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The radiatively induced neutrino mass matrix is investigated on the basis of an SU(5) SUSY
model. In order to evade the proton decay, an ansatz based on a discrete symmetry Z2 is assumed:
although, at the unification scale, we have two types of superfields ΨL(±) = 5L(±)+10L(±), which are
transformed as ΨL(±) → ±ΨL(±) under the discrete symmetry Z2, the particles ΨL(+) are decoupled
after the SU(5) symmetry is broken, so that our quarks and leptons belong to ΨL(−). The R-parity-
violating terms for our quarks and leptons ΨL(−) are basically forbidden under the symmetry Z2.
However, we assume that mixings between members of ΨL(+) and those of ΨL(−) are in part caused
after SU(5) is broken. As a result, the R-parity-violating interactions are in part allowed, so that
the neutrino masses are radiatively generated, while the proton decay due to the R-parity violating
terms is still forbidden because the term d

c
Rd

c
Ru

c
R has z = −1.

PACS number(s): 11.30.Er; 12.60.Jv; 14.60.Pq; 11.30.Hv

I. INTRODUCTION

The origin of the neutrino mass generation is still a
mysterious problem in the unified understanding of the
quarks and leptons. The Zee model [1] is one of several
promising models, because it has only 3 free parame-
ters and it can naturally lead to a large neutrino mixing
[2], especially, to a bimaximal mixing [3]. However, the
original Zee model is not on the framework of a grand
unification theory (GUT). The most attractive idea [4]
to embed the Zee model into GUTs is to identify the
Zee scalar h+ as the slepton ẽR in an R-parity-violating
supersymmetric (SUSY) model. However, usually, it is
accepted that SUSY models with R-parity violation are
incompatible with a GUT scenario, because the R-parity-
violating interactions induce proton decay [5].

In the present paper, in order to suppress this kind
of proton decay, a discrete symmetry Z2 is introduced.
The essential idea is as follows: At the unification scale
µ = MX , we have two types of superfields ΨL(±) =

5L(±)+10L(±), which are transformed with ±1 under the
discrete symmetry Z2 (we will call it “Z2-parity” here-
after). We consider that the particles ΨL(+) are decou-
pled after the SU(5) symmetry is broken (but Z2 is still
unbroken), so that our quarks and leptons 5L + 10L be-
long to ΨL(−). The R-parity violating terms are given

by the combinations 5(+)5(+)10(+), 5(−)5(−)10(+) and

5(+)5(−)10(−), so that they basically do not contribute
to the quarks and leptons with Z2-parity z = −1, be-
cause of the Z2 symmetry. However, we assume that

mixings of the members of ΨL(+) with those of ΨL(−)

are caused in part after SU(5) is broken. As a result,
the R-parity-violating interactions are in part allowed, so
that the neutrino masses are radiatively generated, while
the proton decay due to the R-parity-violating terms is
still forbidden because the term dc

Rd
c
Ru

c
R is still exactly

forbidden below µ = MX in the present scheme. The
details will be discussed in the next section.

The purpose of the present paper is to investigate the
possible forms of the radiatively induced neutrino mass
matrix under the Z2 symmetry. In Sec. III, we will
give them, including a numerical study. In Sec. IV, we
will give a comment on the Higgs scalars in the present
scheme. Finally, Sec. V is devoted to our conclusion.

II. Z2 SYMMETRY AND THE PROTON DECAY

We identify the Zee scalar h+ as the slepton ẽ+R, which

is a member of SU(5) 10-plet sfermions ψ̃10. Then, the
Zee interactions correspond to the following R-parity-
violating interactions

λijk(ψ
c

5)
A
i (ψ5)

B
j (ψ̃10)kAB

=
1√
2
λijk

{
εαβγ(dR)α

i (dc
R)β

j (ũ†R)γ
k

−[(ec
L)i(νL)j − (νc

L)i(eL)j ](ẽ
†
R)k

−[(ec
L)i(d

c
R)α

j − (dR)α
i (eL)j ](ũL)kα

+[(νc
L)i(d

c
R)α

j − (dR)α
i (νL)j ](d̃L)kα

}
, (2.1)
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where ψc ≡ Cψ
T

and the indices (i, j, · · ·), (A,B, · · ·)
and (α, β, · · ·) are family-, SU(5)GUT - and SU(3)colour-
indices, respectively. The coefficients λijk are antisym-
metric in i and j. On the other hand, in SUSY GUT
models, if the interactions (2.1) exist, the following R-
parity-violating interactions will also exist:

