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Abstract

Traditionally, humans have viewed robots as a “mechanical machines”,

designed to perform a variety of industrial tasks. But within the last

decades, the reality of robots is quite different from the traditional

view and has enabled us to start developing social robots to support

humans in their daily activities. The concept of the social robot is

rapidly emerging and gradually being introduced as a part of human

society where interaction among humans and social robots seems to

be important to provide mental, communicational, and physical sup-

port to humans in society. As a consequence, many social robots

have already been deployed in social spaces, where humans interact

with reactive services in which social robots wait until the human

proactively seeks services. Nevertheless, nowadays we are moving in

a direction where we introduce social robots in social spaces with the

ability to proactively offer services to humans in which social robots

estimate human intentions, and can offer services only to those who

would need it. To achieve such capabilities, social robots should have

the capacity to observe human behaviors so that they can easily iden-

tify humans who are in need. But, observing human behaviors is a

challenging task for social robots. This dissertation deals with making

human-robot interaction systems capable of observing human behav-

iors so that social robots can understand their intentions, interests,

and preferences concerning surrounding environments. Our findings

will help social robots to proactively offer services to those humans

who may want to be serviced. In this dissertation, a real life museum

guide robot scenario is considered as a testbed for my proactive social

robotics research.
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The first part of the work is on developing a guide robot system which

observes people’s interests and intentions towards paintings in mu-

seum scenarios and proactively offers guidance to them using a guide

robot, if needed. To do that, multiple USB video camera sensors are

utilized to support the guide robot in detecting and tracking peo-

ple’s visual focus of attention (VFOA) toward paintings. Further,

each person’s head orientation and profile information and computed

importance values are considered as local behavior to identify a target-

person that may be interested in a particular painting. After identify-

ing the target-person, the guide robot moves autonomously through

an appropriate motion path from the so called public-distance to

his/her social-distance to explain details about the painting to which

s/he is interested. Furthermore, the viability of the proposed guide

robot system is demonstrated by experimenting with the Robovie-R3

as a museum guide robot. Finally, the system is tested to validate its

effectiveness. Continuing to improve the recognition of people’s inter-

ests, intentions, and preferences concerning paintings in the museum,

a network enabled sensing system is designed and implemented by

incorporating different sensing modalities in combination where sen-

sors are distributed in the environments as opposed to conventional

sensing systems that are usually on-board the robot. This network

enabled sensing system may assist the guide robot to recognize hu-

man intentions before proactively approaching people that may want

guidance or commentary about the paintings. To do that, first, obser-

vational experiments are conducted in a museum with participants.

From these experiments, mainly three kinds of walking trajectory pat-

terns are found, which characterize global behavior, and additionally,

visual attentional information are also found that indicates the local

behavior of the people. These behaviors ultimately indicate whether

certain people are interested in the exhibits and could benefit from the

guide robot system providing additional details about the paintings.

Based on the findings, a network enabled Human Robot Interaction

(HRI) system is designed and implemented for the museum. Finally,
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the viability of the proposed HRI system is demonstrated by experi-

menting with a set of Desktop Robots as guide robots. Experiments

reveal that the proposed HRI system is effective for the network en-

abled Desktop Robots to proactively provide guidance.

To detect and track all the people inside any real public social spaces

for reading an individual’s interests, intentions as well as extracting

knowledge on their actual expectations from their surroundings, a

social robot should have robust human sensing systems. Most state-

of-the-art human sensing systems fail to track any initially detected

person, especially in crowded large scale social spaces where potential

partial and full occlusion between persons and/or objects frequently

happen. To combat this issue in observing people’s behaviors for so-

cial robots, in the final part of this dissertation, a new method is

introduced which uses LIDAR to identify humans and track their po-

sitions, body orientation, and movement trajectories in any public

space to read their various types of behavioral responses to surround-

ings. We install a network of LIDAR poles at the shoulder level of

typical adults to reduce potential occlusion between persons and/or

objects even in large scale social environments. With this arrange-

ment, a simple but effective human tracking method is proposed that

works by combining multiple sensors’ data so that large-scale areas

can be covered. How valuable information related to people’s behav-

iors can be autonomously collected and analyzed using this method

is also described. Additionally, a solution to visualize people’s move-

ment patterns and preferences with respect to any social space is

presented. Thereafter, the effectiveness of the proposed human de-

tection and tracking method is evaluated in an art gallery of a real

museum. Ultimately, results revealed good human tracking perfor-

mance and provided valuable behavioral information related to the

art gallery which are very important to deploy in any museum guide

robot system in the future.
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Chapter 1

Introduction

1.1 Motivation

As technology advances, robots will soon be a part of our everyday lives. As a

consequence, with the development of robotic technologies over the last decades,

robots are already appearing in industry and becoming more commonplace in

human society. As such, social robots will play an important role as partners

of human beings. From the deployment of social robots in human society, the

new field of Human Robot Interaction (HRI) has emerged. However, in early

work, the main goal of HRI research has been to establish interaction channels

between social robots and humans in social perspectives. With these goals, early

social robots were deployed in many social spaces and used as tutors in schools

[126], as museum guides [29], as receptionists for visitors [70], in the context of

mental-care for elderly people [201], in autism therapy [119], child care [189], and

so on. Gradually, social robots achieved the capabilities to take orders and serve

customers in restaurants [36], built trust [158], express emotions [167], provide

varieties of reactive advice or information to the people in many public spaces,

and be recognized in some capacity as social peers. But in most social spaces,

social robots were only bound to engage in conversation and social interactions

with those people who proactively chose to interact with it.

Nowadays HRI research is investigating the elements necessary to create social

robots so that they are able to act in advance to deal with expected difficulties. In

such cases, a social robot recognizes human intentions and then offers assistance

or gives a solution to them proactively. If social robots were enriched with such
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capabilities for real world environments then they would offer several benefits for

human society. One of the benefits of the social robots is that in its proactive

conditions the more human-like interaction makes the social robot less machine-

like [107] because the social robots would be able to read human intentions before

offering their proactive services. Dealing with developing such types of social

robot’s proactive behaviors is quite difficult. However, recently the HRI research

community has been dealing such types of situations (for example, [69, 103, 104])

where perceiving human behaviors so that they can offer services to humans who

seem to need or want their potential services. These types of research activities are

emerging for social robots in which they can proactively serve people as opposed

to the conventional reactive approach where robots wait until humans explicitly

request them for their services.

In general, we can often tell what other people would like to do by observing

their behaviors in social spaces. There are various such behaviors: global behav-

iors such as walking trajectories patterns, and local behaviors such as eye gaze

patterns. Usually, such types of human behavioral information helps the people

in public spaces (for example, museums, shopping malls, train stations, exhibi-

tion centers) to read other people’s interests, intentions, and preferences to know

whether anyone needs any services or not before offering proactive assistance.

But, practically in a large scale environment, making manual large scale observa-

tions of human behaviors using only a limited number of human (guides/staff) is

a very difficult and complicated task. Thus, to make up for the shortcomings in

observing human behaviors in public spaces as well as offering proactive services,

social robots can play important roles by utilizing modern human sensing tech-

nologies and their proactive behaviors. In recent years there have been a variety

of initiatives involving the introduction of emerging human sensing technologies

in supporting social robots to perceive human behaviors. But, in practice, it is

difficult to devise a single sensor system to detect and recognize the local and

global behaviors of all the possible people inside the large scale observation area.

The demonstration of a working system with such abilities would present a new

research direction in introducing the use of proactive social robots services for

humans.

So, it is very necessary to design a human behavior perceiving system by which

a social robot can observe people’s behaviors inside any public space to read their
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interests, intentions, and preferences concerning surrounding environments. A

robust human behavior perceiving system may enable a social robot to proactively

approach those people who are in need. This dissertation addresses this issue

through developing a real life museum guide robot system as a testbed by which

a museum guide robot will approach humans proactively to offer guidance about

the exhibits after perceiving their behaviors with, the help of environmentally

distributed human sensing system.

1.2 Objectives

The above described future visions for social robots motivated further work during

this doctoral study. Thus, the dissertation deals with enabling social robots with

capabilities to guide humans in future museums as safe, natural, and socially

acceptable actors. More specificically, the emphasis is on enabling a social robot

to act as a museum guide robot so that it can perceive human behaviors to read

their interests, intentions, and preferences inside a museum using modern remote

human sensing technologies. Our intention, however, is to share an approach that

can be useful in social robot deployment scenarios like those explored by other

works; for example, pedestrian guidance [58], assisting people in schools [101],

shopping malls [69, 103], and hospitals [146]. We propose a museum guide robot

system, in which environmental distributed sensor networks are used to augment

a social robot’s recognition capabilities to observe human behaviors to identify

those humans who may need guidance. Based on the observations, the museum

guide robot provides guidance proactively to humans, as shown in Figure 1.1.

Additionally, we propose a robust human detection and tracking system for social

robots so that it can track all the people in large scale real public spaces even in

crowded situations by combating against partial and full occlusion. Some of the

challenges have led to interesting questions, which are investigated through the

dissertation.

The research questions are:

•Person detection and tracking: How can social robots detect and track

humans in any given social space by using wearable-free (environmentally dis-

tributed) sensors ?
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This 

painting 

is a….

Figure 1.1: Example photo of museum guide robot: Illustrating museum guide

robot’s proactive guidance to the humans in an art gallery of a real museum

scenario.

•Intention and interest recognition: How can social robots find out

whether some one is interested in something (human/object) from his/her sur-

rounding environment, based on previous observations ?

•Proactive approach: How a social robot’s behaviors can be designed to

facilitate its sociable and comfortable proactive mannerisms towards humans ?

•Evaluation: How are the abilities of the museum guide robot evaluated and

tested on a prototype social robot ? How are the abilities of wearable-free sensor

systems evaluated in tracking humans in an art gallery of a real museum?

1.3 Research Contribution

This research resulted in designing museum guide robot systems with the abil-

ity to proactively offer guidance to humans based on perceiving their interests,

intentions, and preferences towards the exhibits using robust environmentally

distributed human behavior tracking systems.

•An experimental paradigm for studying how a museum guide robot system

detects humans inside the museum and tracks their local behaviors to estimate

their interests, intentions and preferences towards the exhibits before proactively

offer guidance about any exhibit (Chapter 3).
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•An experimental paradigm for studying how Roboevie-R3 as a museum guide

robot proactively approaches the target human at the beginning of guidance about

any exhibit. Furthermore, the effectiveness of this museum guide robot system is

validated through tests and evaluations (Chapter 3).

•An observational experiment paradigm for studying humans interests and

preferences toward exhibits based on their local and global behaviors inside the

museum (Chapter 4).

•An experimental paradigm for studying how a network enabled wearable-free

human sensing system determines visitors’ interest and intentions concerning ex-

hibits in a museum by observing both their local and global behaviors (Chapter 4).

•An experimental paradigm for studying how a designed and implemented

network enabled guide robot system proactively provides additional details to the

people about the exhibits based on the their observed local and global behaviors

inside the museum (Chapter 4).

•An experimental paradigm for designing a robust human behavior tracking

system by which a robotic system can track people’s position, body orientation,

and movement pattern inside any social public spaces even in crowded situations

by combating against partial and full occlusion between humans and objects

(Chapter 5).

•An experimental paradigm for describing how the deployed robust human

behavior tracking system in an art gallery of a real museum can autonomously

collect and analyze valuable information related to human behaviors about the

interests and preferences towards exhibits (Chapter 5).

•An experimental paradigm for describing how the autonomously collected

data by the deployed robust human behavior tracking system in an art gallery is

very important in making decisions on improving the services and guide system

(Chapter 5).

1.4 Organization of Sections

Chapter 2 -Interdisciplinary Background: This chapter provides the in-

terdisciplinary background and current state-of-the-art related to the different

subjects treated in this dissertation.
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Chapter 3 - A Vision Based Guide Robot System-Initiating Proactive

Social Human Robot Interaction in Museum Scenarios: In Chapter 3, a

guide robot system is presented which observes people’s interests, intentions and

preferences towards paintings by tracking their local behaviors in museum scenar-

ios and proactively offers guidance to them using a guide robot, if needed. The

proposed model of expected behavior of the guide robots to initiate interaction

with the human is explained in this chapter. The results of our experiments are

reported at the end of the chapter.

Chapter 4 - Network Guide Robot System Proactively Initiating Inter-

action with Humans Based on Their Local and Global Behaviors : A

network enabled HRI system is proposed which can determine people’s interests,

intentions, and preferences concerning exhibits in a museum by tracking both

their local and global behaviors using different sensing modalities in combination.

The experiments are conducted with a set of Desktop Robots to demonstrate

the viability of the proposed HRI system, which is described at the end of this

chapter.

Chapter 5 - Robustly Tracking People with LIDARs in a Crowded

Museum for Behavioral Analysis: In this chapter a LIDAR based people

behavior tracking system is presented, which is robust in tracking people even

in a real world public space. The effectiveness and usefulness of the proposed

system in an art gallery of a real museum is evaluated at the end of this chapter.

Chapter 6 - Conclusions : We conclude the dissertation with a summary of

the concepts and designed human behavior tracking and HRI systems introduced

in this dissertation followed by the potential future works and application.
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Chapter 2

Interdisciplinary Background

This chapter provides the literature review covering the theoretical background

and the state-of-the-art research accomplishments in the areas of Social Robotics

and Human Robot Interaction (HRI) in order to frame the context of the pre-

sented dissertation work. The research topics of this dissertation, which are

outlined in Section 1.2, can be categorized into three different research areas in

HRI. First, detection and tracking people to observe their behaviors to recognize

their interests, intentions and preferences concerning surrounding environments.

Secondly, the different modes of approach for social robots to provide services

to people based on their observed behaviors. Finally, the behaviors of the social

robots during interaction with humans. These three research topics are highly

linked to HRI research.

Therefore, first a brief and general overview of Social Robotics is given in Sec-

tion 2.1. Next, we begin by highlighting the purpose of research in HRI and its

supporting research fields are presented in Section 2.3. Then, the more detailed

state-of-the-art descriptions of the related technologies to detect and track peo-

ple are presented in Section 2.3.1. In Section 2.3.2, a description of current HRI

research is provided where consideration is given towards observing people’s be-

haviors for supporting robots to estimate their interests and intentions. Finally,

modeling the behaviors of social robots (Section 2.3.3) from the perspective of

interaction with people (Section 2.3.4) in public spaces are described. Each sec-

tion gives an overview over the state-of-the-art research and concludes with an

evaluation of how the work in this dissertation fits into the field.
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2.1 Definitions of Social Robots

At the beginning of the robotic era, robots have been loosely defined as “re-

programmable multi-functional manipulators” that were designed to move ma-

terials, parts, tools, or specialized devices through variable programmed motions

for the performance of a variety of industrial tasks. But over the last decades,

robots have moved form purely industrial use into human society to play an im-

portant role in society as a partner of human beings in daily life. Thus, the above

mentioned definition is outdated for those robots that are called “social robots”.

So, we can define an autonomous robot as a social robot if it can interact and

communicate with humans or other autonomous physical agents by following so-

cial behaviors and rules attached to its role. Social Robotics is a fairly recent

branch of robotics.

2.1.0.1 Socially Interactive Robots

Fong et al. [53] compiled several observations concerning socially interactive

robots after an extensive survey of social robots. From their point of view, “So-

cial robots are embodied agents that are part of a heterogeneous group: a society

of robots or humans. They are able to recognize each other and engage in social

interactions, they possess histories (perceive and interpret the world in terms of

their own experience), and they explicitly communicate with and learn from each

other” [53]. Therefore, the socially interactive robot requires some specific capa-

bilities: it has to be able to express and perceive emotions, communicate with

high-level dialogue, and learn and recognize models of other agents. Further-

more, it has to be capable of establishing and maintaining social relationships,

using natural cues (gaze, gestures, etc.), and exhibit distinctive personality and

character. Finally, the robot may also develop social competencies.

2.1.0.2 Sociable Robots

According to the study by Breazeal in [24], a sociable robot is able to communicate

with us, understands and even relates to us, in a personal way. It should be able

to understand humans and itself in social terms. In turn, human beings should

be able to understand the robot in the same social terms to be able to relate to

the robot and to empathize with it. Such a robot must be able to adapt and learn
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throughout its lifetime, incorporating shared experiences with other individuals

into its understanding of itself, of others, and of the relationships they share. In

short, a sociable robot is socially intelligent in a human-like way.

2.1.0.3 Design-Centered Social Robots

A design-centered social robot is an autonomous or semi-autonomous robot that

interacts with humans by following the behavioral norms expected by the people

with whom the robot is intended to interact. Their definition presupposes three

conditions: the robot has to be autonomous, depending on the case it has to

interact cooperatively or non-cooperatively, and it has to recognise human values,

roles, etc.

2.1.1 Towards a Definition of Social Robots

It can be easily realized from the above discussion that social robots contain

aspects about form and function. However, within the definitions of industrial

robots the form is not mentioned. Thus, there is a difference between (industrial)

robots and social robots relating to form. All the researchers in [16, 24, 53, 164]

argue that the embodiment and form of social robots are important aspects. In

human society, humans have different expectations due to the aesthetic form of

robots. The aesthetic form communicates social cues and signals and the behavior

of a robot is mediated somehow through its physical form.

In comparison with an industrial robot, a social robot combines technical

aspects as well as social aspects but the social aspects are the core purpose of

social robots. The industrial robot is not a social robot, because it needs specific

communicative capabilities to become a social robot. First, it implies the robot

behaves (functions) socially within a context and second, it implies the robot

to have an appearance (form) that explicitly social with respect to any person.

From this point of view, a social robot contains a robot and a social interface (see

Figure 2.1). A social interface encloses all the designed features by which a user

judges the robot as having social qualities.
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Robot
Social 

Robot

Social Interface

Figure 2.1: A Social Interface creates a social robot (Source: [84]).

2.2 Potential Applications of Social Robots

The main focus of this dissertation is on “social robots” in the role of peer-

type human partners in social environments. Thus, applications for social robots

would include services that are typically provided by people. A few examples

of social robot application concepts are illustrated in Figure 2.2. This section

will discuss examples of services that could be performed by social robots in real

world environments.

2.2.1 Guidance Services

Social robots can provide guides in a way that are typically provided by human

guides. Some examples of guiding services include providing public service an-

nouncements in public spaces, directing people in emergency situations such as

the evacuation of a building, and providing guided tours or personalized proac-

tive commentary about the exhibits in museums. Another example can be found

in how the size of shopping malls and train stations continue to become larger

and larger. Sometimes people get lost in such large spaces and ask for directions.

Even though all such types of public spaces have maps, many people still prefer to

ask for help. In such situations, social robots can play important roles, providing

route guidance to direct them according to their preferences.

2.2.2 Informational Services

From the shopping mall management’s point of view, information services are

one of the most important facilities they need. For instance, posters and signs
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(a) (b)

(c) (d)

Figure 2.2: Potential application of social robot in various public space scenar-

ios; (a) guiding customer in shopping mall (Source: [103]), (b) Providing route

guidance at a train station (Source: [177]), (c) guiding museum visitor (Source:

[121]), (d) serving customers in a restaurant (Source: [159]).

are placed everywhere in malls. In recent times IT services have also been put to

use. We believe that a social robot can also be a powerful tool for this purpose.

The physical presence of social robots in such social spaces gives them a great

advantages over those posters, signs, and IT based informational services. The

authors in [100] claimed that since a social robot is novel, it can attract people’s

attention and redirect their interest to the information it provides. Some other

examples of information services could include answering people’s questions at a

convention or other event, and soliciting responses to survey questions [67].

