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Abstract 
 

 

Most behaviors of granular materials have been studied under the limit conditions of stress 

paths, such as triaxial compression or extension tests where the intermediate principal stress σ2 

has not been involved. In reality, granular materials are under generalized stress system where 

the major, intermediate and minor principal stresses σ1, σ2 and σ3 change continuously. The 

behavior of granular materials under generalized stress system is not well understood, 

particularly the relationships between the macro behavior and micro-scale response. Discrete 

Element Method (DEM), a numerical simulation, can simulate the macro behavior and explore 

the micromechanical behavior of granular materials. This study focused on the influence of 

intermediate stress ratio, specified by the b value [= (σ2-σ3)/(σ1-σ3)], on the mechanical 

behavior of granular materials under generalized stress system. There are three objectives of 

this research. The first is to simulate the macro behaviors and explore the micro characteristics 

of three-dimensional granular materials under continuously varying b value stress paths. The 

second one is to explain the relationship among the macro behaviors and microstructure 

parameters and load transmission in granular materials under continuously varying b value 

stress paths. And the third one is to describe the experimental phenomena of monotonic and 

cyclic loading tests on sand by using the micro variables. To this end, monotonic and cyclic 

loading under truly triaxial conditions, following the stress controlled method on 8,000 spheres, 

were simulated with continuously varying b value.  

For this research, it is found that DEM shows qualitative results of the macro behaviors of 

experiments of sand under monotonic as well as cyclic loading under continuously varying b 

value stress paths. The macro behavior and micro response data were described by the 

relationship between the stress ratio and fabric structures representing contacts of all particles 

as well as the strong contact regardless of the varying b value. Moreover, this study found that 

changing the b values continuously shows different distributions of the fabric and contact 

forces evolutions. The increments of anisotropy coefficients of average fabric, normal contact 

forces, and tangential contact forces differ depending on the b value. Furthermore, the 
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continuously varying b value stress paths lead to change the increment directions of the stresses 

which cause some changes in the increment directions of those anisotropy coefficients. 

However, the differences in the directions of stress paths do not affect those anisotropy 

coefficients at the peak stress. Finally, the stress-force-fabric relationships under continuously 

varying b value stress paths were presented in terms of the anisotropy coefficients of fabric, 

normal contact forces, and tangential contact forces anisotropic. Regarding cyclic simulations, 

a qualitative comparison of the stress-strain-dilation between the DEM and experimental 

results under triaxial cyclic loading shows similarity tendency. Furthermore, micromechanical 

responses, indicated by coordination number and sliding contact fraction, can be used to 

explain the macro behavior in cyclic loading. Additionally, the macro-micro relationship is 

explained by using the relationship between stress ratio and fabric structures of all contacts, 

and only the strong ones. The study found that the unique macro-micro relationship does not 

depend on the more generalized cyclic stress path and the number of cycles. 
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Chapter 1 : Introduction 
 

1.1 Background 
 

Granular materials like sand are made up of discrete particles without any cohesive forces 

between the particles. When a load is applied, the resulting forces are absorbed by the substrate. 

As a result of the applied load, the sand is compacted and micro contacts between particles 

occur, forcing them to change their orientations. The void between particles has changed 

continuously involving the particles orientation. The discontinuity between contacts also 

happens within granular materials. Consequently, the macro behavior changes. Many previous 

researches have studied the macro behavior and micromechanical response of granular 

materials under several conditions by experiments and numerical simulations. However, in 

general stress system where the major, intermediate and minor principal stresses σ1, σ2 and σ3 

change continuously, there are still many phenomenological and physical behaviors of granular 

materials which have not been clearly explained.  

Several concepts of mathematical modelling have been established using the continuum 

subject in order to model the behavior of granular materials. Different concepts need different 

input parameters to approach the physical behavior of sand which are sometimes difficult for 

model users and developers. The validation of each modelling is normally done by comparing 

the results of the model and results of the laboratory testing. It is important for the geotechnical 

engineering to validate the existing models as well as to generate the new continuum approach.   

Because sand is discrete by nature, numerical simulation for discrete particles is widely used 

to study the behavior of real sand. The behavior of granular material is mainly considered in 

macroscopic and micromechanical response. In order to clearly understand the macro behavior of 

granular materials, geotechnical engineers need to understand its behavior in the micro level. The 

relationship among the externally applied load, the macro response of the granular system, the 

microstructure or fabric, as well as the distribution of the contact force have been distributed a 
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qualitative considerate of the mechanism of load transfer in granular materials(e.g. Dantu 1957; 

De Josselin de Jong 1969; Oda et al. 1978; Oda and Konishi 1974). It is necessary to initiate the 

innovative continuum mechanic of granular behavior. More recently, the computer simulation has 

been used to model the granular assemblies of 2-dimentional discs under shearing and obtain 

some qualitative details of the microscopic feature (e.g. Cundall and Strack 1979, 1983; 

Rothenburg and Bathurst 1989, 1992; Thornton 2000; Thornton and Barnes 1986). Many years 

later, 3-dimentional simulation has been widely used because of the importance of simulation the 

real sand more closely (Bathurst 1985; Phusing et al. 2015; Sazzad et al. 2012; Sitharam et al. 

2004).  However, most behaviors of granular materials have been studied under the limit 

conditions of stress paths, such as triaxial compression or extension tests where the intermediate 

principal stress σ2 has not been involved. In fact, granular materials are under generalized stress 

system where the major, intermediate and minor principal stresses σ1, σ2 and σ3 change 

continuously. The behavior of granular materials under generalized stress system is not 

understandably described, particularly the relationships between the macro behavior and micro-

scale response. 

Discrete Element Method (DEM) is one of the numerical approach for studying the mechanical 

behavior of granular materials, the representative of sand. DEM is a numerical simulation tool, 

created by Cundall and Strack (1979). DEM has been widely used for simulating granular 

materials and investigating the mechanical behavior of granular materials (Thornton 2000; Ng 

2004a; Ng 2004b; Sazzad et al., 2011; Barreto and O’Sullivan 2012).    

This research focuses on using DEM simulating the macro behaviors and explore the micro 

characteristics of three-dimensional granular materials under more generalized stress systems. 

Furthermore, the microscopic data has been explored and explained the relationship between 

macro and micromechanical behavior for monotonic as well as cyclic loading of generalized stress 

systems. For monotonic loading simulation, the relationship among applied stress, contact forces 

between particles, and fabric distribution from DEM has been studied using the stress-force-fabric 

relationship developed by Rothenburg (1980). The validation of the existing stress-force-fabric 

relationship under the more generalized stress systems in this study has not been mentioned. 
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1.2 Objectives 
 

Regarding the motivation mentioned in the background, there are three main objectives of this 

research.  

i. To simulate the macro behaviors and explore the micro characteristics of three-

dimensional granular materials under continuously varying b value stress paths. 

ii. To explain the relationship between macro behaviors and microstructure parameters and 

load transmission in granular materials under continuously varying b value stress paths. 

iii. To describe the experimental phenomena of monotonic and cyclic loading tests on sand 

by using the micro variables. 

 

1.3 Organization of the dissertation 
 

The organization of the dissertation is ordered as follow: 

Chapter 1 describes the background/motivation, objectives and organization of this dissertation.  

Chapter 2 explains the related literatures in experimental and DEM based studies, as well as the 

fundamental microscopic concepts. 

Chapter 3 reviews the fundamental theory of DEM and some brief details of computer program 

OVAL.   

Chapter 4 describes the macro-micro behaviors of granular materials under continuously 

varying b value. The preparation of the sample using spherical particles is explained. 

Macro behaviors and micro data of the sample under several constant b and 

continuously varying b stress paths are described. The relationship between macro- 
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and micro- behaviors of granular materials under continuously varying b value is 

presented. 

Chapter 5 explains the evolution of microstructure parameters at the particle levels, as well as 

verification of fundamental microscopic description in chapter 2. The granular 

sample is simulated under continuously varying b value stress paths and this research 

explores the micro variables data. Microstructure parameters are found and used to 

plot the distribution diagrams of fabric tensors and contact forces at the particle level. 

The stress-strain curves using the stress-force-fabric relationship (Rothenburg 1980) 

is established and compared with the stress-strain curves from DEM results. 

Chapter 6 explains the macro-micro behaviors of granular materials under cyclic loadings. The 

sample preparation is described corresponding to the experiment of Nakai et al. 

(2003) testing cemented-sand under several cyclic loadings in general stress systems. 

The stress-strain-dilation curves of compression and extension cyclic loading of 

DEM and the experiment are compared and discussed. The strain increment vectors 

of DEM and the experiment are shown. The micro data during cyclic loadings are 

explained. 

Chapter 7 summarizes the major conclusions from the overall research and gives some 

recommendations for further studies. 

 

 

 

 

 



5 
 

Chapter 2 Literature Review 
 

2.1 Introduction 
 

The behavior of granular materials can be influenced by several factors. Literature has been 

researched and reported those influenced ones. Experimental methods and numerical simulation 

were used widely in geotechnical engineering to show great effects of these factors. In this 

study, the factors have influences on the macro behaviors and micromechanical response 

consists of the intermediated stress ratio b value, sample density, and interparticle friction angle. 

The other factors such as confining pressure, particle shape, inherent anisotropy, are strictly 

controlled. The fundamental of macro-micro relationship called stress-force-fabric relationship 

(Rothenburg 1980) is described in this chapter.  

 

2.2 The Influential Factors on Macro Behaviors and Microscopic of 

Granular Materials 

 

2.2.1 The intermediated stress ratio b value 

 

The intermediated stress ratio b value shows in Eq. 2.1. Fig. 2.1 shows the principal stresses 

under triaxial loading. The intermediate principal stress 2 can significantly affect the stress-

strain behavior of granular materials. A non-dimensional parameter b [= (σ2-σ3)/(σ1-σ3)] was 

introduced by Habib (1953) as a stress ratio to describe the influence of 2. Several experiments 

have been conducted to study the influence of 2 on the behavior of sand under different stress 

paths, with a constant b value (e.g., Lade and Duncan 1973; Matsuoka and Sun 1995; Lade 

2006; Suzuki and Yanagisawa 2006; Sun et al., 2008; Kumruzzaman and Yin 2012; Rodriguez 

and Lade 2013). Most of these experiments examined the relationship between the b value and 
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the angle of shearing resistance ϕ [= sin-1((σ1-σ3)/(σ1+σ3))] at peak strength. For instance, Ko 

and Scott (1968) and Yamada and Ishihara (1979) reported that ϕ increases from b = 0 to a 

certain value (nearly b = 0.5) and then decreases slowly when approaching unity. Similar result 

was reported recently by Kumruzzaman and Yin (2012) as well as Rodriguez and Lade (2013). 

However, Green and Bishop (1969) and Lade and Duncan (1973) reported differently. According 

to their studies, after certain values of b (nearly b = 0.2), ϕ remains almost constant or decreases 

or even increases with increasing b, before it decreases when approaching unity. Matsuoka and 

Nakai (1974) reported differently. According to their study, after certain values of b (nearly b = 

0.3), ϕ decreases with the increasing b value until b = 1. Also, Lade (2006) concluded that most 

experimental results on sand show that ϕ increases from b = 0, depending on particular types of 

sand. Different relationships between ϕ and b indicate that type of sand, sample preparation and 

loading conditions may influence these relations.  

 

                                      (2.1) 

 

 
 

Fig. 2.1 Principal stresses under triaxial loading 

ܾ ൌ
௜௡௧௘௥௠௘ௗ௜௔௧௘ߪ െ ௠௜௡ߪ

௠௔௫ߪ െ ௠௜௡ߪ
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Discrete Element Method (DEM) has been used to simulate granular materials and investigate 

the mechanical behavior of granular materials (Thornton 2000; Ng 2004a; Ng 2004b; Sazzad et 

al., 2011; Barreto and O’Sullivan 2012). Sand behavior of at the micro level in response to an 

applied load, including changing inter-particle friction angles and different b values, has been 

studied before. For example, Thornton (2000) used some disc particles to examine the effect of 

intermediate principle stress under constant mean stress condition, using Lade and Duncan’s 

(1975) failure model. Ng (2004a) who used oval particles, reported the effect of intermediated 

principal stress and stress-strain behavior under constant b tests using the DEM. It was noted that 

the angle of shearing resistance ϕ from the DEM results supports the models of Lade (1977) and 

Ogawa et al. (1974) much more than the models of Stake (1975) and Matsuoka and Nakai (1978). 

Furthermore, Ng (2005) studied the effects of different densities under different stress paths of 

constant b test and concluded that the density of samples has no great influence on the relationship 

between ϕ and b. In the other study, Sazzad et al. (2011) used spherical particles of DEM to 

simulate the macro mechanical responses and explore the micro characteristics of granular 

materials under constant b tests. The relationship between ϕ and b by Sazzad et al. (2011) was 

similar to that of the experiment of Ko and Scott (1968). According to Sazzad et al. (2011), the 

evolution of the principal deviatoric strains, directions of stress increment vector and strain 

increment vector as well as dilatency from the DEM results at least shows good qualitatively 

consistency with the experimental observations. Comparing DEM simulations using spherical 

particles and experimental data, Barreto and O’Sullivan (2012) demonstrated that the b value can 

significantly influence the coefficient of inter-particle friction .  

The previous literature shows that DEM simulations have generally been conducted with a 

constant b value. In fact, however, the stress path changes its direction continuously in the stress 

space, which causes some change in the b value. Experimentally, the relationship between a strain 

increment and stress increment direction, under more generalized stress paths, has been 

performed (Matsuoka and Sun 1995; Nakai et al., 2003). However, based on the author’s 

assumption, DEM simulations of granular materials under a continuously varying b value have 

not been deeply explained yet. 
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In this study, the definition of the b value has been modified in order to follow the condition 

of continuously varying b value. The b value in this study is greater than 1 located in the area 

1 ൑ ܾ ൑ ∞  as in Fig. 2.2(a). In Fig. 2.2(a) shows the stress path b=0, b=1 and b= ∞ 

corresponding to the diagram of stresses Figs. 2.2(b), 2.2(c), and 2.2(d). For example, Fig. 2.2(b) 

shows that the increment of ߪ௭ is two times over the increment of ߪ௫ and ߪ௬. The result of this 

diagram shows that b=0. Similar explanation is for b=1 and b= ∞ in Figs. 2.2(c), and 2.2(d). 

This method has been used in Phusing et al. (2015) and Phusing and Suzuki (2015) 

 
 

(a) Stress paths b = 0, b = 1, and b = ∞ 
 
 

 

  

(b) b = 0 (c) b = 1 (d) b = ∞ 
 

Fig. 2.2 Stress paths and diagrams of b = 0, b = 1, and b = ∞ 
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2.2.2 Sample Density 

 

Sample density is one of the most factors affecting the behavior of sample while shearing. 

Granular materials have different density depending on stress-strain-dilation. The void ratio ݁, 

the porosity ߟ  and the relative density ܦ௥ሾൌ
௘೘ೌೣି௘

௘೘ೌೣି௘೘೔೙
ൌ 	

ሺఎ೘ೌೣି௡ሻሺଵିఎ೘೔೙ሻ	
ሺఎ೘ೌೣିఎ೘೔೙ሻሺଵିఎሻ

ሿ can be used to 

classify the density of granular sample where ݁௠௔௫ ௠௔௫ߟ ,    , ݁௠௜௡, ߟ௠௜௡   are maximum and 

minimum void ratio and porosity. Experiments show that increasing the strain increases the 

deviatoric stress up to the peak and reduces to strain softening when sample is dense. However, 

the loose samples show some continuous increases in deviatoric stress but increasing the strain. 

