Decomposition of the Mobius energy:
the Mobius invariance and variational
formulae of decomposed energies
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1 Introduction

What is the most “beautiful knot” which would represent its knot type? We
would like to find an optimal embedding of a knot transforming the given knot
with preserving its knot type. Considering electrostatic energy of a uniformly
charged knot, it will decrease by Coulomb’s repulsive force. Based on the en-
ergy, O’Hara’s energy was defined in 1991 in [18]. In order to find an optimal
embedding, we consider a variational problem for this energy. There are some
ways to solve this kind of problems, in this study we would like to use a way of
gradient flow since the energy will decrease continuously. For that we need first
and second variational formulae and L2-gradient expressions and estimates.

Let f:R/LZ > s — f(s) € R" be a closed curve in R™ with total length £,
where s is an arc-length parameter, i.e., | f'(s)|| = 1. We denote the distance
between f(s1) and f(s2) along the closed curve by 2(f(s1), f(s2)).

O’Hara [18] defined the Mobius energy £ as

1 1
e =p ff <f<sl> FealE @(f(sl>7f<52>>2> dsadse.

where p.v. [[ =lim._, 1 fﬁsl_s2|>€ is Cauchy’s principal value.

Remark 1.1 This is the original definition of O’Hara. In fact, the integration
is not a principal value since the integrand is non-negative. However, many
quantities derived from the energy, for example the variational formulae, contain
terms each of which is not absolutely integrable. Therefore, when deforming the
expression of the energy, we always deal with it as Cauchy’s principal value at
first, and investigate its absolute integrability later.

Indeed he introduced the energies

Fonlf) = //(R/Lzy (nf(sl) T @(f(sl)l,f<S2>>a>p

which are called O’Hara’s energy. The density contains the negative power of
“distance”, which implies that a minimizer, if exists, is the “canonical configu-
ration” of knots among the given knot type, even though it makes the analysis
hard.

It is easy to see that &, ;) is scale-invariant if ap = 2, including our energy
& = &E(2,1)- In mid-1990’s, Freedman-He-Wang [8] showed that £ has the invari-
ance not only under scaling but also under Mdébius transformations. Since then,
it has been called the Mébius energy. Blatt [2] found the proper domain of the
energy: E(f) < oo if and only if f is bi-Lipschitz and belongs to the fractional
Sobolev space X = H3/2 N W1, See section 2 for the definition of fractional
Sobolev spaces. Consequently we may assume the existence of the unit tangent
vector 7(s) = f(s) almost everywhere. By use of the unit tangent vector field
along the curve, the energy may be decomposed into three parts:

E(f) =&(f) + &(F) +4,

dsy1dss,



where

f = / dSldSQ,
(R/LZ)?

() = ITsy) = 7(s2)|§n

2/ f(s1) — f(s2)llgn’
2

~1f (1) — fs2) R

T(s1) - T(s2) (f(s1) = f(s2)) - T(s1)
x det < (f(s1) = F(s2)) - 7(s2) | f(s1) = F(s2)[n ) '

This was shown in [11] and we deal with the decomposition theorem in section
3. The first decomposed energy &; is an analogue of the Gagliardo semi-norm
of T in the fractional Sobolev space H'/2. This implies the domain of £ is X, as
shown by Blatt. The integrand .#5 of second one has the determinant structure,
which implies a cancellation of integrand.

In section 4 we focus on the Mobius invariance of the decomposed energy
&; studied in [11, 13]. As we said before, the energy & is called the Mobius
energy since it is invariant under Mébius transformations; this fact was shown
by Freedman-He-Wang [8]. Here 4 we give an alternative proof of this using
the decomposition. As a consequence we can show that right circles are only
minimizers of & in the class C1'! with minimum value 272. This seems to be

related to the fact that the first eigenvalue of the fractional Laplacian (—A;)?2

. (27 3
i ( 5 )

Since the last part “4” of the decomposition is an absolute constant, we
can ignore it when considering variational problem. This fact shortens the
derivation of variational formulae, and enables us to find their “good” estimates
in several functional spaces [12]. Furthermore we find the L?-gradient of each
decomposed energy which contains (—AS)% as the principal term [14]. We deal
with the variational formulae in section 5.

After discussing our results with O’Hara, he informed us that our second
energy & is the same as the O’Hara-Solanes energy E_ . up to multiplication
by a constant. The energy F_ . was first defined in [21] and they established its
Moébius invariance for sufficiently smooth f. Note that C'°° is not dense in X.

Before describing our results, we show known results such as the existence
of minimizers or regularity of critical points in section 2. We will state on
our results on the decomposition of the energy, the Mobius invariance, and
variational formulae of decomposed energies in sections 3-5 respectively. All of
them have already published or submitted; Sections 3-4 are based on [11, 13],
and section 5 on [12, 14], but some parts of proofs are improved from the original
ones.

Acknowledgment. The author expresses gratitude to Professor Takeyuki Na-
gasawa for his direction and for giving her an opportunity of joint research. As
this study, Professor Neal Bez, Professor Koya Shimokawa, and Professor Jun
O’Hara from Chiba University gave me much advice. Deep appreciation goes to
the professors. Lastly, the author also expresses her thanks for many professors
and her fellows who gave her constructive comments and warm encouragement.



2 Known results

We summarize the known results on the Mobius energy according to the article
[17].

2.1 The existence of minimizers

The existence of minimizers of the M&bius energy has been studied by several
mathematicians but it is still a difficult problem. On the other hand, we can
easily know the minimum value of this energy by simple calculation. Let S! be
a right circle (i.e., a circle with the constant curvature) whose center at origin,
radius r in the zjx2-plane

f(s) =r(cos 2,sin 2,0,---,0).
Since
1£(s1) = F(s)llfn = 20(1 — cos =1722),
and
D(f(s1), F(52))° = (51— 52)%  (|s1 — 82| < 77)

it is not difficult to see

E(f) = 4.
Freedman-He-Wang [8] showed the following.

Theorem 2.1 ([8]) It holds that E(f) > 4. The equality holds if and only of
[ is the right circle.

Several proofs of this theorem are known. We will give a new proof in section
3.

Remark 2.1 Abrams-Cantarella-Fu-Ghomi-Howard [1] generalized this fact.
Let a > 1, p € (0,2+ 1). Then the right circle is the only global minimizer of

Elap)-
Now we consider the minimizing problem in each knot type. Since the energy
£ is non-negative, there exists a minimizing sequence. However its convergence

is not trivial. The scaling-invariance of energy might allows the pull-tight phe-
nomena along the sequence.

If such a phenomena occurs, the limit knot, if it exists, is not in the same knot
type as the sequence. The energy behavior along the pull-tight for £, ,) was
studied by O’Hara [19].



Theorem 2.2 ([19]) Let a knot K. be a connected sum of a knot K and a
small tangle T.. The difference of energy D(e) = E(q p)(Ke) = E(a,p) (I) behaves
as follows in a pull-tight process T, — {a point}:

e D(e) blows up when ap > 2.
e D(g) converges to a positive constant when ap = 2.
e D(e) vanishes when ap < 2.

We call the cases ap > 2, = 2, and < 2 respectively subcritical, critical,
and supercritical. Pull-tight phenomena is the disappearance of a tangle. The
above results implies that a pull-tight may happen in critical and supercritical
cases. This shows that the argument of minimizing sequence does not work
well. Nevertheless the argument works for the Mdbius energy in prime knot
type. This remarkable result was proven by Freedman-He-Wang [8].

Definition 2.1 Let n = 3. A knot is a composite knot if it is a connected sum
of some non-trivial knots. A prime knot is a knot which is not composite.

& &

A composite knot A prime knot

Theorem 2.3 ([8]) There exists a minimizer of £ for any prime knot types.

The key is how to avoid the pull-tight along the minimizing sequence. If
the knot is prime, we can enlarge the tangle by the inversion with respect to
a sphere near the shrinking tangle without changing energy level. They passed
the limit of minimizing sequence together with, if necessary, enlarging tangle,
and showed the limit knot is a minimizer in given knot type. If the knot is
composite, two tangles might shrink simultaneously. Hence such a method does
not work.

The argument of minimizing sequence works in the subcritical case. Indeed
O’Hara [20] showed the following result.

Theorem 2.4 ([20]) Let n = 3. There exists a minimizer (under rescaling)
for any knot types if and only if ap > 2.

2.2 The Kusner-Sullivan conjecture

Let n = 3, and [K] be a knot type. We denote

E(K]) = inf E(F)

Note that £([K]) exists, since the energy density is non-negative.
Kusner and Sullivan [15] investigated the energy £ for various knots numer-
ically, and proposed the following conjecture.



Conjecture 2.1 (The Kusner-Sullivan conjecture [15])
1. There does not exist minimizers of composite knot type.

2. Assume that f € [K] is composite, and it is a connected sum fif§ fo,
fi €Ki fori=1,2 (we say [K]| = [K1]§[K2]). It holds that

E([K]) = E([K]) + E([K2)).
As far as the author knows, this is still open.

2.3 The bi-Lipschitz continuity

Since the Mobius energy was introduced to determine the “canonical configura-
tion” of knots, we expect that the finiteness of energy suggests some regularity
of the curve. Indeed we have the bi-Lipschitz estimate for the curve with finite
energy, which means that the curve cannot bend sharply.

Since we use the arc-length parameter, the estimate

1£(s1) = fs2)llen < Z(£(51), f(s2))

is trivial. That is, f is Lipschitz continuous with the Lipschitz constant 1. On
the other hand, the finiteness of £ implies the converse estimate.

Theorem 2.5 ([20, 2]) If £(f) < M, then there exists A = A(M) > 0 such
that

1£(s1) = F(s2)l[rm = AZ(f (1), f (s2))-

We call f is bi-Lipschitz if f satisfies these both estimates. From this the-
orem, it is natural to assume that f is bi-Lipschitz when the Mobius energy is
finite.

2.4 The regularity of critical points

The bi-Lipschitz continuity holds for all curves with finite energy. The criticality
of energy derives more informations about regularity. Several results are known.
For example, Freedman-He-Wang [8] and He [9] showed the regularity of local
minimizers.

Theorem 2.6 ([8, 9]) Local minimizers of £ with respect to L topology are
smooth.

Reiter [23] proved the regularity not only for local minimizers but for critical
points.

Theorem 2.7 ([23]) Any critical points of £ in W22 are smooth.

Recently Blatt-Reiter-Shikorra [7] relaxed the assumption of the previous
result.

Theorem 2.8 ([7]) Any critical points of £ with finite energy are smooth.



The finiteness of energy implies not only bi-Lipschitz continuity but also the
integrability of (fractional) derivatives.

Definition 2.2 (Sobolev-Slobodeckij space) For j € NU {0}, and a €
(0,1), WiteP(R/LZ,R™) is defined as

WIHOP([R/LZ,RY) = {f € WIP(R/LZ,R™) | [fV]a,p < 00},

1
& £ ) 3
). / / 1£D 51+ 52) = £ (1) dsyds,
R/LZ |sa|optt

with the norm

£ lwsor = Flwse + [Fap-
When p = 2, we denote Wit®2 py Hite,

The following result is due to Blatt [2].

Theorem 2.9 ([2]) The finiteness E(F) < oo implies the bi-Lipschitz continu-
ity of f and f € H3?(R/LZ) N WV*(R/LZ). The converse is also true, i.e.,
if f is bi-Lipschitz and belongs to H3/2(R/LZ) N WY(R/LZ), then E(f) is
finite.

This shows the proper domain of £.

Remark 2.2 In fact Blatt [2] considered the general cases. Let (o, p) € (0, 00)?
satisfy ap > 2, a > 1, (o — 2)p < 1. Then &, ,)(f) is finite if and only if

fe e W 20(R/LZ) N WH(R/LZ) and bi-Lipschitz continuous.

2.5 The gradient flow
Let 072 be the L2-gradient:

(0r2&(f), D) r2m/r2) = d%g(f +eo)
=0

For the explicit formula of the L2-gradient, see subsection 5.4 or [14]. Consider
the L?-gradient flow:

0.f = —002E(f).

The local existence and uniqueness of the L?-gradient flow was shown by He [9]
for smooth initial data, and improved by Blatt [3] for the initial curve in the
little Holder space.

Theorem 2.10 ([9]) Let the knot f, be smooth. Then there exists a unique
local solution to the L*-gradient flow with £(0) = f,

Theorem 2.11 ([3]) Let f, € h®T%, where h®T% is the little Hélder space of
order 2 + a. Then there exists a unique local solution to the L?-gradient flow

with f(0) = fy.

Blatt [3] also showed the global existence near local minimizers.



Theorem 2.12 ([3]) Let f, be a local minimizer of £ in C* for some k €

{0} UN. Assume ||f(0) — f.|lc2+s < 1. Then the L*-gradient flow with the

initial knot f(0) exists globally in time. f(t) has the limit tlim ft) = fo, and
(o)

f oo is a critical point satisfying E(f,) = E(fo)-

007

Blatt showed the following Lojasiewicz-Simon gradient estimate in his paper.
Let f, be a critical point. Then there exist 6 € |0, %], o > 0, ¢ > 0 such that
| f — f.llgs <o implies

E(F) = EFINT < clldr=E(F)lI1

The assertion of global existence follows from Lojasiewicz’s argument. It is still
open whether the limit curve f_ is the image of some Mdbius transformation
of f, or not.

For the case of n = 2, then the L2-gradient flow exists globally in time, and
converges to a right circle, i.e., to a global minimizer.

Theorem 2.13 ([4]) Let f(0) be a planar curve. Then there exists a global
solution to the L?-gradient flow with the initial knot f(0) such that

F(t) — S*(a right circle) as t — oo.

Blatt kindly informed the author his result of gradient flow for the subcritical
case.

Theorem 2.14 ([5]) For £ p) with p > 2 it holds that

1. there exists a global solution of length-constraint-gradient flow for any
smooth initial knots,

2. the flow converges to a critical point.

3 The decomposition theorem

In this section we show the decomposition theorem of the Mobius energy, which
has already been proved in [11].

At a point where f is differentiable, we denote the unit tangent vector by
7 = f'. Similarly & = 7’ stands for the curvature vector at a point where f is
twice differentiable.

Theorem 3.1 ([11], Theorem 2.1) Let f € X and suppose that there exists
a positive constant \ such that || f(s1) — f(s2)||gn > A"22(f(s1), f(s2)). Then
the energy E(f) may be decomposed as

E(f) =&(f) +&(F) +4,



where

f = // dsldSQ,
(R/LZ)?

() = Jrls) = T(s2)lE.

2[1£(s1) = fs2)l%-
2

~ 17 (s — Fls)lIE
T(s1) - T(52) (f(s1) — f(s2)) - T(s1)
X det ( (F(s1) — Fs2)) - T(s2)  |IF(s1) = F(s2)[12n ) '

Moreover, each #;(f)(i =1,2) is absolutely integrable.

Proof. As we said in the Introduction, to deform the energy density, we first
consider the integration in the sense of Cauchy’s principal value, and show the
absolute integrability later. We differentiate

2 | (51— 52) (51 <sp <81+ % (mod £)),
‘@(f(sl)a.f(SQ)) - { (81 — 89 +L)2 (31 + % <s53<s1+L (HlOd E))

with respect to so. In the sense of distributions,

d 1
— log|z| = p.v.—,
x

dx
and therefore
9 _J —pwv Slisz (s1<sp<s1+% (mod L)),
8 5 log @(f( ) f(SQ)) - { _p'V'51—512+£, (81 + % < S92 S s1 + L (mod ﬁ))

Here, the distribution p.v.% is given by

for p € C§°(R) (see [16]). Using the periodicity of 2(f(s1), f(s2)), this equals

0 [ —p.v. Sl_slz_ﬁ (s2+%£<s1<sy+L (mod L)),
Dso log 7(f(s1), f(s2)) = { —p.v.slis2 (s2 < s1 <82+ % (mod L)).

Regarding this as a distribution of sq, it is differentiable for s; # s + £/2 in
the weak sense and we obtain

o2 pV.—Lt—r  (s2+5<s1<sa+L (mod L))
1 _ (s1—82—L) 2 )
551953 og 2(f(s1), f(s2)) { p.V.ﬁ (s2<s1<s2+%) (mod L)
1

PV (F (), Fs2))?

As a function of sg, a%Zlog 2(f(s1), f(s2)) has a jump discontinuity at sy =
s1 + L£/2 with gap —4/L; that is,

i -Llog D(f(s), fls2) = lim 2 log D(F(s), F(52) = —

4
s2—s1+540 0s2 s2—s1+5-0 089 L



As functions of sa, #:382 log || £(s1) — f(s2)|[rn is bounded at sy = s; &+ %, and

1£(s1) = f(s2)[lrn

651 log || f(s1) — f(s2)||gn is continuous at the same points. Therefore we get
/ TP
52
€<‘817$2|§% @(f(81)7 f(SQ))2
1
= lim ds
5540 Jepor—sal< g5 P(F(s1), F(52))2
62
=1l 1 d
5510 c<lsi—ss| <55 05108, & 2 (f(51), F52) o
82
= 1li — (1 - n—1
O B GRS

32
= / log || f(s1) — f(s2)|lrn ds2

€<|51—52‘S% 88165
[ (s1) — f(&)lw}”‘sl_a
(sl)af S ))
1) —

s1) = F(s9) e ]+5
I(f(s1). £ (s2))

log [ £(s1) — f(s2) e ds:

2(f
1£(

§—+0 [851 sa=s1—L+5

N 51~1>+O |:881 1

So=81+¢€

32
/5<|3152<‘2: 881682
||f(81)—f(82)lwr2=“+6 4

+ |:881 10g @(f(sl)v f(SQ)) Sp=81—¢ L

We integrate this with respect to s; and firstly note that

1F(s1) — Flsa) e 177
/W {asll 8 o(f (1), £(s2)) } s

82=81—¢€

_ /R/LZ [(f(31) — f(s2)) - 7(s1) 1 rz=sl+s

170 — Fls2) B 51— 52 s

S2=81—¢€

P(f (1), f(s2))

/ F(s1+¢)-71(s1) (f(51) = f(s1—¢))-
R/LZ ||f 81

7'(51) 2 s
f(s1+2)llRn 1£(s1) = F(s1 = &)l }d '

)

||f s1) = f(s1+)lgn 1 (s1+€) -
2(f(s1+¢) -

/ /LT,
e

g | (s1) — Fs1 + ) +

=

1
(Ilf (s1+¢) — Fls1)|En )

{7
-/ { sl+e>> T(s1)  (fls1+e) = Fls1)-
R/LZ
{ 1751 +) -
-

s1+¢€
g FeOE / (1= (ea)- T(Sl”d*’} s

10

) d82

T(s1 +¢€) 2} <
IO

f(s1)) - 7(s1) 2}
+ - d51

F(s)lzn



We have

> <||f(81 e (o 1)’

2e s1+e s1+e
= 2| f(s1+¢) — f(s1)2a /Sl /51 (1 —7(s3) - 7(54)) dszdsy

1 site psite
T elf(s1+e) — Fls)lEn /31 /S1 |7 (s3) — T(s4)

and using estimate || f(s1 +¢€) — f(s1)|lrr > A7'e, along with a change in the
order of integration, we obtain

1 s1+e  psite ,
/R/EZ ellf(s1+¢e)— f(s1)l2 / / [[7(s3) — 7(s4)||Rn dszdsadsy
noJ8 S1

)\2 s1+¢€ s1+e
é 73/ / / ||T(83) - T(S4)||]§nd83d84d81
R/LZ
S4+€
S3 / / / ||T 83) - T(84)||]Rn dsidssdsy
R/LZ J sy s3
Sa+e€
= / / ||T 83 - 7(54)H]Rnd83d84
R/LZ J sy

Sa+€
< AQ/ / ||T s3) 7(54)”%"61 dss.
R/LZ J sy 2(f(s3), f(s4))

Since - » )H
T 53 T(84)||lgn

1/2 d d

i / / ez Do), Flan)? 200

is finite, the absolute continuity of 1ntegrat10n yields

1 s1+e  psite ,
fim / / / |7 (s3)—7(54)||gndssdsads; = 0.
e—+0 R/LZ E”f(Sl + 5) (Sl)H]l%" s1 s1 R

Similarly we have

2
Rn d$3d84

2 s1te
/]R/LZ | f(s14+¢)— F(s1)|3 / (1 —7(s3) - 7(s1)) dszds;

Rn Jsy

7/ ; /Slﬂ |7 (s3) — T(s1) || dsads
- r/cz |1 F(s14+¢) = f(s )H]%gn 3 1)llgn @53G51

s1+e€
< )\2/ / ||7' s3) — 7(s1) |3~ dsadsi 0 as & — 40.
R/LZ J sq

P(f(s3); f(s1))?

