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1 Introduction

In 1990, Vassiliev defined Vassiliev invariants (finite type invariants) by consid-
ering the whole continuous mapping of the circle to R3 and by calculating a
complementary set of a singularity set. Vassiliev invariants (Finite type invari-
ants) are formulated by giving a sort of filtration,

K = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ · · ·

to vector space K spanned by all the isotopy types of knots. Quotient vector
space of each degree Kd/Kd+1 of this filtration has a finite dimension.

Remark 1.1.“Vassiliev invariants (Finite type invariants)”in Section 2 are
expressed as“Vassiliev invariants”in Section 3, and as finite type invariants”
in Section 4-6.

Generally, for a Vassiliev invariant v of degree d, when a linkK has a crossing
number n, it is known that the value of v(K) is controlled by the order of nd.
In short, the value of v(K)/nd is bounded, and therefore the following set is
bounded:

S(K,D) :=

{(
V2(K)

n2
,
V3(K)

n3

)
∈ R× R

}
.

where V2(K) and V3(K) are the values of the primitive Vassiliev invariants
of degrees 2 and 3 of the knot K respectively. It is important to obtain the
shape of this set. For example, if we obtain the value of Vassiliev invariants
v2(K), v3(K) of a knot K, we can estimate the minimum number of crossings
of the link through the shape of the set.

Finite type invariants have two properties:

1. The finite type invariants, i.e. invariant linear map of links to an abelian
group, become zero mapping when filtration is restricted to Kd+1.

2. Quotient vector space of each degree of filtration Kd/Kd+1 has a finite
dimension.

By generalizing these two characters, we defined quasi finite type invariants, the
characters of which are as follows:

1. They are invariant linear map to an abelian group.

2. They become zero mapping when we freely fix filtration K = K0 ⊃ K1 ⊃
K2 ⊃ · · · in a certain class of knots so that they are not empty set and we
restrict it to Kd+1.

3. Quotient vector space Kd/Kd+1 has a finite dimension.

Concretely speaking, we calculate quasi finite type invariants for 2-bridge
links and torus links, for which quandle shadow cocycle invariants are calcu-
lated by using dihedral quandles. Furthermore, in 2012, Hatakenaka, Nosaka
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showed that quandle shadow cocycle invariants, calculated by using dihedral
quandles for space ML where double branched covering is given to link L, are
equal to scalar multiples of Dijkgraaf-Witten invariants. This caused us to find
quasi finite type invariants are extended to general finite type invariants of 3-
dimensional manifolds. Of course, we also discover how to show that, for each d,
the whole finite type invariant space of degree d has a finite dimension, especially
by using Heegaard splittings and mapping class groups of the 3-manifold.

For general quandles, it is difficult to obtain finite type invariants from quan-
dle (shadow) cocycle invariants, however, in case of trivial quandles, it is pos-
sible. Though it is known that quandle (shadow) cocycle invariants are a part
of quantum invariants (an R-matrix R is obtained.), their relation to finite
type invariants is not clear because a Lie ring is not obtained, which means a
weight system to obtain quantum invariants from finite type invariants has not
yet been found. Though a Lie ring was not able to be obtained this time, we
obtained finite type invariants from quandle (shadow) cocycle invariants with
trivial quandles derived from a matrix R. When we calculate quandle (shadow)
cocycle invariants for trivial quandles, they are calculable only for a link with
two or more components. We clearly showed a part of the relation of quandle
(shadow) cocycle invariants and finite type invariants to links. By using quandle
(shadow) cocycle invariants with trivial quandle, a value of linking number was
obtained [CJKLS]. Therefore, the relation between linking numbers and finite
type invariants is also clear.

In Section 2.1, we state the fundamentals of knots (or links), and define knot
diagrams and Reidemeister moves to deal with the problems of 3-dimensional
knots in a combinational way by using 2-dimensional knot diagrams.

In Section 2.2, we define braid groups and explain that link invariants are
composed of the representation of braid groups derived from an R-matrix.

In Section 2.3, we define Vassiliev invariants (finite type invariants). Then,
we show that quotient vector space Kd/Kd+1 of each degree of filtration has a
finite dimension by using the chord diagrams we define.

In Section 2.4, we introduce quandles and quandle cohomology and define
quandle (shadow) cocycle invariants of knots or links.

In Section 2.5, we define Heegaard splittings and mapping class groups of
3-manifolds in order to get background knowledge to show that, for each d, the
whole finite type invariant space of degree d has a finite dimension.

In Section 2.6, we define Dijkgraaf-Witten invariants, which is necessary to
introduce finite type invariants of 3-manifolds used in Section 4.2.

In Section 2.7, we define lens space considered in Section 4.2.
In Section 3, For torus knots, we obtained the shape of S(K,D), and we

prove that the following inequality holds for torus links, which is the Willerton
conjecture:

|V3(K)| ≤
[n(n2 − 1)

24

]
.

In Section 4, first, in Section 4.1, we define quasi finite type invariants and
obtain quasi finite type invariants from quandle (shadow) cocycle invariants of
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2-bridge links and torus links. Next, in Section 4.2, we define general finite type
invariants of 3-manifolds and obtain new finite type invariants of lens space and
Brieskorn manifolds where double branched covering is given to 2-bridge links
and torus links respectively.

In Section 5, we show that finite type invariants are obtained from cocycle
invariants of trivial quandles in case of 2-cocycle invariants (Section 5.1) and
3-cocycle invariants (Section 5.2) respectively.

In Appendix of Section 6, we show that quandle (shadow) cocycle invariants
are a part of quantum invariants, which is a well-known fact.

2 Preliminaries

A braid is introduced by Artin in the 1920s. By using braids, we can deal with
the problems of links. Besides, based on the indication of braids, invariants of
the link are formed. It is a great advantage to use the structure of a braid group
derived from a set of braids. In order to form link invariants, the representation
of braid groups is constituted by using a matrix R which is introduced by Yang
and Baxter around 1970. Since Jones defined the Jones polynomial in 1984,
a great number of link invariants are formed by using a matrix R. Further-
more, in 1990, Vassiliev introduced Vassiliev invariants (finite type invariants)
by means of calculating approximately the cohomology group of the space em-
bedded smoothly in R3 with a circle S1. A few years later, Birman and Lin
defined these invariants by using a diagram of links and pointed out that these
invariants include the information of quantum invariants.

A quandle is a set with a binary operation satisfying an axiom analogical to
the operation taking the conjugation in a group [Joy]. For example, when we
define a quandle operation for a residue ring Z/mZ(m is an odd number) as
x∗y = 2y−x (mod m) for any x, y ∈ Z/mZ, (Z/mZ, ∗) becomes quandle. This
quandle is called a dihedral quandle Rm. Cohomology of a quandle was defined
as an analogy of group cohomology by Carter, Jelsovsky, Kamada, Langford
and Saito [CJKLS]. We regard HQ

n (X;A) as a cohomogy group of degree n of a
quandle X with a coefficient group A. Especially when p is a prime number, by
Rp, quandle shadow cocycle invariants are calculated in a certain class of links
[I].

2.1 Knots and their diagrams

A reference of this subsection is [chap.I[Oh2]]. An image embedded smoothly
to three-dimensional Euclid space R3 with circle S1 is called a knot. An image
embedded smoothly to R3 with l S1’s is called a link of l components. To give
an example of the family of infinite knots, with respect to natural numbers p, q
which are prime to each other, when a straight line with the inclination p/q in
torus R2/Z2 is given and this torus is embedded in R3, a knot formed by the
image of the line is called a T (p, q) torus knot. A diagram of the figure 1 is a
2-bridge link and represented by C(a1, a2, · · · , ak). This diagram has a different
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Figure 1: 2-bridge links

way to connect the rightmost string (The figure on the left shows when k is
an odd number and that on the right when k is an even number.). When we
extend l/n into a connected fraction, it is changed into a S(l, n) 2-bridge link
by taking l, n so that

l

n
=

1

a1 +
1

a2 + · · ·
1

an−1 +
1

an

.

With respect to two knots (or two links) K,K ′, when the family of homeo-
morphism ht : R3 → R3 (t ∈ [0, 1]) such that h0 is identity map, h1(K) = K ′,K
and K ′ are called isotopic, and its transformation process ht is called isotopy.

In order to prove an isotopic knot to be isotopic, we have only to show the
process of transformation concretely, while it is not easy to prove a non-isotopic
knot to be non-isotopic and this proof needs invariants. Here, when

Map I : {a knot (a link)} → (a certain set)

satisfies I(K) = I(K ′) for isotopic knots(links) K,K ′, I is called an isotopy
invariant of the knot (the link). Mostly“ a certain set”where invariants have
a value is a well-known set such as a polynomial ring.

A knot (a link) with the top and the bottom at the point where the lines
intersect on the plane R2 given by the projection R3 → R2 is called a diagram.
In a diagram, the intersection of lines with the top and the bottom is called a
crossing. Note that, while a knot is a three-dimensional figure, a diagram of a
knot is a two-dimensional figure. When two diagrams move by using an isotopy
R2, it is called isotopic.

Theorem 2.1 ([BZ]). When we regard K,K ′ (or two links, in general) as knots
and D,D′ as diagrams, a necessary and sufficient condition for K and K ′ being
isotopic is that we obtain D′ by giving the following RI, RII, RIII moves and
isotopies of the diagram of R2 to D finite times.

RI, RII and RIII moves are called the Reidemeister moves.
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Figure 2: Reidemeister moves
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The above theorem 2.1 is important. This theorem changes a three-dimensional
problem in knots (or links) into dealing with a combinatorial way of two-
dimensional knot (or link) diagrams modulo the Reidemeister moves.

A knot with a string oriented is called an oriented knot. A link with each
oriented knot is called an oriented link. A diagram with a circle in oriented
R2 is called an oriented diagram. As an oriented version of Theorem 2.1, the
following Corollary holds:

Corollary 2.2. When we regard K,K ′ as oriented knots (or two oriented links,
in general) and D,D′ as diagrams, a necessary and sufficient condition for K

and K ′ being isotopic is that we obtain D′ by giving the following
−→
RI,
−−→
RII,

−−−→
RIII

moves and isotopies of the diagram of R2 to D finite times.

Figure 3: The Reidemeister moves for oriented diagrams

2.2 Quantum invariants

A reference of this subsection is [chap.II[Oh2]]. An image embedded in R2×[0, 1]
with n strings so that an end point is {1, 2 · · · , n} × {0} × {0, 1} and that it is
monotonous with respect to the height of function is called a braid of n strings.
Each string of the braid is oriented downward. When 2 strings b1, b2 move by
using an isotopy of R2 × [0, 1] such that they keep the height of function by
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fixing the boundary, it is called isotopic, i.e. ht : R2 × [0, 1] → R2 × [0, 1] for
t ∈ [0, 1] such that h0 is the identity map of (R2 × [0, 1]) and h1(b1) = b2.

