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Abstract

Many cryptographic protocols have been proposed to securely send and receive in-
formation among agents in unsecured networks for various purposes. However, an in-
truder can eavesdrop secret data/andimpersonate in unsecured cryptographic pro-
tocols. Therefore, formal analysis methods of cryptographic protocols such as model
checking and theorem proving are used to try to find flaws in the protocols. In formal
analysis method such as theorem proving and model checking, analysts firstly enumer-
ate fatal actions of attacks before doing analysis, and then verify whether those attacks
succeed or not in communication processes of that target cryptographic protocols. | can
say that model checking and theorem proving are formal analysis method with proving
because analysts must enumerate target of verification before doing analysis in those
methods. In formal analysis method with proving, analysts must enumerate all fatal
actions of attacks for target protocol before doing analysis when they verify that target
cryptographic protocol is secure. In other words, analysts cannot verify those attacks
that are not enumerated before analysis. As an alternative way, a concept of formal
analysis with reasoning for cryptographic protocols has been proposed that deduce ac-
tions of participants and an intruder from behaviors explicitly and implicitly included
in specifications of cryptographic protocols by forward reasoning and detect fatal ac-
tions of attacks without enumerated those fatal actions before analysis. Formal analysis
method with reasoning is included 3 phases, formalizing specification of a cryptographic
protocol, forward reasoning from result of formalization as premises, and analyzing de-
duced logical formulas by forward reasoning. However, it idilt for analysts to
perform formal analysis with reasoning because its concrete and general steps are not
established.

This paper presents a formal analysis method with reasoning for cryptographic pro-
tocols and its supporting tools. At first, | proposed the concrete and general method of
formalization, forward reasoning, and analysis in formal analysis method with reason-
ing. After that, | showed that the proposed methodfisctive for formal analysis of
cryptographic protocols. Finally, I implemented supporting tools in order to perform
the proposed method automatically, and evaluated those supporting tools.

| proposed concrete and general steps of formal analysis method with reasoning
for key exchange protocols, and extended the proposed method in order to be applied
to various cryptographic protocols. In order to extend the proposed method, at first, |
compared 19 kinds of cryptographic protocols based on participants’ behaviors and the
number of participants from web site “Cryptographic Protocol Verification Portal,” and
a book “Applied Cryptography: Protocols, Algorithms, and Source Code in C” and |
found five diferences among cryptographic protocols. After that, | extended the pro-
posed method in order to represent those fivkecknces. In order to shovifectiveness
of the proposed method, at first, | re-detected fatal actions of attacks in target cryp-
tographic protocols that are pointed out by using the proposed method. After that, |
chose some cryptographic protocols that include those fi¥erdnces and performed
formal analysis of those cryptographic protocols by the proposed method. As the result,
| could perform tasks of the proposed method to the end. Therefore, it can be said that



the proposed method can apply to detect fatal actions of attacks that represent success of
attack in 19 cryptographic protocols. In order to support tasks of the proposed method,

I implemented supporting tools that are inputted specification of target cryptographic
protocol, and perform tasks of the proposed method automatically, and output the result
whether attacks succeed or not. Finally, | evaluated whether duration in the tasks can be
reduced by using those supporting tools, compared to a case that analysts perform the
proposed method manually.

As the result of showingfiectiveness of the proposed method, at first, | could re-
detect fatal actions of attacks that represent success of attack that is pointed out. There-
fore, | showed that the proposed method can detect fatal actions of attacks that represent
success of attack. After that, in formal analysis of some cryptographic protocols that
include five diferences among cryptographic protocols, | could perform tasks of the
proposed method to the end. Therefore, | showed that the proposed method can be ap-
plied to those 19 cryptographic protocols. As the result of evaluation of implemented
supporting tools, | showed that analysts can reduce duration of the proposed method by
using those supporting tools.

Structure of this thesis is as follows. Chapter 1 presents background, motivation, and
purpose of this research. Chapter 2 explains formal analysis of cryptographic protocols.
Chapter 3 proposes formal analysis method with reasoning for key exchange protocols.
Chapter 4 presents extending the proposed formal analysis method with reasoning for
key exchange protocols. Chapter 5 shof¥eaiveness of the proposed method. Chap-
ter 6 presents supporting tools for the proposed method and evaluation of those sup-
porting tools. Chapter 7 presents discussion of the proposed method and implemented
supporting tools. Finally, concluding remarks are given in Chapter 8.
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Chapter 1

Introduction

1.1 Background and Motivation

Many cryptographic protocols have been proposed to securely send and receive infor-
mation among agents in unsecured networks for various purposes, for example, key
exchange, authentication, digital signature, secret splitting, e-voting, zero-knowledge
proof, and so on [31]. In particular, many key exchange protocols have been proposed
and used [5] [10].

A cryptographic protocol is not secure if, at least, an attack by an intruder is suc-
ceeded in the communication process of that protocol. In a communication process of
a cryptographic protocol, an attack is a sequence of actions by participants and an in-
truder. Success of an attack is that an intruder can do the last action of the attack. A
cryptographic protocol has a flaw if success of an attack can occur in the communication
process of that protocol. In this paper, | call the last action of an attack ‘a fatal action of
an attack.” A behavior is a set of rules among eventg@rattions in communication
processes of cryptographic protocols. The rule can be represented as ‘if a certain event
occurs, then an agent does a certain action’ or ‘if an agent does a certain action, the
agent does an other action.

Formal analysis of cryptographic protocols is used to try to find flaws in the pro-
tocols [31]. While many cryptographic protocols have been proposed, knowledge and
technique of an intruder have developed day after day. Therefore, flaws of proposed pro-
tocols often found and attacked after those protocols had been used. In those unsecured
cryptographic protocols, an intruder can eavesdrop secret datar angersonate other
participate. If flaws of proposed cryptographic protocols are found, it is time-consuming
to improve those cryptographic protocols. Furthermore, human life, nations, and money
are severelyfdected if flaws are found and attacked in cryptographic protocols that are
used for military, medical, and politic fields. Therefore, flaws must not exist in crypto-
graphic protocols that are used for those fields.

Model checking and theorem proving are used as formal analysis methods of cryp-
tographic protocols [3]. In those methods, analysts firstly enumerate fatal actions of
attacks, and then verify whether those fatal actions are performed or not in communi-
cation processes of the target cryptographic protocols. The process of the method is
proving because analysts must enumerate target of verification before doing analysis in



those methods. In other words, analysts cannot verify those fatal actions of attacks that
are not enumerated before analysis.

As an alternative way, a concept of formal analysis with reasoning for cryptographic
protocols has been proposed [8]. In the analysis, forward reasoning is used to deduce ac-
tions of participants and an intruder from behaviors explicitly and implicitly included in
specifications of cryptographic protocols by forward reasoning, and detect fatal actions
of attacks without enumerated before analysis. Formal analysis method with reason-
ing is included 3 phases, formalizing specification of a cryptographic protocol, forward
reasoning from result of formalization as premises, and analyzing deduced logical for-
mulas by forward reasoning [8]. However, it idfitiult for analysts to perform formal
analysis with reasoning because its concrete and general steps are not established.

1.2 Purposes and Objectives

This paper presents a formal analysis method with reasoning for cryptographic proto-
cols and its supporting tools. At first, | propose the concrete and general method of for-
malization, forward reasoning, and analysis in formal analysis method with reasoning.
After that, | show that the proposed method fieetive for formal analysis of crypto-
graphic protocols. Finally, | implement supporting tools in order to easily perform the
proposed method for analysts, and evaluate those supporting tools.

1.3 Structure of This Thesis

The rest of this paper is organized as follows. Chapter 2 explains formal analysis of
cryptographic protocols. Chapter 3 proposes formal analysis method with reasoning
for key exchange protocols. Chapter 4 presents extending the proposed formal analysis
method with reasoning for key exchange protocols. Chapter 5 shibectieeness of

the proposed method. Chapter 6 presents supporting tools for the proposed method and
evaluation of those supporting tools. Chapter 7 presents discussion of the proposed
method and implemented supporting tools. Finally, concluding remarks are given in
Chapter 8.



Chapter 2

Formal Analysis of Cryptographic
Protocols

2.1 Cryptographic Protocols

Protocols are steps for achieving a certain purpose that is related to two or more par-
ticipants [31]. Cryptographic protocols are protocol using cryptography. Therefore,
cryptographic protocols are steps for achieving a certain purpose that is related to two
or more participants using cryptography.

It is different for each cryptographic protocol what purpose and what data is sent
and received. For example, there are following kinds of cryptographic protocols [31].

e Key exchange

Participants exchange a session key for securely sending and receiving data in
unsecured network.

e Authentication
Participants prove that a target of sending and receiving data is correct.

e Secret splitting

Participants split secret data into several parts of data, and prevent restoring secret
data without collecting each split data.

¢ Digital signature

Participants sign in unsecured network with preventing attack of an intruder, for
example, copy and falsifying of signature, spoofing.

e Timestamp

Participants add timestamp in order to prove that there was a document at specific
time with preventing attack of an intruder, for example, copy and falsifying of
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timestamp or the document.

e Zero knowledge proofs

A participant proves that the participant knows an information without knowing
the information to another participant.

In unsecured network, an intruder can various attack, for example, eavesdropping secret
data angbr impersonating other participate. Cryptographic protocols fiestese for
preventing such attacks by an intruder, and participants can securely send and receive
data in unsecured network.

2.2 Formal Analysis Method with Proving

Model checking and theorem proving are used as formal analysis methods of crypto-
graphic protocols. Although Protocol Composition Logic (PCL) [12] and pi-calculus
[1] are also used for formal analysis of cryptographic protocols, both methods can be
performed by model checking systems [4], [11].

