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Abstract

Most behaviors of granular materials have been studied under the limit conditions of stress
paths, such as triaxial compression or extension tests where the intermediate principal stress 62
has not been involved. In reality, granular materials are under generalized stress system where
the major, intermediate and minor principal stresses 61, 62 and 63 change continuously. The
behavior of granular materials under generalized stress system is not well understood,
particularly the relationships between the macro behavior and micro-scale response. Discrete
Element Method (DEM), a numerical simulation, can simulate the macro behavior and explore
the micromechanical behavior of granular materials. This study focused on the influence of
intermediate stress ratio, specified by the b value [= (02-63)/(c1-03)], on the mechanical
behavior of granular materials under generalized stress system. There are three objectives of
this research. The first is to simulate the macro behaviors and explore the micro characteristics
of three-dimensional granular materials under continuously varying b value stress paths. The
second one is to explain the relationship among the macro behaviors and microstructure
parameters and load transmission in granular materials under continuously varying b value
stress paths. And the third one is to describe the experimental phenomena of monotonic and
cyclic loading tests on sand by using the micro variables. To this end, monotonic and cyclic
loading under truly triaxial conditions, following the stress controlled method on 8,000 spheres,

were simulated with continuously varying b value.

For this research, it is found that DEM shows qualitative results of the macro behaviors of
experiments of sand under monotonic as well as cyclic loading under continuously varying b
value stress paths. The macro behavior and micro response data were described by the
relationship between the stress ratio and fabric structures representing contacts of all particles
as well as the strong contact regardless of the varying b value. Moreover, this study found that
changing the b values continuously shows different distributions of the fabric and contact
forces evolutions. The increments of anisotropy coefficients of average fabric, normal contact

forces, and tangential contact forces differ depending on the b value. Furthermore, the

i



continuously varying b value stress paths lead to change the increment directions of the stresses
which cause some changes in the increment directions of those anisotropy coefficients.
However, the differences in the directions of stress paths do not affect those anisotropy
coefficients at the peak stress. Finally, the stress-force-fabric relationships under continuously
varying b value stress paths were presented in terms of the anisotropy coefficients of fabric,
normal contact forces, and tangential contact forces anisotropic. Regarding cyclic simulations,
a qualitative comparison of the stress-strain-dilation between the DEM and experimental
results under triaxial cyclic loading shows similarity tendency. Furthermore, micromechanical
responses, indicated by coordination number and sliding contact fraction, can be used to
explain the macro behavior in cyclic loading. Additionally, the macro-micro relationship is
explained by using the relationship between stress ratio and fabric structures of all contacts,
and only the strong ones. The study found that the unique macro-micro relationship does not

depend on the more generalized cyclic stress path and the number of cycles.
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Chapter 1 : Introduction

1.1 Background

Granular materials like sand are made up of discrete particles without any cohesive forces
between the particles. When a load is applied, the resulting forces are absorbed by the substrate.
As a result of the applied load, the sand is compacted and micro contacts between particles
occur, forcing them to change their orientations. The void between particles has changed
continuously involving the particles orientation. The discontinuity between contacts also
happens within granular materials. Consequently, the macro behavior changes. Many previous
researches have studied the macro behavior and micromechanical response of granular
materials under several conditions by experiments and numerical simulations. However, in
general stress system where the major, intermediate and minor principal stresses o1, 62 and 63
change continuously, there are still many phenomenological and physical behaviors of granular

materials which have not been clearly explained.

Several concepts of mathematical modelling have been established using the continuum
subject in order to model the behavior of granular materials. Different concepts need different
input parameters to approach the physical behavior of sand which are sometimes difficult for
model users and developers. The validation of each modelling is normally done by comparing
the results of the model and results of the laboratory testing. It is important for the geotechnical

engineering to validate the existing models as well as to generate the new continuum approach.

Because sand is discrete by nature, numerical simulation for discrete particles is widely used
to study the behavior of real sand. The behavior of granular material is mainly considered in
macroscopic and micromechanical response. In order to clearly understand the macro behavior of
granular materials, geotechnical engineers need to understand its behavior in the micro level. The
relationship among the externally applied load, the macro response of the granular system, the

microstructure or fabric, as well as the distribution of the contact force have been distributed a



qualitative considerate of the mechanism of load transfer in granular materials(e.g. Dantu 1957;
De Josselin de Jong 1969; Oda et al. 1978; Oda and Konishi 1974). It is necessary to initiate the
innovative continuum mechanic of granular behavior. More recently, the computer simulation has
been used to model the granular assemblies of 2-dimentional discs under shearing and obtain
some qualitative details of the microscopic feature (e.g. Cundall and Strack 1979, 1983;
Rothenburg and Bathurst 1989, 1992; Thornton 2000; Thornton and Barnes 1986). Many years
later, 3-dimentional simulation has been widely used because of the importance of simulation the
real sand more closely (Bathurst 1985; Phusing et al. 2015; Sazzad et al. 2012; Sitharam et al.
2004). However, most behaviors of granular materials have been studied under the limit
conditions of stress paths, such as triaxial compression or extension tests where the intermediate
principal stress 62 has not been involved. In fact, granular materials are under generalized stress
system where the major, intermediate and minor principal stresses o1, o2 and o3 change
continuously. The behavior of granular materials under generalized stress system is not
understandably described, particularly the relationships between the macro behavior and micro-

scale response.

Discrete Element Method (DEM) is one of the numerical approach for studying the mechanical
behavior of granular materials, the representative of sand. DEM is a numerical simulation tool,
created by Cundall and Strack (1979). DEM has been widely used for simulating granular
materials and investigating the mechanical behavior of granular materials (Thornton 2000; Ng

2004a; Ng 2004b; Sazzad et al., 2011; Barreto and O’Sullivan 2012).

This research focuses on using DEM simulating the macro behaviors and explore the micro
characteristics of three-dimensional granular materials under more generalized stress systems.
Furthermore, the microscopic data has been explored and explained the relationship between
macro and micromechanical behavior for monotonic as well as cyclic loading of generalized stress
systems. For monotonic loading simulation, the relationship among applied stress, contact forces
between particles, and fabric distribution from DEM has been studied using the stress-force-fabric
relationship developed by Rothenburg (1980). The validation of the existing stress-force-fabric

relationship under the more generalized stress systems in this study has not been mentioned.



1.2 Objectives

Regarding the motivation mentioned in the background, there are three main objectives of this

research.

i.  To simulate the macro behaviors and explore the micro characteristics of three-

dimensional granular materials under continuously varying b value stress paths.

ii.  To explain the relationship between macro behaviors and microstructure parameters and

load transmission in granular materials under continuously varying b value stress paths.

iii.  To describe the experimental phenomena of monotonic and cyclic loading tests on sand

by using the micro variables.

1.3 Organization of the dissertation

The organization of the dissertation is ordered as follow:
Chapter 1 describes the background/motivation, objectives and organization of this dissertation.

Chapter 2 explains the related literatures in experimental and DEM based studies, as well as the

fundamental microscopic concepts.

Chapter 3 reviews the fundamental theory of DEM and some brief details of computer program

OVAL.

Chapter 4 describes the macro-micro behaviors of granular materials under continuously
varying b value. The preparation of the sample using spherical particles is explained.
Macro behaviors and micro data of the sample under several constant » and

continuously varying b stress paths are described. The relationship between macro-



and micro- behaviors of granular materials under continuously varying b value is

presented.

Chapter 5 explains the evolution of microstructure parameters at the particle levels, as well as
verification of fundamental microscopic description in chapter 2. The granular
sample is simulated under continuously varying b value stress paths and this research
explores the micro variables data. Microstructure parameters are found and used to
plot the distribution diagrams of fabric tensors and contact forces at the particle level.
The stress-strain curves using the stress-force-fabric relationship (Rothenburg 1980)

is established and compared with the stress-strain curves from DEM results.

Chapter 6 explains the macro-micro behaviors of granular materials under cyclic loadings. The
sample preparation is described corresponding to the experiment of Nakai et al.
(2003) testing cemented-sand under several cyclic loadings in general stress systems.
The stress-strain-dilation curves of compression and extension cyclic loading of
DEM and the experiment are compared and discussed. The strain increment vectors
of DEM and the experiment are shown. The micro data during cyclic loadings are

explained.

Chapter 7 summarizes the major conclusions from the overall research and gives some

recommendations for further studies.



Chapter 2 Literature Review

2.1 Introduction

The behavior of granular materials can be influenced by several factors. Literature has been
researched and reported those influenced ones. Experimental methods and numerical simulation
were used widely in geotechnical engineering to show great effects of these factors. In this
study, the factors have influences on the macro behaviors and micromechanical response
consists of the intermediated stress ratio b value, sample density, and interparticle friction angle.
The other factors such as confining pressure, particle shape, inherent anisotropy, are strictly
controlled. The fundamental of macro-micro relationship called stress-force-fabric relationship

(Rothenburg 1980) is described in this chapter.

2.2 The Influential Factors on Macro Behaviors and Microscopic of

Granular Materials

2.2.1 The intermediated stress ratio b value

The intermediated stress ratio b value shows in Eq. 2.1. Fig. 2.1 shows the principal stresses
under triaxial loading. The intermediate principal stress 62 can significantly affect the stress-
strain behavior of granular materials. A non-dimensional parameter b [= (62-63)/(61-03)] was
introduced by Habib (1953) as a stress ratio to describe the influence of 2. Several experiments
have been conducted to study the influence of 62 on the behavior of sand under different stress
paths, with a constant b value (e.g., Lade and Duncan 1973; Matsuoka and Sun 1995; Lade
2006; Suzuki and Yanagisawa 2006; Sun et al., 2008; Kumruzzaman and Yin 2012; Rodriguez

and Lade 2013). Most of these experiments examined the relationship between the b value and



the angle of shearing resistance ¢ [= sin’((c1-63)/(c1+03))] at peak strength. For instance, Ko
and Scott (1968) and Yamada and Ishihara (1979) reported that ¢ increases from b = 0 to a
certain value (nearly » = 0.5) and then decreases slowly when approaching unity. Similar result
was reported recently by Kumruzzaman and Yin (2012) as well as Rodriguez and Lade (2013).
However, Green and Bishop (1969) and Lade and Duncan (1973) reported differently. According
to their studies, after certain values of b (nearly b = 0.2), ¢ remains almost constant or decreases
or even increases with increasing b, before it decreases when approaching unity. Matsuoka and
Nakai (1974) reported differently. According to their study, after certain values of b (nearly b =
0.3), ¢ decreases with the increasing b value until » = 1. Also, Lade (2006) concluded that most
experimental results on sand show that ¢ increases from b = 0, depending on particular types of
sand. Different relationships between ¢ and b indicate that type of sand, sample preparation and

loading conditions may influence these relations.

b = Ointermediate — Omin

Omax — Omin (2.1

» N

0= 01 = Omax

L

/0y = 02 = Ointermediate

/s
¥

y

Fig. 2.1 Principal stresses under triaxial loading



Discrete Element Method (DEM) has been used to simulate granular materials and investigate
the mechanical behavior of granular materials (Thornton 2000; Ng 2004a; Ng 2004b; Sazzad et
al., 2011; Barreto and O’Sullivan 2012). Sand behavior of at the micro level in response to an
applied load, including changing inter-particle friction angles and different 5 values, has been
studied before. For example, Thornton (2000) used some disc particles to examine the effect of
intermediate principle stress under constant mean stress condition, using Lade and Duncan’s
(1975) failure model. Ng (2004a) who used oval particles, reported the effect of intermediated
principal stress and stress-strain behavior under constant b tests using the DEM. It was noted that
the angle of shearing resistance ¢ from the DEM results supports the models of Lade (1977) and
Ogawa et al. (1974) much more than the models of Stake (1975) and Matsuoka and Nakai (1978).
Furthermore, Ng (2005) studied the effects of different densities under different stress paths of
constant b test and concluded that the density of samples has no great influence on the relationship
between ¢ and b. In the other study, Sazzad et al. (2011) used spherical particles of DEM to
simulate the macro mechanical responses and explore the micro characteristics of granular
materials under constant b tests. The relationship between ¢ and b by Sazzad et al. (2011) was
similar to that of the experiment of Ko and Scott (1968). According to Sazzad et al. (2011), the
evolution of the principal deviatoric strains, directions of stress increment vector and strain
increment vector as well as dilatency from the DEM results at least shows good qualitatively
consistency with the experimental observations. Comparing DEM simulations using spherical
particles and experimental data, Barreto and O’Sullivan (2012) demonstrated that the b value can

significantly influence the coefficient of inter-particle friction L.

The previous literature shows that DEM simulations have generally been conducted with a
constant b value. In fact, however, the stress path changes its direction continuously in the stress
space, which causes some change in the b value. Experimentally, the relationship between a strain
increment and stress increment direction, under more generalized stress paths, has been
performed (Matsuoka and Sun 1995; Nakai et al., 2003). However, based on the author’s
assumption, DEM simulations of granular materials under a continuously varying b value have

not been deeply explained yet.



