
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in (a, v)-graph. Here we give only an overview of the approach; for the complete
description, analysis and evaluation of the LBM please refer to original paper [15].

In essence, authors propose using a set of nodes, rather than one, for storing
popular attributes. Those nodes are organized into a logical matrix called Load
Balancing Matrix. Each node in the matrix has a column and row index (p, r),
and responsible node ID is determined by applying the overlay hash function to
the triple (ai, p, r) (while the approach in the original paper uses a 4-tuple that
consists of the attribute with corresponding value, column index and row index).
Each column in the matrix stores one subset, or partition, of the (a, v)-pairs that
correspond to the attribute ai. Nodes in the same column are replicas of each other,
since they host the same subset of (a, v)-pairs.

The matrix dynamically expands and shrinks along its two dimensions depending
on the load it receives. Due to this, matrices may end up in different shapes. For
instance, a matrix may have only one row, when only the registration load is high,
or one column, when only the query load is high. Each matrix uses a node, called
head node, to store its current size and to coordinate the expansion and shrinking
of the matrix. A head node is only responsible for its own matrix, and different
matrices will likely have different head nodes, which are distributed across the
network. Therefore, head nodes will not become the bottleneck of the system.
However, when a head node leaves or crashes, vital information about its matrix,
such as the size will be lost. To prevent this from happening, live nodes in the
matrix send infrequent messages with their indices to the head node. According to
routing properties of DHT overlay, a new node whose ID is close to the old head
node’s ID will receive these messages and become the new head node.

Though the approach described above will positively need some enhancements to
be efficiently used in the cloud environment, the experiments in the original paper
have shown its soundness and effectiveness for dealing with storing multidimensional
data with skewed attributes distribution. Schematic depiction of load balancing
matrix can be found in Figure 4.1.

Approach to the load balancing of the services search in the system is as an ex-
tension of the load balancing matrix method. Indeed, for the popular services there
will be a LBM with large number of rows, containing replicas of the same service,
and for the frequent (a, v)-pairs there will be a LBM with large number of columns
(partitions). In addition, there are some optimizations that can be done to improve
the efficiency of the search further. First, we can leave out services that are busy
or unavailable at the moment. This step may be absent (or performed with cer-
tain delay) in case query processing node waits for the matching services to become
available (this approach is described in the Section 4.3). Next, the node must decide
which of the remaining services is returned to the requestor based on the principle
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Figure 4.1: Load balancing matrix.

that it should not lead to over-provisioning of the concerned service. Also, there
might be additional requirements, some of them are posed by the requestor, that
need to be taken into the account, such as minimizing network congestion, mini-
mizing client financial overhead, restricting geographical location of the instances
etc.

4.3 Queuing

If we depict the flow from a client submitting a request to the completion (either
successful or not) of this request in the form of a simplified flowchart (see Fig-
ure 4.2), it follows that there are several activities that can be performed by the
node which originated the search (by the client’s request) after the query is executed

1. In case when the service(s) exist and are available, return success message to
the client along with the necessary data for the actual service usage.

2. In case where there are no available services for the given job at the moment
(but they are available in principle), there is an option to wait for some
service to become able to accept requests again and then proceed to the action
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Figure 4.2: Service discovery in the cloud: client request flow.

described in 1. This scenario allows avoiding unnecessary instance creation
and its subsequent shutting down, but it clearly must be used only when
delaying the incoming job request will not lead to the system instability, in
other words the wait must not create the bottleneck.

3. If there is no such service that corresponds to the submitted query, the node
might ask cloud infrastructure to create new instance and proceed to action
1. This approach is usually used in case when all existing instances are busy
and is the most common scenario in the cloud-based environments.

4. As an alternative solution in case when no services match submitted query, the
node can try searching with less strict criteria (for instance, replacing point
queries with range queries or searching for the service that satisfy only part
of the query terms). Note that the attribute value domain in the query must
adhere to certain requirements in order that obtained range queries be still
meaningful and not change the meaning of the query too much. On the other
hand, omitting some components of the query requires certain kind of weight
distribution assigned to the each attribute of the query to avoid neglecting
really important query terms.
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4.4 Other issues

Among other issues that arise when applying service sharing and discovery approach
to the cloud environments, there is yet another challenging one: dealing with dy-
namic attributes, such as current load, available disk space or network congestion
level, which are naturally present in every dynamic environment. Although finding
an efficient solution to this problem makes up a part of our future research, the
most promising approaches are the following:

� Use execution history to create a probability distribution that would charac-
terize predicted value of the parameter of interest

� Send messages to the neighbor nodes in a periodic manner in order to establish
current values of desired parameters and propagate updates values in the
overlay

Furthermore, considerable part of restrictions based on such dynamic attributes can
be applied later, on the load balancing stage, as briefly described in Section 4.2.

4.5 Simulator implementation

The proof-of-concept implementation of the service description and sharing frame-
work described in the Chapter 3 is done in C] programming language using Mi-
crosoft.NET framework (http://www.microsoft.com/net) and consists of the fol-
lowing main parts:

1. DHT overlay: a prerequisite for the efficient service sharing and discovery
approach implementation. In our case we chose Chord DHT [?] since it meets
necessary criteria, such as scalability of key location algorithm, efficient node
joins and departure processing, formally proven statements concerning loca-
tion of a key and overlay stabilization, and besides, is a well-known DHT
overlay widely used both in academia and industry. The consistent hash
function used in the overlay must generate values uniformly distributed in the
name space and be not input-sensitive. In current implementation we decided
to use SHA-1 as the system-wide hash function.