Hence we obtain

H ( ) f(82)||Rn:|s2—51+6
/W [&ﬁlg PFED f(52) Sy 0702 70

which leads to the expression

1 o
D=vv [[ (e e ~ saw 1) = Fsallee ) dovdsa

11




Manipulating the above log term, we obtain

P // W)Q { ||1f: o <s§>‘7§n

61) = Fls)) - ()} {(F(s2) — Fls2) - 7(s2))
3.1) 17051) — F(s2) }d51d52'

The density of this integral is expressed as

L+ 7(s1)-7(s2)  2{(f(s1) = f(s2)) - T(s1)} {(f(s1) = F(s2)) - T(s2)}

1£(s1) = Fls2)lEn 1£(s1) = £ (s2) I
_ 1o7(se) - 7s2) | 27(s1)  T(s2)llF(s1) = F(s2) e
1£(s1) = £(s2) I 1£(s1) = £(52) I

A1) = f(s2)) - T(s)H(F(s1) — f(s2)) - T(s2)}
[ f(s1) — f(s2)l[&n

_ lim(s1) = T(s2)lI2
2| f(s1) — f(s2)l13n
2 7(s1) - T(s2) (f(s1) — f(s2)) - T(s1) >

- £ (s1) — F(s2)llfn det ( (f(s1) = f(s2)) - 7(s2) [ f(s1) = F(s52)[n
= M\ (f) + A(f)

and it remains to remove p.v. in front of the double integral in (3.1). To this
end it is enough to see

A(F) + Ao(f) =0

We use the notation A to mean the difference between values at s = s; and sq
of a function v on R/LZ:

As =381 — 83, Av=1v(s1)—v(s2).

We note that the difference operator As is different from Ag, which we have
defined as the Laplace operator. By using the Lagrange formula, we have

///2<f>=wz||ﬂzw<(f<8> ||AAfJ|c|Rn) (T(”“nAAffmn»’

where A is the wedge product of vectors, and (-, -) is the inner product on /\2 R™.
It is easy to see for any two vectors , y € R and any unit vector e € R™ that

((ne),(yne)=(Prz)- (P y),

where
Px=(x-ele, Plx=x— P.x.
Therefore 5
Mo(f) = W(Pﬁf"'(sl)) - (Pgy7(s2)),
Rﬂ,
where Af
Rf=—r—.
|AF|rn

12



On the other hand, the first density is

1AT|En
2 |AfIE

R

M (f) =

Consequently we obtain

2| Af|&n (A(F) + Aa(F))
= [|AT|&n + 4(Prs7(51)) - (Pip7(s2)
= |Prs AT |Ze + | PryATI[Rn + 4(Pry7(s1)) - (Pry7(s2))
= |Prs AT [n + [ Pry(T(s1) + 7(52)) |2,

which is non-negative and then the non-negativity of ., (f) + .#5(f) is shown.
Finally we show the absolute integrability of each .#;(f). The integrand
A (f) is non-negative and

I (s1) — 7(s2)]2
d d — dsid
/@R/w/’(f s1ds2 < //R/W D(F(s0). ()2 P10

= 7[.f}H1/2 < o0,

2
which shows the absolute integrability of .#(f). Both .#,(f) and 4\ (f) +
AM(f) are absolutely integrable, hence so is .#2(f). O

Remark 3.1 The proof of non-negativity of .# (f)+.#>(f) in [11] is improved
here.

Remark 3.2 O’Hara kindly informed the author that if f is sufficiently smooth,
then (3.1) can be shown by using the cosine formula [15].

As a consequence of the non-negativity of #1(f) + #2(f), we can give a
new proof of Theorem 2.1.

Proof of Theorem 2.1. From the non-negativity, £(f) > 4. Furthermore
E(f) =4 holds if and only of 1 (f) + #>(f) = 0. This is also equivalent to

PrAT =0, Pﬁf(T(sl) + 7(s2)) = o.
In particular from the second relation we find a function g such that

(3.2) F(s1) — F(s2) = p(s1,82)(7(51) + 7(s2)).

Since a minimizer is smooth, so is u. We differentiate the above relation three

13



times with respect to s; to obtain

(3.3)

T(s1) = g (s152) (750) + 7(52) + o1, 52)R(51),
(3.4)

2

n@n—Zgwhﬁwﬂa»+ﬂ@»+2gymwgaﬁr+Maﬁﬁ#@m

(3.5)
) O Oy
K'(s1) = 878%(81782) (T(s1) +7(s2)) + 367%(81’ 52)K(s1)

0
+ 35 (1, 32)R (1) + plsr, 52)” (51).

Putting s1 = s2 = s in (3.2)—(3.5), we have

7 o 1 9 B
/L(S,S)—O, 6781(5’5)7 53 87‘9%(575)*07
and
3
(3.6) K (s) = —a2 (5 $)7(s).

ds3
Taking the inner product between each side of (3.6) and k(s), we know

(I(s)]3.)" = 0.

Therefore ||k(s)||rn is independent of s, and we write it k. If K = 0, then
7'(s) = Kk(s) = o, and therefore 7(s) is a constant vector. It is impossible
because f is a closed curve. Consequently x > 0. Taking the inner product
between each sides of (3.6) and 7(s), we know

—4@(5, 5) = K/(s) 7T(s) = —k(s) - K(s) = —K>.

ds3
Inserting this into (3.6), we obtain
K'(s) 4+ k*7(s) =0

for every s € R/LZ. Since 7(s) = f'(s), there exists a constant vector ¢ such
that

(3.7 k(s) +k? (f(s) —c) = o.
Integrating with respect to s on R/LZ, and deviding by £, we find

1

c=—
L Jrcz

(s)ds.

We can rewrite (3.7) as the second order differential equation

(f(s) =)' +K*(f(s) —c) = 0.

14



The solution is

sin ks

f(s)—ec=(f(0) —c)cosks + 7(0),

that is, f is a right circle with center ¢ and radius ~!. Since the total length

L
is £, the radius is k1 = —. (I
2w

4 The Mobius invariance

In this section we discuss the invariance of £ under Mobius transformations.
The results and proofs have been published in [11, 13].

The invariance under dilation can be easily shown. In subsection 4.1, we
show the invariance of the sum &; + £ under the inversion

(o)
Fop=ct .

with respect to the sphere with center ¢ and radius r. Note that we assume
neither the finiteness of energy £(f) < oo nor f(R/LZ) > c. Indeed we show
the invariance of the sum of measures (.# + .#5) ds1dss. This fact was shown
by Freedman-He-Wang [8] for f which are parameterized by arc-length, and
here we present an alternative proof. We discuss the invariance of each &; under
the inversion assuming the finiteness of energy and ¢ ¢ f(R/LZ) in subsection
4.2. We deal with the case ¢ € f(R/LZ), and show the invariance under the
assumption f € CHYR/LZ).

4.1 The invariance of the sum of energies

In this section we show the invariance of (.4 +.#5) ds,dss and as a consequence
the invariance of the sum of energies follows. First we note

(s () 2(AF-r(s0) (AF - (s2)
D) D) = —gFE AAL

Even if s is an arc-length parameter for f, it is not necessarily so for p. Therefore
we use a general parameter § instead of s, and the energy density with respect
to d91d92 is

(M(F) + A(F)) |1 F (1) [z |1 F (62) 120
_ NF @) e [1F (62) rm + F(81) - £(82)
1£(01) = F(62)l[n

+ 5 (g 081760 - 62112 ) (55 oz 1£00) - F0)1R. ).

Here f means the differentiation of f with respect to the general parameter,
and similarly for other functions.

Theorem 4.1 ([11], Theorem 3.1) Let

o o
R

15



be an inversion with respect to the sphere with center ¢ and radius r. Then,
(A (f) + A(F)I1F 1) || F (62) [

(4.1) = (\(p) + A#2(p)) |P(61) I~ [P(62) [ = O

holds for 81 and 05 such that

f(1) # f(62), f(0:)#c (i=1,2)

Proof. We decompose the difference between the density for f and that for p
as follows:

(ML(F) + Ao(F)) | F(01)]|rn ]| £ (02) ]|
(4.2) — (A0 (p) + A2(p)) |p(61) |r~ [[P(02)[ R
=Ji+ o+ Js,

where

£ (0Dl 1F (B2)llzn— 1D(61) [ 1B(62) |

1£(61) — F(62)[R.  [p(61) — p(82) [0
F00)-F6)  p()-p(6s)

1£(01) = F(2)[R.  [P(61) — P(02)[%n

5= 5 { (g7 0160 - £ ) (57 0 1#60) - £CG0) 13 )

0 0
~ (g 02 9(00) ~ p(0a) 2. ) (- 08 Ip(01) — pi0a) 13 ) .
It holds that

||P(91) - P(%)Hf{n
P2 (f(0) —¢)  r(f(l) — o)

1£(01) —elgn  1£(02) — cllzn

Ji =

Jo =

o
ST) N S D (L IES NN -
17O — eIz, 1560 — el 176 —clE, * 1702) =l
_ PIE0) - £
[702) = cl2 15 (0) el

If we define the projection P.(#) and P.-(#) for a vector v by

[1£(0) — cllrn - clan

then the derivative of p(6) may be expressed as

(. fO)—c \ FO) - Lo

(o) =2 | TO  2(f0)- () ~e}} (F(O) ~¢)
1£(0) - el 1£(0) - el
7“2 .
= 170 —a. (Fe (0) = F0)) 70,

16



and therefore

rd

IBOIE = g — o

[

(1P 0)F ()12 + 1P.0) F(0) )

_ IO,
1£(6) - el

Using straightforward considerations,
[p(61) [z [[P(62) [
1p(61) — p(62) %
_ PlF Ol PlF Gz 1F(G1) — €l £(82) — clfn
1£01) = clln [[£(02) —cllga £ (1) — F(02)I2n
_ 1F @D zn 11f (02) |
1£(01) = £(02) 10

and this demonstrates that J; = 0. By a similar calculation
500 plos) LT~ 2P00) 700} {1 - 2P.(02)) F(02)}
Ip(61) —p(02)[F 1£(61) — £(02) %
holds. Observing that

— f0) - (jglognf() clB ) (769 - ),

(I—2Pc(9i))f(ei):f(el)_z( Fl0:;) —c -f(ez-) F(6:) —c

we may write
1
1£(61) — £(02)%n

<[00 7o) - {700~ (55 081560 - <l ) (7600 - 0}
{16 - (5 1wl 700~ el ) (700 - 01}

5@y —1f<92>||]§n Ka? log | £(61) — el ) {701 - 0)- f(a»}
f(62)—c¢) }

i)
+ (g s 02 — el ) {1
) )
(80 IOg”f 91 _C”R > <802 Og”f 92 _C|R">

< {(F(0) — o) - (F(0n) — >}]

Jo =

Using
(£(61) — ) - f(02) = (F(61) — £(02) + F(62) — ) - £(02)

10
= 330 1700 = £ +17(02) — clz)

17



and

(£(02) —c) - £(61) = (£(62) — F(61) + F(61) — ) - F(61)

10
= 559, (C1F00) = FOIE- +1F01) — elf)

we arrive at

(f(01) —c)- f(oz)

760~ FG)I2.

10 L 1 f6)—cl

— LD gl - s+ L IOl D)
(£(82) — ) 600

1760~ )2

10 O

= 200, W) = O 5 ) — 7o 9 IO el

upon which our previous expression for Jo becomes

(43) g2 =3 (g el (01 = el ) ( 5 ol A0 - £ )

~ 5 (g o0 = £l ) (55 o700 el

+ 5 (o o700 el ) (- Tox 1 £(62) ~ el
M0l £ V10 ol 2010 —0)- (50092

|F(61) — f(62)] 3.
_ /o 1 (61) 1 (01) — F(62)IF
1t c||Rn>< ox £02) - 7(63)13.
1/ 0
~ 5 (g5, el r00 - @212, )(Mlogllf(%)—dw)
1 0
+ 5 (g o700 — el ) (- 1o £62) — el ).

Finally,

0
% log [|p(61) — (92)”1%%" =

and therefore

0
g5 (108 11£(61) = FO2) I —log I(6:) — ellz) .

9 0
(44) Sz = % (ae log || £(61) — cll§n> (aa log | £(61) — (Gz)llin)
Py )
+;(89 ognf(al)f(ez)an) (89 log||f <92>c||%gn)
9 0
- (%lognf(ﬁl) c||]§n> <aa log | (62) cRn>
= —Ja.
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Corollary 4.1 ([11], Corollary 3.1) Let f € W11(R/27Z). Then it holds
that

E1(f) + &(F) = &i(p) + &2(p).

Remark 4.1 The corollary does not exclude that both sides are infinite.

Proof. First let f € H%/?(R/27xZ). If the 2-dimensional Lebesgue measure of
{(61,62) € (R/27Z)* | f(61) = £ (62)}

is positive, then so is that of
{(61,62) € (R/27Z)* | p(61) = p(62)}-

Therefore E(f) = £(p) = oo and we have
E1(f) + &(f) = &u(p) + &(p) = oo

Thus, we assume that the 2-dimensional Lebesgue measure of

{(61,62) € (R/27Z)* | f(6:1) = f(62)}

is 0, and we claim that the measure of

{(61,62) € (R/20Z)*| f(61) = f(62) or f(61) = c or f(6:) = c}

is also 0. In order to see this, considering f as a function of s on R/LZ, we
need to prove that

S={seR/LZ|f(s)=c}

is a finite set. Arguing by contradiction, we suppose that S is not a finite set
and using the compactness of R/LZ, there exists a sequence such that f(s;) = ¢
and lim s; = s,. From

j—o0
Sj+1 Sj+1
0= o) = Sl = [ [ o) (s doa
2 St s 12 !
s =g [ [ ) =l dsas'
Sj Sj
it holds that
Sj+1 Sj+1 _ 12 Sj+1 Sj+1 _ AYI4

/ ! / ! ||T(S) TES2) R™ deS/ Z / ! / ! HT(S) T(S )LR” deS/ —9
S sj (S -8 ) Sj s (Sj-i'l - Sj)

However, using that 7 € H'/?(R/LZ) and the absolute continuity of integral,
this leads to

]—)OO

Si+1 fSit+1
2< lim / HT ))lR”ddl_
S — s

which is obviously a contradiction. By these arguments we find that (4.1) holds
for #2-a.e. (61,0;) and the desired conclusion follows by integrating this.
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Finally, we consider the case of f ¢ H3/2(R/27Z) which implies £(f) = oo,
and we will show £(p) = oco. Again, arguing by contradiction, we suppose
that £(p) < oo from which we know that p does not have self-intersections.
Furthermore p € Hli/CQ and we remark that p € H3/2 if p does not pass through
the point at infinity. If we turn p back by the inversion with respect to the sphere
with center ¢ and radius r, then it returns to f. Since f does not pass through
the point at infinity, p does not pass through e¢. Thereby the 2-dimensional
Lebesgue measure of

{(01,02) | p(61) = p(b2), or p(61) = c or p(62) = ¢}

is 0. This implies that (4.1) holds for #2-a.e. (61, 0) and integrating this, we
get
E1(f) + &(F) = &(p) + E2(p) = E(p) — 4 < oo

However, from this we obtain co = E(f) = &1(f) + E(f) +4 < oo which
is obviously a contradiction. As a conclusion, £(p) = oo holds and therefore
E1(f) + E(f) = E1(p) + E2(p) = oo as desired. O

4.2 The invariance of each energy

We discuss here the invariance of each energy &; under the inversion f +— p.

Theorem 4.2 ([11], Theorem 3.2) Assume that the center c of the inversion
is not in the image of f. We also assume the finiteness of energy E(f) < oo.
Then

Ei(f) =&i(p), &E(Ff) = &(p)
holds.

Proof. In view of Corollary 4.1, it is enough to prove & (f) = &1(p). Let Jp
and Jy be as defined in the proof of Theorem 4.1. It follows that

A (O FO1)rn | £(02)lrn — A (D)[P(61) ||z [IP(O2) pr = Ty — Jo = —Ja.

We need to prove that the integration of this goes to 0. From now on, we use
the arc-length variable s;.