2.2.3 Assistance

Social robots could provide physical, mental, or social assistance to persons who

could benefit from it such as the elderly or disabled. Social robots may help them

to carry bags or groceries while shopping, or help to carry heavy luggage at an

airport. They can also be used to carry people in and out of bed in hospitals.

Some studies have investigated the use of “intelligent shopping carts” to provide
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both information and baggage carrying services in a shopping scenario [75]. For

example, DF Glas et al. [69] deployed non-humanoid cart robots in shopping

mall to provide on-demand baggage-carrying services, to carry customer’s bags

to various destinations in a mall. For a closer-to-home example, if we can request

that the robot take out the trash and it could find the garbage can, remove the

bag, and place it in the right location on the curb, that would be seen as very

helpful to have around our home.

2.2.4 Entertainment Services and Companionship

Social robots can provide service in the form of entertainment. In such situa-

tions, the value of the service primarily lies in the content of the information

provided by the social robot. These sorts of services have been demonstrated

in the form of a robot playing with children at an elementary school [101, 127]

and day care centers [189]. In addition, there is already a great use of robots on

the silver screen (for example, the Jurassic Park and the Terminator movies).

On the other hand, robots are also considered as companions of humans in the

public spaces where the main goal is to know the feelings of the person when

interacting with the robot. In [91] the authors did some work like that with a

social robot accompanying an elderly person through a super market, chatting

about topics like the weather while they were shopping. Furthermore, authors on

the mentioned works addressed the quality of interaction between humans and

robots.

2.2.5 Autism Therapy

It has been seen from a significant amount of robotics research over the last decade

that many children with autism spectrum disorder (ASD) have a strong interest

in robots, and further, robots are considered as a potential tools for the therapy

of ASD. Robotics research has demonstrated that many individuals with ASD

express elevated enthusiasm (for example, increase in attention [49], imitation

ability [55], verbal utterances [108], social activities [202]) while interacting with

robots. A comprehensive survey on this application of robots for the therapy of

ASD is available in [31, 168]. Recently, Begum et al. conducted a study in [17]

on measuring the efficacy of robots in ASD therapy.
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2.2.6 Peer, Tool, Tutorship in Education

It has been shown through years in the HRI research that social robots are more

crucial for children and teenagers, where robots can be used for their development

and intellectual growth. As a consequence, greater attention has already been

paid to use social robots in education to provide language, science or technology

education and that a robot can take on the role of a tutor, tools, or peer in the

learning activity. It has been shown in that young children performed better on

post-learning examinations and generated more interest when language learning

took place with the help of robots as compared to audiotapes and books [94].

Nowadays, education robots are a subset of educational technology, where they

are used to facilitate learning and improve the academic performance of students.

An analytical overview of the prevailing fields of social robots in education can

be found in [141].

2.3 Human Robot Interaction

Human Robot Interaction (HRI) is the interdisciplinary study of interaction dy-

namics between humans and robots. Mostly, humans express their intentions via

speech, gestures, expressions, and sounds. In response, to such types of human

behaviors, social robots must be aware and also be able to understand them [9].

Researchers and practitioners specializing in HRI come from a variety of fields,

including engineering (electrical, mechanical, industrial, and design), computer

science (human-computer interaction, artificial intelligence, robotics, natural lan-

guage understanding, and computer vision), social sciences (psychology, cogni-

tive science, communications, anthropology, and human factors), and humanities

(ethics and philosophy). Human-Robot Interaction (HRI) differs fundamentally

from typical Human-Computer Interaction (HCI) in several dimensions. Yanco

et al. state in [209] that HRI can be seen as a subset of HCI. Figure 2.3 shows

the HRI which is placed within the multidisciplinary field of research.

The HRI research area started growing roughly a one and half decade ago,

and has been fast growing ever since. To highlight the research progress in HRI,

the HRI community has been arranging annual conferences on Human-Robot

Interaction since 2006. There are quite a few distinct subject areas related to
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HRI

Figure 2.3: HRI- a multidisciplinary field of research.

HRI. Most of the research related to HRI can be categorized within one or more

of the subjects illustrated in Figure 2.4. The categorization of these research areas

is based on an analysis of HRI related publications at conferences/symposiums

such as HRI, IROS, RO-MAN, ICRA, and ICSR. The research areas which are

directly treated in this dissertation are marked in orange , whereas the ones

marked with light green are not explicitly considered in this dissertation but

have some background relation to this dissertation. The light aqua ones are not

directly related to the presented work in this dissertation. The research areas

which are not directly treated in this dissertation are briefly presented here:

Facial Expressions: Facial expressions are responsible for a huge proportion

of nonverbal communication. While nonverbal communication and behavior can

vary dramatically between cultures [88]. Social robots can express human emo-

tions, to be able to be sociable [187].

Gestures: Deliberate movements and signals are an important way to com-

municate without words. Common gestures include waving, pointing, and using

fingers to indicate numeric amounts [93]. Other gestures are arbitrary and related

to culture.
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H R

Robot’s 
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Human Detection 
and Tracking

Human-aware 
Motion

Object 
Recognition GraspingGestures

Interaction

Social Signal Processing

Fields Trials

Facial Expressions

Roboethics

Figure 2.4: Research within HRI can be grouped into a range of areas. The

orange areas are the ones that are most closely related to the work presented in

this dissertation. The light green areas are relation to the dissertation, and the

light aqua ones are not directly related to this dissertation.

Grasping: Autonomously grasping a previously unknown object still remains

a challenging problem for a social robot. Modern social robots should be able to

grasp things [162] carefully through hand-programmed or “scripted” to move in

the physical world.

Roboethics: During the last decade, social robots have gradually entered many

of our public spaces such as assistance robots for the elderly in day-care service

centers [77], general service robots for hospitals [51] and office buildings [11], [12],

visitor guide robots for museums [19], [30], [181], shop clerk robots for shopping

centers [74], and general guide robots for passengers in train stations [177]. Thus,

a fruitful discussion on how the social robot should be allowed to behave with

humans is very relevant [187]. Movies like; Blade Runner; Terminator; A.I.; I,
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Robot, etc., contribute to the popular belief that robots might be dangerous when

becoming intelligent parts of our everyday environments [10].

Object Recognition: The human visual system is equipped with extremely

high selectivity that allows us to distinguish among even very similar objects, like

the faces of identical twins [120]. Before deploying a social robot in public spaces,

the visual system of a social robot should have the capability to identify objects

being observed in real world spaces where objects are considered as information

about the environment and for navigation. Computer vision is usually used for

these tasks in robotics [13].

Field Trials: This specific area of HRI concerns experiments, where robotic

systems have been put out into real world environments to validate their effec-

tiveness to provide services to humans. So far many such field trials have been

conducted by the researchers in many public spaces. For example, in shopping

malls [99, 104], train stations [177], and museums [175, 194] to see how the robot

behaves in the real world, or controlled real world settings.

Social Signal Processing (SSP): With this term, SSP, researchers addresses

the ability to estimate human social signals and behaviors [199]. SSP is not a

focus in this dissertation, but it has some resemblance to what is done, since this

dissertation deals with estimating human intentions, interests, and preferences

by observing their various bodily actions as behaviors for social robots.

Human Perception of Robot’s Behaviors: How do people actually feel

when a social robot enters or coexists in real world social environments. Many

researchers addressed this topics in different real world scenarios, for example,

in shopping malls [69, 99, 103], museums [173], and train stations [177]. These

topics are also relevant in relation to this dissertation, where it is desired that

the social robot will be a part of the social environments for the people. No

experiments are done in real world environments but are done in designed real

world controlled environments, where human perception is measured. However,

it is relevant in relation to how and when a robot should approach humans.
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Table 2.1: Relationship between space, distance, and degree of familiarity among

the interacting humans and the number of interactors.

Space Range Situation

Intimate space 0 ∼ 50cm Unmistakable involvement with another
body (lover or close friend)

Personal space 50cm ∼120cm Comfortable separation,
interaction with friends

Social space 120cm∼350cm Reduced involvement,
interaction with non-friends

Public space >350cm Outside circle of meaningful involvement,
public speaking

Human-aware Motion: In real world environments, social robots should move

naturally, comfortably and safely, such that they are socially acceptable to people.

Although the aim of the work in this dissertation is not centered around enabling

a robot to move in the social space, there is some resemblance to what is done,

since in some of our conducted experiments we deployed social robots which

moved through some predefined locations to interact with humans in controlled

conditions to offer proactive services. Thus, to find out how a social robot should

move in a real environment, a good place to start, is to study how humans position

themselves relatives to each other. Edward T. Hall proposed a theory-called

“proxemics theory” on human-human spatial placement behavior in his large

study presented in [79], where he categorizes distances between people into four

classes depending on the degree of familiarity between interacting humans and

the number of interactors. The distances are categorized as: intimate, personal,

social, and public (Table 2.1). These spatial zones are static zones, which apply

to how people position themselves relative to each other. Figure 2.5 shows four

spaces during human-human interaction. Scientists in the robotics community

have strived to move social robots in human environments for the past decades.

Yoda and Shiota generated robot motion in [211] based on their own studies on

how humans pass each other [210]. Pacchierotti et al. conducted an experiment

where people in a corridor evaluated the behavior of a robot that acted according

to the proxemic theory [154].

In [203], Walters et al. asked the participants (both kids and adults) to

approach a robot, and stop at a distance, where they felt comfortable. Authors
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Figure 2.5: Different modes of interaction among humans (Source: [190]).

claimed that the children mostly place themselves in the social zone of the robot,

but on the border to the personal zone. The result for adults was that they

approach a bit closer to the robot. In the second part of the study, the roles

were reversed, such that the robot approached the persons. In this experiment,

the robot was allowed to approach a bit closer, than the participants approached

in the first part of the experiment. Furthermore the authors concludes that

there is a need for long term trials, since social distances may change over time.

Follow-up studies on the stopping distance and direction of social robots prior to

establishing interaction with humans were performed in [43, 44, 110, 111]. Here,

various experiments are done with different approach directions. For example, in

the museum scenario, Das et al. [43] claimed that the robots should select the

motion path to reach a person from its public distance to his/her social distance

to proactively approach him/her based on his/her orientation of attention so that

the robot and the person could be face-to-face.

Based on the scope of this dissertation, the four central themes that are rel-

evant in relation to HRI are; Human detection and tracking in spaces, human

intention recognition, interaction among humans and robots, and the design of

the robot’s behaviors. These are described more in detail in the following sections.
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2.3.1 Human Detection and Tracking in Spaces

Human detection and tracking is increasingly demanded in various applications

ranging from human-computer interfaces to robotics, crowd analysis, surveillance,

automation, and medical purposes. Specifically, in robotics, to implement a suc-

cessful HRI system, a robot should have advanced abilities to carry out complex

and complicated tasks. One such ability is robust people detection and tracking

even in crowded social spaces. It has been identified as important tool in HRI not

only for safe operation [170] but also for collision avoidance [178] or to implement

following behaviors [60, 71], or most importantly to provide proactive services by

the robot to the people through observing their behaviors about the surrounding

environments. But, most of the state-of-the-art people detection and tracking

systems for robots in HRI itself have on-board sensing capability can only track

people at short range and are usually operated in controlled environments. Such

types of on-board human sensing systems are insufficient for observing people’s

behaviors in real world large-scale environments for successful HRI. Thus, an en-

vironmentally distributed people detection and tracking system for social robot

is desirable to meet HRI’s demands in real world environments. To realize ac-

curate detection and tracking of people in different environments, many studies

have been proposed in the fields of robotics using vision sensors, laser sensors,

floor sensors, and wearable sensors, or combination of them (For examples, see

in Table 2.2) which are briefly described in the following sections.

2.3.1.1 Vision Based System:

Detection and tracking of persons using camera images has been reviewed in

[136],[215],[192],[165]. The authors in [6, 63, 85, 95, 105, 151] have used cameras

to detect the position of humans from the robot in the fields of HRI. Recent works

presented in [8, 86, 179] on standard RGB camera based human detection and

tracking present some impressive tracking results, even in very crowded scenes. In

real-world environments, their on-board sensing system was not robust enough

to track human behaviors in realtime [99]. Again, the authors in [153, 161]

addressed the issue of tracking both position and body direction estimation in

the fields of computer vision. In addition, the problem of using vision sensors

is that they do not automatically provide the identification of each person and
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Table 2.2: Different state-of-the-art human sensing and tracking modalities in different domains.

Sensing
modalities

RGB-Camera 3D Range Laser Floor Sensor Ubiquitous Sensor

RGB-Camera [147], [204], [61],

[95], [6], [63],

[74], [42], [85],

[85], [151], [105],

[122], [19], [106]

3D Range [33], [73] [104], [27],

[26], [76]

[68], [72]

Laser [7], [194], [133],

[113], [163], [23],

[18], [59]

[3] [97], [64], [152],

[35], [87], [4],

[37], [39], [66],

[40], [156], [216],

[18], [170], [116],

[176], [174], [27],

[29], [99]

[69]

Floor Sensor [177] [103]

Ubiquitous
Sensor

[62], [117] [175], [57],

[81], [197],

[78], [32],

[173]
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there are ambiguities when people cross paths [89]. For those reasons, the number

of applications of cameras for tracking in a large public space is still small, and

they are often also limited to single camera views, relatively simple and static

backgrounds, or do not discuss the long-term use of the method with changing

illumination. In addition, although unrelated to tracking performance, privacy

issues can often pose an obstacle to the introduction of such systems in public

areas [26]. Vision based trackers also generally lack robustness and scalability,

especially in open environments where lighting conditions vary over time [133].

Thus, obtaining a robust and autonomous vision based solution for continuous

human position detection and tracking in public spaces appears to be a hard

problem.

2.3.1.2 Laser Based System

In applications where it is only desired to find the persons positions and not pos-

ture or facial expressions, laser scanner based people detection and tracking is

prevalent. Therefore, Laser Range Finders (LRF) have successfully been applied

to human position tracking in public spaces [11, 46, 52, 64, 66, 137, 142, 216]

because it presents important advantages over vision based tracking system like

high accuracy, effective sensing distance, wide view angles, high scanning rates,

little sensitivity to illumination change, ease of use [5], and require far less pro-

cessing than video tracking systems [102]. In addition, especially in HRI, laser

range finder based human tracking has also replaced the floor sensor based human

tracking systems [144] as they are easier to use and less obtrusive. The success

of most of the early human-tracking systems using LRF has been based on leg

tracking [25, 39, 87, 138, 170] because it is relative easy to extract information

about a persons legs from a simple line scan compared to more sophisticated im-

age processing. Kim et al. [109] presented a method utilizing laser range scanners

for mobile robots to detect human legs and to follow for interaction with him/her.

Recently in [64, 152], the authors proposed systems for simultaneously tracking

the position and body orientation of people, using a network of LRFs mounted

at torso height which are distributed in the environment but their systems are

sensitive to occluded views of the person, so these can work reliably only when

the number of persons is small and there are line-of-sight views between the LRF

sensors and the target persons.
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2.3.1.3 3-D Range Based System

On the other hand, 3D range sensing has gained more attention recently due to

the increased availability of such sensors. Some recent works on human detection

and tracking have applied 3D range sensors [26, 148, 171, 183]. In [160], Piérard,

Sébastien et al. presented an example of their using 3D range sensors for estimat-

ing the person’s body orientation. All of these works use a horizontal view of the

sensors. The application to detect and track people using 3D range sensors where

sensors are overhead mounted are presented in [21, 82]. But they were limited to

a single sensor and did not try to detect the body angle from range data. However

this would have resulted in a significant and prohibitive increase in the cost to

buy, install, and maintain the tracking sensors in large area tracking, especially

in public spaces.

2.3.1.4 Ubiquitous Sensor Based System

With the grace of cutting edge technologies, ubiquitous computing devices are

often used, such as GPS, or the signal strength of radio (GSM, WiFi, Bluetooth,

RFID, and power line) to detect and track people [100]. For example, Eagle and

Pentland developed a Bluetooth-based device attached to a mobile phone that

enables the analysis of activities such as being at home, at the office, or elsewhere

[47]. Currently, Bluetooth technology seems to be very promising to track people

in public spaces [50, 131]. Authors in [128] also used location obtained via GPS

with a relational Marcov model to discriminate location-based activities such as

being at home, at the office, and out dining. Besides, indoor positioning systems

using Wireless LAN access points like the EAGER system [96], Museum Expe-

rience Recorder (MER) system [140] and Radio frequency identification (RFID)

systems [143, 175] are also very promising to track people in public spaces. But,

these technologies can be obtrusive because they require wearable or mobile de-

vices which need to be carried by the target visitors. Thus, these approaches have

a number of limitations for applications in tracking people’s actual behaviors in

any social public spaces. For example, in the context of an art gallery, visitors

may enter the gallery spontaneously, usually pass time based on their own in-

terests, and may not be interested in actively engaging with the technology by
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wearing mobile devices. Thus, such types of wearable solutions to track humans

in public spaces is not adoptable to observe their actual behaviors.

2.3.1.5 Different Sensing Modalities in Combination

It can be seen that from the above discussions, the different types of sensors have

different capabilities and effectiveness. For example, laser based approaches tend

to work at longer ranges than vision. On the other hand, using vision enables more

accurate tracking in terms of finding features like the posture of the person. Also,

face tracking is important for close interaction purposes, where it is necessary to

find out if a person is looking at the robot, and what kind of facial expression the

person has. To combine the possible capabilities into a single system, there are

also some proposed works presented in [23, 33, 34, 41, 113, 130, 133, 163, 182] to

detect and track humans in public spaces and/or laboratory environments where

authors utilized different sensing modalities in combination, like various kinds of

vision and laser based sensors. Authors in [33, 130] used RGB-D cameras which

combine 3D range and camera measurements to track humans. Again, Kobayashi

and Kuno proposed to use integrated sensors that are composed of an LRF and

an omni-directional camera for precise tracking of human behaviors to establish

HRI [113]. Blanco et. al. presented an approach to combine LRFs and vision

data to robustly and efficiently detect persons even in cluttered environments

[23]. Multiple persons tracking with data fusion of multiple cameras and floor

sensors are illustrated in [139]. Guide robots in [103] utilized integrated sensor

systems to track people in public spaces where for position estimation, floor

sensors [144] are used to accurately and simultaneously identify the positions of

multiple people. Furthermore, for person identification, a passive-type RFID was

tagged to every person that would always provide accurate identification. Such

RFID tags require intentional user contact with the RFID reader. But, from the

practical implementation point of view combining multiple sensor types make

the system more problematic and complex to install and maintain, especially for

large area tracking in public spaces (e.g. shopping mall arcades, train stations,

and museums ) [26].
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2.3.1.6 Occlusion Problems and Handling in Human Detection and

Tracking

Numerous human detection and tracking solutions have been presented in differ-

ent research fields (stated in Section 2.3.1) to tackle various challenges, such as

illumination changes, fast motion, and so on in visual tracking. Laser, 3D-based

tracking systems were utilized for seamless tracking with proper identifications

of people in larger spaces. But, most importantly, many trackers have ignored

occlusion or handled partial occlusion of people, while at the same time, occlu-

sion is known to be one of the most challenging aspects in human detection and

seamless tracking.