2. Service storage: an efficient data storage which supports all common types
of queries, allows storing typed data and can be easily deployed on each node in
the overlay. In current implementation we decided to use document-oriented
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database MongoDB (http://www.mongodb.org/), which satisfies all the re-
quirements stated above and is more flexible than many traditional relational
databases, since it is a lightweight solution which has little deployment over-
head, do not require predefined schema and do not include unnecessary at
this point functionality, such as transactional processing.

3. Overlay and statistics visualizing: both are implemented as a web ap-
plication, using HTML5 and JavaScript/jQuery (http://jquery.com/). Some
visualizations are done using Flot (http://www.flotcharts.org/) JavaScript li-
brary.

Network for the experiment is implemented using .NET based WCF (Windows
Communication Foundation) framework, which allows considerable flexibility as to
specifying various connection types, network delays, message serialization formats
etc.

During the implementation of the storage layer it became clear that at least three
database tables per node are needed for the full coverage of basic data manipulation
functions, that is (1) putting service to the storage, (2) updating service stored at
the overlay, (3) removing service from the storage and (4) getting service from the
storage based on the query. Tables and their structure are described in detail in
Tables 4.1 and 4.2.

Table 4.1: Database tables used for storing services at storage node (description).

Local service data Remote service data Service attributes data

stores comprehen-
sive data about
given node services
locally

stores attribute
data for services
in the overlay
network; all at-
tributes the node is
responsible of are
stored

stores information
about responsible
nodes for attributes
of given service;
service, respon-
sible for storing
this information,
is determined by
hashing service
name itself
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Table 4.2: Database tables used for storing services at storage node (structure).

Local service data Remote service data Service attributes data

� service name
� all service attribute-

value pairs with re-
sponsible node for each
attribute

� attribute value type
(optional)

� attribute name
� attribute value
� service owner

node
� service name

� service name
� all service attribute

names with responsible
nodes info

4.6 Experiment setup

In all following experiments we consider a network that consists of NC = 1000 nodes.
There exist NA = 100 possible attributes in the system and NV = 100 possible val-
ues, which result in NAV = 10000 possible (a, v)-pairs. Dataset for service registra-
tions is described as a 7-tuple DSetR = (NS, NA, NV , E[a], V ar(a), E[v], V ar(v)),
where NS — overall number of services in the dataset, E[a] — mathematical expec-
tation of number of attributes per service description, V ar(a) — its variance, E[v] —
mathematical expectation of number of values that attribute can have, and V ar(v)
— its variance. Parameters E[v] and V ar(v) allow us to introduce multiple-valued
attributes into service descriptions. We generate two kinds of datasets: uniform
and skewed. The former represents an ideal situation where attributes for the given
service are chosen randomly using uniform probability distribution. This dataset
is primarily used for comparison with more realistic skewed scenario. The latter
is generated with a frequency of attributes of a service defined by discrete Zipf
probability distribution with a fixed scale s = 5.

For service discovery evaluation we generated two query datasets, which are de-
scribed as 5-tuple DSetQ = (NQ, NA, NV , E[a], V ar(a)), where NQ — overall num-
ber of queries in the dataset, E[a] — mathematical expectation of number of at-
tributes used in a query and V ar(a) — its variance. Again, we generate two kinds
of query datasets: uniform and skewed, which are constructed similar to the service
registration ones.

Both service registration and query arrival times are modeled using Poisson dis-
tribution with expected value (frequency) λ. Each node has three threshold param-
eters, namely Rr — maximum registration rate, Rq — maximum query rate and Tr
— maximum (a, v)-pair registrations that node can hold in its internal database.
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Table 4.3 shows all parameters and notations used in the simulation.

Table 4.3: Parameters and notations used in the simulation.

Symbol Meaning

Network

NC number of nodes in the overlay network

NA number of possible attributes in the system

NV number of possible values for each attribute in the sys-
tem

NAV number of possible (a, v)-pairs

Service registrations dataset

DSetR dataset

NS overall number of services in the dataset

E[a] mathematical expectation of number of attributes per
service description

V ar(a) variance of E[a]

E[v] mathematical expectation of number of values that at-
tribute can have

V ar(v) variance of E[v]

Service queries dataset

DSetQ dataset

NQ overall number of queries in the dataset

E[a] mathematical expectation of number of attributes used
in a query

V ar(a) variance of E[a]

Thresholds

Rr maximum registration rate

Rq maximum query rate

Tr maximum (a, v)-pair registrations that node can hold in
its internal database

Other parameters

λ expected value of Poisson distribution that is used to
model service registration and query arrival times
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Figure 4.3: Service registration success rate comparison

4.7 Simulation results

First, we examine success rate of registrations as the number of registrations increase
and perform experiments both for uniform and skewed service datasets. Service
registration arrival time is modeled with Poisson distribution with frequency λ =
50 reg/s. Maximum (a, v)-pair registrations per node is chosen to be Tr = 100 and
threshold Rr = 30 reg/s.