In this study, the definition of the b value has been modified in order to follow the condition
of continuously varying b value. The b value in this study is greater than 1 located in the area
1< b <00 as in Fig. 2.2(a). In Fig. 2.2(a) shows the stress path b=0, b=1 and b= oo
corresponding to the diagram of stresses Figs. 2.2(b), 2.2(c), and 2.2(d). For example, Fig. 2.2(b)
shows that the increment of g, is two times over the increment of o, and g,,. The result of this
diagram shows that »#=0. Similar explanation is for b=1 and b= oo in Figs. 2.2(c), and 2.2(d).
This method has been used in Phusing et al. (2015) and Phusing and Suzuki (2015)

(a) Stress paths b=0,b=1,and b =00

X «
, ”
7 7
oy Oy i y/

(b)b=0 ©b=1 (d) b= oo

Fig. 2.2 Stress paths and diagrams of 5=0,b=1,and b = o0



2.2.2 Sample Density

Sample density is one of the most factors affecting the behavior of sample while shearing.
Granular materials have different density depending on stress-strain-dilation. The void ratio e,

emax—€ — (Mmax—1)(A=Nmin)

emax—€min (Mmax—"min)(1-1)

the porosity 1 and the relative density D, [= ] can be used to

classify the density of granular sample where €,,4x » Tmax > €min> Mmin are maximum and
minimum void ratio and porosity. Experiments show that increasing the strain increases the
deviatoric stress up to the peak and reduces to strain softening when sample is dense. However,
the loose samples show some continuous increases in deviatoric stress but increasing the strain.
These results were conducted the dense and loose sand under drained monotonic condition
(Ergun 1981; Roscoe et al. 1958; Wang and Lade 2001). If considering numerical results using
DEM, the influence of relative density is one important factor affecting the macro and
micromechanical behavior of granular materials (Thornton 2000; Salot et al. 2009;
Madhusudhan and Kumar 2010; Sazzad and Suzuki 2013). For instance, Sazzad and Suzuki
(2013) conducted three-dimensional spherical granular materials of loose and dense samples
under constant b value. Their results shows that behaviors of stress-strain-dilation in both loose
and dense samples are the same as those reported in the experiments qualitatively, similar to
Thornton (2000) and Sitharam et al. (2004) and Salot et al. (2009). Moreover, Salot et al. (2009)
studied the influence of relative density on the macro and micromechanical response. The macro
behavior is the porosity as well as the stress-strain curves whereas the micro data is the
coordination number. It was reported that the maximum relative density sample shows
minimum porosity whereas the minimum relative density sample shows maximum porosity
when deviatoric stress increases. Finally, the curve merges together at the large strain. However,
the coordination number of the maximum relative density sample shows the highest value where
the minimum shows the lowest. This result explains the characteristic of dense and loose sand,
similarity to Thornton (2000), Sitharam et al. (2004) and Sazzad and Suzuki (2013). In this

study, the simulation of dense sample is used in the monotonic loading tests but the medium



dense is used for cyclic loading tests. The density was chosen based on the experimental

references in each loading tests.

2.2.3 Interparticle Friction

Interparticle friction is a significant factor influencing the behavior of granular materials. Granular
assemblies cannot resist the external forces without internal friction between particles. Since the
interparticle friction is encountered the difficult examination of measuring the reliable value, only
few researches have been conducted (Skinner 1969; Procter and Barton 1974; Konishi et al.
1983). An example of experiments by Skinner (1969) studied the influence of interparticle
friction on the behavior of spherical particles explaining that when increasing the interparticle
friction, the effective angle of shearing resistance does not increase uniformly at peak or even at
constant volume states. The other experiment by Konishi et al. (1983) observed the physical
behaviors of photoelastic oval shaped rods and the interparticle friction angle. It was summarized
that the interparticle friction angle increases at peak friction angle. In term of the literature using
DEM, more studies have been done on interparticle friction because of the easy access to the
micro level data when numerical simulation was used (e. g., Oger et al. 1998; Thornton 2000;
Kruyt and Rothenburg 2006; Sazzad and Suzuki 2011; Barreto and O’Sullivan 2012). For
example, Barreto and O’Sullivan (2012) reported the independent between the influence of the
interparticle friction and intermediate stress ratio on the behavior of granular materials.
Regarding the micromechanical data, Barreto and O’Sullivan (2012) reported that strong force
chains produce similar direction with the major principal stress orientation. To conclude, the
interparticle friction and the intermediate stress ratio affected the macro- and micro-scale
response. Sazzad and Suzuki (2011) using oval-shaped particles with DEM, conducted some
different interparticle friction angles under cyclic loading tests. They reported that the width of
stress-strain cyclic loops develops narrowly the interparticle friction angle increases.
Additionally, the single relationship between macro once and microscopic data has been shown

only in strong contacts under cyclic loading.
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2. 3 Fundamental Microscopic Description

Granular materials are discrete particles whereas the interaction between particles are
interparticle contacts between them. The interacting contacts are generated a contact forces
network at the particle level. They respond corresponding the external load at the boundary of
the assembly. Good understanding of the micromechanical behavior help geotechnical
engineers to have deeper some knowledge on the macroscopic behavior which can be used to
develop existing simulation concept or initiate a new one. The fundamental microscopic

description in this study has been described as follows.

2.3.1 Micromechanical Data

One of the objectives of the study is to correlate the macro behavior with the micro response.
The micro data is represented by the evolution of coordination number (Kuhn 1999; Rothenburg
and Kruyt 2004) and the modified sliding contact fraction (Sazzad 2011). Both referred in those

literature are defined as follows:

Coordination number = 2x Ne (2.2)
Np
. . . NS
Sliding contact fraction (%) = N x100 (%) (2.3)
c

where N , Np and Ns are the number of contacts, particles, and sliding contacts. This study
explored the evolution of coordination number and sliding contact fraction of granular materials
under monotonic loadings using spherical dense sample in Chapter 4 and cyclic loadings using

medium dense sample in Chapter 6.
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2.3.2 Fundamental of Macro-Micro Relationship

The relationship between the macro behavior and micromechanical data with various stress
amplitudes in generalized stress system is one of the objectives in this study. The studies on the
macro-micro relationship were conducted by several approaches. Thornton and Antony (1998),
using 2-dimentional simulation, reported the compression and extension simulations on a soft
particle system and found that shear strength was mainly due to strong force network and that
the weak network’s contribution to shear strength was very small. As well as Ng (2004b), the
experiment showed that the principal stress ratio 61/63 correlates with the contact normal force
more than with the unit contact normal force under different stress paths. In this study, the
correlation between the macro-scale, represented by the stress ratio g/p, and a single parameter,
related to the contact normal vector, is used to describe the macro-micro relationship (Antony
et al. 2004; Sazzad et al. 2011). The contact normal vectors are represented by all contacts in
major, intermediate, and minor directions (£, F22, and F33, respectively) and by the strong
contacts (F}, F5,, and F35, respectively). The unit normal vector for all contacts is described

by Satake (1982) as follows:
1
F. = N—Z nint i=j=123 (2.4)

where N. is the number of contacts, n¥is the component of the unit vector n* at a contact. The

unit normal vector for the strong contacts is described by Kuhn (2006) as follows:
F'l=—) n'n; i=j=123 (2.5)
where N is the number of strong contacts, njis the component of unit vector n® at a strong

contact. If the normal contact force is greater than the average contact normal forcef},, it can

be defined as a strong contact. The average normal contact force is as follows:

12



foe=—=—2 1" (2.6)

where f;*is a normal contact force.
The deviatoric fabrics ratio of all contacts F;/F, and of strong contacts Fj/E; ,

respectively. F; and Fj are the equivalent deviatoric fabrics of all contacts and of strong

contacts. F,, and F;, are the mean fabrics of all contacts and of strong contacts. F;, FJ, Fy,, and

E;, are explained as follow:

Fq= \/% ((F11 — F22)* + (Fi1 — F33)?+(Fy — F33)?) (2.7)
Fn = (Fi11 + F22 + F33)/3 (2.8)

F§ = |2 ((FS = F5)? + (B — F§)?+(Fs, — F$)?) (2.9)
Fn = (Fiy + F52 + F53)/3 (2.10)

2.3.3 Stress-Force-Fabric Relationship and Anisotropic Parameters

The relationship in balancing between applied stresses and internal forces is the stress-force-
fabric relationship proposed by Rothenburg (1980) and Rothenburg & Bathurst (1989). Details
are described here. More details are referred to read Rothenburg (1980). This relationship

describes the macroscopic stress o;; equal to statistical averages of fabric and inter-partical load

connection as:

1 ..
0y = 7 Xeev [l ij=123 (2.11)
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Eq. (2.11) relates a sum with respect to all contact forces within a volume of the assembly V,
with cartesian components contact force f;"multiplied by components of contact vector [{. The
superscript ¢ indicates the set of contacts within assembly V. In order to understand the inter-
partical load connection in granular materials, the discrete amount in Eq. (2.11) can be
substituted by the distribution function using a spherical harmonics expansion E(Q)(see Eq.
2.14). The factor using in the spherical harmonics expansion is expressed in terms of some

tensors as described by Rothenburg (1980):

aij = Myl [, f¥(@QnE(Q)dQ (2.12)

where g;; is the macroscopic stress in terms of microstructural parameters, m,, is the contact
density which equals the total number of contacts (twice number of physical contacts) per unit
volume of the assembly V, [, is an average of all contact vector lengths, f is an average
normal contact vector in the cartesian direction n; . In Eq. (2.12), the macroscopic stress can

be referred to as the stress—force—fabric relationship. Chantawarangul (1993) has defined in

detail of Eq. (2.12) and expressed the Eq. as follow:

m,fitl, 2 3

2
+ o [(@fh - af)alsy + @ + 3aRap]} (2.13)

where §;; is the Kronecker delta, f& is the average normal contact forces in the assembly, aj;
is the symmetric second-order deviatoric tensor representing the contact normal anisotropy
coefficient (fabric anisotropy coefficient) , af} is the symmetric second-order deviatoric tensor
representing the normal contact force anisotropy coefficient, and ait]- is the symmetric second-
order deviatoric tensor representing the tangential contact force anisotropy coefficient. Sitharam
(2000) explained on Eq. (2.13) that the carrying capacity of a granular materials at the
hydrostatic stress is mainly due to the contact density m,, and to the average normal contact
force f*, while the carrying capacity under the deviatoric stress is due to the ability to develop

anisotropy in contact normal orientations and contact forces. In Eq. (2.11), the contact normal
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distribution is approximated with a spherical harmonic expansion then simplified to be the

second-order tensors as follows:

1
EW@) == [1+ajjnin (2.14)
The airj can be described as follow:

15

aU = 7Rl} (215)

where
, Ry
ij = Rij — 751']' (2.16)

The distributed shape of the average of normal contact forces can be approximated by the

equation similar to the fabric distribution (Rothenburg 1980) which is:

) = f1 + afininy] (2.18)
The a{} can be described as follow:
an = BFG (2.19)
= f:)n
where
n 1 rn
F = e () n;n;dQ (2.20)
TJo
and
for = if Q) da
4 Jq (2.21)

The distribution of the average of tangential contact forces is represented as follows:
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i) = frlabm; — (@ymenng] and FE@) = (7" (2.22)

The aitj can be described as follow:

15 Ft
af; = ?f; (2.23)
where
Ft = N Q) n;dQ 2.24
ij_4nﬂfi()nj (2.24)

t

r
. ij

As for the microscopic coefficient anisotropy tensors, (a;}, a;; and a;;) are produced from their

invariants in the same way as the stress tensor (Bathurst 1985; Chantawarangul 1993; Sitaram

2000):

3 ,3 3
r— [2,rr on — |21 1 t — |2t 4t
a" = |saja;,at = |saja;,andat = [Cajag; (2.25)
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Chapter 3 Discrete Element Method and Program
OVAL

3.1 Introduction

In order to understand the complex behavior of granular materials, the macro responses and the
microstructure characteristics have to be described during the deformation evolution.
Experimental tests are difficult to measure the internal stresses at the gain level. They may be
estimated from the boundary conditions. The numerical technique is possibly a powerful
method to model the behavior of granular materials. Since the numerical method can monitor
physical inside data at any state of each discrete particles in granular systems during
deformation, the numerical technique is possibly a powerful method to model the behavior of
granular materials. Moreover, the numerical method is flexible because it can adjust input
parameters regarding in what we are interested such as load conditions, particle sizes, particle
shapes, and the particles distribution. Considering the available numerical method including all
flexibilities, Discrete Element Method (DEM) by Cundall and Strack (1979) has been designed to
model the macro behaviors and provide micro responses. A DEM program code named OVAL
(Kuhn 2006) was created to simulate the macro behaviors and explore the micro characteristics
of two- and three-dimensional granular materials. This study used OVAL code of three-
dimensional spherical granular materials with periodic boundary. The following sections in this

chapter explain in brief the fundamental of DEM and OVAL program.

3.2 Discrete Element Method (DEM)

In the Discrete Element Method (DEM) by Cundall and Strack (1979), the equilibrium contact
forces and displacements of granular systems are discovered by a series of calculation following the

movements of each particle by calculating Newton’s law of motion. Particles are able to overlap
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each other despite the rigid property. Even though the DEM calculation is the dynamic problems,
particles are monitored closely in close to static equilibrium by controlling the deformation of
assemblies to be as slow as possible. Furthermore, DEM can be used to implement a large number
of particles under various stresses and interparticle interaction conditions which provide some

different deformations of macro behaviors and microscopic responses.

