
Doctoral Dissertation

A Formal Analysis Method with Reasoning for
Cryptographic Protocols and Its Supporting

Tools

暗号プロトコルに関する推論的形式分析手法と
その支援ツール

Kazunori Wagatsuma

Graduate School of Science and Engineering,
Saitama University

Supervisor: Professor Jingde Cheng

March 2016

Abstract

Many cryptographic protocols have been proposed to securely send and receive in-
formation among agents in unsecured networks for various purposes. However, an in-
truder can eavesdrop secret data and/or impersonate in unsecured cryptographic pro-
tocols. Therefore, formal analysis methods of cryptographic protocols such as model
checking and theorem proving are used to try to find flaws in the protocols. In formal
analysis method such as theorem proving and model checking, analysts firstly enumer-
ate fatal actions of attacks before doing analysis, and then verify whether those attacks
succeed or not in communication processes of that target cryptographic protocols. I can
say that model checking and theorem proving are formal analysis method with proving
because analysts must enumerate target of verification before doing analysis in those
methods. In formal analysis method with proving, analysts must enumerate all fatal
actions of attacks for target protocol before doing analysis when they verify that target
cryptographic protocol is secure. In other words, analysts cannot verify those attacks
that are not enumerated before analysis. As an alternative way, a concept of formal
analysis with reasoning for cryptographic protocols has been proposed that deduce ac-
tions of participants and an intruder from behaviors explicitly and implicitly included
in specifications of cryptographic protocols by forward reasoning and detect fatal ac-
tions of attacks without enumerated those fatal actions before analysis. Formal analysis
method with reasoning is included 3 phases, formalizing specification of a cryptographic
protocol, forward reasoning from result of formalization as premises, and analyzing de-
duced logical formulas by forward reasoning. However, it is difficult for analysts to
perform formal analysis with reasoning because its concrete and general steps are not
established.

This paper presents a formal analysis method with reasoning for cryptographic pro-
tocols and its supporting tools. At first, I proposed the concrete and general method of
formalization, forward reasoning, and analysis in formal analysis method with reason-
ing. After that, I showed that the proposed method is effective for formal analysis of
cryptographic protocols. Finally, I implemented supporting tools in order to perform
the proposed method automatically, and evaluated those supporting tools.

I proposed concrete and general steps of formal analysis method with reasoning
for key exchange protocols, and extended the proposed method in order to be applied
to various cryptographic protocols. In order to extend the proposed method, at first, I
compared 19 kinds of cryptographic protocols based on participants’ behaviors and the
number of participants from web site “Cryptographic Protocol Verification Portal,” and
a book “Applied Cryptography: Protocols, Algorithms, and Source Code in C” and I
found five differences among cryptographic protocols. After that, I extended the pro-
posed method in order to represent those five differences. In order to show effectiveness
of the proposed method, at first, I re-detected fatal actions of attacks in target cryp-
tographic protocols that are pointed out by using the proposed method. After that, I
chose some cryptographic protocols that include those five differences and performed
formal analysis of those cryptographic protocols by the proposed method. As the result,
I could perform tasks of the proposed method to the end. Therefore, it can be said that

the proposed method can apply to detect fatal actions of attacks that represent success of
attack in 19 cryptographic protocols. In order to support tasks of the proposed method,
I implemented supporting tools that are inputted specification of target cryptographic
protocol, and perform tasks of the proposed method automatically, and output the result
whether attacks succeed or not. Finally, I evaluated whether duration in the tasks can be
reduced by using those supporting tools, compared to a case that analysts perform the
proposed method manually.

As the result of showing effectiveness of the proposed method, at first, I could re-
detect fatal actions of attacks that represent success of attack that is pointed out. There-
fore, I showed that the proposed method can detect fatal actions of attacks that represent
success of attack. After that, in formal analysis of some cryptographic protocols that
include five differences among cryptographic protocols, I could perform tasks of the
proposed method to the end. Therefore, I showed that the proposed method can be ap-
plied to those 19 cryptographic protocols. As the result of evaluation of implemented
supporting tools, I showed that analysts can reduce duration of the proposed method by
using those supporting tools.

Structure of this thesis is as follows. Chapter 1 presents background, motivation, and
purpose of this research. Chapter 2 explains formal analysis of cryptographic protocols.
Chapter 3 proposes formal analysis method with reasoning for key exchange protocols.
Chapter 4 presents extending the proposed formal analysis method with reasoning for
key exchange protocols. Chapter 5 shows effectiveness of the proposed method. Chap-
ter 6 presents supporting tools for the proposed method and evaluation of those sup-
porting tools. Chapter 7 presents discussion of the proposed method and implemented
supporting tools. Finally, concluding remarks are given in Chapter 8.

ii

Acknowledgments

I would like to express my special thanks to my thesis supervisor, Professor Jingde
Cheng for his enthusiastic guidance, understanding, and invaluable support on all as-
pects of academic life to help me accomplish my thesis and pursue my doctoral degree.

I am very grateful to my thesis committee: Professor Norihiko Yoshida, Professor
Atsushi Uchida, Associate Professor Noriaki Yoshiura, and Associate Professor Yuichi
Goto for their support, valuable feedback, and insightful ideas to this research.

I am also grateful to Associate Professor Yuichi Goto, and Assistant Professor Hong-
biao Gao for teaching me how to do research and helping me in all respect through the
hard moments of graduate school. I am also grateful to other AISE lab members to give
me advice and help in PhD research.

I would also like to express my special thanks to my family and friends for their
unfailing support through the hard moments of my graduate studies.

iii

Contents

Abstract i

Acknowledgments iii

List of figures vi

List of tables vii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Purposes and Objectives . 2
1.3 Structure of This Thesis . 2

2 Formal Analysis of Cryptographic Protocols 3
2.1 Cryptographic Protocols . 3
2.2 Formal Analysis Method with Proving 4
2.3 Formal Analysis Method with Reasoning 5

3 Formal Analysis Method with Reasoning for Key Exchange Protocols 7
3.1 Key Exchange Protocols . 7
3.2 Tasks of Formalization . 8

3.2.1 Overview of Formalization . 8
3.2.2 Behavior of Participants . 12
3.2.3 Behavior of an Intruder . 14
3.2.4 Common Behavior among Participants and an Intruder 15
3.2.5 Irregular Case . 16

3.3 Forward Reasoning . 17
3.4 Tasks of Analysis . 18
3.5 Applying the Proposed Method to Otway-Rees Protocol 19

4 Extending Proposed Formal Analysis Method with Reasoning for Key Ex-
change Protocols 22
4.1 Comparison of Cryptographic Protocols 22
4.2 Formalization of Cryptographic Protocols 24

4.2.1 Overview of Formalization . 24
4.2.2 Behavior of Participants . 24
4.2.3 Behavior of an Intruder . 26

iv

4.2.4 Common Behavior among Participants and an Intruder 27
4.2.5 Irregular Case . 28

4.3 Forward Reasoning . 30
4.4 Tasks of Analysis . 30

5 Demonstration of Effectiveness 32
5.1 Method of Demonstration . 32
5.2 Case in Secret Splitting Protocols . 32
5.3 Case in Coin Flips Protocols . 35

6 Supporting Tools for Proposed Method 37
6.1 Requirement Analysis . 37
6.2 Overview of Supporting Tools . 39
6.3 Implementation of Supporting Tools 40
6.4 Evaluation of Supporting Tools . 42

7 Discussion 44

8 Conclusions 46
8.1 Contributions . 46
8.2 Future Works . 46

Publications 48

References 50

v

List of Figures

2.1 Overview of formal analysis method with proving. 5
2.2 Overview of formal analysis method with reasoning. 6

3.1 Overview of tasks for formalization. 11
3.2 Branches by cases that participants and an intruder sends data. 17
3.3 Overview of tasks of forward reasoning. 18
3.4 Overview of tasks of analysis. 20

6.1 Overview of supporting tools. 40
6.2 Example of input for supporting tools (target of formal analysis). 41
6.3 Formalization and forward reasoning by using supporting tools. 41
6.4 Example of attacks by form of specification. 42

vi

List of Tables

4.1 Comparison of behaviors and the number of participants in cryptographic
protocols . 23

6.1 Duration of formalization manually 42
6.2 Duration of judging success of attack or not from detected actions man-

ually . 43

vii

Chapter 1

Introduction

1.1 Background and Motivation

Many cryptographic protocols have been proposed to securely send and receive infor-
mation among agents in unsecured networks for various purposes, for example, key
exchange, authentication, digital signature, secret splitting, e-voting, zero-knowledge
proof, and so on [31]. In particular, many key exchange protocols have been proposed
and used [5] [10].

A cryptographic protocol is not secure if, at least, an attack by an intruder is suc-
ceeded in the communication process of that protocol. In a communication process of
a cryptographic protocol, an attack is a sequence of actions by participants and an in-
truder. Success of an attack is that an intruder can do the last action of the attack. A
cryptographic protocol has a flaw if success of an attack can occur in the communication
process of that protocol. In this paper, I call the last action of an attack ‘a fatal action of
an attack.’ A behavior is a set of rules among events and/or actions in communication
processes of cryptographic protocols. The rule can be represented as ‘if a certain event
occurs, then an agent does a certain action’ or ‘if an agent does a certain action, the
agent does an other action.

Formal analysis of cryptographic protocols is used to try to find flaws in the pro-
tocols [31]. While many cryptographic protocols have been proposed, knowledge and
technique of an intruder have developed day after day. Therefore, flaws of proposed pro-
tocols often found and attacked after those protocols had been used. In those unsecured
cryptographic protocols, an intruder can eavesdrop secret data and/or impersonate other
participate. If flaws of proposed cryptographic protocols are found, it is time-consuming
to improve those cryptographic protocols. Furthermore, human life, nations, and money
are severely affected if flaws are found and attacked in cryptographic protocols that are
used for military, medical, and politic fields. Therefore, flaws must not exist in crypto-
graphic protocols that are used for those fields.

Model checking and theorem proving are used as formal analysis methods of cryp-
tographic protocols [3]. In those methods, analysts firstly enumerate fatal actions of
attacks, and then verify whether those fatal actions are performed or not in communi-
cation processes of the target cryptographic protocols. The process of the method is
proving because analysts must enumerate target of verification before doing analysis in

1

those methods. In other words, analysts cannot verify those fatal actions of attacks that
are not enumerated before analysis.

As an alternative way, a concept of formal analysis with reasoning for cryptographic
protocols has been proposed [8]. In the analysis, forward reasoning is used to deduce ac-
tions of participants and an intruder from behaviors explicitly and implicitly included in
specifications of cryptographic protocols by forward reasoning, and detect fatal actions
of attacks without enumerated before analysis. Formal analysis method with reason-
ing is included 3 phases, formalizing specification of a cryptographic protocol, forward
reasoning from result of formalization as premises, and analyzing deduced logical for-
mulas by forward reasoning [8]. However, it is difficult for analysts to perform formal
analysis with reasoning because its concrete and general steps are not established.

1.2 Purposes and Objectives

This paper presents a formal analysis method with reasoning for cryptographic proto-
cols and its supporting tools. At first, I propose the concrete and general method of for-
malization, forward reasoning, and analysis in formal analysis method with reasoning.
After that, I show that the proposed method is effective for formal analysis of crypto-
graphic protocols. Finally, I implement supporting tools in order to easily perform the
proposed method for analysts, and evaluate those supporting tools.

1.3 Structure of This Thesis

The rest of this paper is organized as follows. Chapter 2 explains formal analysis of
cryptographic protocols. Chapter 3 proposes formal analysis method with reasoning
for key exchange protocols. Chapter 4 presents extending the proposed formal analysis
method with reasoning for key exchange protocols. Chapter 5 shows effectiveness of
the proposed method. Chapter 6 presents supporting tools for the proposed method and
evaluation of those supporting tools. Chapter 7 presents discussion of the proposed
method and implemented supporting tools. Finally, concluding remarks are given in
Chapter 8.