Figure 4.3 shows how registration success rate changes depending on how many
services were fed to the system. According to Section 4.6, there can be two pos-
sible factors that cause failure in service registration — exceeding the maximum
registration rate Rr, which is influenced by parameter λ of the Poisson distribution
used to model service registration arrival times (and the overall amount of service
registrations, since they are executed in parallel). Exceeding the value of Tr is the
other possible cause of failure.

We observe that for the uniform dataset registration success rate curve gradually
drops as the services amount NS increases. Moreover, for the large values of NS

the drop in the curve become more prominent, since more and more nodes reach
the threshold Tr and are not able to process new (a, v)-pair registrations, resulting
in service being not registered in the system at all. However, in the case of uniform
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Figure 4.4: Query success rate comparison

dataset, the main factor that causes service registration failures is node saturation
with regard to threshold Rr, therefore it is possible to lessen its impact by regulat-
ing the arrival rate or increasing overlay node processing capabilities and network
bandwidth.

When we compare the ideal scenario above with more realistic skewed dataset,
the drop in the registration success rate becomes more significant, since relatively
small amount of nodes, which hold most popular attributes, become saturated very
quickly, meaning that Tr becomes major bottleneck in the system. On the other
hand, role of Rr becomes much less significant, as it mostly affects nodes with most
popular attributes when they are already close to saturation with regard to Tr.

Next, we study how the system behaves as the query load increases. For this, we
measure the rate of queries failed because of reaching maximum possible query rate
at the overlay node Rq = 100 reg/s. Again, we perform the measurements for the
uniform query dataset, where all attributes can appear with the same probability,
and for skewed one, where attributes are assigned weights according to the Zipf
distribution. The amount of services registered in the system NS = 5000 is fixed
and queries arrival time is modeled with Poisson distribution with frequency λ =
10 reg/s.

As can be seen from Figure 4.4, even for the unrealistic uniform query dataset
case, query success rate is 100% only for the small amount of queries and it steadily
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Figure 4.5: Service registration success rate comparison using LBM

drops down to the 50% as the query load increases. When we compare it with the
skewed scenario, the drop becomes more evident, especially for relatively small query
amount, drawing closer to the uniform scenario afterwards. This can be explained
by the fact, that almost every query in the real-world scenario will contain one
or more popular attribute, and the query execution will fail all the same, even
when other parts of it (that contain non-frequent attributes) succeed. This can be
somewhat mitigated with the technique proposed in Section 4.3 (item 4), but actual
cases when the popular query can be omitted are relatively few.

These experiments show that the system needs proper load balancing mechanism
to be scaled in an efficient way. According to more experiments shown in [15], LBM
(Load Balancing Matrix) approach has desired features in this regard, therefore we
tried to use it as a load-balancing mechanism for our approach. For this, we executed
another set of experiments for service registrations, now with load balancing matrix
for several values of P — amount of partitions. This time only skewed datasets were
used. Graph with P = 1 corresponds to the system without load balancing matrix.
Results are shown in Figure 4.5. It can be seen that increasing the number of
partitions leads to less service registration failures. In a similar way, we compared
how system behaves for service queries from skewed query dataset with and without
load balancing matrix replication. The result is shown in Figure 4.6
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Figure 4.6: Query success rate comparison w/replication

4.8 Example domain

To further demonstrate the system operation, we chose a domain of dedicated gam-
ing solution based on Google Cloud Platform [24], since in our opinion it represents
one of the typical scenarios found in distributed systems, requiring elaborate strate-
gies for load-balancing and efficient service provisioning.

First, according to the overview, key components of the proposed solution are
the following:

1. Game server selection

2. Player’s game client connecting to dedicated game server

3. In-game requests and Google Compute Engine instance health checks

4. Autoscaling game servers

5. Storing logs for analysis and MapReduce

6. Analysis of massive user and game datasets using Google BigQuery
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In our example, we decided to outline four main activities that occur in the
gaming scenario and are worth considering from the cloud computing point of view:

1. Search for the best matching game server

2. In-game requests which utilize separate game components, specifically micro-
payments for game items or services

3. Dedicated player versus player or team versus team requests

4. Requests for game or user data storage, extraction and analysis

Consequently, the most straightforward scenario we can elaborate in the given
setting would require four types of services, each corresponding to the one of the
activities described above. Each of the four services is characterized by the set of
the attributes, including ones specific to that service type. The possible example of
service descriptions in given domain is shown in Figure 4.7.
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<data>
<node type=”Game Server ” owner−node=”166”>

<cpu−uti l izat ion type=”percent ”>30</cpu−uti l izat ion>
<architecture>64</architecture>
<os type=”custom : osdata ”>

<type>windows</ type>
<ver s ion>2012 Server</ ver s ion>
<edition>datacente r</edition>

</os>
<processor−cores type=” in t e g e r ”>4</processor−cores>
<clock−rate type=” f l o a t ”>2 .7</clock−rate>
<location>North America</ location>
<game−region type=”custom : gameregion”>S14</game−region>

</node>

<node type=”Game Server ” owner−node=”31”>
<cpu−uti l izat ion type=”percent ”>70</cpu−uti l izat ion>
<architecture>64</architecture>
<os type=”custom : osdata ”>