Model checking is a verification method that inputs formalized fatal actions of at-
tacks, participants’ and an intruder’s behavior that are represented by finite-state in order
to explore whether there are reachable states that those attacks succeed or not in partic-
ipants’ and the intruder’s behavior [30]. If there are states that represent those fatal
actions perform, it can be said that attacks succeed in the target cryptographic protocol.
Typical model-checking methods and tools are Scyther [11] and ProVerif [4].

Theorem proving is a verification method that inputs fatal actions of attacks, par-
ticipants’ and an intruder’s behavior formalized by logical formulas in order to prove
whether those attacks succeed or not in the target cryptographic protocol [30]. If it is
proved that those fatal actions are performed in participants’ and the intruder’s behav-
ior as premises, it can be said that attacks succeed in the target cryptographic protocol.
Typical theorem-proving tools are Isabelle [28] and CafeOBJ [14].

Formal analysis methods such as model checking and theorem proving are based
on proving. Formal analysis method with proving is a method that analysts firstly enu-
merate fatal actions of attacks before doing analysis, and then verify whether those
attacks succeed or not in the communication process of that target cryptographic pro-
tocol. Overview of formal analysis method with proving is showed in figure 2.1. At
first, analysts formalize participants’ and an intruder’s behavior, and enumerated fatal
actions of attacks as premises. After that, the analysts verify whether those fatal ac-
tions are performed in participants’ and the intruder’s behaviors. If it is verified that
those fatal actions are performed, it can be said that those attacks succeed in the target
cryptographic protocol. The process of the method is proving because analysts must
previously enumerate target of verification in those methods. Model checking and the-
orem proving are used to automatically perform analysis whether those attacks succeed
in the formalized protocol or not [3]. Therefore, formal analysis methods such as model
checking and theorem proving are based on proving.
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Figure 2.1: Overview of formal analysis method with proving.

Formal analysis methods with proving processes have a limitation. A cryptographic
protocol is not secure if, at least, an attack by an intruder is succeeded in the communi-
cation process of that protocol. Therefore, in formal analysis method with proving such
as model checking and theorem proving, analysts must enumerate all fatal actions of
attacks for target protocol before doing analysis when they verify that the target crypto-
graphic protocol is secure, because analysts cannot verify those fatal actions of attacks
that are not enumerated before analysis. However, iffiedit for analysts to enumerate
all fatal actions of attacks.

2.3 Formal Analysis Method with Reasoning

As an alternative way, a concept of formal analysis with reasoning for cryptographic
protocols has been proposed [8]. Overview of proposed formal analysis method with
reasoning is showed in figure 2.2. In the proposed method, analysts formalize partici-
pants’ and an intruder’s behaviors of target protocol, and deduce actions of participants
and an intruder from behaviors explicitly and implicitly included in specifications of
cryptographic protocols. If fatal actions of attacks are detected from deduced actions,
those attacks succeed in the target cryptographic protocols.

Analysts do not need to enumerate fatal actions of attacks by an intruder before do-
ing the analysis in formal analysis method with reasoning because actions of participants
and an intruder are deduced by forward reasoning from participants’ and an intruder’s
behaviors as premises, and those fatal actions of attacks are detected. Therefore, formal
analysis method with reasoning can support to find fatal actions of attacks that analysts
did not enumerate before doing analysis.

In the method, strong relevant logics [6], [7] are appropriate for logic systems under-
lying forward reasoning because in any reasoning based on strong relevant logics those
conclusions that are not related to premises are not deduced. Furthermore, as many
logical formulas should be deduced from formalized specification of cryptographic pro-
tocol by forward reasoning [20]. Therefore, forward reasoning engine FreeEnCal that
can automatically perform forward reasoning has been proposed and developed [9].
FreeEnCal can handle any logic system and formal theory by input vocabulary, configu-
ration rules, axiom, and inference rule of logical formulas. Therefore, logical formulas
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Figure 2.2: Overview of formal analysis method with reasoning.

can be automatically deduced from inputted logical formulas as premises. However, it

is difficult for analysts to perform formal analysis with reasoning because its concrete
and general steps are not established.



Chapter 3

Formal Analysis Method with
Reasoning for Key Exchange Protocols

3.1 Key Exchange Protocols

Key exchange protocols are steps for securely sending and receiving data in unsecured
network to exchange a session key between two participants. Participants can send
and receive any data by using exchanged session key in only particular session. Key
exchange protocols can be classified into 3 types [5].

e Server-based key exchange protocol using symmetric key
e Server-less key exchange protocol using symmetric key
e Server-less key exchange protocol using public key

Participants send and receive data by using their encrypt key that is defined in each 3
types of key exchange protocols for exchanging a session key. In key exchange proto-
cols, eavesdropping and falsification the session key by an intruder must not be possible.
Generally, in specification of cryptographic protocols, sending and receiving in step
M are represented as eq.(3.1). It means ¥jadends datd, Y,,---,Y; (z€ N) to X,
in stepM.
MX: = X : Y, Y o0 Y, (31)

Persons and a trusted server are substitutef] mnd X,. Persons are defined AsB,

and a trusted server is definedsadn the method, persons and a trusted server are called
participants. Any kinds of data are substitutedjrfi € N, 1 <1 < 2). {Y1, Y2, -+, Yo}k

(z € N) means that encrypted data by K€y Following data are mainly used in many
key exchange protocols.

e A B: Identifiers ofA, B.
e S: Identifiers of a trusted server.

e |: Identifier of an intruder.



Kx.x,: Symmetric key of participant®; andX,.

Ex: Public key of a participanxX.

S gx: Signature of a participarX.

Nyx: Nonce of a participanX.

Tx: Timestamp oiX.

{Y19 Y2a T, YZ}K: Encryptelea Y29 T, YZ by keyK

S igx(Y): Data with signature oX.

Y + 1: Incremented data of.

In addition, there are uniquely defined data in each protocol.

Many key exchange protocols have been proposed and used among cryptographic
protocols [5], [10]. Key exchange is a fundamental method for participants to securely
send and receive data in unsecured network [5]. On the other hand, formal analysis of
59 cryptographic protocols that are recently proposed has been performed based on an
international standard IS@&C 29128 [22], and 56 of them are key exchange protocols
[26]. Therefore, key exchange protocols are one of the most important method among
cryptographic protocols.

3.2 Tasks of Formalization

3.2.1 Overview of Formalization

| investigated behavior of participants in proposed key exchange protocols [5], [31]. As
the result, | found that participants repeat following actions.

1. A participant sends any data to another participant.
2. Receiver receives the data.

3. If the receiver receives encrypted data, and has corresponding decryption key,
receiver gets original data.

4. The receiver sends next data depending on the received message.

On the other hand, Dolev-Yao model [17] is assumed about behavior of an intruder as
follows.



e Eavesdrop:
Intruder can get sent data in a protocol.

e Falsify:

Intruder can forcibly receive sent data to another participant, and change the data,
and send the changed data to any participant.

e Decryption:

If an intruder has corresponding decryption key, the intruder can get the original
data.

e Using old data:

An intruder knows old data that is sent and received in previous session, and use
the old data for falsifying sent data. For example, in Needham-Schroeder Shared
Key Protocol [24], an intruder can attack the protocol if the intruder has an old
session key [13].

Targets of formalization are as follows.

e Behavior of Participants:

It is a set of rules among actions in each step that represents as ‘if a participant
receives a certain data, then the participant sends an other data.’

e Behavior of an Intruder:

It represents a set of rules what actions an intruder performs in a communication
process of a protocol. In the proposed method, behavior of an intruder is based
on Dolev-Yao model [17].

e Common Behavior among Participants and an Intruder.

It represents a set of rules except for behavior about sending and receiving data
by participants and an intruder. For example, decryption of encrypted data is
included in this target.

In this method, analysts formalize the above behaviors based on first order predicate
strong relevant logics [6], [7]. In following explanation, individual variabpeand p;
(i € N) represent participants or an intruder. Individual variabteend x; (i € N)
represent sent or received data. Individual variddiepresents an encryption key. In
order to be applied to various cryptographic protocols, | defined following predicates,
functions, and individual constants that represent participants’ behavior or data in some
cryptographic protocols. | defined following predicates.

e Parti(p): pis a participant of a protocol.



Eq(Xs, X2): X, andx, are equal.
Gef(p, X): p getsx.

Rea(p, X): p receivesx.
Sendpy, P2, X): p1 Sendsxto p,.

Startp;, p2): p. andp, start a communication process.

| defined following functions.

data(xs, - - , X,) (n € N): A data set that consists of sent and receixgd. ., and
Xn-

endk, Xi, -+, Xy): A data set that consists of encrypted - -, andx, by k.
id(p): Identifier of p.

noncégp): Nonce ofp.

old(x): Old data ofx.

pk(p): Public key ofp.

plugXx): Incremented data of.

sig(p, X1, - - , Xy): A data set that consists &f, - - -, andx, with p’s signature.
symk(pz, p2): Symmetric key ofp, and p,.

tstamp): Timestamp ofp.

In addition, there are uniquely defined functions that are assigned to each participant’s

data.

| defined following individual constants.

a, b: Persons

i: An intruder.
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Figure 3.1: Overview of tasks for formalization.
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e S Atrusted server

In addition, there are uniquely defined individual constants that are assigned to uniquely
defined data in a protocol.