3.2.1 DEM Calculation Cycle

In DEM, each particle is modeled to follow Newton’s second law of motion and the force of
displacement law in each time step. The results of law of motion give translational and rotational
accelerations of particles. Then, these accelerations are integrated to obtain the velocities of
particles. After that, the velocities are integrated to obtain the displacements of the particles. Then,
the force-displacement is used in the contact displacement law to obtain the new contact forces
which uses to be applied to the particles in the next time step and the cycle is repeated. The cycle is
explained in Fig. 3.1. More details of DEM are referred in Cundall and Strack (1979). The short

description is explained in next section.

3.2.2 Law of Motion Implementation

Fig. 3.2 shows two spherical particles A and B in contact. n, f and s are unit contacts in one normal
and two tangential vectors respectively. 74 and rBare the distance between the center of sphere A
and B and the contact point. [4Zis the distance between the center of sphere A and B or branch

vector. 4and 6% are rotational velocities of spheres A and B.
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Law of Motion Contact Law

Displacement

Imposed strainrate &

Fig. 3.1 Calculation cycle in DEM

Fig. 3.2 Two contacting spheres and contact vectors

19



The translational and rotational accelerations of particle A are defined by the following

incremented expressions:

mAif =Y Ff =123 (3.1)

104 =Y MA (3.2)

where m# is mass of particle A. ¥ and 64 are the components of translational accelerations and
rotational accelerations respectively. F;? is the components of forces acting on particle A, 7 is the
moment of inertia and M“is the moment on particle A. The velocity of particle A 84 can be solved

by making the component of translational accelerations ¥ and rotational accelerations 64 constant
o A At . oo .

over a time interval At from t — ?t tot + 7t using the finite-difference procedure as shown in Eq.

3.3 and 3.4. Then, the velocities are integrated to obtain the displacement consisting of location and

rotation of the particle at the end of time step t + %, using Eq. 3.5 and 3.6.

(ZFH) o XAt

ety T o8 T T (3-3)

o o (ZMA)(t) X At
04 pe =04 g+ — 3.4
P P 14 (3-4)

A — 4 A oA

xi (t+%) - xi (t—%) + xi (t+%) X At (3.5)
64 =64 +64 X At 3.6
G IR RN CE ) (3:6)
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3.2.3 Force Displacement Law

The translational and rotational acceleration are integrated to obtain translational and rotational
velocities of particle A X! , 84 and particle B %7 | 8% (see Fig. 3.2 and Eq. 3.3 and 3.4). Then, the

contact displacement is used to calculate following the finite difference procedure in Eq. 3.7 and

3.8.

(H £ = [(x At]nixAt (3.7)

_ “A _ B _ (HA|,A| _ AB|,B
e, = (G =2 e ) 0 = @A = 671 1) e | x 8 (3.9

where A,, and A are normal and shear displacements. Next, the incremental normal and shear

forces can be solved by Eq.3.9 and 3.10.

OF, gy = Kb a1 (3.9)
BF, gy = e o (3.10)

where k,, and k; are normal and tangential contact stiffness. The results of incremental normal and

shear forces AF, ® and AF; ®° the normal and shear forces are calculated from Eq.3.11 and 3.12 as
follows:

Fn(tﬂ) = Fn(t) + AFn(t) = Fn(t) + knAn(H%) (3.11)

Fsqerny = Fsey ¥ BFsy = Fgy + kel (e+A (3.12)

A Coulomb friction law is applied to obtain the maximum shear force in order to allow

particles to slip when a threshold shear force is reached. The maximum shear force is calculated as:

F, =c+Ftan@, (3.13)

S(max)
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where c is cohesion. @,is coefficient of interparticle friction. When the absolute value of shear force

F, is greater than F; the F,

S (t+1) (max)’ S (t+1) is ordered to equal to the limit value F; If the

(max)*

absolute value of shear force F is smaller than F, no slippage happens.

S(t+1) S(max)’

3. 3 Computer program OVAL

Kuhn (2006) created a DEM program code called OVAL to simulate the macro behaviors and
explore the micro characteristics of two- and three-dimensional granular materials. OVAL code
has been written using fortran base language and distributed under general public license
(GNU). This study used OVAL for three-dimensional simulation. Thus, the OVAL three-
dimensional is described. In OVAL three-dimension, particles in shapes of spheres, ellipsoidal,
bumpy can be used as granular materials. The simulation scheme can be chosen between stress
and strain controlled. Stress controlled method is run by imposed stress rates whereas and strain
controlled method is by imposed strain rates (see Fig. 3.1). Using three-dimensional simulation,
three directions of imposed stress and strain rates are needed (one vertical and two horizontal).
To compile fortran in this study, G77 was used. Some brief details of OVAL are described in
the next section (Kuhn 2006).

3.3.1 Linear contact models

OVAL provides two contact models using in DEM. One is linear spring contact model and
second is Hertz-Mindlin contact model. This study used linear spring contact model as shown
in graphic diagram in Fig.3.3. The normal and tangential contact stiffness k,, and k; are set
constantly in linear spring contact model. In Fig.3.3, a shear slider is added in shear direction to
allow slippage of particles. In OVAL, k,, and k; are fixed value as input parameters in the run file.
In this study, the ratio of k,, /k; =1 is used because there are more similar results of deviatoric stress

— strain behavior even using small value of k,, /k; (Chantawarangul 1993).
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Fig. 3.3 DEM Linear spring contact model

3.3.2 Periodic Space Boundary

This study uses the periodic space boundary type provided in OVAL. In order to remove the
effect of boundary on the specimen, the periodic boundary was introduced. Fig. 3.4 shows the
corresponding periodic boundary of two- and three-dimensional space. Considering Fig.3.4 of
two dimensional periodicity, a part of discs group abcd, located outside the left limit of the
rectangular space, and reappearing at a corresponding point of the right limit. The part of spheres
group abcd in three-dimension can be explained in a periodic box of three-dimension in Fig.
3.4. The periodic cell is surrounded by identical cells in two dimensions while the periodic box
is surrounded by identical boxes in three-dimension. Particles, missed one side, reappear in the
other side. Therefore, the specimen is borderless. Moreover, using the periodic boundary in

DEM allows a small number of particles to be representative of the simulated sample.
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Two Dimensions Three Dimensions

Fig. 3.4 Periodic Space Boundary (after Chantawarangul 1993)

3.3.3 Simulation Stability

In this study, the DEM simulation was stopped when the unbalanced force index /.,y was 1%

(Kuhn 2006; Ng 2006). The unbalance force, 1., is described as follows:

N,
Z (unbalanced forces)’ / N ,

ple x100 (%) (3.14)
z (contact forces)’/ N .

c=1

I, =
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where N, and N, represent the number of particles and contacts respectively. A small unbalanced
force index indicates that the simulation was assumed to be close to a quasi-static condition
(Kuhn 2006; Ng 2006). Moreover, in order to remain quasi-static and stable, the sample was
sheared using a small stress rate to achieve a small strain rate and a small unbalanced force

index (Suzuki and Kuhn 2013).

In order to maintain the small unbalanced force during simulation, the time step At plays an
important role in the accurate numerical results. The critical time step At is the limit of the

selected time step At. At as shown below:

Minin

(3.15)

kmax

where m,,;, is the minimum mass of particles in a granular assembly. k,,,, is the maximum

contact stiffness. The method to select time step At can be used a fraction constant A as follows:

A—At 3.16
_Atc (' )

Different researches have been studied the value of A. For example, Ng (2006) reported that A
should be smaller than 0.2 in order to keep the small unbalance force. O’Sullivan and Bray
(2004) recommended that A is 0.085 in the three-dimensional simulation. Normally, a small
time step is appropriate for the stability of numerical simulations. However, it takes much time.
The other parameter such as damping coefficient is also a significant factor affecting the

unbalance force.
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3.3.4 Damping scheme

OVAL provides two types of damping; mass damping and contact damping. This study used
the mass damping which can be categorized into translational mass damping C; and rotational

mass damping C,.. The mass damping can be shown in Eq. 3.1 and 3.2.
mAif =Y FA — Cxf (3.17)

164 =Y M4 —C,04 (3.18)

To identify translational mass damping C; and rotational mass damping C,, the coefficient of

viscosity for translational and rotational body damping, C/ and C,. are used by apply equations as

follow:
I Ct
C. = Cot (3.19)
1 Cr
C. = Cori (3.20)
T
where Cerit = 2./mk,, and Cf = 2r./mk, (Tuand Andrade 2008) (3.21)

3. 4 Method to input stress rates for changing stress direction

In order to simulate the granular materials to fulfill the objectives of this study, the method to
input stress rates and strain rates is described here. As shown in Fig. 3.1, imposed stress rate is
used for stress controlled while imposed strain rate is used for strain controlled method. One
objective of this study is to study the macro behaviors and micro responses of granular materials

under continuously varying b value and constant mean stress in generalized stress systems. The
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stress controlled method is necessary in this study. The method to stress parameters in OVAL

is explained as follow:

do,

F 3

(02, 0y,0,) = (120,90,90)

(02, 0y, 0) = (130,100,70)

(02, 0,) = (100,100,100) *doy=+10
ido,=+20
§ 0.." —> dax
5 wdoy,=-10
do,

Fig. 3.5 Method to input stress rates for changing stress direction.

Fig. 3.5 shows the method to input stress rates for changing stress direction. The figure shows

the applied stress rates in x, y and z directions. In Fig.3.5, the sample at point A has stresses
g, 0y, 0, = 100, 100, 100 kPa and b = 0 (using Eq.2.1). Next, the applied stress rates in x and
y directions are extension 10 kPa at each direction and in z direction are compression 20 kPa.
Thus, stresses at point B are 0, gy, 0, = 120, 90, 90 kPa and b = 0.0. Therefore, b value is

constant for stress path AB. Further from point B, the applied stress rates are changed to be

extension 20 kPa in x direction and compression 10 kPa in y and z direction. The stress path
moves from point B to C where o, 0, 0, =130, 100, 70 kPa and 6 = 0.5. In the stress path BC,

b value changes from 0.0 to 0.5. This indicates that b value continuously change. This method

is used in chapter 4 for creating continuously varying b value stress paths.
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Chapter 4 Macro-Micro Behavior under Continuously

Varying b Value

4.1 Introduction

The intermediate principal stress 62 can significantly affect the stress-strain behavior of granular
materials. A non-dimensional parameter b [= (62-63)/(c1-63)] was introduced by Habib (1953)
as a stress ratio to describe the influence of o2. Several experiments have been conducted to
study the influence of 62 on the behavior of sand under different stress paths, with a constant b
value (e.g., (Kumruzzaman and Yin 2012; Lade 2006; Lade and Duncan 1973; Matsuoka and
Sun 1995; Rodriguez and Lade 2013; Sun et al. 2008; Suzuki and Yanagisawa 2006; Zhang et
al. 2014). Most of these experiments examined the relationship between the b value and the
angle of shearing resistance ¢ [= sin!((61-63)/(c1+03))] at peak strength. For instance, Ko and
Scott (1967) and Yamada and Ishihara (1979)reported that ¢ increases from b = 0 to a certain
value (nearly b = 0.5) and then decreases slowly when approaching unity. Similar result was
reported recently by Kumruzzaman and Yin (2012)as well as Rodriguez and Lade (2013).
However, Green and Bishop (1969)and Lade and Duncan (1973)reported different results.
According to their studies, after certain values of b (nearly b = 0.2), ¢ remains almost constant or
decreases or even increases with increasing b, before it decreases when approaching unity.
Matsuoka and Nakai (1978)reported different findings than others; according to their study, after
certain values of b (nearly b = 0.3), ¢ decreases with the increasing b value until b = 1. Further,
Lade (2006)concluded that most experimental results on sand show that ¢ increases from b = 0,
depending on a particular type of sand. Different relationships between ¢ and b indicate that type
of sand, sample preparation and loading conditions may influence such relations. In order to
explore the mechanical behavior rigorously and objectively, computer simulations can be used

effectively, which is the motivation of the present study. Numerical simulations used in the
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present study were based on the DEM approach — a well-recognized method for simulation of

granular materials.

An experimental study can be quite challenging and expensive for such cases. DEM has been
widely used for simulating granular materials and for investigating mechanical behavior of
granular materials (Barreto and O’Sullivan 2012; Chantawarangul 1993; Kuhn 1999; Salot et
al. 2009; Sazzad et al. 2012; Thornton 2000). Behavior of sand at the micro level in response to
an applied load, including changing inter-particle friction angles and different b values, has been
studied before. For example, Thornton (2000) using disc particles examined the effect of
intermediate principle stress under constant mean stress condition, using Lade and Duncan’s
(1975) failure model. Ng (2004a) using oval particles reported the effect of intermediated
principal stress and stress-strain behavior under constant b tests using the DEM and noted that the
angle of shearing resistance ¢ from the DEM results supports the models of Lade (1977) and
Ogawa et al. (1974) better than the models of Stake (1975) and Matsuoka and Nakai (1978).
Further, Ng (2005) studied the effects of different densities under different stress paths of constant
b test and concluded that the density of samples has no noticeable influence on the relationship
between ¢ and b. In another study, Sazzad et al. (2011) used spherical particles of DEM to
simulate the macro mechanical responses and to explore the micro characteristics of granular
materials under constant b tests. The relationship between ¢ and b reported by Sazzad et al. (2011)
was similar to that of the experiment of Ko and Scott (1968). According to Sazzad et al. (2011),
the evolution of the principal deviatoric strains, directions of stress increment vector and strain
increment vector as well as dilatency from the DEM results exhibit good consistency with the
experimental observations, at least qualitatively. Comparing DEM simulations using spherical
particles and experimental data, Barreto and O’Sullivan (2012) demonstrated that the b value can

significantly influence the coefficient of inter-particle friction p.