<type>windows</ type>
<ver s ion>2012 Server</ ver s ion>
<edition>datacente r</edition>

</os>
<processor−cores type=” in t e g e r ”>2</processor−cores>
<clock−rate type=” f l o a t ”>2 .3</clock−rate>
<location>South America</ location>
<game−region type=”custom : gameregion”>A08</game−region>

</node>

<node type=”Micropayment Server ” owner−node=”37”>
<payment−provider>PaypPal</payment−provider>
<encryption>AES−256</encryption>
<authentication−mode>token</authentication−mode>
<location>South America</ location>

</node>

<node type=”Analys i s Server ” owner−node=”37”>
<cpu−uti l izat ion type=”percent ”>20</cpu−uti l izat ion>
<architecture>64</architecture>
<os>

<type>windows</ type>
<ver s ion>2012 Server</ ver s ion>
<edition>datacente r</edition>

</os>
<processor−cores type=” in t e g e r ”>2</processor−cores>
<clock−rate type=” f l o a t ”>2 .3</clock−rate>
<db type=”custom : ddata”>

<type>mic ro so f t s q l s e r v e r</ type>
<ver s ion>2012</ ver s ion>

</db>
<location>Europe</ location>

</node>
</data>

Figure 4.7: Node services data example.
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Chapter 5

Decentralized architecture for
cloud bursting

5.1 Current state-of-the-art

In this section, we examine the current state-of-the-art and identify main research
directions that deal with the resource provisioning and management in the inter-
cloud and specifically in the hybrid cloud which present significance to the problem
of building an effective cloud bursting architecture. Due to the relative novelty of the
topic, amount of proposed frameworks is scarce and many of them extend previous
research activities on Grids interconnection and interoperability. Among them are
Contrail [9] that introduces a centralized composite entity that acts as a single entry
point to a federation of cloud providers. Components of the solution provide single
sign on, mapping using requests to cloud resources, support observing the states
of cloud providers and facilitate the federation-wise SLA. By using either internal
or external adapters for different cloud providers, Contrail can support both cen-
tralized cloud federation as well as federation-agnostic structure. In mOSAIC [25],
unlike most other inter-cloud technologies, there are some assumptions regarding
the architecture of the deployed application. For instance, the application architec-
ture must be service oriented and use only the mOSAIC API for intercomponent
communication; also, developers must specify the resource requirements in terms of
computing, storage and communication. Some solutions are positioned as peer-to-
peer based, such as OPTIMIS [26] and RESERVOIR [27]. Former is built around
special software agents that are deployed within cloud providers and application
brokers. Those agents perform cloud providers discovery and negotiation (mostly
based on SLA data), deploy the service by providing appropriate virtual machines,
taking into consideration current workload, posed restrictions and evaluation of po-
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tential profit. However, OPTIMIS architecture is designed in order to anticipate a
variety of architectures for simultaneous use of multiple clouds (federated, multi-
cloud, aggreagtion of resources by a third party broker, hybrid cloud), providing all
necessary components and therefore is, in fact, a fully integrated multipurpose solu-
tion. While it can be argued that such multipurpose solutions are quite powerful, on
the other hand, it can become another point of vendor lock-in and lacks necessary
modularity and loose-coupledness. On the other hand, RESERVOIR project relies
on the usage of elasticity rules of the type “trigger-action”, which facilitate cus-
tom application brokering. As a result, the system attempts to create an elasticity
model that optimizes the control strategy without violating the SLA constraints. In
this model, all deployed applications are required to be agnostic of the hosting data
center location, which allows transparent deployment anywhere within the federa-
tion. However, as was already mentioned before, it have similar concerns as to not
addressing specifically cloud bursing scenario and having all components integrated.
More detailed analysis of inter-cloud frameworks can be found in [6].

As for cloud bursting research, the results here are even sparser and mostly in-
clude the following two prominent frameworks for building inter-clouds that explic-
itly tackle cloud bursting related problems. First, there is the architecture described
in [28], which is built on top of Aneka [29] — a software platform and a framework
for developing distributed applications in the Cloud managing computing resources
in a heterogeneous network. Another approach is taken by OpenNebula [30] which
is positioned as feature-rich and flexible solution for the comprehensive manage-
ment of virtualized data centers to enable private, public and hybrid IaaS clouds.
There are also slightly more niche research topics, such as investigating a decision
support model for cloud bursting [31] or developing a reference design for secure
cloud bursting, which gives special attention to the problems of trust and security
in this model.

5.2 Model overview

At the beginning of the description of our model, we provide details about par-
ticipating entities. In case of cloud bursting scenario, they usually include service
provider (SP), which provides one or several services, which it operates on premises
using private cloud, and cloud provider (CP), which is a company that offers a
cloud computing solution in the form of IaaS, PaaS or SaaS (or any combination
thereof) to other businesses or individuals. Cloud bursting scenario typically in-
volve several CPs, either on the evaluation stage, during which SP choose the CP
it would use for cloud bursting, or during actual multicloud stage if SP uses several
public clouds. Chosen CP is called cloud bursting target. In our case, scenario also
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includes another role, called client, which represents an entity that has some work
to perform in the cloud (either in the form of the workflow instance or a single job
request). While client in general might be a separate entity, in most scenarios SP
acts in this role. Lastly, we will call a request from the client a job request from now
on, but it should be noted that this definition differs from the similar terminology
that exists in Grid systems.