In the proposed method, | assumed following premises about participants’ and an
intruder’s behavior. At first, if received data that participants have is falsified, those par-
ticipants can recognize falsification. In the proposed method, behavior of participants
represents ‘if a participant receives a certain data, then the participant sends an other
data that is defined in the protocol.” Therefore, in following steps of formalization, it is
assumed that participants verify whether received data, for example the signature and
nonce, and so on, is falsified or not. Second, an intruder does not forge sending data
if participants can recognize falsification. Finally, participants know what kinds of data
are derived to them as next data.
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Figure 3.1 shows overview of tasks for formalization. In the proposed tasks of for-
malization, three sets of formulas are generated, Normal RE®) (rregular Pathl(P),
and Common InputGO). NP is a set of logical formulas that represents that a par-
ticipant correctly sends data in stepThose logical formulas are generated by tasks in
section 3.2.2n represents the number of step.represents the number of branches in
case that participants send data selectively to another imstHp!' is a set of logical
formulas that represents that an intruder sends data imstmse logical formulas are
generated in section 4.2.5 represents the number of branch by falsification. Finally,
COis a set of logical formulas that represents implicit participants’ and an intruder’s
behavior. Those logical formulas are generated by tasks in section 3.2.3 and section
3.2.4.

3.2.2 Behavior of Participants

1. Represent participants’ behavior in each step of the protocol by formulag; But
and x; are individual variables, and andm are the number of sent or received
data.

(a) If step 1 of the protocol, use formulas (3.2), which means “if session starts
with p; andp,, p; sends datay, . .., X, to ps”.

Stari(p;, p2) = Sendps, p2, data(Xy, . .., X)) (3.2)

(b) If step 2 and beyond of the protocol, use the following formula (3.3), which
means “if a participanp, receives datap, sends next data tp,.”

Rew(py, data(Xy, . .., Xym)) = (Parti(p,) =
Sendp,, po, data(Xxy, . .., X,))) (3.3)

2. Replace individual variables, andp, of formulas in the previous task.

(a) About formulas (3.2),

I. If sender of corresponding step is a trusted seB/endividual variable
p; is replaced witls.

ii. If receiver of corresponding step is a trusted sefyeindividual vari-
ablep; is replaced witls.

iii. If sender of corresponding step As individual variablep, is not re-
placed.

iv. If sender of corresponding stepBs individual variablep; is replaced

v. If receiver of corresponding stepAs individual variablep, is replaced
with p;.

12



vi. If receiver of corresponding step & individual variablep, is not re-
placed.

(b) About formulas (3.3),

i. If sender of corresponding step is a trusted seB/éndividual variable
p. is replaced withs.

ii. If receiver of corresponding step is a trusted se&geindividual vari-
ablep, is replaced witls.

iii. If sender of corresponding step As individual variablep; is not re-
placed.

iv. If sender of corresponding stepBs individual variablep; is replaced

with p,.
v. If receiver of corresponding stepAs individual variablep; is replaced
vi. If receiver of corresponding step B individual variablep, is not re-
placed.
3. Replace individual variableg,, - - - , x, of formulas (3.2) and (3.3) with terms

according to following rules corresponding step of the specification.

(a) If sent datay; is not encrypted, substitute a function or an individual variable
depending on data types far.

I. If Y; is nonce ofA, individual variablex; is replaced witmoncép;).
ii. If Y; is nonce ofB, individual variablex; is replaced witmoncép,).
iii. If Y is nonce ofS, individual variablex; is replaced witmoncés).
iv. If Y; is identifier ofA, individual variablex; is replaced withd(p,).
v. If Y is identifier of B, individual variablex; is replaced withd(p,).
vi. If Y is identifier ofS, individual variablex; is replaced withd(s).
vii. If Y;istimestamp oA, individual variablex is replaced withistam{p;).
viii. If Yj is timestamp o8B, individual variablex; is replaced withstamgp.).
ix. IfY; is timestamp o8, individual variablex; is replaced withistams).

X. If Y; is session keys K, individual variablex; is replaced with another
individual variablek.

13



xi. If Y; is others data, individual variablg is not replaced.

(b) If Y; is incremented data, substitydus(x’). X' is replaced as well as previ-
ous task 3-a.

(c) If Y is encrypted data,
I. Substituteendk, X;, - - - , X7,)
ii. Replacek depending on key types.
A. If K is symmetric key ofA and trusted serves, k is replaced with
symK(ps, 9).

B. If K is symmetric key oB and trusted serve3, k is replaced with
symk(pz, 9).

C. If Kiis symmetric key oA andB, k is replaced witrsymk(py, p2).
D. If Kis public key ofA, k is replaced withpk(p,).

E. If K is public key ofB, k is replaced withpk(p,).

F. If K is public key of a trusted serv&; k is replaced withpk(s).

G. If K is session ke is not replaced.

4. Replacex using funcion and individual variables as well as task in step (3).

5. In part of formulasA; = A, (A; andA; are formulas), if a individual variable is
included only inA; or A,, define an individual constant and replace the variable
into the constant.

6. Add quantifiery corresponded to individual variablksx;, andp; in those formu-
las.

7. Add generated logical formulas that represent behavior ofistepl Pt

8. Add a formulaStart(p;, pz) in NP} with substituting an individual constant of
participants or an intruder tp, and p».

3.2.3 Behavior of an Intruder

Behavior of an intruder in the proposed method is based on Dolev-Yao model [17]. In
this model, it is assumed that an intruder knows old data that is sent and received in the
previous communication process, and eavesdropping, falsifying, decryption by a key
that the intruder has. Formalization tasks of the rules are as follows.
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Enumerate all functionslata(x,, ..., X,) in predicateS endthat are generated
based on formulas (3.2) and (3.3) in section 4.2.2.)

. Generates tart(p;, p2) = Gef(i, T, whereT; is enumeratedata(x,, . . ., X,) and

1 <i < n. misnumber of enumeratethta(Xy, . . ., X,).

If Tr, includes functiomonceor tstampor any individual constants, those terms
y are replaced intold(y).

Add generated formulas and a following formula that represents “if a participant
sendsx, an intruder gets it (by eavesdropping)@oO.

Vp1¥ P2V X(S endpy, p2, X) = Geti, X))

3.2.4 Common Behavior among Participants and an Intruder

Analysts add following formulas i€O depending on the number of participants and
used key.

If p, gets dataxy, - - - , X, encrypted byp;'s symmetric key,p; gets original data
(If a protocol that uses symmetric key).

VPV P2y ... VXa(Get(py, endsymk(py, P2), Xa,
S, X)) = Get(py, data(xg, -+, X))

If p gets data encrypted hys public key, p gets original data (If a protocol that
uses public key).

YpYX: ... ¥xa(Get(p, endpk(p), Xi, -« - , %n)) =
Gel(p, data(xq, - - - , Xn)))

If preceivesx, p gets it.
YpYx(Rea(p, X) = Getp, X))

symk(py, p2) andsymk(p,, p1) are equal. (This formula needs to perform forward
reasoning about symmetric key in the method.)

V' p1V P2 Eq(symK(py, p2), SymK(p2, p1)))

A appears as a participant in target specification.

Parti(a) wherea is a individual constant that represents a person or a trusted
server.

An intruder is not a participant.
=Parti(i)
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3.2.5 lIrregular Case

Analysts generate logical formulas that are corresponded to each case of following par-
ticipants’ and an intruder’s actions.

C1:. Case that a participant receives sent data correctly.

C2: Case that an intruder receives sent data forcibly and send falsified data to any par-
ticipant.

If a participant receives data correctly, generated logical formulas are added in
NPJ.l, ..., NP} wheren is the number of data that is selectively sent by participants in
stepj. If anintruder receives sent data forcibly and send falsified data to any participant,
generated logical formulas are added Ii?‘]l e, IP? as well wheren is the number of
falsified data can be sent by the intruder in step

In following explanation,p, p;, andp, are individual constants of participants that
perform sending or receiving, andxy, ..., andx, (n € N) are individual constants of
data that are sent in stgp

Analysts perform following tasks in case that such branches are occurred in step

1. If Sendi, p, X) is deduced, analysts atRka(p, X) in N P‘j.
2. If Sendps, p2, X) is deduced, analysts add following formulas respectively.

o Analysts addRea(p,, X) in NP;.
e Analysts add logical formulas that are generated in task 4.

3. If Sendp,i, X) is deduced, analysts add logical formulas that are generated in task
4,

4. Analysts generate logical formulas that represent an intruder sends data with fal-
sification by following tasks.

(a) Enumerate participants that receive any data after s{&pn specification
3.1). If there is no participant, tasks of forward reasoning is over.

(b) Repeat following tasks in each enumerated participant.
I. Extract one participant as receivpt, and check the number of step
(afterX — Y in specification 3.1).

ii. Generate logical formulas that represent sent data in the step based on
task 2 and 3 of section 4.2.2 (with replaced individual varigilato
individual constant).

iii. Replace each data into data that an intruder owns.

(c) Generate logical formuleéSendi, p’, data), ..., Sendi, p’, data,), and add
those formulas witlRea(i, X) in IP},...,IP?, respectively data, - - - , and
data, are the result of falsification, amilis number of data that the an in-
truder can send.).
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Figure 3.2: Branches by cases that participants and an intruder sends data.

Figure 3.2 shows overview of branches by cases that participants and an intruder
sends data. In this paper, | call a route of forward reasoning ‘path.’ In above conditions
of falsification, complexity of the tasks is increased by the number of logical formulas
IP. If there is a case that a participant sends data selectively to another, the number of
logical formulasN P! also increase the complexity.

3.3 Forward Reasoning

In the proposed method, analysts use FreeEnCal [9] in order to perform forward reason-
ing automatically. Analysts use sets of generated logical forniRlsor IPi", andCO

that are generated in section 3.2, and deduced logical formulas until thisDfg@é

input of FreeEnCal. As the result, new logical formulBs$-(,,) deduced, an®Fg, is

added inDF.

In tasks of forward reasoning, analysts use FreeEnCal for forward reasoning about
each step of the target protocol. Figure 3.3 shows overview of tasks of forward reason-
ing. As the number of step is and the number of data that participants or an intruder
can send is), analysts divide into cases thdP! or IP” (1< j<n 1< j <m),is
used as input of FreeEnCal.