These results were conducted the dense and loose sand under drained monotonic condition 

(Ergun 1981; Roscoe et al. 1958; Wang and Lade 2001). If considering numerical results using 

DEM, the influence of relative density is one important factor affecting the macro and 

micromechanical behavior of granular materials (Thornton 2000; Salot et al. 2009; 

Madhusudhan and Kumar 2010; Sazzad and Suzuki 2013). For instance, Sazzad and Suzuki 

(2013) conducted three-dimensional spherical granular materials of loose and dense samples 

under constant b value. Their results shows that behaviors of stress-strain-dilation in both loose 

and dense samples are the same as those reported in the experiments qualitatively, similar to 

Thornton (2000) and Sitharam et al. (2004) and Salot et al. (2009). Moreover, Salot et al. (2009) 

studied the influence of relative density on the macro and micromechanical response. The macro 

behavior is the porosity as well as the stress-strain curves whereas the micro data is the 

coordination number. It was reported that the maximum relative density sample shows 

minimum porosity whereas the minimum relative density sample shows maximum porosity 

when deviatoric stress increases. Finally, the curve merges together at the large strain. However, 

the coordination number of the maximum relative density sample shows the highest value where 

the minimum shows the lowest. This result explains the characteristic of dense and loose sand, 

similarity to Thornton (2000), Sitharam et al. (2004) and Sazzad and Suzuki (2013). In this 

study, the simulation of dense sample is used in the monotonic loading tests but the medium 
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dense is used for cyclic loading tests. The density was chosen based on the experimental 

references in each loading tests.  

 

2.2.3 Interparticle Friction  

 

Interparticle friction is a significant factor influencing the behavior of granular materials. Granular 

assemblies cannot resist the external forces without internal friction between particles. Since the 

interparticle friction is encountered the difficult examination of measuring the reliable value, only 

few researches have been conducted (Skinner 1969; Procter and Barton 1974; Konishi et al. 

1983). An example of experiments by Skinner (1969) studied the influence of interparticle 

friction on the behavior of spherical particles explaining that when increasing the interparticle 

friction, the effective angle of shearing resistance does not increase uniformly at peak or even at 

constant volume states. The other experiment by Konishi et al. (1983) observed the physical 

behaviors of photoelastic oval shaped rods and the interparticle friction angle. It was summarized 

that the interparticle friction angle increases at peak friction angle. In term of the literature using 

DEM, more studies have been done on interparticle friction because of the easy access to the 

micro level data when numerical simulation was used (e. g., Oger et al. 1998; Thornton 2000; 

Kruyt and Rothenburg 2006; Sazzad and Suzuki 2011; Barreto and O’Sullivan 2012). For 

example, Barreto and O’Sullivan (2012) reported the independent between the influence of the 

interparticle friction and intermediate stress ratio on the behavior of granular materials. 

Regarding the micromechanical data, Barreto and O’Sullivan (2012) reported that strong force 

chains produce similar direction with the major principal stress orientation. To conclude, the 

interparticle friction and the intermediate stress ratio affected the macro- and micro-scale 

response. Sazzad and Suzuki (2011) using oval-shaped particles with DEM, conducted some 

different interparticle friction angles under cyclic loading tests. They reported that the width of 

stress-strain cyclic loops develops narrowly the interparticle friction angle increases. 

Additionally, the single relationship between macro once and microscopic data has been shown 

only in strong contacts under cyclic loading. 
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2. 3 Fundamental Microscopic Description 
 

Granular materials are discrete particles whereas the interaction between particles are 

interparticle contacts between them. The interacting contacts are generated a contact forces 

network at the particle level. They respond corresponding the external load at the boundary of 

the assembly. Good understanding of the micromechanical behavior help geotechnical 

engineers to have deeper some knowledge on the macroscopic behavior which can be used to 

develop existing simulation concept or initiate a new one.  The fundamental microscopic 

description in this study has been described as follows.  

 

2.3.1 Micromechanical Data 

 

One of the objectives of the study is to correlate the macro behavior with the micro response. 

The micro data is represented by the evolution of coordination number (Kuhn 1999; Rothenburg 

and Kruyt 2004) and the modified sliding contact fraction (Sazzad 2011).  Both referred in those 

literature are defined as follows: 

Np

Nc


2
numberonCoordinati                                           (2.2) 

(%)100(%)fraction contactSliding 
cN
sN

                       (2.3) 

where Nc , Np and Ns are the number of contacts, particles, and sliding contacts. This study 

explored the evolution of coordination number and sliding contact fraction of granular materials 

under monotonic loadings using spherical dense sample in Chapter 4 and cyclic loadings using 

medium dense sample in Chapter 6. 

 



12 
 

2.3.2 Fundamental of Macro-Micro Relationship 

 

The relationship between the macro behavior and micromechanical data with various stress 

amplitudes in generalized stress system is one of the objectives in this study. The studies on the 

macro-micro relationship were conducted by several approaches. Thornton and Antony (1998), 

using 2-dimentional simulation, reported the compression and extension simulations on a soft 

particle system and found that shear strength was mainly due to strong force network and that 

the weak network’s contribution to shear strength was very small. As well as Ng (2004b), the 

experiment showed that the principal stress ratio σ1/σ3 correlates with the contact normal force 

more than with the unit contact normal force under different stress paths. In this study, the 

correlation between the macro-scale, represented by the stress ratio q/p, and a single parameter, 

related to the contact normal vector, is used to describe the macro-micro relationship (Antony 

et al. 2004; Sazzad et al. 2011). The contact normal vectors are represented by all contacts in 

major, intermediate, and minor directions (F11, F22, and F33, respectively) and by the strong 

contacts (ܨଵଵ
௦ , ଶଶܨ

௦ ,		and	ܨଷଷ
௦ , respectively). The unit normal vector for all contacts is described 

by Satake (1982) as follows: 

3,2,1,
1

1




 ji
cN

k

k
j

k
i

c
ij nn

N
F                                  (2.4) 

where Nc is the number of contacts, ݊௜
௞is the component of the unit vector ݊௞ at a contact. The 

unit normal vector for the strong contacts is described by Kuhn (2006) as follows: 





s
cN

s

s
j

s
i

c

s
ij jinn

N
F

1

3,2,1,
1

                                 (2.5) 

where ௖ܰ
௦ is the number of strong contacts, ݊௜

௦is the component of unit vector ݊௦ at a strong 

contact. If the normal contact force is greater than the average contact normal force ௔݂௩௘
௡ , it can 

be defined as a strong contact. The average normal contact force is as follows: 
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



cN

i

n
i

c

n
ave f

N
f

1

1
                                                         (2.6) 

where ௜݂
௡is a normal contact force.  

The deviatoric fabrics ratio of all contacts ܨௗ/ܨ௠   and of strong contacts ܨௗ
௦/ܨ௠௦  , 

respectively. ௗܨ	  and ܨௗ
௦  are the equivalent deviatoric fabrics of all contacts and of strong 

contacts. ܨ୫  and ܨ௠௦  are the mean fabrics of all contacts and of strong contacts.	ܨௗ, ܨௗ
௦, ܨ୫, and 

௠௦ܨ  are explained as follow: 

 

ௗܨ ൌ ටଵ

ଶ
ሺሺܨଵଵ െ ଶଶሻଶܨ ൅ ሺܨଵଵ െ ଶଶܨଷଷሻଶ൅ሺܨ െ  ଷଷሻଶሻ                     (2.7)ܨ

௠ܨ ൌ ሺܨଵଵ ൅ ଶଶܨ ൅  ଷଷሻ/3                                        (2.8)ܨ

ௗܨ
௦ ൌ ටଵଷ

ଶ
ሺሺܨଵଵ

௦ െ ଶଶܨ
௦ ሻଶ ൅ ሺܨଵଵ

௦ െ ଷଷܨ
௦ ሻଶ൅ሺܨଶଶ

௦ െ ଷଷܨ
௦ ሻଶሻ                   (2.9) 

௠௦ܨ ൌ ሺܨଵଵ
௦ ൅ ଶଶܨ

௦ ൅ ଷଷܨ
௦ ሻ/3                                      (2.10) 

 

2.3.3 Stress-Force-Fabric Relationship and Anisotropic Parameters  

 

The relationship in balancing between applied stresses and internal forces is the stress-force-

fabric relationship proposed by Rothenburg (1980) and Rothenburg & Bathurst (1989). Details 

are described here. More details are referred to read Rothenburg (1980). This relationship 

describes the macroscopic stress ߪ௜௝ equal to statistical averages of fabric and inter-partical load 

connection as:  

௜௝ߪ	 ൌ
ଵ

௏
∑ ௜݂

௖݈௜
௖

௖∈௏ 										݅, ݆ ൌ 1,2,3																																					(2.11) 
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Eq. (2.11) relates a sum with respect to all contact forces within a volume of the assembly ܸ, 

with cartesian components contact force ௜݂
௖multiplied by components of contact vector ݈௜

௖. The 

superscript c indicates the set of contacts within assembly ܸ. In order to understand the inter-

partical load connection in granular materials, the discrete amount in Eq. (2.11) can be 

substituted by the distribution function using a spherical harmonics expansion ܧሺΩሻ(see Eq. 

2.14). The factor using in the spherical harmonics expansion is expressed in terms of some 

tensors as described by Rothenburg (1980):  

௜௝ߪ													 ൌ ݉௩݈଴̅ ׬ ݂௜̅
௖ሺΩሻ ௝݊ܧሺΩሻ݀Ω	ஐ

                                     (2.12) 

where ߪ௜௝ is the macroscopic stress in terms of microstructural parameters, ݉௩ is the contact 

density which equals the total number of contacts (twice number of physical contacts) per unit 

volume of the assembly ܸ, ݈଴̅ is an average of all contact vector lengths, ݂௜̅
௖ is an average 

normal contact vector in the cartesian direction ௝݊ . In Eq. (2.12), the macroscopic stress can 

be referred to as the stress–force–fabric relationship. Chantawarangul (1993) has defined in 

detail of Eq. (2.12) and expressed the Eq. as follow: 

 

where ߜ௜௝  is the Kronecker delta, ݂଴̅
௡ is the average normal contact forces in the assembly, ܽ௜௝

௥  

i s  the symmetric second-order deviatoric tensor representing the contact normal anisotropy 

coefficient (fabric anisotropy coefficient) , ܽ௜௝
௡  is the symmetric second-order deviatoric tensor 

representing the normal contact force anisotropy coefficient, and ܽ௜௝
௧  is the symmetric second-

order deviatoric tensor representing the tangential contact force anisotropy coefficient. Sitharam 

(2000) explained on Eq. (2.13) that the carrying capacity of a granular materials at the 

hydrostatic stress is mainly due to the contact density ݉௩ and to the average normal contact 

force ݂଴̅
௡, while the carrying capacity under the deviatoric stress is due to the ability to develop 

anisotropy in contact normal orientations and contact forces. In Eq. (2.11), the contact normal 

௜௝ߪ ൌ
݉௩݂଴̅

௡݈଴̅
3

൜ߜ௜௝ ൅
2
5
൬ܽ௜௝

௥ ൅ ܽ௜௝
௡ ൅

3
2
ܽ௜௝
௧ ൰

൅
2
35

ൣሺܽ௞௟
௡ െ ܽ௞௟

௧ ሻܽ௞௟
௥ ௜௝ߜ ൅ ሺ4ܽ௜௟

௡ ൅ 3ܽ௜௟
௧ ሻܽ௜௝

௥ ൧ൠ 																								(2.13)
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distribution is approximated with a spherical harmonic expansion then simplified to be the 

second-order tensors as follows: 

 

The ܽ௜௝
௥  can be described as follow: 

         

 where                                           	

ܴ௜௝
ᇱ ൌ ܴ௜௝ െ

ܴ௞௞
2
 (2.16)																																																								௜௝ߜ

and                                                    ܴ௜௝ ൌ ׬ ሺΩሻ݊௜ܧ
௖

௝݊
௖݀Ω		

ஐ
																																															(2.17) 

The distributed shape of the average of normal contact forces can be approximated by the 

equation similar to the fabric distribution (Rothenburg 1980) which is: 

 

 

The ܽ௜௝
௡  can be described as follow: 

                                          (2.19) 

where 

  

and 

                                                                                         (2.21) 

 

   The distribution of the average of tangential contact forces is represented as follows: 

ሻߗሺܧ ൌ
1
ߨ4

ൣ1 ൅ ܽ௜௝
௥ ݊௜

௖
௝݊
௖൧ 																											 (2.14ሻ

ܽ௜௝
௥ ൌ

15
2
ܴ௜௝
ᇱ 																									 (2.15)

݂̅௡ሺߗሻ ൌ ݂଴̅
௡ൣ1 ൅ ܽ௜௝

௡ ݊௜ ௝݊൧ 																									  (2.18) 

௜௝ܨ
௡ ൌ

1
ߨ4

න ݂̅௡ሺΩሻ
ஐ

݊௜ ௝݊݀Ω 																										(2.20)

݂଴̅
௡ ൌ

1
ߨ4

න ݂̅௡ሺΩሻ
ஐ

݀Ω  

ܽ௜௝
௡ ൌ

15
2
ᇱ௜௝ܨ

௡

݂଴̅
௡  
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The ܽ௜௝
௧  can be described as follow: 

                      

where                                           	

௜௝ܨ																																																							
௧ ൌ

1
ߨ4

න ݂௜̅
௧ሺΩሻ

ஐ
௝݊݀Ω																																																							(2.24) 

As for the microscopic coefficient anisotropy tensors, (ܽ௜௝
௥ , ܽ௜௝

௡  and ܽ௜௝
௧ ) are produced from their 

invariants in the same way as the stress tensor (Bathurst 1985; Chantawarangul 1993; Sitaram 

2000): 

 

ܽ௥ ൌ ටଷ

ଶ
ܽ௜௝
௥ ܽ௜௝

௥ ,	ܽ௡ ൌ ටଷ

ଶ
ܽ௜௝
௡ ܽ௜௝

௡ , and ܽ௧ ൌ ටଷ

ଶ
ܽ௜௝
௧ ܽ௜௝

௧                              (2.25) 

 

 

  

݂௜̅
௧ሺߗሻ ൌ ݂଴̅

௡ൣܽ௜௝
௧

௝݊ െ ሺܽ௞௟
௧ ݊௞݊௜ሻ݊௜൧    and   ݂̅௧ሺߗሻ ൌ ൫݂௜̅

௧݂௜̅
௧൯
ଵ/ଶ

                     (2.22ሻ

ܽ௜௝
௧ ൌ

15
3

௜௝ܨ
௧

݂଴̅
௡ 																												 (2.23) 
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Chapter 3 Discrete Element Method and Program 

OVAL  
 

3.1 Introduction 
 

In order to understand the complex behavior of granular materials, the macro responses and the 

microstructure characteristics have to be described during the deformation evolution. 

Experimental tests are difficult to measure the internal stresses at the gain level. They may be 

estimated from the boundary conditions. The numerical technique is possibly a powerful 

method to model the behavior of granular materials. Since the numerical method can monitor 

physical inside data at any state of each discrete particles in granular systems during 

deformation, the numerical technique is possibly a powerful method to model the behavior of 

granular materials. Moreover, the numerical method is flexible because it can adjust input 

parameters regarding in what we are interested such as load conditions, particle sizes, particle 

shapes, and the particles distribution. Considering the available numerical method including all 

flexibilities, Discrete Element Method (DEM) by Cundall and Strack (1979) has been designed to 

model the macro behaviors and provide micro responses. A DEM program code named OVAL 

(Kuhn 2006) was created to simulate the macro behaviors and explore the micro characteristics 

of two- and three-dimensional granular materials. This study used OVAL code of three-

dimensional spherical granular materials with periodic boundary. The following sections in this 

chapter explain in brief the fundamental of DEM and OVAL program.   