Since we are assuming E(f) < oo, we know that . (f) € L'((R/LZ)?)
holds. Since . (p) > 0, we may write

R™

& & (p)=-1i
() = &1(p) = = lim //| —aaize 5 91)\|Rn||f(92)||w

81d82,

where |s; — s2| > ¢ is in the sense of mod L. Remarking that

1 0 9
600, ) T3 O
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we get

— lim // dsi1dsy
=40 ) Jjsi—sale [ £ (62 IIRnllf(Hz)HRn

0
- tim 1 // |{( log | £(s1) c||%w) (35210g||f(81)—f(82)||fw>

. (alogllf( 0 - Foa)l ) (o TowlF(se) = el )

0 )
_ (651 log || £(s1) — clh%) (aa log || £ (s2) — CII%n) } dsydss

. 1 L a 5 51+£—8 8 5
— tim 5 [ g log ] f(s1) ~ el log | £(s1) — £(52) B dsads:
0 82

s1+¢€

sa+L—¢ b
i, 5 / o toglf(ss) —cle [ S 10g]l7(s0) — Flsa) dsids:
s S1

sﬁJrO 2 sote
£
2 [ vl eltss [ 0 o5 — et
0

It holds that

st g o (s = £l — )3
/W og 08 17(61) = F(sa) fodsa = log Lo =L S g

Moreover, £(f) < oo implies that f € H3/2(R/LZ) and thus

1£(s1) = f(s1 £ €)llfn = € + 0(c?)

uniformly with regard to s; as € — +0. Therefore
s1+L—¢ a )
/ S log|[f(s1) — f(s2)l[gnds2 = log (1 +o(1)) = o(1)
s1+e 652

holds uniformly with regard to s;. From this and the fact that f does not pass
through c,

L
0
‘/ 5 o8l F(s1) —

s1+L—¢ 8
2. / zlog Il F(s1) — F(s2)||2ndsadsy

1+e 0

c
= o(1 —cl]2.|d
o) [ | G og £ o) = el s
=o(1)
holds. Then we arrive at
L b ) s1+L—¢e b )
E1_1>r5r10 ; E log || f(s1) — ¢|lgn /SH_E 95 log || f(s1) — f(s2)||gndsadsy =0,

and similarly we find that

. L b ) so+L—¢ b )
lim [ ——log||f(s2) — ¢~ ——log|[f(s1) — f(s2)l[gndsidsz = 0.
089 s 0s1

e—=+0 /g Sote
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Finally, since f does not pass through ¢, we have

£ o 2 £ o 2
o 1og | £51) = clf3nds: /0 o7 081 (52) — clndsz =0
from which the desired conclusion & (f) = £(p) follows. O

If the center is in the image of f, then the above invariance does not hold.
Indeed, let f be a right circle, and then p is a line. Therefore,

Ei(f) =2n" #£0 = &i(p).

Taking this typical case and Theorem 4.2 into consideration, we expect that

E1(p) = E(F) — 272, &(p) = E(f) + 272

holds for the case ¢ € f(R/LZ). Here we show the above relation under the
assumption that f € C1! and it has bi-Lipschitz continuity.

Theorem 4.3 ([13], Theorem 1.2) Assume that f € CYY(R/LZ) and that
there exists a positive constant \ satisfying || f(s1)—F(s2)||rr> A1 D(f(s1), f(s2)).
Let ¢ be a point on the curve f, and let p be an inversion of f with respect to

a sphere whose center is c¢. Then, it follows that

Ei(p) = &i(f) —27%,  &(p) = &(f) + 277

As a corollary, we find that the global minimizers of & in C'! are right
circles.

Corollary 4.2 ([13], Corollary 1.1) It holds that
inf{& (f) | f € CH'(R/LZ), bi-Lipschitz} = 272
The infimum is attained if and only if f is a right circle.

Remark 4.2 Blatt [2] showed that the finiteness of £(f) implies that f € X
and that f has bi-Lipschitz continuity. However, we need C'*! regularity on f
for the proof of the main theorem. Extending our theorem for this regularity
seems to be an interesting problem. Note that C11(R/LZ) is not dense in X.

Since we need lengthy calculations to prove Theorem 4.3, we first give our
strategy and the full details can be found in the next step. The proof of Corollary
4.2 will be given in subsection 4.3. Then let us describe the strategy for proving
Theorem 4.3.

Let 6 be a general parameter with 27 period. Under our assumption, f has
no self-intersections, and therefore f passes through the center ¢ at most once
per period. Thus, we may assume that ¢ = f(0). Then, if § #0 (mod 27), it
holds that f(8) # c.

From equations (4.2), (4.3), (4.4) and the fact J; = 0, it holds that

1

(45) A (PN F Ol l|F (02) rr — A D)DO) [ (02 [[rr = 5T (01, 62),
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where

;ﬂ&ﬂ”:(iib@fWM—wa@)(;;mmuwn—fwgﬁﬂ
+ (g 000 = £ ) (- 0156 - SO )
_(;;Mngn—fmm@)(;;bguwﬁ_fmm@>_

Since
() dli = (- ) dsi,

it is easily shown that

(46) // J(el, 92)d91d92 = // /(817 82) dSldSQ,
(R/27Z)? (R/LZ)?

where

F(s1,52) = (é;zllogLf<sl>—»f<o>n§n) <i;z2logILf(sl)—-JTSQ)I%n>
; ;;mwf@J—ﬂ@n@)(glmgwwg—fmm@)
- (el (o) = £ ) (5 o £ (s2) ~ FO)R. ).

52

Note that here, we put s = 0 at # = 0. Also we introduce a function .# to

replace the Euclidean distance || - ||g» in _# with the intrinsic distance Z:
0 0
F(51,82) = (851 log @120> (832 log 9122)
+ D51 log 27, 95y log 23,
0 0
— 8751 log 9120 8752 10g 9220 s

where, for simplicity, we denote

D(f(si), £(0)) = Zio, 2(f(s1), f(s2)) = Zha.

In the following section, we shall show that

(4.7 // F (51, 89) dsydsy = 4°
(R/LZ)?
and
(48) // (j(sl, 82) — 9(81, 52)) d81d82 =0.
(R/LZ)?

The assertion of Theorem 4.3 easily follows from (4.5)—(4.8).
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We begin by considering (4.7). From

s1 0§S1§£>7
D — 2
10 = r
L~ s 2<81<£>7
we have
2 L
9 ) 5 O<S1<§ y
D51 log Z1g 12 C
pa—" 2<s1<£>
Similarly, we have
2 L
9 ; O<52<2>7
8752103@220 22 L
p—y §<82<£ ,
0 2 0 2
1 2 7 2
9] o8 71 s1— 83 0s2 log 71 S3 — 81
L
on {(51,32)6[0,13}2 O<|51—52|<2},
0 2 0 2
1 @2 _ 1 2 __
0s1 08 712 s1— 82+ L 0Oso 08 712 S9—81— L
L
on {(51,32)6[0,5] 82—81>2}7
2 1o} 2
log 275 = —log 77, =
0 08 71> s1— 89— L 0Oso 08 71> So— 81+ L
L
on {(51,52)E[O,E}2 5152>2}
Let ) )
L
U1: (0; 2) y U2: (gac)

U3 = {(81752) S [0,£]2
U, = {(31752) € [07‘6]2
Us = {(81752) €0, £

ol MDD NIn eIn

Us — {<shs2> e [0, £J?

(see Figure 1). These sets are disjoint, and
6
Z? <[0,£]2\ U Uk> =0,
k=1
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52

y
L
Us
U,
Uy
L
2
Us
Uy
Us
> S1
0] £ c
Figure 1

where .22 denotes two dimensional Lebesgue measure. On Uy, it holds that

2 2 2 2 2 2
y = — . + —_— e — s — = O,
S1 SS9 — 81 S1 — S92 82 S1  S2

and similarly, .# = 0 on Uy. On Us,

2 2 2 2 2 2 4L
7 = : + =

Sl—ﬁ S9 — S1 S1 — S2  S9 $1—L.g__(51—[,)82(81—82)7

and similarly, on Uy,

Z _ 4L .
81(82 — C)(Sl — 82)
It follows that on Us,
2 2 2 2 2 2

a —

s1—L s9—81+L s1—82— L 89 s1—L so
and on Ug, & = 0.
It follows from the above that .# is positive on Us and satisfies

£
2

dSQ
or
/ Z dsidso . 732(81 — 32)

d81

A=
Us £ L—siJo ¢

L
8L 281
=/ —= gt -1 .
[, sy e (1)

2
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2
Making the substitution u = % — 1, we have

1
I
/ F(s1,82)ds1dsy = —16/ ogu2 du = 272
Us 0 1—wu

(see [22, 2.6.5.9]). Similarly, it follows that

/ F (51, 89) dsydsg = 210°,
Uy

// . F (51, 82) ds1dsy = 472,
(R/LZ)

Next, we consider (4.8). It can be directly calculated that

/(315‘52) — F(s1,52) 5
— o (og £(s2) = FO)E) ( 5 Yol For) = Fls0)E )

0 0
— (8 log @120> (852 log @é)

(log || £ (s1) — f(s2)[|n)

" s, (
0

( log @12> (852 log @20>

a >

and hence we get

0
8752 log || f(s2) (0)”112@)

(08 151 = FO)IR:) (5 oz Fe2) ~ FO)13: )

+ ilog 7%, 0 log 23,

0s1 <85 ,
(s 8 ||f(s|1|)f? <o>||w>|<85210g It flsle
51) Rn
851 2 > <) 32?1:”)
8Slog@lo> <81 og )

(o

<a 1£G)  £(s2)] N5Ga) ~ SO
(o LT R)( > o)

(o )

(

91 ||f(51) f(s2)|fn
881 @12

s log 920

o 17G2 2( |Rn>

_ <8 | £(s1) H > ( Hf 52) (@”%@n)
0s1 882 @20
||f 51 |Rn> 71 g@m

(os:"
(L Og@w) (log <s2>%20 -
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[1£(51) = £O)IRn Hf(sl)

£ (s2)l§n

“\0sy 72, 332 22,

n (8381 1£(s1) - (82>||R") (652 IIf(Sz)g2 (O)II%n)

12 20
< 0 10 1F(51) — F Ol og 17 (52) — FO) I
881 9%0 882 @2 )
0 0 n — f(0) ||
N <311°g %> {a ( 1 £(s1) — = <82>||R log If(Sz)%{( >||ﬂj
0 0 n — n
N (8821%%) {a(g I£(s1) — 2<82>||R log |f<s1>%{<o>||R )}
) 0 [f(s2) — £
+ (881 log@122> (882 @20 =
) 0, I17(51) — FO)IE
+ (832 10g@122> (8512 9 R .
d . Nf(s) = £(O)]3. 1£(s1) < £(52)[2
<88110g @2 R ) 6821 R
+(8 1£(s1) — F (s >||Rn)< ||f 52) o>||
881 @122 852
< 9 NF () — FO)IR Hf<52> < )3,
ds1 7%, 85 73, )

) 0 1 (s1) - <82>|| n g I7(2) — SO,
+(5511°g@120){582(10g 1£( >%< >||]j ) o7 %2‘)( ||Dj )}
0 1o} f(s1) — f(s2)|lgn (s1) — F(0)

(g on2ho) { gy (o HFH S - % )}
0 NS o fG) = fOIR. () - £0) .
+ (831 log @12> {882 <log @220 2log @( (51;82) ,f(O))
0 N o () - FOIR. I (252) - 0.
+ <882 10g912> {881 <log @120 210g g(f(srgsz) ’f(o))
7
= ZAJ(81752)7
j=1
using
log 22 —il 9?
D51 g 19 = D59 0g 719
and
0 FEER) - Ol 0 IF(2E2) - FO),
og > = — log 5
Osi 7 g (f(252),£(0)" 952 7 9(f(252),£(0))

The function A; is of the form

1o}
7Aj1(51752)

Aj(s1,82) = Do

882

0
7Aj2(81, 82).

In what follows, we will show the absolute integrability of

0
—Ai(s1,82)ds; = 0.
~/R/LZ Js; J (81 32> s

respect to s;, and
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Ajk(sl, 82) with



Then, by virtue of Fubini’s theorem, it holds that

//( e Aj(Sl,SQ)dSldSQ =0.
R/LZ

Lemma 4.1 Let s;, s; € R/LZ. If necessary, we use s; +mL (m € Z) instead
of s;, and then we can assume that |s; — s;| < % We denote the sign of s; — s;
when taking s; as above by sgn(s; — s;). Then,

0 0 156~ £
0Os; D(f(si), £(s4))?

_ QSgn(sl—sJ (s N -
— D(f(si), F(s5))IIf (s0) = F(s5) ||Rn/ / k) (s¢)) dsidsy.

Proof. From the way in which we chose s; and s;, we have 2(f(s;), f(s;)) =
|s; — s;|, and therefore it follows that

o 1 (50) = sl _ 27(s0) - (F(s0) = £(55)) 2

83@‘ D(f(si), £(s;))? | F(si) = Fs5)l[Rn 8i = 8j
_ 2{7(ss) - (f(si) = f(55)) — (si —s;)}
[ (s:) — f(Sj)Hi%n X
+ 2(82 - Sj) { ||‘f(sls)7 — f(SJ)“DQQn - (Si — 5]»)2 }

T FG) — s ])H% (T(s ) - T(s) — 1) dsy,

+( Sé)Hf si) — f(s; ||Rn /SJ / (se)) dskdse
=G —sj)H.fZ"(sl)( (SJ)IIRn / / sk) - (7(55) — T(s¢)) dsdse
- G (s ) —T(s SEdsy.
= SR TN T J, J, 7 (s0)) dsdse

O

Corollary 4.3 Assume that f € H?(R/LZ) and || f(s1)—F(s2)|zr > A2 2(F(s1), f(s2)).
Then, we have

0 ()~ £l )
/W 55, % G(F (0, sy | SNy

Furthermore, it follows that

(0 = Pl
/Wasf 7(F ). Flsp)e @i=0

Proof. From

T(sk) - (7(s:) = 7(s0)) = (T(sx) = 7(s0)) - (7(s0) = 7(s0)) + 1 = 7(s3) - 7(s0),
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we arrive at
1
[7(sx) - (m(50) = T(se))| < [I7(si) = T(si)llmnllT (i) = 7(s0)[zn + 5[ 7(56) = 7(50)[n
1
< 5llr(si) = 7(se)lRn + lI7(s0) = 7(s0)lIzn,
and hence by using Lemma 4.1, when |s; — s;| < %,

£ (si) — ()H
D(f(si), F(s7))2
22

1
851 08

(nr&— MWVWﬂm—ﬂwRmeW

IIT ) = 7 (s1) 3 dsi

)\
£(s5))
3)\2
B 2(f(s:), £(s5))

/M)(WM

<3 OG0, F ()

j
Thus, we have

o 1£) = F)IE |

/R/LZ

9s: %% 7 (F (50, f(s5))?
_ [t [ £(si) = FCs)In |
Tngm%mme“
sj+< S;
o [P ) = el |
SSLgL%MHW)%S
<3\%[7)?,.
H?2
For the remaining claim, first observe that
0< 1-— ”f( ) (SJ)HR" = ! 7)) /SJ/S7 |7 (s) — 7(s¢)||2n dsidsy

()2 22(f(s0),
T 55 HR" d

S]
1 S —
< 5/ / ||7' Sk Ldsy.

Since | )”
TSk Sz Rn
dsgdsy < 0o,
HzMW Pl o) 2o

by using the absolute integrability, we obtain

1£(5i) — £(55) IR
P(f(s:), £(s5))?

ence, 1o I F(si) — F(s5) I3
H log T 1))

0 )~ R,
Amw“ Fo, )z =0

1—

—0 (87;—>8j).

is a continuous function on R/LZ, and we obtain
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Claim 4.1 We have
// Aj(Sl, 52) dSldSQ =0
(R/LZ)?
for 5 =1,2 and 3.

Proof. Applying Fubini’s theorem and using Corollary 4.3, we have

//R/LZ |A1(s1,82)| ds1ds2
/[ ... (2 g ML FOUR ) (0 L) Sl

< ON[T 41 < 00,

d81 dSQ

and again using the corollary, we obtain

// Al(Sl,SQ)dSldSQ
(R/LZ)?

//IMZ (881 Hf(«ﬁ)@ f( )”R“) (as [1f(s1) = @ (@)Ifw)dsldsg

1£(s1) = £O)IR- 1£(51) — £(52)lIR
= /R/LZ <881 0g 72, > </]R/LZ 95, log 72 ds > dsy
=0.

In the same way, we have

// A2(31,82) d81d82
(R/LZ)?
9 . f(s1) _f(32)||1%an) < 9 . f(s2) —f(O)II%n>
= —1 —1 dsid
//(]R/LZ)2 (831 o8 3 052 o8 D3 oL
=0

/// 2 A3(81,82)d81d82
(R/LZ

- //(W (21 20010 >||D%n) (2 1og L2210 >||§n)d51d52
=0.

Next we consider A4(s1, s2) and so we introduce some symbols. We set
1 B 1
[£(s1) = F(s2)llFn  2(F(51), F(52))?

and in what follows, as necessary we denote v(s;) simply by v;. It is not difficult

to see that , -
v, — (Rf'Ti)RU _ (_1)1_ V"

1
(317521)§(S,3) As 2

AM(f) =
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for v € C2(R/LZ) (see Lemma 5.2). Taking this relation into consideration, we
set

Qv = (-1)"'2{v} - (Rf - i) Ro}.
Then setting
Qu = AV,
it follows that _
lim Qu = lim Qv ="
(s1,82)—(s,s) As (s1,82)—(s,s) As

if v € C%(R/LZ). The operations Q and Q; are defined on functions v for which
the derivatives v' exist almost everywhere.
Since Qf = At and Q; f = (—1)"*2{r; — (Rf - 7))Rf} = (-1)""'2P}7;,

we have

) = 510 B ) = 30 Quf.

Lemma 4.2 Let Y = H2 N L™ and || - ||y = | - 1,3 + 1+l The followings
hold.

1. If f is in CYY and bi-Lipschitz, then 4 (f) is bounded.

2. Forv e Chl,

|77

< 'llconwycz)-
Lo ((R/LZ)?)

3. Assume that f € X and that |Af||gn > A" 2(F(s1), F(s2))|. Then there
exists a positive constant C depending on ||f'|ly and \ such that

in 7
CTEIPRY IR < Cfv'lly
H D(f(s1), F(s2)) L2((R/£Z)?)
holds for all v € X.
Proof. 1. First we show the boundedness of .#Z. We may assume that

|51 — s2| < 5. We write k(s) = 7/(s) and note that this exists for almost
every s and satisfies ||k||L~ < oo. Using this, it holds that

1 1

0= A = ey~ e~ e, )P
(1m0’ — (1) - Flle
(s1 = 52)?[[f(51) = Fls2)lfn
1
" T T~ T s [, =)t s

= |7 (s3) — 7(54)||n ds3dss

2(s1 — 52)? ||f(51) F(s2

%%, 7 0%,
- (s Sg) dssdsgdssds
S PTG ||R,L/ / [ s s dssssas

CA\?||K||2 0 < 0.