In human tracking, occlusion happens when a portion (or the whole) of the

observed part of the target person disappears from the observed space due to

obstruction of the sensors’ line-of-sight to the target person. Such types of phe-

nomenon occur due to numerous reasons and frequently happens in real world

crowded social environments where there are complex interactions between peo-

ple in which temporal and/or spatial occlusions may occur. Occlusions result in

errors which may eventually cause the tracker to drift away from the target or

be dropped in the middle of a tracking scenario. Hence, occlusion handling is

necessary to robustly track people even in crowded real social spaces. Occlusion

handling is the task of minimizing the impact of occlusion on the tracking, which

is achieved by granting robustness to the tracker against occlusion or prevent-

ing/compensating for the disturbing effects of the occlusion.

In contrast to the wealth of literature in human detection and tracking using

various sensor modalities, the occlusion problem has received little attention.

Most of the proposed state-of-the-art methods simply either ignored the occlusion

problems or claimed to handle just partial occlusion owing to their robust design.

But dealing with occlusions of people in the sensors views is a critical issue in

human behavior tracking research as we need to continuously track their positions

and body orientation to ultimately know their interests and intentions in public

spaces. The state-of-the-art in handling occlusions for visual tracking is presented

in [118]. Carballo et al. dealt with partial occlusion in people detection and

position estimation using multiple layers of laser range finders on a mobile robot

[5]. Their proposed approach is well suited to tracking people that are relatively

close to the robot. However, their tracker is not suited to larger spaces where
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a significant number of people may gather. In other recent work, multiple laser

range finders were installed in a space for human and robot tracking in [66, 152]

where each of the sensors deployed around the perimeter of the space would

be covered by other sensors, to minimize occlusions. But under each of their

implementations, the problem of persons occluding each other in the sensor view

is a serious issue in crowded social spaces for real world use.

On the other hand, 3D range sensing is also used to minimize the error due to

occlusion while detecting and tracking people in public social spaces. The authors

in [171] presented methods for explicitly taking into account the possibility that

persons are temporarily occluded. Works presented in [26] used 3D range sensing

systems where sensors are overhead mounted in the public space to allow for a

good view of all the persons and minimizes occlusions due to surrounding objects

or other persons, which is especially important for situations when the density of

persons in the space is high. However, 3D range sensing devices are commercially

expensive and used only for research purposes which would result in a significant

and prohibitive increase in the cost to buy, install, and maintain in public spaces

for real world use.

Thus, in this dissertation, we are interested in making use of people tracking

for a wearable-free solution where people do not need to attach markers to them-

selves or carry special devices so that users may observe humans in an unrestricted

manner. We also would like to minimize the effect of occlusions while tracking

people even in crowded public spaces where nowadays HRI systems are intro-

duced in which robots sense human behaviors using the various modern human

sensing technologies.

2.3.2 Human Intention Recognition in HRI

In human societies, knowing the attention and intent of others is fundamental to

collaborative interaction in which interactors work collaboratively [104]. But, in

an HRI platform, identifying people’s attentions and interests is a challenging task

for service robots in real social environments. Usually, from people’s behaviors,

we can often say things like, What they would like to do?, What are their needs?,

What are their interests, intentions?, What are their actual expectations from

their surroundings?. In daily life, for example, if we find a person who is looking
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around with a map in his/her hand at a train station, we may offer assistance to

that person. We, the human beings can determine others’ behaviors by observing

their various bodily actions. Such bodily actions can be observed in large areas as

well as in small areas. The observation of bodily actions in a large area and small

area can be defined as global behavior and local behavior, respectively. People’s

overall walking trajectory patterns (see Figure 2.6), such as, “entering through

the entrance of an art gallery, walking across all the paintings, stopping in front of

a few of the paintings, and finally, leaving the art gallery” can be good examples of

people’s global behaviors, on the other hand, people’s basic motion primitives, such

as fast walking, idle walking, wandering, stoping [99], various facial expressions

(e.g. disgust, anger, fear, sadness, happiness, surprise), visual focus of attention,

head movements, eye gaze movements can be considered as their very well known

local behaviors (see Figure 2.7). Both people’s local and global behaviors are highly

dependent on the specific environments. For robots, dealing with observing such

types of people’s behaviors is a really challenging task. If robots could deal with

such types of situations in observing people’s behaviors, then it would enable the

robot to anticipate the future behaviors of individuals thereby estimating people’s

attentions, intentions, and interests about the surroundings. But, in HRI, very

few research studies have been conducted that considered the cases where robots

are expected to observe both people’s local and global behaviors to recognize their

intentions. Table 2.3 provides a summary of the state-of-the-art HRI research

where researchers considered observing either people’s local or global behaviors or

both in supporting robots to estimate interests, intentions, and preferences before

initiating interaction with people in different social public location scenarios. For

example, Kato et al. [104] developed an intention estimator for pedestrians to

make a robot better initiate the interaction. The pedestrian intentions were

learnt from their trajectories in [106] where the changes in velocity and distance

were used as features, and intents such stopping, approaching, and following were

modeled. But, the developed model was not used to make a robot better initiate

interaction with human.

It is seen from the Table 2.3 that none of the state-of-the-art people’s intention

recognition system in HRI incorporated the sensing modalities from where the

robot system estimates people’s intentions by combining the bits of information

from their local and global behaviors. But, considering people’s local and global
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Table 2.3: Related Studies in HRI concerning human behavior tracking, Intention

recognition, followed by service robots’ services in different scenarios
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W. Burgard et al. [29]
√ × × √ × Museum

S. Thrun et al. [194]
√ × × √ × Museum

Y. Koide et al. [117] × √ √ × √
Exhibition>

M. Shiomi et al. [173]
√ × √ × × Museum

R. Kelley et al. [106]
√ × √ √ × Personal

T. Kanda et al. [103] × × × × × Mall

T. Kanda et al. [99]
√ × √ √ √

Mall>

M. Shiomi et al. [174]
√ × √ √ √

Mall>

M. Shiomi et al. [176]
√ × × √ √

Mall>

M. Shiomi et al. [177]
√ × × √ × Train Station>

DF. Glas et al. [69]
√ × √ × √

Mall>

A. Garrell et al. [59]
√ × × √ × Personal

Y. Kato et al. [104]
√ × √ √ √

Mall>

D. Brscić et al. [27]
√ × √ √ × Mall>

This Study
√ √ √ √ √

Museum>

> Indicates human sensor systems are distributed in environments.
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Figure 2.6: People’s Walking Trajectory Patterns–an example of people’s global

behavior (Source: [212]).

behaviors is highly effective for estimating their intentions. It is also stated in

Section 2.3.1 that observation of people’s local and global behaviors should be

unobtrusive to recognize their actual intentions because the active engagement of

people with the sensory system may detract them from their actual intentions.

On the other hand, it is difficult to devise a single sensor system to detect and

recognize both people’s local and global behaviors. Thus it is necessary to design

a sensor system for HRI which can recognize people’s behaviors together. For this

reason, a network sensor system is proposed in Chapter 4 for social robots, which

consists of a global sensor subsystem observing a large area and a local sensor

subsystem with a number of distributed sensors each observing a small area. The

robot system estimates peoples intentions by combining the bits of information

from the global and local sensor subsystems and proactively offers help to people

in need.

2.3.3 Designing the Social Robot’s Behaviors

Most of the state-of-the-art social robots (for example, ASIMO, Robovie) do

not have any built-in artificial intelligence to adapt in public spaces to support

human activities in real environments. Depending on the environments, the social

robots’ activities, objectives, and roles will be typically different. Thus social
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Facial Expressions Visual Focus of Attention

Head Movements Eye Gaze Movements

Fast Walk

Idle Walk wandering Stop

Human Motion Primitives

Figure 2.7: Illustration of people’s various types of behaviors as examples of

people’s local behavior.

robots are programmed to perform various kinds of functions accordingly in real

environments. For example, in train stations, sometimes people get lost and

ask for directions. Even though every train station has maps, many people still

prefer to ask for help. For example, some people may prefer to ask questions like,

“Where is the platform headed to Tokyo?” as this information might be difficult

to infer from a station map. Here, the robot’s support would come in the form of

route guidance for people. From the shopping mall’s point of view, advertising

is an important need. For instance, posters and signs are placed everywhere

in malls. We believe that a social robot can also be a powerful tool for such

purposes. Since a robot’s presence is novel, it can attract people’s attention and

redirect their interest to the information it provides [100]. Thus, depending on

the applications of social robots in real environments, a human designer should

define the contents of the services as well as the context in which the robot should

provide the services.
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Before designing the social robot’s behaviors to be able to interact with people,

usually, researchers observe the behaviors of the persons who are in conversations

in various real environments. Such types of observations are executed in very few

HRI studies (for example, [69, 99, 103, 104, 112, 114, 206, 208]) before modeling

the social robot’s behaviors. For example, Kato et al. [104] observed visitors’

behaviors together with the behaviors of the service staff in a shopping mall.

They observed that the behaviors of the service staff is highly dependent on

the behaviors of the visitors. Based on their observations, they developed a

model with the focus on estimated intentions of the staff members with respect

to visitors intentions. Later, the robot behaved according to the model as staff

members to proactively serve future visitors in the same shopping mall. Kanda

et al. in [99] present a series of abstraction techniques for people’s trajectories

to distinguish potential customers from the other people in a shopping mall and

present a service framework for using these techniques in a social robot, which

enables a designer to make the robot proactively approach customers by only

providing information about the target local behavior. Also, in the context of a

museum scenario, researchers undertook extensive ethnographic fieldwork in [208]

on the interaction of human guides and visitors during gallery talks to discover

a range of new features of conduct in the human guide’s behavior. Based on

their findings, the behaviors of a museum guide robot was modelled so that it

could play the role of the human patron’s guide in the museum. In most of their

designed behaviors for social robots, the robots proactively approach humans

by exhibiting verbal, gaze movements, gestural (head shaking, hand waving and

body movement in between the target person and the objects) actions to draw

attention and offer services. In the case of the reactive approach, social robots

show their availability and recipiency by their behaviors so that people can easily

start asking for help or assistance.

In this study, a museum guide robot system is developed, which proactively

offers guidance to some category of visitors in the museum scenario, namely the

ones who actually need guidance. Here, we developed artificial intelligence for

the Robovie-R3 and Naoko Desktop Robots so that they could play the role of

human museum guides, in which they proactively approach visitors by exhibiting

verbal, gestural actions to draw attention and offer service to the target visitors.
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2.3.4 Interaction Between Humans and Social Robots

When a social robot needs to interact with humans, it should be cooperative and

socially intelligent. Thus, socially intelligent robots are autonomous robots with

a physical embodiments that can communicate with humans following the social

rules attached to their roles [16]. Furthermore, a robot can be perceived as social

when it understands and responds to people’s behaviors in socially acceptable

ways.

The interactions of a social robot with humans are designed to be as natural

as possible, in such a way that they look like normal human-human interactions.

People tend to react to systems as if they are social actors [166]. This supports

the idea that theories and knowledge that apply to interpersonal relations will

also apply to interaction between humans and robots. Social robots are embodied

and share the same physical spaces as humans, so they should be able to interact

by either touching (physically), by verbal or non-verbal means, or a combination

of both of them. Physical contact with a social robot is necessary when a robot

is working in a public space, for example, when in a hospital and it has to carry

people in and out of bed [107]. But physical contact with a human is not essential

for all social robots, especially not for a robot which has a task where it helps or

guides or entertains someone in museums, train stations, or shopping malls like

popular public spaces.

In the early stages of HRI, social robots interacted with human reactively.

In such typical social robotic systems, people explicitly call the robot for help.

There has been a great deal of research to extend the modalities so that we can

use voice and gestures in these cases. In addition, Yamazaki et al. proposed that

social robots should show their availability and recipiency by it’s behaviors so that

people could easily start asking for help or assistance [207]. In most cases, social

robots wait until people willingly initiate interaction where the robot should only

behave reactively, to respond to questions, for example, see Figure 2.8(Left).

On the other hand, in actual social interaction, people tend to do things

automatically for each other, without being asked for help. In our daily life, for

example, if we find a person who is looking around with a map in his/her hand

at a shopping mall, we can anticipate on upcoming situations and be proactive.

Consequently, we may ask him/her if we can help him/her, but only when the
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I think you may 
need this !

Hey! 
What is this…?

Reactive Behavior Proactive Behavior

Figure 2.8: Different modes of interaction among human and robot.

upcoming situations do happen, otherwise it was a waste of time. During the

middle of this era, scientist have tried to make the social robots as natural as

possible to serve people proactively where social robots should estimate human

intentions, and offer help only to those who would need it, for example, see

Figure 2.8(Right). If it is possible to introduce the proactive behaviors of social

robots then it can have several advantages, but if it does not work extremely well,

it can be intrusive and disturbing. The advantages of proactive behavior are a

more intuitive human-like interaction with robots [169] because the social robot

reads human’s intentions, s/he does not have to formulate a question (which can

be difficult), thus a social robot’s proactiveness reduces the human’s effort. It is

expected that in a more proactive state the more human-like interaction makes

the social robot less machine-like [107].

So far very few works (see Table 2.3) have been proposed in HRI where the

authors introduced a robot’s proactive social behaviors in different scenarios.

In most of these works, social robots estimate human intentions in advance by

observing their local behaviors using different sensing modalities. The authors in

[117] utilized different sensing modalities in combination in an exhibition area to

enrich the guide robot with the information about each individual’s history of

activities as their global behavior, which allows the guide robot to provide them

personalized guidance. But such types of sensing modalities are partially wearable
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to humans which highly influenced their actual intentions in the exhibition area.

In this dissertation, we intend to design a human-robot interaction frame-

work where wearable-free behavior sensing modalities will be environmentally

distributed by which social robots estimate human’s intention by observing their

varieties of bodily actions. After estimating intentions, the social robot proac-

tively approach humans in socially acceptable ways to guide them in museum

scenarios.

2.4 Tracking Human Behaviors in the Museum

Though the origin of paper-and-pencil based tracking of human behaviors in mu-

seums dates back to the early part of the 20th century [205], the acceptance of

human behaviors observation through technology as a valid and reliable way be-

gan in the 1990s. A history of tracking visitors in museums along with a detailed

explanation of methods used to record, analyze and report visitor tracking data

can be found in S. S. Yalowitz and K. Bronnenkant [205]. With the grace of

cutting-edge technologies, currently, technologies like Bluetooth [50, 131], indoor

positioning systems using Wireless LAN access points like the EAGER system

[96], Museum Experience Recorder (MER) system [140] and Radio frequency

identification (RFID) systems [143, 175] seem to be very promising to observe

various types of behaviors of the museum visitors. But, these technologies can

be obtrusive because they require wearable or mobile devices which need to be

carried by the target humans. Thus, these approaches have a number of limita-

tions for applications in tracking human behaviors in museum like social public

spaces. For example, in the context of an art gallery, visitors may enter the

gallery spontaneously, usually pass time based on their own interests, and may

not be interested in actively engaging with the technology by wearing mobile de-

vices. Besides these techniques, system based on observation by video cameras

[28] have also been used to gather insights into movements of humans. However,

the number of applications of cameras for tracking humans are restricted to mea-

surements in narrow fields of view. In addition, although unrelated to the issue

of human behaviors observations, privacy issues can often pose an obstacle to

the introduction of such system in museum like public spaces [26]. In this dis-

sertation, a robust human behavior tracking system is developed specifically for
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supporting of museum guide robots for real museum application. The developed

human behavior tracking system is not only helpful for deploying museum guide

robots but also helpful for museum professionals and curators in adapting new

services for visitors in the near future.

2.5 Museum Guide Robot

Before deploying a guide robot in social spaces, the way a guide robot approaches

people should be in a polite, intuitive and appealing way [29]. There are a signifi-

cant number of museum guide robot projects that have been carried out based on

the robot’s autonomous movement [65]. Robotic museum guides as MINERVA

[194] and ROBOVIE [137] have proven to be effective in addressing people and

maintaining their attention [45]. Burgard et al. in [29] presented an autonomous

mobile robot, called RHINO to provide interactive tours to museum visitors. In

[149], an autonomous robot, called SAGE is presented to provide educational

content to people in museums. Sidner et al. in [180] designed a guide robot that

was designed to explain some innovative items in a museum. These aforemen-

tioned studies have not considered gestures or other body movements during the

approaching phase to begin interaction in HRI scenarios. In addition, Shiomi

et al. in [173] conducted a study on HRI by deploying Robovie-II and Robovie-

M as museum guide robots at Osaka Science Museum, Japan to encourage the

visitors to study and develop an interest in science. Yousuf et al. [213] intro-

duced a mobile museum guide robot that can configure spatial formations with

visitors. Yamazaki et al. [208] provided a museum guide robot with resources to

engage visitors in an interaction about exhibits. A novel museum guide robot is

also presented by Y. Kobayashi et al. to interact with visitors through nonver-

bal behaviors [112]. In all these works [112, 173, 208, 213], the robot interacted

with visitors via either gestures or utterances, or verbal or nonverbal behaviors

or a combination of any of them in explaining exhibits. But, none of them al-

ready deployed guide robots in museum scenarios considered the robot’s proactive

behaviors to offer guidance to the visitors. Thus, introducing social robots for

proactive guidance services for the visitors in museum scenarios is still a chal-

lenging task to the HRI research community. In this study, we integrate head

gestures and other body movements of the robot during the approaching phase
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to proactively guide/assist target-people in more realistic ways. In this case, the

guide robot proactively approaches the target-people to explain any particular

painting. It is noted that the proactive behaviors of the museum guide robots to

explain any particular paintings will depend on the people’s observed behaviors.

2.6 Overall Summary

The goal of this dissertation work is to design a museum guide robot system

which can estimate the interests and intentions of the people toward the exhibits

inside the museum space with the help of modern human sensing technologies so

that it can proactively provide guidance to them. To do this, theories from HRI

are combined with state-of-the-art people detection and tracking research. There

exist several methods for detecting and tracking persons in social public spaces

using different sensing modalities ranging from vision based system to laser based

system, but very few of them utilized those sensing modalities to estimate people’s

interest and intentions, which is very important for HRI tasked social robots to

proactively provide service to the people. Researchers have also investigated how

social robots should behave in social environments when people ask for help, but

it has not been investigated widely how a social robot can seek out a person in

need, which is also important for social robots. Motion around humans have also

been investigated thoroughly with respect to how a robot should move in human

environments. However it has not been investigated thoroughly how and when

to move appropriately to offer proactive service, when the person seems to be

interested in accepting help from someone. The next two chapters will describe

a series of studies that are contextualized in and motivated by our objective

to design a museum guide robot system to provide proactive guidance to the

museum visitors. Each study involves a human-robot interaction situation where

each system can estimate the behaviors of the peoples toward the exhibits inside

the museum. After these two chapters, a chapter is explained which focused on

designing a robust human behavior tracking system for real social spaces with

the goal to track people even in crowded situations, and combat against partial

and full occlusion cases.
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Chapter 3

A Vision Based Guide Robot

System: Initiating Proactive

Social Human Robot Interaction

in Museum Scenarios

3.1 Introduction

During the last decades, computer vision has offered the ability for service robots

to understand human behavior. One of them is the visual focus of attention

(VFOA) of a person as local behavior, which is the behavioral and cognitive

process that indicates where and at what a person is looking, and that can be

determined by eye gaze and/or head pose dynamics [43]. Thus, VFOA is an

important key to understand human behaviors within a limited spaces. The

VFOA of people can be used by service robots to estimate information such as

their interests, intentions, and preferences in relation to the environment [15]. If

any defined VFOA related to their interests and intentions are found from their

gaze direction, then service robots can serve them accordingly. For example, with

such information in an art museum, a human museum guide could guess which

paintings patrons consider more attractive. Such types of information can be very

helpful for developing and adapting various services for people in public spaces

where service robots can exclusively provide services to them. Although dealing

with such types of situations for a service robot is quite difficult, the purpose of
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this study in this chapter is to develop such a robotic system for serving people

who are in need in a proactive manner as opposed to the conventional reactive

approach where robots wait until people exclusively request them for their service.