 

3.2 Discrete Element Method (DEM) 

 
In the Discrete Element Method (DEM) by Cundall and Strack (1979), the equilibrium contact 

forces and displacements of granular systems are discovered by a series of calculation following the 

movements of each particle by calculating Newton’s law of motion. Particles are able to overlap 
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each other despite the rigid property. Even though the DEM calculation is the dynamic problems, 

particles are monitored closely in close to static equilibrium by controlling the deformation of 

assemblies to be as slow as possible. Furthermore, DEM can be used to implement a large number 

of particles under various stresses and interparticle interaction conditions which provide some 

different deformations of macro behaviors and microscopic responses.    

 

3.2.1 DEM Calculation Cycle 

 

In DEM, each particle is modeled to follow Newton’s second law of motion and the force of 

displacement law in each time step. The results of law of motion give translational and rotational 

accelerations of particles. Then, these accelerations are integrated to obtain the velocities of 

particles. After that, the velocities are integrated to obtain the displacements of the particles. Then, 

the force-displacement is used in the contact displacement law to obtain the new contact forces 

which uses to be applied to the particles in the next time step and the cycle is repeated. The cycle is 

explained in Fig. 3.1. More details of DEM are referred in Cundall and Strack (1979). The short 

description is explained in next section.  

 

3.2.2 Law of Motion Implementation 

 

Fig. 3.2 shows two spherical particles A and B in contact. n, t and s are unit contacts in one normal 

and two tangential vectors respectively. ݎ஺ and ݎ஻are the distance between the center of sphere A 

and B and the contact point. ݈஺஻is the distance between the center of sphere A and B or branch 

vector. ߠሶ ஺and ߠሶ஻are rotational velocities of spheres A and B. 
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Fig. 3.1 Calculation cycle in DEM  

 

 

Fig. 3.2 Two contacting spheres and contact vectors 
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The translational and rotational accelerations of particle A are defined by the following 

incremented expressions: 

 

 ݉஺ݔሷ௜
஺ ൌ ௜ܨ∑

஺ 					݅ ൌ 1,2,3                                        (3.1) 

ሷߠܫ ஺ ൌ                                                                 (3.2)			஺ܯ∑

 

where ݉஺ is mass of particle A. ݔሷ௜
஺ and ߠሷ ஺ are the components of translational accelerations and 

rotational accelerations respectively. ܨ௜
஺ is the components of forces acting on particle A, I is the 

moment of inertia and ܯ஺is the moment on particle A. The velocity of particle A ߠሶ ஺ can be solved 

by making the component of translational accelerations ݔሷ௜
஺ and rotational accelerations ߠሷ ஺ constant  

over a time interval ∆ݐ from ݐ െ
∆௧

ଶ
 to ݐ ൅

∆௧

ଶ
 using the finite-difference procedure as shown in Eq. 

3.3 and 3.4.  Then, the velocities are integrated to obtain the displacement consisting of location and 

rotation of the particle at the end of time step ݐ ൅ ∆௧

ଶ
, using Eq. 3.5 and 3.6.  

 

ሶ௜ݔ
஺
ሺ௧ା

∆௧
ଶ ሻ
ൌ ሶ௜ݔ

஺
ሺ௧ି

∆௧
ଶ ሻ
൅
൫∑ܨ௜

஺൯
ሺ௧ሻ
ൈ ∆t

݉஺ 																																																	(3.3) 

ሶߠ ஺
ሺ௧ା

∆௧
ଶ ሻ
ൌ ሶߠ ஺

ሺ௧ି
∆௧
ଶ ሻ
൅
ሺ∑ܯ஺ሻሺ௧ሻ ൈ ∆t

஺ܫ
																																															(3.4) 

௜ݔ
஺
ሺ௧ା

∆௧
ଶ ሻ
ൌ ௜ݔ

஺
ሺ௧ି

∆௧
ଶ ሻ
൅ ሶ௜ݔ

஺
ሺ௧ା

∆௧
ଶ ሻ
ൈ ∆t																																																	(3.5) 

஺ߠ
ሺ௧ା∆௧ଶ ሻ

ൌ ஺ߠ
ሺ௧ି∆௧ଶ ሻ

൅ ሶߠ ஺
ሺ௧ା∆௧ଶ ሻ

ൈ ∆t																																																	(3.6) 
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3.2.3 Force Displacement Law 

 

The translational and rotational acceleration are integrated to obtain translational and rotational 

velocities of particle A  ݔሶ௜
஺ , ߠሶ ஺ and particle B  ݔሶ௜

஻ , ߠሶ஻ (see Fig. 3.2 and Eq. 3.3 and 3.4). Then, the 

contact displacement is used to calculate following the finite difference procedure in Eq. 3.7 and 

3.8. 

∆௡ሺ௧ା∆௧ଶ ሻ
ൌ ൤ሺݔሶ௜

஺ െ ሶ௜ݔ
஻ሻ

ሺ௧ା
∆௧
ଶ ሻ
൨ ݊௜ ൈ ∆t																																																	(3.7) 

∆௦ሺ௧ା∆௧ଶ ሻ
ൌ ൤൬ሺݔሶ௜

஺ െ ሶ௜ݔ
஻ሻ

ሺ௧ା
∆௧
ଶ ሻ
൰ ௜ݐ െ ሺߠሶ ஺|ݎ஺| െ ஻|ሻݎ|ሶ஻ߠ

ሺ௧ା
∆௧
ଶ ሻ
൨ ൈ ∆t				(3.8) 

where ∆௡  and ∆௦	are normal and shear displacements. Next, the incremental normal and shear 

forces can be solved by Eq.3.9 and 3.10. 

௡ሺ௧ሻܨ∆ ൌ ݇௡∆௡ሺ௧ା∆೟
మ
ሻ
										          								(3.9)  

௦ሺ௧ሻܨ∆ ൌ ݇௧∆௦ሺ௧ା∆೟
మ
ሻ
																				   																												(3.10)  

where ݇௡ and  ݇௧ are normal and tangential contact stiffness. The results of incremental normal and 

shear forces ∆ܨ௡ሺ௧ሻ and ∆ܨ௦ሺ௧ሻ, the normal and shear forces are calculated from Eq.3.11 and 3.12 as 

follows: 

௡ሺ௧ାଵሻܨ ൌ ௡ሺ௧ሻܨ ൅ ௡ሺ௧ሻܨ∆ ൌ ௡ሺ௧ሻܨ ൅ ݇௡∆௡ሺ௧ା∆௧ଶ ሻ
																										(3.11) 

௦ሺ௧ାଵሻܨ ൌ ௦ሺ௧ሻܨ ൅ ௦ሺ௧ሻܨ∆ ൌ ௦ሺ௧ሻܨ ൅ ݇௧∆௦ሺ௧ା∆௧ଶ ሻ
																										(3.12) 

 A Coulomb friction law is applied to obtain the maximum shear force in order to allow 

particles to slip when a threshold shear force is reached. The maximum shear force is calculated as:   

௦ሺ௠௔௫ሻܨ ൌ ܿ ൅ ௡ܨ tan∅ఓ 																																																									(3.13) 
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where ܿ is cohesion. ∅ఓis coefficient of interparticle friction. When the absolute value of shear force 

 ௦ሺ௠௔௫ሻ. If theܨ ௦ሺ௧ାଵሻ is ordered to equal to the limit valueܨ ௦ሺ௠௔௫ሻ, theܨ ௦ሺ௧ାଵሻ is greater thanܨ

absolute value of shear force ܨ௦ሺ௧ାଵሻ is smaller than ܨ௦ሺ௠௔௫ሻ, no slippage happens.  

 

3. 3 Computer program OVAL 
 

Kuhn (2006) created a DEM program code called OVAL to simulate the macro behaviors and 

explore the micro characteristics of two- and three-dimensional granular materials. OVAL code 

has been written using fortran base language and distributed under general public license 

(GNU). This study used OVAL for three-dimensional simulation. Thus, the OVAL three-

dimensional is described. In OVAL three-dimension, particles in shapes of spheres, ellipsoidal, 

bumpy can be used as granular materials. The simulation scheme can be chosen between stress 

and strain controlled. Stress controlled method is run by imposed stress rates whereas and strain 

controlled method is by imposed strain rates (see Fig. 3.1).  Using three-dimensional simulation, 

three directions of imposed stress and strain rates are needed (one vertical and two horizontal). 

To compile fortran in this study, G77 was used. Some brief details of OVAL are described in 

the next section (Kuhn 2006).     

 

3.3.1 Linear contact models 

 

OVAL provides two contact models using in DEM. One is linear spring contact model and 

second is Hertz-Mindlin contact model. This study used linear spring contact model as shown 

in graphic diagram in Fig.3.3. The normal and tangential contact stiffness ݇௡  and  ݇௧  are set 

constantly in linear spring contact model. In Fig.3.3, a shear slider is added in shear direction to 

allow slippage of particles. In OVAL, ݇௡ and ݇௧ are fixed value as input parameters in the run file.  

In this study, the ratio of ݇௡/݇௧ ൌ1 is used because there are more similar results of deviatoric stress 

– strain behavior even using  small value of ݇௡/݇௧ (Chantawarangul 1993).  
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Fig. 3.3 DEM Linear spring contact model 

 

3.3.2 Periodic Space Boundary 

 

This study uses the periodic space boundary type provided in OVAL.  In order to remove the 

effect of boundary on the specimen, the periodic boundary was introduced. Fig. 3.4 shows the 

corresponding periodic boundary of two- and three-dimensional space. Considering Fig.3.4 of 

two dimensional periodicity, a part of discs group abcd, located outside the left limit of the 

rectangular space, and reappearing at a corresponding point of the right limit. The part of spheres 

group abcd in three-dimension can be explained in a periodic box of three-dimension in Fig. 

3.4. The periodic cell is surrounded by identical cells in two dimensions while the periodic box 

is surrounded by identical boxes in three-dimension. Particles, missed one side, reappear in the 

other side. Therefore, the specimen is borderless. Moreover, using the periodic boundary in 

DEM allows a small number of particles to be representative of the simulated sample. 
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Two Dimensions 

 
Three Dimensions 

 

Fig. 3.4 Periodic Space Boundary (after Chantawarangul 1993) 

 

3.3.3 Simulation Stability  

 

In this study, the DEM simulation was stopped when the unbalanced force index Iuf was 1% 

(Kuhn 2006; Ng 2006). The unbalance force, Iuf, is described as follows: 
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where Np and Nc represent the number of particles and contacts respectively. A small unbalanced 

force index indicates that the simulation was assumed to be close to a quasi-static condition 

(Kuhn 2006; Ng 2006). Moreover, in order to remain quasi-static and stable, the sample was 

sheared using a small stress rate to achieve a small strain rate and a small unbalanced force 

index (Suzuki and Kuhn 2013). 

In order to maintain the small unbalanced force during simulation, the time step ∆ݐ plays an 

important role in the accurate numerical results. The critical time step ∆ݐ௖ is the limit of the 

selected time step ∆ݐ∆ .ݐ௖ as shown below: 

 

௖ݐ∆ ൌ 2 ൈ ඨ
݉௠௜௡

݇௠௔௫
																																																													(3.15) 

 

where ݉௠௜௡ is the minimum mass of particles in a granular assembly. ݇௠௔௫ is the maximum 

contact stiffness. The method to select time step ∆ݐ can be used a fraction constant ߣ as follows:  

 

ߣ ൌ
ݐ∆
௖ݐ∆

																																																																										(3.16) 

 

Different researches have been studied the value of ߣ. For example, Ng (2006) reported that  ߣ 

should be smaller than 0.2 in order to keep the small unbalance force. O’Sullivan and Bray 

(2004) recommended that ߣ is 0.085 in the three-dimensional simulation. Normally, a small 

time step is appropriate for the stability of numerical simulations. However, it takes much time. 

The other parameter such as damping coefficient is also a significant factor affecting the 

unbalance force.  
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3.3.4 Damping scheme 

 

OVAL provides two types of damping; mass damping and contact damping. This study used 

the mass damping which can be categorized into translational mass damping ܥ௧	 and rotational 

mass damping ܥ௥. The mass damping can be shown in Eq. 3.1 and 3.2. 

݉஺ݔሷ௜
஺ ൌ ௜ܨ∑

஺ െ ሶ௜ݔ௧ܥ
஺					                                    (3.17) 

ሷߠܫ ஺ ൌ ஺ܯ∑ െ ሶߠ௥ܥ ஺								                             (3.18) 

 

To identify translational mass damping ܥ௧	 and rotational mass damping ܥ௥, the coefficient of 

viscosity for translational and rotational body damping, ܥ௧	ᇱ and ܥ௥	ᇱ   are used by apply equations as 

follow:  

	௧ܥ
ᇱ ൌ

௧ܥ
	௧ܥ
௖௥௜௧ 																																																																										(3.19) 

ᇱ	௥ܥ ൌ
௥ܥ
௖௥௜௧	௥ܥ

																																																																										ሺ3.20ሻ 

where             ܥ௧	
௖௥௜௧ ൌ 2ඥ݉݇௡   and    ܥ௥	௖௥௜௧ ൌ   ඥ݉݇௡  (Tu and Andrade 2008)              (3.21)ݎ2

 

3. 4 Method to input stress rates for changing stress direction 
 

In order to simulate the granular materials to fulfill the objectives of this study, the method to 

input stress rates and strain rates is described here. As shown in Fig. 3.1, imposed stress rate is 

used for stress controlled while imposed strain rate is used for strain controlled method. One 

objective of this study is to study the macro behaviors and micro responses of granular materials 

under continuously varying b value and constant mean stress in generalized stress systems. The 
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stress controlled method is necessary in this study. The method to stress parameters in OVAL 

is explained as follow: 

 

Fig. 3.5 Method to input stress rates for changing stress direction. 

 

Fig. 3.5 shows the method to input stress rates for changing stress direction. The figure shows 

the applied stress rates in x, y and z directions. In Fig.3.5, the sample at point A has stresses 

,௭ߪ ,௬ߪ	  ௫ = 100, 100, 100 kPa and b = 0 (using Eq.2.1). Next, the applied stress rates in x andߪ

y directions are extension 10 kPa at each direction and in z direction are compression 20 kPa. 

Thus, stresses at point B are ߪ௭, ,௬ߪ	  ௫ = 120, 90, 90 kPa and b = 0.0. Therefore, b value isߪ

constant for stress path AB. Further from point B, the applied stress rates are changed to be 

extension 20 kPa in x direction and compression 10 kPa in y and z direction. The stress path 

moves from point B to C where ߪ௭, ,௬ߪ	  ,௫ = 130, 100, 70 kPa and b = 0.5. In the stress path BCߪ

b value changes from 0.0 to 0.5. This indicates that b value continuously change. This method 

is used in chapter 4 for creating continuously varying b value stress paths. 



28 
 

Chapter 4  Macro-Micro Behavior under Continuously 

Varying b Value 
 

 

4.1 Introduction 
 

The intermediate principal stress 2 can significantly affect the stress-strain behavior of granular 

materials. A non-dimensional parameter b [= (σ2-σ3)/(σ1-σ3)] was introduced by Habib (1953) 

as a stress ratio to describe the influence of 2. Several experiments have been conducted to 

study the influence of 2 on the behavior of sand under different stress paths, with a constant b 

value (e.g., (Kumruzzaman and Yin 2012; Lade 2006; Lade and Duncan 1973; Matsuoka and 

Sun 1995; Rodriguez and Lade 2013; Sun et al. 2008; Suzuki and Yanagisawa 2006; Zhang et 

al. 2014). Most of these experiments examined the relationship between the b value and the 

angle of shearing resistance ϕ [= sin-1((σ1-σ3)/(σ1+σ3))] at peak strength. For instance, Ko and 

Scott (1967) and Yamada and Ishihara (1979)reported that ϕ increases from b = 0 to a certain 

value (nearly b = 0.5) and then decreases slowly when approaching unity. Similar result was 

reported recently by Kumruzzaman and Yin (2012)as well as Rodriguez and Lade (2013). 