The aforementioned literature shows that DEM simulations have generally been conducted
with a constant b value. In reality, however, the stress path changes its direction continuously in
the stress space, which causes a change in the b value. Experimentally, the relationship between

a strain increment and the stress increment direction, under more generalized stress paths, has
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been performed (Matsuoka and Sun 1995; Nakai et al., 2003). However, to the authors’
knowledge, DEM simulations of granular materials under a continuously varying b value have

not been reported yet.

There were two main objectives of this research. The first objective was to develop a DEM
model (specimen with discrete particles) and simulate the behavior of the specimen under truly
triaxial generalized stress conditions, defined by continuously varying b values. The second
objective was to explain the experimentally observed macro behavior using the micro response
from the DEM simulations, and to examine the relationship between macro and micro
behaviors. Both constant b tests and continuously varying b tests were simulated under a
constant mean stress using the stress-controlled method. The principal stresses were set by
changing the stress rates to increase or decrease stresses in the DEM. The results were analyzed

in the following section, and the macro and micro behaviors were correlated.

4.2 Sample preparation and simulation program

A cubical sample was modeled three-dimensionally using 8,000 spheres of 16 different
diameters (3 - 4.5 mm.), as presented by Sazzad et al. (2011). The periodic boundary was used
as the boundary condition in the DEM simulation. Fig. 4.1(a) shows the initial model of the
cubical sample with a length of 10.5 cm. After the spheres were placed in position, an isotropic
compression force was applied. In order to create a dense sample, the inter-particle friction
coefficient p was set to zero in the isotropic compression state. A stress rate of 10° Pa/sec with
a time increment of 10 sec was used until the isotropic compression reached 100 kPa. Fig.
4.1(b) shows the final model of the sample before shearing with a length of 7.1 cm and a void
ratio of 0.57.
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Fig. 4.1 Sample preparation and isotropic compression: (a) Before isotropic compression; (b)

After isotropic compression

After isotropic compression, the sample was sheared under a truly triaxial condition for both
constant b tests and continuously varying b tests using the stress-controlled method under a
constant mean stress p = 100 kPa. A maximum stress rate of 2x107 Pa/sec with a time increment of
10 sec was used for shearing. The DEM input parameters are summarized in Table 4.1. Two series
of stress paths were used in the simulation. Figs. 4.2(a) and 4.2(b) show a projection of those
stress paths on the n-plane, for different angles and b values. Fig. 2(a) shows the first set, called
constant b tests, consisting of 5 selected stress paths, namely A0, A16°, A30°, A44°, and A60°
where b=0, 0.3, 0.5,0.7 and 1, respectively. The numbers after letter A indicate the angle between
the stress paths and the direction of the major principal stress c1. Fig. 4.2(b) shows the second set,
called continuously varying b tests, consisting of 6 selected stress paths of AB and AC series.
The set AB is called AB30°, AB60°, AB90°and the set AC is called AC30°, AC60°, and AC90°.
The numbers after AB and AC indicate the angle of deviation from the stress paths AB
(anticlockwise) and AC (clockwise). These 11 stress paths start from point A where the major,

intermediate, and minor stresses were 100 kPa and the principal deviatoric stresses were zero.

31



Specimens along all 11 stress paths were then sheared using the stress-controlled method. The
constant b tests (Fig. 4.2(a)) were performed for loading state. The other 6 continuously varying
b tests (Fig. 4.2(b)) were tested from point A to B with stresses (o1, 02, 63 = 148, 76, 76 kPa,
respectively) and point A to C with stresses (o1, 62, 03 = 124, 124, 52 kPa, respectively), then

following the different directions, as shown.

o,/p ag,/p
A AB3( AC90
e ABGO
oy acer A
Add )¢ AB9O - + of oo oo 2\B
: L T AC30, | / i
AB0 AT j
cH
o/ pr %03/ p o,/ p~ T*o3/p
(a) (b)

Fig. 4.2 Stress paths on the normalized n-plane: (a) Constant b tests; (b) Continuously varying b

tests.

Figs. 4.3(a) and 4.3(b) shows the relationship between the » value and the equivalent
deviatoric strain &4 (%) of stress paths in Figs. 4.2(a) and 4.2(b), respectively. The equivalent

deviatoric strain is defined as follows:

&g :\/g{(‘gl_52)2"'(52_53)2"'(51_53)2} 4.1)
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Fig. 4.3(a) indicates that the b value remains constant throughout the simulation for constant
b tests. For continuously varying b tests, Fig. 4.3(b) shows that the b value is constant (b= 0)
from point A to B, then, increases up to 0.22, 0.43 and 0.71 for AB30°, AB60°, and AB90",
respectively, while the b value is constant (b = 1) from points A to C, but, decreases to 0.84,
0.63, and 0.32 for AC30°, AC60°, and AC90°, respectively. The Figs show the b value ranging
between 0 and 1 (0 <h <1). In Fig. 4.4, it is seen that the mean stress p [= (o1 + 62 + 63)/3] was
kept constant throughout the simulation for all tests, where ¢ is the deviatoric stress defined as

follows:

q:\/l{(al—az)z+(O'2—0'3)2+(0'1—03)2} 4.2)

In this study, the DEM simulation was stopped when the unbalanced force index L. (see Eq.
3.14) was 1% (Kuhn 2006; Ng 2006). A small unbalanced force index indicates that the
simulation was assumed to be close to a quasi-static condition (Kuhn 2006; Ng 2006).
Moreover, in order to remain quasi-static and stable, the sample was sheared using a small stress
rate to achieve a small strain rate and a small unbalanced force index (Suzuki and Kuhn 2013).
In this study, a positive value of stress represents compression, while a negative value of stress

represents extension.
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Table 4.1 Simulation Parameters for shearing

Parameters Type or value
Mass density 2,650 kg/m®
Stiffness 1 x 10° N/m
Damping 0.05
Increment of time step At 1 x 10 sec
Initial void ratio eo 0.57

Inter-particle friction coefficient
e [sotropic compression 0.0
e Shearing 0.5
Strain rate € and Stress rate &

e [sotropic compression

- First stage &4, &, &3 100%/sec
- Second stage 6y, 5, d3 1 x 10° Pa/sec
e Shearing
- Maximum stress rate 2 x 107 Pa/sec
- Minimum stress rate -2 x 107 Pa/sec
Maximum stress rate Ao 2 x 107 Pa/sec

1.2
1.0
08 —o-AB30
== A0 —&— ABB0
2 06 —— A16 —8- AB90
—— A30 ——AC30
04 —- A4L s —o—ACE0
—e— ABO —*%—= ACO0
0.2
0.0 4 1 - r T r
0.0 01 0.2 0.3 04 0.5 0.0 01 0.2 0.3 04 0.5
€4 (%) &4 (%)
(a) (b)

Fig. 4.3 Relationship between b value and equivalent deviatoric strain: (a) Constant b tests; (b)

Continuously varying b tests.
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Fig. 4.4 g-p stress paths of all tests.

4.3 Results

4.3.1 Stress-strain relationship

Figs. 4.5(a) and 4.5(b) show the relationship between the stress ratio g/p and the equivalent
deviatoric strain g4 (%) for constant b tests and continuously varying b tests, respectively. These
Figs indicate that the stress-strain curves are different depending on the type of test (constant b
or continuously varying b). The results of constant b tests were previously reported by Suzuki
and Yanagisawa (2006), based on laboratory tests on sands having different levels of inherent
transverse isotropy, and by Thornton (2000) and Sazzad et al. (2011) using DEM simulations
on a dense sample under monotonic loading. For continuously varying b tests, the finding was
confirmed by the laboratory observations by Matsuoka and Sun (1995) using cemented sand. It
is worth noting that the b value plays an important role in the stress ratio, linking to change in

the macro behavior of granular materials. The relationship between the angle of shearing
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resistance, ¢, and the b value of the final points on the stress-strain curves in Figs. 4.5(a) and
4.5(b) is shown in Fig. 4.6. The Fig. shows that the angle of shearing resistance, ¢, increases up
to a certain value of b and then decreases when approaching to unity for both constant b and
continuously varying b tests. It is evident that the 4 value has influence to the angle of shearing
resistance. The relationship between ¢ and b in Fig. 4.6 is very close to the experimental results
reported Kumruzzaman and Yin (2012) as well as Rodriguez and Lade (2013) and the DEM

results reported by Sazzad et al. (2011) for constant b value tests.

In this section, the DEM simulation results from this study were validated with the results
from the literature involving either experimental studies or simulation studies. Table 4.2 and
Table 4.3 are summary of specific information from those literature, including material types,
type of test, sample preparation method, and degree of saturation. It can be seen from Table 4.2
and Table 4.3 that there are differences in types of materials as well as type of tests between
those in the literature and the simulation conducted in this study. These differences were not
taken into account with respect to the degree of accuracy because only qualitatively

comparisons could be made.

14 1.4

—— A16 AB30

—— A30 ABBO

-8 Ad4 AB9CO
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0.0 . . : . 00 ; . . :
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 04 0.5
&4 (%) €4 (%)
(a) (b)

Fig. 4.5 Stress-strain relationship: (a) Constant b tests; (b) Continuously varying b tests.
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Fig. 4.6 Relationship between the angle of shearing resistance ¢ and the b value of the final

points of stress-strain curves in Fig. 4.4.

4.3.2 Dilatancy behavior

Figs. 4.7(a) and 4.7(b) represent the nonlinear evolution of volumetric strain &, (%) and the
major principle strain 7 (%) for constant b and continuously varying b tests, respectively. The
volumetric strain can be defined as &v =dv/v where dv is the change in volume and v is the initial
volume at the beginning before shearing. Both tests show that the sample dilated while shearing,
as expected. This dilation was typical, as observed in laboratory experiments on dense sand.
Figs. 4.7(a) and 4.7(b) show that dilatancy differs depending on the type of test (i.e., constant b
or continuously varying b). Similar results have been reported using the DEM simulations
involving monotonic loading, under constant mean stress and constant » value by Thornton
(2000) and Sazzad et al. (2011) using spheres particles under DEM simulation (see Table 4.3).
It can be noted that continuously varying b value influences the volumetric strain. Specifically,
the relationship between the dilatency index DI and the equivalent deviatoric strain (%) under

constant b and continuously varying b tests is captured in Fig. 4.8. The dilatency index is defined
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as DI =-dev/ dea, where deyis the change in volumetric strain and deqis the increment of equivalent
deviatoric strain. From Fig. 4.8, it is seen that the evolution of DI has relatively small influence

on the b values. These results point to a unique relationship between DI and eq regardless of the

difference in stress paths.

Table 4.2 Summary of the specific information of experimental literature for validating the

results of DEM simulation in this study

Literature Materials Type of Sample preparing ~ Approximate
Test method degree of
saturation
C
Matsuoka and emented sand C-1 Drained Soil mixer 0%
Sun (1995) (Toyoura:Cement: True
Water=15:3:1) Triaxial
Suzuki and Toyoura sand Drained Multiple-sieve 0 %
Yanagizawa (Dsgp = 0.17 mm) True pluviation
(2006) Triaxial
Sun et al. Toyoura sand Drained Compacted in six 0%
(2008) (Dso = 0.18 mm) True layer
Triaxial
Kumruzzaman Granite fill (sand Drained  Compacted to 95 %  Very small
and Yin (2012) content 62.5 %) True of maximum dry
Triaxial density
Rodriguezand  Fine Nevada sand Drained Pluviation, 100%
Lade (2013) (Dsp = 0.23 mm) True saturation and
Triaxial freezing
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Table 4.3 Summary of the specific information of experimental literature for validating the

results of DEM simulation in this study

Literature Materials Type of Sample after Approximate
Test isotropic degree of
compression saturation
Sazzad et al. Sphere True Dense 0%
(2011) and this (diameter 3-4.5 Triaxial
study mm) Simulation
Ng (2004a) and Ellipsoids True Dense 0%
Ng (2004b) Triaxial
Simulation
Antony (2004) Oval and Bi-axial Dense 0%
circular Simulation
(diameter 0.45-
1.65 unit)
Ng (2000) Spheres True Dense 0%
(diameter 0.135- Triaxial
0.40 mm) Simulation
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Fig. 4.7 Relationship between volumetric strain and the major principle strain: (a) Constant b

tests; (b) Continuously varying b tests.
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Fig. 4.8 Relationship between dilatency index and the equivalent deviatoric strain of all tests.
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4.3.3 Principal Strain and Principal Deviatoric Strain

Figs. 4.9(a) through 4.9(f) show the relationship between &3 versus ¢, €2 versus &1, e3 versus e,
and e2 versus ey, based on the DEM results, where e1, e2 and e3 represent major, intermediate,
and minor principal deviatoric strains, respectively, and ¢1, & and &3 represent major,
intermediate, and minor principal strains, respectively. The principal deviatoric strains were
calculated from the principal strains as e1 = €1-eém, €2 = €2 - &m, and e3 = &3 - &m, Where em =
(e1t+exte3) /3. From these Figs, the DEM results exhibit a nonlinear relationship between €3 and
&2, also with &1, for both constant b and continuously varying b tests. Comparatively, a similar
relationship between the principal deviatoric strains is almost linear. Similar results (Fig. 4.9(a))
have been reported previously by Suzuki and Yanagisawa (2006) based on laboratory tests and
by Sazzad et al. (2011) based on DEM simulations, both involving constant » value.