The main research goal here is to find people that may want the service

robot’s help. To find such people, usually their VFOA are estimated from a

computer vision point of view. It is believe that people can find such information

by detecting and tracking either their eye gaze, head orientation, face profile

information, or some combination of them. In this study, a solution through a

museum guide robot application is demonstrated. There are several guide robots

that have been proposed (for example, [29, 152]) that can provide a guided tour

to people in a museum scenario. However, here developing a guide robot system is

considered so that it can find a person who seems to be interested in a particular

painting. In that case, the guide robot can proactively provide more information

about the painting to the person to make his/her visit to a museum a more

enjoyable.

When trying to find out where people are looking around in a museum, a

first solution would be measure their VFOA which can be estimated by their

gaze direction [186] because gaze direction typically follows the focus of his/her

interest in the environment [188]. D. Todorovic et al. in [196] defined the gaze

direction with respect to some references. There are several such references, and

thus several different alternatives of the notion of gaze direction. One among

them is looker-related gaze direction: the gaze direction that is determined in

relation to the onlooker’s head. Observer-related gaze direction is another way

to define gaze direction where the direction of the onlooker’s gaze is measured

with respect to the observer (who from the on looker’s point of view is just a

part of the environment). The most important distinction in this case is whether

the on looker looks at the observer or not. The final way to define the gaze

direction is in the form of environment-related gaze direction: this is the direction

of gaze specified with respect to some environmental reference [196]. In this study,

people’s environment-related gaze direction is considered to estimate their interest

and intention to the painting inside the museum because in a museum scenario a

human guide will most likely not be concerned with where the people look with

respect to themselves, but rather what s/he looks at in the environment. In this
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3.1 Introduction

experiments, environmental low cost USB video camera sensors are used as such

references in the museum.

Due to the limitations (see next paragraph) of using eye gaze information to

determine the VFOA of people to know their interests and intentions in museum

like environments, in this study, a guide robot system is proposed in which the

guide robot determines the gaze direction of people towards any paintings, but not

the exact gaze point, using the head orientation information because tracking eye

gaze is prohibitively difficult on low or mid resolution images [15] that are typical

of low cost USB video cameras. We believe that the developed guide robot system

can perform robust real-time detection of peoples interest and intention toward

paintings using camera sensors in a museum scenario for providing proactive

guidance to the museums patrons. For any real museum environment, a large

viewing volume is desired for any guide robot system so that people in it can

be tracked as they move from painting to painting. Multiple camera sensors

afford this ability by providing a large combined viewing volume by which peoples

attention can be tracked. The advantage of the proposed robotic system in this

chapter is that multiple camera sensors cover a much larger field of view to observe

people than that covered by a single camera sensor in our museum scenario.

It is noted that, many studies [38, 92, 123, 124, 132, 172] have found that vision

enabled eye gaze tracking based information is not always feasible in obtaining

people’s VFOA due to several environmental constraints in open environments.

For example, in open spaces such as offices, meeting rooms, and museums, where

the motion and the head orientation of people are unconstrained, high resolution

images of people’s eyes are not available to track the eye center location [14]. In

addition, eye-appearance vision-based gaze tracking systems restrict the mobility

of people since their need of high resolution close-up eye images requires cameras

with very narrow field-of-views [14]. Furthermore, detecting eye orientation from

a distance is difficult in real life environments [83]. Again, it is not possible to

track eyes when the eyes of a person are not visible (like low-resolution imagery,

or in the presence of eye-occluding objects like sunglasses) [145]. Additionally,

current eyeball orientation estimation systems either cumber users with head-

mounted equipment, including cameras and special light sources, or set heavy

restriction on users behavior [186]. These constraints also do not allow me to

measure the VFOA using anything more than eye gaze. On the other hand, there
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Figure 3.1: States of the proposed Human-Robot Interaction System.

are several reasons (described in [15]) to choose head orientation information to

measure gaze direction (VFOA) instead of using eye gaze tracking information

for the purpose of estimating the interest of the people about the paintings in

museum environments.

3.2 Proposed Guide Robot System

The states of the proposed guide robot system is illustrated in Figure 3.1. In

this proposed approach, a number of paintings (P1, P2, P3, etc.) is considered as

exhibits and a humanoid robot as the guide robot in a museum where paintings

are hung on a wall at equally separated distances and the guide robot is placed at

a public-distance [80] from the paintings and people’s painting viewing regions1so

that its presence may not interfere with each person’s movements and attention.

The objective of the guide robot is to provide more information proactively to

people when their interest towards any painting is detected by the system.

To provide more information about any particular painting to any person to

which s/he seems to be interested, first the guide robot system tries to determine

the presence of people within the museum’s vicinity using USB video camera

sensors placed just above the paintings. If no person is detected by the sensors,

then the system will continue its task to detect people. If only one person is

1The regions from where a person typically views exhibits in a museum.
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3.2 Proposed Guide Robot System

detected by any one of the sensors then the system will treat that person as the

target-person. If multiple people are detected, then the system will compute the

importance value (described in Section 3.2.1.1) of each of the detected persons

to select one as the target person. Thereafter, the system will obtain the head

orientation information of the target person from the video frames and thereby

extract gaze directional information to ultimately estimate his/her VFOA. The

system will then trigger the guide robot to get the face profile information from the

head orientation information to select the appropriate motion path to move from

the public-distance to the social-distance [80] of the target-person to proactively

approach him/her and explain the painting.

3.2.1 People Detection and Tracking Framework

The employed people visual detection and tracking system is based on the 3D head

tracking method presented in [115]. This method used particle filter framework

incorporating Ada-Boost based cascaded classifiers to detect and track people’s

head based on USB video camera captured image frames. Originally, the face

detector is developed by Viola and Jones [200] using cascaded structure to reduce

detection time, and to reliably detect faces without requiring a skin color model.

This method works quickly and yields high detection rates [19]. Thus, with the 3D

head tracking method, we can easily detect and track people in terms of tracking

head orientation accurately in wider angular views in real time from video frames

delivered by the USB video camera sensors where image sequences are captured

at VGA resolution at a video frame rate about of 15 fps and processed by one

PC (Intel(R) Core(TM) i5-2400 CPU @3.10GHz, Memory 4 GB).

3.2.1.1 Target-Person Selection Procedure

Under the proposed guide robot system, if only one person is detected by the video

camera at any time then s/he is automatically selected as the target-person to

track his/her VFOA. If more than one persons are detected by the cameras then

our system computes their importance values individually. The importance value

allows the system to choose the one target-person among all detected persons.

In our present study, it currently depends on two parameters (a) the distance

of the persons from the paintings, and (b) the face profile information. Here,
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Figure 3.2: Flow diagram to obtain target-person using importance value. Two

face trackers are shown to select target-person, though more could be possible.

the distance between the persons from the paintings is estimated by considering

the size of the bounding box, D of their detected faces on the image planes. A

person with his/her face closer to the paintings, will have a larger bounding box

for his/her face and vice-versa. The procedure to compute the importance value

of only two persons is illustrated in Figure 3.2, though more could be possible.

Anyone with a greater sized bounding box gets a higher importance value over

others. Here, System focuses its attention on the person who has the highest

importance value. These scenarios are depicted in Figure 3.3(a) and (b). When

the bounding box of both of the persons are the same in size the person with the

most frontal face profile will be considered as the target-person. This scenario is

depicted in Figure 3.3(c).

41



3.2 Proposed Guide Robot System

(c)

(a)

(b)

Figure 3.3: (a)-(b) People with greater green colored bounding box are treated

as target-person, (c) Person with same bounding box size as other person but

person with the frontal face is treated as the target-person.

3.2.1.2 Recognition of Target Person’s VFOA

Usually yaw angle of human’s head with respect to a video camera can be divided

into four fundamental angular regions: Central Field of View (CFV), near periph-

eral field of view (NPFV), far peripheral field of view (FPFV), and out of field of

view (OFV). Additionally, Each peripheral views (NPFV, FPFV) can be subdi-

vided into two angular regions: Left Near Peripheral Field of View (LNPFV)and

Right Near Peripheral Field of View (RNPFV), Left Far Peripheral Field of View

(LFPFV),and Right Far Peripheral Field of View (RFPFV). Figure 3.4 illustrates

these head orientation classifications with example face images when the camera

is situated in the CFV angular region of any person. In this study, proposed
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3.2 Proposed Guide Robot System

guide robot system considered only the following three fundamental angular re-

gions: The frontal view, which covers 30◦ (75◦ to 105◦) is defined as the CFV.

The right side angular region with respect to CFV, which covers about 45◦ (30◦

to 75◦) is defined as the RNPFV. And the LNPFV is defined on the left side with

respect to CFV, covers about 45◦(105◦ to 150◦). Other angular regions are not

considered in this study. Once the target-person is selected, to measure the level

of interest to any particular paintings, our system measures the head orientation

stability by calculating the average head yaw angle for next the 30 consecutive

video frames captured by the USB video camera sensor. If the target person’s

head orientation is stable within any particular angular region, then the guide

robot will consider the orientation of his/her gaze direction toward that region

and thereby measure the stable VFOA of the target-person toward any particular

painting. For example, if the stable VFOA of the target-person is found in the

CFV angular region, the guide robot system will detect only the frontal face of

the target-person. However, in the other defined angular regions, the guide robot

system may detect two face patterns which are either the 45◦ degree of right

profile face or the 45◦ degree left profile face in the LNPFV and RNPFV angular

region, respectively.

3.2.2 Guide Robot’s Motion Path Planning

In this study, Robovie-R3 (see Figure 3.5) is deployed as a humanoid museum

guide robot to proactively offer guidance to the people in museum scenario.

Robovie-R3 itself does not have any built-in artificial intelligence, but in the

implementation of my considered guide robot’s behaviors, we programmed it to

perform various kinds of actions. The properties of Robovie-R3 is illustrated in

Table 3.1. Because of Robovie-R3 ’s enriched human like embodiment, it is con-

sidered as a popular research platform for human robot interaction. In this works,

the possible motion paths for Robovie-R3 is restricted to only that of two people’s

possible predefined positions. For each position, two motion paths and positions

for the Robovie-R3 is programmed to reach the target person’s social-distance

from a public-distance and to initiate conversation. The schematic representa-

tion of the guide robot’s motion paths for the people’s two locations is depicted

in Figure 3.6.
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Figure 3.4: Head orientation classification into three angular regions in the pro-

posed HRI system.

For position-1, the left-side motion path and position for LNPFV region of

camera-1, and the straight motion path and position for RNPFV and CFV region

of camera-1 are defined. For position-2, the right-side motion path and position

for RNPFV regions for camera-2, and the straight motion path and position for

the LNPFV and CFV region of camera-2 is designed. Thus, a total of four possi-

ble motion paths and positions are designed. As soon as the head stability of the

target-person is found to reside in any of the angular regions described in Sec-

tion 3.2.1.2, the guide robot starts to move from the public-distance through any

of the preprogrammed motion paths to reach his/her social-distance to approach

and explain that painting to which his/her VFOA is detected.

While the guide robot starts to approach him/her to explain any painting,

the guide robot exhibits its verbal and gestural (head shaking, hand shaking and

body base movement in between the target person and painting) actions to draw

attention and offer commentary about the paintings. Simultaneously verbal and

gestural action enhance the overall experience of the person in the museum by

interacting with the guide robot.
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Figure 3.5: Robovie-R3.

3.3 System Evaluation

Experiments is performed to verify that the proposed system is useful in museum

guide robot scenario. In experiment, 10 people (8 males, average age 29.2 years)

are participated from the university campus. Each person participated in the

experiments four times in a total of two phases. In the first phase, two experiments

were conducted to verify the flexibility of using multiple video camera sensors over

a single video camera sensor based robotic system to detect and track people’s

VFOA towards the paintings, and in the second phase, two experiments were

conducted to verify the effectiveness of my proposed system using Robovie-R3

as a guide robot to proactively initiate interaction with target people to offer a

explanation about any particular painting. In every case, people were asked to

observe the exhibits from possible predefined positions randomly.
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Table 3.1: Properties of Robovie-R3.

Parameter Specifications

Size 108cm × 50cm × 52cm

Weight 35 kg

Degree of Freedom 17 (Eyes:2, Neck:3, Arms: 4×2, Base: 2 wheels)

Servo Motors VS-SV1150×7, VS-SV3310J×4, MICRO STD/F×4

Motors Max on Brushless Motor×2

Sub CPU board VSRC003HV (ARM7 60 MHz)

I/O Touch sensor×11, USB Camera × 2,

Mono-Microphone ×2, Speaker ×1

Battery 12V 28 Ah

3.3.1 Experiment Design

In experiments, five paintings (P1, P2, P3, P4, P5) were hung where each of the

paintings are separated equidistant from their neighboring paintings and all at

the same height. Two USB video cameras were mounted as environmental sensors

on the top of paintings P2 and P4 to detect and track people’s VFOA. Paintings

P1, P2 were placed in the LNPFV, and CFV areas of camera-1, respectively

whereas paintings P4, P5 were placed in the CFV and RNPFV areas of camera-

2, respectively. Finally, painting P3 was placed in between the RNPFV area

of camera-1 and the LNPFV area of camera-2. The Robovie-R3 was initially

placed at the public-distance from the people’s possible positions (usually far from

exhibits and behind person’s positions). The experimental setup for the museum

scenario is illustrated in Figure 3.7. Finally, a total of four possible motion paths

and positions (as described in Section 3.2.2) are designed so that the guide robot

could move to suitable positions for approaching a person. Figure 3.8 shows some

snapshots of the experiments. One video camera was also used in a appropriate

position to document all experimental activities.

3.3.2 Experimental Cases

To validate the effective of our robotic system, two modes of experiments are

conducted and compared them.
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Figure 3.6: Robot’s motion path and position planning scenario.

•Multi-Sensor Mode (MSM) (Proposed mode). In the current implementation

of the proposed HRI system, the performance of the proposed HRI system is

observed using two USB video cameras to select the target-person and track

his/her VFOA toward the paintings while other people could also be viewing the

paintings.

•Single-Sensor Mode (SSM). Under this system, only one USB video camera

is utilized to detect the target-person and track his/her VFOA toward all the

paintings while other people could also be viewing the paintings.

Additionally, experiments are also conducted with the following two modes

within the proposed HRI approach to measure the effectiveness of the Robovie-R3

in dealing with guiding the target-person.

•Single-Person Mode (SPM). Only one person observes the paintings ran-

domly where vision data from the two USB video cameras will be processed to

detect him/her as the target-person and track his/her VFOA toward the paintings

by guide robot.

•Multi-Person Mode (MPM). In this mode, multiple person will observe all

the paintings randomly where the data of the two USB video cameras will be

processed simultaneously to determine the target-person by the guide robot.
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Figure 3.7: Experimental environment.

3.3.3 Measurements

In all of the conducted experiments, the following two cases are evaluated:

3.3.3.1 People’s Impression

Participants were asked to fill out a questionnaire for each mode after completion

of experiments. The measurement was a simple rating on a Likert scale of 1 to

7. There were three items in that questionnaire: (Q1) Did the robotic system

estimate your gaze directions (VFOA) while you were viewing all the paintings

(P1 to P5)?, (Q2) Did the robotic system effectively detect and track your VFOA

while you were viewing any of the paintings?, (Q3) Was the Robovie-R3 effective

in approaching you in a timely manner to start interaction with you?

3.3.3.2 Success Rate

From the documented videos and experimental site, how many times the Robovie-

R3 detected the target-person’s VFOA and established a successful interaction

under the proposed approach is observed. The Success Rate (SR) was measured
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Figure 3.8: Some snapshots of conducted experimental scenes.

by the following formula:

SR =
The total number of successful interaction

Total number of attempts that the Robovie-R3 made
× 100 (3.1)

3.3.4 Results

The experiment was conducted in a within-participant design, and the order of all

experimental trails was counterbalanced. We performed the repeated measures

ANOVA for all measures.

3.3.4.1 People’s Impression:

Subjective measures for all the modes are shown in Table 3.2. The result shows

the questionnaires measure which represents the means (M), and standard devi-

ations (SD), F , p− value, and η2 in each condition for the participants.

For Q1 (Table 3.2, 2nd row), the ANOVA analysis shows statistically signif-

icant differences between the modes (MSM and SSM) (F (1, 9) = 240, p < 0.01,

η2 = 0.88) for the people. Thus, these results reveal that the performance of the

multi-camera sensor based robotic system (proposed HRI system) outperforms
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Table 3.2: People’s Impression for various Questionnaires where 7 is strongly

agree.

Questionnaire Modes Mean SD F (1, 9) P − value η2

Q1
SSM 2 0.67

240 0.00000008 0.88
MSM 6 0.45

Q2
SPM 4.4 1.16

19.23 0.001759 0.49
MPM 6.3 0.9

Q3
SPM 4.2 3.067

12.35 0.00656 0.25
MPM 6.0 2.22

Combined
SPM 4.3 1.07

25.62 0.00068 0.44
Q2 And Q3 MPM 6.15 1.4

the single-camera sensor based robotic system in detecting people and tracking

their VFOA during their viewing of all the paintings.

It is because multiple video camera sensors afford the ability to Robovie-R3

to cover a much larger field of the viewing volume to detect people and track

their VFOA towards all paintings.

For Q2 (Table 3.2, 3rd row), the differences between the two modes were

statistically significant (F (1, 9) = 19.23, p < .01,η2 = 0.49). Thus, these results

mean that the proposed HRI system is more effective in detecting and tracking

the target-person’s VFOA when more than one person is detected by the guide

robot.

In the case of the SPM, sometimes missed face detections occurred in cameras

where actual human faces were not visible. In addition, static environmental

objects (the robot, furniture) would sometimes be falsely detected as faces. But

in case of the MPM, multiple persons are detected by the multiple video cameras

and the target-person is chosen from among them by computing importance value

(described in 3.2.1.1). In such a case, missed detections less likely appended while

selecting the target-person.

For Q3 (Table 3.2, 4th row), significant differences between the two modes

(F (1, 9) = 12.35, p < 0.01, η2 = 0.25) were found under the proposed robotic

system. Most of the participants felt that Robovie-R3 was more effective in the

case of MPM over SPM to approach the target-person accurately to explain the

painting to which s/he was interested. The reason is that in case of SPM, when
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missed detections and tracking occurred, the system would cause the guide robot

moved move to locations different from where the target person was really viewing

the painting.

To obtain the overall impression of the people in between the two modes

(SPM and MPM ) for Q2 and Q3, the average Likert scale for each participant

is calculated and performed an ANOVA analysis on the Likert scale. The 5th row

of Table 3.2 shows the result of the analysis. It is found that there were also

significant differences between people’s impressions of the two modes in both Q2

and Q3 (F (1, 9) = 25.62, p < .01, η2 = 0.44).

3.3.4.2 Success Rate

10 participants experienced a total of 48 trials as the target-person under the

MPM settings. Among 48 trials, proposed HRI system was able to detect and

track their VFOA and finally make successful interactions at a rate of 87.5%.

Thus it can be said that proposed museum guide robot system is effective for

initiating interaction with the target-person.