However, Green and Bishop (1969)and Lade and Duncan (1973)reported different results. 

According to their studies, after certain values of b (nearly b = 0.2), ϕ remains almost constant or 

decreases or even increases with increasing b, before it decreases when approaching unity. 

Matsuoka and Nakai (1978)reported different findings than others; according to their study, after 

certain values of b (nearly b = 0.3), ϕ decreases with the increasing b value until b = 1. Further, 

Lade (2006)concluded that most experimental results on sand show that ϕ increases from b = 0, 

depending on a particular type of sand. Different relationships between ϕ and b indicate that type 

of sand, sample preparation and loading conditions may influence such relations. In order to 

explore the mechanical behavior rigorously and objectively, computer simulations can be used 

effectively, which is the motivation of the present study. Numerical simulations used in the 



29 
 

present study were based on the DEM approach – a well-recognized method for simulation of 

granular materials. 

An experimental study can be quite challenging and expensive for such cases. DEM has been 

widely used for simulating granular materials and for investigating mechanical behavior of 

granular materials (Barreto and O’Sullivan 2012; Chantawarangul 1993; Kuhn 1999; Salot et 

al. 2009; Sazzad et al. 2012; Thornton 2000). Behavior of sand at the micro level in response to 

an applied load, including changing inter-particle friction angles and different b values, has been 

studied before. For example, Thornton (2000) using disc particles examined the effect of 

intermediate principle stress under constant mean stress condition, using Lade and Duncan’s 

(1975) failure model. Ng (2004a) using oval particles reported the effect of intermediated 

principal stress and stress-strain behavior under constant b tests using the DEM and noted that the 

angle of shearing resistance ϕ from the DEM results supports the models of Lade (1977) and 

Ogawa et al. (1974) better than the models of Stake (1975) and Matsuoka and Nakai (1978). 

Further, Ng (2005) studied the effects of different densities under different stress paths of constant 

b test and concluded that the density of samples has no noticeable influence on the relationship 

between ϕ and b. In another study, Sazzad et al. (2011) used spherical particles of DEM to 

simulate the macro mechanical responses and to explore the micro characteristics of granular 

materials under constant b tests. The relationship between ϕ and b reported by Sazzad et al. (2011) 

was similar to that of the experiment of Ko and Scott (1968). According to Sazzad et al. (2011), 

the evolution of the principal deviatoric strains, directions of stress increment vector and strain 

increment vector as well as dilatency from the DEM results exhibit good consistency with the 

experimental observations, at least qualitatively. Comparing DEM simulations using spherical 

particles and experimental data, Barreto and O’Sullivan (2012) demonstrated that the b value can 

significantly influence the coefficient of inter-particle friction .  

The aforementioned literature shows that DEM simulations have generally been conducted 

with a constant b value. In reality, however, the stress path changes its direction continuously in 

the stress space, which causes a change in the b value. Experimentally, the relationship between 

a strain increment and the stress increment direction, under more generalized stress paths, has 
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been performed (Matsuoka and Sun 1995; Nakai et al., 2003). However, to the authors’ 

knowledge, DEM simulations of granular materials under a continuously varying b value have 

not been reported yet.  

There were two main objectives of this research. The first objective was to develop a DEM 

model (specimen with discrete particles) and simulate the behavior of the specimen under truly 

triaxial generalized stress conditions, defined by continuously varying b values. The second 

objective was to explain the experimentally observed macro behavior using the micro response 

from the DEM simulations, and to examine the relationship between macro and micro 

behaviors. Both constant b tests and continuously varying b tests were simulated under a 

constant mean stress using the stress-controlled method. The principal stresses were set by 

changing the stress rates to increase or decrease stresses in the DEM. The results were analyzed 

in the following section, and the macro and micro behaviors were correlated. 

 

4.2 Sample preparation and simulation program 
 

A cubical sample was modeled three-dimensionally using 8,000 spheres of 16 different 

diameters (3 - 4.5 mm.), as presented by Sazzad et al. (2011). The periodic boundary was used 

as the boundary condition in the DEM simulation. Fig. 4.1(a) shows the initial model of the 

cubical sample with a length of 10.5 cm. After the spheres were placed in position, an isotropic 

compression force was applied. In order to create a dense sample, the inter-particle friction 

coefficient µ was set to zero in the isotropic compression state. A stress rate of 106 Pa/sec with 

a time increment of 10-6 sec was used until the isotropic compression reached 100 kPa. Fig. 

4.1(b) shows the final model of the sample before shearing with a length of 7.1 cm and a void 

ratio of 0.57.  
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Fig. 4.1 Sample preparation and isotropic compression: (a) Before isotropic compression; (b) 

After isotropic compression 

 

After isotropic compression, the sample was sheared under a truly triaxial condition for both 

constant b tests and continuously varying b tests using the stress-controlled method under a 

constant mean stress p = 100 kPa. A maximum stress rate of 2x107 Pa/sec with a time increment of 

10-6 sec was used for shearing. The DEM input parameters are summarized in Table 4.1. Two series 

of stress paths were used in the simulation. Figs. 4.2(a) and 4.2(b) show a projection of those 

stress paths on the π-plane, for different angles and b values. Fig. 2(a) shows the first set, called 

constant b tests, consisting of 5 selected stress paths, namely A0 ̊, A16 ̊, A30 ̊, A44 ̊, and A60 ̊ 

where b = 0, 0.3, 0.5, 0.7 and 1, respectively. The numbers after letter A indicate the angle between 

the stress paths and the direction of the major principal stress σ1. Fig. 4.2(b) shows the second set, 

called continuously varying b tests, consisting of 6 selected stress paths of AB and AC series. 

The set AB is called AB30 ̊, AB60 ̊, AB90 ̊ and the set AC is called AC30 ̊, AC60 ̊, and AC90 ̊. 

The numbers after AB and AC indicate the angle of deviation from the stress paths AB 

(anticlockwise) and AC (clockwise). These 11 stress paths start from point A where the major, 

intermediate, and minor stresses were 100 kPa and the principal deviatoric stresses were zero. 
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Specimens along all 11 stress paths were then sheared using the stress-controlled method. The 

constant b tests (Fig. 4.2(a)) were performed for loading state. The other 6 continuously varying 

b tests (Fig. 4.2(b)) were tested from point A to B with stresses (σ1, σ2, σ3 = 148, 76, 76 kPa, 

respectively) and point A to C with stresses (σ1, σ2, σ3 = 124, 124, 52 kPa, respectively), then 

following the different directions, as shown.  

 

  
 
 
 
 
   
 
 
 
 
 
 
 

                                         (a)                                               (b) 
 

Fig. 4.2 Stress paths on the normalized π-plane: (a) Constant b tests; (b) Continuously varying b 

tests.  

 
Figs. 4.3(a) and 4.3(b) shows the relationship between the b value and the equivalent 

deviatoric strain εd (%) of stress paths in Figs. 4.2(a) and 4.2(b), respectively. The equivalent 

deviatoric strain is defined as follows: 

 

            2
31

2
32

2
213

2  d                       (4.1) 
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Fig. 4.3(a) indicates that the b value remains constant throughout the simulation for constant 

b tests. For continuously varying b tests, Fig. 4.3(b) shows that the b value is constant (b =  0 ) 

from point A to B, then, increases up to 0.22, 0.43 and 0.71 for AB30 ̊, AB60 ̊, and AB90 ̊, 

respectively, while the b value is constant (b = 1) from points A to C, but, decreases to 0.84, 

0.63, and 0.32 for AC30 ̊, AC60 ̊, and AC90 ̊, respectively. The Figs show the b value ranging 

between 0 and 1 (0 ≤ b ≤ 1). In Fig. 4.4, it is seen that the mean stress p [= (σ1 + σ2 + σ3)/3] was 

kept constant throughout the simulation for all tests, where q is the deviatoric stress defined as 

follows: 

 

                                                  2
31

2
32

2
212

1  q           (4.2) 

 

In this study, the DEM simulation was stopped when the unbalanced force index Iuf (see Eq. 

3.14) was 1% (Kuhn 2006; Ng 2006). A small unbalanced force index indicates that the 

simulation was assumed to be close to a quasi-static condition (Kuhn 2006; Ng 2006). 

Moreover, in order to remain quasi-static and stable, the sample was sheared using a small stress 

rate to achieve a small strain rate and a small unbalanced force index (Suzuki and Kuhn 2013). 

In this study, a positive value of stress represents compression, while a negative value of stress 

represents extension. 
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Table 4.1 Simulation Parameters for shearing 

Parameters Type or value 

Mass density  2,650 kg⁄m3 

Stiffness  1 × 106 N⁄m 

Damping  0.05 

Increment of time step Δt 1 × 10-6 sec 

Initial void ratio e0 0.57

Inter-particle friction coefficient   

 Isotropic compression 0.0 

 Shearing 0.5 

Strain rate εሶ  and Stress rate σሶ      

 Isotropic compression  

- First stage ߝሶଵ, ߝሶଶ, ߝሶଷ 100%/sec 

- Second stage ߪሶଵ, ߪሶଶ, ߪሶଷ  1 × 106 Pa/sec 

 Shearing  

- Maximum stress rate 2 × 107 Pa/sec 

- Minimum stress rate -2 × 107 Pa/sec 

Maximum stress rate Δσ 2 × 107 Pa/sec 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   
 

(a) (b) 
 

Fig. 4.3 Relationship between b value and equivalent deviatoric strain: (a) Constant b tests; (b) 

Continuously varying b tests. 
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Fig. 4.4 q-p stress paths of all tests. 

4.3 Results 
 

4.3.1 Stress-strain relationship  

 

Figs. 4.5(a) and 4.5(b) show the relationship between the stress ratio q/p and the equivalent 

deviatoric strain εd (%) for constant b tests and continuously varying b tests, respectively. These 

Figs indicate that the stress-strain curves are different depending on the type of test (constant b 

or continuously varying b). The results of constant b tests were previously reported by Suzuki 

and Yanagisawa (2006), based on laboratory tests on sands having different levels of inherent 

transverse isotropy, and by Thornton (2000) and Sazzad et al. (2011) using DEM simulations 

on a dense sample under monotonic loading. For continuously varying b tests, the finding was 

confirmed by the laboratory observations by Matsuoka and Sun (1995) using cemented sand. It 

is worth noting that the b value plays an important role in the stress ratio, linking to change in 

the macro behavior of granular materials. The relationship between the angle of shearing 



36 
 

resistance, ϕ, and the b value of the final points on the stress-strain curves in Figs. 4.5(a) and 

4.5(b) is shown in Fig. 4.6. The Fig. shows that the angle of shearing resistance, ϕ, increases up 

to a certain value of b and then decreases when approaching to unity for both constant b and 

continuously varying b tests. It is evident that the b value has influence to the angle of shearing 

resistance. The relationship between ϕ and b in Fig. 4.6 is very close to the experimental results 

reported Kumruzzaman and Yin (2012) as well as Rodriguez and Lade (2013) and the DEM 

results reported by Sazzad et al. (2011) for constant b value tests.  

In this section, the DEM simulation results from this study were validated with the results 

from the literature involving either experimental studies or simulation studies. Table 4.2 and 

Table 4.3 are summary of specific information from those literature, including material types, 

type of test, sample preparation method, and degree of saturation. It can be seen from Table 4.2 

and Table 4.3 that there are differences in types of materials as well as type of tests between 

those in the literature and the simulation conducted in this study. These differences were not 

taken into account with respect to the degree of accuracy because only qualitatively 

comparisons could be made. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   
 

(a) (b) 
Fig. 4.5 Stress-strain relationship: (a) Constant b tests; (b) Continuously varying b tests. 
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Fig. 4.6 Relationship between the angle of shearing resistance ϕ and the b value of the final 

points of stress-strain curves in Fig. 4.4. 

 

4.3.2 Dilatancy behavior 

 

Figs. 4.7(a) and 4.7(b) represent the nonlinear evolution of volumetric strain εv (%) and the 

major principle strain ε1 (%) for constant b and continuously varying b tests, respectively. The 

volumetric strain can be defined as εv =dv/v where dv is the change in volume and v is the initial 

volume at the beginning before shearing. Both tests show that the sample dilated while shearing, 

as expected. This dilation was typical, as observed in laboratory experiments on dense sand. 

Figs. 4.7(a) and 4.7(b) show that dilatancy differs depending on the type of test (i.e., constant b 

or continuously varying b). Similar results have been reported using the DEM simulations 

involving monotonic loading, under constant mean stress and constant b value by Thornton 

(2000) and Sazzad et al. (2011) using spheres particles under DEM simulation (see Table 4.3).  

It can be noted that continuously varying b value influences the volumetric strain. Specifically, 

the relationship between the dilatency index DI and the equivalent deviatoric strain εd (%) under 

constant b and continuously varying b tests is captured in Fig. 4.8. The dilatency index is defined 
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as DI = -dεv / dεd , where dεv is the change in volumetric strain and dεd is the increment of equivalent 

deviatoric strain. From Fig. 4.8, it is seen that the evolution of DI has relatively small influence 

on the b values. These results point to a unique relationship between DI and εd regardless of the 

difference in stress paths. 

 

Table 4.2 Summary of the specific information of experimental literature for validating the 

results of DEM simulation in this study 

 

Literature Materials Type of 
Test 

Sample preparing 
method 

Approximate 
degree of 
saturation 

 
Matsuoka and 
Sun (1995) 

C 
emented sand C-1 
(Toyoura:Cement:

Water=15:3:1) 

 
Drained 

True 
Triaxial 

 

 
Soil mixer 

 
0% 

Suzuki and 
Yanagizawa 
(2006) 

Toyoura sand 
ହ଴ܦ) ൌ 0.17	݉݉ሻ 

Drained 
True 

Triaxial 
 

Multiple-sieve 
pluviation 

0 % 

Sun et al. 
(2008) 

Toyoura sand 
ହ଴ܦ) ൌ 0.18	݉݉ሻ 

Drained 
True 

Triaxial 
 

Compacted in six 
layer 

0 % 

Kumruzzaman 
and Yin (2012) 

Granite fill (sand 
content 62.5 %) 

Drained 
True 

Triaxial 

Compacted to 95 % 
of maximum dry 

density 

Very small 

Rodriguez and 
Lade (2013) 

Fine Nevada sand 
ହ଴ܦ) ൌ 0.23	݉݉ሻ 

Drained 
True 

Triaxial 

Pluviation, 
saturation and 

freezing 
 

100% 
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Table 4.3 Summary of the specific information of experimental literature for validating the 

results of DEM simulation in this study 

 

Literature Materials Type of 
Test 

Sample after 
isotropic 

compression  

Approximate 
degree of 
saturation 

 
Sazzad et al. 
(2011) and this 
study 
 

 
Sphere 

(diameter 3-4.5 
mm) 

 
True 

Triaxial 
Simulation 

 
Dense   

 
0 % 

Ng (2004a) and 
Ng (2004b) 

Ellipsoids True 
Triaxial 

Simulation 
 

Dense 0 % 

Antony (2004) Oval and 
circular 

(diameter 0.45-
1.65 unit) 

 

Bi-axial 
Simulation 

Dense 0 % 

Ng (2000) Spheres 
(diameter 0.135-

0.40 mm) 

True 
Triaxial 

Simulation 
 

Dense 0 % 
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(a) (b) 
 

Fig. 4.7 Relationship between volumetric strain and the major principle strain: (a) Constant b 

tests; (b) Continuously varying b tests.  