4.3.4 Failure Surface, Stress Increment Vector and Strain Increment Vector

The directions of the principal strain increment vectors superimposed on the normalized n-plane
for constant b and continuously varying b tests are shown in Figs. 4.10(a) and 4.10(c),
respectively. For a qualitative comparison, the experimental results of truly triaxial tests on
cemented sand C-1 (see Table 4.2) by Matsuoka and Sun (1995) are shown in Figs. 4.10(b) and
4.10(d). Overall, the directions of the principal strain increment vectors show a good consistency
between the DEM results and the experimental results under the similar pattern of stress paths as
shown in Figs. 4.10(a) and 4.10(b) as well as Figs. 4.10(c) and 4.10(d). Considering point G in
Fig. 4.10(c), the direction of the principal strain increment vectors along the stress path AB60°is
different from that along the stress path AC90°, which can also be seen from the experimental
results in Fig. 4.10(d). This is an evident that the direction of the principal strain increment vectors
depends on the stress paths and DEM simulation using granular materials gives the same
conclusion with the experiment of Matsuoka and Sun (1995). For further study, it is important to

compare the simulated results with the experimental data quantitatively.
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Moreover, Fig. 4.11(a) shows the principal strain increment vectors superimposed on the
failure surface on the normalized m-plane at the final points of stress-strain curves for constant b
and continuously varying b tests (refer to Fig. 4.5(a)). The Fig. also includes the failure surface
proposed by Lade and Duncan (1975) for comparison with the DEM results. It is seen that the
failure surface based on the DEM results is convex and is in good agreement with that of the Lade
and Duncan (1975). Additionally, Fig. 4.11(b) explains the directions of the principal strain
increment vectors of the stress paths AC90°and AC’90°. The stress path AC'90° was created to
compare the direction of the principal strain increment vectors between AC90°and AC'90°, for
stress ratios (g/p) of 0.7 and 0.5, respectively. Interestingly, the directions of the principal strain
increment vectors for stress paths AC90°and AC’90° are different even though the directions of
the principal stress increment are the same. A stress ratio than g/p = 0.7 at point C indicates that
the stress path AC90°is closer to the failure surface than AC’90°and thus affects the directions of
the principal strain increment vectors. Therefore, the direction of the principal strain increment
vectors is not only dependent on the direction of the stress increment vectors but on the

approximate failure surface.

Furthermore, the angle 65 is between the principal stress vectors and the maximum principal
stress axis. The DEM results can be estimated using the general relationship between the
principal stress increment vector and the principal strain increment vector on the normalized n-
plane (or 7s), as shown in Fig. 4.12. The corresponding Eq. can be expressed by Suzuki and

Yanagisawa (2006) as follows:

2-b

0, = tan—l[@} (4.3)

The relative magnitude of the intermediate principal stress increment is given as

~ d0'2 —d0'3

b, =—2 3 44
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In Eq. (4.5), the bds value is related to the Ods as follows:

V3b
eda — tan 1 (i 4.5)

Similarly, the angle between the principal strain increment vector and the maximum strain

increment axis can be expressed as

1 J3b

Hd&' =tan {ﬁ} (46)
de
where
de~ —de

2 3
b, =—=—= 4.7
de dgl —dg3 .7)
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Fig. 4.12 General relationship of the principal stress increment vector and the principal strain

increment vector on the normalized & plane (after Suzuki and Yanagizawa, 2006)

The evolution of #4s and fa: with the equivalent deviatoric strain &4 is shown in Figs. 4.13(a)
and 4.13(b) for constant b tests and in Figs. 4.13(c) through 4.13(f) for continuously varying b
tests, respectively. It is seen from Figs. 4.13(a) and 4.13(b) that f4s and Oz remain almost
constant for the stress paths A0 and A60°, where b =0 and 1, respectively. However, 6u:
deviates from 6us as &4 increases. This deviation between 6z and fis was confirmed in the
experimental results reported by Sun et al. (2008) and Suzuki and Yanagisawa (2006), and in
the DEM results reported Sazzad et al. (2011). In addition, it is evident from Figs. 4.13(c)
through 4.13(f) that f4- deviates rapidly from 64s and gradually becomes constant when the &4
increases under continuously varying b tests from points B and C. The results from Figs. 4.13(a)
and 4.13(b) correspond to the DEM results in Fig. 4.10(a) and the experimental results in Fig.
4.10(b) for constant b tests. Also, the results from Figs. 4.13(c) and 4.13(f) correspond to the
DEM results in Fig. 4.10(c) as well as the experimental results in Fig. 4.10(d) for continuously
varying b tests. It is seen that the general relationships between 05, Ods, 0u: and the bs, bas, bae
values, as represented by Eq.s (4.4) through (4.8), respectively, exhibit good consistency with

the experimental results. Further, the deviation of - from G4 can be defined by the expression
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o = Od: - 05. Fig. 4.14 illustrates the relationship between a and the b values for all tests at the

final points of the stress-strain curves in Figs. 4.5(a) and 4.5(b). Therefore, from these results

one can conclude that a is dependent on the b values.
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Fig. 4.14 Relationship between a and the b value of all tests.

4.3.5 Microscopic Evolution

Fig. 4.15 shows the evolution of the coordination number with the equivalent deviatoric strain
&4 (%) for constant b and continuously varying b tests. The Fig. shows that coordination number
is not dependent on the stress paths. Fig. 4.16 shows the evolution of the sliding contact fraction
with the equivalent deviatoric strain for continuously varying b tests. The sliding contact
fraction shows the deviation under continuously varying b tests. It is noticed that the sliding
contact fractions of the stress paths AB90°and AC90°decrease suddenly after points B and C,
then, gradually increases. The reason is that when changing the directions of stress paths at point
B and C, some sliding particles were break because the previous loading directions of stress
path A to B as well as A to C are removed . Then, they slide again because of the new loading
directions of stress path after point B and C, respectively. This result is similar to Phusing and

Suzuki (2015) using DEM under unconventional triaxial cyclic loading tests.
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4.3.6 Macro and Micro Relationship

Identifying the relationship between macro behavior and microscopic data under continuously
varying b value is one of the main objectives of this study. Relationships between the macro
and micro behavior have been explored previously using several approaches. For instance,
Antony et al. (2004) (see Table 4.3.) reported the correlation between the macroscopic shear
stress g/p and a single parameter related to the contact normal vector, pertaining to strong
contacts between oval and circular particles in DEM simulations under a bi-axial compression
test. Subsequently, Ng (2004b) showed that the principal stress ratio (61/03) could be correlated
with the contact normal force more than the unit contact normal under different stress paths,
under constant b value. Additionally, Sazzad et al. (2011) concluded the macro and micro
relationships were not unique when considering all contacts, however, it became unique when
considering the strong contacts. In the present study, a single parameter of a unit normal vector

was used, as used by Antony et al. (2004) and Sazzad et al. (2011).

Figs. 4.17(a) through 4.17(d) represent the macro behavior using ¢/p and the micro response
using the deviatoric fabrics of all contacts (F;; — F33) (see Eq. 2.4) and of the strong contacts
(F, — F33) (see Eq. 2.5) under constant b and continuously varying b tests, respectively. The
macro and micro relationship in all contacts shows no specific trend for all tests in Figs. 4.17(a)
and 4.17(c). The macro behavior changes along with the micro response. Similar results for
constant b tests were reported by Antony et al. (2004) and Sazzad et al. (2011). Comparatively,
good correlation is observed when only the strong contacts are considered in Figs. 4.17(b) and
4.17(d). The strong contacts seem not be influenced by the stress ratio. In addition, it is seen
from Fig. 4.17(c) that the deviatoric fabric tensors for all contacts are rotated toward the
directions of the stress paths at points B and C. It is evident that new fabric contacts in the
direction of the maximum compression stress are formed at points B and C. These new contacts
formed in a new column-like loading path in the direction of the stress increment, and are linked

to stress-induced anisotropy (Oda et al., 1985).
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Chapter 5 Stress-Force-Fabric Evolutions of Granular

Materials under Continuously Varying b Value

5.1 Introduction

Granular materials such as sand or gravel are a setup of discrete particles which have contact
forces interacting at the contact points between them when shearing is applied. In particular,
shearing deformation of the granular assembly causes a change in the magnitude of contact
forces, in the number of load carrying contacts, distribution of contact forces, and contact
orientation at the particle level. The micromechanical aspects from microscopic parameters to
macroscopic behaviors have been researched to describe the particle mechanism with physical
model experiments (Dantu, 1957; De Joeeslin de Jong and Verruijt, 1969) as well as with the
numerical simulations using Discrete Element Method (DEM) (Cundall and Strack, 1978;
Chantawarangul, 1993; Sitharam, 1999; Sitharam, 2002).

A non-dimensional parameter b = (g, — g3)/(g; — g3) created by Habib (1953) where g,
0,, and g3 are major, intermediate and minor stresses, respectively. The b value is an
intermediate stress ratio describing the influence of intermediate stress o, in the general stress
system. Several experiments and simulations had been conducted to study the influence of o,
on the macro behavior of sand among different stress paths. It was concluded that the macro
behavior differs depending on the b value. (e.g., Matsuoka and Sun 1995; Suzuki and
Yanagisawa 2006; Chantawarangul 1993; Sazzad et al. 2011; Phusing et al. 2015). For example,
Matsuoka and Sun (1995) tested on sands under continuously varying b value stress paths and
explained that the direction of strain increment vectors was influenced by the stress increment
direction. Furthermore, Suzuki and Yanagisawa (2006) experimented on sands having different
levels of inherent transverse isotropy under constant b value stress paths. They explained that
strain increment direction deviates stress increment direction while increasing equivalent

deviatoric strain.
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The study of micromechanical response under constant b values had been studied using the
discrete element method (DEM) by Chantawarangul (1993). Chantawarangul (1993) researched
on the micromechanical responses of granular materials using spheres under monotonic loading
stress paths with five constant b values (b = 0.0, 0.25, 0.5, 0.75, and 1.0). He reports that the
deviator stress resistance of the assembly, indicating the macro behavior, can be expressed by
anisotropy coefficients from micro scale level when o, # g, # g5 and b value is constant. The
anisotropy coefficients are dependent on the b value. The anisotropic coefficient of contact
normal forces decreases with the increase of » value which is in contrast to the anisotropic
coefficient of contact orientation. Furthermore, the anisotropic coefficient of contact normal
forces shows significant role in defining the shear resistance of granular materials.

The literature above illustrates that DEM simulations of the micromechanical responses had
generally been conducted with a constant b value. Nevertheless, actually, the stress path normally
changes the direction in the stress space, which causes the change in b value. The study of macro
behaviors and macro-micro relationship of granular materials under continuously varying b
value stress paths have been studied by Phusing et al. (2015). They described that the direction
of strain increment vector depends on the direction of stress increment vector and on the
approximate failure surface. Additionally, the direction of strain increment vector is influenced
by b value, under continuously varying b stress path. Regarding the macro-micro relationship,
Phusing et al. (2015) found that the unique relationship between macro and micro behaviors
was found only when the strong contacts were under continuously varying b stress paths.

Even though, the macro-micro relationship was researched, the micromechanical behaviors
of granular materials under continuously varying b value stress paths had been rarely reported.
Therefore, the micromechanical behavior and the anisotropic coefficients at micro level of
granular materials under continuously varying b value stress paths need to be explained more
deeply for the geotechnical engineering. Hereafter, Constant » Value stress path and
continuously Varying b value Stress paths are abbreviated to be CbV and VbS.

There are two objectives in this paper. Firstly, we investigated the development of anisotropic
coefficients of contact orientation, normal contact forces, tangential contact forces and

microscopic processes of three-dimensional assemblies under continuously varying b value
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stress paths (VbS). Second, we investigated the relationships between stress, strain and the
parameters, obtained by DEM, that characterize microstructure and applied stresses under
continuously varying b value stress paths (VbS). To fulfill the objectives, 8,000 spheres were
used for simulations under VbS. An open-source DEM software, called Oval (Kuhn, 2006), was
used. The simulation was made by a constant mean stress of 100 kPa using stress-controlled
method. The principal stresses were set by changing the stress rate to increase or decrease stress
in the simulation. The method to input stress rates is explained in Phusing and Suzuki (2015).
The micromechanical behaviors and development of microscopic parameters under VbS were
both analyzed. Moreover, we made a qualitative comparison between the stress-strain

relationship from DEM, and the one from the stress-force-fabric (Rothenburg 1980) under VbS.

5.2 Sample preparation and simulation program

A sample was modeled using 8,000 spheres of different diameters between 3 - 4.5 mm. The
initial configuration of the sample is a 10.5x10.5% 10.5 cm’size. After isotropic compression
of 100 kPa, the sample size was reduced to 7.1X7.1x 7.1 cm® and had a void ratio of 0.57,
indicating the medium dense assembly. During isotropic compression, the interparticle friction
angle is equal to 0.3. The stress-controlled method under a constant mean stress p = 100 kPa was
used. The constant mean stress condition was set because the different mean stresses under
different stress paths could probably affect the results. The input parameters are summarized in
Table 5.1.