2

Chapter 2

Formal Analysis of Cryptographic
Protocols

2.1 Cryptographic Protocols

Protocols are steps for achieving a certain purpose that is related to two or more par-
ticipants [31]. Cryptographic protocols are protocol using cryptography. Therefore,
cryptographic protocols are steps for achieving a certain purpose that is related to two
or more participants using cryptography.

It is different for each cryptographic protocol what purpose and what data is sent
and received. For example, there are following kinds of cryptographic protocols [31].

• Key exchange

Participants exchange a session key for securely sending and receiving data in
unsecured network.

• Authentication

Participants prove that a target of sending and receiving data is correct.

• Secret splitting

Participants split secret data into several parts of data, and prevent restoring secret
data without collecting each split data.

• Digital signature

Participants sign in unsecured network with preventing attack of an intruder, for
example, copy and falsifying of signature, spoofing.

• Timestamp

Participants add timestamp in order to prove that there was a document at specific
time with preventing attack of an intruder, for example, copy and falsifying of

3

timestamp or the document.

• Zero knowledge proofs

A participant proves that the participant knows an information without knowing
the information to another participant.

In unsecured network, an intruder can various attack, for example, eavesdropping secret
data and/or impersonating other participate. Cryptographic protocols are effective for
preventing such attacks by an intruder, and participants can securely send and receive
data in unsecured network.

2.2 Formal Analysis Method with Proving

Model checking and theorem proving are used as formal analysis methods of crypto-
graphic protocols. Although Protocol Composition Logic (PCL) [12] and pi-calculus
[1] are also used for formal analysis of cryptographic protocols, both methods can be
performed by model checking systems [4], [11].

Model checking is a verification method that inputs formalized fatal actions of at-
tacks, participants’ and an intruder’s behavior that are represented by finite-state in order
to explore whether there are reachable states that those attacks succeed or not in partic-
ipants’ and the intruder’s behavior [30]. If there are states that represent those fatal
actions perform, it can be said that attacks succeed in the target cryptographic protocol.
Typical model-checking methods and tools are Scyther [11] and ProVerif [4].

Theorem proving is a verification method that inputs fatal actions of attacks, par-
ticipants’ and an intruder’s behavior formalized by logical formulas in order to prove
whether those attacks succeed or not in the target cryptographic protocol [30]. If it is
proved that those fatal actions are performed in participants’ and the intruder’s behav-
ior as premises, it can be said that attacks succeed in the target cryptographic protocol.
Typical theorem-proving tools are Isabelle [28] and CafeOBJ [14].

Formal analysis methods such as model checking and theorem proving are based
on proving. Formal analysis method with proving is a method that analysts firstly enu-
merate fatal actions of attacks before doing analysis, and then verify whether those
attacks succeed or not in the communication process of that target cryptographic pro-
tocol. Overview of formal analysis method with proving is showed in figure 2.1. At
first, analysts formalize participants’ and an intruder’s behavior, and enumerated fatal
actions of attacks as premises. After that, the analysts verify whether those fatal ac-
tions are performed in participants’ and the intruder’s behaviors. If it is verified that
those fatal actions are performed, it can be said that those attacks succeed in the target
cryptographic protocol. The process of the method is proving because analysts must
previously enumerate target of verification in those methods. Model checking and the-
orem proving are used to automatically perform analysis whether those attacks succeed
in the formalized protocol or not [3]. Therefore, formal analysis methods such as model
checking and theorem proving are based on proving.

4

Formalization
Formalized

Behavior

Verify

Fatal actions of

Attacks

Success of

Attacks or not

Formalized

Fatal Actions
Formalization

Participants'

Behavior

Intruder's

Behavior

Figure 2.1: Overview of formal analysis method with proving.

Formal analysis methods with proving processes have a limitation. A cryptographic
protocol is not secure if, at least, an attack by an intruder is succeeded in the communi-
cation process of that protocol. Therefore, in formal analysis method with proving such
as model checking and theorem proving, analysts must enumerate all fatal actions of
attacks for target protocol before doing analysis when they verify that the target crypto-
graphic protocol is secure, because analysts cannot verify those fatal actions of attacks
that are not enumerated before analysis. However, it is difficult for analysts to enumerate
all fatal actions of attacks.

2.3 Formal Analysis Method with Reasoning

As an alternative way, a concept of formal analysis with reasoning for cryptographic
protocols has been proposed [8]. Overview of proposed formal analysis method with
reasoning is showed in figure 2.2. In the proposed method, analysts formalize partici-
pants’ and an intruder’s behaviors of target protocol, and deduce actions of participants
and an intruder from behaviors explicitly and implicitly included in specifications of
cryptographic protocols. If fatal actions of attacks are detected from deduced actions,
those attacks succeed in the target cryptographic protocols.

Analysts do not need to enumerate fatal actions of attacks by an intruder before do-
ing the analysis in formal analysis method with reasoning because actions of participants
and an intruder are deduced by forward reasoning from participants’ and an intruder’s
behaviors as premises, and those fatal actions of attacks are detected. Therefore, formal
analysis method with reasoning can support to find fatal actions of attacks that analysts
did not enumerate before doing analysis.

In the method, strong relevant logics [6], [7] are appropriate for logic systems under-
lying forward reasoning because in any reasoning based on strong relevant logics those
conclusions that are not related to premises are not deduced. Furthermore, as many
logical formulas should be deduced from formalized specification of cryptographic pro-
tocol by forward reasoning [20]. Therefore, forward reasoning engine FreeEnCal that
can automatically perform forward reasoning has been proposed and developed [9].
FreeEnCal can handle any logic system and formal theory by input vocabulary, configu-
ration rules, axiom, and inference rule of logical formulas. Therefore, logical formulas

5

Formalized

Behavior

Forward

Reasoning

Success of

Attacks or not

Formalization

Participants'

Behavior

Intruder's

Behavior
Analysis

Deduced

Fatal Actions

Deduced

Actions Detection

Figure 2.2: Overview of formal analysis method with reasoning.

can be automatically deduced from inputted logical formulas as premises. However, it
is difficult for analysts to perform formal analysis with reasoning because its concrete
and general steps are not established.

6

Chapter 3

Formal Analysis Method with
Reasoning for Key Exchange Protocols

3.1 Key Exchange Protocols

Key exchange protocols are steps for securely sending and receiving data in unsecured
network to exchange a session key between two participants. Participants can send
and receive any data by using exchanged session key in only particular session. Key
exchange protocols can be classified into 3 types [5].

• Server-based key exchange protocol using symmetric key

• Server-less key exchange protocol using symmetric key

• Server-less key exchange protocol using public key

Participants send and receive data by using their encrypt key that is defined in each 3
types of key exchange protocols for exchanging a session key. In key exchange proto-
cols, eavesdropping and falsification the session key by an intruder must not be possible.

Generally, in specification of cryptographic protocols, sending and receiving in step
M are represented as eq.(3.1). It means thatX1 sends dataY1,Y2, · · · ,Yz (z ∈ N) to X2

in stepM.
M.X1→ X2 : Y1,Y2, · · · ,Yz (3.1)

Persons and a trusted server are substituted inX1 andX2. Persons are defined asA, B,
and a trusted server is defined asS. In the method, persons and a trusted server are called
participants. Any kinds of data are substituted inYi (i ∈ N,1 ≤ i ≤ z). {Y1,Y2, · · · ,Yz}K
(z ∈ N) means that encrypted data by keyK. Following data are mainly used in many
key exchange protocols.

• A, B: Identifiers ofA, B.

• S: Identifiers of a trusted server.

• I : Identifier of an intruder.

7

• KX1X2: Symmetric key of participantsX1 andX2.

• EX: Public key of a participantX.

• S igX: Signature of a participantX.

• NX: Nonce of a participantX.

• TX: Timestamp ofX.

• {Y1,Y2, · · · ,Yz}K: EncryptedY1,Y2, · · · ,Yz by keyK.

• S igX(Y): Data with signature ofX.

• Y+ 1: Incremented data ofY.

In addition, there are uniquely defined data in each protocol.
Many key exchange protocols have been proposed and used among cryptographic

protocols [5], [10]. Key exchange is a fundamental method for participants to securely
send and receive data in unsecured network [5]. On the other hand, formal analysis of
59 cryptographic protocols that are recently proposed has been performed based on an
international standard ISO/IEC 29128 [22], and 56 of them are key exchange protocols
[26]. Therefore, key exchange protocols are one of the most important method among
cryptographic protocols.

3.2 Tasks of Formalization

3.2.1 Overview of Formalization

I investigated behavior of participants in proposed key exchange protocols [5], [31]. As
the result, I found that participants repeat following actions.

1. A participant sends any data to another participant.

2. Receiver receives the data.

3. If the receiver receives encrypted data, and has corresponding decryption key,
receiver gets original data.

4. The receiver sends next data depending on the received message.

On the other hand, Dolev-Yao model [17] is assumed about behavior of an intruder as
follows.

8

• Eavesdrop:

Intruder can get sent data in a protocol.

• Falsify:

Intruder can forcibly receive sent data to another participant, and change the data,
and send the changed data to any participant.

• Decryption:

If an intruder has corresponding decryption key, the intruder can get the original
data.

• Using old data:

An intruder knows old data that is sent and received in previous session, and use
the old data for falsifying sent data. For example, in Needham-Schroeder Shared
Key Protocol [24], an intruder can attack the protocol if the intruder has an old
session key [13].

Targets of formalization are as follows.

• Behavior of Participants:

It is a set of rules among actions in each step that represents as ‘if a participant
receives a certain data, then the participant sends an other data.’

• Behavior of an Intruder :

It represents a set of rules what actions an intruder performs in a communication
process of a protocol. In the proposed method, behavior of an intruder is based
on Dolev-Yao model [17].

• Common Behavior among Participants and an Intruder:

It represents a set of rules except for behavior about sending and receiving data
by participants and an intruder. For example, decryption of encrypted data is
included in this target.

In this method, analysts formalize the above behaviors based on first order predicate
strong relevant logics [6], [7]. In following explanation, individual variablesp and pi

(i ∈ N) represent participants or an intruder. Individual variablesx and xi (i ∈ N)
represent sent or received data. Individual variablek represents an encryption key. In
order to be applied to various cryptographic protocols, I defined following predicates,
functions, and individual constants that represent participants’ behavior or data in some
cryptographic protocols. I defined following predicates.

• Parti(p): p is a participant of a protocol.

9

• Eq(x1, x2): x1 andx2 are equal.

• Get(p, x): p getsx.

• Recv(p, x): p receivesx.

• S end(p1, p2, x): p1 sendsx to p2.

• S tart(p1, p2): p1 andp2 start a communication process.

I defined following functions.

• data(x1, · · · , xn) (n ∈ N): A data set that consists of sent and receivedx1, . . . , and
xn.

• enc(k, x1, · · · , xn): A data set that consists of encryptedx1,· · · , andxn by k.

• id(p): Identifier of p.

• nonce(p): Nonce ofp.

• old(x): Old data ofx.

• pk(p): Public key ofp.

• plus(x): Incremented data ofx.

• sig(p, x1, · · · , xn): A data set that consists ofx1, · · · , andxn with p’s signature.

• symk(p1, p2): Symmetric key ofp1 andp2.

• tstamp(p): Timestamp ofp.

In addition, there are uniquely defined functions that are assigned to each participant’s
data.

I defined following individual constants.

• a, b: Persons

• i: An intruder.

10

Add common behavior among

participants and an intruder in CO

Add intruder's behavior in CO

Add participants' behavior in NP
i

j

Participants selectively

send data

An intruder send data

with falsification

Add irregular case about

participants' behavior in NP
i

j

Add irregular case about

an intruder's behavior in IP
i

j

Figure 3.1: Overview of tasks for formalization.

• s: A trusted server

In addition, there are uniquely defined individual constants that are assigned to uniquely
defined data in a protocol.