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4.8 Relationship between dilatency index and the equivalent deviatoric strain of all tests. 
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4.3.3 Principal Strain and Principal Deviatoric Strain 

 

Figs. 4.9(a) through 4.9(f) show the relationship between ε3 versus ε1, ε2 versus ε1, e3 versus e1, 

and e2 versus e1, based on the DEM results, where e1, e2 and e3 represent major, intermediate, 

and minor principal deviatoric strains, respectively, and ε1, ε2 and ε3 represent major, 

intermediate, and minor principal strains, respectively. The principal deviatoric strains were 

calculated from the principal strains as e1 = ε1-εm, e2 = ε2 - εm, and e3 = ε3 - εm, where εm = 

(ε1+ε2+ε3) /3.  From these Figs, the DEM results exhibit a nonlinear relationship between ε3 and 

ε2, also with ε1, for both constant b and continuously varying b tests. Comparatively, a similar 

relationship between the principal deviatoric strains is almost linear. Similar results (Fig. 4.9(a)) 

have been reported previously by Suzuki and Yanagisawa (2006) based on laboratory tests and 

by Sazzad et al. (2011) based on DEM simulations, both involving constant b value. 

 

4.3.4 Failure Surface, Stress Increment Vector and Strain Increment Vector 

 

The directions of the principal strain increment vectors superimposed on the normalized π-plane 

for constant b and continuously varying b tests are shown in Figs. 4.10(a) and 4.10(c), 

respectively. For a qualitative comparison, the experimental results of truly triaxial tests on 

cemented sand C-1 (see Table 4.2) by Matsuoka and Sun (1995) are shown in Figs. 4.10(b) and 

4.10(d). Overall, the directions of the principal strain increment vectors show a good consistency 

between the DEM results and the experimental results under the similar pattern of stress paths as 

shown in Figs. 4.10(a) and 4.10(b) as well as Figs. 4.10(c) and 4.10(d). Considering point G in 

Fig. 4.10(c), the direction of the principal strain increment vectors along the stress path AB60 ̊ is 

different from that along the stress path AC90 ̊, which can also be seen from the experimental 

results in Fig. 4.10(d). This is an evident that the direction of the principal strain increment vectors 

depends on the stress paths and DEM simulation using granular materials gives the same 

conclusion with the experiment of Matsuoka and Sun (1995). For further study, it is important to 

compare the simulated results with the experimental data quantitatively.  
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Moreover, Fig. 4.11(a) shows the principal strain increment vectors superimposed on the 

failure surface on the normalized π-plane at the final points of stress-strain curves for constant b 

and continuously varying b tests (refer to Fig. 4.5(a)). The Fig. also includes the failure surface 

proposed by Lade and Duncan (1975) for comparison with the DEM results. It is seen that the 

failure surface based on the DEM results is convex and is in good agreement with that of the Lade 

and Duncan (1975). Additionally, Fig. 4.11(b) explains the directions of the principal strain 

increment vectors of the stress paths AC90 ̊ and ACʹ90 ̊. The stress path ACʹ90 ̊ was created to 

compare the direction of the principal strain increment vectors between AC90 ̊ and ACʹ90 ̊, for 

stress ratios (q/p) of 0.7 and 0.5, respectively. Interestingly, the directions of the principal strain 

increment vectors for stress paths AC90 ̊ and ACʹ90 ̊ are different even though the directions of 

the principal stress increment are the same. A  stress ratio than q/p = 0.7 at point C indicates that 

the stress path AC90 ̊ is closer to the failure surface than ACʹ90 ̊ and thus affects the directions of 

the principal strain increment vectors. Therefore, the direction of the principal strain increment 

vectors is not only dependent on the direction of the stress increment vectors but on the 

approximate failure surface. 

Furthermore, the angle θσ is between the principal stress vectors and the maximum principal 

stress axis. The DEM results can be estimated using the general relationship between the 

principal stress increment vector and the principal strain increment vector on the normalized π-

plane (or πσ), as shown in Fig. 4.12. The corresponding Eq. can be expressed by Suzuki and 

Yanagisawa (2006) as follows: 

 












b

b

2

31tan  (4.3) 

 

The relative magnitude of the intermediate principal stress increment is given as 
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


                                                         (4.4)            
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In Eq. (4.5), the bdσ value is related to the θdσ as follows: 

 
















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




db
db

d 2

31tan                                             (4.5)   

Similarly, the angle between the principal strain increment vector and the maximum strain 

increment axis can be expressed as  
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31tan                                             (4.6) 

where  

31

32



 dd

dd
db




                                              (4.7) 
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(a) (b) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
   
 

 
(c) (d) 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
   
 

 
(e) (f) 

 

Fig. 4.9 Relationships among the principal strains and principal deviatoric strains of all tests: (a), 

(c) and (e) ε3, e3 versus ε1, e1; (b), (d) and (f) ε2, e2 versus ε1, e1.  



45 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 

 
 

                                                        (a)                                  (b) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 

 

                                                        (c)                                  (d) 
Fig. 4.10 Directions of strain increments superimposed on the normalized π plane: (a) Constant b 

tests; (c) Continuous variable b tests; (b) and (d) true triaxial tests on cemented sand C-I 

(after Matsuoka and Sun 1995). 
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                                            (a)                                     (b) 
 

 

Fig. 4.11 Directions of strain increments superimposed on the failure surface from DEM results 

and Lade and Duncan (1975) criteria: (a) the final point of stress-strain curves in Fig. 4; 

(b) the stress paths AC90 ̊ and ACʹ90 ̊. 
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Fig. 4.12 General relationship of the principal stress increment vector and the principal strain 

increment vector on the normalized π plane (after Suzuki and Yanagizawa, 2006)    

         

The evolution of θdσ and θdε with the equivalent deviatoric strain εd is shown in Figs. 4.13(a) 

and 4.13(b) for constant b tests and in Figs. 4.13(c) through 4.13(f) for continuously varying b 

tests, respectively. It is seen from Figs. 4.13(a) and 4.13(b) that θdσ and θdε r e ma i n  a lmo s t 

constant for the stress paths A0 ̊ and A60 ̊, where b = 0 and 1, respectively. However, θdε 

deviates from θdσ as εd increases. This deviation between θdε and θdσ was confirmed in the 

experimental results reported by Sun et al. (2008) and Suzuki and Yanagisawa (2006), and in 

the DEM results reported Sazzad et al. (2011). In addition, it is evident from Figs. 4.13(c) 

through 4.13(f) that θdε deviates rapidly from θdσ and gradually becomes constant when the εd 

increases under continuously varying b tests from points B and C. The results from Figs. 4.13(a) 

and 4.13(b) correspond to the DEM results in Fig. 4.10(a) and the experimental results in Fig. 

4.10(b) for constant b tests. Also, the results from Figs. 4.13(c) and 4.13(f) correspond to the 

DEM results in Fig. 4.10(c) as well as the experimental results in Fig. 4.10(d) for continuously 

varying b tests.  It is seen that the general relationships between θσ, θdσ, θdε and the bσ, bdσ, bdε 

values, as represented by Eq.s (4.4) through (4.8), respectively, exhibit good consistency with 

the experimental results. Further, the deviation of θdε from θdσ can be defined by the expression 
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α = θdε - θσ. Fig. 4.14 illustrates the relationship between α and the b values for all tests at the 

final points of the stress-strain curves in Figs. 4.5(a) and 4.5(b). Therefore, from these results 

one can conclude that α is dependent on the b values. 

 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
   
 

 

(a) (b) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
   
 

 

(c) (d) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
   
 

 

(e) (f) 
 

Fig. 4.13 Evolution θdσ and θdε with the equivalent deviatoric strain of all tests. 
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Fig. 4.14 Relationship between α and the b value of all tests. 

 

4.3.5 Microscopic Evolution 

 

Fig. 4.15 shows the evolution of the coordination number with the equivalent deviatoric strain 

εd (%) for constant b and continuously varying b tests. The Fig. shows that coordination number 

is not dependent on the stress paths. Fig. 4.16 shows the evolution of the sliding contact fraction 

with the equivalent deviatoric strain for continuously varying b tests. The sliding contact 

fraction shows the deviation under continuously varying b tests. It is noticed that the sliding 

contact fractions of the stress paths AB90 ̊ and AC90 ̊ decrease suddenly after points B and C, 

then, gradually increases. The reason is that when changing the directions of stress paths at point 

B and C, some sliding particles were break because the previous loading directions of stress 

path A to B as well as A to C are removed . Then, they slide again because of the new loading 

directions of stress path after point B and C, respectively. This result is similar to Phusing and 

Suzuki (2015) using DEM under unconventional triaxial cyclic loading tests.   
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Fig. 4.15 Relationship between coordinate number and the equivalent deviatoric strain of all 

tests. 

 

 
 
 
 
 
 
 
 
 
 

 

Fig. 4.16 Relationship between sliding contact fraction and the b value of continuously varying b 

tests. 
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4.3.6 Macro and Micro Relationship 

 

Identifying the relationship between macro behavior and microscopic data under continuously 

varying b value is one of the main objectives of this study. Relationships between the macro 

and micro behavior have been explored previously using several approaches. For instance, 

Antony et al. (2004) (see Table 4.3.) reported the correlation between the macroscopic shear 

stress q/p and a single parameter related to the contact normal vector, pertaining to strong 

contacts between oval and circular particles in DEM simulations under a bi-axial compression 

test. Subsequently, Ng (2004b) showed that the principal stress ratio (σ1/σ3) could be correlated 

with the contact normal force more than the unit contact normal under different stress paths, 

under constant b value. Additionally, Sazzad et al. (2011) concluded the macro and micro 

relationships were not unique when considering all contacts, however, it became unique when 

considering the strong contacts. In the present study, a single parameter of a unit normal vector 

was used, as used by Antony et al. (2004) and Sazzad et al. (2011).  

Figs. 4.17(a) through 4.17(d) represent the macro behavior using q/p and the micro response 

using the deviatoric fabrics of all contacts (ܨଵଵ െ  ଷଷ) (see Eq. 2.4) and of the strong contactsܨ

ଵଵܨ)
௦ െ ଷଷܨ

௦ ) (see Eq. 2.5) under constant b and continuously varying b tests, respectively. The 

macro and micro relationship in all contacts shows no specific trend for all tests in Figs. 4.17(a) 

and 4.17(c). The macro behavior changes along with the micro response. Similar results for 

constant b tests were reported by Antony et al. (2004) and Sazzad et al. (2011). Comparatively, 

good correlation is observed when only the strong contacts are considered in Figs. 4.17(b) and 

4.17(d). The strong contacts seem not be influenced by the stress ratio.  In addition, it is seen 

from Fig. 4.17(c) that the deviatoric fabric tensors for all contacts are rotated toward the 

directions of the stress paths at points B and C. It is evident that new fabric contacts in the 

direction of the maximum compression stress are formed at points B and C. These new contacts 

formed in a new column-like loading path in the direction of the stress increment, and are linked 

to stress-induced anisotropy (Oda et al., 1985).  
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     (a)      (b) 

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
   
 

 
    (c)     (d) 

 

Fig. 4.17 Macro and micro relationship considering all contacts (F11-F33) and strong contacts 

ଵଵܨ)
௦ െ ଷଷܨ

௦ ) of all tests. 
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Chapter 5 Stress-Force-Fabric Evolutions of Granular 

Materials under Continuously Varying b Value 

 
5.1 Introduction 
 

Granular materials such as sand or gravel are a setup of discrete particles which have contact 

forces interacting at the contact points between them when shearing is applied. In particular, 

shearing deformation of the granular assembly causes a change in the magnitude of contact 

forces, in the number of load carrying contacts, distribution of contact forces, and contact 

orientation at the particle level. The micromechanical aspects from microscopic parameters to 

macroscopic behaviors have been researched to describe the particle mechanism with physical 

model experiments (Dantu, 1957; De Joeeslin de Jong and Verruijt, 1969) as well as with the 

numerical simulations using Discrete Element Method (DEM) (Cundall and Strack, 1978; 

Chantawarangul, 1993; Sitharam, 1999; Sitharam, 2002).  

A non-dimensional parameter b = ሺߪଶ െ ଵߪଷሻ/ሺߪ െ  ଵߪ ଷሻ created by Habib (1953) whereߪ

ଶߪ , and ߪଷ  are major, intermediate and minor stresses, respectively. The b value is an 

intermediate stress ratio describing the influence of intermediate stress ߪଶ in the general stress 

system. Several experiments and simulations had been conducted to study the influence of ߪଶ 

on the macro behavior of sand among different stress paths. It was concluded that the macro 

behavior differs depending on the b value. (e.g., Matsuoka and Sun 1995; Suzuki and 

Yanagisawa 2006; Chantawarangul 1993; Sazzad et al. 2011; Phusing et al. 2015). For example, 

Matsuoka and Sun (1995) tested on sands under continuously varying b value stress paths and 

explained that the direction of strain increment vectors was influenced by the stress increment 

direction. Furthermore, Suzuki and Yanagisawa (2006) experimented on sands having different 

levels of inherent transverse isotropy under constant b value stress paths. They explained that 

strain increment direction deviates stress increment direction while increasing equivalent 

deviatoric strain.  



54 
 

The study of micromechanical response under constant b values had been studied using the 

discrete element method (DEM) by Chantawarangul (1993). Chantawarangul (1993) researched 

on the micromechanical responses of granular materials using spheres under monotonic loading 

stress paths with five constant b values (b = 0.0, 0.25, 0.5, 0.75, and 1.0). He reports that the 

deviator stress resistance of the assembly, indicating the macro behavior, can be expressed by 

anisotropy coefficients from micro scale level when ߪଵ ് ଶߪ ്  ଷ and b value is constant. Theߪ

anisotropy coefficients are dependent on the b value. The anisotropic coefficient of contact 

normal forces decreases with the increase of b value which is in contrast to the anisotropic 

coefficient of contact orientation. Furthermore, the anisotropic coefficient of contact normal 

forces shows significant role in defining the shear resistance of granular materials.  

The literature above illustrates that DEM simulations of the micromechanical responses had 

generally been conducted with a constant b value. Nevertheless, actually, the stress path normally 

changes the direction in the stress space, which causes the change in b value. The study of macro 

behaviors and macro-micro relationship of granular materials under continuously varying b 

value stress paths have been studied by Phusing et al. (2015).  They described that the direction 

of strain increment vector depends on the direction of stress increment vector and on the 

approximate failure surface. Additionally, the direction of strain increment vector is influenced 

by b value, under continuously varying b stress path. Regarding the macro-micro relationship, 

Phusing et al. (2015) found that the unique relationship between macro and micro behaviors 

was found only when the strong contacts were under continuously varying b stress paths. 

Even though, the macro-micro relationship was researched, the micromechanical behaviors 

of granular materials under continuously varying b value stress paths had been rarely reported. 

Therefore, the micromechanical behavior and the anisotropic coefficients at micro level of 

granular materials under continuously varying b value stress paths need to be explained more 

deeply for the geotechnical engineering. Hereafter, Constant b Value stress path and 

continuously Varying b value Stress paths are abbreviated to be CbV and VbS.  

There are two objectives in this paper. Firstly, we investigated the development of anisotropic 

coefficients of contact orientation, normal contact forces, tangential contact forces and 

microscopic processes of three-dimensional assemblies under continuously varying b value 
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stress paths (VbS). Second, we investigated the relationships between stress, strain and the 

parameters, obtained by DEM, that characterize microstructure and applied stresses under 

continuously varying b value stress paths (VbS). To fulfill the objectives, 8,000 spheres were 

used for simulations under VbS. An open-source DEM software, called Oval (Kuhn, 2006), was 

used. The simulation was made by a constant mean stress of 100 kPa using stress-controlled 

method. The principal stresses were set by changing the stress rate to increase or decrease stress 

in the simulation. The method to input stress rates is explained in Phusing and Suzuki (2015). 