After the isotropic compression, the sample was sheared under five constant b values (CbS)
(b=0.0,0.3,0.5, 0.7, and 1) and three continuously varying b values stress paths (VbS) named
AB30°, AB60°, and AB90°. The numbers after AB show the angle of deviation measuring from
the major principal stress o; in an anticlockwise direction. Fig. 5.1 shows the projection of those
eight stress paths on the normalized n-plane. These eight stress paths start from point A where o,
05, and g3 are 100 kPa and the stress ratio g/p are zero. The five CbS were performed for the
monotonic loading. The other three VbS were tested from point A to B where q/p =0.42. Each

follows the different direction, as shown in Fig. 5.1.
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Fig. 5.1 Simulating stress paths on the normalized n-plane

Fig. 5.2 shows that the mean stress p was constant during the simulation in all tests, where
the equivalent deviatoric stress q increases.

Fig. 5.3 shows the relationship between the intermediate stress ratio b value and the
equivalent deviatoric strain £4(%) of stress paths in Fig. 5.1. Fig. 5.3 shows that b value remains
constant throughout CbS simulation. Speaking of VbS, Fig. 5.3 shows that b value is constant
(b = 0) from point A to B, then, increases up to 0.33, 0.63 and 1.10 for AB30°, AB60°, and
ABO90°. The final b value of AB90° is greater than 1.0 because the o, at the final point of stress
path AB90° is higher than o; and o03. As a result, this study conducted the varying b values
from b = 0 to b = 1.1. The method to change each stress rate for these directions is used in
Phusing and Suzuki (2015). In order to remain quasi-static and stable, the simulation was
terminated when the unbalanced force index I, reached 1% (Kuhn 2006; Ng 2006). In this
study, positive value represents the compression of stress and strain, while a negative value

represents the tension of stress and strain dilation.
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5.3 Results

5.3.1 Stress-strain-dilation

Figs 5.5(a) and (b) show the relationship between stress, strain, and dilation of CbS and VbS. The
Figs show that the stress-strain-dilation curves vary depending on stress paths on m-plane. The
stress path » = 0 in CbS gave the maximum stress ratio q/p with the minimum dilation when
&4 increases. However, at last, dilation is maximum under stress path b = 0. In contrast, b = 1
contrasts. The result is similar to the experiment on sand under different levels of inherent
transverse isotropy with CbS in Suzuki and Yanagisawa (2006). As for DEM simulations on a
dense sample under CbS, Thornton (2000), Sazzad et al. (2011) and Phusing et al. (2015)
concluded similarly. Then, VbS finding is verified by the laboratory observations of Matsuoka
and Sun (1995) who used cemented sand. It is worth noting that the intermediate stress o,
regarding b value is one of main factors relating to the change in macro behavior of granular

materials in stress-strain-dilation relation.

1.80 -0.09 1.80 -0.09
160 } 160 |
140 | 007 & 140 | 007
120 | e 1.20 - AB30 e
100 | 005 E atoo [ ERAO0ARN RN ] [HLLUA = T | e ABBO | g05
a g 5 pivavaaVIIvs - AB9O ®
= 080 [ W 5 080 | o o 5
2 B 5 A o
060 | 003 S 060 | & At 003 &
£ & o £
040 | E 040 | w2 5
0.20 | 0018 020 | PG 001 8
‘*I
0.00 . . . 0.00 .

-0.20 001 020 0.01
0.00 0.10 0.20 0.30 0.40 0.00 0.10 0.20 0.30 0.40
Equivalent deviatoric strain, &4 (%) Equivalent deviatoric strain, €4 (%)

(a) (b)

Fig. 5.4 Stress-strain-dilation relationship under: (a) CbS and (b) VbS
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The relationship between the angle of shearing resistance ¢ = sin"'{(0;; — 033)/(011 +
033)} and b value of the final points on the stress-strain curves in Figs 5.5(a) and 5. (b) is shown
in Fig. 5.6. The Fig. shows that the angle of shearing resistance ¢ is minimum when b = 0 but
increases up to a certain value of b and then decreases when b approaches b = 1. The dot line in
Fig. 5.6 indicates the general tendency of ¢ regarding the b value which is similar to the
experimental results reported by Kumruzzaman and Yin (2012) as well as Rodriguez and Lade
(2013) and DEM results by Sazzad et al. (2011) and Phusing et al. (2015) for CbS. The ¢ of
final points of AB30° and AB60° in Fig. 6 come to an end on the dotted line. Additionally, the
¢ of final points of AB90° where b = 1.1 can be used to approximate the ¢ when b > 1.0. It is
evident that the angle of shearing resistance ¢ at peak stress ratio does not depend on the

changing direction of stress paths.
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5.3.2 Micromechanical behaviors

Figs 5.7(a) and (b) show the development of coordination number and sliding contact fraction,
with the equivalent deviatoric strain €4(%). They are the average micromechanical behaviors.
Fig. 5.7(a) shows that the coordination number is maximum at the initial state and decreases
once the increase of the equivalent deviatoric strain occurs. This shows the contacts loss while
shearing because of the dilation. Seemingly, Fig. 5.7(a) shows that the coordination number is
not dependent on the difference of stress paths in the dense sample. In Fig. 5.7(b), the sliding
contact fraction shows a sudden drop under VbS, especially at point B of AB90°. At point B,
some sliding particles stop sliding because of the missing of previous applied stresses in the
direction of b = 0. Then, they start sliding again due to the new direction of applied stresses
after point B. This result was reported previously by Phusing et al. (2015) using DEM with
monotonic loading under VbS and Phusing and Suzuki (2015) under cyclic VbS.
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Fig. 5.6 The relationship of CbS and VbS between (a) Coordination number and £4(%); (b)

Sliding contact fraction and €4(%).
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5.3.3 Stress-Force-Fabric Relationship

Figs 5.8(a) and (b) show the macroscopic stress ratio g/p and from stress—force—fabric
relationship (Eq. 2.13) versus the equivalent deviatoric strain £4(%) under CbS and VbS. The
Figs show a similar tendency between the macroscopic stress ratio obtained from the applied
boundary stress using DEM (see Figs 5.5(a) and (b)). The quantity differences of g/p between
DEM result in Figs 5.5(a) and (b) probably caused by using the average values of contact
normals (fabric), normal contacts and tangential contacts in Eq. (2.13) instead of the actual

values of those contacts. Possibly, there remains a problem.

18 18

1.6 1 1.6 -

1.4 1.4 4

1.2 12 -

1.0 o ]

5o — b0 N ;: - e AB30
—b=0.3 '

081 —b=05 081 «---ABGO

0.4 - —b=0.7 044 ¢

02 | b= 02 {f ==+ AB90

0.0 : . - 0o A y ; .

0.00 ‘U."IU . 0.20 . . 0.30 0.40 0.00 0.10 0.20 0.30

Equivalent d\%\jlatorlc strain, £, (%) Equivalentlipviatoric strain, €4 (%)
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5.3.4 Stress-Force-Fabric Evolutions

The stress-force-fabric evolutions of three dimensions have been reported by Bathurst (1985),
Chantawarangul (1993), Sitharam (2002) that the distribution diagrams of average contact
normals (fabric) and average normal contact forces are spherical distributions at the hydrostatic
stress condition using Eq. (2.14) and (2.18) whereas the average tangential contact forces is
approximately zero. Furthermore, while increasing the deviatoric stress, there is an increase in
contact normal orientation and normal contact forces anisotropy. Chantawarangul (1993)
showed the distribution diagrams of average contact normals (fabric) and average normal
contact forces change from spherical to peanut shape distribution for stress path b = 0, and
change to donut without a hole shape distribution for stress path b = 1. As for the distributions
of the tangential contact forces, Chantawarangul (1993) reported that it develops in
approximately 45° from the maximum stress in stress paths b = 0. The distribution shape looks
like a dumbbell. In addition, the magnitude of tangential contact force is small compared to
contact normal and normal contact force anisotropy (Chantawarangul 1993; Sitharam 2002).
This study found the same result as shown in Figs. 5.8(a) and (b) for » = 0 as well as in Figs.
5.9(a) and (b) for b = 1. In Fig. 5.8(a), the distribution diagrams of average contact normals
(fabric), average normal contact forces and average tangential contact forces are correspond to

points a to e of stress path » = 0 in Fig. 5.8(b).

Regarding the result of VbS, Fig. 5.9(a) shows the distribution diagrams of average contact
normals (fabric), average normal contacts and average tangential contacts corresponding to
points A to e of stress path AB90° shown in Figs 5.9(b). It can be seen in the Figs that the
distribution of average contact normals (fabric) and average normal contacts looks like capsule
distributions at point B, then, start to become donut (without a hole) when b value varies from
0 (point B) to 1.1 (point e). Furthermore in Figs 5.9(a) and (b), the distribution of average
tangential contact force develops approximately 45° from the maximum stress o; at point B (b
= 0) and shows a dumbbell in the vertical direction. Then, this distribution gradually changes to

dumbbell in the horizontal direction at point e (b = 1.1) where the maximum stress is 0,. This can
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be concluded that changing the direction of the stress path causes not only changing the direction

of the maximum stress but also the increment directions of those distribution diagrams.

From Figs 5.10(a) to (c), it shows the distributions of average contact normals, average
normal contact forces and average tangential contact forces at peak of CbS and VbS stress paths.
It can be seen in Figs 5.10(a), (b) and (c) that the distribution shapes at peak of average contact
normals, average normal contact forces and tangential contact forces under VbS stress paths
show the developments in the same trend to those distributions under CbS. This can be
concluded that the distributions at the peak stress of average contact normals, average normal

contact forces and average tangential contact forces do not depend on the stress path.
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5.3.4 Increment Vectors of Strain and Anisotropy Coefficients

Figs 5.11(a) - (d) show strain increment vectors and increment vectors of anisotropy coefficients

r

r n
ij >

t
ij» i

of contact normals a;;, normal contact forces a e

and tangential contact forces a

superimposed on CbS and VbS stress paths. The Figs show that strain increment vectors and
the increment vectors of those anisotropy coefficients differ depending on the location of stress
path. The dependency of strain increment vectors on the stress path was reported by the
experiment on sand of Matsuoka and Sun (1995) and DEM results of Phusing et al. (2015).
Considering the increment vectors of those three anisotropy coefficients under VbS in Figs
5.11(b), (c) and (d), the increment vectors of those three anisotropy coefficients have changed
their directions at point B. These changes is caused by the change of stress increment directions
of at point B of stress path AB30°, AB60°, and AB90°. This indicates that changing the direction
of stress paths changes not only the direction of stress increment vector and strain increment
vector but also the increment vectors of contact normals (fabric), normal contact forces, and

tangential contact forces.

5.3.5 Deviatoric Anisotropy Coefficient Evolutions

Figs 5.12(a) - (f) show the plot of induced deviatoric anisotropy coefficients a”, a™, and a® (see
Eq. 2.25) versus the equivalent deviatoric strain £4(%) regarding the b value under CbS and
VbS. Fig. 5.13 shows the plot of a,, a,, and a; versus b value at peak of CbS and VbS stress
paths from Figs 5.12(a) - (f). In Fig. 5.13, the dotted lines show the variation of those
coefficients with the levels of b value of five CbS while the points show those of the other three
VbS. In Figs 5.12(a) and (b), the deviatoric coefficient of contact normal anisotropy a” develops
gradually to the maximum value. Further, the deviatoric coefficients of normal contact force
anisotropy a™ and tangential contact force anisotropy a® increase monotonically with the
equivalent deviatoric strain in Figs 5.12(b) - (f) in both CbS and VbS. Additionally, the

deviatoric normal contact force anisotropy a,, has a great influence on the stress ratio because
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it shows the similar tendency with stress-strain relationship regarding b value (see Figs 5.5(a)
and 5.5(b)). The deviatoric tangential contact force anisotropy a® increases rapidly at low levels
of equivalent deviatoric strain. Its effect is minor at higher levels. These Figs highlights the
evolutions of induced anisotropy coefficients on the strength of granular assembly.
Considering the evolution of a” regarding the different b value in Fig. 5.12(a), the peak
deviatoric coefficients of fabric anisotropy a” increase together with b value. This indicates that
b value has an effect to the particle orientations. The small value of a” indicates less
reorientation of particles whereas the large one indicates more. When increasing in deviatoric
stress under stress path b = 0, the vertical principal stress o;is increased while the other two
horizontal o, and g; are decreased. The contact normal vectors and normal contact force
vectors in g; direction increase where those in o, and o3 directions has been lost. This
corresponds to the peanut shape distribution of contact normals and normal contacts shown in
Fig. 5.8(a). In Fig. 5.12(b), the stress path b = 0 has higher deviatoric coefficient of normal
contact force anisotropy a™ than the other CbS as well as VbS at all levels of £;. This implies
that the assembly under stress path b = 0 carries a higher magnitude of deviatoric normal contact
force a™ at all levels of 4. In contrast, the deviatoric contact normals (fabric) anisotropy a” of
stress path b = 0 shows the smaller number. This indicates the less reorientation of the particles

in the assembly.
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Regarding the results of VbS in Fig. 5.12(d) - (e), the directions of increment vectors of a”, a™
and a® changed at point B, corresponding to the degree of changing direction of stress path
AB30°, AB60°, AB90°. However in Fig. 5.13, it can be seen that a”, a™ and a® of AB30°, and
AB60° exactly come to an end on the dotted lines of CbS. Also, the points of the a”, a™ and a*
of AB90° can be assumed on the extended dotted line. It is worth noting that the degree of
changing direction of stress paths has influence on the increment vectors of anisotropy
coefficients of contact normals, normal contact forces and tangential contact forces and on
increment vectors of strains in experiments as well. However, the degree of anisotropy

coefficients of those anisotropy coefficients do not depend on the stress path at peak stress.
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Chapter 6 Cyclic Behaviors of Granular Materials under

Generalized Stress Condition

6.1 Introduction

The mechanical behaviors of granular materials under cyclic loading tests have been
investigated by many experimental tests as well as numerical simulation methods. (Tatsuoka &
Ishihara 1974; Nakai et al., 1996; Nakai et al., 2001; Nakai et al., 2003). As for the experimental
results, Tatsuoka and Ishihara (1974) applied cyclic triaxial compression and extension with
constant stress amplitude on loose and dense sand and found that the hysteresis loop in the first
cycle is the greatest, but later it becomes smaller indicating that the sand has ranged an elastic
deformation stage. Furthermore, Nakai et al. (1996), Nakai (2001) and Nakai et al. (2003) tested
under cyclic loading on medium dense Toyoura sand with various stress amplitudes as well as
various stress paths. They concluded that dilative characteristics of sand during cyclic loading
depend heavily on the initial stress ratio, even though its amplitude and number of cycles are
the same.