In the proposed method, I assumed following premises about participants’ and an
intruder’s behavior. At first, if received data that participants have is falsified, those par-
ticipants can recognize falsification. In the proposed method, behavior of participants
represents ‘if a participant receives a certain data, then the participant sends an other
data that is defined in the protocol.’ Therefore, in following steps of formalization, it is
assumed that participants verify whether received data, for example the signature and
nonce, and so on, is falsified or not. Second, an intruder does not forge sending data
if participants can recognize falsification. Finally, participants know what kinds of data
are derived to them as next data.

11

Figure 3.1 shows overview of tasks for formalization. In the proposed tasks of for-
malization, three sets of formulas are generated, Normal Path (NP), Irregular Path (IP),
and Common Input (CO). NPm

n is a set of logical formulas that represents that a par-
ticipant correctly sends data in stepn. Those logical formulas are generated by tasks in
section 3.2.2.n represents the number of step.m represents the number of branches in
case that participants send data selectively to another in stepn. IPm

n is a set of logical
formulas that represents that an intruder sends data in stepn. Those logical formulas are
generated in section 4.2.5.m represents the number of branch by falsification. Finally,
CO is a set of logical formulas that represents implicit participants’ and an intruder’s
behavior. Those logical formulas are generated by tasks in section 3.2.3 and section
3.2.4.

3.2.2 Behavior of Participants

1. Represent participants’ behavior in each step of the protocol by formulas. Butpi

and xi are individual variables, andn andm are the number of sent or received
data.

(a) If step 1 of the protocol, use formulas (3.2), which means “if session starts
with p1 andp2, p1 sends datax1, . . . , xn to p3”.

S tart(p1, p2)⇒ S end(p1, p2,data(x1, . . . , xn)) (3.2)

(b) If step 2 and beyond of the protocol, use the following formula (3.3), which
means “if a participantp1 receives data,p1 sends next data top2.”

Recv(p1,data(x1, . . . , xm))⇒ (Parti(p1)⇒
S end(p1, p2,data(x1, . . . , xn))) (3.3)

2. Replace individual variablesp1 andp2 of formulas in the previous task.

(a) About formulas (3.2),

i. If sender of corresponding step is a trusted serverS, individual variable
p1 is replaced withs.

ii. If receiver of corresponding step is a trusted serverS, individual vari-
ablep2 is replaced withs.

iii. If sender of corresponding step isA, individual variablep1 is not re-
placed.

iv. If sender of corresponding step isB, individual variablep1 is replaced
with p2.

v. If receiver of corresponding step isA, individual variablep2 is replaced
with p1.

12

vi. If receiver of corresponding step isB, individual variablep2 is not re-
placed.

(b) About formulas (3.3),

i. If sender of corresponding step is a trusted serverS, individual variable
p1 is replaced withs.

ii. If receiver of corresponding step is a trusted serverS, individual vari-
ablep2 is replaced withs.

iii. If sender of corresponding step isA, individual variablep1 is not re-
placed.

iv. If sender of corresponding step isB, individual variablep1 is replaced
with p2.

v. If receiver of corresponding step isA, individual variablep2 is replaced
with p1.

vi. If receiver of corresponding step isB, individual variablep2 is not re-
placed.

3. Replace individual variablesx1, · · · , xn of formulas (3.2) and (3.3) with terms
according to following rules corresponding step of the specification.

(a) If sent dataYi is not encrypted, substitute a function or an individual variable
depending on data types forxi.

i. If Yi is nonce ofA, individual variablexi is replaced withnonce(p1).

ii. If Yi is nonce ofB, individual variablexi is replaced withnonce(p2).

iii. If Yi is nonce ofS, individual variablexi is replaced withnonce(s).

iv. If Yi is identifier ofA, individual variablexi is replaced withid(p1).

v. If Yi is identifier ofB, individual variablexi is replaced withid(p2).

vi. If Yi is identifier ofS, individual variablexi is replaced withid(s).

vii. If Yi is timestamp ofA, individual variablexi is replaced withtstamp(p1).

viii. If Yi is timestamp ofB, individual variablexi is replaced withtstamp(p2).

ix. If Yi is timestamp ofS, individual variablexi is replaced withtstamp(s).

x. If Yi is session keyS K, individual variablexi is replaced with another
individual variablek.

13

xi. If Yi is others data, individual variablexi is not replaced.

(b) If Yi is incremented data, substituteplus(x′i). x′i is replaced as well as previ-
ous task 3-a.

(c) If Yi is encrypted data,

i. Substituteenc(k, x′1, · · · , x′n)
ii. Replacek depending on key types.

A. If K is symmetric key ofA and trusted serverS, k is replaced with
symk(p1, s).

B. If K is symmetric key ofB and trusted serverS, k is replaced with
symk(p2, s).

C. If K is symmetric key ofA andB, k is replaced withsymk(p1, p2).

D. If K is public key ofA, k is replaced withpk(p1).

E. If K is public key ofB, k is replaced withpk(p2).

F. If K is public key of a trusted serverS, k is replaced withpk(s).

G. If K is session key,k is not replaced.

4. Replacex′i using funcion and individual variables as well as task in step (3).

5. In part of formulasA1 ⇒ A2 (A1 andA2 are formulas), if a individual variable is
included only inA1 or A2, define an individual constant and replace the variable
into the constant.

6. Add quantifier∀ corresponded to individual variablesk, xi, andpi in those formu-
las.

7. Add generated logical formulas that represent behavior of stepi in NP1
i .

8. Add a formulaS tart(p1, p2) in NP1
1 with substituting an individual constant of

participants or an intruder top1 andp2.

3.2.3 Behavior of an Intruder

Behavior of an intruder in the proposed method is based on Dolev-Yao model [17]. In
this model, it is assumed that an intruder knows old data that is sent and received in the
previous communication process, and eavesdropping, falsifying, decryption by a key
that the intruder has. Formalization tasks of the rules are as follows.

14

1. Enumerate all functionsdata(x1, . . . , xn) in predicateS endthat are generated
based on formulas (3.2) and (3.3) in section 4.2.2.)

2. GenerateS tart(p1, p2) ⇒ Get(i,Tm) whereTi is enumerateddata(x1, . . . , xn) and
1 ≤ i ≤ n. m is number of enumerateddata(x1, . . . , xn).

3. If Tm includes functionnonceor tstampor any individual constants, those terms
y are replaced intoold(y).

4. Add generated formulas and a following formula that represents “if a participant
sendsx, an intruder gets it (by eavesdropping)”inCO.

∀p1∀p2∀x(S end(p1, p2, x)⇒ Get(i, x))

3.2.4 Common Behavior among Participants and an Intruder

Analysts add following formulas inCO depending on the number of participants and
used key.

• If p1 gets datax1, · · · , xn encrypted byp1’s symmetric key,p1 gets original data
(If a protocol that uses symmetric key).

∀p1∀p2∀x1 . . .∀xn(Get(p1,enc(symk(p1, p2), x1,

· · · , xn))⇒ Get(p1,data(x1, · · · , xn)))

• If p gets data encrypted byp’s public key,p gets original data (If a protocol that
uses public key).

∀p∀x1 . . .∀xn(Get(p, enc(pk(p), x1, · · · , xn))⇒
Get(p,data(x1, · · · , xn)))

• If p receivesx, p gets it.

∀p∀x(Recv(p, x)⇒ Get(p, x))

• symk(p1, p2) andsymk(p2, p1) are equal. (This formula needs to perform forward
reasoning about symmetric key in the method.)

∀p1∀p2(Eq(symk(p1, p2), symk(p2, p1)))

• A appears as a participant in target specification.

Parti(α) whereα is a individual constant that represents a person or a trusted
server.

• An intruder is not a participant.

¬Parti(i)

15

3.2.5 Irregular Case

Analysts generate logical formulas that are corresponded to each case of following par-
ticipants’ and an intruder’s actions.

C1: Case that a participant receives sent data correctly.

C2: Case that an intruder receives sent data forcibly and send falsified data to any par-
ticipant.

If a participant receives data correctly, generated logical formulas are added in
NP1

j , . . . ,NPn
j wheren is the number of data that is selectively sent by participants in

step j. If an intruder receives sent data forcibly and send falsified data to any participant,
generated logical formulas are added inIP1

j , . . . , IP
n
j as well wheren is the number of

falsified data can be sent by the intruder in stepj.
In following explanation,p, p1, andp2 are individual constants of participants that

perform sending or receiving, andx, x1, . . . , andxn (n ∈ N) are individual constants of
data that are sent in stepj.

Analysts perform following tasks in case that such branches are occurred in stepj.

1. If S end(i, p, x) is deduced, analysts addRecv(p, x) in NPi
j.

2. If S end(p1, p2, x) is deduced, analysts add following formulas respectively.

• Analysts addRecv(p2, x) in NP1
j .

• Analysts add logical formulas that are generated in task 4.

3. If S end(p, i, x) is deduced, analysts add logical formulas that are generated in task
4.

4. Analysts generate logical formulas that represent an intruder sends data with fal-
sification by following tasks.

(a) Enumerate participants that receive any data after stepj (Y in specification
3.1). If there is no participant, tasks of forward reasoning is over.

(b) Repeat following tasks in each enumerated participant.

i. Extract one participant as receiverp′, and check the number of step
(afterX→ Y in specification 3.1).

ii. Generate logical formulas that represent sent data in the step based on
task 2 and 3 of section 4.2.2 (with replaced individual variablepi into
individual constant).

iii. Replace each data into data that an intruder owns.

(c) Generate logical formulasS end(i, p′,data1), . . . , S end(i, p′, datan), and add
those formulas withRecv(i, x) in IP1

j , . . . , IP
n
j , respectively (data1, · · · , and

datan are the result of falsification, andn is number of data that the an in-
truder can send.).

16

Case of participants

send data

Case of intruder

sends data

Step 1

Step 2

Step n-1

Step n

NP
1

1

Step 3

NP
1

2

NP
1

3

NP
1

n-1

NP
1

n

IP
1

2
IP

x

2

IP
x

n
IP

1

n

IP
1

1

IP
1

3
IP

x

3 IP
1'

3
IP

x'

3
NP

1''

3

IP
1

2
IP

x

2
NP

1'

2

Figure 3.2: Branches by cases that participants and an intruder sends data.

Figure 3.2 shows overview of branches by cases that participants and an intruder
sends data. In this paper, I call a route of forward reasoning ‘path.’ In above conditions
of falsification, complexity of the tasks is increased by the number of logical formulas
IPm

n . If there is a case that a participant sends data selectively to another, the number of
logical formulasNPm

n also increase the complexity.

3.3 Forward Reasoning

In the proposed method, analysts use FreeEnCal [9] in order to perform forward reason-
ing automatically. Analysts use sets of generated logical formulasNPj

i or IP j′

i , andCO
that are generated in section 3.2, and deduced logical formulas until this step (DF) as
input of FreeEnCal. As the result, new logical formulas (DFnew) deduced, andDFnew is
added inDF.

In tasks of forward reasoning, analysts use FreeEnCal for forward reasoning about
each step of the target protocol. Figure 3.3 shows overview of tasks of forward reason-
ing. As the number of step isi, and the number of data that participants or an intruder
can send isn, analysts divide into cases thatNPj

i or IP j′

i (1 ≤ j ≤ n, 1 ≤ j′ ≤ n′), is
used as input of FreeEnCal.

In the proposed method, an intruder does not forge sending data if participants can

17

NP is input

Send(i,p,x)

is deduced

Send(p,i,x) is deduced
Send(p,q,x) is deduced

Participants send data

selectively

i

j

IP is input
i

j

Otherwise

Neither NP nor IP

cannot be input

i

j

i

j

Otherwise Participants receive data

Execute

FreeEnCal

Last step

of forward reasoning

Otherwise

An intruder receive data

Figure 3.3: Overview of tasks of forward reasoning.

recognize falsification, and participants know what kinds of data are derived to them as
next data. Therefore, ifIP j′

i does not include data that participants get (represented as
Get(p, x)), and should be received in stepi, IP j′

i cannot be used as input of FreeEnCal.
If DF is the result of forward reasoning about the last step of the target protocol,NPj

i

cannot be used as input of FreeEnCal. If neitherNPj
i or IP j′

i cannot be inputted, forward
reasoning in the case is completed. If all cases of forward reasoning are completed,
analysts perform tasks of analysis for eachDF in section 3.4.