The micromechanical behaviors and development of microscopic parameters under VbS were 

both analyzed. Moreover, we made a qualitative comparison between the stress-strain 

relationship from DEM, and the one from the stress-force-fabric (Rothenburg 1980) under VbS. 

 

5.2 Sample preparation and simulation program 
 

A sample was modeled using 8,000 spheres of different diameters between 3 - 4.5 mm. The 

initial configuration of the sample is a 10.5ൈ10.5ൈ 10.5 cm3size. After isotropic compression 

of 100 kPa, the sample size was reduced to 7.1ൈ7.1ൈ 7.1 cm3 and had a void ratio of 0.57, 

indicating the medium dense assembly. During isotropic compression, the interparticle friction 

angle is equal to 0.3. The stress-controlled method under a constant mean stress p = 100 kPa was 

used. The constant mean stress condition was set because the different mean stresses under 

different stress paths could probably affect the results. The input parameters are summarized in 

Table 5.1. 

After the isotropic compression, the sample was sheared under five constant b values (CbS) 

(b = 0.0, 0.3, 0.5, 0.7, and 1) and three continuously varying b values stress paths (VbS) named 

AB30°, AB60°, and AB90°. The numbers after AB show the angle of deviation measuring from 

the major principal stress ߪଵ in an anticlockwise direction. Fig. 5.1 shows the projection of those 

eight stress paths on the normalized π-plane. These eight stress paths start from point A where ߪଵ, 

 ଷ  are 100 kPa and the stress ratio q/p are zero. The five CbS were performed for theߪ ଶ, andߪ

monotonic loading. The other three VbS were tested from point A to B where ݌/ݍ ൌ0.42. Each 

follows the different direction, as shown in Fig. 5.1.  
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Fig. 5.1 Simulating stress paths on the normalized π-plane 

Fig. 5.2 shows that the mean stress ݌ was constant during the simulation in all tests, where 

the equivalent deviatoric stress ݍ increases.  

Fig. 5.3 shows the relationship between the intermediate stress ratio b value and the 

equivalent deviatoric strain ߝௗ(%) of stress paths in Fig. 5.1. Fig. 5.3 shows that b value remains 

constant throughout CbS simulation. Speaking of VbS, Fig. 5.3 shows that b value is constant 

(b = 0) from point A to B, then, increases up to 0.33, 0.63 and 1.10 for A B 3 0 °, A B 6 0 °, and 

AB90°. The final b value of AB90° is greater than 1.0 because the ߪଶ at the final point of stress 

path AB90° is higher than ߪଵ and ߪଷ. As a result, this study conducted the varying b values 

from b = 0 to b = 1.1. The method to change each stress rate for these directions is used in 

Phusing and Suzuki (2015). In order to remain quasi-static and stable, the simulation was 

terminated when the unbalanced force index ܫ௨௙ reached 1% (Kuhn 2006; Ng 2006). In this 

study, positive value represents the compression of stress and strain, while a negative value 

represents the tension of stress and strain dilation. 
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Fig. 5.2 q-p stress paths of all tests 

 

 

Fig. 5.3 Relationship between b value and equivalent deviatoric strain ߝௗ(%) of all tests. 
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5.3 Results 
 

5.3.1 Stress-strain-dilation  

 

Figs 5.5(a) and (b) show the relationship between stress, strain, and dilation of CbS and VbS. The 

Figs show that the stress-strain-dilation curves vary depending on stress paths on π-plane. The 

stress path b = 0 in CbS gave the maximum stress ratio	݌/ݍ with the minimum dilation when 

 ௗ increases. However, at last, dilation is maximum under stress path b = 0. In contrast, b = 1ߝ

contrasts. The result is similar to the experiment on sand under different levels of inherent 

transverse isotropy with CbS in Suzuki and Yanagisawa (2006). As for DEM simulations on a 

dense sample under CbS, Thornton (2000), Sazzad et al. (2011) and Phusing et al. (2015) 

concluded similarly. Then, VbS finding is verified by the laboratory observations of Matsuoka 

and Sun (1995) who used cemented sand. It is worth noting that the intermediate stress ߪଶ  

regarding b value is one of main factors relating to the change in macro behavior of granular 

materials in stress-strain-dilation relation. 

 

(a) (b) 

Fig. 5.4  Stress-strain-dilation relationship under: (a) CbS and (b) VbS 
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The relationship between the angle of shearing resistance 	߶  = sin-1ሼሺߪଵଵ െ ଵଵߪଷଷሻ/ሺߪ ൅

 ଷଷሻሽ and b value of the final points on the stress-strain curves in Figs 5.5(a) and 5. (b) is shownߪ

in Fig. 5.6. The Fig. shows that the angle of shearing resistance ߶ is minimum when b = 0 but 

increases up to a certain value of b and then decreases when b approaches b = 1. The dot line in 

Fig. 5.6 indicates the general tendency of ߶  regarding the b value which is similar to the 

experimental results reported by Kumruzzaman and Yin (2012) as well as Rodriguez and Lade 

(2013) and DEM results by Sazzad et al. (2011) and Phusing et al. (2015) for CbS. The ߶ of 

final points of AB30° and AB60° in Fig. 6 come to an end on the dotted line. Additionally, the 

߶ of final points of AB90° where b = 1.1 can be used to approximate the ߶ when b > 1.0. It is 

evident that the angle of shearing resistance ߶ at peak stress ratio does not depend on the 

changing direction of stress paths.  

 

 

 

 

Fig. 5.5  The relationship between ߶ and b value 
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5.3.2 Micromechanical behaviors 

 

Figs 5.7(a) and (b) show the development of coordination number and sliding contact fraction, 

with the equivalent deviatoric strain ߝௗ(%). They are the average micromechanical behaviors. 

Fig. 5.7(a) shows that the coordination number is maximum at the initial state and decreases 

once the increase of the equivalent deviatoric strain occurs. This shows the contacts loss while 

shearing because of the dilation. Seemingly, Fig. 5.7(a) shows that the coordination number is 

not dependent on the difference of stress paths in the dense sample. In Fig. 5.7(b), the sliding 

contact fraction shows a sudden drop under VbS, especially at point B of AB 90 °. At point B, 

some sliding particles stop sliding because of the missing of previous applied stresses in the 

direction of b = 0. Then, they start sliding again due to the new direction of applied stresses 

after point B. This result was reported previously by Phusing et al. (2015) using DEM with 

monotonic loading under VbS and Phusing and Suzuki (2015) under cyclic VbS. 

 

 

Fig. 5.6 The relationship of CbS and VbS between (a) Coordination number and ߝௗ(%); (b) 

Sliding contact fraction and ߝௗ(%). 

 

 

(a) (b) 
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5.3.3 Stress-Force-Fabric Relationship 

 

Figs 5.8(a) and (b) show the macroscopic stress ratio q/p and from stress–force–fabric 

relationship (Eq. 2.13) versus the equivalent deviatoric strain ߝௗ(%) under CbS and VbS. The 

Figs show a similar tendency between the macroscopic stress ratio obtained from the applied 

boundary stress using DEM (see Figs 5.5(a) and (b)). The quantity differences of q/p between 

DEM result in Figs 5.5(a) and (b) probably caused by using the average values of contact 

normals (fabric), normal contacts and tangential contacts in Eq. (2.13) instead of the actual 

values of those contacts.  Possibly, there remains a problem.    

 

 

 

(a) (b) 

 

Fig. 5.7  The relationship between q/p and ߝௗ(%) from Stress-force-fabric relationship (Eq. 

2.13): (a) CbS and (b) VbS. 

 

 

 

 



62 
 

5.3.4 Stress-Force-Fabric Evolutions 

 

The stress-force-fabric evolutions of three dimensions have been reported by Bathurst (1985), 

Chantawarangul (1993), Sitharam (2002) that the distribution diagrams of average contact 

normals (fabric) and average normal contact forces are spherical distributions at the hydrostatic 

stress condition using Eq. (2.14) and (2.18) whereas the average tangential contact forces is 

approximately zero.  Furthermore, while increasing the deviatoric stress, there is an increase in 

contact normal orientation and normal contact forces anisotropy. Chantawarangul (1993) 

showed the distribution diagrams of average contact normals (fabric) and average normal 

contact forces change from spherical to peanut shape distribution for stress path b = 0, and 

change to donut without a hole shape distribution for stress path b = 1. As for the distributions 

of the tangential contact forces, Chantawarangul (1993) reported that it develops in 

approximately 45° from the maximum stress in stress paths b = 0. The distribution shape looks 

like a dumbbell. In addition, the magnitude of tangential contact force is small compared to 

contact normal and normal contact force anisotropy (Chantawarangul 1993; Sitharam 2002). 

This study found the same result as shown in Figs. 5.8(a) and (b) for b = 0 as well as in Figs. 

5.9(a) and (b) for b = 1. In Fig. 5.8(a), the distribution diagrams of average contact normals 

(fabric), average normal contact forces and average tangential contact forces are correspond to 

points a to e of stress path b = 0 in Fig. 5.8(b).  

Regarding the result of VbS, Fig. 5.9(a) shows the distribution diagrams of average contact 

normals (fabric), average normal contacts and average tangential contacts corresponding to 

points A to e of stress path AB90° shown in Figs 5.9(b). It can be seen in the Figs that the 

distribution of average contact normals (fabric) and average normal contacts looks like capsule  

distributions at point B, then, start to become donut (without a hole) when b value varies from 

0 (point B) to 1.1 (point e). Furthermore in Figs 5.9(a) and (b), the distribution of average 

tangential contact force develops approximately 45° from the maximum stress ߪଵ at point B (b 

= 0) and shows a dumbbell in the vertical direction. Then, this distribution gradually changes to 

dumbbell in the horizontal direction at point e (b = 1.1) where the maximum stress is ߪଶ. This can 
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be concluded that changing the direction of the stress path causes not only changing the direction 

of the maximum stress but also the increment directions of those distribution diagrams.  

From Figs 5.10(a) to (c), it shows the distributions of average contact normals, average 

normal contact forces and average tangential contact forces at peak of CbS and VbS stress paths. 

It can be seen in Figs 5.10(a), (b) and (c) that the distribution shapes at peak of average contact 

normals, average normal contact forces and tangential contact forces under VbS stress paths 

show the developments in the same trend to those distributions under CbS. This can be 

concluded that the distributions at the peak stress of average contact normals, average normal 

contact forces and average tangential contact forces do not depend on the stress path.  
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Fig. 5.8 (a) Distribution diagrams of average contact normals, average normal contact forces and average tangential contact 

forces corresponding (b) different stages of stress path b =0. 
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Fig. 5.9 (a) Distribution diagrams of average contact normals, average normal contact forces and average tangential contact 

forces corresponding (b) different stages of stress path AB90°. 
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Fig. 5.10 The distribution diagrams at peak stress ratios of all stress parts: (a) average contact 

normals, (b) average normal contact forces and (c) average tangential contact forces. 
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5.3.4 Increment Vectors of Strain and Anisotropy Coefficients  

 

Figs 5.11(a) - (d) show strain increment vectors and increment vectors of anisotropy coefficients 

of contact normals ܽ௜௝
௥  , normal contact forces ܽ௜௝

௡ , and tangential contact forces ܽ௜௝
௧ , 

superimposed on CbS and VbS stress paths. The Figs show that strain increment vectors and 

the increment vectors of those anisotropy coefficients differ depending on the location of stress 

path. The dependency of strain increment vectors on the stress path was reported by the 

experiment on sand of Matsuoka and Sun (1995) and DEM results of Phusing et al. (2015). 

Considering the increment vectors of those three anisotropy coefficients under VbS in Figs 

5.11(b), (c) and (d), the increment vectors of those three anisotropy coefficients have changed 

their directions at point B. These changes is caused by the change of stress increment directions 

of at point B of stress path AB30°, AB60°, and AB90°. This indicates that changing the direction 

of stress paths changes not only the direction of stress increment vector and strain increment 

vector but also the increment vectors of contact normals (fabric), normal contact forces, and 

tangential contact forces.  

 

5.3.5 Deviatoric Anisotropy Coefficient Evolutions  

 

Figs 5.12(a) - (f) show the plot of induced deviatoric anisotropy coefficients ܽ௥, ܽ௡, and ܽ௧ (see 

Eq. 2.25) versus the equivalent deviatoric strain ߝௗ(%) regarding the b value under CbS and 

VbS. Fig. 5.13 shows the plot of ܽ௥,  ܽ௡, and ܽ௧ versus b value at peak of CbS and VbS stress 

paths from Figs 5.12(a) - (f). In Fig. 5.13, the dotted lines show the variation of those 

coefficients with the levels of b value of five CbS while the points show those of the other three 

VbS. In Figs 5.12(a) and (b), the deviatoric coefficient of contact normal anisotropy ܽ௥ develops 

gradually to the maximum value. Further, the deviatoric coefficients of normal contact force 

anisotropy ܽ௡  and tangential contact force anisotropy ܽ௧  increase monotonically with the 

equivalent deviatoric strain in Figs 5.12(b) - (f) in both CbS and VbS. Additionally, the 

deviatoric normal contact force anisotropy ܽ௡ has a great influence on the stress ratio because 
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it shows the similar tendency with stress-strain relationship regarding b value (see Figs 5.5(a) 

and 5.5(b)). The deviatoric tangential contact force anisotropy ܽ௧ increases rapidly at low levels 

of equivalent deviatoric strain. Its effect is minor at higher levels. These Figs highlights the 

evolutions of induced anisotropy coefficients on the strength of granular assembly. 

Considering the evolution of ܽ௥  regarding the different b value in Fig. 5.12(a), the peak 

deviatoric coefficients of fabric anisotropy ܽ௥ increase together with b value. This indicates that 

b value has an effect to the particle orientations. The small value of ܽ௥  indicates less 

reorientation of particles whereas the large one indicates more. When increasing in deviatoric 

stress under stress path b = 0, the vertical principal stress ߪଵis increased while the other two 

horizontal ߪଶ  and ߪଷ  are decreased. The contact normal vectors and normal contact force 

vectors in ߪଵ  direction increase where those in ߪଶ  and ߪଷ  directions has been lost. This 

corresponds to the peanut shape distribution of contact normals and normal contacts shown in 

Fig. 5.8(a). In Fig. 5.12(b), the stress path b = 0 has higher deviatoric coefficient of normal 

contact force anisotropy ܽ௡ than the other CbS as well as VbS at all levels of ߝௗ. This implies 

that the assembly under stress path b = 0 carries a higher magnitude of deviatoric normal contact 

force ܽ௡	at all levels of ߝௗ. In contrast, the deviatoric contact normals (fabric) anisotropy ܽ௥ of 

stress path b = 0 shows the smaller number. This indicates the less reorientation of the particles 

in the assembly.  
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                                                 (a)                            (b) 

 

                                                     (c)                       (d) 

Fig. 5.11 Directions of increment vectors on the normalized π-planes of; (a) strain increment, (b) 

݀ܽ௜௝
௥ , (c) ݀ܽ௜௝

௡  and (d) ݀ܽ௜௝
௧ .  
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Fig. 5.12 The relationship between ܽ௜௝
௥ , ܽ௜௝

௡ , ܽ௜௝
௧  and ߝௗ(%) under CbS and VbS 
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Fig. 5.13 The relationship between the deviatoric coefficients of anisotropy and b value 

 

Regarding the results of VbS in Fig. 5.12(d) - (e), the directions of increment vectors of ܽ௥,	ܽ௡ 

and ܽ௧ changed at point B, corresponding to the degree of changing direction of stress path 

AB30°, AB60°, AB90°. However in Fig. 5.13, it can be seen that ܽ௥,	ܽ௡ and ܽ௧ of AB30°, and 

AB60° exactly come to an end on the dotted lines of CbS. Also, the points of the ܽ௥,	ܽ௡ and ܽ௧ 

of AB90° can be assumed on the extended dotted line. It is worth noting that the degree of 

changing direction of stress paths has influence on the increment vectors of anisotropy 

coefficients of contact normals, normal contact forces and tangential contact forces and on 

increment vectors of strains in experiments as well. However, the degree of anisotropy 

coefficients of those anisotropy coefficients do not depend on the stress path at peak stress. 
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Chapter 6 Cyclic Behaviors of Granular Materials under 

Generalized Stress Condition 

 
6.1 Introduction 
 

The mechanical behaviors of granular materials under cyclic loading tests have been 

investigated by many experimental tests as well as numerical simulation methods. (Tatsuoka & 

Ishihara 1974; Nakai et al., 1996; Nakai et al., 2001; Nakai et al., 2003). As for the experimental 

results, Tatsuoka and Ishihara (1974) applied cyclic triaxial compression and extension with 

constant stress amplitude on loose and dense sand and found that the hysteresis loop in the first 

cycle is the greatest, but later it becomes smaller indicating that the sand has ranged an elastic 

deformation stage.  Furthermore, Nakai et al. (1996), Nakai (2001) and Nakai et al. (2003) tested 

under cyclic loading on medium dense Toyoura sand with various stress amplitudes as well as 

various stress paths. They concluded that dilative characteristics of sand during cyclic loading 

depend heavily on the initial stress ratio, even though its amplitude and number of cycles are 

the same. 