λijk(ψ
c

5)
A
i (ψ10)kAB(ψ̃5)

B
j ,

=
1√
2
λijk

{
εαβγ(dR)α

i (d̃†R)β
j (uc

R)γ
k

−[(ec
L)i(ν̃L)j − (νc

L)i(ẽL)j ](e
c
R)k

−[(ec
L)i(d̃

†
R)α

j − (dR)α
i (ẽL)j ](uL)kα

+[(νc
L)i(d̃

†
R)α

j − (dR)α
i (ν̃L)j ](dL)kα

}
, (2.2)

which contribute to the proton decay through the inter-

mediate state d̃R. Also, the term (dR)α
i (dc

R)β
j (ũ†R)γ

k in

the interactions (2.1) can contribute to the nucleon de-
cay through the intermediate state ũR. The upper limits
of the coupling constants λijk from proton decay exper-
iments have been investigated by Smirnov and Vissani
[5], and the values must be highly suppressed.

In order to forbid the contribution of the interactions
(2.1) and (2.2) to the proton decay, we must consider that
in the R-parity-violating interactions 5×5×10, the term
dc

Rd
c
Ru

c
R is exactly forbidden, while the terms νLeLe

c
R

and/or νLd
c
RdL are in part allowed.

For such purpose, we introduce a discrete symmetry
Z2, which exactly holds at every energy scale. At the
unification scale µ = MX , we have two types of super-
fields ΨL(±) = 5L(±) + 10L(±), which are transformed
as ΨL(±) → ±ΨL(±) under the discrete symmetry Z2.
We consider that the particles ΨL(+) are basically de-
coupled after the SU(5) symmetry is broken, so that our
quarks and leptons (and their SUSY partners) 5L + 10L

are regarded as ΨL(−) = 5L(−) + 10L(−). The R-parity-
violating terms for quarks and leptons (and their SUSY
partners) are basically forbidden under the symmetry
Z2 below µ = MX , because the terms are composed of
5L(−)5L(−)10L(−).

However, if we assume that mixings between the mem-
bers of ΨL(+) and those of ΨL(−) in part take place
after SU(5) is broken, R-parity-violating interactions
ΨL(+)ΨL(−)Ψ(−) become available at the low energy
µ = mZ , too. For example, we assume a mixing

(2, 1)Li = (2, 1)L(−)i cos θA
i + (2, 1)L(+)i sin θA

i , (2.3)

between the (2, 1) components of SU(2)×SU(3) for the
i-th family. (Hereafter, we will refer to the mixing (2.3)
as a mixing of type Ai.) Then, the R-parity-violating
interactions

sin θA
i λijkνLid

c
RjdLk , sin θA

i λijkeLid
c
RjuLk ,

sin θA
i cos θA

j λijkνLieLje
c
Rk , (2.4)

become available from the interactions

λijk5(+)i5(−)j10(−)k , (2.5)

above the unification scale µ = MX . Also, we can con-
sider a mixing

(2, 3)Lk = (2, 3)L(−)k cos θB
k + (2, 3)L(+)k sin θB

k , (2.6)

between the (2, 3) components of SU(2)×SU(3) for the
k-th family. (Hereafter, we will refer to the mixing (2.6)
as a Bk-type mixing.) Then, the R-parity-violating in-
teractions

sin θB
k λ

′
ijkνLid

c
RjdLk and sin θB

k λ
′
ijkeLid

c
RjuLk (2.7)

become available from the interactions

λ′ijk5(−)i5(−)j10(+)k . (2.8)

On the other hand, note that the interaction

dc
Rd

c
Ru

c
R (2.9)

is exactly forbidden, independently of whether the mix-
ings (2.3) and (2.6) occur or not, because those interac-
tions have the Z2 parity z = −1. Therefore, the proton
decay due to the R-parity-violating terms is exactly for-
bidden because of the absence of the term dc

Rd
c
Ru

c
R. On

the other hand, the neutrino masses are radiatively gener-
ated through the interactions νLd

c
RdL and νLeLe

c
R with

z = +1. The possible forms of the radiative neutrino
mass matrix will be discussed in the next section.