A
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2. Without loss of generality, we may assume that |s; — s < £ 5, and then

we use |As| instead of 2(f(s1), f(s2)) for simplicity. The assertions 1-2
are almost trivial. Indeed, it follows immediately that

Qu
As

= [V llLip < [V |0y cz)-
L= ((R/LZ)?)

. To show this assertion, we decompose 1)1 Qv = v, — (Rf - 1;)Rv into
Av Av

—(Rf1;)Rv = ('u - As>+<As - Rv)—k(l—R_f-‘ri)Rv = Vi+Vo+Vs.

We show L? estimate for each V;/As. Estimates on V;/As. It is easy to

see that
1 ,  Av _ 1 s _ ,
KS <Ui AS) - (51 . 52)2 /82 ('U (Sl) v (S))ds

and from Holder’s inequality, it follows that

1 1
{5 [ W - ventas)
R™ S2

Changing the order of integration, we have

/
H ( ' ) L2((R/LZ)?)

si+4 5)
< / (51— 52)® / v’ (5:) — v (8)||3ndsdsads,
R/LZ (s1— 82)

s1—%

S1
/ / v’ (5:) — v (s)||3n dsdsads,
R/LZ Js1— % 51 - 52 52
/ /s1+2 1 /32 || /( ) /( >||2
N To o3 v'(s;) — V' (8)||gndsdsads
R/LZ J s (s1—s2)% Jg, R 1
o 2 s d52
[ e vl [ s
R/LZJs1—% s1—L (s1— $2)

s1+% s1+% dss
— |v'(s;) —'v’(s)||2n/ 7d5d51
/]R/EZ »/51 ' = (51— 82)?

TR o (s0) = v'(5)][3
/]R/L‘Z /1— (si—s)? s

1-
Hf

1

S1 — S2

/ :1<v’<si> —v/(s)) ds

2

I /\

l\')\r—l

Estimates on V5/As. It follows that

1 Av
m(m‘@ { HAfRn}
1
R"{HAS

| e
Af B As
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by the definition of R. From

0<1—H

As ||gn

e 2 / :1<1 — F(ss) - f'(54)) dsydss
——— / ju — 7 (s3) - 7(s4)) dssdss

e I R

2
R™ d83d84

< —— /51 /él (Im(s3) = T(s1)llfn + 17 (54) = 7(s51)lI2n) dssdsa
(81 - 52)2 s Jsa
<2 [ - el ds
51— 82 Js,
and
0<1- H =

e A R

B ﬁ/ 1 / (1= 7(s3) - 7(s4)) dsadsa
1 S1 s1

s [ 1) = sl dsads,

<= / /81 I7(s3) = T(sa) R o oo
- |83—84|2

<SP, ST

we have that

H2(R/LZ) 2

H As

1
1 3
1- = ’ - 2.d
]3], e <180 {2 [ ) — e e as)
1+ 2
As ||gn
and therefore
1 /A 2
(55 m)
Bs \As L2(®/£2)%)

< NF5 v ||L1p// ; 31—32)3 /2 |l 7(s) — 7(s1) |3 dsdsidss
1y IF 1510115

Estimates on V3/As.

(1—Rf -7i)Rv _ 1|7i — Rf|k~

1 As
As 2 As

Af

Av
gn As’
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Since

Af

gn QS

-]

A A A

A EIRE:
1

S /S:I(f/(si)_f( 5)) ds + (1_HAf

Af
gn/) As’

2
R”)

we have

A

Iri— Rfn < —2 /uf ) - F(s)

S1 — S2

n 2(1—
Rds-i— ( HAS

6 51
< 7(8;) — 7(3)||3nds.
e G REO]E
Hence,
Gonf o] el | [ :
< T(8;) — 7(8)||gnds
e 1] LV EEIOTE

and using ||7(s;) — 7(s)||rn < 2, we have

2

<41 —s2) [ (o) — 7).

S2

[ s = )l nds

52

Consequently,

' (1—Rf-7;)Ro|?

As L2(R/£2)%)

1 51
§36A2v2i// 7/ 7(8;) — T(s
|| HLp (®/£7)? (81 —82)3 o || ( ) ( )

< 18X[IF 1015

holds for f € X. From the assertions 2-3, boundedness of .#; and .5
are shown. (]

2
rndsdsidss

Using the L*°-estimate, we obtain the following lemma.

Lemma 4.3 It follows that
|As(s1,82)| < 4H»1/é/(f) — AM(f) — Ao(S)|| L

T TG F Oy Xes (51:52) + X, (51,52) - LP-ae.

Proof. Recall that

0 0
Ay(s1,82) = 95, log 77, 8752A42(317 52),

Aua(s1, 82) = log 1f(s1) @é(SQ)II%n _ Hf( )@20( Mn
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We may assume that (sq,s2) € (0,£)%, and we will obtain estimates for
(s1,82) € Uy, Uy, Us, Uy, Us, and U, in that order.
First, let (s1,s2) € Uy. It holds that

c%ll()g Di=—,
and
%A4Q(31a32)
_27(s2) - (f(s2) — f(s1)) 9 5 27(s2) - (f(s2) — F(0)) O 2
TG~ FGDIR. 0 BT f(sn) — SO, T 0sy BT
_ S0 27(s2) - (f(s2) — £(s3)) dsy — 2 2
o Os3 | f(s2) — f(SB)Hqun S —S1 82
:/Sl [_ 27(s2) - 7(s3) +4{7(82)-(f(SQ)—f(Ss))}-{T(S:a)-(f(82)—f(53))} dss
0 IIQJ;(Sz) — f(s3)lzn 1 £(s2) — F(53)llgn
5959 — 51)

281

2
| f(s2) — f(33)||]12w) 53 = s2(s2 — 81)

<2%1(f)(52, 83) - Q%Q(f)(s27 83) +

{2///1(1”)(82, 53) — 200(F) (52 53)

2 2
51+Wf@ﬂ—f@9%n_@z—%V}d%
—o / (M) (52 55) — M (F) (52, 85) — Mo(F) (52, 53)) s,

and then we have
Au(s1,50) = i / () (52, 53) — A6 (F) (50, 53) — Mo(F) (52, 53)) dss.

From the above, we obtain the claimed estimate on Uj.
Next, let (s1,s2) € Us. In a calculation similar to the above, we obtain

Z2r(s) (Flsa) = £1) 0y g 2rlsn) - (Fs2) = F(E) | 0,

||f(82) —2f(£)|\]§n Dso

d83

/{ 97 (s0) 7(53) - A{r(s2)- ?( ) — £(53))
[72) - 7o)l 17(s2) -
L)

5_1 (52 — L)(s2 — 51)
<—2%1 (f)(SQ, 83) — 2,/{2(1:)(82, 53) +

/.
= [ ) - 2 )05
2 2
5 i [£(s2) — F(s3)2n (52— s3)? } dss
22/ (A (f)(s2,83) — A1(f) (52, 53) — AMo(f)(52,3)) dss,

{7 (s3) - (f(s2) = f(s3))}
f(s

8)lIn

2 _ 2(51 — L)
17(s2) — f(SS)IIin) 455 = (2 — 1)

35



and hence

Ay(st,s2) =

o (f)(s2,83) — A1(f)(52,83) — Mao(f)(52,53)) ds3,
1= L
and we have the claimed estimate on Us.

Next, we assume that (s1,s2) € Us. From a straightforward computation,
we obtain

0
£A42(81, 52)

" 2r(sa) - (f(s2) — F(s1)
||f(52) F(s1)|3. Oss
o 27’(82) (fls2) = fls3) 5
c Oss |f(s2) —

Here, the range of s3 is (s1, £), and note that s < 32—&—% < L when (s1, s2) € Us.
By definition, it holds that

2 27(s2) - (f(s2) — f(£)) i oo P2
71 702) ~ FOTE. T By 08 720

(53)I&n s9— 81 S2

P(F(s3), F(52))° (o =) &<%<@+§)
s3), f(s =
3 2 (53— 82— L)? 52+§<53<L>7

and then we have

/ d53 _ /52+§ A +/£ L
'@ )) S1 (83 - 82)2 sat+% (83 — 82 — £)2
1 1 4

S1 — S2 S92 £

Therefore, we obtain
%AQ(SMSQ)
_ /51 {827'(82) (f(s2) — f(s3)) 2 }dsS n 8
c 0s3 1f(s2) = F(s53)lI7n D(f(s3), F(s2))? 8£
=2 [ () 52,39 = () (52,39) = A F)s2.50)) s + -

L

0 2
Combining this with — log 27, = ———, we obtain
(951 S1 — L

Ay(s1, 82
16
Dl 82»33)—//1(1”)(82783)—///2(f)(82,83))d33+m
holds. Thus we have the claimed estimate on Us.
Suppose that (s1,s2) € Uy. It follows that
0

67321442(81’ 52)

_ 27(s2) - (f(s2) = f(s1)) g log 72, 27(s2) - (f(s2) — £(0)) n ilog 22

[ £(s1) — £(s2)[2n T £(s2) — FO)] 2. s
_ *627&)(() <>d3_ 2 2

= + .
o Os3 | f(s3) — f(s )H]Rn S2 — 81 s9— L
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Now, 0 < s1 < % < 89 < s —|—§ holds. In particular, it follows that 0 <

89 — % < s1. We decompose the range of s3, that is, (0,s1), into (0,s2 — %]
and [52 — %,31). Then, from

(53_82+£)2 0782_§ )
D(f(s3), f(s2))* = r
(s3 — 52)° [52 - 5751 )
we have
/ L — /”‘g [
o(f 52))? 0 (s —s2+L)>  J,, 2 (53— 52))>
1 1 4

ngﬁ S2 — 81 £7

and thus we obtain

0
£A42(517 S2)

N / { 9 27(s2) - (F(52) — £(5)) > }d83 s

053 [[f(s3) = fs2)ln  D(f(s3), F(s2))? L

= 2/0 (///(f)(sz,szs) - ///1(]0)(32753) - //fz(f)(sz, 83))d$3 - %

which leads to the claimed estimate on Uy.
Next, let (s1,s2) € Us. From the calculations

0
£A42(817 52)

L 27(s2) (o2 = F51)) 0\ g 27(s0) (Fs2) = S0) | 0

G~ SOl T 0s BT )~ FOR. 0w 87
0 () ()~ £ )
c 853 | F(s2) — f(s3)]3n so—s1+L s

e { D 27(sn) - (fls2) ~f(s)) 2 L
e N0 1fG0) — FeB D) Fe)?

22/ (A (f)(52,83) — A(f)(52,53) — AMa(F)(52,53)) ds3,
L

we obtain the claimed estimate on Us.
Finally, let (s1,s2) € Ug. It follows that

—Aya(s1,82) = "0 27(s2) - (f(s2) — f(ss)) 2 9

+ .
sz o Os3  [f(ss) = fs2)lRn s2=s1— L s2-L

From 0 < 51 < % and s —l—% < s9 < L, when sz € (0, 1),

D(f(s3), f(52))* = (83 — 52+ L)*.

Therefore, we obtain

/ d83 _/31 dss _ 1 n 1
2(f 52))? B 0 (53*52+£)2_ so—L  SsSo—s51—L
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and we arrive at

%A42(81,82)
B AT () R N,
o L0s3 [f(s3) F(s2)lIzn Z(f(s3), f(s2))?

= 2/ (A (f)(52,83) — A(f)(52,53) — AMa(F)(52,583)) ds3

0

which yields the claimed estimate on Us. ]

Claim 4.2 We have

// . Aj(s1,82)dsidsy =0
(R/Z)

Proof. As stated before, it is enough to show A; € L'((R/LZ)?). Since the
proof for As is similar to that for A4, we discuss A4 only.
We have

d81d82 / /32+ 2 ds; / So
dsg = —log(L —s
/], a5y Fodsa = [ s — sy
1
:/ logﬁ dszz—é/ logtdt:E
0 3 — 82 2 Jo

and by similar considerations, we obtain

/ d51d82 B E
v, 2(f(51), £(0)) 2

Thus, Ay € L'((R/LZ)?), and using Fubini’s theorem and Corollary 4.3, we

arrive at

// A4(51,52) d51d52
(R/LZ)2 5
= log 9} )
/R/L‘Z (351 10

9 1£(s1) = F(s2)[[Rn Hf( 2) = F(O)[[&~ o b s
X{/]R/EZ 0s2 < o8 73, 22, )d 2}d 1
=0.

for j =4 and 5.

[N
w\h

d82

O

Claim 4.3 We have

// ) Aj(sl, 82) dSldSQ =0
(R/LZ)

forj =6 and 7.
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Proof. We discuss Ag only; the argument for A7 is quite similar.
Recall that

A6(31,82) = 7(9(21 IOg .@122 78(22 A62(31782),
£ (s2) — £(O)]I2. £ (2522) — FO) |5

A ,89) =1 —21
pelon o) =log P30 T (2422, £(0)*

From direct calculations, we obtain

O [l (s SN [0 e ]
o dua(on.s0) = [T Sk J. [8831539(1‘( D107,
[ gt s, o,
o R TR o0 [y s 2 0”]@52
and
0 27(s3) - (f(s3) — £(0))
Js3 ||f(53)_f(O)H]R"
"~ 2m(s9) (F(s9) ~ FO) | 2rlsg) 7lss) _ dlrlss) - (Fss) — SO
I7Ga) = SO, T —FO)E 1760~ 1O,
_ 2n(s) - (F5s) — £(0) | A{1F(s0) = SO, — Ir(s0) - (F(55) — SO}
OB J;<o>||w 17(53) — TN
TG~ T

Therefore we have
Ag(s1,52) = Bi(s1,52) + Ba(s1, 52),

where
(D g2 ) [T [26(ss) - (Flsa) — £(0)
Bulor,s2) = (651 : wﬂ) / [ 17(53) — FOI.
U5 ) = FO) R~ Ir(s3) - (F(s) — f(O))Q}] s,

769 FOITE.
B i . ) - s2 2dss - i . ) s2
Bilowss) = (g 0221 { fo T SO, ~ | 2o £ ]}

We consider Bj(s1, s2) first. When 0 < s5 < %, we have

(s3) - (F(s3) — £(0)) / r(sa) dsy = / (sa) - (7(s4) — 7(53)) dss

/ / K(s3) - K(s5) dssdsy,

39



an

Hf s3) = F(0)|[5n — IT(S3) (f(s3) = £(0)

= /0 /0 3 {1 (54 s5) — (1(s3) - 7(54)) (7(83) - T(85))} dsadss
:/ / {(r s5) — 1)+ (1 — 7(s3) - T(s4))
0 0

. Lt ( (83) 7(s4)) (1 — 7(s3) - 7(85)) } dsadss

3 [ {0 — rslB + lrtsa) sl

+ (1) <>Mh@a—ﬂsm$}wm%
/0 K(s7) dsgdsydsydss

/83/ / / K(s6) - k(s7) dsedsrdsadss
/ / /%5 /%5 7(s3) - 7(s4)) (K(s6) - k(s7)) dsedsrdssdss.
c

If £ < s3 < L, then the above identity will still hold replacing f;a with fSS.
Therefore, regardless of the location of s3, we have

2k(s3) - (f(s3) — F(0)) _—
[£(s3) — £(O)]I2. ‘ < ON|Klz,

4{[IF(s3) = FO)[Rn — |7(s5) - (£(s3) — F(0)I*}
[1£(s3) = £(0) I

and hence, we have By € L>=((R/LZ)?).
Next, we consider By and so we define

+ [\')\»—A
M\»—C\

< CXY|6]|Zee

Us = {(s1,52) |0 <53 < —s1+ L < 51 < L},

J L
U4:{(51752)|_51+£<82<§<51<£},
7 L
U5:{(51782)|0<51<5<52<751+£},

7 L
UG:{(81782)| _52+£<31<§<82<£}

6
R <[0,£]2 \U1 UUs U U ﬁk> —0.
k=3

16
L D12

Wthh lmphes BZ € Ll((R/CZ)Q) Let (81782) (S U1 = (07%)2 Then’ % c
(0, %), and therefore,

A (O

8 S3 s1tsa So S1 + 52'
2

(see Figure 2).
Note that

We will show

|Ba(s1,52)] < 2[4 (f)l|L~ + (Xg4(51,$2) + Xg, (81,52)) L?ae.,
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52

4
L
Us
U,
Us
L
2
Us
Uy
Us
> S1
0] £ c
Figure 2

If s3 is located between min {%,52} and max {%,32}, it follows that
s3 € (0,%), and thus 2(f(s3), f(0))? = s3. Hence, we obtain

/” L_/” d%_[l]” I
ates D(f(s3), £(0)2 Jeorte 53 B 53] s1ts2 sy sitso]

2 2

which yields

S2 2ds 0 52
s T T [y o2 77000, 507 g
_ /82 < 2 _ 2 > ds
S \lf(se) - FOIRe 2(f(s9), £(0))? ’
= -2 m%(f)(s:;,()) d83.

Therefore |Ba(s1, $2)| < 2|4 (f)||L~ on U;.
If we assume that (s1,s2) € Uz = (£, £)?, then 21522 € (£, L). Therefore,

_{%og@(f(s@,f(o»f R —
2

883 s1+s2 So — L
2

_E'

If s3 is located between min{legSz,SQ} and max{”;”,sQ}, it follows that
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s3 € (5,L). Therefore, Z(f(s3), f(0))? = (s3 — £)?, and we have

/82 d83 . /52 d83 _ 1 + 1
i D(F(s3), FO)?  Jorses (53— L2 sa—L | 2= [

2 2

which leads to

B S2 2d83 B i 2:|82
o T Fo L e 2 107

2

__/82 ( 2 _ 2 >d8
T S \If(ss) = FONR. ~ 2(f(sa), £(0))2) *

R
= -2 ///(f)(s;»,,()) d83.

s1+s2
2

Next, let set Us and let (sq,s52) € Us. Then, % € (%, %) and thus, we
have 5 )
5 2 4
[t sor] -2
S3

DEL) S2 81+ S2

Since 0 < sy < 252 < £ it follows that Z(f(s3), £(0))> = s3 for s3 €
(52, 2£22), and therefore,

I o [ L
s1ts2 .@(f(53)7f(0))2 o s1ts2 S% n S92 51+82.