Using DEM, many cyclic loading tests of granular materials have been performed to 

investigate mechanical behaviors such as the macro behavior and the micromechanical response 

(Hu et al., 2010; Sitharam 2003; Sitharam et al., 2002; Thornton & Antony 1998). For example, 

Hu et al. (2010) reported that the amplitude of the cyclic loading can influence the strain 

accumulation as well as the evolution of an anisotropic fabric in the soil. Furthermore, Sitharam 

(2003) reported that during cyclic loading compression and extension of a shear stress, the 

nearly total loss of resistance to shear, with remaining small number of contact forces (e.g. 

coordination number), led to a large decrease of  the volume of granular materials. In addition, 

Thornton and Antony (1998) reported on the compression and extension simulations on a soft 

particle system and found that the shear strength was mainly due to strong force fabric structure, 

and the weak fabric structure’s influence to shear strength was very small.  
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According to the DEM simulation under cyclic loading, most of the behaviors of granular 

materials have been proposed under limit conditions of stress paths such as a triaxial 

compression and extension cyclic loading. The macro behavior and the micromechanical 

response of granular materials under cyclic loadings in more comprehensive stress conditions 

are not well understood. The present study aims to know how granular materials behave under 

the various cyclic stress paths in the generalized stress condition. This paper have two 

objectives. The first is to ensure the ability of the Discrete Element Method (DEM) to simulate 

the macro behavior of granular materials under various cyclic stress paths in the generalized 

stress condition. The second is to explore the micromechanical responses of those granular 

materials. A DEM software, named Oval (Kuhn, 2006), is used as a numerical simulation for 

this purpose. This study conducts four different cyclic loading stress paths under generalized 

stress simulations with constant mean stress and the stress-controlled method. Experimental 

results are used for qualitative comparison with the results of DEM.  The results are analyzed. 

Finally, the macro-micro relationship is explained. 

 

6.2 Sample preparation and isotropic compression 
 

A cubical sample was formed in three-dimensional space with three directions of principal stresses 

(	σଵ, σଶ, σଷ) as shown in Fig. 6.1. In this study, σଵ and εଵindicate the vertical direction of the 

stress and strain, respectively whereas σଶ, σଷ and εଶ, εଷ indicate those in the horizontal directions. 

In Fig. 6.2(a), the 8,000 spheres of 16 different sizes of diameters 3-4.5 mm. were randomly 

placed within the cubical sample. The Fig. shows that the distance between each sphere is 5 

mm. and the initial cubical sample is a size of 10.5ൈ 10.5ൈ 10.5 cm3. The sample preparation 

in this study followed the sample preparation of Sazzad et al. (2011). The periodic boundary 

was used as the boundary condition in order to eliminate the effects of boundary on the sample 

to use a small number of particles as a representative (O’Sullivan, 2011). In Fig. 6.2(b), the 

isotropic compression was applied. In this study, a positive value of stress and strain indicates 

compression, while a negative value indicates extension.   
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Fig. 6.1  A cubical sample with three principal stresses 

 

 For isotropic compression, a strain- and a stress-controlled are used as first and second 

stages  , respectively (see strain εሶ  and stress rate σሶ  in Table 6.1). The strain-controlled loading 

method was first used for getting particles quickly close to each other and generate enough 

number of contacts to form the fabric structure. Using purely stress-controlled loading, the 

number of contacts was generated very slowly and the simulation was terminated during first 

stage of isotropic compression because of not enough number of contacts.  

Therefore, in first stage, principal strain rates ߝሶଵ, ߝሶଶ and ߝሶଷ of 100%/sec each were applied 

until the principal stress σଵ, σଶ, and σଷ were 13 kPa. Then, the second stage, principal stress rates 

 ሶଷ,  of 106 Pa/sec each were used until the principal stress σଵ, σଶ, and σଷ were 100ߪ  ሶଶ andߪ  ,ሶଵߪ

kPa. The inter-particle friction coefficient µ in isotropic compression was set at 0.2. A time 

increment of 10-6 sec was used in both stages. The DEM input parameters for isotropic 

compression can be seen in Table 6.1. Finally, the sample before shearing had a void ratio e0 = 

0.67, coordination number = 4.88, and the size of 7.2ൈ 7.2ൈ 7.2 cm3 as shown in Fig. 6.2(c).  
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(a) Before isotropic 

compression 

(b) During isotropic 

compression 

(c) After isotropic 

compression 

 

Fig. 6.2 Sample preparation and isotropic compression 

 

6.3 Simulation Program 
 

After isotropic compression, the sample were sheared under four cyclic stress paths on the П 

plane, named Test 1, Test 2, Test 3, and Test 4,  using the stress-controlled method under a 

constant mean stress p = 100 kPa as shown in Figs. 6.3(a)- 6.3(d), respectively. All stress paths 

start from point A where σ1, σ2, σ3 = 100, 100, 100 kPa (after isotropic compression) following 

the directions and maximum stress amplitude is σ1/σ3 = 1.63. The simulation program in this 

study follows a part of an experimental program of Nakai et al. (2003). For Test 1, the sample 

was sheared under the triaxial compression and extension cyclic loading following stage ○1

and○2 , respectively (see Fig. 6.3(a)). In Test 2, the cyclic stress path is also the triaxial 

compression and extension loading, however, the major principal stress was changed from ߪଵ 

to ߪଶ, and later ߪଶto ߪଷ following stage ○1 to ○6 (see Fig. 6.3(b)). For Test 3 (Fig. 6.3(c)), the 

unconventional cyclic stress path in a shape of a triangle following stage ○1 to ○4  in the 
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anticlockwise direction was used. Finally, Test 4 is another unconventional cyclic stress path 

which similar to a shape of Mohr-Coulomb’s criterion following stage ○1 to ○7  in the 

anticlockwise direction (see Fig. 6.3(d)). All tests were repeated for 5 cycles. The 5 cycles was 

choose following the experimental results of Nakai et al. (2003). 

Furthermore in Figs. 6.3(a) - 6.3(d), the direction of stress increments ߠఙሶ  of each test are shown. 

Initially, Suzuki & Yanagizawa (2006) reported that the ߠఙሶ  can be measured from the major 

principal stress ߪଵ in an anticlockwise direction in one-sixth regions of the П plane where 0̊ ≤ ߠఙሶ ≤ 

60̊ (see Fig. 6.4(a)).   

In this study, the ߠఙሶ  in all regions on the П plane needs to be defined. This study found that 

the ߠఙሶ  defined by Eq. (4.6) can be used also in the other regions of the П plane. However, the 

П plane has to be divided into four regions as shown in Fig. 6.4(b). Furthermore in Fig. 6.4(b), 

the ߠఙሶ  can be measured from +Yʹ or –Yʹ axes where 0̊ ≤ ߠఙሶ ≤ 90̊ in the anticlockwise direction 

in region One and Three, and 0̊ ≥ ߠఙሶ  ≥ -90̊ in the clockwise direction in region Two and Four. 

For the simulation program in this study, the directions of stress increment ߠఙሶ  on the П plane 

in Figs. 6.3(a) - 6.3(d) were set using Eq. (4.6) and the diagram in Fig. 6.4(b). Table 6.2 shows the 

input stress rates (ߪሶଵ,	ߪሶଶ, ߪሶଷ) of all stages of all tests of four simulation programs regarding the stress 

paths in Figs. 6.3(a) - 6.3(d). For example, the input stress rate in stage ○1  of Test 1 is set as a 

compression stress rate ߪሶଵ ൌ ൅2 ൈ 10଺  Pa and extension stress rates ߪሶଶ ൌ ሶଷߪ ൌ െ1 ൈ 10଺Pa 

(see Table 6.2). These stress rates contribute ܾఙሶ  = 0 and ߠఙሶ = 0̊  by  Eq. (4.6). Later, using the 

diagram in Fig. 6.4(b), when ߪሶଵ ൐ ఙሶߠ ሶଷ andߪ = ሶଶߪ = 0̊, the stress path is in the direction of +Yʹ axis 

for compression loading. Then, in stage ○2  of Test 1, the ߪሶଵ ൏ ሶଷ generates ܾఙሶߪ = ሶଶߪ  = 0 and ߠఙሶ = 

0̊ which contribute the stress path is in the direction of -Yʹ for extension loading. Another example 

is Test 3 (See Fig. 6.3(c)). The ߠఙሶ = -30̊ in stage ○2 of Test 3 in Table 2 is measured from -Yʹ axis 

where ߪሶଶ ൐ ሶଷߪ ൐ ሶଵߪ  in region Two in Fig. 6.4(b). The other stages of the other tests are also 

distributed by the same method. Fig. 6.5 shows that the simulated mean stress p is constant for 

all tests. 
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Table 6.1 Stress Rates for Shearing 

Test Stage ݀ߪଵ 

(Pa) 

 ଶߪ݀

(Pa) 

 ଷߪ݀

(Pa) 

ܾௗఙ

ൌ
ଶߪ݀ െ ଷߪ݀
ଵߪ݀ െ ଷߪ݀

 

θௗఙ 

(degree) 

1 1 ൅2 ൈ 10଺ െ1 ൈ 10଺ െ1 ൈ 10଺ 0        0 

2 െ2 ൈ 10଺ ൅1 ൈ 10଺ ൅1 ൈ 10଺ 0         0 

2 1 ൅2 ൈ 10଺ െ1 ൈ 10଺ െ1 ൈ 10଺ 0         0 

2 െ2 ൈ 10଺ ൅1 ൈ 10଺ ൅1 ൈ 10଺ 0         0 

3 െ1 ൈ 10଺ ൅2 ൈ 10଺ െ1 ൈ 10଺ ∞ -60 

4 ൅1 ൈ 10଺ െ2 ൈ 10଺ ൅1 ൈ 10଺ ∞ -60 

5 ൅1 ൈ 10଺ ൅1 ൈ 10଺ െ2 ൈ 10଺ 1 60 

6 െ1 ൈ 10଺ െ1 ൈ 10଺ ൅2 ൈ 10଺ 1 60 

3 1 ൅2 ൈ 10଺ െ1 ൈ 10଺ െ1 ൈ 10଺ 0 0 

2 െ2 ൈ 10଺ ൅2 ൈ 10଺ 0 -1 -30 

3             0 െ2 ൈ 10଺ ൅2 ൈ 10଺ 2 90 

4 ൅2 ൈ 10଺ 	 0 െ2 ൈ 10଺ 0.5 30 

4 1 ൅2 ൈ 10଺ െ1 ൈ 10଺ െ1 ൈ 10଺ 0 0 

2 െ1 ൈ 10଺ ൅1.25 ൈ 10଺ െ0.25 ൈ 10଺ -2 -40 

3 െ1.25 ൈ 10଺ ൅1 ൈ 10଺ ൅0.25 ൈ 10଺ -0.5 -20 

4 െ0.25 ൈ 10଺ െ1 ൈ 10଺ ൅1.25 ൈ 10଺ 1.5 80 

5 ൅0.25 ൈ 10଺ െ1.25 ൈ 10଺ ൅1 ൈ 10଺ 3 -80 

6 ൅1.25 ൈ 10଺ െ0.25 ൈ 10଺ െ1 ൈ 10଺ 0.33 20 

7 ൅1 ൈ 10଺ ൅0.25 ൈ 10଺ െ1.25 ൈ 10଺ 0.67 40 
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(a) Test 1 (b) Test 2 

 

 

  

(c) Test 3 (d) Test 4 

 

 

Fig. 6.3 Simulation program 
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(a)  (b)  

 

Fig. 6.4 Direction of stress increment ߠௗఙ of: (a) one-sixth regions on the П plane (after Suzuki & 

Yanagizawa, 2006); (b) all regions on the П plane in this study. 

 

 

 

 

 

 

 

 

 

Fig. 6.5 q-p stress paths of all tests. 
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6.4 Results 
 

6.4.1 Stress-Strain-Dilation 

 

Figs. 6.6(a)-(d), 6.7(a)-(d), and 6.8(a)-(d) show the relationship of the stress ratio q/p versus 

the equivalent deviatoric strain εௗ (%), the normalized deviatoric stress ሺσଵ െ σଷሻ/݌ versus the 

deviatoric strainሺεଵ െ εଷሻ(%), the volumetric strain ε௩ (%) versus the deviatoric strain ሺεଵ െ

εଷሻ (%) and  the volumetric strain ε௩  (%) versus the stress ratio σଵ/σଷ of Test 1 to Test 4, 

respectively.  

In Figs. 6.7(a) and 6.8(a), the simulated stress-strain-dilation of Test 1 show generally 

observed from the experiments of triaxial compression and extension cyclic loading 

qualitatively (Tatsuoka & Ishihara 1974; Nakai et al., 2001; Wang 2005).  

To validate the DEM results, the result of the volumetric strain ߝ௩(%) versus stress ratio σ1/σ3 

on medium dense Toyoura sand (d50=0.2mm, e0=0.661, Gs=2.65, Dr = 73%) under drained 

triaxial compression and extension cyclic loading 5 cycles (similar stress path with Test 1) with 

stress amplitude σ1/σ3 = 3, constant mean stress p=196 kPa, and stress-controlled method by 

Nakai et al. (2001) is shown in Fig. 6.11. The Fig. shows that the volumetric strain ߝ௩	shows a 

small dilation in the 1st loading stress. Then, a continuous compression is shown in the following 

cycles and become almost stable state after a few cycles (Nakai et al. 2001). Comparison 

between Fig. 6.8(a) and Fig. 6.10 indicate that the tendency of the numerical result of stress-

strain-dilation is consistent with the experiment for a medium dense sand.  

Figs. 6.6(a)-(d), 6.7(a)-(d), and 6.8(a)-(d) illustrate that the different cyclic stress paths shows 

the different relationships of the stress-strain-dilation. Furthermore in Figs. 6.7(a)-(d), the 

different cyclic stress paths also affects the width of cyclic loop. The stress path in Test 4 

contributes wider cyclic loop of the stress-strain plot than the other tests (see Fig. 6.7(d)). The 

probable reason is that there is more energy dissipated in granular system under stress path of 

Test 4 than the other tests. Additionally, the cyclic stress path of Test 4 contains the high stress 

ratio continuously in 5 cycles (see Fig. 6.6(d)), which make the particles slide in a high degree 
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continuously, that dissipate the high degree of energy inside the granular system. The number 

of sliding particles in each test is explained later.  