We obtain any n braids by connecting vertically the copies of σi and σ
−1
i (i =

1, 2, · · · , n − 1). Here, σi and σ−1
i represent a braid with the i-th string and

(i+ 1)-th string twisted as shown in the figure below.
A set of all isotopy types with n braids becomes a group with respect to the

product of attaching braids vertically. This group is shown as Bn and called a
braid group. It is known that a braid group Bn is shown as a group:

Bn = ⟨σ1, · · · , σn−1 | σi◦σj = σj◦σi if |i−j| ≥ 2, σi◦σi+1◦σi = σi+1◦σi◦σi+1⟩.

An oriented braid given by connecting the top and the bottom of the braid is
called a closure of the braid. With respect to this, the following theorem holds.
By the following two theorems, we pick quarrel and can consider the geometric

Figure 4: Braid.

object of links as an algebraic object.

Theorem 2.3 ([A]). Any oriented link is shown as a closure of a certain braid.

Theorem 2.4 ([Bi]). With respect to two braids b1, b2, a necessary and sufficient
condition for their closure being an isotopic link is that we obtain b2 by giving
the following MI, MII moves to b1 finite times.

MI : ab←→ ba (a, b ∈ Bn), MII : bσn ←→ b←→ bσ−1
n (b ∈ Bn),

where, for MII moves, we regard bσ±1
n as an element of Bn+1.

From now on, vector space is on C. For finite dimensional vector space V , we
let the dual space be V ∗ and the whole space of linear map V → V be End(V ).
By the correspondence of f ⊗x ∈ V ∗⊗V and (y → f(y)x) ∈ End(V ), we make
an equation such as V ∗ ⊗ V = End(V ). The trace of End(V ) is shown as

trace : End(V )→ V ∗ ⊗ V → C,

where, the contraction is linear map V ∗ ⊗ V → C fixed by f ⊗ x → f(x).
Further, let V1 and V2 be vector space. For an endomorphism in End(V1 ⊗ V2)
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we define the trace2 of the endomorphism to be the trace with respect to the
2-th entry as

trace2 : End(V1 ⊗ V2) = (V1 ⊗ V2)∗ ⊗ (V1 ⊗ V2)

= V ∗
2 ⊗ V ∗

1 ⊗ V1 ⊗ V2
contraction−−−−−−−→ V ∗

1 ⊗ V1 = End(V1),

where the contraction is the contraction V ∗
2 ⊗ V2 → C respectively.

Definition 2.5 ([Ji]). The construction of the general quantum invariable is
explained as below. Let V be a vector space over C. We obtain a representation
ψn : Bn → End(V ⊗n) defined by

ψn(σi) = (idV )
⊗(i−1) ⊗R⊗ (idV )

⊗(n−i−1). (1)

Such a map ψn given in (1) always satisfies ψn(σiσj) = ψn(σjσi) (|i − j| ≥ 2).
To obtain ψn(σiσi+1σi) = ψn(σi+1σiσi+1), the matrix R is required to satisfy
the relation

(R⊗ idV )(idV ⊗R)(R⊗ idV ) = (idV ⊗R)(R⊗ idV )(idV ⊗R).

We call this equation the Yang-Baxter equation, and call a solution of it an
R-matrix.

Theorem 2.6 (chap.I [Tu] and chap.X [K]). Let L be an oriented link and
b ∈ Bn be a braid such that the closure is isotopic to L.We regard R as an
R-matrix and h ∈ End(V ) as a linear map which satisfies

• trace2
(
(idV ⊗ h) ·R±) = idV ,

• R · (h⊗ h) = (h⊗ h) ·R.

Then, a trace
(
h⊗n · ψn(b)

)
is unchanged by MI, MII moves. Therefore, by

Theorem 2.4, this is an isotopy invariant of L.

We call these invariants isotopy invariants of L obtained from an R-matrix.
But nowadays the invariants of a quantum (g, V ′) (let V ′ be a vector represen-
tation of a Lie algebra g) are defined via the quantum group and the represen-
tation.

2.3 Vassiliev invariants (Finite type invariants).

When a knot invariant v with a value in the complex number is given, it is
extended to a singular knot by the following formula:

v(KD) = v(K+)− v(K−). (2)

where, a singular knot is an immersion in R3 of the circle whose singularities are
only double points. Moreover, a part of KD,K+,K− is shown in the following
figure 5 and the other parts are the similar three singular knots. We regard
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Figure 5: KD,K+,K−

Figure 6: singular knot is an element of K.

vector space on C spanned by all the isotopy types of oriented knots as K. As a
result of linearly resolving its each double point by using the formula (2) for a
singular knot, we look on the singular knot as an element of K. For example, it
is shown in the following figure 6. We regard vector subspace of K spanned by
singular knots spanned with d double points as Kd, which fixes filtration of K:

K = K0 ⊃ K1 ⊃ K2 ⊃ K3 ⊃ · · ·

Linear map K → C which becomes zero mapping when restricted to Kd+1 is
called Vassiliev invarianats (finite type invariants) of degree d [G1, G2, V].

We calculate a quantum invariant of singular knots by regarding a matrix
R at a singularity as R−R−1. The definition shows that especially a Vassiliev
invariant (finite type invariant) of degree 0 is an constant function with the same
value for all knots. In other words, with respect to a Vassiliev invariant (finite
type invariant) v of degree 0, even if the crossings of the knot are replaced as
shown in the figure below, the value of v is invariable, and therefore v has the
same value for all the knots. Furthermore, the definition of Vassiliev invariants
(finite type invariants) shows that, as the degree of finite type invariants gets
raised, a set of Vassiliev invariants (finite type invariants) makes a hierarchy
structure as follows:
{Vassiliev invariants (finite type invariants) of degree 0} ⊂ {Vassiliev in-

variants (finite type invariants) of degree 1} ⊂ {Vassiliev invariants (finite type
invariants) of degree 2} ⊂ · · · .

With respect to a Vassiliev invariant (finite type invariant) v of degree d,
we give consideration to the value for a singular knot Kd with d double points.
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Then, when the singular knot given by transforming a singular knot Kd with
the self-intersection of edges is regarded as Kd′

, we find v(Kd) = v(Kd′
), for

the changing value of v caused by the self-intersection of edges is shown by the
value of v for a singular knot with (d + 1) double points which appears the
moment that self-intersection occurs, which is 0 derived from the definition of
Vassiliev invariants of degree d. Therefore, with respect to the given v, the value
of v(Kd) is decided by the order of the double points of Kd forming a line on
the circumference. The order is shown by a chord diagram.

A chord diagram is a diagram connecting pairs of points by using dotted
lines (called chords), and it is derived from singular knots by connecting marks
corresponding the same double points by using chords after marking on the circle
the places where the double points appear when a string of the singular knot
goes round. When a Vassiliev invariant (finite type invariant) v of degree d is
given, let a singular knot corresponding a chord diagramD with d chords beKD.
Note that KD is an element of Kd. Although a singular knot KD is not unique,
the equivalence class of KD is unique for any singular knot corresponding D as
stated above. In short, as an element of Kd/Kd+1, the equivalence class [KD] is
unique.

Furthermore, with respect to a singular knot K with d double points, when
we let a chord diagram which represents a type of K be D, we regard a value
of v(K) as Wv(D). As shown above, note that a value of Wv(D) from a chord
diagram D of degree d on S1 is decided only by D, (which is independent of
K). In short, a Vassiliev invariant (finite type invariant) v of degree d induces
the following linear map:

Wv : spanC{chord diagrams on S1 of degree d} → C.

This linear map has two restrictions. One is that it becomes 0 for a chord di-
agram with an isolated chord. The other is that it has the relations obtained
according to four ways to resolve a triple point. Based on the conditions men-
tioned above, we consider the following relations in vector space spanned by a
chord diagram:

When

A(S1) = spanC{ chord diagrams on S1}/ the 4T relation

is given, let vector subspace of A(S1) spanned by the chord diagram of degree
d be A(S1)(d). Let map where D corresponds [KD] be

φ : A(S1)(d)/FI → Kd/Kd+1.

By using this map, the weight system Wv of a Vassiliev invariant (finite type
invariant) v of degree d is shown as the following composed mapping:

Wv : A(S1)(d)/FI
φ−→ Kd/Kd+1 ⊂ K/Kd+1

[V ]−−→ C

Here, [v] indicates the linear map which v naturally induces on the quotient
vector space given by Kd+1. Linear map φ is a surjection, which is given by
the constitution method and the number of chord diagrams of degree d is finite.
Therefore Kd/Kd+1 has a finite dimension.
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Figure 7: The FI and 4T relations.

2.4 Quandle (shadow) cocycle invariants

A quandle is a set X with a binary operation ∗ : X × X → X such that the
following three are satisfied:

(i) For any a ∈ X, a ∗ a = a.

(ii) For any a, b ∈ X, there exists a unique c ∈ X such that a = c ∗ b.

(iii) For any a, b, c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

For example, any module over Z[ω±] is a quandle with operations

x ∗ y = ωx+ (1− ω)y.

Such a quandle is called an Alexander quandle. When ω = 1 i.e. x ∗ y = x, we
call this type of quandle a trivial quandle. For an odd p ∈ Z, Z/pZ is a quandle
under the operation

x ∗ y = 2y − x

for x, y ∈ Z/pZ. We call this type of quandle a dihedral quandle Rp.
For quandle X, we give consideration to natural map,

X → Aut(X), x 7→ (• ∗ x).

The inner automorphism group Inn(X) denotes the subgroup of Aut(X) which
the image of the above map generates. A connected component of X represents
an orbit of the action of Inn(X) on X. When the action of Inn(X) is transitive,
quandle X is called connected,

A link quandle of L is a set Q(L) = {[(D, a)]} composed of a homotopy
class of a pair of path a in complementary space of L from a boundary between
meridian disc D of L and D to a certain basic point, and it becomes a quandle
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Figure 8: triple point.
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Figure 9: link quandle.

by operation (D, a) ∗ (D′, b) = (D, a · b−1 · ∂D′ · b) [Joy]. Furthermore, quandle
homomorphism QL → X is called an X-coloring of L.

A quandle cocycle invariant of a link associated with a 2-cocycle (as an
analogy of group cohomology) f of a finite quandle X. Let D be a diagram of
link L. A map C : D → X is an X-coloring of D [Definition.4.1 [CKS]], the
following figures 10 of an X-coloring of crossing points. We need the relation

Figure 10: Wf (x;C)

C(z) = C(x) ∗ C(y). The bijection HomQnd(QL, X) → {X − coloring of D}
exists. Especially, in case of quandles, the right side of the equation is finite as
shown by the definition and the left side depends only on the link L, and thus
the X-coloring number is an invariant of the link L.