Thus, the experimental results revealed that the proposed robotic system

is more effective for target-person detection from multiple people and tracking

of his/her VFOA using multiple USB video cameras to obtain his/her interest

and intention toward the painting. It is also revealed that Robovie-R3 is much

more operative at proactively initiating interaction with the target-person with

its mobility features in the museum scenario.

3.4 Chapter Summary

This chapter presents a guide robot system which observes people’s interest and

intention towards paintings in museum scenarios and proactively offers guidance

to them using a guide robot, if needed. To do that, multiple USB video camera

sensors are utilized to support the guide robot in detecting and tracking peo-

ple’s visual focus of attention (VFOA) as local behavior toward paintings. In this

study, each person’s head orientation, profile information and compute impor-

tance values are considered to identify a target-person that may be interested in

a particular painting. After identifying the target-person, the guide robot moves
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autonomously through an appropriate motion path from the so called public-

distance to his/her social-distance to explain details about the painting to which

s/he is interested. Furthermore, in this chapter, the presented guide robot sys-

tem is demonstrated to proof it’s viability by experimenting with the Humanoid

Robot-Robovie-R3 as a museum guide robot. Finally, the system is tested to

validate its effectiveness.

3.4.1 Limitations

In this chapter, the positions of the persons are considered to be fixed to some

particular locations that allow them to view all considered paintings. Only the

VFOA is detected and tracked as local behavior to observe people’s interests

towards the paintings. It is revealed in our study that there are many other

situations where people may view paintings from different locations and ways

based on their own choosing. Thus, observing only local behavior is not enough

to know someone’s preferences towards the paintings. It is effetive to observe

both local and global behavior towards paintings to precisely identify people’s

interests, intentions, and preferences towards the paintings. To do so, in the next

chapter, a multiple LIDAR poles based global behavior tracking system together

with a USB video camera sensor based local behavior tracking system is utilized

for the robotic system to know the interests, intentions, and preferences of the

people in museum-like public environments, which will provide more information

to establish effective social interaction between people and the guide robot.
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Chapter 4

Network Guide Robot System

Proactively Initiating Interaction

with Humans Based on Their

Local and Global Behaviors

4.1 Introduction

With the development of HRI systems over the last decades, social robots have

started to move from laboratories to real-world environments [189], where a robot

interacts with ordinary people. But, in most of these typical HRI systems, the

interaction partners (human and robot) are restricted to controlled conditions.

There has been a great deal of research to extend to more interaction modalities

such as voice and gesture [157]. In addition, Yamazaki et al. proposed that robots

should show their availability and recipiency by nonverbal behaviors so that peo-

ple can more easily ask robots for help [207]. But in real-world environments,

the identification of people in need is also an important task for service robots.

In daily life, for example, if someone find a person who is looking around with a

map in his/her hand at a train station, s/he may offer assistance to that person.

Dealing with such types of situations for a robot is quite difficult. However, very

few research studies (for examples, [69, 103, 104]) have been conducted in the

fields of HRI that consider cases where robots are expected to offer their services

to people who seem to need or want their potential services.
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It is noted that, there are several systems that address related issues in HRI.

For example, robots have been deployed in public spaces, including day-care

service centers [77], hospitals [51], train stations [177], office buildings [11, 12],

museums [30, 150, 193], and shopping centers [104] that address navigational and

perceptual problems. Service robots deployed in child care centers [189], autism

therapy centers [17, 119] and in schools [101, 127] has addressed the quality of

interaction between humans and robots. In addition, estimation of the inten-

tions of the surrounding humans towards the robots are also highlighted in these

works. Moreover, many robots have also been deployed in public spaces with the

capability to encourage people to initiate interaction with them [20, 44]. What

differentiates the works presented in this chapter is that here an HRI system has

been developed for public spaces in which service robots can proactively serve

people as opposed to the conventional reactive approach where robots wait until

people explicitly request them for their service. The main research topic here is

to find people who may want the robot to serve them.

In general, people can often tell what other people would like to do from their

behaviors. There are various such behaviors: global behaviors such as walking

trajectories, and local behaviors such as gaze patterns. It is difficult to devise a

single sensor to detect and recognize all these behaviors. Thus, in this chapter,

a network sensor system is presented and additionally, a network robot system is

presented that uses all sensor data. The sensor system consists of a global sensor

subsystem observing a large area and a local sensor subsystem with a number

of distributed sensors each observing a small area. The robot system estimates

people’s intentions by combining the bits of information from the global and local

sensor subsystems and proactively offers help to people in need. In this study,

this issue is addressed by taking museum guide robots as an example and develop

a network-enabled HRI system which can find people who seem to be interested

in a particular exhibit and offer them accordingly, more detailed explanations

about that exhibit by any one of the guide robots in the network robot system.

In addition, there has been much research on technologies that are employed

to track people’s local and global behavior in the fields of robotics and computer

vision [26, 136]. In ubiquitous computing, positioning devices are often used.

These include the use of GPS, or the signal strength of radios (GSM, WiFi,

Bluetooth, RFID) [103]. These technologies all used wearable or mobile personal
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devices, but these approaches have a number of weaknesses for applications in

large public spaces. Thus, in this work, a wearable-free solution is introduced

where people do not need to attach markers to themselves or carry special devices,

as the main goal is to observe the unrestricted interests and intentions of all the

people in public spaces. Hence, a global sensor subsystem is used which is based

on LIDAR (Laser Range Finder) poles [152] to track people freely and to obtain

their global behavior information (i.g. walking trajectories). Additionally, a set

of low cost USB video cameras is used as a local sensor subsystem to obtain

people’s local behavior information (e.g. visual attention). That is, the presented

HRI system in this chapter tracks the interests and intentions of people in public

spaces using technologies that incorporate global and local sensor subsystems

that are independent of traditional wearable sensor systems.

In the preliminary stage of this work, an observational experiments has been

conducted in an art museum and observed the behaviors of people with various

levels of interest in the exhibits by using the technologies that have been discussed

above. By analyzing the observed results, it is found that any observer (e.g.

human museum guide) can detect people who may desire the robot’s service from

their walking trajectory patterns and visual attention information in the museum.

Then a network enabled multi robot based HRI system is developed that can

find such people to offer them guidance using the guide robot for their exhibit

of interest. Finally, the presented HRI system is implemented by incorporating

a set of four Naoko desktop Robots [1] as museum guide robots and tested the

system with an art museum designed in a laboratory environment to confirm its

effectiveness in proactively approaching selected people to provide guidance.

4.2 Observational Experiments

To conduct observational experiments in a museum scenario, an art museum

room sized 8m×10m was set up in laboratory (Computer Vision Laboratory,

Saitama University, Japan) where six paintings were hung. The overall setup of

the designed art museum is illustrated in Figure 4.1.

The people at a museum may be there for various purposes with different

intentions. Their interests in the exhibits may also vary. The following three

cases are considered as the most typical cases as illustrated in Figure 4.2.
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Figure 4.1: Setup of the designed art museum including the paintings, LIDAR

poles and USB cameras.

•Case1. They are interested in the collection in the museum and would like

to look at all the paintings carefully.

•Case2. They know that a famous painting by some painter is in this museum

and would like to specifically appreciate it.

•Case3. They are not particularly interested in any of the exhibits. For

example, they could have just been in town and decided to visit the museum to

pass the time.

Four laser range sensor poles are used in the four corners of the designed art

museum room to track people and to obtain global behavior information. The

details of the tracking method can be found in [152]. This method tracks the

locations and orientations of people by using a particle filter framework [90],

which is an important requirement for maintaining the continuity of walking

trajectories in public spaces. Tracking people’s walking trajectories patterns via

laser range sensor poles is illustrated in Figure 4.3. Low cost USB cameras were

also placed just beneath each of the six paintings. The purpose of using the

cameras is to obtain the local behavior information of people. In order to observe

the above three types of people, 48 participants (42 males, 6 females, average age
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Figure 4.2: Three most typical cases of visiting a museum

25.2 years) from Saitama University were divided into three groups and instructed

each group as follows.

•Group1 (14 participants). Look at all paintings carefully and choose one that

you most like. You will be asked about the painting later.

•Group2 (18 participants). One of the paintings was showed to them and tell

them to look at that painting. They were also asked about that painting later.

•Group3 (16 participants). No specific instruction is given.

4.2.1 Findings of Conducted Observation Experiments

In this study, people’s walking trajectory patterns were treated as global behavior

and visual attention (for example, indicated via face detection) was treated as

local behavior. In the conducted observational experiments, the following three

major trajectories patterns were found.

•T1 :“trajectory where all exhibits were viewed sequentially followed by a return

back to any one of the previously viewed exhibits”,
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Figure 4.3: People’s walking trajectories tracked using LIDAR poles.

Table 4.1: Relationship between different groups of participants and their walking

trajectory patterns.

T1 T2 T3 Others

Group1 09 00 04 01

Group2 00 11 06 01

Group3 01 00 15 00

•T2 :“trajectory where the person went straight to view only one exhibit before

leaving the museum”, and

•T3 : “trajectory where all exhibits were viewed sequentially”.

Examples of found walking trajectory patterns of type T1, T2, and T3 are

illustrated in Figures 4.4(a), (b), and (c), respectively. Table 4.1 illustrates the

relationships between the three groups and the walking trajectory patterns. It

is observed in videos that the faces of people viewing a given painting would

always be frontal views in the painting specific USB video camera. Figure 4.4(d)

shows the examples of visual attention observation of different participants in

three different painting specific USB video cameras.

People with walking trajectory pattern T2 were found to be interested in a

specific painting. Such people are the first candidates for the robot to offer its
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(d)

Figure 4.4: Participants’ typical walking trajectories for (a) T1, (b) T2, (c) T3,

(d) Examples of visual attention observation of participants in three different

cameras.

guidance. It is also natural for people to see paintings that they like multiple

times. Thus people with walking trajectory pattern T1 are assumed to be inter-

ested in the painting that they returned to and are also candidates for receiving

extra commentary from the robot about the painting.

In addition, after detecting the trajectory patterns of the people, in order

to observe their global behavior, it can be more sure about their interest towards

any specific paintings if their visual attention as local behavior near the painting’s

specific USB video camera were detected. It can be seen from the stored USB

video camera footage of the observational experiment that all the video cameras

successfully captured the frontal faces of the participants, if and only if they really

viewed the paintings for some extended period of time.

4.3 Proposed HRI System

Based on the findings from the observational experiments, a network enabled

HRI system is proposed which is illustrated in Figure 4.5. Basically, this HRI

system consists of two main types of sub-systems: the Server Sub-System (SSS)
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Figure 4.5: States of the proposed network enabled HRI system.

and painting specific individual client system-called Client Sub-Systems (CSSs).

A total of three software units was incorporated in these two types of sub-systems

:

(a) The human positions and walking trajectory pattern tracking unit-called

the Global Behavior Tracking Unit (GBTU) in the SSS,

(b) Visual attention detection and tracking units-called Local Behavior Track-

ing Units (LBTU), and

(c) the Robot Control Unit (RCU).

The latter two units are in each individual CSS. one CSS is employed for each

of the paintings. For example, if there are n-exhibits in a museum then it will

have one SSS and n-CSSs to implement the proposed HRI system. Our HRI

system detects people’s interests and intentions toward the exhibits and guides

them accordingly, if and only if the three units in two sub-systems work in order

in real time. The communication between the SSS and CSS units are done by

a TCP network connection. The functionality of different units of the proposed

HRI system are described in the following subsections.

It is assumed that people are free to move inside the museum to view ex-

hibits based on their own interests and intentions. If any person with local and
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global behaviors indicating strong interest in an exhibit is found, the HRI sys-

tem immediately sends a command to the assigned guide robot to proactively

approach him/her to offer its commentary on the exhibit. The potential steps of

our proposed HRI system are stated below.

•Step-1 : The SSS tracks the global behavior of people using the GBTU (de-

scribed in Section 4.3.1.1).

•Step-2 : If the GBTU detects interest from a person’s global behavior (e.g.

either walking trajectory pattern T1 or T2 ) in front of any painting viewing

region then goto Step-3, otherwise goto Step-1.

•Step-3 : The SSS sends commands to the LBTU (described in Section 4.3.2.1)

of a specific CSS to track the local behavior of that person.

•Step-4 : If the LBTU detects interest from the person’s local behavior, then

goto Step 5, otherwise STOP and wait to receive future commands from the

SSS.

•Step-5 : The CSS sends commands to its RCU (described in Section 4.3.2.2)

to trigger the assigned guide robot to proactively offer extra commentary about

the painting to the target person.

•Step-6 : After finishing its commentary about the paintings, the CSS makes

the LBTU and RCU go idle and wait for future commands from the SSS if it

identifies interest from the global behavior of other people (i.e. goto Step 2 ).

4.3.1 Server Sub-System (SSS)

4.3.1.1 Global Behavior Tracking Unit (GBTU).

The basic aim in introducing this unit is to detect walking trajectories patterns of

type T1 and T2 as the global behavior of the people in the museum. Painting view-

ing regions1 with region-ID (rID) numbers for the n-paintings are assigned inside

the museum. The schematic representation of the museum’s painting viewing re-

gions and the rID assignments for the 6-paintings are illustrated in Figure 4.6.

The rIDs are used to construct a trajectory vector (TV ) to define each person’s

walking trajectory pattern where each rID inside the TV represents the person’s

visited regions inside the museum. If a person views any paintings then the TV

will be updated by concatenating the rIDs of all the visited regions of those

1The regions from where a person typically views exhibits in a museum
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paintings. An example of the TV for the T1 walking trajectory pattern can be

expressed as:

TVT1 = [rID1, rID2, ..., rIDn, rID2] (4.1)

where it is seen that the person visited region rID2 a second time to check

the painting again.

Thus a person with this TV would be a candidate to offer commentary im-

mediately from the robot about the painting residing inside region rID2. To

check whether a person’s position is stable inside any viewing region, the vari-

ances of their position coordinate values (V ar(x) and V ar(y)) for every past 10

consecutive frames are calculated and combined using the following equation:

D =
√

(V ar(x))2 + (V ar(y))2 (4.2)

For any person, if his/her position is inside any viewing region with body

orientation toward the painting, and D <Dthres for the next 100 consecutive

frames, then the robot will assume that the person is stable at that region. Here

Dthres defines some threshold integer values. Again, if any person goes directly

to any region rID to view the painting without viewing other paintings at other

regions in the museum, we treat the person as having a T2 walking trajectory.

However, the conditions of stability in this case require that his/her position is

be inside any painting viewing region with body orientation toward the painting,

and D <Dthres for next 200 consecutive frames. This is because it was observed

from experiments that people with T2 trajectories spend more time viewing only

one particular painting than the average time that people take to view a painting.

Performance evaluation. The performance of the above described method to

recognize the T1 and T2 walking trajectory patterns (global behavior) is examined

by applying it to the stored data recorded in the observation experiments. The

obtained results on recognition of the T1 and T2 walking trajectory patterns is

summarized in Table 4.2. Thus, the proposed method is effective to recognize the

walking trajectory patterns, T1 and T2, thereby recognizing participants that

were initially interested in any particular paintings.
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Figure 4.6: Schematic representation of the paintings, painting viewing regions

and their rID assignment.

Table 4.2: Walking trajectory patterns recognition accuracy evaluation.

Trajectory Patterns Recognition rate[%]

T1 80

T2 81

4.3.2 Client Sub-System (CSS)

CSS is an important part of the proposed network enabled HRI system. This

sub-system does not have any self-functioning capabilities but it’s functionalities

are fully controlled by SSS. Based on the decision of GBTU, SSS triggers the

painting specific LBTU.

4.3.2.1 Local Behavior Tracking Unit (LBTU).

To estimate the visual attention (local behavior) of the person (whether s/he is

looking at the painting or not), in this unit, the Viola-Jones AdaBoost Haar-like

frontal face detector [200] is employed to the continuously captured image plane
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from each USB video camera placed beneath each painting. This unit can detect

the person’s frontal face, when s/he really looks at the painting (as seen at our

observational experiment, described in Section 4.2), thereby estimating that the

visual attention of the person (local behavior) is high toward any given paintings.

In the following paragraphs, a brief description of the Viola-Jones AdaBoost

Haar-like cascade classifier for face detection is given. In this study, the face

detection time is experimentally set to 5 frames. The face detector was appplied

to the stored video footage from the observational experiments and found fruitful

detection of frontal faces of the participants. Examples of the participants’ visual

attention tracking is illustrated in Figure 4.8. From the local behavior and global

behavior information of the people, it can be stated that the proposed HRI system

can accurately estimate the interest level of the target people toward the exhibit.

For example, when the person’s specific walking trajectory pattern is detected

in GBTU but his/her frontal face is not detected in the LBTU by the exhibit

specific USB video camera, then the person seems to be less interested to the

painting. In such a case, the CSS will not alert the RCU to offer commentary

about the painting to him/her.

Adaboost Haar-like cascaded Classifier: Numerous methods for detecting

faces in video image has been proposed. Among them, the AdaBoost-based face

detector using Haar-like features has been popular because of its accuracy and

robustness against observation with low resolution or varying illumination condi-

tions. The AdaBoost-based classifier consists of linearly connected week classifier.

Viola and Jones arranged the classifier in a cascade structure and proposed an

efficient computation technique for Haar-like features. Though the training of

AdaBoost-based cascaded classifiers requires huge amount of time, the cascaded

classifier rapidly detects a face because most of non-face target regions are re-

jected in an early stage of the cascade. This cascade is effective in the evaluation

phase even in the particle filter framework.

In Figure 4.7(a), Hi represents a strong classifier. Each strong classifier clas-

sifies an input image into a positive or negative. Only positive images are used

as the input of the next strong classifier. At each stage, a strong classifier is

trained to detect almost all face images while rejecting a certain fraction of non-

face images. For instance, the classifier at each stage is trained to eliminate 50
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Figure 4.7: Cascaded classifier (Source: [115]): (a) Cascade of classifiers, (b)

Example of features

% of the the non-face images while falsely eliminating is only 0.1 % of the face

images. After passing 40 stages, we can then expect a false alarm rate about

0.540 ≈ 9.1 × 10−13 and a hit rate about 0.99940 ≈ 9.6. Thus the face detector

detects almost all the face images and rejects almost all the non-face images. A

strong classifierHi(x) at each stage of the cascade consists of many weak classifier

hi(x) (Figure 4.7(b)). This can be described as follows:

Hi(x) = sgn

(

T
∑

t=1

αtht(x)

)

(4.3)

where T is the number of weak classifiers and αt = log 1−εt
εt

. It is noted

that εt is an error rate specified in the training phase. Each weak classifier

hi(x) evaluates a target image region by using Haar-like features. The weak

classifier performs that the sum of the intensity of pixels located within the black

rectangles is subtracted from the sum of the intensity of pixels located within the

white rectangles. The AdaBoost algorithm selects efficient features to classify the

target image region among huge variety of features.

4.3.2.2 Robot Control Unit (RCU).

After successfully detecting a target person using the GBTU and LBTU, our HRI

system immediately sends signals to the RCU of the corresponding CSS. Then

the RCU triggers the guide robot to proactively perform predetermined verbal

and gestural actions to attract the attention of the target person. After finishing
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Figure 4.8: Examples of Visual Attention tracking.

its explanation about its assigned painting, the guide robot returns back to its

idle state to receive future alert signals from the RCU to offer explanations about

the painting for future interested people.