In the proposed method, an intruder does not forge sending data if participants can
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Participants send data
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Send(i,p,x)
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NPji is input

Otherwise Participants receive data

Send(p,q,x) is deduccﬁ
Send(p,i,x) is deduced

An intruder receive data

i i ( Execute
Neither NP; nor IP; \ FreeEnCal

cannot be input Otherwise

é)) Last step

of forward reasoning

Figure 3.3: Overview of tasks of forward reasoning.

recognize falsification, and participants know what kinds of data are derived to them as
next data. Therefore, IfPij' does not include data that participants get (represented as
Gef(p, X)), and should be received in steg P,J cannot be used as input of FreeEnCal.

If DF is the result of forward reasoning about the last step of the target protth’bI,

cannot be used as input of FreeEnCal. If neimé’|1 orl PIJ cannot be inputted, forward
reasoning in the case is completed. If all cases of forward reasoning are completed,
analysts perform tasks of analysis for e&h in section 3.4.

3.4 Tasks of Analysis

Analysts check whether formulas that represent success of attack are included in each
DF that is the case of completion of tasks of forward reasoning.

1. Check whether those formulas that represent success of attack are included in
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deduced logical formulas after the removal.

e Formulas that represent successful completion of the protocol (in forward
reasoning about last step of target protocol, an atomic formula that starts
“Rea” is deduced).

e Formulas that represent obtaining session key as secret data by an intruder
“Gef(i, sesh’.

e Formulas that represent that an intruder received sent data to a participant
“Sendp., po, anydata),” and a participant received falsified data by an in-
truderRea(i, anydata), andS endi, p,, anydatd) (anydatd is falsified data
from anydata).

2. Iffollowing both of formulas are included, it can be said that attacks by an intruder
succeed in the target cryptographic protocol.

e Formulas that represent successful completion of the protocol.

e Formulas that represent that an intruder gets session key, or any participant
received falsified data by an intruder.

In figure 3.4, formulas that represent successful completion of a protocols mean that
any participant sent or got data in forward reasoning about the last step of protocol. An-
alysts check whether an atomic formula that staRed” is deduced or not in forward
reasoning about last step of target protocol. Eavesdropping is represe@etfi a9 (x
is secret data). In key exchange protocols, a session key is secret data. Falsifying means
that sent data to a participant is received by an intruder, and the intruder sends another
data to the participant. It is representedsandp, g, X), Recese(i, X), andS endi, g, X)
in deduced logical formulas.

3.5 Applying the Proposed Method to Otway-Rees Pro-
tocol

| show that the proposed method can be applied to key exchange protocols. In order to
show it, | chose Otway-Rees protocol [27] as a case of formal analysis of key exchange
protocols by the proposed method. Specification of this protocol is as follows. In the
specificationM is data that is uniquely defined in the protocol.

1. A= B: M,A B, {Na, M, A B,
2. B—>S: MA B, {Na, M, A Blk,s. {Ng, M, A, B}kys
3. S>> B: M, {NaS K}KAS’ {Ng, S K}KBS

4. B— A: M, {Na, SK}

Kas
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Figure 3.4: Overview of tasks of analysis.
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In Otway-Rees protocol, two flaws have been pointed out. At first, an intruder can
get the session key by falsifying encrypted data of a participant into that of the intruder
[5]. Concretely, attack succeeds by following steps for sending and receiving data.

1. A= B: M,A B, {Na, M, A, B}k ,s

2'. B 1(S) : M,A B, {Na, M, A, Blicse, N3, M, A, Bl
2". 1(B) = S: M,A I,{Na, M, A Blk,, {NI, M, A, Blk,o
3. S - I(B) : M,{Na, SKik,s, {NI, S K}x s
4. 1(B) > A: M, {Na, S Kk,

Second, if an intruder resend encrypted data&A oA mis-recognizes the received

dataM, A, B as the session key [10]. Concretely, attack succeeds by following steps for
sending and receiving data.
1. A— I(B) : M, A B,{Na, M, A B}

Kas

4. 1(B) > A: M,{Na, M, A, B,
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As the result of formal analysis by the proposed method, 32 paths were generated,
and 73,131 logical formulas were deduced. | could re-detected fatal actions of attacks
that represent success of attack for those two flaws. About first @&, sesk and
Gef(a, datanoncda), sesk) were included in the deduced logical formul&et(i, sesk
means that an intruder gets a session key that must not be known to the intruder.

Gef(a, datanoncda), sesi) means thatA gets nonce oA and a session key that
should get in the last step of protocol. Therefore, these logical formulas meaA that
completed all steps of protocol without recognizing that the intruder gets the session key.
It is equal to first flaw that is pointed out. About second flaw, deduced logical formulas
includedGef(a, datalnoncda), m,id(a), id(b))). This formula means thak completed

all steps of protocol. OriginallyGet(a, datalnoncda), sesk) should be deduced that
represents thah completed all steps of protocoh knows nonce ofA previously, but
does not know the session key. ThereforeA ifeceivesM, A, B, it is possible thaiA

does not recognize falsification of data by an intruder. Furthermore, it is possibke that
mis-recognizes the received dath A, B as session key. It is equal to second flaw that
is pointed out.

In case of Otway-Rees protocol, | could re-detect fatal actions of attacks that rep-
resent success of attack for two flaws of this protocol that are pointed out. Therefore,
| showed that the proposed method can detect fatal actions of attacks that represent
success of attack.

In key exchange protocols, it is common that any participant sends any data in each
step as specification in 3.1. Sender and sent data in each stepfarendifor key
exchange protocols. Therefore, it can be said that the proposed method can be applied
to other key exchange protocols.
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Chapter 4

Extending Proposed Formal Analysis
Method with Reasoning for Key
Exchange Protocols

4.1 Comparison of Cryptographic Protocols

Current formal analysis method with reasoning considers only key exchange protocols
[33], but not other cryptographic protocols. At first, | compared cryptographic protocols
that have been proposed [26], [31], based on participants’ behaviors and the number of
participants. As the result, | found fiveffirences among cryptographic protocols. Ta-
ble 4.1 shows the flierences of participants’ behaviors and the number of participants.
In table 4.1, following diferences from D1 to D5 are represented in cryptographic pro-
tocols.

D1: There is a case that number of participants is 3 or more.

In most cryptographic protocols, number of participants is 2. However, there
are some cryptographic protocols that 3 or more participants can participate, for
example, mental poker and secure multiparty computation, and so on.

D2: There is 1 or more trusted server.

In some cryptographic protocols, there is 1 or more trusted server in order to
success those protocols correctly, for example, key exchange, authentication, and
So on.

D3: Any participant sends data selectively to another.
In most cryptographic protocols, sent data by participants is uniquely determined.

However, in some cryptographic protocols, a participant sends data selectively to
another participant, for example, coin flips, zero knowledge proofs, and so on.

D4: Any participant sends data to multiple participants.
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In most cryptographic protocols, a participant sends data to one another partici-
pant. However, in some cryptographic protocols, a participant sends data to mul-
tiple participants at the same time, for example, secret splitting, bit commitment,
and so on.

D5: There is a case that participants get another data by calculation for collected data
in a protocol.

In some cryptographic protocols, there is a case that if any participant receives
some data, the participant gets new data. For example, in secret splitting protocols
if a participant gets all split data, the participant can get secret data.

According to table 4.1, key exchange protocols have only fe@y®2, andD5. Thus,
the proposed method does not consid8randD4. | should extend the method to deal
with D3 andDA4.

Kind of Protocol D1 | D2 | D3| D4 | D5
Key Exchange o | o o
Authentication o | o o
Secret Splitting o o o | o
Timestamp o
Subliminal Channel o o
Undeniable Digital Signatures o
Bit Commitment o
Coin Flips
Mental Poker o o
Anonymous Key Distribution o | o
Key Escrow o o )
Zero Knowledge Proofs o
Blind Signatures o
Oblivious Transfer o
Simultaneous Contact Signing o
Digital Certified Mail o | o | o
Secure Elections
Secure Multiparty Computation o
Digital Cash o

Table 4.1: Comparison of behaviors and the number of participants in cryptographic
protocols
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4.2 Formalization of Cryptographic Protocols

4.2.1 Overview of Formalization

As well as the proposed method in section 3.2, analysts perform formalization from
specification that is represented as eq. 3.1. In cryptographic protocols, it is common
that any participant sends and receives data in each step. Furthermore, defined data
in section 3.1 is used in some cryptographic protocols. Therefore, defined predicates,
functions, individual variables, and individual constants in section 3.1 are used in the
extended method.

Following tasks are new tasks in our extended formalization method.

1. In order to corresponding tB1, | extended tasks 1 and 2 in section 4.2.2 by
adding the case that there are 3 or more participants. | added definition of individ-
ual constants, b, ..., h,ay,...,a, (n € N) that represent personslf the number
of person is over 8, those individual constants are representag as, a, in
order to distinguish persons from an intruder).

2. In order to corresponding tB2, | extended tasks 2 in section 4.2.2 by adding
the case that there are multiple trusted servers. | added definition of individual
constants, ..., S, (n € N) that represent trusted servers.

3. In order to corresponding D3, | extended task 1 in section 4.2.5 by adding the
case that a participant selectively sends data.

4. In order to corresponding 4, | extended task 1 in section 4.2.2 by adding the
case that a participant sends data to multiple participants

5. In order to corresponding 05, | added task of generating logical formulas that
participants get new data by calculating got multiple data in section 4.2.4.