2 2
Thus, we obtain

S2

B S TN § SR
foa T S, ~ L e 20050 g

2

__/ ( 2 _ 2 ds
= o \IFG) ~ FOIE, ~ 2(7Ga). 7O ’
—2 [ ()00 ds

51492

2

Assume that (s, s2) € Uy. Then, % € (%, %E), and therefore, we have

AN (O I R

883 s1+s2 59 % — E
pl

From 0 < 59 < % < % < %57 for s3 € (527 %), it holds that

52 S < 83 < £)
3 2 <83 > 5 )
D(F(s3), F(0)? = p
S1+ s
(537,&)2 §§53< 12 2>.
Consequently, we have
L

52 d83 z d83 52 ng
/ P(£(s3). £(0))2 /7 (55— L£)? +/§ Ed

-2 2 1
s Wm_g [
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and therefore, we obtain

S2

B 52 2d83 . i 2:|
/ 17055) — FOI2. [8531"”“‘53)’”0” wta

st \[[f(ss) = FOIR. — 2(F(5), F(0))? c

2

8
= -2 oy te ///(f)(53,0) ng — Z

Similarly, let (sy,$2) € Us. Then, ate ¢ (%, %), and therefore, we obtain

52 2 4

0
{asglog@(f( )f(o))z]wz_32—£+sl+52.

From % < % < % < 89, for s3 € (51332,32), it follows that

5% 51;52<53§§)7
2(f(s3), £(0))* = r
(83—£)2 2<83<82>,
and thus we obtain
52 dss (% dss | [ dss
/ T F ), O / +/g (55— L)
B 1 2 4
_32—£+ s1+sy L
Hence
o 52 2d53 6 2:| 52
foie 700 7 ~ [ e 2007,
/ ( 2 5 — 2 2) d83 + §
e IIf(Ss) (O)HRn 2(f(s3), £(0)) L

8

To conclude the proof, let Us = {(s1,82)] —s2+L <51 < % < s < L},
and let (sq, s2) € Us. Since 2122 € (£, 31), we have

S L L I e
2

0s3 BET
2

From £ < s1$%2 < s < £, we have 2(f(s3), £(0))? = (s3 — L£)? for s3 €
(%, 32). Therefore, we obtain

/S2 d83 o /82 d83 _ 1 + 1
51;52 .@(f(53), f(O))2 514552 (83 — L)Q S9 — E 751552 — E
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and

So 2d$3 9 ) So
s TG FOTE ™ [ 7 700

2

_7/82 < 2 _ 2 >ds
— Jea \lf(ss) = FO. 2(F(s3), £0)2) 7

S2

— 9 M (£)(s3,0) dss.

s1+s9
2

From the above, we obtain the estimate of Bs.

Combining this with the previous estimates, we have Ag(s1,s2) € L*((R/LZ)?),
and by applying Fubini’s theorem and Corollary 4.3, we can show that the in-
tegrated value is 0. O

Combining these claims, we obtain (4.8). Thus, the proof of Theorem 4.3 is
completed.

4.3 Global minimizers of &;
We give here the proof of Corollary 4.2, which says that global minimizers of &
in CLY(R/LZ) are only right circles.

Recall that

2
r“(f—c
f — p=c + (‘f72)
If = cllzn
is an inversion with respect to a sphere with radius r and center ¢ in the image

of f.

From the main theorem, we have

g1(f) = 51(19) + 27‘(’2.

It is clear that
gl (p) 2 07

and thus we have
51(f) Z 27‘[‘2.

Of course, & (f) = 272 implies that & (p) = 0, and from this we may deduce
that .#,(p) = 0. Therefore, we know that p’ is a constant vector, and hence p
is a straight line. Finally, we conclude that f is a preimage of the straight line,
i.e., a right circle. Conversely, it is easy to see that £;(f) = 272 when f is a
right circle. O

5 Variational formulae

In this section, we show that the first and second variations of the Mobius
energy components are defined as (multi-)linear functionals on X. Formulae for
the first and second variations have been obtained by several authors, e.g., [8, 9];
however, the formulae were not given explicitly except that of the principal term.
Direct calculation produces many terms, most of which are not integrable even in
the sense of Cauchy’s principal value. By combining these terms appropriately,
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we find that absolute integrability can be recovered. This was shown by the
author [10] for f € C3+t*(R/LZ). This space is narrower than the natural
domain X (see [2]).

Using the above decomposition, we can obtain explicit expressions for the
variational formulae (Propositions 5.1, 5.2) along with estimates on X and other
function spaces.

Setting

M f) = ToT)

IAF]R
it is not difficult to see that
1
M(f) = §||A7'||1122<m No(f) = 2P 7(s1) - P (s2).

Let Z(f) be a geometric quantity determined by the closed curve f, and let ¢
and 1 be functions from R/LZ to R™. We use § and §? to mean

S7(f)18] = - F(F + o)

e=0
2

d€1d€2

S2F(f)[b, ] = F(f +e10+e2v)

61i€2:0

Then the first variation ¢; and the second variation 7] are given by
Gi(f)p] dsidsy = 6(Ai(f) dsids2)[],
H(F) [, ) dsrdsy = 6 (Mi(f) dsidsa)[¢, ).

These symbols stand for .4 umerator, ¥radient, and J#essian, respectively. The

main result of the present study is the following:

Theorem 5.1 ([12], Theorem 2) Assume that there exists a positive con-
stant X such that ||[Af||gn > AN"H2(f(s1), f(s2))]-

LIff, ¢, % € X, then A(f), 9(f)l@], Hi(f)l¢, 9] € L((R/LZ)?).

Furthermore, there exists a positive constant C depending on || f'|ly and
A such that

()l 1 (®yczy2) < C,
14 ()@l L2 (v czy2) < Cll@ Iy
176, Yl 1 v/ cz)2) < Cle Iy 19 lly-

2. Iff. ¢, € CYU(R/LL), then Mi(f), 4(f)|@]. #i(£)$,¥] € L((R/LL)?).

Furthermore, there exists a positive constant C depending on Hf/||C°>1(R/LZ);
A and L such that

|2:(F)| oo (v 22)2) < C,
195 () D]l Lo (v 7)2) < Cll@ oz,
1), Y]l Lo () 22)2) < Cll@ llcor ) ez 1Y | cor ) 22)-

45



3. If f, &, ¥ € C*(R/LZ), then Ai(f), 4(f)[Pl, Hi(f)lp, ] can be ea-
tended on the diagonal set {(s1,s2)]81 = s2 (mod LZ)} such that these
functions are continuous everywhere. The limits of sums vanish on the
diagonal set, as follows:

im — (A(f) + #(F)) =0,

(s1,82)—(s,s)

lim (4 (f)[o] + %(f)¢]) =0,

(s1,82)—(s,s)

lim — (JA(f)g, Y] + H(f)[é, ¢¥]) = 0.
(s1,82)—(s,s)
Furthermore, there exists a positive constant C' depending on ||f’Hcl(R/LZ),
A and L such that

2 (F)llco(myczyzy < C,
14 (F)[Dllco(r)czyz)y < ClY llcrryczys
154, (£) @, ¥lllcor/czy2y) < Clld llcrwyczy |Vl cr ) cz)-

Our strategy is as follows. We express one component of ¥; in terms of .Z;
and express three components of 7 in terms of .#; and ¥;. Then estimates
of ¢; are derived from those of .#; and subsequently we derive estimates of 7]
from those of .Z; and ¥;.

We use the operations Q and Q defined in subsection 4.2. Since Qf = AT
and Q;f = (=1)"'2{r; — (Rf - 7)Rf} = (=1)""'2P}7;, we have

) = 51QF B AF) = 501 F - Qaf.

To show Theorem 5.1, we calculate the variations of @) and Qi, and establish
several estimates (see Lemma 5.2). Explicit expressions for &; and 7% are given
in subsections 5.1 and 5.2, respectively, and Theorem 5.1 is proved in subsection
5.3.

If f € H*(R/LZ), by a formal integration by parts, it seems that the first
variation can be extended into L?(R/LZ) as a linear form. Indeed, the principal

term of 6&1(f)[@] is

// (T(s1) = 7(52)) - (¢'(s1) = ¢'(52)) dsydsz
(R/LZ)? [ £(s1) — F(s2)lI§n ’

where 7 = f’. Using the bi-Lipschitz continuity, we may replace the denomina-
tor with 2(f(s1), f(s2))? and then

// (T(s1) — 7(s2)) - (¢'(51) — ¢'(52))
(R/LZ)? 2(f(s1), f(s2))?

Here, Ay is the Laplace operator with respect to the arc-length parameter, and
(—Ay)? is its fractional power. Formally integrating by parts, we obtain

dsidss = 27‘(’/ (_As)%T'(_As)%QS, ds.
R/CZ

“ANE - dds.
2”/1“2( VEf - s
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This seems to apply to f € H3(R/LZ) and ¢ € L*(R/LZ). In this paper, we
shall justify this not only for the principal term but also for all terms, including
0&s.

Here, we define a new operation T/, which we will use to describe the L2-
gradient expression of §&;:

_(_1As] \"Af }
(51) 5= (pagie) a0

From now on, (-,-)z> denotes the inner product on L?(R/LZ). Similarly
I llzz= and || - | » are respectively the norms on H*(R/LZ) and LP(R/LZ).

Theorem 5.2 Let f € H3(R/LZ) be bi-Lipschitz. We denote the curvature of
f by K, that is, k = . Then for ¢ € L>(R/LZ), it holds that

where
Lif=om(-a)tp -4y |2 Zild v W oo+ 2 0(F — ),
kEZ
4 3 8 ok |® .
Baf = —grA 453 2 Sk (o prhiaon + 5 p A + 5 (F — ),

si(t) = */t ?dk, vr(s) = %exp <27r2/<:s> , f(g) = f(s+ %)7

M) = <2 [ s rear - (st s

o |z g {0 - Gl f )]

No(f)(s1) = — 4 / . (A)”Zf” [(T2F - 7(s0)TOF + (T2 f - 7(52))TOF )} dso

1
- 4/]1%/52 (As)? (T f -7 (s1) TS f + (T F - m(s2))T3 f
+2{(T3f - 7(s2)) + 1} (TT f - 7(s1)) T f] dsa
1 1 foT(s
=4 T [ 70 =TS o
+2{T2f~7-( +1} (T2 f - 7(s1))

S
+T10f : T(SZ) - ( 6) ||]Rn:| T 81 d82
1
2

i g g s e e s

Furthermore, for a € (0, 3) it holds that

IN:(Flle> < Calllfll o),
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where Co (|| f||g3-=) is a constant depending on a and || f|| gz-o-
We call the operator L;f + N;(f) the L2-gradient of 6&;. We will show
Theorem 5.2 in subsection 5.4 .

5.1 The first variation

First we summarize several facts regarding the calculation of variations.

Lemma 5.1 The following first variational formulae hold.
1. 67[pl =@ — (T - ¢)T.
2. 0||AT|§n[@] = 2AT - A’ — [AT|Ra (T (s1) - @' (51) + T(s52) - @(52)).

1 2Af - Ag¢
5.5 () o= B Ld
A ) T A
4. 6(ds;)[@] = T(s;) - @' (s5)ds;.
Proof. Since the parameter s is not an arc-length parameter for f + ¢, we

use a new parameter 6 independent of e. We denote differentiation with respect
to 6 by . From the definition of first variation, we have

d f+ed ¢ f feo ,
=y ey v T FTE A A
Using the variation 7, we obtain
S AT |2 (6

RO S
F @ 17
— 2AT - AST[d]
207 A — (r(s1) - 8 (52)) (1) + (7(s52) - B (52))7(52)}
207 AG — AT (r(s1) - (1) +7(52) - B (2),

i SIAFIZ (6] 2AF-Ag
’ (|Af||]§n> 9= -

IAfIE. — IAFIE.

and

5(ds;) (@) = 61 (s lmn )] = T2 P o -y ().
17 () e

Next we obtain an explicit expression for ¥;.

Propositon 5.1 ([12], Proposition 1) The ¥;’s can be written as
QF-Qb  24(FDF-A¢

gl(f)[‘ﬁ] - ”Af”%{” HAf”]%a" ’
1 f Qe+ Qaf Q1 2.46(F)AF- A
%(f)ll = — 2| AF2. B [AFRn

in terms of M, Q, and Q;.
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Proof. From Lemma 5.1,

G(f) @) dsidsy = 5.4;(f)[@] ds1dsz + A;(f) 5(dsidsz)[P]
(5.2) = {0A(F)@] + Ai(f) (71 @) + T2 - @)} dsidsy,
. Gi(F)[ @] = 0.M(F) @) + A(F) (1 - B, + T2 BL).

Using Lemma 5.1, we have

oM . (1
SMDIB = TR g + A (|Af||f@> @)
MG 2M)AS A

5.3 - _
> IAFIE- IAF R

To calculate 6.4 (f)[¢], using Qf = AT, it follows that
5 (I1QFI?) [9] = 2A7 - 6(AT)[¢]
=2AT-AP'T
=2A7 - {AQ' — (11 @))T1+ (T2 )72}
=2AT- AP —2(11-d)) (1 —To-T1) +2(T2- @) (71 -T2 — 1)
=2A7 - A — (11 @) + 72 $y)[|AT|?
=2Qf - QP —2(T1 - ¢y + T2 - Po)N(f).
Therefore, we obtain
(5.4) SIM(f)[P] = QF - Qe — (T1- ¢1 + 7o - Po) M (f).
It follows from the definition of Q; and Lemma 5.1 that
5(Qif)@] = (—1)"'26{r; — (Rf - T:) R }[¢]
= (=1)"'2[¢} — (¢ - Ti)7i = {PRp-7i + Rf - (¢ — (¢ - T)T:) } Rf
—(Rf - 7:) PR
= (=12 (¢ = (i )T
—{(R¢- P 7i) + (Rf - ¢)) + (Rf - 7:)(T: - )} Rf
—(Rf -1i){Ro — (Rf - R$)Rf}]
= (=1)"'2{¢; - (Rf -Ti)Rp — (i - $){Ti — (Rf - Ti) RS}
~ (R~ Plri) + [Rf - {¢; — (Rf -7:)R$}]) R}
= Qip— (1:- 9)Qif —{(Rp- Qif) + (Rf - Qi) } RS
We take the inner product of this and Q; f = (—1)""'2P} ;. Since Rf-Pi1; =
0 for i # j, we obtain
0(Qi)¢l- Qi f = (Qip- Qi f) — (Ti - $))(Qif - Qi F)
= Qi Q;f) +2(7 - ¢))N(f).
This shows that
(5:5) SM(NG] = ~5( Q1 Qb+ Qof - Qu) — (71~ 8] + 72~ G ()

and substituting (5.3)—(5.5) into (5.2), we obtain the assertion. O
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5.2 The second variation
Define the differential operator R and the operation S by

1
Rro = 3 (v} +v}),

and R R
S(v,w) = Rv - Qw + Qv - Rw,

respectively. It is easy to see that S(v,w) = A(v’ - w’), however, we choose to
use the above expression, which is slightly difficult to understand, in order to
make a comparison with the operation S; defined as follows:

S;(v,w) = Rv - Q;w + Q;v - Rw.
The operations S and S; appear in the expressions for /4 and %, respectively.

Propositon 5.2 ([12], Proposition 2) The J¢’s can be written as

A = Rz~ AR,
NGNS Ay HIAF A 2a(F)AG - A
1571 AT IAF2.
N T
+ gl(fa ¢)§2(f7¢) + g?(f7¢)§1(.fa'¢')
2IATTR.
(PGS AG  2(HEIAF A 24(F)Ad- Ay
IAFTE. 1AFIE. 1AFIE

in terms of Mi, 9% Q, Qi, S, and S;.
Proof. Defining #; by
21(f)e] =Qf - Qo,
()18 =~ (@if - o+ of - i),

we have

: _ 2]  24(f)Af - A
L e 1Y T VN TER
We can show that

H(£) 4] = 3(G(F)PD[] + Zi(£)[d)(T1 - ) + 72 - L)
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in a similar manner to the proof of Proposition 5.1. It follows from Lemma 5.1
that

S2(NB)W] 22 HGIAS - A
IAFI2. IAFTE.
CBMPWIAL DS 2D Ad
IAFI2. IAFTE
L)AL - §)(AF - Avp)
" A7
_N(ZADIOD) 2 (SIAf - A

5(“:(floh] =

[AFIZ. 1AFT2.
_BMIAS DD 2M(F) A AY
15512, 1AFIR

Substituting

SM ()W) = Gi(F) ] — Ai(f)(T1 ) + T2 - 1))

into the above relation, we obtain

s (el - AL
W (PGIAF A 2 (FEIAT - Ad
AT A7
YR AN N
1AFTE.
()AG- A
1AFIZ.
and hence
| SN WDIGAF A A(HEIAT - Ad
AP = " a 7. AT N
(A Ay
AT
(5.6) {W’b +%(f)[¢]} (1) + 72 D).

To calculate (2 (f)[¢])[4], since 6¢'[1p] = —(T - 1)@’ by Lemma 5.1, we have
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5(Qd)[v] = —A{(T - ¥)¢'}. Therefore, the following holds:

5(21(f)D)[¥]
=0(Qf)Y]- Qe+ Qf - 5(Q9)[¢]
= AP - Qb —Qf - A{(t-¢)¢'}
=AY Qo — A{(T- )T} AP — AT A{(T - ¢) @'}
= Qv Qo — [(T1-Y)AT +{A(T ) }72] - Agf
— AT [{A(T )} + (T2 ¥5) AP
= Q¢ Qv — (AT - AQ')(T1 P} + T2 )
—{A(T - P)HT2 - AP+ AT - ¢))
= Q¢ Qv — P1(f)Bl(T1 Y1 + T2 py) — {A(T - ") HA(T - 4)}
(5.7)  =Q¢ QY — P (f)[Pl(T1 - + T2 93) — S(f, $)S(f, %)

From

3Qi()[¥]
= (1) '26{¢; — (Rf - 7:) R} [¢}]
= (1) "2 (0g;[v]
—[{8(RF)W] - 73} + Rf - 67:[p]|Rp — (Rf - 7:)3(Rep)[1)])
= (=)' 2 [~ (7 - )
~{PLRy -7+ Rf - (¥, — (@} - 7:)T:)}Rp + (Rf - 7;)(Rf - RY)Rop]
= (1) "2 [~ (i - )9y
—{P}7; R+ Rf - {4, — (- 7:)7:} — (Rf - 73)(Rf - Rap)} Rop)
= (1) "2 [~ (i - )@y
—{(Plri- Ry) + (Rf - )
—(Rf -7i)(7i - 4}) — (Rf - 7:)(Rf - Rep)}Rp]
= (=12 [~ (i - ¥)){¢; — (Rf - Ti) R}
~{(P}7i- RY) + (Rf - 4}) — (Rf - 7:)(Rf - Rep)} Rop)
= (=12 [~ (7 - ¥)){; — (Rf - Ti) R}
— ((Pf7i- Rp) + [Rf - {b; — (Rf - T:)R}2p]) R¢)]
= —(1i - ¥))Qid — {(Qif - RY) + (Rf - Qip)} R
= —(1i - ¥}))Qid — Si(f, )R,
it follows that
Qif 0(Q;d) W] = —(1; - ) (Qif - Q;8) — S;(£.9)(Qif - Rp).