Using DEM, many cyclic loading tests of granular materials have been performed to
investigate mechanical behaviors such as the macro behavior and the micromechanical response
(Hu et al., 2010; Sitharam 2003; Sitharam et al., 2002; Thornton & Antony 1998). For example,
Hu et al. (2010) reported that the amplitude of the cyclic loading can influence the strain
accumulation as well as the evolution of an anisotropic fabric in the soil. Furthermore, Sitharam
(2003) reported that during cyclic loading compression and extension of a shear stress, the
nearly total loss of resistance to shear, with remaining small number of contact forces (e.g.
coordination number), led to a large decrease of the volume of granular materials. In addition,
Thornton and Antony (1998) reported on the compression and extension simulations on a soft
particle system and found that the shear strength was mainly due to strong force fabric structure,

and the weak fabric structure’s influence to shear strength was very small.
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According to the DEM simulation under cyclic loading, most of the behaviors of granular
materials have been proposed under limit conditions of stress paths such as a triaxial
compression and extension cyclic loading. The macro behavior and the micromechanical
response of granular materials under cyclic loadings in more comprehensive stress conditions
are not well understood. The present study aims to know how granular materials behave under
the various cyclic stress paths in the generalized stress condition. This paper have two
objectives. The first is to ensure the ability of the Discrete Element Method (DEM) to simulate
the macro behavior of granular materials under various cyclic stress paths in the generalized
stress condition. The second is to explore the micromechanical responses of those granular
materials. A DEM software, named Oval (Kuhn, 2006), is used as a numerical simulation for
this purpose. This study conducts four different cyclic loading stress paths under generalized
stress simulations with constant mean stress and the stress-controlled method. Experimental
results are used for qualitative comparison with the results of DEM. The results are analyzed.

Finally, the macro-micro relationship is explained.

6.2 Sample preparation and isotropic compression

A cubical sample was formed in three-dimensional space with three directions of principal stresses
(04,0,,03) as shown in Fig. 6.1. In this study, o; and €;indicate the vertical direction of the
stress and strain, respectively whereas o,, 03 and €,, €5 indicate those in the horizontal directions.
In Fig. 6.2(a), the 8,000 spheres of 16 different sizes of diameters 3-4.5 mm. were randomly
placed within the cubical sample. The Fig. shows that the distance between each sphere is 5
mm. and the initial cubical sample is a size of 10.5x 10.5x 10.5 cm’. The sample preparation
in this study followed the sample preparation of Sazzad et al. (2011). The periodic boundary
was used as the boundary condition in order to eliminate the effects of boundary on the sample
to use a small number of particles as a representative (O’Sullivan, 2011). In Fig. 6.2(b), the
isotropic compression was applied. In this study, a positive value of stress and strain indicates

compression, while a negative value indicates extension.
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Fig. 6.1 A cubical sample with three principal stresses

For isotropic compression, a strain- and a stress-controlled are used as first and second
stages , respectively (see strain € and stress rate ¢ in Table 6.1). The strain-controlled loading
method was first used for getting particles quickly close to each other and generate enough
number of contacts to form the fabric structure. Using purely stress-controlled loading, the
number of contacts was generated very slowly and the simulation was terminated during first
stage of isotropic compression because of not enough number of contacts.

Therefore, in first stage, principal strain rates &;, €, and €; of 100%/sec each were applied
until the principal stress 64, 0,,and o3 were 13 kPa. Then, the second stage, principal stress rates
61, 6, and d3, of 10° Pa/sec each were used until the principal stress 04, 6, and 63 were 100
kPa. The inter-particle friction coefficient p in isotropic compression was set at 0.2. A time
increment of 10° sec was used in both stages. The DEM input parameters for isotropic
compression can be seen in Table 6.1. Finally, the sample before shearing had a void ratio ep=

0.67, coordination number = 4.88, and the size of 7.2X 7.2X 7.2 cm® as shown in Fig. 6.2(c).
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Fig. 6.2 Sample preparation and isotropic compression

6.3 Simulation Program

After isotropic compression, the sample were sheared under four cyclic stress paths on the I1
plane, named Test 1, Test 2, Test 3, and Test 4, using the stress-controlled method under a
constant mean stress p = 100 kPa as shown in Figs. 6.3(a)- 6.3(d), respectively. All stress paths
start from point A where 61, 62,63 = 100, 100, 100 kPa (after isotropic compression) following
the directions and maximum stress amplitude is 61/03 = 1.63. The simulation program in this
study follows a part of an experimental program of Nakai et al. (2003). For Test 1, the sample
was sheared under the triaxial compression and extension cyclic loading following stage @O
and @, respectively (see Fig. 6.3(a)). In Test 2, the cyclic stress path is also the triaxial
compression and extension loading, however, the major principal stress was changed from o

to 0,, and later o,to o3 following stage DWto ©(see Fig. 6.3(b)). For Test 3 (Fig. 6.3(¢c)), the

unconventional cyclic stress path in a shape of a triangle following stage Wto @ in the
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anticlockwise direction was used. Finally, Test 4 is another unconventional cyclic stress path
which similar to a shape of Mohr-Coulomb’s criterion following stage O to @ in the
anticlockwise direction (see Fig. 6.3(d)). All tests were repeated for 5 cycles. The 5 cycles was
choose following the experimental results of Nakai et al. (2003).

Furthermore in Figs. 6.3(a) - 6.3(d), the direction of stress increments 8, of each test are shown.
Initially, Suzuki & Yanagizawa (2006) reported that the 8; can be measured from the major
principal stress o; in an anticlockwise direction in one-sixth regions of the IT plane where 0°< ;<
60 (see Fig. 6.4(a)).

In this study, the 8 in all regions on the IT plane needs to be defined. This study found that
the 8, defined by Eq. (4.6) can be used also in the other regions of the IT plane. However, the
IT plane has to be divided into four regions as shown in Fig. 6.4(b). Furthermore in Fig. 6.4(b),
the 8, can be measured from +¥ " or —¥ " axes where (f < 6;< 90" in the anticlockwise direction
in region One and Three, and 0°> 8, > -90' in the clockwise direction in region Two and Four.

For the simulation program in this study, the directions of stress increment 6, on the II plane
in Figs. 6.3(a) - 6.3(d) were set using Eq. (4.6) and the diagram in Fig. 6.4(b). Table 6.2 shows the
input stress rates (d1, d,, d3) of all stages of all tests of four simulation programs regarding the stress
paths in Figs. 6.3(a) - 6.3(d). For example, the input stress rate in stage @ of Test 1 is set as a
compression stress rate 6; = +2 X 10° Pa and extension stress rates 6, = 63 = —1 X 10°Pa
(see Table 6.2). These stress rates contribute by = 0 and 8;= 0 by Eq. (4.6). Later, using the
diagram in Fig. 6.4(b), when 6; > d, = d3 and ;= 0, the stress path is in the direction of +¥ " axis
for compression loading. Then, in stage @ of Test 1, the d; < 6, = d5 generates b; = 0 and 6=
(0 which contribute the stress path is in the direction of -¥ " for extension loading. Another example
is Test 3 (See Fig. 6.3(c)). The 6,= -30 in stage @of Test 3 in Table 2 is measured from -¥ " axis
where ¢, > d; > g in region Two in Fig. 6.4(b). The other stages of the other tests are also
distributed by the same method. Fig. 6.5 shows that the simulated mean stress p is constant for

all tests.
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Table 6.1 Stress Rates for Shearing

Test | Stage doy do, dos bays O40
(Pa) (Pa) (Pa) _ do, — doz | (degree)
do; — dog

1 1 +2 x 10° —1x10° —1x10° 0 0
2 -2 % 10° +1 x 10° +1 x 10° 0 0

2 1 +2 x 10° —1x10° —1x 10° 0 0
2 -2 % 10° +1 x 10° +1 x 10° 0 0

3 —1x10° +2 x 10° —1x10° o0 -60

4 +1 x 10° -2 x10° +1 x 10° o0 -60

5 +1 x 10° +1 x 10° -2 x 10° 1 60

6 —1x10° —-1x10° +2 x 10° 1 60

3 1 +2 x 10° —1x10° —1x10° 0 0
2 -2 x10° +2 x 10° 0 -1 -30

3 0 -2 x10° +2 x 10° 2 90

4 +2 x 10° 0 -2 % 10° 0.5 30

4 1 +2 x 10° —1x10° -1 x10° 0 0
2 —1x10% | +1.25x 10° | —0.25 x 10° -2 -40

3 —1.25 x 10° +1x10° | +0.25 x 10° -0.5 -20

4 —0.25 x 10° —1x10° | +1.25 x 10° 1.5 80

5 +0.25 x 10° | —1.25 x 10° +1 x 10° 3 -80

6 +1.25 x 10% | —0.25 x 10° —1x10° 0.33 20

7 +1x 10% | 40.25 x 10° | —1.25 x 10° 0.67 40
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Fig. 6.3 Simulation program
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Fig. 6.4 Direction of stress increment 8, of: (a) one-sixth regions on the I1 plane (after Suzuki &

Yanagizawa, 2006); (b) all regions on the IT plane in this study.
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Fig. 6.5 g-p stress paths of all tests.
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6.4 Results

6.4.1 Stress-Strain-Dilation

Figs. 6.6(a)-(d), 6.7(a)-(d), and 6.8(a)-(d) show the relationship of the stress ratio g/p versus
the equivalent deviatoric strain €4 (%), the normalized deviatoric stress (0; — 03)/p versus the
deviatoric strain(g; — €3)(%), the volumetric strain €, (%) versus the deviatoric strain (¢; —
€3) (%) and the volumetric strain €, (%) versus the stress ratio 0; /03 of Test 1 to Test 4,
respectively.

In Figs. 6.7(a) and 6.8(a), the simulated stress-strain-dilation of Test 1 show generally
observed from the experiments of triaxial compression and extension cyclic loading
qualitatively (Tatsuoka & Ishihara 1974; Nakai et al., 2001; Wang 2005).

To validate the DEM results, the result of the volumetric strain &,(%) versus stress ratio 61/03
on medium dense Toyoura sand (ds0=0.2mm, es=0.661, Gs=2.65, Dr = 73%) under drained
triaxial compression and extension cyclic loading 5 cycles (similar stress path with Test 1) with
stress amplitude 61/63 = 3, constant mean stress p=196 kPa, and stress-controlled method by
Nakai et al. (2001) is shown in Fig. 6.11. The Fig. shows that the volumetric strain €, shows a
small dilation in the 1% loading stress. Then, a continuous compression is shown in the following
cycles and become almost stable state after a few cycles (Nakai et al. 2001). Comparison
between Fig. 6.8(a) and Fig. 6.10 indicate that the tendency of the numerical result of stress-
strain-dilation is consistent with the experiment for a medium dense sand.

Figs. 6.6(a)-(d), 6.7(a)-(d), and 6.8(a)-(d) illustrate that the different cyclic stress paths shows
the different relationships of the stress-strain-dilation. Furthermore in Figs. 6.7(a)-(d), the
different cyclic stress paths also affects the width of cyclic loop. The stress path in Test 4
contributes wider cyclic loop of the stress-strain plot than the other tests (see Fig. 6.7(d)). The
probable reason is that there is more energy dissipated in granular system under stress path of
Test 4 than the other tests. Additionally, the cyclic stress path of Test 4 contains the high stress

ratio continuously in 5 cycles (see Fig. 6.6(d)), which make the particles slide in a high degree
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continuously, that dissipate the high degree of energy inside the granular system. The number

of sliding particles in each test is explained later.
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Fig. 6.6 Stress ratio g/p versus the equivaent deviatoric strain €4 (%) of all tests.
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Fig. 6.7 Normalized deviatoric stress (o, — 03)/p versus the deviatoric strain (g; — €3) (%)

of all tests.

It can be seen from Figs. 6.8(a)-(d) that the volumetric strain g,, indicated dilation
characteristic, is influenced by the different cyclic stress paths, even though the maximum stress
amplitudes of the stress path given in each test are the same (c1/03= 1.63). Furthermore in Fig.
6.8(d), Test 4 shows more effect in the extension side of the deviatoric strain (¢, — €3)(%). This
result indicates that the deviatoric strain is strong enough on the compression side to resist the
cyclic stress, but it accumulates in the extension side. This result is similar to the result of
Sitharam (2003) using DEM under the cyclic compression and extension loading using stress
controlled method with 2-dimentional disc assemblage.