Job request does not always have one-to-one relationship to a service query (see
Section 5.4), since the query might be executed several times for the same job
request while waiting in the job request queue. Each job that is submitted to
the cloud describes the list of services that need to be called, input and output
parameters, required service properties and certificates, QoS requirements, etc. Al-
ternatively, job requests that are submitted to the cloud can be the part of some
workflow, which is described using existing workflow description languages such as
BPEL [32] or YAWL [33]. Either way, service query is constructed by transforming
these descriptions to the format described in Section 5.4.

Table 5.1: (a, v)-graph types summary.

(a, v)-graph Description Attribute examples

S-(a, v) contains properties of
service provided by SP

differ by actual service

I-(a, v) contains properties of
virtual machine instance
where service is deployed

CPU information, max-
imum available memory,
maximum available hard
disk space, OS type
and version, available li-
censes, installed certifi-
cates

L-(a, v) contains lease-specific
properties of cloud
bursting target virtual
machine instance where
service is temporarily
deployed

maximum lease time,
lease slot duration,
resource price
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5.3 Service descriptions

Services provided by SP are described using (a, v)-graph notation, introduced in
Section 3.5. It is important to note that while (a, v)-graph descriptions for each ser-
vice can be created from scratch, more realistic approach, which takes into account
reusing existing service data, would be the transformation of existing descriptions,
possible using XSLT for model transformation. We call the resulting (a, v)-graph a
service (a, v)-graph, or simply S-(a, v)-graph. Next, each virtual machine instance in
the cloud is characterized by its own (a, v)-graph based description, which includes
hardware characteristics such as CPU information, maximum available memory,
maximum available hard disk space, operating system type and version, available
licenses and installed certificates, etc. This graph is built similarly to the S-(a, v)-
graph and is called instance (a, v)-graph, or simply I-(a, v)-graph. Virtual machine
instances leased from the external CP add more (a, v)-pairs to the descriptions of
the services they host. Those (a, v)-pairs contain information such as maximum
lease time, lease slot duration or resource price, and form so called leased resource
(a, v)-graph or simply L-(a, v)-graph. Finally, service, instance and leased resource
(a, v)-graphs are merged into one graph called full-(a, v)-graph, which is stored at
the overlay node. Full-(a, v)-graph contains the node that holds low-level rout-
ing information about the instance. Table 5.1 shows the summary of all types of
(a, v)-graphs used in current model.

5.4 Service queries

Job request is a crucial part of cloud bursting approach, since it acts as the mecha-
nism which determines the status of the internal cloud and verifies to what degree
provisioned services fulfill the established service level agreement and other aux-
iliary requirements. In case the job that is being submitted to the cloud cannot
be executed with only internal resources, leasing additional resources from external
cloud must be performed. In our model we construct such mechanism using the set
of service queries Q = {Q1, Q2, . . . , Qs} that formally describe each job request J
and return the set of available service instances I that are provided by either SP
or one of the CPs that currently act as a cloud bursting target. The service query
is expressed in a format introduced in Section 3.6.

The node, which handles the query, is called brokering node. Apart from service
properties, query can include special terms, called provisioning policy terms, which
help regulate the rate and scale of overlay growth. These terms include
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� Cost restricting terms: For example, current job request has low priority
and should either lead to restricted leasing of external resources or result in
no leasing at all.

� Queue wait time: This term regulates how long the request should wait in
the queue for local SP resources before it switches to leasing external ones.

5.5 Overlay formation and scaling

Next, we describe the procedure of forming a peer-to-peer overlay which is the
pivotal element in the proposed architecture. It is formed with cloud virtual machine
instances as nodes, each of which has at least one service deployed, however some
services may be deployed on several instances as well, depending on the capabilities
they require and estimated initial demand. We consider it reasonable to assume that
services of SP form an overlay network of considerably large amount of nodes, since
if the opposite were true SP most probably would not need to resort to building
cloud bursting solution. The form and the scale of the overlay is defined by the
combination of the following scenarios:

1. Initial configuration scenario: Starting point of building cloud bursting
architecture. Here SP first deploys its services into own private cloud with
minimum needed amount of instances for each service, therefore establishing
sufficient infrastructure for executing necessary jobs at the moment.

2. Vertical scaling scenario: This scenario consists of expanding or contract-
ing (increasing or decreasing the number of instances) within the bounds of
the SP private cloud and does not incur extra-corporate expenses.

3. Horizontal scaling scenario: This scenario represent the actual cloud
bursting process: temporary leasing virtual machine instances from cloud
bursting target and eventual contracting to the original state of having only
private cloud instances. Choosing one or several CPs that will act as a cloud
bursting target is also performed here, but can be seen as optional, because
in the real-word scenario SP will not perform full CP selection process each
time the horizontal scaling occurs.

By utilizing peer-to-peer overlay, we achieve certain level of homogeneity, which
allows us to abstract from actual nature of scaling scenario (whether it is vertical
or horizontal), since in both cases new virtual machine instances are represented as
overlay nodes with corresponding service descriptions that are linked to the actual
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instance routing information. Given this model, each job request will result in one
of the following situations:

1. Requested service is available and job request satisfies restrictions introduced
by resource provisioning policies.

2. SP infrastructure lacks either power (expressed in CPU, memory etc) or ca-
pabilities (expressed in operating system kind, software, license, protocols
support, certification etc).