4.2.2 Behavior of Participants

1. Represent participants’ behavior in each step of the protocol by formulas.

(a) If step 1 of the protocol, or while all previous senders of data are same in
step 1, use the following formula (4.1), which means “if a communication
process starts witlp; and p,, p; sends datxq, ..., X, to p,". If a partic-
ipant selectively sends data in corresponding step, logical formulas about
corresponding step are generated in section 4.2.5.

Start(p].’ p2) = S en(ﬂpla pz’ dath]_, ey Xn)) (41)

(b) If step 2 and beyond of the protocol, and sender of data is not same in step
1, use the following formula (4.2), which means “if a particippnteceives
data, p; sends next data tp,.” But p; andx; are individual variables, and
n andm are the number of sent or received data. If a participant selectively
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sends data in corresponding step, logical formulas about corresponding step
are generated in section 4.2.5.

Rea(py, data(xy, ... ., Xm)) = (Parti(py) =
Sendp,, po, data(Xxy, ..., X,))) (4.2)

2. Replace individual variables, andp, of formulas in the previous task.

(a) About formulas (4.1),
I. If sender of corresponding step is a trusted se&gfS,,..., or S,
individual variablep; is replaced witls,, s, .. ., or s,, respectively.

ii. If receiver of corresponding step is a trusted se®gIS,, ..., or S,,
individual variablep; is replaced witls,, s,, . . ., Or S,, respectively.

iii. If sender of corresponding step is tifeparticipant, individual variable
p. is replaced withp;.

iv. Ifreceiver of corresponding step is tifeparticipant, individual variable
p2 is replaced withp;.
(b) About formulas (4.2),
I. If sender of corresponding step is a trusted seBglS,,..., or S,,
individual variablep; is replaced withs;, s,, . .., Or s,, respectively.

ii. If receiver of corresponding step is a trusted se®gIS,,..., or S,
individual variablep; is replaced witls,, s, .. ., or s,, respectively.

iii. 1f sender of corresponding step is tffeparticipant, individual variable
p. is replaced withp;.

iv. If receiver of corresponding step is tifeparticipant, individual variable
p. is replaced withp;.

3. Replace individual variableg,, - - - , X, of formulas (4.1) and (4.2) with terms
according to following rules corresponding step of the specification.

(a) If sent datay; is not encrypted, substitute a function or an individual variable
depending on data types fai.
i. If Y; is data that thé" participant owns, use function (for examgfig
After that, individual variableg is replaced withf ().

ii. IfY, is data that a trusted serv8i, S,, ..., or S, owns, use function
(for example f). After that, individual variablex; is replaced with
f(s), f(s),..., or f(s,), respectively.
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iii. If Y; is data that no one owns; is replaced with an individual variable
that is uniquely defined.

(b) If Y; is incremented data, substitydus(x'). X' is replaced as well as previ-
ous task 3-a.

(c) If Y; is encrypted data,
I. Substituteendk, X/, - - - , X))
ii. Replacek depending on key types.
A. If K is symmetric key of the™ participant and a trusted server

S1,S,,..., 0r Sy, kis replaced withsymk(p;, 1), symkpi, S2), - - -,
or symk(pi, Sh), respectively.

B. If K is symmetric key of th&" and thej" participantk is replaced
with symk(p;, p;).

C. If K is public key of theé'" participantk is replaced withpk(p;).

D. If Kis public key of a trusted servé&y, S,, ..., orS,, kis replaced
with pk(s,), pk(s,), ..., or pk(s,), respectively.

E. If K is other kinds of keyk is not replaced.
4. In part of formulasA; = A, (A; andA; are formulas), if a variable is included

only in A; or Ay, define an individual constant and replace the variable into the
constant.

5. Add quantifiery corresponded to individual variablksx;, andp; in those formu-
las.

6. Add generated logical formulas that represent behavior ofistepl P!

7. Add a formulaStart(p;, pz) in NP} with substituting an individual constant of
participants or an intruder tp, andp;.

4.2.3 Behavior of an Intruder

Behavior of an intruder in the proposed method is based on Dolev-Yao model [17]. In
this model, it is assumed that an intruder knows old data that is sent and received in the
previous communication process, and eavesdropping, falsifying, decryption by a key
that the intruder has. Formalization tasks of the rules are as follows.

1. Enumerate all functionslata(xy, ..., X,) in predicateS endthat are generated
based on formulas (4.1) and (4.2) in section 4.2.2.)
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2.

3.

4.

GeneratéS tari(py, p2) = Gef(i, Tn) whereT; is enumeratedataxy, . . ., X,) and
1 <i < n. mis number of enumeratethta(xy, . . ., Xp).

If T, includes functiomonceor tstampor any individual constants, those terms
y are replaced intold(y).

Add generated formulas and a following formula that represents “if a participant
sendsx, an intruder gets it (by eavesdropping)’"@oO.

VLY p2¥X(S endps, p2, X) = Gef(i, X))

4.2.4 Common Behavior among Participants and an Intruder

Analysts add following formulas i€ O depending on number of participants and used

key.

If p, gets dataxy, - - - , X, encrypted byp;'s symmetric key,p; gets original data
(If a protocol that uses symmetric key).

VPV P2V X1 . .. VX (Get(pr, endsymK(py, p2), X1,
o, %) = Getl(py, data(xq, - - - , Xq)))

If p gets data encrypted hys public key, p gets original data (If a protocol that
uses public key).

VpYXy ... VXa(Get(p, end pk(p), Xu, - - - , %n)) =
Gef(p,data(xy, - - , Xn)))

If preceivesx, pgets it.
VpYx(Rea(p, X) = Gelp, X))

symk(p1, p2) andsymk(p,, p;) are equal. (This formula needs to perform forward
reasoning about symmetric key in the method.)

Vp1Y P2 Eq(symK(p1, P2), symK(p2, p1)))

A appears as a participant in target specification.

Parti(a) wherea is a individual constant that represents a person or a trusted
server.

An intruder is not a participant.

=Parti(i)

Furthermore, in order to represent a participant previously gets data, analysts add
following formulas with replacing into an individual constant that represents a partic-
ipant previously gets data in target cryptographic protocol.
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o Gef(s, X
o Vp. ¥V po(Start(ps, p2) = Get(py, X)) (If first sender previously gets daxa
e Vp. VY po(Start(ps, p2) = Get(p,, X)) (If first receiver previously gets datd

In order to represent thatgets another data by calculation for collected data in a proto-
col (for exampleyetdata, . . ., getdata), analysts add following formula with replacing
getdata, . .., getdata, andgetdatd into an individual constant that represents data that
a participant should collecyétdata, . .., getdatg) in order to get another data by cal-
culation getdatd). (For example, in secret splitting protocol, if a participant gets all
split data, the participant gets secret data.)

Yp((Get(p, getdata) A - -- A Get(p, getdata) = Get(p, getdatd)))
wheregetdata andgetdatd are individual constants that represent data.

4.2.5 Irregular Case

Analysts generate logical formulas that are corresponding to each case of participants’
and an intruder’s actions. If participants selectively send data, generated logical for-
mulas are added iN le ..., NP wheren is the number of data that is selectively sent
by participants in step. If an intruder sends data with falsification, generated logical
formulas are added irP}, e IP? as well wheren is the number of falsified data can
be sent by the intruder in stgp

In following explanation,p, p;, and p, are individual constants of participants that
perform sending or receiving, andx, ..., andx, (n € N) are individual constants of
data that are sent in stgp In following tasks, it is assumed that case of falsification
in each kind of data is unique because participants check only whether received data
is same to that of participants’. For example, it is possible that an intruder has mul-
tiple nonces, but the result of falsification is same in case of which nonce is used to
falsification, because participants check only whether received nonce is same to that of
participants’.

Analysts perform following tasks in case that such branches are occurred in step

1. If a participant sends data selectively to an other participant in forward reasoning
about stepj, analysts ad& endpi, p2, X1), ..., Sendp., P2, X,) in NP, ..., N P
respectively.

2. If Sendi, p, X) is deduced, analysts aRea(p, X) in N F*j.
3. If Sendp., po, X) is deduced, analysts add following formulas respectively.

o Analysts addRea(p,, X) in NP;.
e Analysts add logical formulas that are generated in task 5.

4. If Sendp,i, X) is deduced, analysts add logical formulas that are generated in task
5.
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5. Analysts generate logical formulas that represent an intruder sends data with fal-
sification by following tasks.

(a) Enumerate participants that receive any data after s{&pn specification
3.1). If there is no participant, tasks of forward reasoning is over.

(b) Repeat following tasks in each enumerated participant.

I. Extract one participant as receivpf, and check the number of step
(afterX — Y in specification 3.1).

ii. Generate logical formulas that represent sent data in the step based on
task 2 and 3 of section 4.2.2 (with replaced individual varigiplento
individual constant).

iii. Replace each data based on following conditions of falsification. If
any data cannot be replaced, continue to next participant. (In following
conditions, for example, if an intruder sendg, A (indicator) toA, Ng
can be falsified becaugedoes not havég, and indicator thaf owns
cannot be falsified.)

Identifier: If receiverp’ owns the identifier, it cannot be falsified.
Otherwise, it can be falsified into an intruder’s identifier.

Timestamp: If receivep’ owns the timestamp, it cannot be falsi-
fied. Otherwise, it can be falsified into an intruder’s timestamp.

Nonce: If receivelp’ owns the nonce, it cannot be falsified. Other-
wise, it can be falsified into an intruder’s nonce.

Incremented data: If receivgy owns the data that is not incre-
mented, it cannot be falsified. Otherwise, it can be falsified based
on condition for kind of the data.

Other data that is uniquely defined in a protocol: If anyone owns
the data, it can be falsified into an intruder’s data without changing
kind of data. If no one owns the data, it can be falsified into old
data that an intruder has.

Encrypted data: If the data is encrypted by key of recep/eit can

be falsified into data with satisfying the condition that is encrypted
by key of p’. If the data is encrypted by the other’s key, it can be
also falsified into data with satisfying the condition that is encrypted
by an intruder’s key.