3.4 Tasks of Analysis

Analysts check whether formulas that represent success of attack are included in each
DF that is the case of completion of tasks of forward reasoning.

1. Check whether those formulas that represent success of attack are included in

18

deduced logical formulas after the removal.

• Formulas that represent successful completion of the protocol (in forward
reasoning about last step of target protocol, an atomic formula that starts
“Recv” is deduced).

• Formulas that represent obtaining session key as secret data by an intruder
“Get(i, sesk)”.

• Formulas that represent that an intruder received sent data to a participant
“S end(p1, p2,anydata),” and a participant received falsified data by an in-
truderRecv(i, anydata), andS end(i, p2,anydata′) (anydata′ is falsified data
from anydata).

2. If following both of formulas are included, it can be said that attacks by an intruder
succeed in the target cryptographic protocol.

• Formulas that represent successful completion of the protocol.

• Formulas that represent that an intruder gets session key, or any participant
received falsified data by an intruder.

In figure 3.4, formulas that represent successful completion of a protocols mean that
any participant sent or got data in forward reasoning about the last step of protocol. An-
alysts check whether an atomic formula that starts “Recv” is deduced or not in forward
reasoning about last step of target protocol. Eavesdropping is represented asGet(i, x) (x
is secret data). In key exchange protocols, a session key is secret data. Falsifying means
that sent data to a participant is received by an intruder, and the intruder sends another
data to the participant. It is represented asS end(p,q, x), Receive(i, x), andS end(i,q, x′)
in deduced logical formulas.

3.5 Applying the Proposed Method to Otway-Rees Pro-
tocol

I show that the proposed method can be applied to key exchange protocols. In order to
show it, I chose Otway-Rees protocol [27] as a case of formal analysis of key exchange
protocols by the proposed method. Specification of this protocol is as follows. In the
specification,M is data that is uniquely defined in the protocol.

1. A→ B : M,A, B, {NA,M,A, B}KAS

2. B→ S : M,A, B, {NA,M,A, B}KAS, {NB,M,A, B}KBS

3. S→ B : M, {NA,S K}KAS, {NB,S K}KBS

4. B→ A : M, {NA,S K}KAS

19

Successful completion

of the protocol
Otherwise

Falsified
Eavesdropped

secret data

Result is

"Success of attack" Not Eavesdropped

Not falsified

Falsified
Not falsified

Result is

"Failure of attack"

Result is

"Lack of protocol"

Result is

"Attack is not detected"
Result is

"Success of attack"

Figure 3.4: Overview of tasks of analysis.

In Otway-Rees protocol, two flaws have been pointed out. At first, an intruder can
get the session key by falsifying encrypted data of a participant into that of the intruder
[5]. Concretely, attack succeeds by following steps for sending and receiving data.

1. A→ B : M,A, B, {NA,M,A, B}KAS

2’. B→ I (S) : M,A, B, {NA,M,A, B}KAS, {NB,M,A, B}KBS

2”. I (B)→ S : M,A, I , {NA,M,A, B}KAS, {NI ,M,A, B}KIS

3’. S→ I (B) : M, {NA,S K}KAS, {NI ,S K}KIS

4’. I (B)→ A : M, {NA,S K}KAS

Second, if an intruder resend encrypted data ofA, A mis-recognizes the received
dataM,A, B as the session key [10]. Concretely, attack succeeds by following steps for
sending and receiving data.

1. A→ I (B) : M,A, B, {NA,M,A, B}KAS

4’. I (B)→ A : M, {NA,M,A, B}KAS

20

As the result of formal analysis by the proposed method, 32 paths were generated,
and 73,131 logical formulas were deduced. I could re-detected fatal actions of attacks
that represent success of attack for those two flaws. About first flaw,Get(i, sesk) and
Get(a,data(nonce(a), sesk)) were included in the deduced logical formulas.Get(i, sesk)
means that an intruder gets a session key that must not be known to the intruder.
Get(a,data(nonce(a), sesk)) means thatA gets nonce ofA and a session key thatA
should get in the last step of protocol. Therefore, these logical formulas mean thatA
completed all steps of protocol without recognizing that the intruder gets the session key.
It is equal to first flaw that is pointed out. About second flaw, deduced logical formulas
includedGet(a,data(nonce(a),m, id(a), id(b))). This formula means thatA completed
all steps of protocol. Originally,Get(a,data(nonce(a), sesk)) should be deduced that
represents thatA completed all steps of protocol.A knows nonce ofA previously, but
does not know the session key. Therefore, ifA receivesM,A, B, it is possible thatA
does not recognize falsification of data by an intruder. Furthermore, it is possible thatA
mis-recognizes the received dataM,A, B as session key. It is equal to second flaw that
is pointed out.

In case of Otway-Rees protocol, I could re-detect fatal actions of attacks that rep-
resent success of attack for two flaws of this protocol that are pointed out. Therefore,
I showed that the proposed method can detect fatal actions of attacks that represent
success of attack.

In key exchange protocols, it is common that any participant sends any data in each
step as specification in 3.1. Sender and sent data in each step are different for key
exchange protocols. Therefore, it can be said that the proposed method can be applied
to other key exchange protocols.

21

Chapter 4

Extending Proposed Formal Analysis
Method with Reasoning for Key
Exchange Protocols

4.1 Comparison of Cryptographic Protocols

Current formal analysis method with reasoning considers only key exchange protocols
[33], but not other cryptographic protocols. At first, I compared cryptographic protocols
that have been proposed [26], [31], based on participants’ behaviors and the number of
participants. As the result, I found five differences among cryptographic protocols. Ta-
ble 4.1 shows the differences of participants’ behaviors and the number of participants.
In table 4.1, following differences from D1 to D5 are represented in cryptographic pro-
tocols.

D1: There is a case that number of participants is 3 or more.

In most cryptographic protocols, number of participants is 2. However, there
are some cryptographic protocols that 3 or more participants can participate, for
example, mental poker and secure multiparty computation, and so on.

D2: There is 1 or more trusted server.

In some cryptographic protocols, there is 1 or more trusted server in order to
success those protocols correctly, for example, key exchange, authentication, and
so on.

D3: Any participant sends data selectively to another.

In most cryptographic protocols, sent data by participants is uniquely determined.
However, in some cryptographic protocols, a participant sends data selectively to
another participant, for example, coin flips, zero knowledge proofs, and so on.

D4: Any participant sends data to multiple participants.

22

In most cryptographic protocols, a participant sends data to one another partici-
pant. However, in some cryptographic protocols, a participant sends data to mul-
tiple participants at the same time, for example, secret splitting, bit commitment,
and so on.

D5: There is a case that participants get another data by calculation for collected data
in a protocol.

In some cryptographic protocols, there is a case that if any participant receives
some data, the participant gets new data. For example, in secret splitting protocols
if a participant gets all split data, the participant can get secret data.

According to table 4.1, key exchange protocols have only featureD1, D2, andD5. Thus,
the proposed method does not considerD3 andD4. I should extend the method to deal
with D3 andD4.

Kind of Protocol D1 D2 D3 D4 D5
Key Exchange ◦ ◦ ◦
Authentication ◦ ◦ ◦
Secret Splitting ◦ ◦ ◦ ◦

Timestamp ◦
Subliminal Channel ◦ ◦

Undeniable Digital Signatures ◦
Bit Commitment ◦

Coin Flips ◦
Mental Poker ◦ ◦

Anonymous Key Distribution ◦ ◦
Key Escrow ◦ ◦ ◦

Zero Knowledge Proofs ◦
Blind Signatures ◦

Oblivious Transfer ◦
Simultaneous Contact Signing ◦

Digital Certified Mail ◦ ◦ ◦
Secure Elections

Secure Multiparty Computation ◦
Digital Cash ◦

Table 4.1: Comparison of behaviors and the number of participants in cryptographic
protocols

23

4.2 Formalization of Cryptographic Protocols

4.2.1 Overview of Formalization

As well as the proposed method in section 3.2, analysts perform formalization from
specification that is represented as eq. 3.1. In cryptographic protocols, it is common
that any participant sends and receives data in each step. Furthermore, defined data
in section 3.1 is used in some cryptographic protocols. Therefore, defined predicates,
functions, individual variables, and individual constants in section 3.1 are used in the
extended method.

Following tasks are new tasks in our extended formalization method.

1. In order to corresponding toD1, I extended tasks 1 and 2 in section 4.2.2 by
adding the case that there are 3 or more participants. I added definition of individ-
ual constantsa, b, . . . , h,a1, . . . , an (n ∈ N) that represent persons（If the number
of person is over 8, those individual constants are represented asa1, . . . , an in
order to distinguish persons from an intruder).

2. In order to corresponding toD2, I extended tasks 2 in section 4.2.2 by adding
the case that there are multiple trusted servers. I added definition of individual
constantss1, . . . , sn (n ∈ N) that represent trusted servers.

3. In order to corresponding toD3, I extended task 1 in section 4.2.5 by adding the
case that a participant selectively sends data.

4. In order to corresponding toD4, I extended task 1 in section 4.2.2 by adding the
case that a participant sends data to multiple participants

5. In order to corresponding toD5, I added task of generating logical formulas that
participants get new data by calculating got multiple data in section 4.2.4.

4.2.2 Behavior of Participants

1. Represent participants’ behavior in each step of the protocol by formulas.

(a) If step 1 of the protocol, or while all previous senders of data are same in
step 1, use the following formula (4.1), which means “if a communication
process starts withp1 and p2, p1 sends datax1, . . . , xn to p2”. If a partic-
ipant selectively sends data in corresponding step, logical formulas about
corresponding step are generated in section 4.2.5.

S tart(p1, p2)⇒ S end(p1, p2,data(x1, . . . , xn)) (4.1)

(b) If step 2 and beyond of the protocol, and sender of data is not same in step
1, use the following formula (4.2), which means “if a participantp1 receives
data,p1 sends next data top2.” But pi and xi are individual variables, and
n andm are the number of sent or received data. If a participant selectively

24

sends data in corresponding step, logical formulas about corresponding step
are generated in section 4.2.5.

Recv(p1,data(x1, . . . , xm))⇒ (Parti(p1)⇒
S end(p1, p2,data(x1, . . . , xn))) (4.2)

2. Replace individual variablesp1 andp2 of formulas in the previous task.

(a) About formulas (4.1),

i. If sender of corresponding step is a trusted serverS1,S2, . . . , or Sn,
individual variablep1 is replaced withs1, s2, . . . , or sn, respectively.

ii. If receiver of corresponding step is a trusted serverS1,S2, . . . , or Sn,
individual variablep2 is replaced withs1, s2, . . . , or sn, respectively.

iii. If sender of corresponding step is theith participant, individual variable
p1 is replaced withpi.

iv. If receiver of corresponding step is thei th participant, individual variable
p2 is replaced withpi.

(b) About formulas (4.2),

i. If sender of corresponding step is a trusted serverS1,S2, . . . , or Sn,
individual variablep1 is replaced withs1, s2, . . . , or sn, respectively.

ii. If receiver of corresponding step is a trusted serverS1,S2, . . . , or Sn,
individual variablep2 is replaced withs1, s2, . . . , or sn, respectively.

iii. If sender of corresponding step is theith participant, individual variable
p1 is replaced withpi.

iv. If receiver of corresponding step is thei th participant, individual variable
p2 is replaced withpi.

3. Replace individual variablesx1, · · · , xn of formulas (4.1) and (4.2) with terms
according to following rules corresponding step of the specification.

(a) If sent dataYi is not encrypted, substitute a function or an individual variable
depending on data types forxi.

i. If Yi is data that theith participant owns, use function (for examplef).
After that, individual variablexi is replaced withf (pi).

ii. If Yi is data that a trusted serverS1,S2, . . . , or Sn owns, use function
(for example f). After that, individual variablexi is replaced with
f (s1), f (s2), . . . , or f (sn), respectively.