In the first situation, the job is submitted to corresponding instance(s). For the
second one, there are two alternatives:

1. Brokering node puts the request in the job request queue, performing period-
ical re-querying.

2. Scaling is performed, resulting in increased amount of instances and/or adding
required capabilities.

5.6 Platform components

In this section we describe the components which compose proposed solution. Due
to modular approach to designing and implementing the solution, components are
loosely coupled, allowing replacing or refactoring them if needed. This approach also
makes possible using a wide range of third-party solutions for queues or databases.
We argue that proposed solution eliminates most centralized components, that usu-
ally appear in many other publications related to cloud bursting or multicloud or-
ganization, as shown in Table 5.2.

The components that are used in the proposed model are as follows. Dependencies
between components are shown in the Figure 5.1.

Job request processor: Gateway component which accepts a job request from
a client. The job request is put into the job request queue, and then a service query
is formed and sent to the service query processor, which returns the result together
with further action. Depending on this action, job request processor either contacts
provisioning manager and eventually return available instance(s) information to the
client or repeats service query later. When job is finished, its results (if they are
present) are returned to the client. In many cases, clients may receive not the actual
result value, but a set of pointers to the component where the result data is stored.
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Table 5.2: Centralized components eliminated in proposed model.

Component Examples

Resource pool FCM Repository [34], Cloud Computing Resource Cata-
logue [35]

Service request
processor

Federation Runtime Manager [9], Generic Meta-Broker
Service [34], Resource Broker [25]

Resource provi-
sioner

CloudBroker [34], Cloud Optimizer [26], Client Interface
[25]

Multicloud bro-
ker

Primary Cloud Provider [10], Cloud Coordinator [3], In-
tercloud Exchange [35]

Service query processor: Component which is responsible for processing the
service query, which was formed by job request processor based on the job request
from a client. Since service query processing itself is a multi-stage process, the
component performs the following functions:

� Accepts service query and puts it to the service query queue.

� Processes the query according to procedure described in [36].

� After getting the query result, returns it to the job request processor along
with the action that is supposed to be taken (such possible actions are de-
scribed in detail in Section 5.5).

Since proposed solution is distributed, any overlay node can act as job request
processor and service query processor for the incoming query. In practice, actual
node is chosen using round-robin algorithm in order to distribute the load and
eliminate unnecessary large request queues. Furthermore, while the architecture
actually does not prescribe that those two components must be located at the same
overlay node, it seems reasonable to do so for given job request and service queries
associated with it in order to decrease network traffic and improve reliability. Refer
to the Figure 5.2 for more detailed description of decentralized processes in cloud
bursting architecture.

Job request queue: Component which holds job requests with their respective
service queries being processed or scheduled to do so. Physically, the queue is
organized as a distributed queue where master node corresponds to the overlay
node that acted as job request processor, and several other nodes in the overlay act
like a slave nodes with duplicate queue instances.
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Service query queue: Component which holds service queries which are cur-
rently being processed. This queue can be organized in a distributed way similar
to job request queue, but in reality due to reliability concerns it is coupled with
service request processor and located at the same node.

Provisioning manager: Component which is responsible for provisioning of
resources in case the current ones are not sufficient to process a job request. It is
contacted by job request processor in case service request result indicated that new
instances must be created for given job request. On this stage, provisioning manager
becomes the point from where cloud bursting process starts in case local resources
are not enough. First, it contacts cloud bursting target searcher component to ob-
tain the information about most suitable cloud bursting target. Having established
the target, provisioning manager sends the request to external authentication man-
ager, which provide necessary credentials and other authentication data needed to
start provisioning process from external cloud. It uses appropriate adapter compo-
nents to interact with external CP, obtain routing information for leased resources
and return it to job request processor.

Resource pool: Since most cloud providers offer billing plans based on fixed
time blocks (e.g. X dollars for Y hours of uptime), it is reasonable to maintain a pool
of resources that once was leased from CP with job that requested them is finished
but the dedicated time slot is not over yet, so they can be reused. In contrast to
most centralized solutions, this pool does not exist as a standalone component — the
nodes just remain as the part of the overlay with respective services deployed. Nodes
are removed from the pool (and therefore from the overlay) based on their L-(a, v)-
graph information. As for the removal, there are two ways to implement it. First
one implies that provisioning manager monitors all resources leased from external
CP and releases them when needed, communicating with job request processor if
necessary. This approach is currently adopted in out model. Alternatively, leased
resources can be managed in the distributed way when overlay nodes check their
neighbors and send corresponding “release” message to provisioning manager. This
way is preferable considering distributed nature of the framework and we plan to
switch to it during our future research.

External authentication manager: Component which stores and manages
various authentication information (credentials, authentication tokens, security cer-
tificates, etc.), that are necessary to successfully perform resource leasing from exter-
nal CP. This component is contacted by provisioning manager during cloud bursting
phase. This component uses adapter components for interacting with external CP.