Data with signature: The contents of the data with signature can be
falsified by the condition for each kind of the data, without chang-
ing the signature.

(c) Generate logical formule&Sendi, p’, data), ..., Sendi, p’, data,), and add
those formulas witlRea(i, X) in IP},...,IP?, respectively data, - - - , and
data, are the result of falsification, antdis number of data that the an in-
truder can send.).
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Figure 3.2 shows overview of branches by cases that participants and an intruder
sends data. In above conditions of falsification, complexity of the tasks is increased
by the number of logical formulad]". If there is a case that a participant sends data
selectively to another, the number of logical formulidR' also increase the complexity.
However, the task of forward reasoning can be finished by finite time because case of
falsification in each kind of data is unique.

4.3 Forward Reasoning

In the proposed method, analysts use FreeEnCal [9] in order to perform forward reason-
ing automatically. Analysts use sets of generated logical forniiR/sor IPi", andCO

that are generated in section 4.2, and deduced logical formulas until thid¥g@$é

input of FreeEnCal. As the result, new logical formulBd-(,) deduced, an®F g, is

added inDF.

In tasks of forward reasoning, analysts use FreeEnCal for forward reasoning about
each step of the target protocol. As the number of stépand the number of data
that participants or an intruder can send,ignalysts divide into cases thdP' or IPi"
(1<j<n 1<) <n),isused as input of FreeEnCal.

In the proposed method, an intruder does not forge sending data if participants can
recognize falsification, and participants know what kinds of data are derived to them as
next data. Therefore, iﬂ:’i" does not include data that participants get (represented as
Geft(p, X)), and should be received in step Pi" cannot be used as input of FreeEnCal.

If DF is the result of forward reasoning about the last step of the target protogpl,
cannot be used as input of FreeEnCal. If neitki& or IP" cannot be inputted, forward
reasoning in the case is completed. If all cases of forward reasoning are completed,
analysts perform tasks of analysis for e&h in section 4.4.

4.4 Tasks of Analysis

Analysts check whether formulas that represent success of attack are included in each
DF that is the case of completion of tasks of forward reasoning.

1. Check whether the formulas that represent success of attack are included in de-
duced logical formulas after the removal.

e Formulas that represent successful completion of the protocol (in forward
reasoning about last step of target protocol, an atomic formula that starts
“Rea” is deduced).

e Formula that represent an intruder obtains secret da¢d(i; secretdaty’.

e Formulas that represent that an intruder received sent data to a participant
“Sendp;, p2, anydata),” and a participant received falsified data by an in-
truderRea(i, anydata), andS endi, p,, anydatd) (anydatd is falsified data
from anydata).
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2. Iffollowing both of formulas are included, it can be said that attacks by an intruder
succeed in the target cryptographic protocol.

e Formulas that represent successful completion of the protocol.

e Formulas that represent that an intruder gets secret data, or any participant
received falsified data by an intruder.

In figure 3.4, formulas that represent successful completion of a protocols mean that
any participant sent or got data in forward reasoning about the last step of protocol. An-
alysts check whether an atomic formula that staRed” is deduced or not in forward
reasoning about last step of target protocol. Eavesdropping is represe@etfi a9 (x
is secret data). Falsifying means that sent data to a participant is received by an intruder,
and the intruder sends another data to the participant. It is represer§emhdp, g, X),
Recewe(i, X), andS endi, g, X) in deduced logical formulas.
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Chapter 5

Demonstration of Effectiveness

5.1 Method of Demonstration

| show that the proposed method can be applied to various cryptographic protocols.
According to table 4.1 in section 4,ftkrence in each cryptographic protocol is what
feature the cryptographic protocol has in those fivéedences. Therefore, if formal
analysis of some cryptographic protocols that include those fiterdnces can be per-
formed, it can be said that the extended method can also be applied to other than key
exchange protocols.

In order to show it, | chose secret splitting protocol [31] and coin flips protocol [31],
as cases of formal analysis that includes those fifferdinces by the proposed method.

5.2 Case in Secret Splitting Protocols

Secret splitting protocols [31] are steps to split secret information into several parts of
data, and prevent restoring secret information without collecting each split data. The
protocol can prevent leakage of secret information because each split data do not have
meaning, and secret data cannot be restored by only split data. In the protocol, a trusted
server previously has secret information. At first, secret information is split into several
parts of data. After that, administrator of secret information sends each split data to
different participants. Each participant can restore secret information by collecting each
split data. In secret splitting protocol, all split data must not be got by an intruder
because an intruder can restore secret information, and must not be falsified because
participants cannot restore secret information. As table 4.1 in section 4, secret splitting
protocols have featui@l, D2, D4, andD5.

As the first step for formal analysis of secret splitting protocols, | prepared three
secret splitting protocols as the case of formal analysis. In those three specification of
secret splitting protocolsiatal anddata2 are split data to send participants of protocol.
Specification of first protocol is below.

Specification of first protocol

Step 1A — S:AB
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Step 2S — A {datal, B,
Step 3S — B: {data2, A}

Kss

The first protocol has a flaw. When a trusted serSerhecks two identifiers, there

are two possibilitiesS checks individually whether each identifier is correct, or checks
whether two identifiers are equal. If a trusted seSe@nly checks individually whether
those sent identifiers are correct, without checking whether sent two identifiers in step
1 are equal or not, it is possible that an intruder can receive splitddatd anddata?.

As the result, the intruder can get secret data from got split diatial anddata2 by
falsifying identifiers that are sent in step 1. Concretely, the intruder can perform this
attack by following steps. In following stepigX) means that "an intruder receives data
with pretending to beX.”

An attack on first protocol
SteplA—-I(S): A B
Step21(A) - S: 1,1
Step 3S — | : {datal}k,
Step4S — | : {data2}k,,

| prepared second protocol that igfdrent from first protocolS starts to send data to
each participant. Specification of second protocol is below.

Specification of second protocol
Step 1S — A {datal, Bjk,s
Step 2S — B: {data2, A}k,

The second protocol has a flaw. In behavior of an intruder based on Dolev-Yao model
[17] (section 4), if an intruder knows old data that is sent and received in the previous
communication process, the intruder can falsify sent data into old data that the intruder
knows without participants recognizing. Concretely, the intruder can perform this attack
by following steps. In following stepsijatal’ anddata2’ are old split data to be sent

and received in the previous communication process.

Attack on second protocol
Step 1S — I(A) : {datal, B}k,
Step 21(S) — A: {datal’, B}k,
Step 3S — [(B) : {data2, A}k,

Step 41(S) — B : {date2’, A}

Kgs
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It is a case that botHatal’ anddata?’ are falsified. On the other hand, there is a case
that onlydatal’ or data?’ is falsified.

Attack on second protocol (in case thatlatal is falsified)
Step 1S — I(A) : {datal, B}k,

Step 21(S) — A {datal’, Bjk,s

Step 3S — B : {data2, A}k,

Attack on second protocol (in case thatlata is falsified)
Step 1S — A: {datal, B},

Step 2S — I(B) : {data2, A}k,

Step 31(S) — B: {data?’, Ajxgs

| improved the first protocol in order to prevent falsifying of an intruder that is repre-
sented as third protocol. Specification of third protocol is below.

Specification of third protocol
Stepl1A— B: ANy
Step2B — S: A Na, B,Ng
Step 3S — A {datal, B, Najk,s
Step4S — B: {data2, A, N}k,

In order to show that the extended method in section 4 can be applied to crypto-
graphic protocols, | analyzed those three secret splitting protocols based on the extended
formal analysis method with reasoning. At first, | formalized specification of each pro-
tocol based on section 4. After that, | performed forward reasoning as the premises.
Finally, | detected fatal actions of attacks that represent success of attacks for flaws of
those protocols from deduced logical formulas by forward reasoning.

About first protocol, | performed formal analysis based on the proposed method. As
the result, 20 paths were generated and total 5086 logical formulas were deduced. In
the deduced logical formulas, 5 logical formuRea(s, data(id(i), id(i))),

Sends, i,endsymk(i, s), datal)), Sends, i, endsymki, s), data?)), Gef(i, datal) and

Gef(i, data2) were includedGef(i, datal) andGef(i, data?) mean success of attack that

an intruder could get each split dadatal, data2. As the result, the intruder can get
secret dataRew(s, dataid(i), id(i))), S ends, i, endsymKk, s), datal)), and

Sends, i,endsymk(i, s), data2)) mean that a trusted sen&@ffinished all tasks because

the number of receiving and sending is 1 and 2 respectively in the specification. This is
equal to the flaw of first protocol.
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About second protocol, | performed formal analysis based on the proposed method
As the result, 4 paths were generated and total 3250 logical formulas were deduced. In
the deduced logical formulas, 4 logical formulast(a, data(old(datal), id(b))),

Get(b, dataold(data?), id(a))), Rew(a, endsymk(a, s), old(datal), id(b))) and

Reaw(b, endsymkb, s), old(data?), id(a))), were included in deduced logical formulas.
Rew(a, endsymk(a, s), old(datal), id(b))) means thaA finished all tasks and

Rew(b, endsymkb, s), old(data2), id(a))) means thaB finished all tasks because the
number of receiving is 1 in the specificatidet(a, data(old(datal), id(b))) and

Geft(b, dataold(data?), id(a))) mean thalA andB get data that an intruder falsified with-

out recognizing the attack because the received split data has no meaning. As well as the
result, logical formulas that represent that only one data is falsified were also deduced,
for example Gef(a, datadatal, id(a))) andGet(b, data(old(data2), id(a))), or

Gef(a, dataold(datal), id(a))), Get(b, data(data2, id(a))). This is equal to the flaw of
second protocol.