25

iii. If Yi is data that no one owns,xi is replaced with an individual variable
that is uniquely defined.

(b) If Yi is incremented data, substituteplus(x′i). x′i is replaced as well as previ-
ous task 3-a.

(c) If Yi is encrypted data,

i. Substituteenc(k, x′1, · · · , x′n)
ii. Replacek depending on key types.

A. If K is symmetric key of theith participant and a trusted server
S1,S2, . . . , or Sn, k is replaced withsymk(pi , s1), symk(pi , s2), . . . ,
or symk(pi , sn), respectively.

B. If K is symmetric key of theith and thejth participant,k is replaced
with symk(pi , pj).

C. If K is public key of theith participant,k is replaced withpk(pi).

D. If K is public key of a trusted serverS1, S2, . . . , or Sn, k is replaced
with pk(s1), pk(s2), . . . , or pk(sn), respectively.

E. If K is other kinds of key,k is not replaced.

4. In part of formulasA1 ⇒ A2 (A1 andA2 are formulas), if a variable is included
only in A1 or A2, define an individual constant and replace the variable into the
constant.

5. Add quantifier∀ corresponded to individual variablesk, xi, andpi in those formu-
las.

6. Add generated logical formulas that represent behavior of stepi in NP1
i .

7. Add a formulaS tart(p1, p2) in NP1
1 with substituting an individual constant of

participants or an intruder top1 andp2.

4.2.3 Behavior of an Intruder

Behavior of an intruder in the proposed method is based on Dolev-Yao model [17]. In
this model, it is assumed that an intruder knows old data that is sent and received in the
previous communication process, and eavesdropping, falsifying, decryption by a key
that the intruder has. Formalization tasks of the rules are as follows.

1. Enumerate all functionsdata(x1, . . . , xn) in predicateS endthat are generated
based on formulas (4.1) and (4.2) in section 4.2.2.)

26

2. GenerateS tart(p1, p2) ⇒ Get(i,Tm) whereTi is enumerateddata(x1, . . . , xn) and
1 ≤ i ≤ n. m is number of enumerateddata(x1, . . . , xn).

3. If Tm includes functionnonceor tstampor any individual constants, those terms
y are replaced intoold(y).

4. Add generated formulas and a following formula that represents “if a participant
sendsx, an intruder gets it (by eavesdropping)” inCO.

∀p1∀p2∀x(S end(p1, p2, x)⇒ Get(i, x))

4.2.4 Common Behavior among Participants and an Intruder

Analysts add following formulas inCO depending on number of participants and used
key.

• If p1 gets datax1, · · · , xn encrypted byp1’s symmetric key,p1 gets original data
(If a protocol that uses symmetric key).

∀p1∀p2∀x1 . . .∀xn(Get(p1,enc(symk(p1, p2), x1,

· · · , xn))⇒ Get(p1,data(x1, · · · , xn)))

• If p gets data encrypted byp’s public key,p gets original data (If a protocol that
uses public key).

∀p∀x1 . . .∀xn(Get(p, enc(pk(p), x1, · · · , xn))⇒
Get(p,data(x1, · · · , xn)))

• If p receivesx, p gets it.

∀p∀x(Recv(p, x)⇒ Get(p, x))

• symk(p1, p2) andsymk(p2, p1) are equal. (This formula needs to perform forward
reasoning about symmetric key in the method.)

∀p1∀p2(Eq(symk(p1, p2), symk(p2, p1)))

• A appears as a participant in target specification.

Parti(α) whereα is a individual constant that represents a person or a trusted
server.

• An intruder is not a participant.

¬Parti(i)

Furthermore, in order to represent a participant previously gets data, analysts add
following formulas with replacingx into an individual constant that represents a partic-
ipant previously gets data in target cryptographic protocol.

27

• Get(si , x)

• ∀p1∀p2(S tart(p1, p2)⇒ Get(p1, x)) (If first sender previously gets datax)

• ∀p1∀p2(S tart(p1, p2)⇒ Get(p2, x)) (If first receiver previously gets datax)

In order to represent thatp gets another data by calculation for collected data in a proto-
col (for examplegetdata1, . . . , getdatan), analysts add following formula with replacing
getdata1, . . . , getdatan, andgetdata′ into an individual constant that represents data that
a participant should collect (getdata1, . . . , getdatan) in order to get another data by cal-
culation (getdata′). (For example, in secret splitting protocol, if a participant gets all
split data, the participant gets secret data.)

∀p((Get(p, getdata1) ∧ · · · ∧Get(p, getdatan)⇒ Get(p, getdata′)))
wheregetdatai andgetdata′ are individual constants that represent data.

4.2.5 Irregular Case

Analysts generate logical formulas that are corresponding to each case of participants’
and an intruder’s actions. If participants selectively send data, generated logical for-
mulas are added inNP1

j , . . . ,NPn
j wheren is the number of data that is selectively sent

by participants in stepj. If an intruder sends data with falsification, generated logical
formulas are added inIP1

j , . . . , IP
n
j as well wheren is the number of falsified data can

be sent by the intruder in stepj.
In following explanation,p, p1, andp2 are individual constants of participants that

perform sending or receiving, andx, x1, . . . , andxn (n ∈ N) are individual constants of
data that are sent in stepj. In following tasks, it is assumed that case of falsification
in each kind of data is unique because participants check only whether received data
is same to that of participants’. For example, it is possible that an intruder has mul-
tiple nonces, but the result of falsification is same in case of which nonce is used to
falsification, because participants check only whether received nonce is same to that of
participants’.

Analysts perform following tasks in case that such branches are occurred in stepj.

1. If a participant sends data selectively to an other participant in forward reasoning
about stepj, analysts addS end(p1, p2, x1), . . . , S end(p1, p2, xn) in NP1

j , . . . ,NPn
j ,

respectively.

2. If S end(i, p, x) is deduced, analysts addRecv(p, x) in NPi
j.

3. If S end(p1, p2, x) is deduced, analysts add following formulas respectively.

• Analysts addRecv(p2, x) in NP1
j .

• Analysts add logical formulas that are generated in task 5.

4. If S end(p, i, x) is deduced, analysts add logical formulas that are generated in task
5.

28

5. Analysts generate logical formulas that represent an intruder sends data with fal-
sification by following tasks.

(a) Enumerate participants that receive any data after stepj (Y in specification
3.1). If there is no participant, tasks of forward reasoning is over.

(b) Repeat following tasks in each enumerated participant.

i. Extract one participant as receiverp′, and check the number of step
(afterX→ Y in specification 3.1).

ii. Generate logical formulas that represent sent data in the step based on
task 2 and 3 of section 4.2.2 (with replaced individual variablepi into
individual constant).

iii. Replace each data based on following conditions of falsification. If
any data cannot be replaced, continue to next participant. (In following
conditions, for example, if an intruder sendsNB,A (indicator) toA, NB

can be falsified becauseA does not haveNB, and indicator thatA owns
cannot be falsified.)
• Identifier: If receiverp′ owns the identifier, it cannot be falsified.

Otherwise, it can be falsified into an intruder’s identifier.

• Timestamp: If receiverp′ owns the timestamp, it cannot be falsi-
fied. Otherwise, it can be falsified into an intruder’s timestamp.

• Nonce: If receiverp′ owns the nonce, it cannot be falsified. Other-
wise, it can be falsified into an intruder’s nonce.

• Incremented data: If receiverp′ owns the data that is not incre-
mented, it cannot be falsified. Otherwise, it can be falsified based
on condition for kind of the data.

• Other data that is uniquely defined in a protocol: If anyone owns
the data, it can be falsified into an intruder’s data without changing
kind of data. If no one owns the data, it can be falsified into old
data that an intruder has.

• Encrypted data: If the data is encrypted by key of receiverp′, it can
be falsified into data with satisfying the condition that is encrypted
by key of p′. If the data is encrypted by the other’s key, it can be
also falsified into data with satisfying the condition that is encrypted
by an intruder’s key.

• Data with signature: The contents of the data with signature can be
falsified by the condition for each kind of the data, without chang-
ing the signature.

(c) Generate logical formulasS end(i, p′,data1), . . . , S end(i, p′, datan), and add
those formulas withRecv(i, x) in IP1

j , . . . , IP
n
j , respectively (data1, · · · , and

datan are the result of falsification, andn is number of data that the an in-
truder can send.).

29

Figure 3.2 shows overview of branches by cases that participants and an intruder
sends data. In above conditions of falsification, complexity of the tasks is increased
by the number of logical formulasIPm

n . If there is a case that a participant sends data
selectively to another, the number of logical formulasNPm

n also increase the complexity.
However, the task of forward reasoning can be finished by finite time because case of
falsification in each kind of data is unique.

4.3 Forward Reasoning

In the proposed method, analysts use FreeEnCal [9] in order to perform forward reason-
ing automatically. Analysts use sets of generated logical formulasNPj

i or IP j′

i , andCO
that are generated in section 4.2, and deduced logical formulas until this step (DF) as
input of FreeEnCal. As the result, new logical formulas (DFnew) deduced, andDFnew is
added inDF.

In tasks of forward reasoning, analysts use FreeEnCal for forward reasoning about
each step of the target protocol. As the number of step isi, and the number of data
that participants or an intruder can send isn, analysts divide into cases thatNPj

i or IP j′

i
(1 ≤ j ≤ n, 1 ≤ j′ ≤ n′), is used as input of FreeEnCal.

In the proposed method, an intruder does not forge sending data if participants can
recognize falsification, and participants know what kinds of data are derived to them as
next data. Therefore, ifIP j′

i does not include data that participants get (represented as
Get(p, x)), and should be received in stepi, IP j′

i cannot be used as input of FreeEnCal.
If DF is the result of forward reasoning about the last step of the target protocol,NPj

i

cannot be used as input of FreeEnCal. If neitherNPj
i or IP j′

i cannot be inputted, forward
reasoning in the case is completed. If all cases of forward reasoning are completed,
analysts perform tasks of analysis for eachDF in section 4.4.

4.4 Tasks of Analysis

Analysts check whether formulas that represent success of attack are included in each
DF that is the case of completion of tasks of forward reasoning.

1. Check whether the formulas that represent success of attack are included in de-
duced logical formulas after the removal.

• Formulas that represent successful completion of the protocol (in forward
reasoning about last step of target protocol, an atomic formula that starts
“Recv” is deduced).

• Formula that represent an intruder obtains secret data “Get(i, secretdata)”.

• Formulas that represent that an intruder received sent data to a participant
“S end(p1, p2,anydata),” and a participant received falsified data by an in-
truderRecv(i, anydata), andS end(i, p2,anydata′) (anydata′ is falsified data
from anydata).

30

2. If following both of formulas are included, it can be said that attacks by an intruder
succeed in the target cryptographic protocol.

• Formulas that represent successful completion of the protocol.

• Formulas that represent that an intruder gets secret data, or any participant
received falsified data by an intruder.

In figure 3.4, formulas that represent successful completion of a protocols mean that
any participant sent or got data in forward reasoning about the last step of protocol. An-
alysts check whether an atomic formula that starts “Recv” is deduced or not in forward
reasoning about last step of target protocol. Eavesdropping is represented asGet(i, x) (x
is secret data). Falsifying means that sent data to a participant is received by an intruder,
and the intruder sends another data to the participant. It is represented asS end(p,q, x),
Receive(i, x), andS end(i,q, x′) in deduced logical formulas.

31

Chapter 5

Demonstration of Effectiveness

5.1 Method of Demonstration

I show that the proposed method can be applied to various cryptographic protocols.
According to table 4.1 in section 4, difference in each cryptographic protocol is what
feature the cryptographic protocol has in those five differences. Therefore, if formal
analysis of some cryptographic protocols that include those five differences can be per-
formed, it can be said that the extended method can also be applied to other than key
exchange protocols.

In order to show it, I chose secret splitting protocol [31] and coin flips protocol [31],
as cases of formal analysis that includes those five differences by the proposed method.