Using a quandle 2-cocycle f , we define the weight Wf (x;C) at a crossing x
of a diagram D, with a coloring C in X as stated above for the two types of
crossings. We fix t ∈ C \ {0}. The quandle 2-cocycle invariant of knots and
links [Definition.4.3 and Theorem.4.4 [CJKLS]] is the state-sum∑

C

∏
x

Wf (x;C) ∼=
∑
C

∏
x

tWf (x;C) ∈ Z[ti, t−i] (i ∈ A)

which is an invariant of the link L. We put

Φf (L) =
∑
C

∏
x

tWϕ(x;C)

A quandle cocycle invariant of a link associated with a 3-cocycle (as an
analogy of group cohomology) ϕ of a finite quandle X. Let D be a diagram
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of link L, and
∑

(D) the set of arcs of D and the set of regions separated
by the underlying immersed curve of D. A map C :

∑
(D) → X is an X-

shadow coloring of D [Definition.4.3 [CKS]], as shown in the following figure
11 of an X-shadow coloring of crossing points. We need the relation C(w) =

Figure 11: Wϕ(x;C)

C(y) ∗C(z), C(x) = C(s) ∗C(y), C(u) = C(s) ∗C(z) and C(t) = C(x) ∗C(z) =
C(u) ∗ C(w). Using a quandle 3-cocycle ϕ, we define the weight Wϕ(x;C) at a
crossing x of a diagram D, with a shadow coloring C in X as stated above for
the two types of crossings. We fix t ∈ C \ {0}. The shadow cocycle invariant of
knots and links [Definition.5.5 and Theorem.5.6 [CJKLS]] is the state-sum∑

C

∏
x

Wϕ(x;C) ∼=
∑
C

∏
x

tWϕ(x;C) ∈ Z[ti, t−i] (i ∈ A)

which is an invariant of the link L. We put

Φϕ(L) =
∑
C

∏
x

tWϕ(x;C)

2.5 Heegaard splitting

Definition 2.7. Let
∑

g be a closed surface of the genus g and a set of all the
isotopy types of automorphisms keeping the orientation of

∑
g makes a group

by the product of composed mapping. This group is called a mapping class
group and represented by Mg.

Definition 2.8. An orientable 3-manifold that is a 3-ball with g 1-handles
added is called a handlebody of genus g Hg. For autohomeomorphic mapping
ϕ of

∑
g, we consider 3-manifolds Hg ∪ϕ Hg obtained by gluing a boundary of

two copies of Hg with ϕ. When the given 3-manifold M is homeomorphic to
Hg ∪ϕ Hg for a certain ϕ, the Hg ∪ϕ Hg is called a Heegaard splitting of M .

Proposition 2.9. Any closed connected orientable 3-manifold has a Heegaard
splitting.

Definition 2.10. Minimum genus of a Heegaard splitting of M :

g(M) = min{g|M has a Heegaard splitting of genus g}

is called the Heegaard genus of M represented by g(M).
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Definition 2.11. Two Heegaard splittings of Hg ∪φ1
Hg and Hg ∪φ2

Hgare
equivalent if an ambient isotopy carries φ1 to φ2, preserving orientation.

Definition 2.12. A stabilization of a genus g Heegaard splitting is a new split-
ting of genus g+ 1 obtained by adding a trivial 1-handle in the following figure
12 to the Heegaard surface.

Figure 12: stabilization

Remark 2.13. τ is a homeomorphism of the surface sending the bold line
of a closed curve in the boundary of the left handlebody to that of the right
handlebody respectively.

Proposition 2.14 ([L1, L2]). A mapping class group Mgconsists of the twist
about the set of (3g− 1) simple closed curves of li,mj , nk (1 ≤ i, j ≤ g, 1 ≤ k ≤
g−1) shown in the following figure 13. This generators are Lickorish generators

Figure 13: Lickorish generators

2.6 Dijkgraaf-Witten invariants

Let A be an abelian group. A Dijkgraaf-Witten invariant[DW] of oriented 3-
manifolds is a topological invariant fixed every time 3-cocycle α : G3 → A with
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values in a finite group G and in a one-dimensional unitary group U(1) of the
classifying space BG is given, and, for a connected closed 3-manifold M, it is
defined as the following formula:

DWα(M) =
1

|G|
∑

f∈Homgr(π1(M),G)

⟨f∗(α), [M ]⟩ ∈ Z[A],

where [M ] ∈ H3(M ;A) is the fundamental class of M .

2.7 Lens space

Let p be a positive integer two or more and a positive integer q which is
prime to p is given. First, we consider a three-dimensional sphere B3 in three-
dimensional Euclid space R3, divide the equator e = {(x, y, z) ∈ ∂B3 |x2 +
y2 + z2 = 1, z = 0} of this boundary ∂B3 into p equal parts, and regard

the points divided equally as a0 = (1, 0, 0), a1 = (cos
2π

p
, sin

2π

p
, 0), · · · , ai =

(cos
2πi

p
, sin

2πi

p
, 0), · · · , (cos 2π(p− 1)

p
, sin

2π(p− 1)

p
, 0). Let li be the longi-

tude going through ai, and the domain surrounded by li and li+1 is divided
by e into two parts; the upper one is named Ui and the lower one is Di. Then,
we put equivalence relation ∼ in ∂B3 as follows:

We glue Di and Ui+q so that li becomes li+p, li+1 becomes li+q+1 and
N = (0, 0, 1) becomes S = (0, 0,−1). Then, when s1 = (x1, y1, z1) and s2 =
(x2, y2, z2), and when s1 ∼ s2 is shown as x1 =

√
1− h2 cosφ, y1 =

√
1− h2 sinφ, z1 =

h by using h ≥ 0, 0 ≤ φ ≤ 2π, we decide this equivalence relation when:

(Inside)x2 = x1, y2 = y1, z2 = z1

(On the sphere)x2 =
√

1− h2 cos(φ+2πq

p
), y2 =

√
1− h2 sin(φ+2πq

p
), z2 = −h.

Quotient space B3/ ∼ where B3 is divided by this equivalence relation is called
lens space and represented by L(p, q).

3 On Vassiliev invariants of degrees 2 and 3 for
torus knots

The present work is motivated by [Oh3, §2.4 Vassiliev invarians and cossing
numbers]. As to the Vassiliev invariants of degrees 2 and 3, N. Okuda [Ok]
posed the following problem:

Problem 3.1 (cf.[Oh3, Problem 2.10]). Let K be a knot and n be the crossing
number of a diagram D of K, and V2(K) and V3(K) be the primitive Vassiliev
invariants of degree 2 and 3 of K, respectively. Then, describe the following set

S(K,D) :=

{(
V2(K)

n2
,
V3(K)

n3

)
∈ R× R

}
.
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The most ideal solution for this problem would be to give a precise function
f(x, y) such that

f

(
V2(K)

n2
,
V3(K)

n3

)
= 0.

However so far a reasonable solution would be to give a domain as sharp as
possible containing the set S(K,D). As to each of V2(K) and V3(K), N. Okuda
[Ok] showed the following inequalities:

−n
2

16
≤ V2(K) ≤ n2

8
,

|V3(K)| ≤ n(n− 1)(n− 2)

15
.

Here the right-hand-side inequality of the first one is due to Polyak-Viro [PV].
It follows from these two inequalities that the set S(K,D) is contained in the
rectangle [

− 1

16
,
1

8

]
×
[
− 1

15
,
1

15

]
.

Then, as pointed out in the second Remark right after Problem 2.10 in [Oh3,
pp.404-405], it is a problem to describe the smallest domain containing the set
S(K,D). In this paper we give a non-trivial domain (i.e., non-rectangle domain)
containing the set S(K,D) in the case of torus knots.

Theorem 3.2. Let K be a torus knot and let n be the crossing number of a
diagram D of K. Then we have

S(K,D) ⊂
{
(x, y) ∈ R2

∣∣∣ 8

3
x2 < |y| ≤ 1

3
x

}∪
{(0, 0) ∈ R2} (3)

As to V3(L), S. Willerton [W2] made the following conjecture:

Conjecture 3.3 ([W2] and cf. [Oh3, Conjecture 2.11]). Let V3 be as above. If
a knot K has a diagram with n crossings, then

|V3(K)| ≤
[n(n2 − 1)

24

]
,

where [x] denotes the Gauss symbol of x.

In this section we show that the above conjecture is correct in the case of
torus knots.

3.1 Primitive Vassiliev invariants and torus knots

In [V] V. A. Vassiliev introduced what is now called the Vassiliev invariant of
a knot, using the cohomology of the complement of discriminants in space of
maps. In [G1] M.N. Goussarov redefined or independently defined the Vassiliev
invariant more axiomatically.
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A Vassiliev invariant V is called primitive if it is additive under the connected
sum of knotsK1, K2, that is, V(K1♯K2) = V(K1)+V(K2). Let V2 and V3 be the
R-valued Vassiliev invariants of degree 2 and 3 of K, respectively, normalized
by the conditions that V2(K) = V2(K) and V3(K) = −V3(K) for any K and its
mirror image K and that they take 0 on the unknot and 1 on the trefoil.

Proposition 3.4 ([W2]). Let JK(t) be the Jones polynomial of K and let

J
(m)
K (t) denote its m-th derivative with respect to t. Then V2(K) and V3(K)

are described using the derivatives of the the Jones polynomial as follows:

V2(K) = −1

6
J
(2)
K (1),

V3(K) = − 1

36

(
J
(3)
K (1) + 3J

(2)
K (1)

)
.

Let K be a (p, q)-torus knot and let n be the crossing number of a diagram
of K. Then it is known that n ≥ min{|p(q−1)|, |q(p−1)|} (see [Mu]). A (p, q)-
torus knot is trivial if and only if either p or q is equal to 1 or −1. The Vassiliev
invariant of a trivial knot is 0. Therefore, since we deal with non-trivial knots,
from now on we assume that |p| ≥ 2 and |q| ≥ 2. Moreover, we know that the
Jones polynomial JK(t) of the (p, q)-torus knot K is expressed by:

JK(t) =
t
(p−1)(q−1)

2 (1− tp+1 − tq+1 + tp+q)

1− t2
.

Remark 3.5 (cf.[W2, §4. Torus Knots, p292]). M. Alvarez and J. M. F.
Labastida [AL] obtained the two formulae for V2(K) and V3(K) in a different
way.

Hence the Vassiliev invariants of degree 2 and 3 for a (p, q)-torus knot K
are respectively given by:

V2(K) = −1

6
J
(2)
K (1) =

(p2 − 1)(q2 − 1)

24
,

V3(K) = − 1

36

(
J
(3)
K (1) + 3J

(2)
K (1)

)
=
pq(p2 − 1)(q2 − 1)

144
.

3.2 Results of this section

Theorem 3.6. Let K be a non-trivial torus knot and let n be the crossing
number of a diagram D of K. Then we have

8

3

(V2(K)

n2

)2

<
∣∣∣V3(K)

n3

∣∣∣ ≤ 1

3

(V2(K)

n2

)
. (4)

Proof. We prove the above inequalities in the case of q ≤ p, which implies that
n ≥ |q(p− 1)|.∣∣∣V3(K)

n3

∣∣∣ = ∣∣∣pq(p2 − 1)(q2 − 1)

144n3

∣∣∣
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=
1

6

(p2 − 1)(q2 − 1)

24n2
|pq|
n2

n

≥ 1

6

v2(K)

n2
(p2 − 1)(q2 − 1)

24n2
24|pq|

(p2 − 1)(q2 − 1)
|q(p− 1)|

≥ 4
(V2(K)

n2

)2 |p(p− 1)|
p2 − 1

q2

q2 − 1
.