We have already calculated § (QZ f) in the proof of Proposition 5.1. Using S;,
we have

S(Qif) W] = Qb — (1i - ¥))Qif — Si(f )RS

and therefore
Q)W) Qi = Q- Qi) — (i - W) (Qif - Q) — Si(f,¥)(Rf - Q; ).
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When i # j, it follows that
Qi Qo ~ ~
= Q- Qs9) ~ (£, 9)(@F - 7Y) — 5.(F. 9IRS - Qs9)

(T )@ - i),

Consequently, we obtain

S22
= (@16 Qo+ Qo Gr)

S5(F )@ - R) + 551 (£ ) (RS - Q20)

3810 9)(Qaf - RY) + L 5:(F ) (RS - 1)

(T 1+ 72 95)(Q1f - Qe+ Qof - 19)

= (@16 Q) + (00 Q9
4S8, 81800 9) + 52(5.9)51 (7, 9)
69 ~ 2B+ ).

Substituting (5.7) and (5.8) into (5.6), we obtain the assertion. O

_|_

N =

DN | =

_|_

5.3 Estimates as multi-linear functional

The following lemma is key in order to obtain the desired estimates on .#;, ¥;
and J7,.

Lemma 5.2 1. For v € X, the following estimate holds:

|75 7

< 'y

L2((R/LZ)?)

2. Assumev € C*(R/LZ). If we set Qu|
everywhere and

HQU

2(f(s1), f(s2))

—_ ! . N
s—s =5, = U, then Qv is continuous

< |v'llerrycz)-
CO((R/LZ)?)

3. Assume that f € CYY(R/LZ) and that |Af|re > AN"H2(F(s1), f(s2))]-
Then there exists a positive constant C depending on Hf/”CO’l(]R/LZ); A,
and L such that

in
g(f(sl)a f(Sz))

< CO'||corrycz)
Lo ((R/LZ)?)

holds for all v € CY*(R/LZ).
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4. Assume that f € C*(R/LZ) and that f has no self-intersections. For v €
C%(R/LZ), Q;v is continuous everywhere by setting Qv =" If

§=81=82
we further assume that ||[Af||re > A" 2(f(s1), f(s2))], then there exists
a positive constant C depending on ||f/||cl(]R/LZ), A, and L such that

in
H < O ||er vz
CO((R/LZ)?)

P(f(s1), f(s2))

holds for all v € C*(R/LZ).

Proof. Without loss of generality, we may assume that |s; — so| < %, and
then we use |As| instead of 2(f(s1), f(s2)) for simplicity. The assertions 1-2
are almost trivial. Indeed, it follows immediately that

’ Qu _ [’U/]

1 < o'y
L2((R/LZ)?) Hé(R/cZ)—H 1%

As

If v is in the class C2, then we have

. Qu "
lim 22 =" (s),
(s1,82)—(s,s) As ( )
and
Qu 1 51
’ I = maXL ’U”(S) dS S H’U/”CI(R/EZ)~
Sllco(mryczyz)  12sI<5 1151 = 82 /s, Rn

To show the assertions 3-4, recall that we decompose (712)1_1622-1; = v, —
(Rf - 7i)Rv into

A A
v;—(Rf T;)Rv = ("2 - AQS))JF(AZ _Rv>+(1—Rf-n)Rv = Vi+Va+Vs.

We show L and C° estimates for each V;/As. Estimates on V;/As. From the
inequality shown in Lemma 4.2 3, it follows that

1 ( / A'U) 2 /81 /

— | v, — — < sup —= |V |Lip|si — s| ds
H As A8/l myen) ~ 1asisg (1792 sy ’

]' / 1 /
< §||’U [Lip < §||v o (rycz)-

If v is in the class C?, then we have

. 1 Av (—1)i-t
1 T / _ == — "
(81,321)§(s,s) As (UZ AS) 2 v (S)

and
1 ,  Av 1 R
—_— - — —_— dod
|5 (v 52) o ), [ s

1 1 1 /
< 5”” lcow/czy < §||’U ot (rycz)-

2

< max
Co((R/Lz)?)  1AsISE

R”
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Estimates on Va/As. If f € CYY(R/LZ), then T has Lipschitz continuity.
Consequently,

H As

RTL

= <[]

Rn o 1 + H R"

As ||gn

e 21 / I (s3) — 7(s2)

2 2 2
_ITplAs? _ iRy las)
- 12 - 24

2
Rn d83 d84

and this implies

H ( _ Rv)’ < )\['”-f,”%")»l(]R/LZ)||v/||CO(R/£Z)-
L= ((R/£2)?) 24

Similarly, if f € C?(R/LZ), then

Af
As ||g

||7"H%,O(R/£Z)|As\2

‘1

1 [Av
hm —_— _— Rv = o,
(s1,82)—(s,s) As (AS )

| (&)
hold.

Estimates on V3/As. When f € CY1(R/LZ), using the estimate

and
< )\£||f,||201(R/gz)||”/HCO(R/£Z)
- 24

CO((R/£Z)?)

51 1 L
[ 170 = 76)1Bads| < glirlhanlasl® < Elirlunlas?.
S92
we obtain
(1 - Rf : Ti)R’U 1
ST < S LAl o
L= ((R/LZ)?)

—_

< LA fllcorwyeny vl cowry ez

[\)

Similarly, if f € C*(R/LZ), then

s = ) s

s2

L
< EHT/HCO(R/EZ)|AS‘27

. (1-Rf-1;)Rv
lim )
(s1,82)—(s,8) As
and
1—Rf-1;)Rv 1
H(As) §£)\Hf ler @/ czyllv loowy cz)

Le=((R/LZ)?)

hold. -
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We are now in position to prove Theorem 5.1. Let Q be Q or Ql Then we
can write

<

=2

Z(f(s1), F(s2)) 2(f(s1), f(s2))
for both 7 = 1,2. Similarly, from Proposition 5.1, it follows that
Qf Q¢
2(f(s1), f(s2)) 2(f(s1), f(s2))
+ 2|4 (f)

b
Rn Rn

()]l < N

A
@(f(ﬁ)a f(sz))

Rn

]Rn
Qf Q¢
2(f(s1), f(s2)) P(f(s1), f(s2))

Let R be R or R, and let S be S or S;. Then the definition of these operations
yields

< \?

+ 2\ A ()| @ |Lip-

R

R

‘ S(v,w) ’
I(f(s1), f(s2))| .
R __ Qw Qv Rw||mn
<ol | e rap e * 507000 0 | 11
e Qw Qv |
<2 (I | s P . * 0y 7 )
Therefore, Proposition 5.2 implies
|72 ()&, ¥
<32 Qo Q1
- .@(f(Sl),f(SQ)) R f(51)7f(32)) Rn

Qf

- i H(f()f())

(f(é’l)if(é’z))

<||f||L1p

(fmp SN ) H —
L (F)l 1|||¢\|Llp+2x2|% f)hb|||¢||mp
2 ) Bl 4

Consequently, the estimates in Theorem 5.1 are easily derived from Lemma 4.2
and Lemma 5.2. If f € C?*(R/LZ), then Lemma 5.2 yields

¢||Llp)

)

1 1" 1 1
lim — (A(f) +4(F)) =51 f ()l — S IIf (8)[[&n = 0.

(s1,82)—(s,s)

Similarly, we can show that both the limits of 4 (f) +%(f) and 54 (f)+4(f)
vanish. (]

5.4 L2-gradient expressions

Here we give the proof of the Theorem 5.2. First we decompose §&;(f)[¢] into
the linear and nonlinear pars with respect to f in subsection 5.4.1 and then we
deal with the parts in subsections 5.4.2 and 5.4.3 respectively.
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5.4.1 Preliminaries

Since C*°(R/LZ) is dense both in H3(R/LZ) and L?(R/LZ), we may assume f
and ¢ are sufficiently smooth. From Proposition 5.1, the first variation 6&;(-)[]

is expressed as
// d81d82
R/EZ)2

= Z// @) (s1,52) ds1dsa,
R/cz)z

where
 Quf Qo+ Qinf - Qud
2U;( NS - A
Gi?(fa d)) = _W7

Qv =Av' =v'(s1)—0'(s2), Qu = Q12 =Q1, Qo5v=2{v(s;)—(Rf7(s;))Rv}.
We decompose these operations @;; as Q;;v = Qijv + Qijv, where

~ _ ~ Av

Q=01 =01, Q1 =0, Qv=2 ('Ul(sj) - As) :

|As| } Av

szvzz{i:_(}zf.r(sj))m}:2{1—(Rf 6 T Flon

Then, using these operations, we have

zl f7 ZGﬂk .fa 7

Cin(f, ) = Qllf . QZQS?;S)Q;QJ" . Q¢1¢’

Gi2(f, ) = %//f(f)(@ilf Qiad + Qinf - Qi @),
Qif Qo+ Quf Qid+Quf Qnd
2[[AS&n
QzQ.f Q11¢ + Q12f Qzl¢ + Qz?f Qzl¢
2| AS|Zn

G171 is linear with respect to f; however, G;12, G;13, and G2 are not. We would
like to write

Gis(f, 9) =

// G (f, @) dsidsa = (L; f, d) 1>

(R/LZ)?

// (Giz2(f. @)+ Gas(f, @) + Gia(f, @) dsidse = (N(f), P) 2,
(R/LT)?

where L; and IN;, respectively, are linear and nonlinear operators from H3(R/LZ)
to L2(R/LZ), and we would like to estimate them.
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5.4.2 The linear part
We let
(s) 1 . 2miks
= —— eX _—
Pk VT P 18

for k € Z, where {¢} is a complete orthonormal basis that consists of eigen-
functions of the Laplacian on R/LZ and

F=> vrar, ¢=> oiby

kEZ keZ

are the associated Fourier series of f and ¢.

Lemma 5.3 Assume that f, ¢ € C3(R/LZ). Then, it holds that

2(1 —cos\)
G - ~a _ n
//R/LZ)2 11(F, @) dsidss = Z {/Mgkﬂ 32 dA} {(ak,br)c

k€EZ
2mik
T=) Phak =) g,

21k
L

Proof. From

keZ kEZ
we have
2mik
T(s1) = T(s1+h) = > 7 (@rls1) — s+ h))ar

kEZ

B Z 2mwik 1 — ex 2mikh (s1)a

= I P T Pr(sS1)ak,
kEZ

and similarly, we have

¥ =0+ 1) = 3 T {1 o (T bortsum

kEZ

If we let sy = s1 + h, then we obtain

// G111(f, @) ds1dsy = // Mdsldsz
(R/LZ)? ®/czye  (As)?

AT A
= // Tifdsldéig
(R/ZZZ)2 (As)

T(s1) —T(s51+h)) - (¢ (51) — @' (51 + h))
/MZ/ - dhds,

/ / i 27rzk 2mwim 1 — ex 2mikh 1 — ex 2mwimh
]R/,CZ % h E p E p E

meZ

NI w\h

X ‘Pk(sl)SOm(Sl)ak - by dhdsy

:/g 22<m) ll_exp<27rzkh>z

kEZ

ok 2 £ l—cos(z’rkh)
:2§ - i WV VA .b_
hez ﬁ> {/— CEE
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where - indicates the sum of products of the components. From b_; = by, we
have -
ay - b—k: = a - bk = (ak,bk>@.

Letting % = A, the above integration with respect to h is written as
27Tk 2 % 1 — cos 27Tkh
kez -5

2mk\? ™ 1 —cos A
=3 (7) (/ S C“) (a, i)

kez
ok |? Tk — cos A
:22 T </_ﬂk Td}\ <ak,bk>(Cn.
kez L
O
Lemma 5.4 If f, ¢ € C3(R/LZ), then
// G211(f,¢) dsidsz
(R/LZ)?
omk [P | 17l 4002 cos A — 2Xsin A + 2(1 — cos A
=3 |= / { 1 ( I g (ak, br)cn
kez
holds.
Proof. For
v="> ik,
kEZ
we have
- — h
Q210(81751 + h) -9 (v/(sl) _ 'U(Sl) _'U]/ESI + ))
s1) — s1+h
:22(@;@(81)_@16( 1) _@hllv( 1 )>Ck:
kEZ
2mik 1 2mikh
S o () e
kEZ
and
Q22v(81781 + h) -9 (’U/(Sl + h) _ 'U(Sl) __'0}551 + h))
s1) — s1+h
:QZ(%(Sl-i-h)—wk( ) :p}f( - ))Ck
keZ
2mik 2mwikh 1 2mikh
=2 -1 - .
S e () + i {1 e () fentene
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Then, setting

2mik 1 2mwikh
) = 5 4 {1 o (17 )
(h) = 2mik 2mwikh n l 1 2mikh
q2k =7 exp 7 h exp T )

Q21v(s1, 51 +h) = QZ q1k(h)pr(s1)ek,
kez

Qa2v(s1,81+h) = 22 ok (h)pr(s1)c.
kez

and

we obtain

Therefore, we obtain
Qa1f - Qoo+ Quf  Qud

=4> > (qik(h)g2m(h) + qar(h)qim (1)) @k (51)Pm (1)@ - b
kEZ mEL

// G211(f, @) dsidsz
(R/L7)2

_ // Qo1 f - Q22 + Qoo f - Q¢
(R/L7Z)? (A8)2

d81 d52

c/2
—2 [ / o 30 3 @1k W) (1) + @2 () (1)) (51) 2o (1) - B
RKZ

£)2

kEZ mET
c/2 4
= 22 {/ 72 (q1k(h)g2,—k(h) + QZk(h)QI,k(h))dh} (@K, by)cn
k€Z L£/2
Here, we let A = 2’2’”‘ , and then we get

1 .
qik(h)az2,—k(h) + q2r(h)q1,—k(h) = 72 {2X% cos A — 4Asin A — 4(cos A — 1)},

which leads to the expression

c/2
2 Z/ i(Cllk(h)Q2,4c(h) + g2k (h)q1,—k(h))dh

e -2 2
7k 3 2 Y . _
:22/ <27Tk) {2X\? cos A 4)\s1n4)\+4(1 cos)\)}d/\
kez’ Tk £ A
_y 27k | /”' 4{N% cos A — 2Asin A +2(1 — cos )} o
= il i ,
—|k|

kEZ
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Recall that we define the integral sine function si by
o0 : )\
si(t) = — / SIA I
t A

and for a function u on R/LZ, we define @ by

- oo+ £).

We note that we will also use the latter notation for vector-valued functions.

Propositon 5.3 For f, ¢ € C3>(R/LZ),

. a1(F, @) dsidsy = (Lif, )12
(59) [ oy, Casl:9) s = (1890
holds, where
Lf = om0t — a5 2 ggn
1f =2n(=A)>f - Z v si(|km|)(f, er) L2 ok
kEZ
8 .
+ ZAS (.f_.f)7
4 s . 8|27k |?
Lof = = gr(=A)EF + 33 |5 | silkal)(f,ou)1e o
kEeZ
16, ., 128 ;
+gplid + 5 (F- 1)

In particular, the right-hand side of (5.9) can be defined for f € H3>(R/LZ) and
¢ € L*(R/LZ).

Proof. From the above computation, we obtain

ork|?
Lif =) v (/ zi(A) d)\> (£ k)02 Pk
kezZ A<k
where
2(1 — cos A) 4{X\? cos A — 2Asin A + 2(1 — cos A
zl()‘):Tv 22()\): { 2\ )}

These functions satisfy
z(AN) =02 (A= £00),

and they can be continuously extended at A = 0. In particular, z; € L'(R).
These are obviously even functions, and we can easily see that

in A\
zi(A) = a; SH;\ +b; ()\Zi(/\))/,
where 4 .
=2, b=-1 =—=, by=—-.
a1 , 1 , a2 3’ 2 3
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Therefore,

/ zi(A) d\ = a; / sin A dX + b; [)\Zi(/\)]‘_k&lﬂ
A<k M <[k

in A
_ (71'—/ S dA) + b { k|2 (|kmr]) — (—|Em|z(—|kr])}
A2 lka| A
= a; (7 + 2si(|kn])) + 2b;| k7|2 (|kn]),
and consequently, we obtain

ok |?

(5.10) Lif =aiy |5 | (m+2si(lkr]) F, on) 2 o

kEZ

+ 2biz

kEZ

ok |?
— | kmlzi(|km)(f, ) L2 Pk

From the definition of z;,

_2{1—cos(kr))} _ 2{1—(-1)"}

R o et A
k|22 (|kr]) = A[=|kr|* cos(|k|) + 2Ik7r||:7irr|1§|k7r|) — 2{1 — cos(|kn|)}]
_ A=ED R - 2{1 - (=)
|k7r|3 )

and from the definition of the Fourier series, it follows that

Z<f, P2 e = f,

ke
ok |?
Z T (Fror)re o= — Asf.
k€Z
Since §
<.f7 Spk>L2 = <.f7 ¢k>L2 = (_1)k<.f7 ont>L23
we obtain

Z(_l)k<f790k>L2 or =1,
kEZ
2
2K R o) gr = — AT

D

keZ

62



and therefore

| i T,
kEZ
21k |° 2{1 — (—-1)%}
7};2 T<fa@0k>L2 Pk
gz 2k | {1-(- }<fa<Pk>L2s0k
kEZ
éAs (f_]:)7
and
I i T .
kEZ
3 AT (_1\k 2 1k
:Z @ 4[ ( 1) |kﬂ||k7r|32{1 ( 1) }]<f790k:>L2<Pk
k€EZ
_42 27T/€ _1)k_£{1_(_1)k} (f,on) 2 ok
kEZ

——%Asf—%(f—f).
If we substitute the above result and
Z ork|?
kEZ E
into (5.10), noting that

g _cos)\oo_ °° cos A il
|51(t)|H 3 L /t SVE d)\‘O(t ) (t— 00),

e

(foor)re o = (A5)2

then we conclude that
ok |?

>

kEZ

si(|km])(-, or) L2 Pk

is a second-order pseudo-differential operator, and it can be estimated as

D

kEZ

1

k|4 2
<C< |7T| L2|>
L2 keZ

< CL” 1||(— ) F 2
Consequently, under the assumption that f € H3(R/LZ),

IZfle < C (=20 Fllze + £ (=40 Fllza + L7322 < oo.

ok | .
—| si(|k7])(f, o)L o

Thus, we have obtained the linear part of the L2-gradient of &;.