At present, we do not know a reasonable mechanism
not only for such a mixing, but also for the decoupling of
ΨL(+). In order to make ΨL(+) = 5L(+) + 10L(+) heavy,
the SU(2)L symmetry must be broken, but, of course,
we cannot consider a scenario in which SU(2) is broken
just after SU(5) is broken. In the present paper, we give
only a phenomenological selection rule: if the superfield
Ψ can make a five-body SU(5) singlet operator ΨΨΨΨΨ
with the Z2 parity z = +1, then the superfield Ψ can
be decoupled below µ = MX . Obviously, according to
this selection rule, the superfield 5L(+) can be decoupled
below µ = MX . Similarly, the superfield 10L(+) is decou-
pled below µ = MX . However, note that those operators
in the SU(5) singlets are symbolically expressed in terms
of SU(2)×SU(3) components as follows:

(
5L(+)

)5
= [(2, 1)L(+)]

2 × [(1, 3)L(+)]
3 , (2.10)

(
10L(+)

)5
= (1, 1)L(+) × [(1, 3)L(+)]

2 × [(2, 3)L(+)]
2

+(1, 3)L(+) × [(2, 3)L(+)]
4 , (2.11)

and that even if the interchanges (2, 1)L(+)i ↔
(2, 1)L(−)i, and/or (2, 3)L(+)k ↔ (2, 3)L(−)k, are caused,
the composite operators

(
5L

)5
= [(2, 1)L(−)]

2 × [(1, 3)L(+)]
3 , (2.12)
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(10L)
5

= (1, 1)L(+) × [(1, 3)L(+)]
2 × [(2, 3)L(−)]

2

+(1, 3)L(+) × [(2, 3)L(−)]
4 (2.13)

still have z = +1. Such interchanges are possible only
for the components (2, 1)L and (2, 3)L. As a result, only
the combination

5L + 10L = [(2, 1)L(+) + (1, 3)L(−)]

+[(1, 1)L(−) + (2, 3)L(−) + (1, 3)L(−)] , (2.14)

for the i-th family and/or

5L + 10L = [(2, 1)L(−) + (1, 3)L(−)]

+[(1, 1)L(−) + (2, 3)L(+) + (1, 3)L(−)] , (2.15)

for the k-th family survive below µ = MX as the quarks
and leptons (and their SUSY partners).

Of course, the above selection rule cannot be justi-
fied within the framework of the minimal SUSY standard
model. At present, this is only an ansatz to select which
components of SU(2)×SU(3) can be interchanged.

III. RADIATIVE NEUTRINO MASSES

In a SUSY GUT scenario, there are many origins of
the neutrino mass generations. For example, the sneu-
trinos ν̃iL can have vacuum expectation values (VEVs),
and the neutrinos νLi acquire their masses thereby (for
example, see Ref. [6]). Although we cannot rule out a
possibility that the observed neutrino masses can be un-
derstood from such compound origins, we do not take
such a point of view in the present paper, because the ob-
served neutrino masses and mixings appear to be rather
simple and characteristic. We simply assume that the ra-
diative masses are only dominated even if there are other
origins of the neutrino mass generations.

In the present scenario, the origins of the radiatively
induced neutrino masses are two: one is induced by the

R-parity-violating interactions νLd
c
Rd̃L and νLd̃

c
RdL; the

other one is induced by νLeLẽ
c
R and νLẽLe

c
R. Note that

there is no Zee-type diagrams due to H+
d –ẽ+R mixing in

this scheme.
First, we discuss the down-quark loop contributions.

For simplicity, we assume that the masses M̃Li and M̃Ri

of the squarks d̃Li and d̃Ri are approximately constant,
independently of the flavours, although we consider the

flavour-dependent structure for the mass terms d̃†LM̃
2
d d̃R.