Since |p| ≥ 2, we have that the minimum of |p(p−1)|
(p2−1) is 2

3 when p = 2. Moreover

note that |q| ≥ 2, therefore q2

q2−1 > 1.∣∣∣V3(K)

n3

∣∣∣ = ∣∣∣pq(p2 − 1)(q2 − 1)

144n3

∣∣∣
=

1

6

(p2 − 1)(q2 − 1)

24n2

∣∣∣pq
n

∣∣∣
≤ 1

6

V2(K)

n2

∣∣∣ pq

|q(p− 1)|

∣∣∣
≤ 1

6

V2(K)

n2

∣∣∣ p

p− 1

∣∣∣.
Note that |p| ≥ 2, therefore the maximum of | p

p−1 | is 2 when p = 2. Hence we
obtain the following relation:

8

3

(V2(K)

n2

)2

<
∣∣∣V3(K)

n3

∣∣∣ ≤ 1

3

(V2(K)

n2

)
.

In the case of q ≤ p, we exchange p and q in the above proof and we obtain the
same result.

LetK be a torus knot. The above inequalities (4) imply that the set S(K,D)
is contained in the domain{

(x, y) ∈ R2
∣∣∣ 8

3
x2 < |y| ≤ 1

3
x

}∪
{(0, 0) ∈ R2}.

In particular, we get the following

Corollary 3.7. Let the situation be as above.

0 ≤ V2(K)

n2
≤ 1

8
, − 1

24
≤ V3(K)

n3
≤ 1

24
.

Remark 3.8. In [W2, Proposition 4.1, p.292] Willerton showed the following
inequalities for a torus knot K (he uses T instead of K):

2

3
V2(K)3 +

1

3
V2(K)2 ≤ V3(K)2 ≤ 8

9
V2(T )3 +

1

9
V2(K)2.

From which we can obtain the following inequalities, by dividing them through-
out by n6:

2

3

(
V2(K)

n2

)3

+
1

3n2

(
V2(K)

n2

)2

≤
(
V3(K)

n3

)2

≤ 8

9

(
V2(T )
n2

)3

+
1

9n2

(
V2(K)

n2

)2

.
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Hence, we get the following inequalities:

2

3

(
V2(K)

n2

)3

<

(
V3(K)

n3

)2

≤ 8

9

(
V2(T )
n2

)3

+
1

9

(
V2(K)

n2

)2

.

Therefore we can see that the set S(K,D) is contained in the following domain:{
(x, y) ∈ R2

∣∣∣∣23x3 < y2 <
8

9
x3 +

1

9
x2

}
.

It follows from the above inequalities 8
3x

2 < |y| < 1
3x (just before Corollary 3.2)

and 2
3x

3 < y2 < 8
9x

3 + 1
9x

2 (at the end of Remark 3.3) that we can get the
following corollary:

Corollary 3.9. Let the situation be as above.

S(K,D) ⊂
{
(x, y) ∈ R2

∣∣∣∣23x3 < y2 ≤ 1

9
x2, 0 < x ≤ 3

32

}
∪{

(x, y) ∈ R2

∣∣∣∣83x2 < |y| ≤ 1

3
x,

3

32
≤ x ≤ 1

8

}∪
{(0, 0) ∈ R2}.

As to the Vassiliev invariant V3, we obtain the following inequality, i.e. the
aforementioned Willerton ’s conjecture [W2](c.f. [Oh3, Conjecture 2.11]).

Theorem 3.10. Let K be a torus knot and let n be the crossing number of a
diagram of K. Then we have∣∣V3(K)

∣∣ ≤ [n(n2 − 1)

24

]
,

Proof. We prove the above inequality in the case of q ≤ p. First we show the
following inequality:∣∣∣p(p+ 1)(q2 − 1)

6

∣∣∣ ≤ ∣∣q(p− 1)
∣∣2 − 1. (5)

To show this we observe the following:

6
(∣∣q(p− 1)

∣∣2 − 1
)
− p(p+ 1)(q2 − 1)

= 5p2q2 − 13pq2 + 6q2 + p2 + p− 6

= q2(p− 2)(5p− 2) + (p− 2)(p+ 3)

= (p− 2)
(
(q2(5p− 2) + p+ 3

)
.

Note that |p| ≥ 2, therefore

p(p+ 1)(q2 − 1)

6
≤

∣∣q(p− 1)
∣∣2 − 1.

Moreover note that |q| ≥ 2, therefore p(p+ 1)(q2 − 1) > 0. Thus we obtain the
above inequality (5).
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Next, we observe the following:∣∣V3(K)
∣∣ = ∣∣∣pq(p2 − 1)(q2 − 1)

144

∣∣∣ (6)

≤ |q(p− 1)|
24

∣∣∣p(p+ 1)(q2 − 1)

6

∣∣∣. (7)

By the inequality (5), we obtain∣∣V3(K)
∣∣ ≤ |q(p− 1)|

24

(∣∣q(p− 1)
∣∣2 − 1

)
.

Hence ∣∣V3(K)
∣∣ ≤ n

(
n2 − 1

)
24

.

In the case of q ≤ p, we exchange p and q in the above proof and we obtain the
same result.

Remark 3.11. As remarked in [W2, §2], the degree-3 Vassiliev invariant V3
satisfies that for any knot K with the crossing number n∣∣V3(K)

∣∣ ≤ n(n− 1)(n− 2)

4
,

which was obtained in [W1] using Domergue and Donato’s integration [DD]. For

any n we do have that n(n−1)(n−2)
15 < n(n−1)(n−2)

4 . Thus, Okuda’s inequality is
sharper than Willerton’s inequality. However, if n > 8, we have that

n(n2 − 1)

24
<
n(n− 1)(n− 2)

15
.

Here, we note that the equality holds for n = 7. Thus our inequality, i.e. the
inequality conjectured by Willerton, is sharper for n ≥ 7, although the knots
considered in the present paper are torus knots.

4 Definition of quasi finite type invariants and
finite type invariants of some 3-manifolds

This section examines quandle shadow cocycle invariants of links from the view-
point of finite type invariants. Dijkgraaf-Witten invariants of 3-manifolds are
also studied from the same point of view.

For an odd prime integer p, a quandle shadow cocycle invariant [CJKLS] of
the link L is defined by using Mochizuki’s 3-cocycle

θp(x, y, z) = (x− y) (2z − y)
p + yp − 2zp

p
mod p

of the dihedral quandle.
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Proposition 4.1. We write Φp(L) or Φθp(L) for the quandle shadow cocycle
invariant. Then the values are in the Laurent polynomial ring Z[t, t−1]/(tp−1).

Proof. Φθp(L) ∈ Z[Z/pZ] by the definition of quandle (shadow) cocycle invari-
ants. There exists bijective homomorphism Z[Z/pZ] ∼= Z[t, t−1]/(tp − 1). This
map is

∑n
i=1 ciāi →

∑n
i=1 cit

ai .

Thus Φp(L) can be regarded as an element in the ring Z[t]/(tp−1+· · ·+t+1),
and expressed as Φp(L) = ap,0+ap,1(t−1)+· · ·+ap,p−2(t−1)p−2 for some integers
ap,k (k = 0, 1, · · · , p − 2). As proved in [Oh2, Lemma 9.7.] the coefficients ap,k
are not unique, but they are well-defined as elements in Z/pZ. In this paper
properties of ap,k are investigated for two special classes of links, namely, 2-
bridge links and torus links by using results of computations due to Iwakiri [I]
and Asami and Satoh [AS]. Based on this observation we find the coefficient
ap, p−1

2
satisfies some kind of “finite type ” property, and introduces a definition

of quasi finite type invariants as an analogy of finite type invariants introduced
by Vassiliev and Goussarov.

Hatakenaka shows that Φp(L) can be essentially viewed as the Dijkgraaf-
Witten invariant DWϕp(ML) of 3-manifold ML obtained as a double branched
covering of L, where ϕp is the 3-cocycle of the cyclic group Z/pZ corresponding
to θp [H, Theorem 3.2.]. Translating this result, we show that, for Lens space
and Brieskorn manifolds M(2, l, n), the coefficient ap, p−1

2
of their Dijkgraaf-

Witten invariants under the expansion with respect to (t − 1) have also some
kind of finite type property, and propose a definition of finite type invariants as
a generalization of Ohtsuki’s finite type invariants.

In this section, to describe the property of ap, p−1
2

as a finite type, some

descending filtrations of vector spaces spanned by special classes of links or
3-manifolds are introduced. The filtration we consider is new.

The relation between quandle (shadow) cocycle invariants and quantum in-
variants has not been clarified. In this article, we consider the relation between
quandle shadow cocycle invariants and finite type invariants. We transform the
calculation result when quandle shadow cocycle invariants are both q = p and
ω = −1 into

ap,0+ap,1(t−1)+ap,2(t−1)2+ · · ·+ap,p−2(t−1)p−2 ∈ Z[t]/(tp−1+ · · ·+ t+1).

We define a filtration on the 2-bridge link and the torus link. For the filtra-
tion which we have defined, a value of ap, p−1

2
looks like a finite type invariant.

However, as a result of the consideration, we have found that the filtration at
a singular point cannot be defined. Therefore, it is not a finite type invariant.
Here, we defined a quasi finite type invariant. This definition is the same as
that of a finite type invariant except the links with the singular point. The
quasi finite type invariants are naturally defined by the nature of the finite type
invariants and they have the similar nature to the finite type invariants. One of
the similarities is the linear map vd : K → C that the value at Kd+1 is zero in
the link subspace sequence K = K0 ⊃ K1 ⊃ · · · ⊃ Kd ⊃ Kd+1 ⊃ · · · .
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Moreover, we give a general definition of finite type invariants of some 3-
manifolds and we define new finite type invariants of 3-manifolds of double
branched covering of a link (not finite type invariants of integral homology 3-
sphere by T. Ohtsuki [Oh1]). We define new finite type invariants as quasi finite
type invariants by the fact that shadow cocycle invariants equal a scalar multiple
of Dijkgraaf-Witten invariants [HN] and by using mapping class groups. In
particular, it’s new that by using mapping class groups we show that the whole
finite type invariant pace of 3-manifold of each degree is a finite dimension. We
give the proof outline of finite type invariants of 3-manifolds.

The subspace sequence of 3-manifold M = M0 ⊃ M1 ⊃ · · · ⊃ Md ⊃
Md+1 ⊃ · · · is naturally defined by the nature of the quasi finite type invariants.
By considering similarly to the quasi finite type invariants, we get the linear map
fd :M→ C that the value atMd+1 becomes zero. That the whole finite type
invariant space of 3-manifolds of each degree has a finite dimension is proved
by the fact that the mapping class group split by the Heegaard genus of the
3-manifolds can be shown by a finite number of products of Lickrish generators
[L1, L2].