Naoko Desktop Robot. The Naoko Desktop Robot (see Figure 4.9) is em-

ployed as the type of guide robot for every CSS. Like, Robovie-R3 (explained in

Chapter 3) it does not have any built-in artificial intelligence. But, in the imple-

mentation of the proposed HRI system, Naoko Desktop Robot is programmed to

perform various kinds of functions for holding conversation in a fixed location.

After proposed programming, each robots were placed on a desk beside each of

the paintings so it could proactively approach target people that are interested

in particular paintings. The key properties of Naoko Desktop Robot is illustrated

in Table 4.3. If the attention level of the person is detected as high in the GBTU

and LBTU towards any specific painting, then the guide robot exhibits its verbal

and gestural (head shaking, hand shaking and body base movement in between

the target person and painting) actions to draw attention and offer commentary

about the paintings.
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Figure 4.9: Naoko Desktop Robot.

4.4 Experiments

In order to confirm the effectiveness and accuracy of the proposed HRI system, ex-

periments were conducted by implementing it using four painting specific Naoko-

desktop robots as guide robots for four paintings at the self-designed art museum

in the laboratory where observational experiments were previously conducted. A

schematic representation of the experiment setup of the proposed HRI system is

illustrated in Figure 4.10. A panoramic view of the considered museum scenario

Table 4.3: Properties of Naoko Desktop Robot.

Parameter Specification

Machine Body KHR-1/2/3HV Normal.

Size Height: about 40cm

Weight 1.5/ 1.6/ 1.8/ 2.0/3.0 Kg

Degree of Freedom 7 ( Arms:4, Head: 2 (pitch and yaw), Body base:1)

Servomotor KRS-788HV16

Battery Li-Po 11.1V 1350mAh

Production Period 2006∼2010
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Figure 4.10: Experimental setup of the proposed HRI system.

under the proposed HRI system is illustrated in Figure 4.11.

The experiments were conducted where people moved inside the museum to

view the paintings, while the system estimated their local and global behavior to

determine their intention and interest in the paintings. If any desired local and

global behaviors of the people are found then one of the network enabled guide

robots will proactively offer guidance to him/her.

4.4.1 Demonstration using Guide Robots.

Demonstrative experiments were conducted with attendees from Saitama univer-

sity, Japan. In the demonstration, the attendees were asked to visit that museum

under the proposed HRI system according to the instructions from the obser-

vational experiments (stated in Section 4.2). Two video cameras were placed

at appropriate positions inside the museum to capture all the activities of the

attendee and the guide robots during the demonstration. Example scenes are

shown in Figure 4.12(a) and Figure 4.13(a). In both figures, the lower rows show
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Figure 4.11: Panoramic view of the considered museum scenario under the pro-

posed HRI system.

the tracking results corresponding to the scenes in the upper row where each

scene defines the potential steps of a typical demonstration with an attendee.

Figure 4.12(b) and Figure 4.13(b) show the local and global behavior tracking

results of two typical cases under the proposed HRI system.

4.4.1.1 Case-1.

Consider Figure 4.12(a) where an attendee came inside the museum and briefly

viewed painting #1 (scene #1) then moved to the next painting #2 (scene #2).

In this case, he briefly viewed all the other remaining paintings (i.e. painting #3,

and #4, as shown in scene #3 and #4, respectively). It is seen from the recorded

video that he viewed every painting for a very short time. After that, it is also seen

in scene #5 that the attendee moved again to view painting #2, and viewed that

painting carefully with much more time than earlier. In such a case, the proposed

system detected the type of walking trajectory pattern (global behavior) of that

attendee as T1, which is shown in the left side of Figure 4.12(b). Accordingly,

his visual attention (frontal face) toward that painting was detected as his local

behavior which is shown in the middle of Figure 4.12(b). Finally, the guide robot

assigned to painting #2 approached him proactively offering more explanation

about that painting by saying “Excuse me, may I explain more details about the

painting to you? ......Thank You! This painting is a famous painting.....”. A
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Figure 4.12: (a) Example scenes of demonstrative experiments: Case-1, (b)

Example of global and local behavior tracking result and session of a guide robot

and attendee during demonstrative experiments: Case-1.

snapshot of the session with the guide robot and the attendee is depicted in the

right side of Figure 4.12(b).

4.4.1.2 Case-2.

In Figure 4.13(a), it is seen that an attendee just came inside the museum and did

not go to the painting viewing regions of all the paintings (scene #1, and scene

#2) but went to the painting viewing region of painting #3 (scene #3) and stayed

there for while to view that painting carefully. After a few moments, the walking

trajectory pattern (global behavior) of that attendee was detected as T2 and this

is shown in the left side of Figure 4.13(b). With a very short delay, his visual

attention (frontal face) toward that painting was detected as his local behavior

which is shown in the middle of Figure 4.13(b). Finally, the guide robot assigned

for painting #2 approached him proactively offering extra commentary about that
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Figure 4.13: (a) Example scenes of demonstrative experiments: Case-2, (b)

Illustration of global and local behavior tracking results and a commentary session

of between the guide robot and the attendee during demonstrative experiments:

Case-2.

painting by saying “Hello, may I explain to you more details about the painting?

.........”. A snapshot of the commentary session between the guide robot and

the attendee is shown in the right side of Figure 4.13(b). After listening to the

guide robot’s commentary, the attendee left the museum room without making

additional stops at other paintings (scene #4).

Conclusively, it can be said that the proposed HRI system is effective for

detecting the interests and intentions of people to paintings in museums from

their local and global behaviors using the local and global sensor systems and is

able to offer proactive guidance to them accordingly using the guide robots in the

network robot system.
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4.5 Chapter Summary

In this chapter, a Human Robot Interaction(HRI) system is presented which can

determine people’s interest and intentions concerning exhibits in a museum, then

proactively approach people that may want guidance or commentary about the

exhibits. To do that, firstly an observational experiments has been conducted

in a museum with participants. From these experiments, mainly three kinds of

walking trajectory patterns has been found which characterize global behavior, and

visual attentional information that indicates the local behavior of the participants.

These behaviors ultimately indicate whether certain participants are interested in

the exhibits and could benefit from the robot system providing additional details

about the exhibits. Based on the findings, a network enabled guide robot system

has been designed and implemented for the museum. Finally, the proposed HRI

system has been demonstrated by experimenting with a set of Desktop Robots as

guide robots to proof its viability. the experiments revealed that the proposed

HRI system is effective for the network enabled Desktop Robots to proactively

provide guidance.

4.5.1 Limitations

The proposed HRI system is implemented, tested, and demonstrated using par-

ticipants inside a designed art gallery under laboratory controlled environments.

But in real art galleries, it would be difficult to observe people’s interests, in-

tentions, and preferences towards the exhibits using the network enabled sensor

system because the used global behavior tracking system is not robust enough to

track people’s positions and walking trajectory patterns in real art gallery like

popular public spaces. The main drawback of the LIDAR based global behavior

tracking system is that it is very sensitive to occlusion which will frequently hap-

pen in crowded public spaces. Thus, the next chapter focuses on developing a

robust human tracking method for service robots to identify humans and track

their positions, body orientation, and movement trajectories in crowded public

spaces to read their various types of behavioral responses to surroundings.
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Chapter 5

Robustly Tracking People with

LIDARs in a Crowded Museum

for Behavioral Analysis

5.1 Introduction

Nowadays, observing and understanding people’s behavior is highly valuable

within real social environments, such as shopping malls, hospitals, train stations,

schools, and museums. To do so, we can sense and track people’s various bodily

actions. Commonly considered bodily actions include position, body orientation,

walking trajectory patterns, head and/or gaze movements, facial expressions,

and so on. Such types of behavioral information can be used for estimating

their attention levels and intentions, and for extracting knowledge on their actual

expectations from environments. For example, it is very important for museum

curators and museum professionals (MPs) to observe and understand the visitors’

various attention levels and intentions in a given museum gallery so that they can

tell which exhibits visitors consider more attractive. Such types of information

may help them to make a museum gallery more attractive by rearranging the ex-

hibits in more appropriate ways and/or adapting various services for the visitors.

However, making manual large scale observations of human behaviors using only

MPs is a very difficult task.

To meet the demands, together with the growing acceptance of modern tech-

nology in our daily social environments, sensing technologies can play a crucial
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role to extracting such valuable information. So far, there has been much re-

search on sensing technologies that are employed to track people in the fields of

robotics and computer vision [26, 136], which can be used to extract knowledge

on their behavior and social connections. In ubiquitous computing, positioning

devices are often used. These include the use of GPS, or the signal strength of ra-

dios (GSM, WiFi, Bluetooth, RFID) [103]. These technologies all used wearable

or mobile personal devices, but these approaches have a number of weaknesses

for applications in large-scale social environments. For example, in the context

of public social spaces, people may enter the space spontaneously, usually pass

time based on their own interests, and may not be interested in actively engaging

with the technology. Thus, in this chapter, we are interested in making use of

people tracking for a wearable-free solution where people do not need to attach

markers to themselves or carry special devices so that we may observe them in

an unrestricted manner.

In the context of previous trackers, a new system is introduced in this chapter

that is more robust than previous work such as [152] while being cheaper and

easier to setup than [26]. As a result, it will be easy to deploy the presented

tracking system in real crowded environments for studying human behavioral

patterns. LIDAR is chosen as the primary remote sensing technology in this

presented system, which can be distributed in public social spaces. Because

of the simplicity and unobtrusiveness of the LIDAR’s installations in any public

space, the proposed sensing system does not detract from interests and intentions

toward objects in the social space. In this study, my claims is tested by taking a

real art gallery (at the Ohara Museum of Art, Kurashiki, Japan, see Figure 5.1

) as an example of a public space and using the sensing system to track people’s

position, body orientation, and walking trajectory patterns to obtain their overall

behavioral information. Such information could assist the MPs in introducing

special services (for example, a museum guide robot [173]) to support future

patrons.

5.1.1 Importance of Tracking Museum visitors

Museums are more important public spaces than ever before [54] where tradi-

tionally, MPs collect demographic data to understand their visitors [191]. This
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Figure 5.1: Art Gallery at Ohara Museum of Art, Kurashiki, Japan.

data typically includes information such as race, age, level of education and so

on. While this data is easy for visitors to provide, it has been shown through

years of visitor research that it is not predictive of visitor behavior or experience

[195]. But, the importance of understanding how visitor behaviors in museums

has been recognized for many years [184] because their behaviors reflect their

internal states (e.g., interests and preferences toward exhibits). How visitors cir-

culate through museums determines what visitors will see, where they focus their

attention, and, ultimately, what they learn and experience [185]. Such types of

information may help the MPs to make a museum more attractive by rearranging

the exhibits in more appropriate ways or adapting various services (e.g. museum

guide robot services) for the visitors. To achieve such objectives, while collecting

the visitors’ demographic data, MPs can sense and track visitors’ behaviors in

terms of their various bodily actions and activities. However, making manual

large scale observations of human behaviors using only MPs is a very difficult

and complicated task.

In recent years there have been a variety of initiatives involving the intro-

duction of emerging technologies in museums [208]. Most of these introduced

technologies (for example, multimedia technologies[48, 125, 155] and robotic tech-

nologies [29, 30, 175, 193, 208]) open the opportunities of various presentations
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of the exhibits to the visitors, which ultimately enhance their experiences in mu-

seums. But, most of these technologies are mostly not related to identifying the

visitors’ overall behaviors about the exhibits. But, to meet the current demands

of MPs, modern sensing technologies can play a crucial role in supporting MPs

in extracting the behavioral information of the visitors inside the museum.

Thus, it is important to develop a human-tracking system for museum with

networks of relatively low cost LIDARs as opposed to a 3D range sensor platform

to include better spatial coverage, robustness, modularity, and overcome the oc-

clusion constraints. Due to the current limitations (stated in Section 5.2) of the

system presented in [152], in this chapter, the system is extended using LIDAR

to track a relatively large number of people even in occluded situations in large

scale social environments. The sensing accuracy in the proposed approach can be

improved by overlapping the fields of view of widely separated sensors deployed

in real-world environments. The ultimate goal of the research is that users with

access to the information provided by the set of LIDARs capable of detecting

and tracking people in the public spaces, will allow for classifying behaviors and

ultimately estimating their degree of interest towards their surroundings. It may

also help in adapting new services for people in the near future.

5.2 Drawbacks of a Human Tracking Method

The human tracking method presented in [152] can only work reliably in lab-

oratory environments where there is a small number of people and there are

line-of-sight views from the LIDARs to the humans. Furthermore, it can not

robustly handle partial occlusions and fails to handle full occlusions which oc-

cur frequently in between the LIDARs and the humans in crowded large-scale

environments. Here, the basic reasons for those drawbacks are briefly discussed.

The previous system can effectively track humans with unique-IDs when all

the LIDARs are accurately calibrated on the poles deployed in the observed envi-

ronment, and if there are no occlusions in between the target human and all the

deployed LIDARs, even when humans are moving about (see Figure 5.2(a)). But,

due to the lack of accurate calibrations among all of the LIDARs as well as sen-

sors’ internal operational processing delays in time, the partially observed body

outlines from all the LIDARs do not always fit to the contour observation model
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in the image mapped from the distance data (see Figure 5.2(b)). This results in

inaccurate computation of weights of the evaluation points of the target person

in the image mapped from the LIDARs and thereby degrades the performance of

human body position and orientation measurement.

Again, in the case of crowded environments, it is not always possible to main-

tain line-of-sight views from all the LIDARs to the target people. Hence, partial

occlusion may occur frequently between any of the LIDARs and the target person.

So, it is quite difficult to assess the contour similarity between the observation

model and the contour of the human body observed from all the deployed LI-

DARs due to insufficient observable evaluation points (see Figure 5.2(c)). Thus,

the weight computation of the very small number of evaluation points of a given

person is not enough to compute the expectation value across the target person

over time. For this reason, this system can not track a partially occluded person’s

position and body orientation accurately with his/her unique-ID.

In addition, this system can not deal with situations where reassigning the

same unique-ID to the persons that were temporarily lost by the tracker due to

full occlusion from the LIDARs. Thus, system is not robust enough to track

humans with their proper identity in crowded public spaces. For these reasons,

in this chapter, this method is extended to make it usable not only in laboratory

environments but also in crowded large-scale social environments to robustly track

human position, body orientation, and walking trajectories even with partial

and/or full occlusion, to thereby obtain their behaviors. Details of the extended

system are presented in the next section.

5.3 Extended Human Tracking System: Pro-

posed Approach

To estimate the location and body orientation of people in public spaces, we em-

ploy a system using a set of poles where each pole is equipped with a LIDAR,

installed at the shoulder level of a typical adult (Figure 5.3(a)). A LIDAR can

measure the distance to the person on a horizontal plane and then map the dis-

tance data on to the 2D image plane (what we call a “laser image”); shown in
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Figure 5.2: (a) Ideal Case: Evaluation model formed by fitting an ellipse to

the shoulder outline obtained by LIDAR-1 and LIDAR-2, (b) Defective observed

body outline by LIDAR-1 and LRF-2 as compared to the ideal case. (c) Fitted

evaluation model is quite different from the shoulder outline obtained only from

LIDAR-1, without LIDAR-2 due to occlusion.

Figure 5.3(b)(left). The outline shape of a human’s shoulder can then be ob-

served as shown in Figure 5.3(b)(right). This outline portion of the human’s

shoulders can be considered as a part of an ellipse. Thus, for likelihood evalua-

tion of the people’s observed samples, an ellipse is used for the tracking model

(Figure 5.4(a)). The system tracks the locations and body orientations of visitors

by using a particle filter framework [90]. A coordinate system is assumed with

its 2D axes [X,Y] aligned on the ground plane. The center coordinates of the

ellipse (x,y) and rotation of the ellipse θ are considered to represent the model of

the visitor tracker. These parameters are estimated in each frame by the particle

filter. Using regular particle filters, posterior distribution is represented by a set

of weighted samples that are propagated by a motion model and evaluation by

an observation model. A simple random walk model for state propagation is em-

ployed and samples are evaluated based on the observations of the LIDAR. The
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Figure 5.3: (a) The Sensor Pole consists of a LIDAR, (b) Distance-mapped image

generated by the LIDAR.

likelihood evaluation model is discussed in the next section.

5.3.1 Likelihood Computing Model

To compute the likelihoods of the samples from the raw sensor data of the de-

ployed LIDARs, proposed system incorporates two layers of computations: the

fundamental and integration layers.

In the fundamental layer, for each of the deployed LIDARs, the weights of

the samples are evaluated individually from assessing the contour similarity be-

tween the model (shown in Figure 5.4(b)) and the body outline partially observed

by the individual LIDARs. To do so, data from individual LIDARs are consid-

ered as providing qualitative information which are useful for estimating human

positions in the observation area under the following three scenarios: (a) most

probably exist-indicating a contour which may correspond with the edge of a

detected human and/or object, (b) must not exist-indicating certain points are

empty, that is there is no any observable entities, (c) undefined -indicating that a

certain area is occupied by some observable entity. In such an area, the existence

of any person and/or objects is unclear. Figure 5.5 (a) and (b) illustrates the

distinction between these three types of scenarios, obtained from the LIDARs

provided information.
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Figure 5.4: (a) The shoulder outline can be modeled as an ellipse, (b) Evaluation

model formed by fitting an ellipse to the shoulder outline obtained by the laser

range finder.

Now, it is important to design a weighting scheme for each of the samples.

The design of our weighting function is illustrated in Figure 5.6 for the three

mentioned scenarios. The weights are assigned as CHIGH, CLOW, and CMEDIUM to

the data provided by the LIDARs for the scenarios-most probably exist, must not

exist and undefined, respectively. With these assigned weights, it can be easily

identified the state of the observation area on whether any object/person exists

or not.

Specifically, the i-th sample is generated at time t for each contour obtained

from the image mapped from the distance data. The normal vectors of each point

(the blue points in Figure 5.4(b)), such as ‘b’ and ‘d’, are assumed as shown in

Figure 5.4(b). The vectors from the position of the laser range finder to the points

are assumed to be ‘a’ and ‘c’. The system then calculates the inner product of

the vectors for each point. If the result of the inner product is negative (a ·b < 0),

the point is able to be observed by the LIDAR. These observable points are dealt

with as evaluation points (the deep black points in Figure 5.4(b)). Conversely,

a positive inner product (c · d > 0) indicates that the point is not able to be

observed by the LIDAR. Next, the distance, dn between each evaluation point

and the observed contour is calculated. Then, the weights of the i-th sample at
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Figure 5.5: A typical LIDAR to scan for people. (a) The position of people

relative to the LIDAR, (b) three types of scenarios.

time t for a single LIDAR is calculated by:

wt
l,i =

∏

n

Vn (5.1)

Here, Vn=f(dn), where dn is the distance from the LIDAR sensor to the

samples of evaluation candidates, l is the LIDAR ID.

More specifically, Vn can be expressed as follows.

Vn = f(dn) =











CLOW, if dn < T1

CHIGH · exp(−d2n), if T1 ≦ dn ≦ T2

CMEDIUM, if T2 ≦ dn

(5.2)

Now in the integration layer, simply added those computed weights of indi-

vidually observed samples from different LIDARs to get the aggregated weights

for each of the samples. Thus, the aggregated weights of the i-th sample at time

t from all the LIDARs can be obtained by the following simple calculation:

Wt
i =

n-1
∑

l=0

w
i,l
t (5.3)

By calculating the weight values across the samples, the system can estimate

and track each person’s position accurately with a unique-ID. The higher the
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Figure 5.6: Representation of the weight function for the three observation

scenarios.

aggregated weight value for a sample, the greater the tracker’s stability to robustly

detect and track the position and body orientation of the person.