Then, the radiatively induced neutrino mass matrix due
to the A-type mixing is given by

(Mν)ij = m0λikmλjln(M †
d)kn(M̃2†

d )lm + (i↔ j) , (3.1)

where sine-factors have been drooped for simplicity, Mν

is defined by νLMνν
c
L, and the coupling constants λijk

are redefined by

λijk

[
νLidRj d̃

†
Lk + νLid̃Rjd

c
Lk − (νL ↔ dc

R)
]
. (3.2)

Here, we have changed the definition of λijk from that
in (2.1) as λijk → λ∗ijk for the convenience of the ex-
pression of Mν defined by νLMνν

c
L. In the present pa-

per, the unitary matrix Uν used to diagonalize the Ma-
jorana mass matrix Mν is defined as U †

νMνU
∗
ν = Dν .

Then, the so-called Maki–Nakagawa–Sakata–Pontecorvo
[7] matrix (we will simply call it the “lepton mixing ma-

trix”) U ≡ UMNSP is given by U = Ue†
L Uν . Usually, it

is considered that the matrix form of M̃2
d is proportional

to the form Md. Then, the neutrino mass matrix (3.1)
becomes, in a more concise form:

(Mν)ij = m0λikmλjln(M †
d)kn(M †

d)lm , (3.3)

where we have redefined the common factorm0 from that
in (3.1). Of course, exactly speaking, for the Ai mixings
with sin θA

i -factors, we should read the expression (3.3)
as

(Mν)ij = m0s
A
i s

A
j λikmλjln(M †

d)kn(M †
d)lm , (3.4)

where sA
i = sin θA

i defined in (2.3). When we consider
the Bk mixings, we read the expression (3.3) as

(Mν)ij = m0s
B
ms

B
n λ

′
ikmλ

′
jln(M †

d)kn(M †
d)lm , (3.5)

where sB
k = sin θB

k defined in (2.6). For mixed-type mix-
ings of Ai and Bk, we read (3.3) as

(Mν)ij = m0(s
A
i c

B
mλikm + cAi s

B
mλ

′
ikm)

(sA
j c

B
n λjln + cAj s

B
n λ

′
jln)(M †

d)kn(M †
d)lm , (3.6)

where cAi = cos θA
i and cBk = cos θB

k .
The contributions from the charged lepton loops are

essentially the same as (3.3), except for the absence of
the B-type mixing and the replacement Md → MT

e . For
simplicity, we will continue the investigation for the case
of the down-quark loop contributions.

For the phenomenological study of the mass matrix
(3.3), it is convenient to take the basis on which the
down-quark mass matrix Md is diagonal:

Ud†
L MdU

d
R = Dd ≡ diag(md

1,m
d
2,m

d
3) . (3.7)

We consider that, on the basis with Md = Dd, the
charged lepton mass matrix Me is also approximately di-

agonal, Ue†
L MeUR ≃ De = diag(me

1,m
e
2,m

e
3), so that the

unitary matrix Uν approximately gives the lepton mixing

matrix U = Ue†
L Uν . Then, we can express (3.3) as

(Mν)11 = (md
3)

2(λ133)
2 + (md

2)
2(λ122)

2 + 2md
3m

d
2λ123λ132 ,

(Mν)22 = (md
3)

2(λ233)
2 + (md

1)
2(λ211)

2 + 2md
3m

d
1λ213λ231 ,

(Mν)33 = (md
2)

2(λ322)
2 + (md

1)
2(λ311)

2 + 2md
2m

d
1λ312λ321 ,

(Mν)12 = (md
3)

2λ133λ233 +md
3m

d
2λ123λ232

+md
3m

d
1λ131λ213 +md

2m
d
1λ121λ212 ,

3



(Mν)13 = (md
2)

2λ122λ322 +md
3m

d
2λ132λ323

+md
3m

d
1λ131λ313 +md

2m
d
1λ121λ312 ,

(Mν)23 = (md
1)

2λ211λ311 +md
3m

d
2λ232λ323

+md
3m

d
1λ231λ313 +md

2m
d
1λ212λ321 ,

(3.8)

where, for simplicity, we have dropped the common factor
m0. In order to give the best-fit values for the observed
neutrino data [8,9]