Cloud bursting target searcher: Component which provides information
about cloud bursting target when horizontal scaling is performed. Possible cloud
bursting targets are first listed in the initial configuration of the component in the
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order of preference. This configuration is created based on open and available data
about CPs, which include pricing plans, available geographical locations, supported
platforms and services, etc. In addition, data from cloud monitoring system compo-
nent is used to change this initial preferences order. The design of proposed solution
also allows the administrator to participate in cloud bursting target selection process
by manually performing selection via GUI.

Cloud monitoring system: Component which collects, aggregates and stores
diagnostic and monitoring data obtained from hybrid cloud instances. While every
CP provides its own cloud performance monitoring system (for example, Amazon
CloudWatch [37] or Cloud Monitoring [38]), they are not designed to be cloud-
agnostic, which renders their usage in multicloud scenarios difficult. Notwithstand-
ing that, there are some systems which are oriented for multicloud usage [39] and
some of them can be used in our solution. The data that is being obtained by a mon-
itoring system is highly dynamic (for instance, current load) and possibly requires
aggregation or join operators when being queried, therefore it is difficult to effi-
ciently store it inside the overlay itself. However, while it does not seem reasonable
to make such system truly decentralized, it can benefit from certain techniques such
as replication. Monitoring system output can be used to decide whether we need to
perform scaling in some particular situation. For example, if we take the scenario
when there are no available instances that match service query, the monitoring data
can be used to decide the period for retrying the query, and if the estimated period
length exceeds certain threshold, perform scaling. In addition, cloud monitoring
system is responsible for collecting statistics regarding previously leased external
CP resources, which provide an input for cloud bursting target searcher.

Adapter components for interacting with external CP: While there are
some efforts to provide a common standard API for the cloud [40], at the moment
each cloud provider still uses vendor-specific interfaces for cloud programmatic ac-
cess and communication with their cloud resources. This brings forward the need to
maintain separate driver components for each possible cloud bursting target. In our
solution, those components constitute the part of the application, that is deployed
on every instance.

5.7 Synchronization and conflict resolving in job

request/service query queues

While being an effective way for improving scalability and robustness of the sys-
tem, distributing job request and service query processing (we use “job requests”
term only for the rest of this section for brevity, but this discussion concerns both
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Figure 5.1: Model components.

job requests and service queries) presents another problem: handling simultaneous
requests and overall synchronizing the queues. More specifically, let us consider the
situation when several (say, two of them, for the sake of more determinate analysis)
job requests for the same service independently arrive at different nodes which act
as job request processors. Next, they are transformed to service queries and sent to
the overlay (acting here as a resource pool) where they both return some resource
R as a result to the job request processor. Supposing that R can serve only one
more client at this time, how do we ensure that the following exceptional situations
will not occur for R:

1. Racing condition when both requests claim the resource

2. Providing a resource when it is already invalid, because it was occupied by
another requestor

3. Both requestors reporting that a resource is unavailable, one of those being a
false information

First, let us consider traditional methods for resolving this issue. One of them is
to introduce one more queue (we can name it synchronization queue), which will act
as a synchronizing element for all job requests in the system. Since there is not need
for actual copying of job request content, only their identifiers and timestamps may
be present in this central queue. However, introducing such a component brings on
another problems: that is, now we need reliable clock synchronization across the
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Figure 5.2: Decentralized cloud bursting architecture.

system, including parts of hybrid cloud that are leased from external cloud provider
on a temporary basis. Examples of such synchronization methods are Network Time
Protocol [41], Precision Time Protocol [42] or clock synchronization using GPS.
Apart from considerably increasing the system complexity, this approach presents
yet another problem: synchronization queue becomes yet another bottleneck and
single point of failure in the system, thus defeating the whole purpose of cloud
bursting architecture decentralization.

Now let us analyze an alternative which consists in resolving conflicting job re-
quests inside an overlay. From this point of view, we have two queries that are
satisfied by the same resource located on some node NR. To resolve an issue when
both requestors claim the same resource we can introduce a status flag of a resource
which indicates whether it is free or claimed by some requestor. This property is
saved a part of S-(a, v)-graph on the owner node only and not propagated to the
network and other nodes, since doing so will bring on another kind of synchroniza-
tion problem. When node which executes the part of the query that is satisfied by
this resource, it contacts the owner node and checks the flag value. If the value is
“free”, it sets the flag to “claimed” state and assumes that query part is satisfied.
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Otherwise, execution flow for this query part excludes given resource from the result
set. Since accessing the database of a node (for manipulation with “status” flag)
is already governed by internal synchronization primitives such as locks, we take
it that no synchronization conflicts could occur here. Resetting of the flag back to
“free” state is done by job request processor instance responsible for that particular
job.

5.8 Considerations for evaluation and compara-

tive analysis

In this section we will present metrics and other considerations for evaluation and
comparative analysis of our proposed approach which is done as a part of future
research on this topic. In order to test behavior and performance of the system
we are currently building a simulator for cloud bursting scenario, which contains
all components described in Section 5.6 and mocks necessary interfaces that are
present in real cloud setting.

First, we propose several basic performance metrics as follows.

� Average time of job request in job request queue. This metric shows
overall performance of the system from client’s perspective, that is how long
does it take in average for its job requests to be executed. It defines the overall
responsiveness and effectiveness of the system.