63



5.4.3 The nonlinear part

In this section, we consider the part of G;1x(f, @) (k = 2, 3) or Gi2(f, @) that
is nonlinear with respect to f.

We let G(f, @) be either G;15(f, @) (k =2, 3) or Gio(f, @), and we observe
that it has the following form:

G(f,¢) = GA(f)'A¢/+GB(f) 'A¢+Gc(f)'¢/(31) +GD(f) '¢I(52)-

Lemma 5.5 The following identities hold for any function ¢ on (R/LZ)?.

1.
//,> C(s1,52) - @' (51) dsrdsy
S RGO er
) //sl_sﬂzg a%“sh s2) - @(s1) dsrdsz
2.

//l ol C(s1,82) - @ (s2) dsidsy
- / (C(s+e,5) —C(s —e,5) - P(s)ds
R/LZ

0
B //31—82|ZE 87@{(81’ 52) - @P(s2) dsidso

3.
// ¢(s1,52)-A¢pdsidsy = // (C(s1,82) —C(s2,51)) @(s1) dsidsy
|s1—s2|>e |s1—s2|>e
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Proof. First note that

//Sl sa|>e C(s1,52) - @'(s1) dsidsy
VAT g LR

= / { [C(s1,82) - B(s1)]52 "% + [C(s1,92) - S(s1))2 T2
R/LZ

([ ) Bt s

=/ {C(Sz—6,82)'¢(82—€)—C(82+€,82)'¢(32+5)
R/LZ

52+2
(/ / ) 7C 51752) (]-’)(Sl)dsl} dss
s2—% 2+¢€

—/ (C(s2— e, 52) - blsz — ) — C(sn +€,52) - blsz + <)} diso
R/LZ

- //«91—52|25 8181(“1’ 82) : ¢(31) dsidss = (*)

By changing variables such that so + ¢ = s, we obtain

() = / (C(s.5+€) — €55 — £)) - d(s)ds
R/LZ

0
B /‘/Sl—SZIZE 8751«81’ 52) - @(s1) dsydss.

The third identity of this lemma follows from

//ISI_”28 C(s1,82) - d(s2)dsidsy = //31—52|28 C(s2,81) - d(s1) dsidsa.

Corollary 5.1 For any function ¢ on (R/LZ)? it holds that
// - C(s1,82) - Ag' dsidsy
[ el e = Gl es) s — )+ €5 — 21 - 9l ds
R/LZ

- //I i(C(Slasz) —((s2,51)) - P(s1) ds1dso.

s1—s2|>e 0s1
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Proof. Using Lemma 5.5, we have
// 81752 A¢ d51d52
|s1—s2|>e
-/ /| (€lon,52) — Claz 1) o) s
— [ Qi) = Gt 28) Gy 2) 4 s - e25) - b(s) ds
R/LZ

// i(C(S1,52) —((s2,51)) - @(s1) ds1dso.

81782|Z€ 881

From Lemma 5.5 and Corollary 5.1, we obtain

// G(f,¢)dsidsa
(R/ 22

= lim // Ad) dsidss + // A¢ dsidss
8H+0 |s1— 92|>s |s1— 92\>6

+ //S1—S2|26 G.(f)  ¢'(s1)ds1dsa + //31—32|Z€ G,(f) ¢ (s2) d51d32>

= Jim, { [ €52 = G 209
_GA (f)(S,S - 5) - GA(f)(S - 675)) : (b(S) ds
- // 2 (G, (f)(51,82) — G ,(F)(s2,51)) - P(51) ds1dsz

s1—s2|>e (951
- //31 sa|>e (G5 (f)(s1,82) — G5 (f)(s2,51)) - P(s1) dsidso
! / (Go ()55 +6) = Go(f)s,s =) - pls) ds
R/LZ
B // s> %Gc(fxslasﬂ - p(s1) ds1dso

" / (G () (s +2.8) — G (F)(s —e,5)) - B(s) ds
R/LZ

B // 88 G, (f)(s1,82) ¢(52)d51d52}
|s1—s2|>e€ 52
= (1)
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Here, we shall prove that if f € H3, then

D= [[ {5 (o152 = L) (s250) + G, 2) = G ()2 )

0 0

- 7Gc(f)(81,82) - 6731

831 GD (f)<827 81)} : ¢(81) d81d82

=)

holds. Furthermore, we shall check that

N /m {25 (@)~ GL 52,8 + G (F)(5052) = G (o)
9 B
_ %Gc(f)(S,SQ) — aSGD(f)(SQ’S)} ds,

is well defined at Z1-a.e. s € R/LZ; we do this so that we can use Fubini’s
theorem, which gives rise to

(1) = N(f)(s)- ¢(s)ds = (N(f), #)r>-

R/L7Z

We shall also show that IN(f) is a lower-order term of order less than three,
and

IN(F)lle < CUFlm-e, A)-

We use N ;1 or N;5 as counterparts of N when G = G;1; or G2, respectively.
As preparation, we need some lemmas and corollaries.

Lemma 5.6 For k € L™, it holds that

(A5)? = [Afllzn = O(As)*.

Proof. From a direct calculation, we arrive at
S1 S1
/ / (]. — T(Sg) . T(S4)) d83d54
1 2 o 2 s .
=5 [ [ It =m0l dsadss
S92 S2

1 S1 S1 s3 s3

= —/ / / / ""3(35) . FL(SG) d85d36d83d84
2 S2 ED) sS4 S4
O(As)!

(A5)? = [AFIIfn

Corollary 5.2 Assume that f is bi-Lipschitz and & € L. Then for k > 1,

A k
(|A|f||) ~1=0@)”

holds.
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Proof. To begin, we note that with appropriate modifications, the claim can
be shown not only for natural numbers but also for all real numbers greater
than one. However, we need the result only for natural numbers, and so we will
assume that k is a natural number, in which case, we have

|As| )’“_ :< As| )"( |As| )‘
(IAfIIRn = age Y 2 Uiasg

(7
A7, ( |As| >l

A [AF|rn
+1 ¢=0
[Af||rn
_ (89— |Af2. 1 ( As| )f
(As)? 1AF e [AFIE: = \IAS]lr-
|As] |As|?
= 0(As)?.
(Il
Lemma 5.7 Let k € L. It follows that
Af

T f = O(As), TPf- T(sj) = O(As)?, T? s = 0(As)?.

Proof. Recall that TF is given by (5.1). By the following computations, we

obtain

As

= As/ / K(s4) dsydss = O(As),

Tiof -T(s5) = i /51 /53 Kk(s4) - T(s;) dsadss
B i /31 /83 K(s4) - (7(s5) — 7(s4)) dsadss

s1
/ / Kk(84) - K(s5) dssdssdss
As

5= 2y = / " ((sa) — (s1)) dss

_O(

and

105 8L~ 1y (B - vsp) #1080
=Tf-T)f +T)f - 7(s;)
= O(As)'! + O(As)? = O(As)?.
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Corollary 5.3 Suppose that f is bi-Lipschitz and k € L*°. Then for k > 1,

TEf = O(As), TFf-71(s;) = O(As)?, TFf- i—f = 0(As)?

hold.

Proof. From the following calculations, we obtain

k

A 4§ A

O(As)? + O(As)? = O(As)?,

and

A A
v S —rir (R ren) e n)
=T f-Tf + T f-7(s;)

= O(As)'™ + O(As)? = O(As)?.

O

Lemma 5.8 We also have the following results with regard to the derivatives

of M (f) and TF(f):

0 2(-1) o0 Af 1)
R v I i

O php_ (—1)jk;( As| >’“2 (Af,Tof>Af

0
ija

aSj As ||Af||Rn As J As
(=17 [ 1asl N o, o
TR \[afle) BT 0un(s))

Proof. These can be shown by direct calculation, as follows :

C2Af (1P Mr(s) | (12
IAFIE. (Bs)?

_ 207 [ JAs) \TAS
RV {(nAfan) As T 1}

_2(=1y |As| 4&,”_ .
 (As)? {(IIAfIIRn) As W} (55)

= AT )

0
5o A F) =
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o Af

0 fi1— 12 _ (=177 (s;) (=17 '(f1 = fa)
853 As 3$j S1 — 89 $1 — 89 (s1 — 82)2
—1)y-1 A —1)7
- )
O hp O
Srhf=

_k

2\ "5 af  (llaf|?
L) e (1

P

2N\ r2aF 0 AP\ AF
R < s .85J As> As

,% Af
(HAS Rn) Bs; A — 0ijk(s5)
_ (=1 Jk< |As| )’“”(Af Of)Af
a As  \|Af[lrn

(*1)3- |As| k
T (IAfHRn) T)f — 8i5(s;)-

Then let us consider how to derive and estimate IN;12. If we set

Gua(f, ¢) = 5///(1”)(@11]‘ Q120+ Qi2f - Qu19)
=M (f)(Af - Ag')
= 9112(f) ) A¢/7

then g5 can be expressed as

g112(f)(51,52) = ///(f)Af/~

Lemma 5.9 Let a € (0,3). If f € H3"*(R/LZ), then

// Gr12(f, @) (s1,s2)ds1dsa = (N112(f), @) L2,
(R/LT)?

where
N112(f)(51) = Q/R/EZ { (AQS) (Tl f T(Sl))AT — ///(f)n(sl)} dSQ
satisfies

[IN112(F)lle2 < CUF Nl rre-a)-
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Proof. In what follows, we denote g;15(f)(s1, s2) by g112(81, s2) for simplicity.
Using Corollary 5.1, we obtain

// G112 f,¢)d81d82

|s1—s2|>e

= //I 5 g112(f) A¢ dsidsy
s1—82|>¢e

_ /R 81120555 €) = Gnals 4 £08) — a5 =€)+ Fuaals = 2,9) - Bl)ds

0
_// . 851(9112(81’82) 9119(52,51)) - d(s1)ds1dsy
= (x).

Noting that
gr12(s1,82) = M)A = A (f)AT = O(As),
we can show that
Gr12(8,8+¢€) —g1a(s +¢€,8) —g112(s, s —€) + g112(s —€,5) = O(e) (¢ = 0).

O(e) is uniform with respect to s € R/LZ, and in what follows, we will use this
notation. Since

9112(51, 82) — gu12(82,81) = 2.4 (f)AT
holds, if we use Lemma 5.8 and Corollary 5.3, we obtain

0 oM 0A
8781{9112(51782) — 9112(52,51)} =2 ( P gf)A"' + .4 (f) 85?)

2{ - s (T ) AT+ (Fn(on)

(AS 3+2+1+0()
O(1) as As—0,

0

which implies a—{glm(sl, 82) — g112(82,51)} is bounded and hence absolutely
S1

integrable on (R/LZ)2. We then use Fubini’s theorem to obtain

)7 //MZ)Q { R T T))AT + A (f)n(s )}~¢>(sl)dsld32

_ 2 A (s — (s oo | - s \ds
/nm F/W{ms)amf (s1))AT —.(F) m}m] b(s1)dsy
= (N112(f), P) 12

by letting € — +0 in (x). Since

il = 11" < Callfllrra-e

for a € ( ) the bound on the integrand of N15 follows from Corollary 5.3.
Thus, we have

[N112(F)llzz < CN fll o
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Next, we consider Ga12, which may be decomposed as

Ga2(f,¢) = 1«//f(.f)@mf Q20+ Qaaf - Q219)

2
= %///(f) {(—2T1°f) -2 (¢’(82) - if) +(—2T9F) -2 <¢’(sl) - i‘j)}
=2 (PIFHILF) 3L 2 (DI & (52) — 2(P)TVF - ' (52)

= Go1258(f) - AP + Goroc(f) - @' (s1) + Ga12p(f) - ¢ (s2),

where

Ganzn(f) = 2 M (F)TDF +T9F),

G2120(f) = _2///(f)T20fa
Gorap(f) = =24 (f)T)f.

For simplicity, we will let Ga125(s1, $2) denote Ga125(f)(s1, s2), and similarly
for Go12¢ and Ga12p. Then we have

G2128(51,52) = —G2128(52,51), G212¢(51,52) = G212D(52, 51)-

Lemma 5.10 Let o € (0, 3). If f € H3"*(R/LZ), then

// G2125(f)(s1, 82) - Adpdsidse = (Na125(f), d) L2,
(R/LZs)?

where

No12p(f)(51) :4/ Lf//l/(f)(Tlof‘*‘T20f)6552

R/LZ As

satisfies
[N2125(f)llz < C([ ]l 2-2)-

Proof. From Lemma 5.5.3, we obtain

//I . Ga125(f) - Apdsidse
- // | (G2128(f)(51,52) — G2128(F)(s2,51)) - P(s1)ds1dsa

= 2// G2125(51, 52) - P(s1)ds1dsz,
[s1—s2]>€
and from Lemma 5.7, we obtain
2
G2i2(s1,52) = E///(f)(:ﬂof + T3 f) = O(As)” 10+ = 0(1).

In particular, G125 belongs to L>°((R/LZ)?). We apply Fubini’s theorem, and
then we arrive at

// GglgB(f) . Ad)dSldSQ :/ (2/ GglgB(f, ¢)(31, 82)d82> . d)(sl)dsl
(R/LZ)? (R/LZ)? (R/LZ)?
=(N2125(f), ®) 1>
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by letting e — +0 in the above identity. The claimed estimate on || N2125(f)|| 12
is obtained in a similar way to that of |[IN112(f)||r2, and so we omit the details.
(]

Lemma 5.11 Let a € (0, 3). If f € H3"*(R/LZ), then

// Ga12c(f)(s1,52) - @' (s1)ds1dsa = (Naroc(f), @) 12
(R/LZ)?

holds, where

Noaoc(f)(s1) = —2/R/£Z{(Ai)g(Tflf'T(Sl))TgfﬂL jﬁ?ﬂf} dsy

satisfies
[N2120(f)lz2 < O fllms—e).

Proof. From Lemma 5.5.1,
// G120 (f) - @' (s1)ds1dsy
[s1—s2|>€

= / (Gglgc(f)(s, s + 6) — G212c(f)(8, s — 6)) . ¢(s)ds
R/LZ

0
- // 3*G2120(81782) - @(s1)dsidsa
|s1—s2|>e O
(*),

and from Lemma 5.7, we have

Ga20(F)(s1,82) = =24 (F)T3 f = O(As).

Therefore, we have

/ (Gglgc(f)(s, s+ E) — Gglzc(f)(s, S — 6))'¢(81)d81 = 0(6) —0 (6 — 0),
R/LZ
and combining this with Lemma 5.8, Lemma 5.7, and Corollary 5.3, we obtain

%szc(f) =2 {(Ai)g(Tflf : 7'(31))T20.f + l///A(Sf)TPf}
= O(As) 32 L O(As) M = 0(1).

We apply Fubini’s theorem and obtain

// Gorac(f) - @' (s1)ds1ds2
(R/Z)?

- //(]R ” Gaiac(f) - @d(s1)ds1dsy

/LZ)? ds1

0
T /R/LZ </R/£Z 3716;2120(1") : ¢(51)d52> ds,

= <N2120(f)7 ¢>L2

73



in the limit as ¢ — 40 in (*). The claimed estimate on ||[Na12¢(f)| L2 again
can be proved in a similar way to the proof of the estimate for IN115 ; we skip
the details. |

Lemma 5.12 Let a € (0,3). If f € H*=*(R/LZ), then

// Go120(F)(s1,82) - @' (s2)ds1dsa = (Na1ac(f), @) 12
(R/LZ)?
holds.

Proof. From Gaiap(f)(s1,82) = Gaiac(f)(s2,51), it is straightforward to
show that

// Go12p(F) - @' (s2)ds1dsz = // Gorac(f) - @' (s1)ds1dso
(R/LZ)? (R/LZ)?
= (Naw2c(f), @) 2 -
O

Next we consider how to derive and e§timatei N;13. As we showed above,
G153 can be written using the operations @ and @Q; that is,

Qi f Qe+ Qirf - Qe+ Qi f - Qingp
2(|AS]I%n
Q12f Qi+ Qiaf - Qi+ Qiof - me’
2[|AF|&n

However, we can also rewrite G135 using the new operations 77:

Gas(f,¢) =

G113(f7 ¢) =0,
_ 2 Ty T(s a9 2f-T(s Af, %—/s
Gons(£.0) = g {706+ 038 - m(sa) 32 + (12w TL - (32 - 0/
F@f )R @) 5L T @ ()R
apf )Gl (52 - #en) + a2s- r<s2>>A—f @2 w52 )
= Ga138(f) - AP + Gaizc(f) - ¢'(51) + Gaasp(f) - ¢/ (s2),
L2 g (1972 ) 4 12 nts ar
F2ATEF ()T 7D 5L
= —72 2 s T(S ﬂ
Gazc(f) = A2 (T3 f - 7(s2)) As’
2 Af
Gasp(f) = —m(Tff : T(Sl))fsa
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and

G2138(51,52) = —G2138(52,51), G213¢(51,52) = G213p(52, 51).

In order to consider these functions systematically, we decompose G2135 as
follows:

G2138(f) = Gai3p1(f) + G213B2,

A
Gai3p1(f) = M(Tff 7(s1) + T3 f - 7(52))57
2

Gaizp2(f) = BT, {(T2f-7(s1))TVf + (T3 F - 7(s2)) T3 f

FATEE 7T F s R )

From Lemma 5.5.3, we have

// Go13B(f) - Apdsydsy
s1—s2|>e

= // (G2138(51, 52) — G213B(52,51)) - P(s1)ds1ds2
|81—82\ZE
= 2// G2138(51,52) - P(s1)ds1dsz
‘81—82|Z€

= 2// G213B1(51,52) - P(s1)ds1dss + 2// G213B2(51, 52) - P(s1)ds1dsa,
[s1—s2|>e [s1—s2|>e

and using this along with Lemma 5.7 and Corollary 5.3, we obtain

Ga132(f) = O(As) 2 {O(As)*T! + O(As)*T + 0(As)* T2} = O(1),

which gives rise to
lim 2// G213B2(81,52) . ¢(51)d81d82
e—=+0 |s1—s82|>¢
1 2|
=2 // G213B2(51,52) - d(s1)ds1ds2
(R/LZ)2

= 2/ ( G21332(81, 82) d82> ¢(81) d81.
R/LZ R/LZ

On the other hand, we cannot likewise consider Ga1351(f), since
Gaispi(f) = O(As)ila
that is, it needs to be combined with the other terms. By Lemma 5.5.1,

//I S Gaisc(f)(s1,52) - @' (s1)ds1dsy
:/ (Ga13¢(f) (5,5 +¢) — Garzc(f)(s,8 —€)) - @(s)ds
R/LZ

- // iC**2130(51,$2) - @(s1)ds1dso

s1—82|>€ 651
= (%)
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holds, and we will show that

Gai3c(f)(s,8 +¢) — Gawzc(f)(s,s —€) = 0

uniformly with respect to s as ¢ — +0. For this, we calculate Ga13¢(f)(s1, 52)
as follows:

2

Af
—m(TQQf - T(s2))

Gaizc(f)(s1,52) = As

2 1 (89))T° 2 (357 (51
= e, G F T If — x g (B rs)(s)
2 2 2 2 9
- —m(Tgf~T(32))T10f—2///(f)(T2f.T(52))T(sl) - W(TQJE.T(SQ))T(SI)
- Af2||]§n (T3 f - (52 )T f = 24 (F) (T3 - 7(52))7(s1)

2
- (A25)2 {(HA?T!M) B 1} <if '7'(52)> T(s1) — (A2s)2 (TOf - 7(s2))7(s1)
= O(As) 22T 1 O(As) 210 L O(As) 2212

- ﬁ (/5:1 /:d /:2 K(s4) - K(s5) d55d84d83> 7(s1)
o) - i | T (st = )l dsadsidsa (51

2 51 Sz [S2
- w (/ / / HH(Sl)Hﬂ%n d85d84ds3> 7(s1)

= O(As) + O([|&| Lwn(As)) + %HR(SﬂwaT(Sl)’

where we set

wi(6) = sup |[[K(sa) = K(sp)rn
[sa—s5p| <0

and use the estimate

= [(R(s1) — R(s1)) - Klss) + Kls1) - (R(s5) — R(s1))]
< 2]l L wal(As).