5.2 Case in Secret Splitting Protocols

Secret splitting protocols [31] are steps to split secret information into several parts of
data, and prevent restoring secret information without collecting each split data. The
protocol can prevent leakage of secret information because each split data do not have
meaning, and secret data cannot be restored by only split data. In the protocol, a trusted
server previously has secret information. At first, secret information is split into several
parts of data. After that, administrator of secret information sends each split data to
different participants. Each participant can restore secret information by collecting each
split data. In secret splitting protocol, all split data must not be got by an intruder
because an intruder can restore secret information, and must not be falsified because
participants cannot restore secret information. As table 4.1 in section 4, secret splitting
protocols have featureD1, D2, D4, andD5.

As the first step for formal analysis of secret splitting protocols, I prepared three
secret splitting protocols as the case of formal analysis. In those three specification of
secret splitting protocols,data1 anddata2 are split data to send participants of protocol.
Specification of first protocol is below.

Specification of first protocol

Step 1 A→ S : A, B

32

Step 2 S→ A : {data1, B}KAS

Step 3 S→ B : {data2,A}KBS

The first protocol has a flaw. When a trusted serverS checks two identifiers, there
are two possibilities,S checks individually whether each identifier is correct, or checks
whether two identifiers are equal. If a trusted serverS only checks individually whether
those sent identifiers are correct, without checking whether sent two identifiers in step
1 are equal or not, it is possible that an intruder can receive split datadata1 anddata2.
As the result, the intruder can get secret data from got split datadata1 anddata2 by
falsifying identifiers that are sent in step 1. Concretely, the intruder can perform this
attack by following steps. In following steps,I (X) means that ”an intruder receives data
with pretending to beX.”

An attack on first protocol

Step 1 A→ I (S) : A, B

Step 2 I (A)→ S : I , I

Step 3 S→ I : {data1}KIS

Step 4 S→ I : {data2}KIS

I prepared second protocol that is different from first protocol,S starts to send data to
each participant. Specification of second protocol is below.

Specification of second protocol

Step 1 S→ A : {data1, B}KAS

Step 2 S→ B : {data2,A}KBS

The second protocol has a flaw. In behavior of an intruder based on Dolev-Yao model
[17] (section 4), if an intruder knows old data that is sent and received in the previous
communication process, the intruder can falsify sent data into old data that the intruder
knows without participants recognizing. Concretely, the intruder can perform this attack
by following steps. In following steps,data1′ anddata2′ are old split data to be sent
and received in the previous communication process.

Attack on second protocol

Step 1 S→ I (A) : {data1, B}KAS

Step 2 I (S)→ A : {data1′, B}KAS

Step 3 S→ I (B) : {data2,A}KBS

Step 4 I (S)→ B : {data2′,A}KBS

33

It is a case that bothdata1′ anddata2′ are falsified. On the other hand, there is a case
that onlydata1′ or data2′ is falsified.

Attack on second protocol (in case thatdata1 is falsified)

Step 1 S→ I (A) : {data1, B}KAS

Step 2 I (S)→ A : {data1′, B}KAS

Step 3 S→ B : {data2,A}KBS

Attack on second protocol (in case thatdata2 is falsified)

Step 1 S→ A : {data1, B}KAS

Step 2 S→ I (B) : {data2,A}KBS

Step 3 I (S)→ B : {data2′,A}KBS

I improved the first protocol in order to prevent falsifying of an intruder that is repre-
sented as third protocol. Specification of third protocol is below.

Specification of third protocol

Step 1 A→ B : A,NA

Step 2 B→ S : A,NA, B,NB

Step 3 S→ A : {data1, B,NA}KAS

Step 4 S→ B : {data2,A,NB}KBS

In order to show that the extended method in section 4 can be applied to crypto-
graphic protocols, I analyzed those three secret splitting protocols based on the extended
formal analysis method with reasoning. At first, I formalized specification of each pro-
tocol based on section 4. After that, I performed forward reasoning as the premises.
Finally, I detected fatal actions of attacks that represent success of attacks for flaws of
those protocols from deduced logical formulas by forward reasoning.

About first protocol, I performed formal analysis based on the proposed method. As
the result, 20 paths were generated and total 5086 logical formulas were deduced. In
the deduced logical formulas, 5 logical formulasRecv(s,data(id(i), id(i))),
S end(s, i,enc(symk(i, s),data1)), S end(s, i,enc(symk(i, s),data2)), Get(i,data1) and
Get(i,data2) were included.Get(i,data1) andGet(i,data2) mean success of attack that
an intruder could get each split datadata1,data2. As the result, the intruder can get
secret data.Recv(s,data(id(i), id(i))), S end(s, i,enc(symk(i, s),data1)), and
S end(s, i,enc(symk(i, s),data2)) mean that a trusted serverS finished all tasks because
the number of receiving and sending is 1 and 2 respectively in the specification. This is
equal to the flaw of first protocol.

34

About second protocol, I performed formal analysis based on the proposed method
As the result, 4 paths were generated and total 3250 logical formulas were deduced. In
the deduced logical formulas, 4 logical formulasGet(a,data(old(data1), id(b))),
Get(b,data(old(data2), id(a))), Recv(a,enc(symk(a, s),old(data1), id(b))) and
Recv(b,enc(symk(b, s),old(data2), id(a))), were included in deduced logical formulas.
Recv(a,enc(symk(a, s),old(data1), id(b))) means thatA finished all tasks and
Recv(b,enc(symk(b, s),old(data2), id(a))) means thatB finished all tasks because the
number of receiving is 1 in the specification.Get(a,data(old(data1), id(b))) and
Get(b,data(old(data2), id(a))) mean thatA andBget data that an intruder falsified with-
out recognizing the attack because the received split data has no meaning. As well as the
result, logical formulas that represent that only one data is falsified were also deduced,
for example,Get(a,data(data1, id(a))) andGet(b, data(old(data2), id(a))), or
Get(a,data(old(data1), id(a))), Get(b,data(data2, id(a))). This is equal to the flaw of
second protocol.

About third protocol, I performed formal analysis based on the proposed method.
As the result, 14 paths were generated and total 16431 logical formulas were deduced.
Fatal actions of attack that represent success of attack for flaws were not detected in
deduced logical formulas but I could perform tasks of the proposed method to the end.

In cryptographic protocols that have featureD1, D2, D4, andD5, behavior of par-
ticipants is common in each protocol but only sent data in the common behavior is
different. Therefore, the proposed method can be applied to cryptographic protocols
that have featureD1, D2, D4, andD5.

5.3 Case in Coin Flips Protocols

Coin flips protocols [31] are steps to fairly perform coin-flip for participants. At first,
a participantA sends data with encrypting that receiverB cannot decrypt. After that,B
sends next data the represents the received value of data is odd or even (corresponding
to front or back of the coin). Finally,A sends the firstly sent data toB in order to check
whether the sent data is correct. In coin flips protocols,A must not previously know the
result that received data is odd or even, andB must not previously know whetherB’s
sent data is odd or even. Coin flips protocols have behavior ofD3 that is explained in
section 4.

I prepared one coin flips protocol as the case of formal analysis. In following spec-
ification of coin flips protocol,f (x) is one way function of sent datax, andodd,even
are data that is corresponding to front or back of the coin. Specification of the coin flips
protocol is below.

Specification of the coin flips protocol

Step 1 A→ B : { f (x),A}KAB

Step 2 B→ A : {odd}KAB/{even}KAB

Step 3 A→ B : {x}KAB

35

I performed formal analysis of the coin flips protocol based on the proposed method.
As the result, 8 paths were generated and total 6206 logical formulas were deduced.
Fatal actions of attacks that represent success of attack for flaws were not detected in
deduced logical formulas but I could perform tasks of the proposed method to the end.

In cryptographic protocols that have featureD3, behavior of participants is common
in each protocol but only sent data in the common behavior is different. Therefore, the
proposed method can be applied to cryptographic protocols that have featureD3.

36

Chapter 6

Supporting Tools for Proposed Method

6.1 Requirement Analysis

The concrete steps for formal analysis method with reasoning is proposed in chapter
4. However, it is time-consuming task for analysts to manually perform formal analysis
based on the proposed method. As the result, it is possible for analysts to make mistakes
in tasks in the proposed method. Therefore, supporting tools are needed in order to
easily perform the proposed method for analysts. I enumerated following 5 requirements
for supporting tools for the proposed method.

R1: Supporting tools must support tasks that are time-consuming for analysts.

R1.1: Supporting tools must support tasks for formalization of a target crypto-
graphic protocol.

R1.2: Supporting tools must support tasks for forward reasoning from the result
of formalization as premises.

R1.3: Supporting tools must support tasks for analysis of deduced logical formu-
las by forward reasoning.

It is time-consuming task for analysts to perform tasks of formalization, forward
reasoning, and analysis in the proposed method.R1 is a basic requirement as
supporting tools for the proposed method.

R2: Supporting tools must systematically store and manage specification of crypto-
graphic protocols for input.

R2.1: Supporting tools must store and manage the specification for each users.

R2.2: Supporting tools must store and manage the specification for each proto-
cols.

R2.3: Supporting tools must store and manage the specification for each creation
times.

37

It is possible that analysts perform formal analysis of many cryptographic proto-
cols. As the result, it is time-consuming task for analysts to search only a target
cryptographic protocol in many of those. Therefore, supporting tools must satisfy
R2 to support formal analysis of many cryptographic protocols by analysts.

R3: Supporting tools must make possible for analysts to use specification of crypto-
graphic protocols for input as necessary.

R3.1: Supporting tools must make possible for analysts to read specification of
cryptographic protocols for input as necessary.

R3.2: Supporting tools must make possible for analysts to perform formal anal-
ysis from target specification of cryptographic protocols for input as neces-
sary.

R3.3: Supporting tools must make possible for analysts to improve specification
of cryptographic protocols for input as necessary.

R3.4: Supporting tools must make possible for analysts to delete specification of
cryptographic protocols for input as necessary.

It can be assumed that analysts improve a target cryptographic protocol from the
result of formal analysis. Therefore, supporting tools must satisfyR3 to make
tasks of improvement from the result of formal analysis easy for analysts.

R4: Supporting tools must systematically store and manage the result of formal analy-
sis.

R4.1: Supporting tools must store and manage the result of formal analysis for
each users.

R4.2: Supporting tools must store and manage the result of formal analysis for
each protocols.

R4.3: Supporting tools must store and manage the result of formal analysis for
each times of formal analysis.

R4.4: Supporting tools must store and manage the result of formal analysis for
each divided cases in tasks of forward reasoning.

It is possible that analysts perform formal analysis of many cryptographic proto-
cols. As the result, it is time-consuming task for analysts to search only a target
result of formal analysis of cryptographic protocol in many of those. Therefore,
supporting tools must satisfyR4 to support many cryptographic protocols by an-
alysts.

R5: Supporting tools must make possible for analysts to use the result of formal analy-
sis.

38

R5.1: Supporting tools must make possible for analysts to read the result of for-
mal analysis.

R5.2: Supporting tools must make possible for analysts to edit the result of for-
mal analysis.

R5.3: Supporting tools must make possible for analysts to delete the result of
formal analysis.

It can be assumed that analysts perform analyze from deduced many logical for-
mulas, and manage the many result of formal analysis. Therefore, supporting
tools must satisfyR5 to make these tasks easy for analysts.

6.2 Overview of Supporting Tools

Overview of supporting tools is represented in figure 6.1. At first, analysts input a
specification of cryptographic protocol as a target of formal analysis, and obtain the
result of formalization. After that, analysts input the result of formalization, and forward
reasoning is performed from the result of formalization as premises by FreeEnCal [9].
After that, if it is necessary to classify in case that an intruder or a participant receives
data, analysts add logical formulas depending on each case, and input these results as
premises for forward reasoning. If forward reasoning in each case, analysts input the
result of forward reasoning, and obtain the result whether attack succeed or not in the
target cryptographic protocol. If attack succeeds in the target cryptographic protocol,
analysts improve the protocol, and repeat formal analysis. By these activities, analysts
can concentrate on improving cryptographic protocols [34].