About third protocol, | performed formal analysis based on the proposed method.
As the result, 14 paths were generated and total 16431 logical formulas were deduced.
Fatal actions of attack that represent success of attack for flaws were not detected in
deduced logical formulas but | could perform tasks of the proposed method to the end.

In cryptographic protocols that have feat&, D2, D4, andD5, behavior of par-
ticipants is common in each protocol but only sent data in the common behavior is
different. Therefore, the proposed method can be applied to cryptographic protocols
that have featur®1, D2, D4, andD5.

5.3 Case in Coin Flips Protocols

Coin flips protocols [31] are steps to fairly perform coin-flip for participants. At first,
a participantA sends data with encrypting that receiBcannot decrypt. After thaB
sends next data the represents the received value of data is odd or even (corresponding
to front or back of the coin). FinallyA sends the firstly sent data Bin order to check
whether the sent data is correct. In coin flips protocAlsjust not previously know the
result that received data is odd or even, @&hust not previously know whethd’s
sent data is odd or even. Coin flips protocols have behavi@3ahat is explained in
section 4.

| prepared one coin flips protocol as the case of formal analysis. In following spec-
ification of coin flips protocol,f(x) is one way function of sent datq andodd even
are data that is corresponding to front or back of the coin. Specification of the coin flips
protocol is below.

Specification of the coin flips protocol
Step 1A - B: {f(X), Alk,s
Step 2B — A: {odd}k,./{even}

Kas

Step3A—- B: {x}

Kas
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| performed formal analysis of the coin flips protocol based on the proposed method.
As the result, 8 paths were generated and total 6206 logical formulas were deduced.
Fatal actions of attacks that represent success of attack for flaws were not detected in
deduced logical formulas but | could perform tasks of the proposed method to the end.
In cryptographic protocols that have featd®, behavior of participants is common
in each protocol but only sent data in the common behaviorfisrént. Therefore, the
proposed method can be applied to cryptographic protocols that have fB&ture
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Chapter 6
Supporting Tools for Proposed Method

6.1 Requirement Analysis

The concrete steps for formal analysis method with reasoning is proposed in chapter
4. However, it is time-consuming task for analysts to manually perform formal analysis
based on the proposed method. As the result, it is possible for analysts to make mistakes
in tasks in the proposed method. Therefore, supporting tools are needed in order to
easily perform the proposed method for analysts. | enumerated following 5 requirements
for supporting tools for the proposed method.

R1: Supporting tools must support tasks that are time-consuming for analysts.
R1.1: Supporting tools must support tasks for formalization of a target crypto-
graphic protocol.

R1.2: Supporting tools must support tasks for forward reasoning from the result
of formalization as premises.

R1.3: Supporting tools must support tasks for analysis of deduced logical formu-
las by forward reasoning.

It is time-consuming task for analysts to perform tasks of formalization, forward
reasoning, and analysis in the proposed methRd.is a basic requirement as
supporting tools for the proposed method.

R2: Supporting tools must systematically store and manage specification of crypto-
graphic protocols for input.
R2.1: Supporting tools must store and manage the specification for each users.

R2.2: Supporting tools must store and manage the specification for each proto-
cols.

R2.3: Supporting tools must store and manage the specification for each creation
times.
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It is possible that analysts perform formal analysis of many cryptographic proto-
cols. As the result, it is time-consuming task for analysts to search only a target
cryptographic protocol in many of those. Therefore, supporting tools must satisfy
R2 to support formal analysis of many cryptographic protocols by analysts.

R3: Supporting tools must make possible for analysts to use specification of crypto-
graphic protocols for input as necessary.

R3.1: Supporting tools must make possible for analysts to read specification of
cryptographic protocols for input as necessary.

R3.2: Supporting tools must make possible for analysts to perform formal anal-
ysis from target specification of cryptographic protocols for input as neces-
sary.

R3.3: Supporting tools must make possible for analysts to improve specification
of cryptographic protocols for input as necessary.

R3.4: Supporting tools must make possible for analysts to delete specification of
cryptographic protocols for input as necessary.

It can be assumed that analysts improve a target cryptographic protocol from the
result of formal analysis. Therefore, supporting tools must saiksyto make
tasks of improvement from the result of formal analysis easy for analysts.

R4: Supporting tools must systematically store and manage the result of formal analy-
Sis.

R4.1: Supporting tools must store and manage the result of formal analysis for
each users.

R4.2: Supporting tools must store and manage the result of formal analysis for
each protocols.

R4.3: Supporting tools must store and manage the result of formal analysis for
each times of formal analysis.

R4.4: Supporting tools must store and manage the result of formal analysis for
each divided cases in tasks of forward reasoning.

It is possible that analysts perform formal analysis of many cryptographic proto-
cols. As the result, it is time-consuming task for analysts to search only a target
result of formal analysis of cryptographic protocol in many of those. Therefore,
supporting tools must satisig4 to support many cryptographic protocols by an-
alysts.

R5: Supporting tools must make possible for analysts to use the result of formal analy-
Sis.
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R5.1: Supporting tools must make possible for analysts to read the result of for-
mal analysis.

R5.2: Supporting tools must make possible for analysts to edit the result of for-
mal analysis.

R5.3: Supporting tools must make possible for analysts to delete the result of
formal analysis.

It can be assumed that analysts perform analyze from deduced many logical for-
mulas, and manage the many result of formal analysis. Therefore, supporting
tools must satisfR5 to make these tasks easy for analysts.

6.2 Overview of Supporting Tools

Overview of supporting tools is represented in figure 6.1. At first, analysts input a
specification of cryptographic protocol as a target of formal analysis, and obtain the
result of formalization. After that, analysts input the result of formalization, and forward
reasoning is performed from the result of formalization as premises by FreeEnCal [9].
After that, if it is necessary to classify in case that an intruder or a participant receives
data, analysts add logical formulas depending on each case, and input these results as
premises for forward reasoning. If forward reasoning in each case, analysts input the
result of forward reasoning, and obtain the result whether attack succeed or not in the
target cryptographic protocol. If attack succeeds in the target cryptographic protocol,
analysts improve the protocol, and repeat formal analysis. By these activities, analysts
can concentrate on improving cryptographic protocols [34].

List of supporting tools that makes tasks of formal analysis by the proposed method
easy for analysts is as follows.

T1: Formalization tool from specification of cryptographic protocol
T2: Input files making tool depending on branches in task of forward reasoning.
T3: Flaws detection tool from the result of forward reasoning

T1, T2, andT2, satisfieR1 in requirement analysis of section 6.1.

List of functions that supports formal analysis by the proposed method easy for
analysts is as follows. These functions satisfy the requirement of supporting tools, from
R2to R5.

F1: Specification managing function (satisfie@)

F1.1: Creating new file

F1.2: Saving to corresponding directory
F1.3: Editing saving directory

F1.4: Deleting file
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Supporting Tools

5. Improve Specification of
@9 g
‘ T2 Result of Analysis
fa® -.
4. Obtain T3 Cjeduced )
S

Analysts Result of Analysis Logical Formula

2. Input Result of Formaliztion
(Repeat for number of brunch) 3. Input Deduced Logical Formulas
(Repeat for number of brunch)

FreeEnCal

Figure 6.1: Overview of supporting tools.

F2: Making directory function for each user (satisfied, R4)
F3: Making directory function for each target protocol (satisfit2] R4)

F4: Extracting specification of cryptographic protocol function in stored files (satisfied
R3)

F5: Performing formal analysis of extracted specification function (sati&d
F6: Extracting result of analysis function (satisfie&)

F6.1: Extracting result of deduced logical formulas
F6.2: Extracting result of analysis that is represented as form of specification

6.3 Implementation of Supporting Tools

| implemented those supporting tools that input file of specification or commands on
command line, and output the result of formalization, forward reasoning, and analysis.
Programming languages that | used for implementation are Ruby and Perl.

At first, user previously makes the specification by txt file based on eq. 3.1 in section
3.1. Concretely, input file is represented as following form.

N.X1->X2:Y1,Y2,...,Yn

In the form, N is the number of step. X1 and X2 are patrticipants. Y1,Y2,...,Yn are sent
and received data. If encrypted data is sent, it is representedia¥2,...,Yn}. If data
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Figure 6.2: Example of input for supporting tools (target of formal analysis).

that a participant owns is sent, it is represented as “(X)” (X is a participant). Figure 6.2
shows example of input file that is represented as the form.
After the input file is made, user inputs following command.

ruby analysistool.rb

After that, user input specification of cryptographic protocol by txt file. As the result,
formalization of the input specification is performed automatically. User obtains the
result of formalization by txt file that is represented by logical formulas and form of
FreeEnCal.

After the task of formalization, forward reasoning from the result of formalization
as premises by FreeEnCal is performed automatically. User obtains output file as the
result of forward reasoning in each case that is represented by logical formulas. Logical
formulas that represent a participant or intruder sends data are added in the output file,
and forward reasoning by using the is repeated until any logical formulas cannot be
added. The name of output file is represented following form.

[Filename]_s[Step number]_[Sender][Receiver][File number].txt

Figure 6.3 shows the example of formalization and forward reasoning by using support-
ing tools.

Input file for formalization: sample.txt
Formalization is completed. Executing FreebEnCal
Input file: sample_s1_AST.txt

Execut ing FreeEnCal for [sample_s1_AST1.txt]
Executed FreeEnCal.

Execut ing FreeEnCal for [sample_s? SA1.txt]
Executed FreeEnCal.

Figure 6.3: Formalization and forward reasoning by using supporting tools.
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If a result of forward reasoning represents success of attack, “Flaw” is included in
name of output file. On the other hand, user obtains list of actions by participants and
an intruder in each case. The list of actions is translated into form of specification that
is represented as figure 6.4. As the result of translation, user can know how an intruder
succeeded the attack.