 

 

Fig. 6.6 Stress ratio q/p versus the equivaent deviatoric strain εௗ (%) of all tests. 
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Fig. 6.7 Normalized deviatoric stress ሺσଵ െ σଷሻ/p versus the deviatoric strain ሺεଵ െ εଷሻ (%) 

of all tests.  

It can be seen from Figs. 6.8(a)-(d) that the volumetric strain ε௩ , indicated dilation 

characteristic, is influenced by the different cyclic stress paths, even though the maximum stress 

amplitudes of the stress path given in each test are the same (σ1/σ3 = 1.63). Furthermore in Fig. 

6.8(d), Test 4 shows more effect in the extension side of the deviatoric strain ሺεଵ െ εଷሻ(%). This 

result indicates that the deviatoric strain is strong enough on the compression side to resist the 

cyclic stress, but it accumulates in the extension side. This result is similar to the result of 

Sitharam (2003) using DEM under the cyclic compression and extension loading using stress 

controlled method with 2-dimentional disc assemblage.  

Fig. 6.9 shows all stress paths on one П plane and the approximate failure surface. The Fig. 

shows that most of the parts of cyclic stress paths of Test 1, 2, and 3 is contained in the stress 
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path of Test 4 which close to the approximate failure surface more than the other tests. We can 

also say from Fig. 6.9 that Test 4 has more unconventional cyclic stress path than the other tests 

because of the more change of the stress directions. The degree of the distance from the failure 

surface and the degree of unconventional cyclic loading may probable reason of the deviatoric 

strain in the extension side and the volume expansion. The unconventional cyclic loading 

causing volume expansion of sand was reported by Nakai et al. (1996) using the experimental 

results of sand under eccentric cyclic loadings with various stress amplitudes.   

We can concluded that stress-strain-dilation depends not only on the characteristic of cyclic 

stress paths but also on the stress amplitudes as well as on how close the failure surface of those 

stress paths is. 

 

 

Fig. 6.8 Volumetric strain ε௩ (%) versus the deviatoric strain ሺεଵ െ εଷሻ (%) of all tests. 
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Fig. 6.9 All four cyclic stress paths containing on one П plane. 

 

6.5.2 Direction of Principal Strain Increment Vectors 

 

The directions of the 1st and the 5th cycle of the principal strain increment vectors superimpose 

on the stress path on the normalized П plane of Test 1 to Test 4 are shown from Figs. 6.10(a)- 

(d), respectively. It can clearly be seen that the direction of the principal strain increment vectors 

depends very much on the direction of the stress path. However, it is not influenced by the 

number of cycles. This conclusion was reported before by Nakai et al. (2003) using the 

experimental results of the medium dense Toyoura sand under cyclic loading tests.  

In Fig. 6.11(a), the 1st cycle of the principal strain increment vectors superimpose on the stress 

path of Test 4 is shown with those of the stress path ABC (the maximum σ1/σ3 = 2.28) and with 

those of the failure surface (the maximum σ1/σ3 = 2.68). This failure surface and its strain 
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increment vectors was created by the five stress paths of constant b values (b = 0, 0.3, 0.5, 0.7, 

and 1) where ܾ ൌ ሺߪଶ െ ଵߪଷሻ/ሺߪ െ  ଷሻ  (Habib, 1953) following the simulation method ofߪ

Phusing et al. (2015). For qualitative comparison, the experimental result of the medium 

Toyoura dense sand under cyclic loading tests of Nakai et al. (2003) is shown in Fig. 6.11(b). 

We can see from Figs. 6.11(a) and 6.11(b) that the simulated directions of the principal strain 

increment vectors show better consistency between the experiment under stress path bc (Fig. 

6.11(b)), and the DEM results under stress path BC (Fig. 6.11(a)). It can be noted that the 

direction of the principal strain increment vectors depends on not only the stress path, but also 

on the stress amplitude and the degree of the distance from the failure surface. The dependency 

of the degree of the distance from the failure surface to the directions of the principal strain 

increment vector was reported before by Phusing et al. (2015)using DEM with monotonic 

loading simulations. 

 

6.5.4 Micromechanical Response 

 

One objective of the study is to clarify the micromechanical response of granular materials. 

DEM simulation has been used to investigate the micromechanical response of granular 

materials under cyclic loading tests. For instance, Sitharam (2003) simulated the 

micromechanical behavior of granular materials under stress controlled method and constant 

mean stress on an assembly of loose, medium dense and dense systems using DEM.  The study 

showed that the DEM can simulate the cyclic behavior of sands very adequately. It also showed 

that, medium dense sample is liquefied due to the continuous loss of coordination number and 

reorientation of fabric in the reversal of cyclic loading.  
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Fig. 6.10 Directions of principal strain increment vectors of the 1st and 5th cycle superimposed 

on the stress paths of Test 1 to 4.  

(a)

(b)

(c)

(d)
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Fig. 6.11 Directions of strain increment vectors of: (a) the 1st cycle of Test 4, stress path ABC and 

the failure surface; (b) the experiment of medium dense sand under cyclic loading 

(after Nakai et al. 2003) 

 

Fig. 6.12(a) shows the enlargement of Fig. 6.8(a) which is the result of the triaxial 

compression and extension of cyclic stress path Test 1. Figs. 6.12(a)- (c) include plots of the 

volumetric strain εv (%) versus deviatoric strain (ߝଵ െ  ଷሻ (%) (Fig. 6.12(a)), corresponding withߝ

the coordination number (Fig. 6.12(b)), and sliding contact fraction (%) (Fig. 6.14(c)) of all 5 

cycles, respectively. In Fig. 6.12(a), the annotations "dilate" means the sample dilates 

comparing with the previous loading while "comp." means the sample compresses. For 

example, in Fig. 6.12(a), the sample dilates at point 2 comparing with 1 which is a short period 

consideration. However, the overall the samples undergo overall compression. Figs. 6.12(a) and 

6.12(b) show that the coordination number decreases with the dilation of the volumetric strain, 

(a)

(b) 
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and increases with the compression. The similar result was reported by Sitharam (2003) 

simulating a medium dense sample using DEM.  In Fig. 6.12(c), the sliding contact fraction 

shows increases with the dilation and a sudden drop when changing the direction of the stress 

path from loading to unloading, for example, at point 3 in Figs. 6.12(a)- (c). The reason of the 

sudden drop is that some sliding particles under the loading direction were stop sliding because 

the loading direction is removed. Later, they start to slide again because of the new direction of 

loading.  

Figs. 6.13(a) and 6.13(b) show the relationships between the coordination number and the 

sliding contact fraction at the end of each cycle of all tests. The figures show that the 

coordination number decreases with increasing the number of cycles whereas the sliding contact 

fraction seeming remains constant. Furthermore in the figures, the stress path of Test 4 gives 

the minimum coordination number and the maximum sliding contact fraction with increasing 

the number of cycles. This explains that the stress path of Test 4, containing continuously high 

stress ratios, forces the granular materials to lose their normal contacts and to produce sliding 

contacts more than in the other tests. 

 

6.5.4 Macro-Micro Relationship 

 

The relationship between the macro behavior and micromechanical data under cyclic loadings 

with various stress amplitudes is one of the objectives of this study. The studies on the macro-

micro relationship were performed by several approaches. Thornton and Antony (1998) using 

2-dimentional simulation reported the compression and extension simulations on a soft particle 

system and found that shear strength was mainly due to strong force network and the weak 

network’s contribution to shear strength was very small. Ng (2004) also used 2-dimentional 

simulation and showed that the principal stress ratio σ1/σ3 correlates with the contact normal 

force more than with the unit contact normal force under different stress paths. In this study, the 

correlation between the macro-scale, represented by the stress ratio q/p, and a single parameter, 

related to the contact normal vector, is used to describe the macro-micro relationship (Antony 
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et al. 2004; Sazzad et al. 2011). The contact normal vectors are represented by all contacts in 

major, intermediate, and minor directions (F11, F22, and F33, respectively) and by the strong 

contacts (ܨଵଵ
௦ , ଶଶܨ

௦ ,		and	ܨଷଷ
௦ , respectively).  

 

 

 

 

Fig. 6.12 Results of Test 1: (a) εv (%) versus (ߝଵ െ  ଷሻ (%); (b) coordination number versusߝ

number of cycles; (c) sliding contact fraction (%) versus number of cycles. 

 

(a) 

(b) 

(c) 
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Fig. 6.13 Results of all tests: (a) Coordinate number at the end of each cycle; (b) sliding 

contact fraction at the end of each cycle. 

 

Figs. 6.14(a)- (d) and 6.15(a)- (d) present the macro-micro relationship of 5 cycles between 

the macro behavior, indicated by stress ratio q/p, and the micromechanical response, indicated 

by the deviatoric fabrics ratio of all contacts ܨௗ/ܨ௠   and of strong contacts ܨௗ
௦/ܨ௠௦  , 

respectively. ௗܨ	  and ܨௗ
௦  are the equivalent deviatoric fabrics of all contacts and of strong 

contacts (see Eq. 2.7 and 2.8). ௠௦ܨ ୫  andܨ   is are the mean fabrics of all contacts and of strong 

contacts (see Eq. 2.9 and 2.10). In Figs. 6.14(a)-(d) and 6.15(a)-(d), the coefficient of 

determination or R-squared value is used to show the uniqueness of the macro-micro 

relationship. Figs. 6.14(a)-(d) show that R-squared values of the macro-micro relationship of all 

tests are different when considering all contacts, however, they show almost similar values 

when considering strong contacts in Figs. 6.15(a)-(d). Therefore, the uniqueness of the macro-

micro relationship is shown when considering only strong contacts. Furthermore, this 

uniqueness is independent on the degree of the unconventional cyclic stress paths and on the 

number of cycles. The linking between the macro behavior and the micro responses shows in 

this study may lead to develop micromechanical parameters for constitutive models in the future 

study. 

(a) (b) 
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Fig. 6.14 Macro-micro relationship between stress ratio q/p, and the deviatoric fabrics ratio of 

all contacts ࢓ࡲ/ࢊࡲ  . 

(a) (b)

(c) (d)
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Fig. 6.15 Macro-micro relationship between stress ratio q/p, and the deviatoric fabrics ratio of 

strong contacts ܨௗ
௦/ܨ௠௦ . 

  

(a) (b)

(c) (d)
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Chapter 7 Conclusions and Recommendations 
 

7.1 Introduction 
 

Mechanical behaviors of granular materials were evaluated under generalized stress conditions 

specified by continuously varying b values using the Discrete Element Method (DEM). 

Specifically, the true triaxial simulations under constant b and continuously varying b were 

conducted using the DEM. Some differences in evolution of stress-strain relationships, 

including the relationship between principal normal strains, principal deviatoric strains, and 

evolution of stress and strain increment vectors under more generalized states of stress were 

carried on. Below is some conclusions.   

 

7.2 Conclusions 
 

 
This research focused on the mechanical behavior of granular materials under generalized stress 

system where the major, intermediate and minor principal stresses σ1, σ2 and σ3 change 

continuously. The influence of intermediate stress ratio, specified by the b value [= (σ2-σ3)/(σ1-

σ3)] (Habib 1953), is a key parameter in this research. The granular materials under constant b 

value stress paths have been studied in several researches. This study analyzes the granular 

materials under continuously varying b value stress paths. So, the stress path can change the 

direction at any place on the π-plane. The macro behaviors and micro data have been explored. 

Discrete Element Method (DEM), known as a powerful method for studying granular 

materials, was used in this study. Based on the results in the dissertation, further summaries 

are as followed described. 
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 The direction of stress increment vector θdσ and strain increment vector θdε as well as stress-

dilatancy results  obtained from the DEM simulations qualitatively show good consistencies 

with the experimental data  found in the literature on true triaxial tests under generalized 

stress conditions, defined by continuously varying b values. It was seen that modeling 

features available in DEM simulations are quite powerful in capturing both micro and macro 

behavior of granular materials. 

 The DEM results showed that the shearing resistance angle ϕ is independent of the stress 

paths (i.e., not influenced by b values).  

 The DEM results showed that the direction of strain increment θdε is not only dependent on 

the direction of stress increment θdσ but also on the approximate failure surface.  

 The direction of strain increment vector θdε is influenced by the intermediate stress ratio of b, 

under continuously varying b test. The immediate change in the direction of strain increment 

vector occurs when the stress increment changes direction. 

 The sliding contact fraction changes rapidly when the direction of stress increment changes under 

continuously varying b tests, indicating that the direction of stress path influences the sliding 

contact fraction. 

 The relationships between macro (defined by stress ratio q/p) and micro (defined by 

deviatoric fabric tensor) behavior were consistent for both constant b tests and continuously 

varying b tests. In both cases, consistent relationship between macro and micro behaviors 

was found when considering only in the strong contacts (defined by deviatoric strong fabric 

tensor). 
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Further study in this research was related to the micro data. The mechanical behavior of 

granular materials was evaluated under more generalized stress conditions with five constant 

and three continuously varying b values. The assembly of sphere under 3-dimentional principal 

stresses of various stress paths was conducted under the constant mean stress and the stress-

controlled method. The macro behaviors of granular materials using the stress-strain-dilation 

relationship was described. The micromechanical parameters consists of contact normals 

(fabric), normal contact forces, and tangential contact forces ܽ௜௝
௥ , ܽ௜௝

௡  and  ܽ௜௝
௧  .  T hey were 

evaluated. Their significance to the macro behaviors regarding the varying b value was 

explained as well. Main findings can be summarized for an initial isotropic material using 

sphere particles as follows: 

 

 At peak, both the distributions and the degree of anisotropy of contact normal (fabric), 

normal contact forces, and tangential contact forces do not depend on the stress path.  

 The increment vectors of contact normal (fabric), normal contact forces, and tangential 

contact forces depend on the location of stress paths as well as the degree of changing 

directions of those stress paths under constant and continuously varying b value stress 

paths. 

 Changing the direction of stress paths causes not only changing the direction of maximum 

stress but also changing the incremental vectors of contact normal (fabric), normal contact 

forces, and tangential contact forces. 

 

This research further studied the behavior of granular materials under more generalized 

cyclic loading tests. The more generalized cyclic stress condition in this study is identified 

as the unconventional cyclic loading with various stress amplitudes in 3-dimentional 

directions of principal stresses. Five different characteristics of cyclic shapes have been set. 

Cyclic loading simulations were conducted under constant mean stress and stress-controlled 

method. Here explained the macro behaviors of granular materials using the stress-strain-
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dilation relationship and the directions of principal strain increment vectors and the 

micromechanical response as well as the macro-micro relationship were explained. Main 

findings can be described below.  

 The direction of principal strain increment vectors from DEM results shows good 

consistency with the actual behavior of sand under cyclic loading in more generalized stress 

condition. 

 The direction of the principal strain increment vectors depends on not only the stress path, 

but also on the stress amplitude and the degree of the distance of that stress path from the 

failure surface. However, it is not influenced by the number of cycles. 

 DEM result shows that the more unconventional cyclic stress path with a continuously high 

degree of stress amplitude is applied, the more effect of volumetric strain in the extension 

side and volume expansion.  

 This unique macro-micro relationship does not depend on the more generalized cyclic 

stress paths, and on the number of cycles.  

 

7.3 Recommendations 
 

To increase knowledge in the behavior of granular materials in geotechnical engineering, the 

following are some suggestions for further researches. 

 To explore the fabric distributions and contact force diagrams of granular materials 

under cyclic loading tests in general stress systems. 

 To study the effect of shapes of granular materials (e.g. ellipsoids, bumpy particles) 

under continuously varying b value stress paths and compare their micromechanical 

behaviors. 
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 To study the mechanical behaviors of granular materials having a cross anisotropy under 

continuously varying b value stress paths. 

 To study macro and micro behaviors of granular materials under undrained tests and 

continuously varying b value stress paths. 
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