In the case where X is a dihedral quandle Rp, ϕ is a Mochizuki 3-cocycle θp.

4.1 Quasi finite type invariants

We know that finite type invariants have the following conditions.

1. We have a descending filtration of K as K = K0 ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kd ⊃
Kd+1 ⊃ · · · .

2. There exists finite dimension vector space A(d) over C such that we have
surjective map A(d) ↠ Kd/Kd+1 for any d.

We weaken the condition of these properties and define quasi finite type invari-
ants as follows.

Definition 4.2. Let A be an abelian group. We give a module space sequence
spanned by a certain class of link K = K0 ⊃ K1 ⊃ · · · ⊃ Kd ⊃ Kd+1 ⊃ · · · (Kd is
not an empty set for all d). We call a homomorphic vd : K → A a quasi finite
type invariant of degree d as follows.

1. vd are invariants of K for any d.

2. vd|Kd+1
= 0.

3. There exists module of finitely generated spaces A(d) such that we have
surjective maps A(d) ↠ Kd/Kd+1.

Example 4.3. When, for integers l and n, the 2-bridge link of type S(l, n) is
given, we fix n ∈ Z. Let an odd integer s < l be an integer such that sn ≡ 1
(mod l). According to [I, Theorem 1.1.], the quandle shadow cocycle invariant
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of S(l, n) is:

Φθp(S(l, n)) =

{
p2

∑p−1
i=0 t

−ls
p i2 ∈ Z[t]/(tp − 1), (if l is divisible by p),

p2, (otherwise).
(8)

Remark 4.4 ([S]). For any s, S(l, n) and S(l, s) are links of the same type by
ignoring the orientation.

We consider Φθp(S(l, n))/p
2 ∈ Z[t]/(tp−1 + · · ·+ t+ 1). Hence we can put

Φθp(S(l, n))

p2
= ap,0 + ap,1(t− 1) + ap,2(t− 1)2 + · · ·+ ap,p−2(t− 1)p−2 (9)

for some integers ap,n’s. We note that the expansion (9) is not unique. If
ap,n ∈ Z/pZ is set to (mod p), it will be uniquely determined by Φθp(S(l, n))/p

2

[Oh2, Lemma 9.7.].
Let Kd be vector space over C freely spanned by the following 2-bridge link

sets,
K = K0 = K1 := ⟨S(l, n)⟩C,

Kd := ⟨S(l, n) | p ∤ l for all (odd) prime numbers p such that 3 ≤ p ≤ pd−2⟩C,

where pd is the d-th odd prime number.
We consider map, vd : K → C which is defined as follows: Let S(l, n) be

the 2-bridge link type (l, n). We define vd(S(l, n)) (2 ≤ d), as the product of
a
pd−1,

pd−1−1

2

modulo pd−1 (we put 0 ≤ a
pd−1,

pd−1−1

2

< pd−1) of (9) and p2d−1,

moreover the mapping v0 ≡ v1 ≡ 0 is obvious in the definition.

K vd−→ C

∈ ∈

S(l, n) 7−→ a
pd−1,

pd−1−1

2

Theorem 4.5. vd is a quasi finite type invariant of degree d.

Proof. For any S(l, n) ∈ Kd+1, l is not divisible by pd−1, since the value of
Φθpd−1

(S(l, n)) is trivial by (8). Therefor a
pd−1,

pd−1−1

2

= 0. Hence vd|Kd+1
= 0.

Kd/Kd+1 = ⟨S(pd−1, n)⟩C. Recall we fix n ∈ Z, therefore ⟨S(pd−1, n)⟩C is
one dimensional vector space over C.

Example 4.6. We fix n = 2 and l = 15.

v2(S(15, 2)) = 2,

because a3,1 = 15·8
3 · 2 ≡ 2 (mod 3).

v3(S(15, 2)) = 2,

because a5,2 = 152·82
52 · 2 ≡ 2 (mod 5).
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Example 4.7. For an integer n and an odd number l, we consider a (l, n)-torus
link T (l, n). we fix n ∈ Z. According to [AS, Theorem 6.3.], n is even, and then
the quandle shadow cocycle invariant of T (l, n) is:

Φθp(T (l, n)) =

{
p
∑p−1

i=0 t
−ln
2p i2 ∈ Z[t]/(tp − 1), (if l divisible by p),

p, (otherwise).
(10)

We consider Φθp(T (l, n))/p ∈ Z[t]/(tp−1 + · · ·+ t+ 1). Hence we can put

Φθp(T (l, n))

p
= ap,0 + ap,1(t− 1) + ap,2(t− 1)2 + · · ·+ ap,p−2(t− 1)p−2 (11)

for some integers ap,n’s. We note that the expansion (11) is not unique. If
ap,n are set to (mod p), it will be uniquely determined by Φθp(T (l, n))/p [Oh2,
Lemma 9.7.].

Let Kd be vector space over C freely spanned by the following (l, n)-torus
link T (l, n) sets,

K = K0 = K1 := ⟨T (l, n)⟩C,

Kd := ⟨T (l, n) | p ∤ l for all (odd) prime numbers p such that 3 ≤ p ≤ pd−2⟩C,

where pd is the d-th odd prime number.
We consider a map, vd : K → C which is defined as follows. Let T (l, n)

be a torus link type (l, n). We define vd(T (l, n)) (2 ≤ d), as the product of
a
pd−1,

pd−1−1

2

modulo pd−1 (we put 0 ≤ a
pd−1,

pd−1−1

2

< pd−1) of (11), moreover

the mapping v0 ≡ v1 ≡ 0 is obvious in the definition.

Theorem 4.8. vd is a quasi finite type invariant of degree d.

Proof. For any T (l, n) ∈ Kd+1, l is not divisible by pd−1, since the value of
Φθpd−1

(S(l, n)) is trivial by (10). Therefor a
pd−1,

pd−1−1

2

= 0. Hence vd|Kd+1
= 0.

Kd/Kd+1 = ⟨T (pd−1, n)⟩C. Recall we fix n ∈ Z, therefore ⟨T (pd−1, n)⟩C is
one dimensional vector space over C.

4.2 Finite type invariants of some 3-manifolds of double
branched covering of links.

Definition 4.9. We give any 3-manifolds meeting a certain condition vector
space over C sequenceM =M0 ⊃M1 ⊃ · · · ⊃ Md ⊃ Md+1 ⊃ · · · (Md is not
an empty set for all d). We define formula B(d) as a condition of setMd. For
any 3-manifold M ∈ M, we define linear map fd :M→ C of finite invariants
of degree d as follow.

1. fd are invariants ofM for any d.

2. fd|Md+1
= 0.
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3. For each d, the whole finite type invariant space of degree d has finite
dimension.

Example 4.10 ([Oh1]). T. Otsuki defined finite type invariants where a compo-
nent of the link which did Dehn surgery for integral homology 3-spheres became
a degree.

The sequences of the subspaces {Md} have a descending filtration of the
connected oriented compact 3-manifold M ∈M such as

M =M0 ⊃M1 ⊃M2 ⊃ · · · .

As for the finite type invariants of degree d, we ignore the difference that the
set Md+1 contains (the difference of M−M′ ∈ Md+1), and distinguish the
connected oriented compact 3-manifolds.

Definition 4.11. LetM be an oriented compact 3-manifold, G be a finite group
and A be an abelian group.

DWθϕ(M) =
1

|G|
∑

f∈Homgr(π1(M),G)

⟨f∗(θϕ), [M ]⟩ ∈ Z[A],

DWZ
θϕ
(M) =

∑
f∈Homgr(π1(M),G)

⟨f∗(θϕ), [M ]⟩ ∈ Z[A],

where θϕ ∈ H3
gr(G;A) and [M ] ∈ H3(M ;A) is the fundamental class of M .

Theorem 4.12 ([HN]). Let m = p be an odd prime of a dihedral quandle Rm,
and ML be the double branched covering of a link L ⊂ S3. For any quandle
3-cocycle ϕ ∈ H3

Q(Rp;Z/pZ), there exists a group 3-cocycle θϕ, then the shadow
cocycle invariant Φϕ(L) equals a scalar multiple of the Dijkgraaf-Witten invari-
ant DWZ

θϕ
(ML).

Remark 4.13. We recall that Mochizuki [Mo1, Mo2] calculated the third quan-
dle cohomology H3

Q(Rp;Z/pZ) ∼= Z/pZ and a presentation of the generator θp,
called Mochizuki 3-cocycle, is obtained. The cocycle θp leads to an invariant
Φθp(L) ∈ Z[Z/pZ] of a link L. Therefore, we should consider only Φθp(L).

We give the following theorem from Theorem 4.12, Remark 4.13 and [H,
Theorem 3.2.].

Theorem 4.14 ([H]). With a notation Rp, L ⊂ S3 and ML in Theorem 4.12,
let G = Z/pZ of an odd prime order p be an Abelian group,

Φθp(L) = p2 ·DWθϕ(ML).

Theorem 4.15 ([L1, L2]). A mapping class group Mgconsists of the twist about
the set of (3g− 1) simple closed curves of li,mj , nk (1 ≤ i, j ≤ g, 1 ≤ k ≤ g− 1)
shown in the following figure 14. This generators are Lickorish generators.

27



Figure 14: Lickorish generators

Example 4.16 ([DW, MOO, W2]). For integers l and n, a 2-bridge link type
(l, n) is given. When we fix an odd integer s < l such that sn ≡ 1 (mod l),
the 2-fold branched covering of S3 branched along the link is lens space L(l, s).
Based on [I, Theorem 1.1.], in case l is divisible by p, the following equations
hold:

p2 ·DWθϕ(L(l, s)) = Φθp(S(l, n)) = p2
p−1∑
i=0

t
−ls
p i2 ∈ Z[t]/(tp − 1),

if not, the Dijkgraaf-Witten invariant is trivial.

Remark 4.17 ([Br]). For any s, L(l, n) and L(l, s) are homeomorphic by pre-
serving the orientation.

We consider DWθϕ(L(l, s)) =
∑p−1

i=0 t
−ls
p i2 ∈ Z[t]/(tp−1 + · · ·+ t+1). Hence

we can put

DWθϕ(L(l, s)) = ap,0 + ap,1(t− 1) + ap,2(t− 1)2 + · · ·+ ap,p−2(t− 1)p−2 (12)

for some integers ap,n’s. Although the expansion (12) is not unique, ap,n, which
are set to (mod p), will be uniquely fixed by DWθϕ(L(l, s)) [Oh2, Lemma 9.7.].

LetMd be vector space over C freely spanned by the following sets of lens
space. where, H1 is a solid torus and τi ∈M1 indicates Lickorish generators of
a mapping class group on the handlebody surface ∂H1.