� Average amount of service query executions (reformulations) for
given job request. This metric reflects the responsiveness of the system and
its sensitivity to the private cloud overload. It follows from the definition that
the value of this metric should not ever exceed certain acceptable threshold.

� Average lifetime of a resource in the resource pool. This metric esti-
mates the size of the hybrid cloud. It can be measured separately for SP and
external CP instances to show how heavily SP depends on leased resources.

� Average cost per job request. This is a metric that shows how costly
is job request processing from SP perspective. If we assume that intra-cloud
processing costs are constant, the value of this metric will grow according to
how much external cloud resources are used to process incoming job requests.
The smoother is this growth the more optimal and precise is the cloud bursting
process, including reusing already leased resources and optimal waiting time
for incoming service queries.
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� Network load. This metric shows how efficiently the system is using network
resources. This influences scalability of the system and, more directly, its cost
effectiveness.

Next, there is a need for comparing proposed solution with other research results
in this area. While there already are multitude of comparative analysis research for
traditional cloud systems, intercloud and cloud bursting systems presents certain
complexity in this aspect because of novelty of the topic. Therefore, we try to
introduce several ways of performing such analysis for your solution. First of all,
Table 5.3 shows how our solution fall into intercloud systems taxonomy introduced
in [6], therefore making possible its comparison to already existing systems similarly
described in the aforementioned paper. In particular, we can compare based on
the following characteristics: a) level of adhering to client SLA requirements; b)
how optimal is the use of SP costs; c) level of cloud monitoring and how far this
data is leveraged to optimize bursting target selection; d) how system reacts to
abrupt/planned peaks in the load; e) robustness in case of partial cloud failure. In
cases when these and other criteria are hard to measure using quantitative methods,
we intend to perform detailed analysis to show pros and cons of our approach from
the qualitative aspect.
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Table 5.3: Intercloud taxonomy description of the system.

Feature Explanation

SLA-based bro-
kering approach

application developers specify the brokering requirements
in an SLA in the form of constraints and objectives

Singular jobs executed only once, unless they are rerun by the users or
automatically rescheduled upon failure

Periodical jobs repeatedly executed over a period of time.

Compute-and-
data-intensive

facilitate user access to a persistent storage or perform
massive computations

Geo-location
aware

requests should be scheduled near the geographical loca-
tion of their origin to achieve better performance

Pricing aware detailed and up to date information about providers prices
and policies to perform fiscally efficient provisioning

Legislation/policy
aware

application broker should take into account legislative and
political considerations upon provisioning and scheduling

Local resources
aware

usage of local in-house resources with higher priority than
that of external ones
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we have presented the decentralized approach for efficient service
sharing and discovery based on peer-to-peer overlay. In order to adapt existing
peer-to-peer DHT overlays we introduced formal description of the problem of ser-
vice annotation, their distribution in the network as well as their discovery mech-
anism. We presented algorithms based on aforementioned formal definitions that
cover the process of service sharing and discovery in peer-to-peer overlay. As practi-
cal application of this approach, we applied it to the problem of service sharing and
discovery in the cloud. We also introduced several enhancements of the original
approach that allow using it more efficiently in cloud scenarios. We have shown
the soundness and robustness of this approach by constructing simulation environ-
ment and conducting the set of experiments. This work eventually lead us to even
more challenging area of application, namely building cloud bursting architecture
based on peer-to-peer overlay for service provisioning. We presented an approach of
building decentralized cloud bursting system, outlined scenarios and workflows that
emerge in it, and provided detailed description of the components that comprise
the system. We also conducted its evaluation by comparative analysis with similar
system and outlined guidelines for further, more detailed evaluation.

6.2 Achievements

� Introduced and formally described decentralized service sharing and discovery
approach in peer-to-peer overlay
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� Applied the above approach to the problem of service provisioning in the cloud
and made necessary adjustments and enhancements, including load balancing
for service registrations and service queries

� Verified our approach by simulation using existing DHT overlays (Chord,
Kademlia) and cloud simulator (CloudSim)

� Introduced decentralized architecture for cloud bursting using the approach
above, including detailed description of scenarios, workflows and system mod-
ules

� Conducted evaluation of the above by comparative analysis with similar sys-
tem and outlined guidelines for further, more detailed evaluation

6.3 Benefits

� Utilizing of well-known DHT, which guarantees the correctness and soundness
of underlying peer-to-peer overlay

� Partitioning of multidimensional service description space over the set of over-
lay nodes, that naturally allows execution of range queries

� Introducing decentralized brokers to cloud bursting architecture, which elim-
inates single point of failure and increases robustness of the system

� Eliminating separate resource pool component from cloud bursting architec-
ture and instead forming it in form of cross-cloud peer-to-peer overlay, there-
fore making the system highly scalable

� Modular framework architecture, which allows using wide range of existing
queue or storage components

6.4 Future work

� Automate decision making process for choosing most suitable cloud burst-
ing target, possibly by using detailed analysis of historical data to build a
knowledge database, which then could be used to infer optimal choice

� Adapting proposed model for hosting business workflows

� Enhance load balancing of underlying peer-to-peer overlay
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� Build (or integrate existing) system statistics and monitoring subsystem which
can be using for more granular tuning of an overlay
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