List of supporting tools that makes tasks of formal analysis by the proposed method
easy for analysts is as follows.

T1: Formalization tool from specification of cryptographic protocol

T2: Input files making tool depending on branches in task of forward reasoning.

T3: Flaws detection tool from the result of forward reasoning

T1, T2, andT2, satisfiesR1 in requirement analysis of section 6.1.
List of functions that supports formal analysis by the proposed method easy for

analysts is as follows. These functions satisfy the requirement of supporting tools, from
R2 to R5.

F1: Specification managing function (satisfiedR2)

F1.1: Creating new file

F1.2: Saving to corresponding directory

F1.3: Editing saving directory

F1.4: Deleting file

39

Supporting Tools

1. Input Spcification

2. Input Result of Formaliztion

 (Repeat for number of brunch) 3. Input Deduced Logical Formulas

 (Repeat for number of brunch)

4. Obtain

 Result of Analysis

5. Improve

 the Protocol T1

T2

T3

FreeEnCal

Specification of

Protocol

Result of Analysis

Deduced

Logical FormulasAnalysts

Figure 6.1: Overview of supporting tools.

F2: Making directory function for each user (satisfiedR2, R4)

F3: Making directory function for each target protocol (satisfiedR2, R4)

F4: Extracting specification of cryptographic protocol function in stored files (satisfied
R3)

F5: Performing formal analysis of extracted specification function (satisfiedR3)

F6: Extracting result of analysis function (satisfiedR5)

F6.1: Extracting result of deduced logical formulas

F6.2: Extracting result of analysis that is represented as form of specification

6.3 Implementation of Supporting Tools

I implemented those supporting tools that input file of specification or commands on
command line, and output the result of formalization, forward reasoning, and analysis.
Programming languages that I used for implementation are Ruby and Perl.

At first, user previously makes the specification by txt file based on eq. 3.1 in section
3.1. Concretely, input file is represented as following form.

N.X1->X2:Y1,Y2,...,Yn

In the form, N is the number of step. X1 and X2 are participants. Y1,Y2,...,Yn are sent
and received data. If encrypted data is sent, it is represented as{ Y1,Y2,...,Yn}. If data

40

Figure 6.2: Example of input for supporting tools (target of formal analysis).

that a participant owns is sent, it is represented as “(X)” (X is a participant). Figure 6.2
shows example of input file that is represented as the form.

After the input file is made, user inputs following command.

ruby analysistool.rb

After that, user input specification of cryptographic protocol by txt file. As the result,
formalization of the input specification is performed automatically. User obtains the
result of formalization by txt file that is represented by logical formulas and form of
FreeEnCal.

After the task of formalization, forward reasoning from the result of formalization
as premises by FreeEnCal is performed automatically. User obtains output file as the
result of forward reasoning in each case that is represented by logical formulas. Logical
formulas that represent a participant or intruder sends data are added in the output file,
and forward reasoning by using the is repeated until any logical formulas cannot be
added. The name of output file is represented following form.

[Filename]_s[Step number]_[Sender][Receiver][File number].txt

Figure 6.3 shows the example of formalization and forward reasoning by using support-
ing tools.

Figure 6.3: Formalization and forward reasoning by using supporting tools.

41

If a result of forward reasoning represents success of attack, “Flaw” is included in
name of output file. On the other hand, user obtains list of actions by participants and
an intruder in each case. The list of actions is translated into form of specification that
is represented as figure 6.4. As the result of translation, user can know how an intruder
succeeded the attack.

Figure 6.4: Example of attacks by form of specification.

6.4 Evaluation of Supporting Tools

I show that implemented supporting tools can reduce duration in performing formal
analysis by the proposed method compared to perform manually. The proposed method
is divided into 3 tasks, formalization for each branch, forward reasoning for each branch,
and detecting fatal actions of attack from deduced logical formulas by forward reason-
ing. I compare duration of these tasks in case of performing manually and using the
supporting tool, and demonstrate that the duration can be reduced by the supporting
tool.

I demonstrated that duration of formalization was reduced by using implemented
supporting tools. It is time-consuming task for analysts to perform formalization man-
ually [34]. Table 6.1 shows duration of formalization for Second Protocol Attempt [5],
Third Protocol Attempt [5], Needham-Schroeder Shard Key Protocol [24], and Otway-
Rees Protocol [27]. As shown in table 6.1, it took about 15 minutes to formalize man-
ually. I performed formalization of these protocols by using implemented supporting
tools, formalization could be finished automatically and instantly. Therefore, imple-
mented supporting tools can reduce duration of formalization.

Kind of Protocol Duration Manually
Second Protocol Attempt 13 minutes
Third Protocol Attempt 13 minutes

Needham-Schroeder Shard Key 20 minutes
Otway-Rees 25 minutes

Table 6.1: Duration of formalization manually

It was demonstrated that duration of forward reasoning was reduced by using im-
plemented supporting tools. It is time-consuming task for analysts to make input file

42

of forward reasoning by using FreeEnCal for all cases that an intruder or a participant
sends falsified data. Furthermore, command for executing FreeEnCal is complex as
follows.

$ FreeEnCal -s -t [output file] -f CSV [input file] >& output.log

Therefore, it is also time-consuming task for analysts to execute FreeEnCal for those
all cases. It takes about one hour to perform make input file and execute FreeEnCal
manually for those all cases. I performed those tasks automatically by using imple-
mented supporting tool. Therefore, implemented supporting tools can reduce duration
of forward reasoning.

I demonstrated that duration of analysis was reduced by using implemented support-
ing tools. It is time-consuming task for analysts to detect fatal actions of attacks in de-
duced many logical formulas by forward reasoning. Furthermore, it is time-consuming
task for analysts to judge success of attack or not from detected actions manually as
shown in figure 6.2 [34]. I performed those tasks for those protocols by using imple-
mented supporting tool. As the result those tasks could be finished automatically and
instantly. Therefore, implemented supporting tools can reduce duration of analysis.

Kind of Protocol Duration Manually
Second Protocol Attempt 3 minutes
Third Protocol Attempt 3 minutes

Needham-Schroeder Shard Key 5 minutes
Otway-Rees 6 minutes

Table 6.2: Duration of judging success of attack or not from detected actions manually

By implemented supporting tools, analysts can perform the proposed method in a
short time. Furthermore, it can be assumed that analysts perform the proposed method
for many cryptographic protocols. It is hopeful that analysts can concentrate on improv-
ing and designing of protocol.

Whole duration of the proposed method by using supporting tools is about several
hours. It can be said that the duration is practical time because it takes very long time
for designing and improving of cryptographic protocols. Proposed and practically used
cryptographic protocols should be carefully analyzed and improved with taking time.
For example, in case of SSL protocol [21], it takes 1 year to improve version 2.0 into
version 3.0 [19]. Furthermore, in case of TLS protocol [21], it takes 7 years to improve
version 1.0 [2] into version 1.1 [15], and takes 2 years to improve version 1.1 into
version 1.2 [16].

43

Chapter 7

Discussion

The proposed method has limitation that completeness cannot be said. The limitation is
following L1, L2, andL3.

L1: Target fatal actions of attacks that can be detected is depending on an intruder
model.

In the proposed method, behavior of an intruder is based on Dolev-Yao model
[17]. This model assumes that an intruder can eavesdrop, falsify, decryption by
a key that an intruder has. The proposed method can systematically detect fatal
actions of attacks that are based on these attacks. However, Dolev-Yao model
cannot support to detect fatal actions of attacks about mathematical computation.
For example, in case of coin-flips protocol that represents in section 5.3, if an
intruder can estimate secret datax from get dataf (x) by mathematical computa-
tion, an intruder can success attack in the protocol [31]. However, fatal actions
that represent the attack could not be detected in 5.3.

L2: Deduced logical formulas are limited in using FreeEnCal.

In using FreeEnCal, degree of nested logical connectives must be set in order to
limit the range of deduced logical formulas [9]. If there are fatal actions of attacks
outside of the range, those fatal actions cannot be detected.

L3: It is limited to enumerate falsified data that an intruder can send.

In the current proposed method, it is considered what data is falsified or not, but
it is not considered how to falsify each data. For example, in case of Otway-Rees
protocol that is represented in section 3.5, the current proposed method cannot
detect fatal actions of attacks that represents success of attack to second flaws be-
cause falsified data about second flaws cannot generated by the current proposed
method.

Those limitationL1, L2, andL3 can be reduced by extending the proposed method.
About L1, fatal actions of attacks about mathematical computation can be detected by

44

adding logical formulas that represent “a participant gets another data by calculation for
collected data in a protocol” in section 4.2.4. However, it must be cleared what new data
can get and what data should be collected to get the new data. AboutL2, fatal actions of
attacks outside of the range can be detected by setting high degree in using FreeEnCal.
However, if the set degree is very high, it is possible that forward reasoning by using
FreeEnCal cannot be stopped or it takes very long time for forward reasoning. About
L3, those fatal actions of attacks can be detected by extending method of enumerating
data with falsifying that an intruder can send. However, if the number of enumerated
falsified data is too much by the extension, it is possible that the number of branches is
very increased and the proposed method cannot be stopped. Therefore, it is future work
how to extend the proposed method without those problems.

Soundness can be said by the result of detecting fatal actions of attacks in the pro-
posed method. In the proposed method, if actions of an intruder that represent falsi-
fication or eavesdropping are included, a person’s action in the last step of protocol
is detected as a fatal action of attack. If a person’s action in last step of protocol is de-
tected, following two cases are possible. At first, an intruder does not perform actions of
falsification or eavesdropping in a cryptographic protocol. Second, participants cannot
recognize actions of falsification or eavesdropping by an intruder. If an intruder falsified
a target cryptographic protocol, deduced logical formulas must includeS end(i, p, x) and
Recv(i, x′) (p is any participant,x is any sent data, andx′ is falsified data).S end(i, p, x)
andRecv(i, x′) are generated by tasks of enumerating falsified data in section 4.2.5. In
the proposed method, it is assumed that an intruder does not forge sending data if partic-
ipants can recognize falsification. Therefore, ifS end(i, p, x), Recv(i, x′) and a person’s
action in last step of protocol are detected in deduced logical formulas, it represents
falsification by an intruder. On the other hand, if an intruder eavesdropped a target
cryptographic protocol, deduced logical formulas must includeGet(i, sdata) (sdatais
an individual constant that represents secret data).Get(i, sdata) is deduced in behavior
of an intruder that represents “if a participant sendsx, an intruder gets it” in section
4.2.3. Eavesdropping cannot be recognized by participants because an intruder only
gets sent data, and does not falsify sent data. Therefore, if a person’s action in last step
of protocol andGet(i, sdata) are detected, it represents eavesdropping by an intruder.

45

Chapter 8

Conclusions

8.1 Contributions

I showed that the proposed method can be applied to those 19 cryptographic protocols
in figure 4.1 of section 4.1. At first, I proposed formal analysis method with reasoning
for key exchange protocols. After that, I compared 19 cryptographic protocols based
on participants’ behavior and the number of participants, and five differences among 19
cryptographic protocols were found as I explained in figure 4.1 of section 4.1. After
that, I extended the proposed method in order to represent those five differences. By
the extended method, I performed formal analysis of some cryptographic protocols that
include five differences among cryptographic protocols. As the result, I could re-detect
fatal actions of attacks that represent success of attack that is pointed out or I could
perform tasks of the proposed method to the end.

As the result of evaluation of implemented supporting tools, I showed that analysts
can reduce duration of the proposed method by using those supporting tools. Therefore,
it can be said that analysts can easily perform the proposed method by implemented
supporting tools.

8.2 Future Works

In the future, at first, the proposed method should be extended in order to be applied
to more target attacks. In current proposed method, target fatal actions of attacks for
detecting and falsified data that an intruder can send are limited. However, if the pro-
posed method is extended without those limitations, there can be a problem that tasks
of the extended method cannot be finished because tasks of the extended method are
increased, especially falsified data that an intruder can send. Therefore, the proposed
method must be extended without the problem.