M =M0 =M1 = ⟨L(l, s)⟩C,
M2 := ⟨L(l, s) |There exists p such that p|l, where p is a prime,

L(l, s) = H1 ∪φ H1, φ = τ1 ◦ τ2 ◦ · · · ◦ τd ◦ · · ·︸ ︷︷ ︸
3 or more

⟩C,

Md := ⟨L(l, s) |There exists p ̸= 3, 5, · · · , pd−2 such that p|l,
L(l, s) = H1 ∪φ H1, φ = τ1 ◦ τ2 ◦ · · · ◦ τd ◦ · · ·︸ ︷︷ ︸

d+1 or more

⟩C,

where pd is the d-th odd prime number.
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Lemma 4.18. Md ̸= ∅.

Proof. (i)Case of d = 2, It is the clear that L(3, 2) ∈M2.
(ii)Case of d = k, we suppose L(pk−1, 2) ∈ Mk．pk > pk−1 + 1 ≥ k + 2 by
pk−1 ≥ k + 1. Therefore L(pk, 2) ∈Mk+1.

We consider a map, fd : M → C which is defined as follows. We de-
fine fd(L(l, s)) (2 ≤ d), as the value of a

pd−1,
pd−1−1

2

modulo pd−1 (we put

0 ≤ a
pd−1,

pd−1−1

2

< pd−1) of (12), moreover the mapping f0 ≡ f1 ≡ 0 is ob-

vious in the definition.

Theorem 4.19. fd is a finite type invariant of L(l, s).

Proof. For any L(l, s) ∈ Md+1, l is not divisible by pd−1, since the value of
DWZ

θϕ
(L(l, s)) is trivial. Therefor a

pd−1,
pd−1−1

2

= 0. Hence fd|Md+1
= 0.

We can define the following map h : ⟨τ1, τ2⟩(≤d)
C →M/Md+1,

h(
∑

σiφi) = [
∑

σiH1 ∪φi H1] (σ ∈ C),

where ⟨τ1, τ2⟩(≤d)
C is space over C freely spanned by the product of less than d+1

of τ1, τ2 ∈ M1. Map h : ⟨τ1, τ2⟩(≤d)
C →M/Md+1 is surjective, and ⟨τ1, τ2⟩(≤d)

C
has a finite dimension. Hence M/Md+1 are finite dimensional vector space.
”The whole finite type invariant space of degree d” has finite dimensional space
because this space is the dual vector space ofM/Md+1.

Example 4.20. For an integer n and an odd number l, a (l, n)-torus link
T (l, n) is given. It is clear that the branched covering branched over the link is
a Brieskorn manifold M(2, l, n) [R, §10.E. Exercise 6]. Based on [AS, Theorem
6.3.], in case l is divisible by p, the following equations hold:

p2 ·DWθϕ(M(2, l, n)) = Φθp(T (l, n)) = p

p−1∑
i=0

t
−ls
2p i2 ∈ Z[t]/(tp − 1),

if not, the Dijkgraaf-Witten invariant is trivial.

We consider p ·DWθϕ(M(2, l, n)) =
∑p−1

i=0 t
−ln
2p i2 ∈ Z[t]/(tp−1 + · · ·+ t+ 1).

Hence we can put

p ·DWθϕ(M(2, l, n)) = ap,0+ap,1(t−1)+ap,2(t−1)2+ · · ·+ap,p−2(t−1)p−2 (13)

for some integers ap,n’s. Although the expansion (13) is not unique, ap,n, which
is set to (mod p), will be uniquely fixed by p ·DWθϕ(M(2, l, n)) [Oh2, Lemma
9.7.].

Remark 4.21. For a fundamental group to change into a Brieskorn manifold
by the value of l, n, and a Heegaard splitting is not unique.
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If n = 3, then a Heegarrd splitting of M(2, l, 3) of genus 2 [IK]. LetMd be
vector space over C freely spanned by the following sets of Brieskorn manifolds
M(2, l, 3). Here, H2 is a handlebody of genus 2 and τi ∈M2 indicates Lickorish
generators of a mapping class group on the handlebody surface ∂H2.

M =M0 =M1 = ⟨M(2, l, 3)⟩C,
M2 := ⟨M(2, l, 3) |There exists p such that p|l, where p is a prime,

M(2, l, 3) = H2 ∪φ H2, φ = τ1 ◦ τ2 ◦ · · · ◦ τd ◦ · · ·︸ ︷︷ ︸
3 or more

⟩C,

Md := ⟨M(2, l, 3) |There exists p ̸= 3, 5, · · · , pd−2 such that p|l,
L(l, s) = H2 ∪φ H2, φ = τ1 ◦ τ2 ◦ · · · ◦ τd ◦ · · ·︸ ︷︷ ︸

d+1 or more

⟩C,

where pd is the d-th odd prime number.
We consider a map, fd : M → C which is defined as follows. We define

fd(M(2, l, 3)) (2 ≤ d), as the value of a
pd−1,

pd−1−1

2

modulo pd−1 (we put 0 ≤
a
pd−1,

pd−1−1

2

< pd−1) of (13) by pd−1, moreover the mapping f0 ≡ f1 ≡ 0 is

obvious in the definition.

Theorem 4.22. If Md ̸= ∅ for any d, then fd is a finite type invariant of
M(2, l, 3).

Proof. For any M(2, l, 3) ∈ Md+1, l is not divisible by pd−1, since the value of
DWθϕ(M(2, l, 3)) is trivial. Therefor a

pd−1,
pd−1−1

2

= 0. Hence fd|Md+1
= 0.

We can define the following map h : ⟨τ1, τ2, τ3, τ4, τ5⟩(≤d)
C →M/Md+1,

h(
∑

σiφi) = [
∑

σiH2 ∪φi H2] (σ ∈ C),

where ⟨τ1, τ2, τ3, τ4, τ5⟩(≤d)
C is space over C freely spanned by the product of

less than d + 1 of τ1, τ2, τ3, τ4, τ5 ∈ M1 and the product φ, there exists a
Brieskorn manifold M(2, l, 3) such that a Heggarrd splitting H2 ∪φ H2. Map

h : ⟨τ1, τ2, τ3, τ4, τ5⟩(≤d)
C →M/Md+1 is surjective, and ⟨τ1, τ2, τ3, τ4, τ5⟩(≤d)

C has
a finite dimension. Hence M/Md+1 is finite dimensional vector space. ”The
whole finite type invariant space of degree d” has finite dimensional space be-
cause this space is the dual vector space ofM/Md+1.

5 Relations between quandle shadow cocycle in-
variants and finite type invariants

Quantum invariants are defined via R-matrices, one of which, in general, yields
one invariant. These invariants are here defined alternatively via vector space
“V ” over C representing a Lie algebra “g”. For each representation “V ′” of “g”,
a quantum invariant group Uq(g) is given by transforming “g” and a represen-
tation of Uq(g) is given by transforming the representation “V ′”, from which an
R-matrix is derived. A knot invariant obtained by using this R-matrix is called
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a quantum (g, V ′) invariant. By using this construction, many polynomial in-
variants of knots are classified via quantum invariants.

While the concept of quantum invariants helps generally understand many
polynomial invariants, we realize again that there exist a great number of poly-
nomial invariants, in fact, almost as many as Lie algebras and their represen-
tations. Since there are too many to study each, we have decided to adopt the
concept of ‘finite type’ invariants which allows us to examine quantum invariants
by classifying them according to shared characters.

In this section, as shown in the figure below, we find a relation between the
2 types of invariants described above, which were thought to have no relation
to each other at all. In particular, we find that, as regards trivial quandles,
finite type invariants can be obtained by using shadow cocycle invariants, and
thus this is expected to have applications to surface links and low-dimensional
manifolds in the future.

Quantum invariants
Lemma 6.1, 6.12 // Quandle (shadow) cocycle invariants

Theorem5.1,5.7ttiiii
iiii

iiii
iiii

i

finite type invariants

Weight system[P]

iiRRRRRRRRRRRRRR

5.1 Main theorems and Proofs of quandle 2-cocycle in-
variants version

We give the results of Theorems of a quandle 2-cocycle version, and we find
that, as regards trivial quandles, finite type invariants can be obtained by using
quandle 2-cocycle invariants.

Let C⟨X⟩ be vector space over C freely spanned by a finite quandle X and
furthermore let n be |X| and f ∈ H2(X;Z) be a quandle 2-cocycle and let L

be an oriented link and b ∈ Bm be a braid whose closure b̂ is isotopic to L and

let D be a diagram of L. We fix t ∈ C \ {0}. We assume that b = σ
(1)
s1 · · ·σ

(l)
sl ,

where the σ
(1)
s1 , · · · , σ

(l)
sl are generators of a braid group Bm.

Theorem 5.1. Let X be a trivial quandle. Then a coefficient of ℏd in Φf (L) ∈
Z[t±]|t=eh is a finite type invariant of degree d.

Remark 5.2. For connected and finite quandles, (shadow) cocycle invariants
of an integer coefficient Z are trivial. An Alexander quandle is not a connected
quandle.

Theorem 5.3. The value of a coefficient of degree 0 is the coloring number of
trivial quandles.

Theorem 5.4. The value of a coefficient of degree 1 is the cocycle invariant of
trivial quandles.

The following Lemma is a well-known fact, [cf.Remark 2 [E1]] and [ cf.Remark
2.2. [E2]].
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Lemma 5.5. Given R : ai⊗aj → tf(ai,aj)aj⊗(ai∗aj) for any ai, aj ∈ C⟨X⟩, we
obtain a representation ψm : Bm → End(C⟨X⟩⊗m) defined by map (1). Then,

Φf (L) = trace
(
ψm(b)

)
.

Remark 5.6. A matrix R and its inverse R−1 are associated with positive
and negative crossings of D respectively. However, we substitute eℏ for the
parameter of R−R−1. R−R−1 is not always divisible by ℏ.

Proof of Theorem 5.1. (We show the following proof of [BL] and [Corollary 7.5
[Oh2]].) Let a diagram of L be D. In the constitution of quantum invariants, a
matrixR and its inverseR−1 are associated with positive and negative crossings
of D respectively. When ℏ = 0, these matrices coincide, and therefore, R−R−1

is a matrix entry which is divisible by ℏ in C[[ℏ]]. This difference is related to
double points of a singular link which occur with the definition of finite type
invariants. Recall that we calculate a quantum invariant of singular knots by
regarding a matrix R at a singularity as R − R−1. Lemma 6.1 shows that a
trace(ψm(b)) = Φf (L) and a trace(ψm(b)) are composed by the product of the
matrix R. Therefore, in case L is a singular link with exactly d + 1 singular
points, trace(ψm(b)) = Φf (L) ∈ Z[t±]|t=eℏ is divisible by ℏd+1. Hence, for such
singular links, the coefficient of ℏd is equal to 0. Here, “be divisible” means
“can be treated as power series of ℏ and t = eℏ = 1 + ℏ + 1

2ℏ
2 + · · · .” In

addition, the singular point of trace(ψm(b)) for the singular link L corresponds
to R−R−1.