Fig. 6.9 shows all stress paths on one I1 plane and the approximate failure surface. The Fig.

shows that most of the parts of cyclic stress paths of Test 1, 2, and 3 is contained in the stress
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path of Test 4 which close to the approximate failure surface more than the other tests. We can
also say from Fig. 6.9 that Test 4 has more unconventional cyclic stress path than the other tests
because of the more change of the stress directions. The degree of the distance from the failure
surface and the degree of unconventional cyclic loading may probable reason of the deviatoric
strain in the extension side and the volume expansion. The unconventional cyclic loading
causing volume expansion of sand was reported by Nakai et al. (1996) using the experimental
results of sand under eccentric cyclic loadings with various stress amplitudes.

We can concluded that stress-strain-dilation depends not only on the characteristic of cyclic
stress paths but also on the stress amplitudes as well as on how close the failure surface of those

stress paths is.
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Fig. 6.8 Volumetric strain €, (%) versus the deviatoric strain (¢; — €3) (%) of all tests.
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Fig. 6.9 All four cyclic stress paths containing on one IT plane.

6.5.2 Direction of Principal Strain Increment Vectors

The directions of the 1% and the 5" cycle of the principal strain increment vectors superimpose
on the stress path on the normalized IT plane of Test 1 to Test 4 are shown from Figs. 6.10(a)-
(d), respectively. It can clearly be seen that the direction of the principal strain increment vectors
depends very much on the direction of the stress path. However, it is not influenced by the
number of cycles. This conclusion was reported before by Nakai et al. (2003) using the
experimental results of the medium dense Toyoura sand under cyclic loading tests.

In Fig. 6.11(a), the 1 cycle of the principal strain increment vectors superimpose on the stress
path of Test 4 is shown with those of the stress path ABC (the maximum 61/03= 2.28) and with

those of the failure surface (the maximum o1/c3 = 2.68). This failure surface and its strain

84



increment vectors was created by the five stress paths of constant b values (b =0, 0.3, 0.5, 0.7,
and 1) where b = (0, — 03)/(0, — g3) (Habib, 1953) following the simulation method of
Phusing et al. (2015). For qualitative comparison, the experimental result of the medium
Toyoura dense sand under cyclic loading tests of Nakai et al. (2003) is shown in Fig. 6.11(b).
We can see from Figs. 6.11(a) and 6.11(b) that the simulated directions of the principal strain
increment vectors show better consistency between the experiment under stress path be (Fig.
6.11(b)), and the DEM results under stress path BC (Fig. 6.11(a)). It can be noted that the
direction of the principal strain increment vectors depends on not only the stress path, but also
on the stress amplitude and the degree of the distance from the failure surface. The dependency
of the degree of the distance from the failure surface to the directions of the principal strain
increment vector was reported before by Phusing et al. (2015)using DEM with monotonic

loading simulations.

6.5.4 Micromechanical Response

One objective of the study is to clarify the micromechanical response of granular materials.
DEM simulation has been used to investigate the micromechanical response of granular
materials under cyclic loading tests. For instance, Sitharam (2003) simulated the
micromechanical behavior of granular materials under stress controlled method and constant
mean stress on an assembly of loose, medium dense and dense systems using DEM. The study
showed that the DEM can simulate the cyclic behavior of sands very adequately. It also showed
that, medium dense sample is liquefied due to the continuous loss of coordination number and

reorientation of fabric in the reversal of cyclic loading.
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Fig. 6.10 Directions of principal strain increment vectors of the 1% and 5™ cycle superimposed

on the stress paths of Test 1 to 4.
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Fig. 6.11 Directions of strain increment vectors of: (a) the 1* cycle of Test 4, stress path ABC and
the failure surface; (b) the experiment of medium dense sand under cyclic loading

(after Nakai et al. 2003)

Fig. 6.12(a) shows the enlargement of Fig. 6.8(a) which is the result of the triaxial
compression and extension of cyclic stress path Test 1. Figs. 6.12(a)- (¢) include plots of the
volumetric strain &y (%) versus deviatoric strain (&; — &3) (%) (Fig. 6.12(a)), corresponding with
the coordination number (Fig. 6.12(b)), and sliding contact fraction (%) (Fig. 6.14(c)) of all 5
cycles, respectively. In Fig. 6.12(a), the annotations "dilate" means the sample dilates
comparing with the previous loading while "comp." means the sample compresses. For
example, in Fig. 6.12(a), the sample dilates at point 2 comparing with 1 which is a short period
consideration. However, the overall the samples undergo overall compression. Figs. 6.12(a) and

6.12(b) show that the coordination number decreases with the dilation of the volumetric strain,
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and increases with the compression. The similar result was reported by Sitharam (2003)
simulating a medium dense sample using DEM. In Fig. 6.12(c), the sliding contact fraction
shows increases with the dilation and a sudden drop when changing the direction of the stress
path from loading to unloading, for example, at point 3 in Figs. 6.12(a)- (c). The reason of the
sudden drop is that some sliding particles under the loading direction were stop sliding because
the loading direction is removed. Later, they start to slide again because of the new direction of
loading.

Figs. 6.13(a) and 6.13(b) show the relationships between the coordination number and the
sliding contact fraction at the end of each cycle of all tests. The figures show that the
coordination number decreases with increasing the number of cycles whereas the sliding contact
fraction seeming remains constant. Furthermore in the figures, the stress path of Test 4 gives
the minimum coordination number and the maximum sliding contact fraction with increasing
the number of cycles. This explains that the stress path of Test 4, containing continuously high
stress ratios, forces the granular materials to lose their normal contacts and to produce sliding

contacts more than in the other tests.

6.5.4 Macro-Micro Relationship

The relationship between the macro behavior and micromechanical data under cyclic loadings
with various stress amplitudes is one of the objectives of this study. The studies on the macro-
micro relationship were performed by several approaches. Thornton and Antony (1998) using
2-dimentional simulation reported the compression and extension simulations on a soft particle
system and found that shear strength was mainly due to strong force network and the weak
network’s contribution to shear strength was very small. Ng (2004) also used 2-dimentional
simulation and showed that the principal stress ratio 61/03 correlates with the contact normal
force more than with the unit contact normal force under different stress paths. In this study, the
correlation between the macro-scale, represented by the stress ratio g/p, and a single parameter,

related to the contact normal vector, is used to describe the macro-micro relationship (Antony
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et al. 2004; Sazzad et al. 2011). The contact normal vectors are represented by all contacts in
major, intermediate, and minor directions (£, F22, and F33, respectively) and by the strong

contacts (Fyy, Fy,, and F§s, respectively).
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Fig. 6.12 Results of Test 1: (a) &v (%) versus (g; — €3) (%); (b) coordination number versus

number of cycles; (c) sliding contact fraction (%) versus number of cycles.
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Fig. 6.13 Results of all tests: (a) Coordinate number at the end of each cycle; (b) sliding

contact fraction at the end of each cycle.

Figs. 6.14(a)- (d) and 6.15(a)- (d) present the macro-micro relationship of 5 cycles between
the macro behavior, indicated by stress ratio ¢/p, and the micromechanical response, indicated
by the deviatoric fabrics ratio of all contacts F;/F, and of strong contacts Fj/F; ,
respectively. F; and Fj are the equivalent deviatoric fabrics of all contacts and of strong
contacts (see Eq. 2.7 and 2.8). F,, and E; is are the mean fabrics of all contacts and of strong
contacts (see Eq. 2.9 and 2.10). In Figs. 6.14(a)-(d) and 6.15(a)-(d), the coefficient of
determination or R-squared value is used to show the uniqueness of the macro-micro
relationship. Figs. 6.14(a)-(d) show that R-squared values of the macro-micro relationship of all
tests are different when considering all contacts, however, they show almost similar values
when considering strong contacts in Figs. 6.15(a)-(d). Therefore, the uniqueness of the macro-
micro relationship is shown when considering only strong contacts. Furthermore, this
uniqueness is independent on the degree of the unconventional cyclic stress paths and on the
number of cycles. The linking between the macro behavior and the micro responses shows in
this study may lead to develop micromechanical parameters for constitutive models in the future

study.
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Fig. 6.14 Macro-micro relationship between stress ratio ¢/p, and the deviatoric fabrics ratio of
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Chapter 7 Conclusions and Recommendations

7.1 Introduction

Mechanical behaviors of granular materials were evaluated under generalized stress conditions
specified by continuously varying b values using the Discrete Element Method (DEM).
Specifically, the true triaxial simulations under constant » and continuously varying b were
conducted using the DEM. Some differences in evolution of stress-strain relationships,
including the relationship between principal normal strains, principal deviatoric strains, and
evolution of stress and strain increment vectors under more generalized states of stress were

carried on. Below is some conclusions.

7.2 Conclusions

This research focused on the mechanical behavior of granular materials under generalized stress
system where the major, intermediate and minor principal stresses o1, 62 and o3 change
continuously. The influence of intermediate stress ratio, specified by the b value [= (02-63)/(c1-
03)] (Habib 1953), is a key parameter in this research. The granular materials under constant b
value stress paths have been studied in several researches. This study analyzes the granular
materials under continuously varying b value stress paths. So, the stress path can change the
direction at any place on the m-plane. The macro behaviors and micro data have been explored.
Discrete Element Method (DEM), known as a powerful method for studying granular
materials, was used in this study. Based on the results in the dissertation, further summaries

are as followed described.
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The direction of stress increment vector f4- and strain increment vector Gz as well as stress-
dilatancy results obtained from the DEM simulations qualitatively show good consistencies
with the experimental data found in the literature on true triaxial tests under generalized
stress conditions, defined by continuously varying b values. It was seen that modeling
features available in DEM simulations are quite powerful in capturing both micro and macro

behavior of granular materials.

The DEM results showed that the shearing resistance angle ¢ is independent of the stress

paths (i.e., not influenced by b values).

The DEM results showed that the direction of strain increment fq: is not only dependent on

the direction of stress increment 84, but also on the approximate failure surface.

The direction of strain increment vector 6z is influenced by the intermediate stress ratio of b,
under continuously varying b test. The immediate change in the direction of strain increment

vector occurs when the stress increment changes direction.

The sliding contact fraction changes rapidly when the direction of stress increment changes under
continuously varying b tests, indicating that the direction of stress path influences the sliding

contact fraction.

The relationships between macro (defined by stress ratio g/p) and micro (defined by
deviatoric fabric tensor) behavior were consistent for both constant b tests and continuously
varying b tests. In both cases, consistent relationship between macro and micro behaviors
was found when considering only in the strong contacts (defined by deviatoric strong fabric

tensor).
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Further study in this research was related to the micro data. The mechanical behavior of
granular materials was evaluated under more generalized stress conditions with five constant
and three continuously varying b values. The assembly of sphere under 3-dimentional principal
stresses of various stress paths was conducted under the constant mean stress and the stress-
controlled method. The macro behaviors of granular materials using the stress-strain-dilation

relationship was described. The micromechanical parameters consists of contact normals

r

t
ij» i

(fabric), normal contact forces, and tangential contact forces aj;, a;j and a;;. They were

evaluated. Their significance to the macro behaviors regarding the varying b value was
explained as well. Main findings can be summarized for an initial isotropic material using

sphere particles as follows:

e At peak, both the distributions and the degree of anisotropy of contact normal (fabric),

normal contact forces, and tangential contact forces do not depend on the stress path.

e The increment vectors of contact normal (fabric), normal contact forces, and tangential
contact forces depend on the location of stress paths as well as the degree of changing
directions of those stress paths under constant and continuously varying b value stress

paths.

e Changing the direction of stress paths causes not only changing the direction of maximum
stress but also changing the incremental vectors of contact normal (fabric), normal contact

forces, and tangential contact forces.

This research further studied the behavior of granular materials under more generalized
cyclic loading tests. The more generalized cyclic stress condition in this study is identified
as the unconventional cyclic loading with various stress amplitudes in 3-dimentional
directions of principal stresses. Five different characteristics of cyclic shapes have been set.
Cyclic loading simulations were conducted under constant mean stress and stress-controlled

method. Here explained the macro behaviors of granular materials using the stress-strain-
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dilation relationship and the directions of principal strain increment vectors and the
micromechanical response as well as the macro-micro relationship were explained. Main

findings can be described below.

e The direction of principal strain increment vectors from DEM results shows good
consistency with the actual behavior of sand under cyclic loading in more generalized stress

condition.

e The direction of the principal strain increment vectors depends on not only the stress path,
but also on the stress amplitude and the degree of the distance of that stress path from the

failure surface. However, it is not influenced by the number of cycles.

e DEM result shows that the more unconventional cyclic stress path with a continuously high
degree of stress amplitude is applied, the more effect of volumetric strain in the extension

side and volume expansion.

e This unique macro-micro relationship does not depend on the more generalized cyclic

stress paths, and on the number of cycles.

7.3 Recommendations

To increase knowledge in the behavior of granular materials in geotechnical engineering, the

following are some suggestions for further researches.

e To explore the fabric distributions and contact force diagrams of granular materials

under cyclic loading tests in general stress systems.

e To study the effect of shapes of granular materials (e.g. ellipsoids, bumpy particles)
under continuously varying b value stress paths and compare their micromechanical

behaviors.
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To study the mechanical behaviors of granular materials having a cross anisotropy under

continuously varying b value stress paths.

To study macro and micro behaviors of granular materials under undrained tests and

continuously varying b value stress paths.
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