Second, the implemented supporting tools should be made more easy to use for
analysts. In current supporting tools, those output files are stored in same directory.
In order to manage and store those output files more systematically, it is necessary to
classify those output files, for example, execution date, forward reasoning about each
step. On the other hand, input file for formal analysis is made manually. Therefore, it is
necessary to implement a supporting tool for making input file.

46

Finally, the proposed method should be applied to various cryptographic protocols.
I showed that the proposed method can be applied to formal analysis of cryptographic
protocols. It is necessary to evaluate security of target cryptographic protocol by the
proposed method.

47

Publications

Refereed papers published in journals or books (first author)

• Kazunori WAGATSUMA, Shogo ANZE, Yuichi GOTO, and Jingde
CHENG: Formalization for Formal Analysis of Cryptographic Protocols
with Reasoning Approach, in J. J. Park, Y. Pan, C.-S. Kim, and Y. Yan
(Eds.), “Future Information Technology, FutureTech 2014,” Lecture Notes
in Electrical Engineering, Vol. 309, pp. 211-218, Springer, Heidelberg, May
2014.

• Kazunori WAGATSUMA, Yuichi GOTO, and Jingde CHENG: A Formal
Analysis Method with Reasoning for Key Exchange Protocols, IPSJ Journal,
Vol. 56, No. 3, pp. 903-910, IPSJ, March 2015 (in Japanese).

• Kazunori WAGATSUMA, Tsubasa HARADA, Shogo ANZE, Yuichi
GOTO, and Jingde CHENG: A Supporting Tool for Spiral Model of Cryp-
tographic Protocol Design with Reasoning-Based Formal Analysis, in J. J.
Park, H. Chao, H. Arabnia, and N. Y. Yen (Eds.), “Advanced Multimedia and
Ubiquitous Engineering - Future Information Technology,” Lecture Notes in
Electrical Engineering, Vol. 354, pp. 25-32, Springer, Heidelberg, July
2015.

Refereed papers published in journals or books (co-author)

• Kai SHI, Kazunori WAGATSUMA, Yuichi GOTO, and Jingde CHENG:
World Model, Predictive Model, and Behavioral Model of an Anticipatory
Reasoning-Reacting System for Runway Incursion Prevention, International
Journal of Computing Anticipatory Systems, Vol. 28, pp. 67-88, CHAOS,
December, 2014.

• Shunsuke NANAUMI, Kazunori WAGATSUMA, Hongbiao GAO, Yuichi
GOTO, and Jingde CHENG: A Bidirectional Transformation Supporting
Tool for Formalization with Logical Formulas, in N. T. Nguyen, et al. (Eds.),
“Intelligent Information and Database Systems, 7th Asian Conference, ACI-
IDS 2015, Bali, Indonesia, March 23-25, 2015, Proceedings,” Lecture Notes
in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
Vol. 9011, pp. 634-643, Springer, March 2015.

• Shunsuke NANAUMI, Kazunori WAGATSUMA, Hongbiao GAO, Yuichi
GOTO, and Jingde CHENG: Development of a Bidirectional Transforma-
tion Supporting Tool for Formalization with Logical Formulas and Its Appli-
cation, in J. J. Park, H. Chao, H. Arabnia, and N. Y. Yen (Eds.), “Advanced

48

Multimedia and Ubiquitous Engineering - Future Information Technology,”
Lecture Notes in Electrical Engineering, Vol. 352, pp. 1-6, Springer, Hei-
delberg, May 2015.

• Da BAO, Kazunori WAGATSUMA, Hongbiao GAO, and Jingde CHENG:
Predicting New Attacks: A Case Study in Security Analysis of Crypto-
graphic Protocols, Lecture Notes in Electrical Engineering, Springer, Hei-
delberg (accepted).

Refereed papers published in international conference proceedings (first author)

• Kazunori WAGATSUMA, Yuichi GOTO, and Jingde CHENG: Formal Anal-
ysis of Cryptographic Protocols by Reasoning Based on Deontic Relevant
Logic: A Case Study in Needham-Schroeder Shared-Key Protocol, Proc.
11th International Conference on Machine Learning and Cybernetics, pp.
1866-1871, Xian, China, The IEEE Systems, Man, and Cybernetics Society,
July 2012.

Refereed papers published in international conference proceedings (co-author)

• Shunsuke NANAUMI, Kazunori WAGATSUMA, Yuichi GOTO, and Jingde
CHENG: Development of a Supporting Tool for Translation between Declar-
ative Sentences and Logical Formulas, Proc. 12th International Conference
on Machine Learning and Cybernetics, pp. 1179-1184, Tianjin, China, The
IEEE Systems, Man, and Cybernetics Society, July 2013.

49

Bibliography

[1] Mart́ın ABADI and Ćedric FOURNET: Mobile Values, New Names, and Secure
Communication, Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 104-115, ACM, March 2001.

[2] Christopher ALLEN and Tim DIERKS: The TLS Protocol Version 1.0,
http://tools.ietf.org/html/rfc2246.txt, January 1999.

[3] Jason BAU and John C. MITCHELL: Security Modeling and Analysis, IEEE Se-
curity and Privacy, Vol. 9, No. 3, pp. 18-25, May-June 2011.

[4] Bruno BLANCHET: An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules, Proceedings of the 14th IEEE Computer Security Foundations Workshop,
pp. 82-96. IEEE, June 2001.

[5] Colin BOYD and Anish MATHURIA: Protocols for Authentication and Key Es-
tablishment, Springer, June 2003.

[6] Jingde CHENG: A Strong Relevant Logic Model of Epistemic Processes in Sci-
entific Discovery, Information modelling and knowledge bases XI, Vol. 61, pp.
136-159, February 2000.

[7] Jingde CHENG: Strong Relevant Logic as the Universal Basis of Various Applied
Logics for Knowledge Representation and Reasoning, Frontiers in Artificial Intel-
ligence and Applications, Vol. 136, pp. 310-320, February 2006.

[8] Jingde CHENG and Junichi MIURA: Deontic Relevant Logic as the Logical Basis
for Dpecifying, Verifying, and Reasoning about Information Security and Infor-
mation Assurance, Proceedings of the 1st International Conference on Availability,
Reliability and Security, pp. 601-608, IEEE-CS, April 2006.

[9] Jingde CHENG, Shinsuke NARA, and Yuichi GOTO: FreeEnCal: A Forward Rea-
soning Engine with General-Purpose, Knowledge-Based Intelligent Information
and Engineering Systems, Lecture Notes in Artificial Intelligence, Vol. 4693, pp.
444-452, Springer-Verlag, September 2007.

[10] John CLARK and Jeremy JACOB: A Survey of Authentication Protocol Litera-
ture: Version 1.0, November 1997.

[11] Cas JF CREMERS: The Scyther Tool: Verification, Falsification, and Analysis
of Security Protocols, Computer Aided Verification, Lecture Notes in Computer
Science, Vol. 5123, pp. 414-418, Springer, July 2008.

50

[12] Cas JF CREMERS: On the protocol composition logic PCL, Proceedings of the
2008 ACM Symposium on Information, Computer and Communications Security,
ACM, pp. 66-76, March 2008.

[13] Dorothy E. DENNING and Giovanni Maria SACCO: Timestamps in Key Distribu-
tion Protocols, Communications of the ACM, Vol. 24, No. 8, pp. 533-536, August
1981.

[14] Razvan DIACONESCU and Kokichi FUTATSUGI: Cafeobj Report, World Scien-
tific, 1998.

[15] Tim DIERKS and Eric RESCORLA: The Transport Layer Security (TLS) Protocol
Version 1.1, https://tools.ietf.org/html/rfc4346.txt, April 2006.

[16] Tim DIERKS and Eric RESCORLA: The Transport Layer Security (TLS) Protocol
Version 1.2, http://www.ietf.org/rfc/rfc5246.txt, August 2008.

[17] Danny DOLEV and Andrew C. YAO: On the Security of Public Key Protocols,
IEEE Transactions on Information Theory, Vol. 29, No. 2, pp. 198-208, IEEE,
March 1983.

[18] Santiago ESCOBAR, Catherine MEADOWS, and Jose MESEGUER: Maude-
NPA: Cryptographic Protocol Analysis Modulo Equational Properties, Lecture
Notes in Computer Science, Vol. 5705, pp. 1-50, Springer-Verlag, June 2009.

[19] Alan FREIER: The SSL Protocol Version 3.0, http://wp.netscape.
com/eng/ssl3/draft302.txt, November 1996.

[20] Hongbiao GAO, Yuichi GOTO, and Jingde CHENG: A Systematic Methodology
for Automated Theorem Finding, Theoretical Computer Science, Vol. 554, pp.
2-21, Elsevier, October 2014.

[21] Kipp HICKMAN and Taher ELGAMAL: The SSL protocol, Netscape Communi-
cations Corporation, June 1995.

[22] ISO, ISO/IEC 29128: Information Technology – Security Techniques – Verifica-
tion of Cryptographic Protocols, 2011.

[23] Sebastian MODERSHEIM and Luca VIGANO: The Open-Source Fixed-Point
Model Checker for Symbolic Analysis of Security Protocols, Lecture Notes in
Computer Science, Vol. 5705, pp. 166-194, Springer-Verlag, June 2009.

[24] Roger NEEDHAM and Michael D. SCHROEDER: Using Encryption for Authen-
tication in Large Networks of Computers, Communication of the ACM, Vol. 21,
No. 12, pp. 993-999, December 1978.

[25] Monica NESI and Giustina NOCERA: Deriving the Type Flaw Attacks in the
Otway-Rees Protocol by Rewriting, Nordic Journal of Computing, Vol. 13, No.
1, pp. 78-97, June 2006.

51

[26] National Institute of Information and Communications Technology, Cryptographic
Protocol Verification Portal, http://crypto-protocol.nict.go.jp/, accessed March 9,
2015.

[27] Dave OTWAY and Owen REES: Efficient and Timely Mutual Authentication,
ACM SIGOPS Operating Systems Review, Vol. 21, No. 1, pp. 8-10, ACM, January
1987.

[28] Lawrence C. PAULSON: Isabelle: A Generic Theorem Prover, Lecture Notes in
Computer Science, Vol. 828, Springer, July 1994.

[29] Lawrence C. PAULSON: Proving Properties of Security Protocols by Induction,
Proceedings of 10th IEEE Computer Security Foundations Workshop, pp. 70-83,
IEEE, June 1997.

[30] Lawrence C. PAULSON: The Inductive Approach to Verifying Cryptographic Pro-
tocols, Journal of Computer Security, Vol. 6, No. 1-2, pp. 85-128, February 1998.

[31] Bruce SCHNEIER: Applied Cryptography: Protocols, Algorithms, and Source
Code in C, John Wiley and Sons, Inc, 1996.

[32] Kazunori WAGATSUMA, Shogo ANZE, Yuichi GOTO, and Jingde CHENG: For-
malization for Formal Analysis of Cryptographic Protocols with Reasoning Ap-
proach, Future Information Technology, Lecture Notes in Electrical Engineering,
Vol. 309, pp. 211-218, Springer, Heidelberg, May 2014.

[33] Kazunori WAGATSUMA, Yuichi GOTO, and Jingde CHENG: A Formal Analysis
Method with Reasoning for Key Exchange Protocols, IPSJ Journal, Vol. 56, No.
3, pp. 903-910, IPSJ, March 2015 (in Japanese).

[34] Kazunori WAGATSUMA, Tsubasa HARADA, Shogo ANZE, Yuichi GOTO, and
Jingde CHENG: A Supporting Tool for Spiral Model of Cryptographic Protocol
Design with Reasoning-Based Formal Analysis, Advanced Multimedia and Ubiq-
uitous Engineering - Future Information Technology, Lecture Notes in Electrical
Engineering, Vol. 354, pp. 25-32, Springer, Heidelberg, July 2015.

52