Since, in this extended system, the computations of the weights of the observed

sample are performed from each LIDAR individually in the fundamental layer,

and in the integration layer, the LIDARs specific computed weights are integrated

to finally calculate the expectation value across the samples to estimate each

person’s position and orientation. Thus, it does not need careful calibrations

among the LIDARs, which was necessary in the system presented in [152] to fit the

combined observed body outline from all the LIDARs to the contour observation

model. In addition, proposed system can track humans even if partially occluded

in a crowded large scale environment. This is because, system can track a human

as long as s/he is detected by at least one LIDAR. In [152], detection and tracking

was based on the observations of all the deployed LIDARs.

5.3.2 Reassigning Unique-ID to a Temporarily Lost Per-

son

If the proposed human tracking system can not estimate the location of a person

from all the LIDARs due to temporary full occlusion by the surroundings person,

then the weight computation will not be applicable in maintaining the tracking
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Figure 5.7: Illustration of full occlusion scenario.

of him/her. Thus, the likelihood would be below the threshold. In such a case,

his/her tracker is immediately removed because the particle filter is assumed to

no longer be tracking anything.

For example, in Figure 5.7, there are three LIDAR poles in the observation

area to track people with their assigned unique-ID, uID=1,2,3, and 4 by the pro-

posed system. At frame #FL, person with unique-ID uID=4 is fully in occlusion

from all the LIDAR poles by the persons with unique-IDs 1,2, and 3. The the

tracker of that person failed to track. In the proposed system, such situations are

overcome with the following simple but effective strategy.

Once a person is fully under occlusion or not visible to the all LIDARs of

the sensor system for a while at some location in the observation area, then the

resulting likelihoods tend to zero by which the tracker for him/her will be removed

by the system but the following valuable information will be preserved for a later

attempt to reassign to the lost person:

•Lost unique-ID,
•Coordinate position where tracker failed, (x1,y1)

•Frame no. (when tracker failed), FL

After few frames later (for example, at frame #FF in Figure 5.7), if the fully

occluded person becomes visible to any of the LIDARs of our sensor system, then

the system will try to assign the previous tracker’s unique-ID to that person if
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Figure 5.8: The processing time per frame compared to the number of persons

being tracked. The blue and red lines indicate the time needed for the CPU and

GPU respectively (Source: [98]).

meet the following two conditions are satisfied:

• Condition-1. The distance, D between the lost coordinate (x1,y1) and the

coordinate of the newly visible position of the lost person (x2,y2) is less than some

threshold distance, Dth.

• Condition-2. The frame difference, FD between the frame where track-

ing failed, FL and the frame where the person appeared, FA is some reasonable

amount,Fth.

Thus, it can be said that if D <Dth and FD(=FA-FL)<Fth are satisfied for a

person then the system will reassign the same unique-ID to the person who just

lost that unique-ID previously due to full occlusion for a while.

In this presented system, parallel computation of each evaluation point in each

sample can be performed by using CUDA (Compute Unified Device Architecture)

[129]. Consequently, the system’s performance will not be adversely affected by

the number of visitors being tracked even in large-scale environments. Figure 5.8

shows the processing time of each frame as the number of tracking targets in-

creases. As can be seen, the processing time is not significantly increased as the

number of visitors increase. Additionally, the system can track multiple persons

robustly in real time even with full occlusions for a while.
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5.4 Art Gallery Installation

In the following the experimental setup and results of the human tracking system

implementation in a art gallery of the “Ohara Museum of Art” in the Kurashiki

area of Okayama, Japan is presented. First the system design for the real world

environment is demonstrated and analyzed the obtained performance in terms

of tracking accuracy. Second, an example is provided where the achieved large

amount of tracking data can provide useful knowledge about the visitors to the

MPs.

5.4.1 Tracking System Setup

Figure 5.9(a) illustrates location map of the art gallery (the red dashed line

with size 20m × 11m) in the museum. That art gallery is exhibited with 21

masterpieces of the western arts from the 19th and 20th centuries. Among those,

19 paintings are hanged on the wall and two remaining large sized paintings

are hanged over the doors in the north and south sides of the art gallery, see

Figure 5.9(b). There are also four sofas and one piano permanently in the middle

of the art gallery; see Figure 5.1. Additionally, for the visitors, there is a charming

window view of the outside through the door in the north side of the art gallery.

All the valuable paintings and piano are permanently protected against physical

contact by the visitors using a physical barrier. Usually, in that art gallery, visitors

view the paintings according to different patterns of behaviors. For example, some

of the visitors view all the paintings and exit the art gallery, some visitors sit on

the sofa to rest in between viewing the paintings, a few visitors go through the

door on the north side of the art gallery to look out the charming window view

of the outside before leaving the art gallery.

The partial goal of the art gallery installation was to make the sensor arrange-

ment inside the art gallery as simple and visitor friendly as possible so that the

sensors would be inconspicuous and not detract from the visitor’s actual inter-

ests towards the painting inside the art gallery. To do so, the tracking system is

realized as a combination of six LIDARs which are set up at the standard shoul-

der level of an adult human inside the art gallery; see Figure 5.10. Each of the

LIDAR poles is equipped with a laser range finder (Model: UTM-30LX/LN and

UTM-30LX-EW). This setup is well suited to installation at a real large-scale
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(a)

(b)

N

Figure 5.9: Visitor Tracking area in an art gallery of Ohara Museum of Art,

Japan; (a) The red dashed line on the map shows the border of the area covered

by the sensors; (b) Upward global view of the entire art gallery from a tripod

mounted SP360 action camera.

environment such as an art gallery in a museum. This is because deployed sen-

sors have a relatively large usable range: the maximum range at which correct

and stable measurements can be obtained is around 0.1 meter to 30 meters [2].

The measurements are accurate with low noise, especially for close ranges. The

number of missing measurements increases with distance, especially for dark and

transparent objects. To overcome such types of technical constraints as well as

to compensate the tracking error due to occlusion among visitors, in considered

wide-scale art gallery six LIDARs are used. This setup ultimately assists the hu-

man tracking system to robustly track most of the visitors with their unique-ID
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Figure 5.10: Illustration of the experimental setup.

from the beginning to the end of their painting viewing time inside the art gallery.

It is noted that, current setup can also continue tracking the visitors with their

unique-ID, in cases where they sit on the sofas for a while, and/or who shortly

go through the door of the north side of the art gallery to look out the charming

window. In general, proposed system detects and tracks people by observing

their shoulder positions only inside the art gallery. So, to continue tracking those

visitors the method stated in Section 5.3.2 is utilized to reassign the same unique-

ID to the visitors when they stand-up from the sofa or return back to the art

gallery from the door of the north side of the art gallery, to continue viewing

the paintings. In this case, condition-2 is relaxed to reassign the lost tracking

unique-ID to the lost person. Hence, this method compensates for tracking errors

to continuously track visitors who view the paintings in different ways inside the

art gallery.

The LIDARs are connected using USB extensions to the sensor control unit

which was located at the outside of the art gallery; see Figure 5.10. For simplicity,
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only one PC (Intel core i7 CPU, 3.60 GHz, 8GB RAM) is used to receive and store

the sensor data. In addition to the sensor system, four cameras (two handy cams,

two SP360 action cameras) were additionally installed inside the art gallery to

capture the visual video information of the whole tracking area; see Figure 5.10.

Experiment was conducted on 28th August 2015 with the above mentioned

setup and it has been using it to gather visitors’ tracking data for 7 hours (09:00

to 16:00). Later, the stored data were applied to the proposed method to ana-

lyze the achieved performance of it in terms of tracking accuracy. Additionally,

an example is provided where the obtained large amount of continuous human

tracking data can provide very useful knowledge about the visitor’s behaviors to

the MPs.

5.4.2 Tracking Accuracy Evaluation

For the evaluation, the tracking accuracies of the proposed system is determined

for different visitor densities, using manually labelled data. For the labeling, con-

tinuous tracking data is employed for three one-hour periods (11:00 to 12:00, 13:00

to 14:00 and 15:00 to 16:00). It can be called these periods light-density, high-

density and moderate-density, respectively, depending on the number of visitors

that entered the art gallery for each one hour period. During the time peri-

ods, each visitor would be labelled upon first entering the art gallery and there

were a total of 344 visitors. Labeling was done by comparing the view from the

video cameras’ information and the tracking results. But, because of the manual

labeling, the obtained evaluation result can only be considered approximate.

As the ultimate goal is to observe each individual’s behaviors inside the art

gallery using the proposed system, it is necessary to evaluate the accuracy by how

long a visitor is tracked using the assigned unique-ID for the duration of his/her

total time in the art gallery. For every labelled visitor, we compute the Accuracy

Index (AI) using Equation 5.4, and if the value of the AI for a visitor is above

80-called AI80, then it is assumed that the visitor is tracked for the majority of

the time with his/her assigned unique-ID inside the art gallery. If the value of

the AI for a visitor is 100-called AI100, then that visitor was fully tracked by the

proposed system with his/her assigned unique-ID. Thus, the AI matric is used

to evaluate the tracking accuracy of the proposed system. Table 5.1 illustrates
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Table 5.1: Tracking accuracy evaluation of our proposed system under different

visitor densities.
Tracking Scenario Light Density Moderate Density High Density

(11:00 to 12:00) (15:00 to 16:00) (13:00 to 14:00)

Number of- 59 107 178

labeled visitors

Average density- 9.17 14.16 19.94

(visitors)

Maximum gathering- 19 25 31

at a time

% of visitors secured- 96.61 78.50 71.34

AI80

% of fully tracked- 89.83 73.83 61.23

visitors (AI100)

the accuracy evaluation of the proposed visitor tracker system in the considered

art gallery under different visitor densities.

AI =
Tracking time with assigned unique-ID

Total passed time inside the art gallery
× 100 (5.4)

The accuracy of any tracking system is highly dependent on the coverage of

the observation area using the deployed sensor system. It was seen that, by using

six LIDAR poles inside the art gallery, the coverage of the deployed sensor system

was satisfactory when there were about 20 people(a moderate level of density in

that ar gallery); see Figure 5.11. With higher densities of people, there were

sometimes fully occluded regions for short periods of time. Thus, it was planned

to setup the sensor system inside the art gallery carefully to reduce the impact

of occlusions (due to high density of people) on tracking people with unique-IDs

in the art gallery.

The proposed human tracking system performs quite satisfactorily when the

visitor density in the art gallery is low. But an increase in density leads to a

decrease in tracking performance. Although the method stated in Section 5.3.2 is

utilized to combat the full occlusion of visitors in the case of high visitor density,

there were still errors. The main source of errors are lost tracks of some visitors
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5.4 Art Gallery Installation

Figure 5.11: LIDAR emitted beam image inside the art gallery: Light gray circles

with black spot indicate humans; and other gray colored space indicate the area

covered by the laser beam; the black region indicates the only fully occluded

region inside the art gallery with the density of people being more than 20.

who were in a group or family. It is observed that, in the case of a group or

family of visitors, they often tend to move closely together from one painting to

another. In such cases, in a particular small region in front of any painting, the

density of the visitors would be very high, thereby causing the system to fail in

identifying and tracking each of the group members with their initially assigned

unique-ID. Besides that, the presented method described in Section 5.3.2 also

failed to reassign unique-IDs to visitors that stood up from sofas while with their

group, or those that returned back to the art gallery with a group from the door

of the north side of the art gallery. In most cases, the system recovered the

track, but there were also a number of ID changes. The evaluation for the high-

density samples when the art gallery was mostly crowded, gives an insight into

the influence of person density on the tracking.

It is noted that in general, the proposed system applied trackers to each visi-

tors with a unique-ID at the entrance/exit of the art gallery one by one when their

shoulders were detected by the sensory system, and finally removed those applied

trackers automatically when they left the art gallery through the entrance/exit

gate. Using shoulder height sensors prevented a major cause of false positives

because the height of the most objects in the gallery such as the piano, below

the shoulder height of a typical visitor. But false negatives did occur because it
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Figure 5.12: Visualization of visitors’ movements and preferences to the paintings;

(below) Afternoon Sample (Moderate Density); the photos show the most likeable

paintings.

is observed from the captured video data that among the total labelled visitors,

there were children, toddlers and wheelchair users who were not observable by

the deployed LIDAR based sensing system since both of their heights were less

than the height of the LIDAR poles. This is another source of errors.

5.4.2.1 Visualization of Visitors’ Movement Patterns and Preferences

to Exhibits

In this study, based on the recorded data, heat maps is used to generate meaning-

ful and intuitive visualizations of the flow of visitors and their preferences to the

paintings through the target art gallery. Figure 5.12 visualizes the positions of
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5.4 Art Gallery Installation

the visitors in the art gallery where fully tracked visitors often stopped in different

density scenarios. The most stopped at positions (dark-red) of visitors inside the

art gallery reflects the message that there are interesting paintings around those

positions from where visitors usually view their most liked paintings. It is noted

that, at the outgoing corridor of that art gallery, the visitors were often asked

randomly to know about their most liked paintings. The top ranked most likeable

paintings information from these surveys matched with the heat maps generated

information obtained from the proposed human tracking system’s provided data,

which is illustrated in Figure 5.12 (bottom) in the case of moderate density sce-

nario. It is also observed from all the figures in Figure 5.12 that because visitors

usually move in an anti-clockwise pattern through the paintings in the gallery,

the first paintings in this anti-clockwise path received relatively more attention

than the ones at the end of the path. Melton [134] called this “exit gradient” as a

special case when visitors move through a art gallery. Thus it can be stated that

the proposed human tracking system is very much effective for the MPs to gather

such types of valuable information autonomously. These types of information

indicate whether certain people are interested in some selected exhibits and may

help the MPs to rearrange the exhibits to make the art gallery more attractive

and/or to adapt attractive services for providing additional details to the visitors

about those exhibits in that art gallery.

5.4.3 Application of the proposed System for the MPs:

Statistical Analysis

The proposed human tracking system permits to observe the undisturbed behav-

iors of the visitors inside the art gallery for extended periods of time. Thus, inside

the art gallery, it is possible to gather knowledge on, how many visitors visited,

which directions (clockwise or counter clockwise) they usually moved to view the

paintings, how long they were inside the art gallery, which paintings are mostly

liked by the visitors, how many people were seated on the sofa to rest, how many

visitors were in special areas of the room for a particular time period. Thus, with

the proposed system, the interests and intentions of the visitors can be naturally

observed inside the art gallery, which will definitely be valuable information for

92



5.4 Art Gallery Installation

Observation time [hour]

155

102

59 63

178

110 107

#
 o

f 
v

is
it

o
rs

 in
 a

rt
 g

a
ll

e
ry

Observation time [hour]

Figure 5.13: Total Number of Visitors to the Art Gallery on an Hourly Basis.

MPs to take into account for any further decisions to make the art gallery more

attractive.

Here, some example statistics are illustrated that were able to extract from

the aggregated data about visitors by the proposed environmentally deployed

sensor system. Figure 5.13 shows the variations of the total number of visitors

inside the art gallery on the experimental day. It is seen that the number of

visitors after lunch was remarkably high. Before and after the lunch period, the

average number of visitors were almost the same. It is also observed from the

recorded data that 88.76% of the total visitors moved counter clockwise inside the

art gallery, as is typical (>75%) in an art gallery which was claimed by Melton

in [134, 135]. Furthermore, it is also observed that 24.54% of the visitors would

sit on the sofa while 6.58% would go through the north gate of the art gallery

to view the natural beauty of outside window. This is the type of information

that the museum curator asked while the experiment was conducted in that art

gallery.

To obtain more specific behaviors of the visitors inside the art gallery, the

1 hour afternoon sample (Moderate Density) is used in our system. The posi-

tional data of the total number of visitors were extracted who were completely

tracked by the proposed human tracking system. From the extracted data, visi-

tors’ stereotypical movements can also be categorized into four categories in that

art gallery as proposed in ethnographic studies by Veron and Levasseur in [198].

The four visiting styles are based on animal behaviors are ant, fish, grasshopper,
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Table 5.2: Different categories of visitors based on their visiting style.

Visiting Style [%]

Ant visitor 20.78

Fish visitor 6.5

Grasshopper visitor 38.96

Butterfly visitor 33.77

and butterfly. The ant visitor spends quite a long time to observe all the exhibits

by walking closer to exhibits but avoids empty spaces. The fish visitors prefer to

move and stop at empty spaces but avoid areas near exhibits. The grasshopper

visitors spend long periods of time seeing selected exhibits but ignore the rest of

exhibits. The butterfly visitors observe almost the exhibits but spend varied times

to observe each exhibit. Identifying visitors’ visiting styles by the MPs could be

advantageous for setting up an effective guide system in museums as mentioned

in [22, 56, 214]. The obtained results on categorization of visitors based on their

visiting style is summarized in Table 5.2. Figure 5.14 shows the visualizations

of the different category of visitors’ walking trajectories. The positions in the

art gallery where visitors how often stopped are illustrated in Figure 5.14(Left).

Figure 5.14(Right) shows very clearly how different categories of visitors tend to

move to view paintings.

5.4.4 Discussion

Practically tracking in public spaces has been considered difficult because the

arrangement of static objects in such places is very variable over time. But, the

layout of the contents in art galleries are quite well organized over long periods of

time. So, the setup presented here does not show any big problem. Actually, the

aim of this research was to setup the sensor arrangement inside the art gallery to

be as simple and unobtrusive as possible to track the visitors so that it would not

detract from the natural experience of attending the gallery. Thus, a LIDAR pole

based sensor system was chosen. Due to its portability, it is more convenient to

arrange such types of setups in any other art galleries within a very short amount

of time with few technical professionals for the same purposes. LIDARs are much

more cost effective and commercially available on the market as opposed us to
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Figure 5.14: Heat map image of different types of visitors’ movements in the art

gallery.

3D range sensors because of their prohibitive increase in cost and necessities of

maintenance with highly technical professionals.

5.5 Chapter Summary

This chapter introduces a method which uses LIDAR to identify humans and

track their positions, body orientation, and movement trajectories in any public

space to read their various types of behavioral responses to surroundings. We

use a network of LIDAR poles, installed at the shoulder level of typical adults

to reduce potential occlusion between persons and/or objects even in large-scale

social environments. With this arrangement, a simple but effective human track-
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ing method is proposed that works by combining multiple sensors’ data so that

large-scale areas can be covered. How valuable information related to people’s

behaviors can be autonomously collected and analyzed using this method is also

described. Additionally, a solution to visualize people’s movement patterns and

preferences with respect to any social space is presented. Thereafter, the effec-

tiveness of the proposed human detection and tracking method is evaluated in

an art gallery of a real museum. Ultimately, results revealed good human track-

ing performance and provided valuable behavioral information related to the art

gallery, which are very important for the MPs to take into account in making

decisions on improving the attractiveness of any art gallery by introducing more

services for the visitors. Additionally, it can be concluded that the obtained vis-

itor’s behavioral knowledge from these experiments could be very useful for the

museum professionals and curators to achieve knowledge on visitor’s undisturb

experiences on the exhibits. Thus, the obtained experimental results could help

them to adapt new services inside the art gallery and/or rearranging the paintings

to make the art gallery more attractive for the future visitors.