1. A->B:M, 4,8, {NCA) M, &, B} (K(AS))

27 B->1(S):M,4,B, INCA), M, &,B} (K(4S)), {N(B) M, 4,B] (K(BS))
277 1B ->S:M A, T, {NCA) M, &, BHKCAS) ), {NCTD M, &, B (K(IS))
3..5->1:M, {NCA) K(AB) T (K(AS) ), [NCT),K(AB) T (K(IS))

47 T(B)->A:M, {N(A),K(AB) 1 (K(AS))

Figure 6.4: Example of attacks by form of specification.

6.4 Evaluation of Supporting Tools

| show that implemented supporting tools can reduce duration in performing formal
analysis by the proposed method compared to perform manually. The proposed method
is divided into 3 tasks, formalization for each branch, forward reasoning for each branch,
and detecting fatal actions of attack from deduced logical formulas by forward reason-
ing. | compare duration of these tasks in case of performing manually and using the
supporting tool, and demonstrate that the duration can be reduced by the supporting
tool.

| demonstrated that duration of formalization was reduced by using implemented
supporting tools. It is time-consuming task for analysts to perform formalization man-
ually [34]. Table 6.1 shows duration of formalization for Second Protocol Attempt [5],
Third Protocol Attempt [5], Needham-Schroeder Shard Key Protocol [24], and Otway-
Rees Protocol [27]. As shown in table 6.1, it took about 15 minutes to formalize man-
ually. | performed formalization of these protocols by using implemented supporting
tools, formalization could be finished automatically and instantly. Therefore, imple-
mented supporting tools can reduce duration of formalization.

Kind of Protocol Duration Manually
Second Protocol Attempt 13 minutes
Third Protocol Attempt 13 minutes
Needham-Schroeder Shard Key 20 minutes
Otway-Rees 25 minutes

Table 6.1: Duration of formalization manually

It was demonstrated that duration of forward reasoning was reduced by using im-
plemented supporting tools. It is time-consuming task for analysts to make input file
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of forward reasoning by using FreeEnCal for all cases that an intruder or a participant
sends falsified data. Furthermore, command for executing FreeEnCal is complex as
follows.

$ FreeEnCal -s -t [output file] -f CSV [input file] >& output.log

Therefore, it is also time-consuming task for analysts to execute FreeEnCal for those
all cases. It takes about one hour to perform make input file and execute FreeEnCal
manually for those all cases. | performed those tasks automatically by using imple-
mented supporting tool. Therefore, implemented supporting tools can reduce duration
of forward reasoning.

| demonstrated that duration of analysis was reduced by using implemented support-
ing tools. It is time-consuming task for analysts to detect fatal actions of attacks in de-
duced many logical formulas by forward reasoning. Furthermore, it is time-consuming
task for analysts to judge success of attack or not from detected actions manually as
shown in figure 6.2 [34]. | performed those tasks for those protocols by using imple-
mented supporting tool. As the result those tasks could be finished automatically and
instantly. Therefore, implemented supporting tools can reduce duration of analysis.

Kind of Protocol Duration Manually
Second Protocol Attempt 3 minutes
Third Protocol Attempt 3 minutes
Needham-Schroeder Shard Key 5 minutes
Otway-Rees 6 minutes

Table 6.2: Duration of judging success of attack or not from detected actions manually

By implemented supporting tools, analysts can perform the proposed method in a
short time. Furthermore, it can be assumed that analysts perform the proposed method
for many cryptographic protocols. It is hopeful that analysts can concentrate on improv-
ing and designing of protocol.

Whole duration of the proposed method by using supporting tools is about several
hours. It can be said that the duration is practical time because it takes very long time
for designing and improving of cryptographic protocols. Proposed and practically used
cryptographic protocols should be carefully analyzed and improved with taking time.
For example, in case of SSL protocol [21], it takes 1 year to improve version 2.0 into
version 3.0 [19]. Furthermore, in case of TLS protocol [21], it takes 7 years to improve
version 1.0 [2] into version 1.1 [15], and takes 2 years to improve version 1.1 into
version 1.2 [16].
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Chapter 7

Discussion

The proposed method has limitation that completeness cannot be said. The limitation is
following L1, L2, andL3.

L1: Target fatal actions of attacks that can be detected is depending on an intruder

L2:

L3:

model.

In the proposed method, behavior of an intruder is based on Dolev-Yao model

[17]. This model assumes that an intruder can eavesdrop, falsify, decryption by

a key that an intruder has. The proposed method can systematically detect fatal
actions of attacks that are based on these attacks. However, Dolev-Yao model
cannot support to detect fatal actions of attacks about mathematical computation.
For example, in case of coin-flips protocol that represents in section 5.3, if an

intruder can estimate secret datbom get dataf (x) by mathematical computa-

tion, an intruder can success attack in the protocol [31]. However, fatal actions

that represent the attack could not be detected in 5.3.

Deduced logical formulas are limited in using FreeEnCal.

In using FreeEnCal, degree of nested logical connectives must be set in order to
limit the range of deduced logical formulas [9]. If there are fatal actions of attacks
outside of the range, those fatal actions cannot be detected.

It is limited to enumerate falsified data that an intruder can send.

In the current proposed method, it is considered what data is falsified or not, but

it is not considered how to falsify each data. For example, in case of Otway-Rees
protocol that is represented in section 3.5, the current proposed method cannot
detect fatal actions of attacks that represents success of attack to second flaws be-
cause falsified data about second flaws cannot generated by the current proposed
method.

Those limitation_1, L2, andL3 can be reduced by extending the proposed method.

About L1, fatal actions of attacks about mathematical computation can be detected by
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adding logical formulas that represent “a participant gets another data by calculation for
collected data in a protocol” in section 4.2.4. However, it must be cleared what new data
can get and what data should be collected to get the new data. Bbpiattal actions of
attacks outside of the range can be detected by setting high degree in using FreeEnCal.
However, if the set degree is very high, it is possible that forward reasoning by using
FreeEnCal cannot be stopped or it takes very long time for forward reasoning. About
L3, those fatal actions of attacks can be detected by extending method of enumerating
data with falsifying that an intruder can send. However, if the number of enumerated
falsified data is too much by the extension, it is possible that the number of branches is
very increased and the proposed method cannot be stopped. Therefore, it is future work
how to extend the proposed method without those problems.

Soundness can be said by the result of detecting fatal actions of attacks in the pro-
posed method. In the proposed method, if actions of an intruder that represent falsi-
fication or eavesdropping are included, a person’s action in the last step of protocol
is detected as a fatal action of attack. If a person’s action in last step of protocol is de-
tected, following two cases are possible. At first, an intruder does not perform actions of
falsification or eavesdropping in a cryptographic protocol. Second, participants cannot
recognize actions of falsification or eavesdropping by an intruder. If an intruder falsified
a target cryptographic protocol, deduced logical formulas must inGwetei, p, x) and
Rea(i, X') (pis any participantx is any sent data, an is falsified data) S endi, p, X)
andReo(i, X') are generated by tasks of enumerating falsified data in section 4.2.5. In
the proposed method, it is assumed that an intruder does not forge sending data if partic-
ipants can recognize falsification. ThereforeSéndi, p, X), Rea(i, X') and a person’s
action in last step of protocol are detected in deduced logical formulas, it represents
falsification by an intruder. On the other hand, if an intruder eavesdropped a target
cryptographic protocol, deduced logical formulas must inclGei, sdatg (sdatais
an individual constant that represents secret d&aj(i, sdatg is deduced in behavior
of an intruder that represents “if a participant semdsin intruder gets it” in section
4.2.3. Eavesdropping cannot be recognized by participants because an intruder only
gets sent data, and does not falsify sent data. Therefore, if a person’s action in last step
of protocol andGef(i, sdatg are detected, it represents eavesdropping by an intruder.
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Chapter 8

Conclusions

8.1 Contributions

| showed that the proposed method can be applied to those 19 cryptographic protocols
in figure 4.1 of section 4.1. At first, | proposed formal analysis method with reasoning
for key exchange protocols. After that, | compared 19 cryptographic protocols based
on participants’ behavior and the number of participants, and fiterdnces among 19
cryptographic protocols were found as | explained in figure 4.1 of section 4.1. After
that, | extended the proposed method in order to represent those ffiseedces. By

the extended method, | performed formal analysis of some cryptographic protocols that
include five diferences among cryptographic protocols. As the result, | could re-detect
fatal actions of attacks that represent success of attack that is pointed out or | could
perform tasks of the proposed method to the end.

As the result of evaluation of implemented supporting tools, | showed that analysts
can reduce duration of the proposed method by using those supporting tools. Therefore,
it can be said that analysts can easily perform the proposed method by implemented
supporting tools.

8.2 Future Works

In the future, at first, the proposed method should be extended in order to be applied
to more target attacks. In current proposed method, target fatal actions of attacks for
detecting and falsified data that an intruder can send are limited. However, if the pro-
posed method is extended without those limitations, there can be a problem that tasks
of the extended method cannot be finished because tasks of the extended method are
increased, especially falsified data that an intruder can send. Therefore, the proposed
method must be extended without the problem.

Second, the implemented supporting tools should be made more easy to use for
analysts. In current supporting tools, those output files are stored in same directory.
In order to manage and store those output files more systematically, it is necessary to
classify those output files, for example, execution date, forward reasoning about each
step. On the other hand, input file for formal analysis is made manually. Therefore, itis
necessary to implement a supporting tool for making input file.
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Finally, the proposed method should be applied to various cryptographic protocols.
| showed that the proposed method can be applied to formal analysis of cryptographic
protocols. It is necessary to evaluate security of target cryptographic protocol by the
proposed method.
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