S1 83 S92 1
/ / / dssdsydss = —E(As)?’

in the above computation. Recall that o € (0, %) and f € H>~*(R/LZ). Then,
from Kk € C%_a, we obtain

|K(54) - 5(s5) = [[(s1) [Rn

We also used

1
Gai3c(f)(s1,82) = gllfi(sl)\lﬁnf(sl) +0(As)2 7,
and therefore it follows that

G213C(.f)(57 s+ 5) - Gglgc(f)(s, S — 5) = O(g)%_o‘.
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Thus, we arrive at

lim (Ga13c(f)(s,5 +¢€) — Gaizc(f)(s,8 —¢€)) - P(s)ds = 0.
e=+0 Jr,/r7

0
Next, we consider a—Gglgc(sl, s2) - ¢(s1). Using Lemma 5.8, we obtain
S1

. L9 2 e Af
67‘91G213C(81332) - _881 {”Af%Rn (T2f T(SQ)) AS}

(22 2y Af 2 (0 oy Af
- (851 ||Af||ﬂ2§n)(T2‘f 7'(32))A8 HAf”ann <831T2f T(82)> As

2 8 Af
- m(Tgf'T(SQ))afSIE
= GY1301(F) + Goi300(f) + Goi303(f),
where
) 4A
Ghuser ) = A T3 5
4 |As| \? Af
= BYIATTE (IIAfIIR) < T(S”) STl v
4 A
( )HAfHQ {Tl.f T( )+1} T2f T(SQ))Afv
) B 2 2 [ |As] Af Af
Gaaealf) = ~ gz, {As(nAfuRn) (353l
1 IAs| \? Af
-5 (27 Tlof} )| A
2 Af As| \?AF As| \'Af
VL {Q(As w6) (jafle) > } nf IIAf|R> As
B 2 Af As| \*Af
= T @y {Q(AS'T(S”)<||Af|w) As } LS| (Bif + ()
Gl21303(f) = (As)||2Af||?R,L(T22f : T(SQ))TIOf-

We will show the following (in the order listed):

(5.11) Ghisc1(£) = Gawspi (f) + O(|As|727%),
(5.12) Ghisca(f) = infe(sl)n%w(sn +O(|As|7279),
(5.13) Ghises(f) = O(1).
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Proof of (5.11). Using Lemma 5.7 and Corollary 5.3, we have

Af
As

As

Af Af
Ais.A ) As
— + O(As).

Glron(f) = ﬁ{ T2f r(s1)) + 1} (T2f - 7(s2)) 22
_ M(Tff )+ T2 T(52) 5L
b asagE (T 7o) = T2 (o)
FATRE () (TEF - 7(s2)} As
= a9~ (x A, (|§;|||)2 (
= G (F) - “A(?Tﬂzn (Af Ar )if

Noting that

S2 S2 S3
/ / / dssdssdss = 0,
S1 S1 S4
AS /Sl /Sl 33 84 d84d83

S2 S2
= — Kk(sp) - K(s4) dssdssdss
AS ~/31 /81 /84
S2 S2 83
= A /81 /S1 / K(s5) - k(s1) — ||K(51)[|&n ) dssdsadss

we obtain
As
— O AS 1+3+27a
= O(As)3™®,
and so
I
[Af][En \ As

Af

= O(As) 77,

Proof of (5.12). By Lemma 5.7 and Corollary 5.3,

o)

e

|As| >
|AFf|rn

= (0(As)* + O(As)?) O(As)

= 0(As)?

holds, and then we have

G/21302(f> = =

Af
As

—7'(82)} TV f

2
% — 7(82)
2
i—‘z —7(s2)

T f

— + O(As)~

34242

(Tf +7(s1))

T(s1) + O(1).



In a similar way, from

A r(s2) = (r(s2) + IOF) - 7(s2) = 1 + O(As)?

As
2 (A2 o)) (P ) AL v mty
As IAf|lge ) As

and Corollary 5.3,
S HQ (1+0(25)* 5 —7(s2) } .Tff} (1) + O(1)

- — i {5 - ) s} o)

7(s1) +O(1)

holds. Then, we obtain

if T f = % (Af—"'(sl))

7( —7(s1)) dssdss

S S92

(s3) - K(s5) dssdssdss

S1
L
/ / K(sg) - k(s5) dsedssdssdss
S5
Sl /S

4 s3
/ ||K', S1 ||Rﬂ d36d55d84d83

S5

~]

2
S1
S1

1

w /32 /82 /s1 /S5 H(S@) - k(s5) — Hn(sl)wa) dsedssdssdss

As 2 1
= B (o) 0 + O(a9) 230

(AS)

Ik(s1)[2 +O(As)7,

1 S1 83 S92
TVf - 7(s2) = E/ / / K(84) - K(85) dssdssdss

1 S1 83 82 ,
KS / / / ||F;/(81)||Rnd85d84d83
S2 S1 S4
1

51 /SS /52 (5(54) . K‘/(55) - ||K’(31)H]]2gn) d55d84d53
(As)?

= G lIk(s0) [ + O(As) T
(As)?
= " lIs(slEn + OAs) 7,
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and therefore

As)? 5
Ghisealf) = - g { 1o IRl + OA9)E

(As)
(As)?
3

Is(s) 2 + O<As>3-a} r(s1) +O(1)

- : HH(Sl)Hf{nT(Sl)—|—O(AS)*%7Q

3(As)
O
Proof of (5.13). Using Lemma 5.7 and Corollary 5.3,
/ _ 2 2. 0p _ —3424+1 _
can be proved. O

From (5.11)—(5.13) and noting that
7d82 = 0
/{32 [|s1—s2|>€} As

we arrive at

61320//31 e (G213¢(F)(s1,52) - @' (s1) + Ga13p1(f) (51, 52) - P(s1)) dsidsy
// |:(G/21301(f) G213Bl(f))
(R/L7)?
n {G’mm(f) - S(imnn(smﬁn(sl)} T G’mcg(f)] (1) dsydsy
= - /R/LZ (/R/LZ [(G21301(f) - G213Bl(f))
" {G’mm(f) - ?@nn(sl)lﬁn(sl)} n Gglgc?,(f)] d52) p(s1) dsn.
Lemma 5.13 Let a € (0,3). If f € H> *(R/LZ),

/ / Gors(F, @) (51, 52)ds1dss = (Nows(£), ¢) 12
(R/LZ)?

holds, where

Nai3(f)(s1)

- : T($1 LT (52))T (51 o 28 . (sy))T°
— 4/R/£Z<(AS) (T F - 7(s1) = T3 f - 7(s2))7( H(AS)HAJ‘II%@(TJ (s2))TOf
i ﬁ RUILF 7 (52) + LHTEF - 7(50)) + (TVF - 7(52))] (1 +7(51)

]‘ 2
- Wnn@lnmn(sl)) ds
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satisfies

[IN213(F)llL2 < CUIf Nl rra-a)-

Proof. From Gai3p(f)(s2,51) = Gaisc(f)(s1,52), we obtain

Eli}IEO //31—32|25 Guslf, G)dsrds,
- Jim, / /.51_52|25 (Garsp(f)(s1,52) - Ap
+ Ga13¢(F)(s1,52) - @' (s1) + Garsp (f)(s1,52) - @' (s2)) ds1ds2
= lim 2/‘/| N {(G21331(,f)(31782)+G213B2(f)(51;82))~A¢)

e—+40
+ Gasc(f)(s1,52) - @' (s1) } dsidsa

= 2/ ( G213p2(51, 52) d$2> ¢(s1) ds1
R/LZ \JR/CZ

_ 2/ (/ [(Ghisc1(f) — Gaispi(f))
r/cz \JR/CZ

n {G'mscz(f) - S(is)ufﬁ(sl)n%n} n G;mg(f)} d32> (1) dsy
= (N213(f), P) 12,
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and we compute

2{Ga3pa(f) = (Ghizc1(F) — G231 (F) + Gozes(f)) }
—2 | G { TR TR+ (TR () IF + TR r T3 () B )

As)| A
‘(As»nifmz@ff'f(slHT%f-r(sg))ﬂ
ﬁ{@ T(s2) ~TEf 'T<81>>+2<Tff~r<sl>><T§f-r(sm}%
+ g T T+ 3w 5
- A T |
- M [{(Tff T (s1) TV f + (T3 - 7(s2)) T2 f }
(T3 f w0 - TF (o) 5L - 2F e
— (As)ifm%n {(Tff 1 (s1) = T2f - 7(s2)) (T1 f- AJ;) (12f - 7'(52))T10f}
- ()||4Af|2{T1f T(s1) = T3 f - 7(s2))7(s1) + (T3 f - 7(52))T7 f }
4 4

=g (T f - 7(s1) =T f - 7(s2))7(51) — ( (T3f - 7(s2))T1 £

(As)? As)|AF R

From the calculation

{2 (&5 ~) (o) 52~ T(”)} e
{ ( )(nﬁfn) v T(”)} (35 -76v)

~2( 5L (o) (IIA?”II|> (55 mto0) +rtoa o)
{ IASI Af T(sl)} r(s1) — (if - T(Sl)> - 7(s2)
.

NI f -7 ( )) (7 f - 7(s2)),

\/\_//—\

Goizco(f) = Bs)? (T3 f - 7(s2) + BH(TEF -7 (1) + (T f - 7(52))] (T{ f+7(s1)),

and therefore

2{G2sp2(f) — (Goi3c1 (f) — G21381(F) + Ghi303(f) + Goisea(f)) }

4 4 4 4 2
(As)3(T1f T(s1) = Ty f - T(s2))7T(51) — ma}f -7 (s2))T7 f

4
(As)?

[2{(T3f - 7(s2) + B(TES - (1) + (TVF - 7(52)] (TY f + 7(51))-
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We omit the proof of the estimate on ||N213(f)|/z2 since it can be shown in

a way similar to those of the previous cases.
|

Finally, let us consider how to derive and estimate N ;5 and derive the L2-

gradient expression of // Gio(f, Pp)dsidss. Let
|s1—s2|>¢€
24(f)Af
Genlf) =~ Ta sz,

From Lemma 5.5.3 and

Giag(f)(s1,52) = —Giap(f)(s2,51),

we have

// | Gia(f, )dsidsz
s1—S2|>e
Mi(F)AS
= -2 ————— . A¢dsid
//3152|>5 ||AfH]12§” ¢ e

= // Gi2p(s1,52) - A¢pdsidss
|s1—s2|>e

= // (Gi2B(51,52) — GiaB(s2,51)) - ¢(s1)dsidso
s1—s2|>e
= 2// Giop(s1,52) - ¢(s1)ds1dss.
|51—82\Z5

We also note that

AN
2Gi2p(s1,52) = _4m
_ _4///,-(f)< |As| )QAf
= As  \[Afllz») As
AM,(NTES 4l
- (Afs) g Aif)T(SJ

Lemma 5.14 Let a € (0, 3). If f € H3"*(R/LZ), then

)+ (sl = 0(as1E)

[[#(s1)

holds.
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Proof. If i =1, we have

f) - *||'4(81)||Rz

AT|3.
S~ (o) |

{
{”AT”R”{MHRW w) e et
[

Jarlzea () + (Go +wtsn)) - (52—l |
)+ 0 (\As|2 a) -0 (|As|%*a) .

A (
1
)
1
)
1
T2

Here, we used the boundedness of .Z (f), which follows from Lemma 5.6.
We now consider the case in which ¢ = 2, firstly by observing that

Qu(f) - Q2(f)
= —4{7(s1) = (Rf - 7(s1))Rf} - {7(s2) — (RS - 7(s2)) RS}
= —H7(s1) - 7(s2) — (Rf - 7(s1)) (RS - 7(s2))}

= {1 = glmton) ~ )l = (1= GIRS = rlelRe ) (1= 5107 = 7o)l ) |

=2||7(s1) = T(s2)lIgn — 2IIRF — T(s1)[[Rn — 2| Rf — 7(s52) -
RS = 7(s1) R | RF = 7(s2)lIn-

By direct calculation, we have

I7(s1) — T(s2 ||]Rn = / / Kk(s3) - K(s4) dssdy

— (A8) (1) 20 + / / (1) — I (51)|13) dsads
— (As)llr(s1) - +O(lAs]E~)

and

Rf—T(sj):lef:TJQf—k( |21 —1) af

[ AF [l As
1

~ As /: (7(s3) — 7(s5)) ds3 + O(As)?

= L / K(s4) dsydsz + O(As)?

S1 83
= As / / K(s1) dsadss + —/ / k(s4) — K(s1)) dsadss + O(As)?

= X An)nton) + 0(as) i,
which leads to

1 5
IRF = 7 (sl = 5 (A8)*[l(s1)l[n + O As])Z 7,
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and therefore

Q1(F) - Q2(F) = (As)?||K(51)]|20 + O(|As])2 .

From this fact and since

1 1 1
A~ G T = age T O,
we obtain
() = — @) Calf)

2 [IASIlRn

— — 5 {cage + 0w} {(AsP Ik IR + Oashi )

1 L
== 5lIss1)lln + O As])z 7

Lemma 5.15 Let a € (0, 3). If f € H3=*(R/LZ), then

// Gia(f, ®)(s1,52)ds1ds2 = (Nio(f), d) 12,
(R/LZ)?

where
Nogpe = [ [ L)+ S sl f s
satisfies

[Ni2(F)llz < CUIflls-=)-

Proof. Using
_AMNTES A

2Gi2B(f) = e s T(s1)
AM;(f)T? 4 —1) 2(—1)
- - 2T 3 )+ S sl oo + 25 st (en)
and
1
sy =0
/{52|s182|>e} AsTE T
we have

// GiQ(f, ¢)d81d82
|s1—s2|>¢e
= 2//| | GiQB(S]_, 82) . ¢(81)d81d82
S§1—82 26

- //sl—salze {_W a é {’ﬂi(f) + (—21)i |'{<51)|D2%"}7'(51)} - @(s1)ds1dss.
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From

44(£)TE f
_ 2T (1
As o),
which is obtained from Lemma 5.8, and from
4 —1)
s {0+ SR Il f o) = 052,
which is obtained from Lemma 5.14, the term [ - -] from the above integrand is

absolutely integrable on R/LZ with respect to s3. The integral is bounded on
R/LZ with respect to s1. As € — +0, we apply Fubini’s theorem in order to
obtain

// Gio(f, @)ds1dso
(R/LZ)?

- /JR/LZ </R/LZ {_W a é {%i(f) + (—21)i "<51)|ﬂ2%"}7'(31)} d82> (s1) dsy

= (Nia(f), &)z

The claimed estimate on ||IN;2(f)||zz can be shown in a way similar to that
used for the other cases. ]

Combining the argument above, we can reach conclusion of the nonlinear
part. From the above argument, we can write that

N1i(f) = Ni12(f) + N12(f)

=2 [ AT rear - Ao s

o[ s g {0 - il rien)] s

and
N(f)(s1) = Noa12s(f) + 2Na212¢(f) + N213(f) + Nao( f).

Furthermore, from

s natreain - { ot roms+ A
R PN R
a0 - s 0 b1

86



)= (Ai)z(Tflf'T(Sl))

- 1 - - [As] 4H—TS -T(s
_{IAfllin (As)2} (As)2{<|Af||Rn) As (1)} (s1)

- = + : - & (|AS| >4A'f-‘r(8)
TIAfIE. T (As)? T (As)2 \[Afer) As T

S N Py (TS Y S L[ [ 1asl \iar
_”Af”“%"{l (i) & T(sl)}+<As>2{1 (127l ) T(Sl)}
_ 1 2¢ . (g B 1 " —
g T ) — mp (T - ren),

we obtain
Na125(f) + 2N212¢(f)

= ! 2 A(F)
- /R/,;Z [As‘//l (AT f +T3F) - { G T I f + AST{)fH ds»

1 1 1
B _4/]1@/52 As {IAfll%Rn(Tff )+ i T(Sl))}TQOf i
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Using these identities and Lemmas 5.13 and 5.15, we conclude that

Na(f)(s1)
= N2125(f) + 2N212¢(f) + Na13(f) + Naa2(f)

1 1 1
- s {%(T{"f (o) + e (T r(sn)} TYf ds,
1

— 1 4'7'81—4'7'827'81 —_—
4/R/LZ<(AS)3(TJ (50) = T - r{sa))7(s0) + 5o

2
Rn
1

+ By [2{(T9f - T(s2)) + LHTZSf - 7(s1)) + (TLf - T(32))] (T F + 7(51))

(T5f - T(s2))T7 f

@Hn(sl) ﬁn‘r(sl)) dso

i Az g ) S e s

1
R/LZ (As)|Af ]%K"

1 " \
— 4/R/LZ @ [(T1 Fm(s)TOf + (T f - T(s2)) T

+2{(T3f - 7(s2) + 1} (T2 - 7(s1))T7 f] ds2

1 4 ~T(S — 4 TS
—4/R/LZ(AS)3[TJ (s1) — TAF - 7(s2)

{@f T(sO))TSf + (T3 - 7(s2))TV f } dso

+2{(T3f - 7(52)) + 1} (TEf - 7(s0)) + TLf - 7(s2) — #(s1)l[En | 7(s1)ds2

(As)?
6

i | zr e g G )] s
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