5.5.1 Limitations

Although the aim of the presented robust human tracking system in this chapter

is to utilize it for social robots to observe different types of behaviors from people

to know their interests, intentions, and preferences in any public places, it has

not been utilized yet for service robots. We primarily consider the behaviors of

individuals but during the experiments, we found that people often visit the art

gallery in groups. For future work, observing the behaviors in terms of groups of

people inside the art gallery can be considered in addition to observing individ-

ual’s behaviors. Additionally, based on the observed behaviors by the presented

human tracking system, in the future, it can be used in any art gallery like popular

public space in support of service robots in real time to offer proactive services.
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Chapter 6

Conclusions

Nowadays, it is very important to introduce social robots in social spaces with

the ability to proactively offer services to humans. To achieve such an ability,

social robots should have the capabilities to observe human behaviors so that they

can easily understand their internal states because human internal states reflect

their interests, intentions, and preferences concerning surrounding environments.

In this dissertation, we explored issues related to recognizing human interests,

intentions, and preferences concerning surrounding environments using modern

human sensing technologies to provide proactive services to the humans by social

robots. This dissertation began with a review of the existing literature of the

interdisciplinary research related to our considered issues.

Social robots play very important roles in human world. Understanding the

human behaviors is a challenging task for social robots to offer their proactive

services to humans in real world environments. We analyzed video camera footage

and laser sensor based tracking system extracted human tracking data both in

laboratory controlled environments and in an art gallery of a real museum (Ohara

Museum of Art, Kurashiki, Japan) in order to find out about how the various

types behaviors of the human concerning the exhibits. These types of analysis are

thoughtful before introducing proactive guide robot services in museum scenario.

The primary focus of this dissertation is to develop a human behavior sensing

system for social robots to estimate the interests, intentions, and preferences of

people concerning surrounding environments in order to initiate proactive human-

robot interaction by social robots in museum scenarios. Towards these larger

goals, this work has made a set of methodological, theoretical, and practical
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contributions. The methodological contributions include an interdisciplinary, in-

tergrade process for designing, building, evaluating, and demonstrating human

behaviors sensing systems using modern sensing technologies to estimate their

interests, intentions, and preferences to the exhibits in museum scenarios. These

contributions are listed in Section 6.1. The theoretical contributions advance

our understanding of human communicative mechanisms from a computational

point of view and of peoples responses to theoretically based manipulations in

these mechanisms when they are enacted by social robots. Section 6.2 summa-

rizes these contributions. The technical contributions include the computational

models of social behavior created for the empirical studies, which are described

in Section 6.3. To designing human behavior sensing systems to estimate their

interests, intentions, and preferences to the exhibits in museum scenarios, several

technical and methodological challenges are faced which are remain significant

bottlenecks in developing proactive behaviors of the museum guide robots. Sec-

tion 6.4 discusses the central challenges and provides a vision for how future work

might address them. The last section in this chapter provides my closing remarks.

6.1 Methodological Contributions

This dissertation presents an interdisciplinary research approach that combines

techniques and methods from several research domains such as sociology, psychol-

ogy, and human-robot interaction. Furthermore, it also presents an incremental

process for studying and designing the methods to estimate human’s interests,

intentions, and preferences concerning surrounding environments. Additionally,

it demonstrated and evaluated the effectiveness of the designed proactive com-

municative mechanisms of the social robots to interact with humans in museum

scenarios. Table 6.1 lists these contributions.

6.2 Theoretical Contributions

The theoretical contributions of this work consist of a set of new knowledge ex-

tracted from a psychology, sociology, cognitive science and human-robot interac-

tion fields that help a deeper understanding on human interests, intentions, and
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Table 6.1: Methodological contributions of the dissertation.

Context Contributions

All Studies •A theoretically and empirically grounded, interdisciplinary process for design-

ing, implementing and evaluating human behavior tracking system to estimate

human’s internal states to offer proactive services by social robots.

Chapter 3 •An experimental framework for studying how a museum guide robot offers

proactive guidance to the visitors based on vision based visitors detection and

local behavior tracking system in terms of subjective and quantitative evalua-

tions.

Chapter 4 •An experimental framework for studying how a museum guide robot system

offers proactive guidance to the visitors by judging their both local and global

behavior inside the museum.

Chapter 5 •An experimental framework for designing, implementing, and evaluating a ro-

bust human behavior tracking system usable in an art gallery like real crowded

public space where dealing with partial and full occlusion is a challenging task

to tracking people continuously for deploying future guide robot systems to

offer proactive services.

preference extracting mechanisms as applied to the guide robot system so that

guide robots gain the ability to judge human behaviors and their social/cognitive

outcomes. Theoretical contributions are listed in Table 6.2.

6.3 Technical Contributions

The technical contributions of this dissertation include a set of design, and be-

havioral variables for judging the behaviors to know the human’s internal states,

and computational models of a social robot’s proactive behaviors that were cre-

ated for empirical studies of this dissertation. Table 6.3 provides a detailed list

of these contributions.
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Table 6.2: Theoretical contributions of the dissertation.

Context Contributions

All Studies •Evidence that social robot’s verbal and gestural (head shaking, hand waving

and body movement) actions lead to significant social and cognitive outcomes,

particularly better feeling of attraction toward the social robot while proac-

tively offer guidance to the visitors in museum scenarios.

Chapter 3 •Evidence that social robot’s successful initiation of proactive guidance to the

visitors takes four key steps process: observe visitors’ presence to select one

as a target visitor, tracks head orientation of the target visitor to determine

his/her VFOA as his/her local behavior toward the painting, proactively move

toward the target visitor’s social distance, finally, initiate proactive guidance.

Chapter 4 •Evidence that network enabled social robot’s successful initiation of proactive

guidance to the visitors takes three key steps process: observe visitors’ global

behavior, then observe their local behavior toward the paintings if typical global

behavior found, finally, offer proactive commentary to the visitors.

Chapter 5

•Evidence that the robust human behavior tracking system for future museum

guide robot system enabled the museum curators and museum professionals to

achieve valuable undisturbed behavioral information related to the art gallery.

•Evidence that visitors moved counter clockwise inside the art gallery as is

typical.

•Evidence that four categories of visitor’s stereotypical movements (ant, fish,

grasshopper, and butterfly ) occur in an art gallery.

•Evidence that an “exit gradient” exists as a special case when visitors move

through an art gallery. In this case, the first paintings in the movement path

in an art gallery received relatively more attention than the one at the end of

the path.
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Table 6.3: Technical contributions of the dissertation.

Context Contributions

All Studies
•Conceptually designed and implemented smart art galleries of a typical mu-

seum by incorporating modern human behavior sensing system for museum

guide robot to perform the proactive human-robot interaction studies.

•Technically designed and implemented an environmentally distributed modern

human tracking system useable in an art gallery of a real museum for future

museum guide robot.

Chapter 3
•A computational model of identifying interested visitors through observing

their local behavior is programmed in C, C++, and OpenCV library functions.

•Additionally, a piece of dedicated software called “RobovieMaker2” is used for

imposing AI to the Robovie-R3 for controlling its proactive behaviors toward

the target visitor.

Chapter 4
•A computational model of identifying interested visitors through observing

their both local and global behavior is programmed in C, C++, and OpenCV

library functions.

•Additionally, a piece of dedicated software called “RobovieMaker2” is used to

implement the AI in the Desktop Robot to proactively initiate guidance to the

visitors about the exhibits in the museum scenario.

Chapter 5
•An integrated computational model of tracking human positions, body orien-

tations in real world environments is programmed in C, C++, and OpenCV

library functions.

•CUDA (Compute Unified Device Architecture) is utilized in parallel compu-

tation related programming tasks to track large numbers of people even in

large-scale environments.

6.4 Future Work

In this dissertation, attempts have been made to solve a highly complex and un-

conventional design problem in HRI-designing a human behavior tracking system
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to estimate their interests, intentions, and preferences concerning surrounding

environments with incorporation of the psychology, sociology, cognitive science,

and human-robot interaction fields. The ultimate goal is to gain a better under-

standing of human behaviors to design an HRI system which will enable social

robots to proactively provide services to the humans. There are still several is-

sues that have not been addressed in the current model. Some of the issues are

discussed in the following.

•Generalizability: We tested the proposed HRI model for a specific scenario

where group of participants were asked to visit the designed art gallery of a typical

museum with some instructions. Then their behaviors were analyzed to estimate

their internal states. Therefore, its generalizability is limited. More studies are

needed to judge the visitors’ behaviors in a real museum before introducing the

proactive services of the social robots in museums in real world spaces.

•Limited Interaction: In this dissertation, the social robot’s actions de-

signed for the proposed HRI systems are limited to use voice and gestural (head

shaking, hand waving, and body movement in between the visitors and the ex-

hibits) actions to draw attention and offer proactive commentary about the ex-

hibits. Social robots may also need to use eye gaze movements or physical touch

depending on the various complex situations. Therefore, it is needed to explore

other possible situations and design appropriate actions for those situations to

make the activities of the social robot more natural.

•Controlled Laboratory Settings: The HRI approach presented here used

controlled laboratory experiments to understand the social and cognitive out-

comes of the designed human intention, interest, and preference estimation model

as well as social robot’s proactive approaching model. To prove the current ap-

proaches will be effective beyond controlled laboratory settings, future work needs

to also situate designed behaviors in real-world scenarios and contexts.

•Mobility of Social Robots: In this dissertation, the mobility of the social

robots as museum guide robots is partially considered before proactively offer

guidance to the human. Studies presented in Chapter 3 considered social robot’s

semi-autonomous movements where it can only move to some predefined location

to offer proactive service, whereas in studies presented in Chapter 4, the social

robots are considered to be stable in some exhibit specific fixed locations to

offer proactive services. Thus, the mobility of the social robots in this study is
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limited. More studies are needed to make social robots with the capability to

autonomously move anywhere to offer proactive services inside real art galleries.

6.5 Closing Remarks

We believe that it is a very challenging task to the HRI research community to

implement the intelligence inside the social robot to estimate human interests,

intentions, and preferences toward the surrounding public environments before

introducing their proactive services for human activities because in this way hu-

mans can acquire exclusive proactive services from the social robots in the same

manner as that from humans. To introduce such proactive services from social

robots to humans, in this dissertation, we proposed more than one HRI system in

which modern human sensing technology based methods are presented to judge

the behaviors (local and global behavior) of the humans in the art gallery sce-

nario to estimate their interests, intentions, and preferences towards the exhibits

(paintings). It is revealed that the outcomes of the presented human sensing

methods enabled the social robots to provide proactive services to the humans.

Furthermore, based on our observation of human behaviors by using our designed,

implemented, and deployed robust human tracking system in a real art gallery, it

can be concluded that humans always exhibit some typical behaviors (e.g. stay

for a long time in front of their most liked paintings).

In this process, we employed methods and knowledge from a variety of dis-

ciples (such as psychology, sociology, cognitive science, and robotics) and made

a number of design decisions that were grounded in theory and empirical data.

While further work remains in order to improve the validity of these decisions and

the generalizability of the results, this dissertation provides a major step towards

designing important social capabilities (such as proactively providing human so-

cial services to people) for social robots using a theoretically and empirically

grounded methodology. We believe that our proposed HRI systems have the

ability to provide proactive novel services to humans in real world environments.
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Appendix A

Data Collection Techniques

This appendix includes the methods or techniques used in this dissertation to

gather the data from the human-robot interaction studies. Additionally, it also

includes the techniques and tools to gather the data about the preferences of the

visitors in an art gallery of a real museum. To collect the data, we used question-

naires as well as observation methods. Table A.1 summarizes these techniques.

The questionnaire data was collected in terms of the Likert scale.

A. Questionnaire Based Method: A questionnaire is a set of questions for

gathering information from individuals. The project leader administers question-

naires by mail, telephone, using face-to-face interviews, as handouts, or electron-

ically (i.e., by e-mail or through Web-based questionnaires). Questionnaires are

a well-establish technique for collecting demographic data and users’ opinions.

Efforts and skills are needed to develop questions that clearly communicate what

the information seeker wants to know. Questionnaires can be used on their own

or in conjunction with other methods to clarify or deepen understanding. It is

important that questions are specific; when possible, closed questions should be

asked and a range of answers offered using clear and simple wording written at

the reading level of the participants, including a ‘no opinion’ or ‘none of these’

option.

B. Likert Scale: Likert scales are used for measuring opinions, attitudes,

and beliefs, and consequently they are widely used for evaluating user satisfaction

with systems. The purpose of this rating scale is to elicit a range of responses to a

question that can be compared across respondents. This is good for getting peo-
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Table A.1: Overview of data gathering techniques used in this dissertation.

Technique Good for Data types Pros Cons

Questionnaire XAnswering spe-

cific questions,

XTo gather data

about individuals’

knowledge, be-

liefs, attitudes, and

behaviors

Quantitative and

qualitative

XCan reach many peo-

ple with low resource,

XAdministers can dis-

seminate questionnaires

relatively inexpensively,

XIt is helpful in main-

taining participants’

privacy because par-

ticipants’ responses

can be anonymous or

confidential

XThe design is crucial.

XResponse rate may be low.

XResponses may not be what

administer want.

Observation XCapturing the de-

tail of what individu-

als do, XWhen data

collection from indi-

vidual is not a real-

istic option through

questionnaire

Quantitative and

qualitative

XCan focus on the de-

tails of a task without

interruption, XResult

may have greater use if

conducted in real envi-

ronments

XResults may have limited

use in the real environments if

observation conducted in con-

trolled artificial/designed en-

vironments.
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Figure A.1: 7-point Likert scale with corresponding rating features.

.

ple to make judgements about things, e.g., how easy, how effective, and such like.

The success of Likert scales relies on identifying a set of statements representing a

range of possible opinions and this scale is more commonly used because identify-

ing suitable statements that respondents will understand easily. When designing

the Likert scale, issues that need to be addresses include: How many points are

needed on the scale, How should they be presented, and in what form? Many

questionnaires use seven-or-five-point scales and there are also three-point scales.

Longer range is better, when asking respondents to make subtle judgements. In

this dissertation, we have used a 7-point Liket scale to collect the participants’

impression on robot’s behaviors using the questionnaire method where ‘1’ stands

for definite no/very ineffective, and ‘7’ stands for definitely yes/very effective (see

in Figure. A.1 as an example).

C. Observation Based Method: Observation is way of gathering data by

watching behavior, events, or noting physical characteristics in their natural set-

ting. Observations can be overt (everyone knows they are being observed) or

covert (no one knows they are being observed and the observer is concealed).

The benefit of covert observation is that people are more likely to behave natu-

rally if they do not know they are being observed. However, typically conducting

overt observations is suitable because of ethical problems related to concealing

observation. Observations can also be either direct or indirect. Direct observa-

tion is when someone watch interactions, processes, or behaviors as they occur;

for example, observing a teacher teaching a lesson from a written curriculum to

determine whether they are delivering it with fidelity. Indirect observations are

when someone watch the results of interactions, processes, or behaviors; for ex-

ample, measuring the amount of plate waste left by students in a school cafeteria

to determine whether a new food is acceptable to them.
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Data collection through observation methods and techniques may take place

in the real world environments, or in a controlled environment. In the former case,

individuals can be observed in natural settings. For example, museum curators

or professionals can observe whether the layout of the paintings in an art gallery

is conducive to learning for visitors. In the latter case, individuals are observed

performing specified tasks within a controlled environment. In this dissertation,

we have used both recorded video data and laser sensor based tracking system

extracted data in both controlled laboratory settings (see in Chapter 4) and an

art gallery of a real museum (see in Chapter 5) to gather observational data. The

number of successful attempts of the guide robot to initiate proactive interaction

with humans (see in Chapter 3) is an example of quantitative measures collected

by observation.
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R. Heidemann, K. Joeris, C. Zhang, M. Burnett, and T. Monica. A vision

based human robot interface for robotic walkthroughs in a biotech labo-

ratory. In Proceedings of the 4th ACM/IEEE International Conference on

128



REFERENCES

Human Robot Interaction, HRI ’09, pages 309–310, New York, NY, USA,

2009. ACM. 20

[205] S. S. Yalowitz and K. Bronnenkant. Timing and tracking: Unlocking visitor

behavior. Visitor Studies, 12(1):47–64, 2009. 33

[206] A. Yamazaki, K. Yamazaki, T. Ohyama, Y. Kobayashi, and Y. Kuno. A

techno-sociological solution for designing a museum guide robot: Regarding

choosing an appropriate visitor. In Human-Robot Interaction (HRI), 2012

7th ACM/IEEE International Conference on, pages 309–316, March 2012.

30

[207] K. Yamazaki, M. Kawashima, Y. Kuno, N. Akiya, M. Burdelski, A. Ya-

mazaki, and H. Kuzuoka. ECSCW 2007: Proceedings of the 10th Euro-

pean Conference on Computer-Supported Cooperative Work, Limerick, Ire-

land, 24-28 September 2007, chapter Prior-to-request and request behaviors

within elderly day care: Implications for developing service robots for use

in multiparty settings, pages 61–78. Springer London, London, 2007. 31,

53

[208] K. Yamazaki, A. Yamazaki, M. Okada, Y. Kuno, Y. Kobayashi, Y. Hoshi,

K. Pitsch, P. Luff, D. vom Lehn, and C. Heath. Revealing gauguin: Engag-

ing visitors in robot guide’s explanation in an art museum. In Proc. of the

SIGCHI Conf. on Human Factors in Computing Systems, CHI ’09, pages

1437–1446, 2009. 30, 34, 75

[209] H. A. Yanco and J. Drury. A taxonomy for human-robot interaction. In

AAAI Technical Report FS-02-03, Oct 2002. 13

[210] M. Yoda and Y. Shiota. Basic study on avoidance motions for human behav-

iors. In Robot and Human Communication, 1995. RO-MAN’95 TOKYO,

Proceedings., 4th IEEE International Workshop on, pages 318–322, Jul

1995. 17

[211] M. Yoda and Y. Shiota. The mobile robot which passes a man. In Robot

and Human Communication, 1997. RO-MAN ’97. Proceedings., 6th IEEE

International Workshop on, pages 112–117, Sep 1997. 17

[212] E. Yong. What are you looking at? people follow

each others gazes, but without a tipping point, available:

http://blogs.discovermagazine.com/notrocketscience/2012/04/23/what-

129



REFERENCES

are-you-looking-at-people-follow-each-others-gazes-but-without-a-tipping-

point/.V611N9J95ph, 2012. xii, 28

[213] M. A. Yousuf, Y. Kobayashi, Y. Kuno, A. Yamazaki, and K. Yamazaki. In-

telligent Computing Technology: 8th International Conference, ICIC 2012,

Huangshan, China, July 25-29, 2012. Proceedings, chapter Development

of a Mobile Museum Guide Robot That Can Configure Spatial Formation

with Visitors, pages 423–432. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2012. 34

[214] M. Zancanaro, T. Kuflik, Z. Boger, D. Goren-Bar, and D. Goldwasser.

Analyzing museum visitors behavior patterns. In C. Conati, K. McCoy, and

G. Paliouras, editors, User Modeling 2007, volume 4511 of Lecture Notes in

Computer Science, pages 238–246. Springer Berlin Heidelberg, 2007. 94

[215] B. Zhan, D. Monekosso, P. Remagnino, S. Velastin, and L.-Q. Xu. Crowd

analysis: a survey. Machine Vision and Applications, 19(5-6):345–357, 2008.

19

[216] H. Zhao and R. Shibasaki. A novel system for tracking pedestrians us-

ing multiple single-row laser-range scanners. Systems, Man and Cybernet-

ics, Part A: Systems and Humans, IEEE Transactions on, 35(2):283–291,

March 2005. 20, 21

130