Proof of Theorem 5.3. The coefficient of degree 0 of finite invariants is a value
obtained when ℏ = 0 is substituted. When ℏ = 0, linear map R is as follows;

R(
n∑

j,k=1

cjkaj ⊗ ak) =
n∑

j,k=1

cjkak ⊗ aj

A matrix R is a matrix of a value 0 or 1, and through this set-theoretic Yang-
Baxter equation, we obtain a trivial quandle-coloring number.

Proof of Theorem 5.4. The coefficient of degree 1 of finite invariants is calcu-
lated by a value obtained when linear map R is once differentiated from ℏ and
0 is substituted for ℏ. When ℏ = 0 after linear map R is once differentiated by
ℏ, linear map R′|ℏ=0 is as follows;

R(
n∑

j,k=1

cjkaj ⊗ ak) =
n∑

j,k=1

cjkt
f(aj ,ak)ak ⊗ (aj ∗ ak)

R′(
n∑

j,k=1

cjkaj ⊗ ak) =
n∑

j,k=1

cjke
ℏf(aj ,ak)f(aj , ak)ak ⊗ aj

R′(

n∑
j,k=1

cjkaj ⊗ ak)|ℏ=0 =

n∑
j,k=1

cjkf(aj , ak)ak ⊗ aj
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In case of trivial quandles, the cocycle conditions are naturally met.

5.2 Main theorem and Proof of quandle shadow 3-cocycle
invariants version

Let C⟨X⟩ be vector space over C freely spanned by a finite quandle X and
furthermore n be |X| and ϕ ∈ H3(X;Z) be a quandle 3-cocycle and let L be an

oriented link and b ∈ Bm be a braid whose closure b̂ is isotopic to L and let D
be an oriented link diagram of L. We fix t ∈ C \ {0}.

Theorem 5.7. Let X be a trivial quandle. Then the coefficient of ℏd in Φϕ(L) ∈
Z[t±]|t=eh is a finite type invariant of degree d.

Proof of Theorem 5.7. By Theorem 5.1, we know that the coefficient of ℏd in
a trace(ψm(b))|t=eℏ is a finite type invariant of degree d for any X-coloring
C2 of the set of regions separated by the underlying immersed curve of D.
Hence, the coefficient of ℏd in

∑
C2

trace(ψm(b))|t=eℏ is a finite type invariant

of degree d. Proposition 6.11 and Lemma 6.20 tell us that the coefficient of ℏd
in Φϕ(L) ∈ Z[t±]|t=eℏ is a finite type invariant of degree d.

6 Appendix

Let C⟨X⟩ be vector space over C freely spanned by the finite quandle X and
furthermore let n be |X| and f ∈ H2(X;Z) be a quandle 2-cocycle and let L

be an oriented link and b ∈ Bm be a braid whose closure b̂ is isotopic to L and

let D be a diagram of L. We fix t ∈ C \ {0}. We assume that b = σ
(1)
s1 · · ·σ

(l)
sl ,

where the σ
(1)
s1 , · · · , σ

(l)
sl are generators of a braid group Bm.

Lemma 6.1. Given R : ai⊗aj → tf(ai,aj)aj⊗(ai∗aj) for any ai, aj ∈ C⟨X⟩, we
obtain a representation ψm : Bm → End(C⟨X⟩⊗m) defined by map (1). Then,

Φf (L) = trace
(
ψm(b)

)
.

Lemma 6.2 (cf.Proposition 2.3.[E2]). We define R : C⟨X⟩ ⊗C⟨X⟩ → C⟨X⟩ ⊗
C⟨X⟩ as aj ⊗ ak → tf(aj ,ak)ak ⊗ (aj ∗ ak) for any aj , ak ∈ X. Then, R is a
Yang-Baxter equation.

Proof. We obtain the relation of quandle 2-cocycle conditions of f(ai, aj)+f(ai∗
aj , ak)+f(aj , ak) = f(aj , ak)+f(ai, ak)+f(ai∗ak, aj∗ak). Hence, R satisfies the
solution of the Yang-Baxter equation (Definition 2.5) by the following formulas.

(R⊗ idC⟨X⟩)(idC⟨X⟩ ⊗R)(R⊗ idC⟨X⟩)(
n∑

i,j,k=1

ci,j,kai ⊗ aj ⊗ ak)
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=
n∑

i,j,k=1

ci,j,kt
f(ai,aj)+f(ai∗aj ,ak)+f(aj ,ak)ak ⊗ (aj ∗ ak)⊗ ((ai ∗ aj) ∗ ak).

(idC⟨X⟩ ⊗R)(R⊗ idC⟨X⟩)(idC⟨X⟩ ⊗R)(
n∑

i,j,k=1

ci,j,kai ⊗ aj ⊗ ak)

=
n∑

i,j,k=1

ci,j,kt
f(aj ,ak)+f(ai,ak)+f(ai∗ak,aj∗ak)ak ⊗ (aj ∗ ak)⊗ ((ai ∗ ak) ∗ (aj ∗ ak)).

We know that map R is the solution of the Yang-Baxter equation as shown by
the following figure 15.

Figure 15: Yang-Baxter equation

Lemma 6.3. Map R is linear map.

Proof. For any r ∈ C, we obtain an equation rR(
∑n

j,k=1 cj,kaj⊗ak) =
∑n

j,k=1 rcj,kt
f(aj ,ak)ak⊗

(aj ∗ ak). For any
∑n

j,k=1 cj,kaj ⊗ ak,
∑n

j,k=1 c
′
j,kaj ⊗ ak, we obtain equations

R(
∑n

j,k=1 cj,kaj⊗ak+
∑n

j,k=1 c
′
j,kaj⊗ak) =

∑n
j,k=1(cj,k+c

′
j,k)t

f(aj ,ak)ak⊗(aj ∗
ak) = R(

∑n
j,k=1 cj,kaj ⊗ ak) +R(

∑n
j,k=1 c

′
j,kaj ⊗ ak).

Lemma 6.4. R(C⟨X⟩ ⊗ C⟨X⟩) = C⟨X⟩ ⊗ C⟨X⟩.

Proof. R(
∑n

j,k=1 cj,kaj⊗ak) = 0. We know that aj⊗ak is linearly independent
for any j, k and t ̸= 0 therefore cj,k = 0 for any j, k. Hence the linear map R is
injective. KerR = {0} if and only if dimKerR = 0 if and only if dimR(C⟨X⟩ ⊗
C⟨X⟩) = n2 if and only if R(C⟨X⟩ ⊗ C⟨X⟩) = C⟨X⟩ ⊗ C⟨X⟩.

Definition 6.5. Let R be a Yang-Baxter regular matrix representation for the
basis a1 ⊗ a1, a1 ⊗ a2, · · · , an ⊗ an of the linear map R by Lemma 6.2, 6.3 and
6.4.

Lemma 6.6. There is a single non-zero entry in each row and in each column
of R.
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Proof. If there were two elements or more in a column, this would be inconsistent
with the definition of R: R(aj⊗ak) =

∑n
l,m,n=1 t

f(am
j ,an

k )al⊗am = tf(aj ,ak)ak⊗
(aj ∗ ak).

There can not be two elements or more in a row, as this would be inconsistent
with “there is a single element in each column” and “R is a one-to-one mapping.”
Hence, if R(aj ⊗ ak) = tf(aj ,ak)ak ⊗ (aj ∗ ak) = tf(am,an)am ⊗ (am ∗ an) =
R(am ⊗ an), then aj ⊗ ak = am ⊗ an.

Lemma 6.7. Let

R =


R11 R12 · · · R1n

R21 R22 · · · R2n

...
...

. . .
...

Rn1 Rn2 · · · Rnn

 ,

where the Rjk are n× n matrices. We obtain a formula traceRjk = δjk.

Proof. The definition of map R shows that tf(aj ,ak)ak ⊗ (aj ∗ ak) becomes one
of the elements of a matrix Rjk. Therefore the value on the diagonal of an Rjj

matrix occurs, which is t±f(aj ,aj) = t0 = 1. When j = k, traceRjk = 1. When
j ̸= k, traceRjk = 0.

Lemma 6.8. trace2
(
(idC⟨X⟩ ⊗ E) · R±) = idC⟨X⟩, where

idC⟨X⟩ =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

...
. . .

0 0 0 · · · 1︸ ︷︷ ︸
n columns


 n rows

and E ∈ End(C⟨X⟩) is a unit matrix.

Proof. We calculate a diagonal element ofRjk. We obtain an equation traceRjk =
δjk by Lemma 6.7.

trace2
(
(idC⟨X⟩⊗E)·R±) =


traceR11 traceR12 · · · traceR1n

traceR21 traceR22 · · · traceR2n

...
...

. . .
...

traceRn1 traceRn1 · · · traceRnn


±

= idC⟨X⟩.

Lemma 6.9 (cf.Remark 2.2.[E2]). Φf (L) = trace(ψm(b)).
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Proof. We fix one coloring for b̂ of a closure of b, and apply the element of a
coloring in the upper ends and lower ends of b to ap1 , · · · , apm . By this, we
obtain one value of ap1

⊗ · · · ⊗ apm
. Since we put the following two maps g,g′,

g : {X−coloring of b̂} → {ap1 ⊗ ap2 ⊗ · · · ⊗ apm}

g′ : {X−coloring of b̂} → {a∗p1
⊗ a∗p2

⊗ · · · ⊗ a∗pm
}

Let ap1 , ap2 , · · · , apm be elements of a quandle and we obtain one coloring in

the upper ends and the lower ends of b̂. And If two colorings c ∈ C and c′ ∈ C
are equal, then ap1 ⊗ ap2 ⊗ · · · ⊗ apm = a′p1

⊗ a′p2
⊗ · · · ⊗ a′pm

, and thus ap1 =
a′p1

, ap2 = a′p2
, · · · , apm = a′pm

. Therefore c = c′. Hence the maps g, g′ are
bijective. Therefore, the sum given by fixing the weight at the crossings and by
using a coloring is equal to a value given by calculating a trace(ψm(b)).

trace(ψm(b)) =
n∑

p1,··· ,pm=1

(a∗p1
⊗ · · · ⊗ a∗pm

)(ψm(σ(1)
s1 ) · · ·ψm(σ(l)

sl
)ap1 ⊗ · · · ⊗ apm)

=

n∑
p1,··· ,pm=1

(a∗p1
⊗ · · · ⊗ a∗pm

)(ψm(σ(l)
sl
) · · ·ψm(σ(1)

s1 )ap1 ⊗ · · · ⊗ apm)

=
∑
C

(g′(X−coloring of b̂))(ψm(σ(l)
sl
) · · ·ψm(σ(1)

s1 )g(X−coloring of b̂))

=
∑
C

l∏
x=1

tWϕ(x;C) = Φf (b̂) = Φf (L)

Proof of Lemma 6.1. We obtain an equation trace2
(
(idC⟨X⟩⊗E) ·R±) = idC⟨X⟩

from Lemma 6.8. Recall that a trace(ψm(b)) is an isotopy invariant of L by
Theorem 2.6. This invariant is an isotopy invariant of L by using an R-matrix.
Let C be a coloring of L by a fixed finite quandle X. By Lemma 6.9, we have

Φf (L) = trace(ψm(b)).

Hence, the 2-cocycle invariants are isotopy invariants of L derived from an R-
matrix.

Let C⟨X⟩ be vector space over C freely spanned by a finite quandle X and
furthermore n be |X| and ϕ ∈ H3(X;Z) be a quandle 3-cocycle and let L be

an oriented link and b ∈ Bm be a braid whose closure b̂ is isotopic to L and
let D be an oriented link diagram of L. We fix t ∈ C \ {0}. We assume that

b = σ
(1)
s1 · · ·σ

(l)
sl , where the σ

(1)
s1 , · · · , σ

(l)
sl are generators of a braid group Bm.

Definition 6.10. Let the coloring C1 be an arc coloring, and every time we fix
one arc coloring, the coloring of the set of regions separated by the underlying
immersed curve of D becomes one fixed map. Let the coloring C2 be a coloring
of the set of regions, and every time we fix one arc coloring, we get some colorings
of the set of regions, which are given by map C2.
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Proposition 6.11.

Φϕ(L) =
∑
C2

∑
C1

∏
x

tWϕ(x;C1,C2)

Proof. An X-shadow coloring C is a combination of an arc coloring C1 and a
coloring C2 of the set of regions separated by the underlying immersed curve
of D. Therefore, we have the following table 16. When we give a coloring to

Figure 16: table of X-shadow coloring

the outermost area of a link diagram D, one X-shadow coloring is decided.
The coloring C2 is considered to be the whole coloring (of the outermost area).
Hence, Φϕ(L) =

∑
C

∏
x t

Wϕ(x;C) =
∑

C2

∑
C1

∏
x t

Wϕ(x;C1,C2).

The following Lemma is a well-known fact, but the proof is in a paper for
the first time [cf. Remark 2 [E1]] and [ cf. Remark 2.2. [E2]].

Lemma 6.12. Given R : aj ⊗ ak → tϕ(ai,aj ,ak)ak ⊗ (aj ∗ ak) for any aj , ak ∈
C⟨X⟩, we obtain a representation ψm : Bm → End(C⟨X⟩⊗m) defined by map
(1). Then,

Φϕ(L) =
∑
C2

trace
(
ψm(b)

)
.

Lemma 6.13 (cf.Proposition 2.3.[E2]). We define R : C⟨X⟩⊗C⟨X⟩ → C⟨X⟩⊗
C⟨X⟩ as aj ⊗ ak → tϕ(ai,aj ,ak)ak ⊗ (aj ∗ ak) for any aj , ak ∈ X, and ai ∈ X is
fixed when we fix one arc coloring C1 of D. Then, R satisfies the Yang-Baxter
equation.

Proof. We obtain the relation of quandle 3-cocycle conditions of ϕ(ai, aj , ak) +
ϕ(ai ∗ ak, ai ∗ ak, al) + ϕ(ai, ak, al) = ϕ(ai ∗ aj , ak, al) + ϕ(ai, aj , al) + ϕ(ai ∗
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al, aj ∗ al, ak ∗ al).Hence, R satisfies the solution of the Yang-Baxter equation
(Definition 2.5) by the following formulas.

(R⊗ idC⟨X⟩)(idC⟨X⟩ ⊗R)(R⊗ idC⟨X⟩)(
n∑

j,k,l=1

cj,k,laj ⊗ ak ⊗ al)

=
n∑

j,k,l=1

cj,k,lt
ϕ(ai,aj ,ak)+ϕ(ai∗ak,ai∗ak,al)+ϕ(ai,ak,al)al ⊗ (ak ∗ al)⊗ ((aj ∗ ak) ∗ al).

(idC⟨X⟩ ⊗R)(R⊗ idC⟨X⟩)(idC⟨X⟩ ⊗R)(
n∑

j,k,l=1

cj,k,laj ⊗ ak ⊗ al)

=
n∑

j,k,l=1

cj,k,lt
ϕ(ai∗aj ,ak,al)+ϕ(ai,aj ,al)+ϕ(ai∗al,aj∗al,ak∗al)al ⊗ (ak ∗ al)⊗ ((aj ∗ al) ∗ (ak ∗ al)).

We see that map R is the solution of the Yang-Baxter equation from the fol-
lowing figure 17.

Figure 17: Yang-Baxter equation

Lemma 6.14. Map R is linear map.

Proof. For any r ∈ C, we obtain an equation rR(
∑n

j,k=1 cj,kaj⊗ak) =
∑n

j,k=1 rcj,kt
ϕ(ai,aj ,ak)ak⊗

(aj ∗ ak). For any
∑n

j,k=1 cj,kaj ⊗ ak,
∑n

j,k=1 c
′
j,kaj ⊗ ak, we obtain equations

R(
∑n

j,k=1 cj,kaj ⊗ ak +
∑n

j,k=1 c
′
j,kaj ⊗ ak) =

∑n
j,k=1(cj,k + c′j,k)t

ϕ(ai,aj ,ak)ak ⊗
(aj ∗ ak) = R(

∑n
j,k=1 cj,kaj ⊗ ak) +R(

∑n
j,k=1 c

′
j,kaj ⊗ ak).

Lemma 6.15. R(C⟨X⟩ ⊗ C⟨X⟩) = C⟨X⟩ ⊗ C⟨X⟩.

Proof. R(
∑n

j,k=1 cj,kaj⊗ak) = 0. We know that aj⊗ak are linearly independent
for any j, k and t ̸= 0, therefore cj,k = 0 for any j, k. Hence the linear map R is
injective. KerR = {0} if and only if dimKerR = 0 if and only if dimR(C⟨X⟩ ⊗
C⟨X⟩) = n2 if and only if R(C⟨X⟩ ⊗ C⟨X⟩) = C⟨X⟩ ⊗ C⟨X⟩.

Definition 6.16. Let R be a Yang-Baxter regular matrix representation for
the basis a1⊗ a1, a1⊗ a2, · · · , an⊗ an of the linear map R by Lemma 6.13, 6.14
and 6.15.
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Lemma 6.17. There is a single non-zero entry in each row and in each column
of R.

Proof. If there were two elements or more in a column, this would be incon-

sistent with the definition of R: R(aj ⊗ ak) =
∑n

l,m,n=1 t
ϕ(al

i,a
m
j ,an

k )al ⊗ am =

tϕ(ai,aj ,ak)ak ⊗ (aj ∗ ak).
There can not be two elements or more in a row, as this would be inconsistent

with “there is a single element in each column” and “R is a one-to-one mapping.”
Hence, if R(aj ⊗ ak) = tϕ(ai,aj ,ak)ak ⊗ (aj ∗ ak) = tϕ(al,am,an)am ⊗ (am ∗ an) =
R(am ⊗ an), then aj ⊗ ak = am ⊗ an.

Lemma 6.18. Let

R =


R11 R12 · · · R1n

R21 R22 · · · R2n

...
...

. . .
...

Rn1 Rn2 · · · Rnn

 ,

where the Rjk are n× n matrices. We obtain a formula traceRjk = δjk.

Proof. The definition of map R shows that tϕ(ai,aj ,ak)ak ⊗ (aj ∗ ak) becomes
one of the elements of a matrix Rjk. Therefore the value on the diagonal of an
Rjj matrix occurs, which is t±ϕ(ai,aj ,aj) = t0 = 1. When j = k, traceRjk = 1.
When j ̸= k, traceRjk = 0.

Lemma 6.19. trace2
(
(idC⟨X⟩ ⊗ E) · R±) = idC⟨X⟩, where

idC⟨X⟩ =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0

...
. . .

0 0 0 · · · 1︸ ︷︷ ︸
n columns


 n rows

and E ∈ End(C⟨X⟩) is a unit matrix.

Proof. We calculate a diagonal element ofRjk. We obtain an equation traceRjk =
δjk by Lemma 6.18.

trace2
(
(idC⟨X⟩⊗E)·R±) =


traceR11 traceR12 · · · traceR1n

traceR21 traceR22 · · · traceR2n

...
...

. . .
...

traceRn1 traceRn1 · · · traceRnn

 = idC⟨X⟩.
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Lemma 6.20 (cf.Remark 2.2.[E2]).∑
C1

∏
x

tWϕ(x;C1;C2) = trace(ψm(b)).

Proof. We fix one arc coloring C1, for b̂ of a closure of b, and apply the coloring
of the upper and the lower ends of b̂ to ap1

, · · · , apm
. By doing this, we obtain

one value of ap1 ⊗ · · · ⊗ apm . Hence, we define map g and map g′ by using the
coloring C1.

g : {X−arc coloring of b̂} → {ap1 ⊗ ap2 ⊗ · · · ⊗ apm},

g′ : {X−arc coloring of b̂} → {a∗p1
⊗ a∗p2

⊗ · · · ⊗ a∗pm
}.

Let ap1 , ap2 , · · · , apm be elements of a quandle and we have one arc coloring

in the upper ends and the lower ends of b̂. And If two colorings c ∈ C and
c′ ∈ C are equal, then ap1 ⊗ ap2 ⊗ · · · ⊗ apm = a′p1

⊗ a′p2
⊗ · · · ⊗ a′pm

, and thus
ap1 = a′p1

, ap2 = a′p2
, · · · , apm = a′pm

. Therefore c = c′. Hence the maps g, g′

are bijective. Therefore, the sum given by fixing the weight at the crossings and
by using all possible arc colorings C1 is equal to a value given by calculating a
trace(ψm(b)).

trace(ψm(b)) =
n∑

p1,··· ,pm=1

(a∗p1
⊗ · · · ⊗ a∗pm

)(ψm(σ(1)
s1 ) · · ·ψm(σ(l)

sl
)ap1 ⊗ · · · ⊗ apm)

=

n∑
p1,··· ,pm=1

(a∗p1
⊗ · · · ⊗ a∗pm

)(ψm(σ(l)
sl
) · · ·ψm(σ(1)

s1 )ap1 ⊗ · · · ⊗ apm)

=
∑
C1

(g′(X−arc coloring of b̂))(ψm(σ(l)
sl
) · · ·ψm(σ(1)

s1 )g(X−arc coloring of b̂))

=
∑
C1

l∏
x=1

tWϕ(x;C1,C2) =
∑
C1

∏
x

tWϕ(x;C1;C2).

Proof of Lemma 6.12. We obtain an equation trace2
(
(idC⟨X⟩⊗E)·R±) = idC⟨X⟩

from Lemma 6.19. Recall that a trace(ψm(b)) is an isotopy invariant of L by
Theorem 2.6. This invariant is an isotopy invariant of L by using an R-matrix.
By Proposition 6.11 and Lemma 6.20, we give

Φϕ(L) =
∑
C2

∑
C1

∏
x

tWϕ(x;C1;C2) =
∑
C2

trace(ψm(b)).

Hence, the shadow 3-cocycle invariants from R-matrices are isotopy invariants
of L.
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