R ≡ ∆m2
21

∆m2
32

≃ 5.0 × 10−5eV2

2.5 × 10−3eV2
= 2.0 × 10−2 , (3.9)

sin2 2θsolar = sin2 2θ12 = 0.76 ,

[tan2 θsolar = 0.34] , (3.10)

sin2 2θatm = sin2 2θ23 = 1.0 , (3.11)

we must seek a parameter set that gives (Mν)22 ≃ (Mν)33
and (Mν)12 ∼ (Mν)13 for the expression (3.8). When we
consider the Ai-type mixings, we obtain [10]

Mν ∝



ε2 ε ε
ε 1 1
ε 1 1


 , (3.12)

for ε = sA
1 /s

A
2 = sA

1 /s
A
3 and λ2j3/λ3j2 ≃ md

2/m
d
3. Gen-

erally, when we consider only Ai-type mixings, the so-
lutions are highly dependent on the fine-tuning among
the coefficients λijk , and, besides, since the mass ma-
trix is too near to a rank-1 matrix, it is difficult to give
the solution a small but sizeable value of R (it leads to
an extremely small value of R). Even if we take the
charged lepton loop contributions into consideration, the
situation is not improved unless we assume the special
parametrization for λijk (λ2j3/λ3j2 ≃ md

2/m
d
3 and so on).

Next, we consider the case of the Bk-type mixings.
When we consider a B1 mixing, we obtain a simple mass
matrix form

Mν = (sB
1 )2(md

1)
2




0 0 0
0 (λ′211)

2 λ′211λ
′
311

0 λ′211λ
′
311 (λ′311)

2


 , (3.13)

because the case gives the relations λ′ij2s
B
2 = λ′ij3s

B
3 = 0.

It is natural to consider that λ′211 ≃ λ′311 since those
come from the same interactions (2.8) [not from (2.5)].
Therefore, the mass matrix (3.13) can give a maximal
mixing between νµ and ντ . A small additional term will
reasonably give a bimaximal mixing.

For example, we consider a mixed-type, A3 and B1,
mixing. In this case, the λijk in (3.3) must be re-
placed according to Table I. It is natural to consider that
λijk ≃ const ≡ λ and λ′ijk ≃ const ≡ λ′. Then, the mass
matrix Mν is reduced to the form

Mν ≃ (sB
1 )2(md

1)




0 0 ε(r3 + r2)
0 1 1 + εr3

ε(r3 + r2) 1 + εr3 (1 + εr2)
2


 ,

(3.14)

where ε = sA
3 λ/s

B
1 λ

′ ≪ 1, r2 = md
2/m

d
1 and r3 = md

3/m
d
1,

and we have assumed cA3 ≃ 1. This mass matrix can
give a reasonable value of R together with a nearly bi-
maximal mixing. For example, for the parameter value
ε = 0.000374, we obtain the following numerical results:

mν
1 = 0.0822m0, mν

2 = −0.3276m0, mν
3 = 2.2604m0,

(3.15)

U =




0.8726 −0.4822 0.0776
−0.3925 −0.5978 0.6990
0.2907 0.6404 0.7109


 , (3.16)

i.e.

R = 0.0201 , (3.17)

sin2 2θ12 ≡ 4U2
11U

2
12 = 0.708 , (3.18)

sin2 2θ23 ≡ 4U2
23U

2
33 = 0.988 . (3.19)

These values are in good agreement with the best fit
values (3.9)–(3.11) for the observed neutrino data. Al-
though it is difficult in the original Zee model to give
a sizeable deviation of sin2 2θ12 from 1 [11] (it must be
sin2 2θ12 = 1.0), the present model can give a reasonable
deviation from sin2 2θ12 = 1.0. The result

U2
13 = 0.00602 (3.20)

is also consistent with the present experimental upper
limit

|U13|2 < 0.03 , (3.21)

from the CHOOZ collaboration [12].

IV. HIGGS SECTORS

In the present model, the quark and charged lepton
mass matrices are generated by the VEVs of the Higgs
scalars with z = +1. Therefore, even if SU(2)L is broken
later, the Z2 symmetry still exactly holds.

Let us show the mass matrices Mf for the case of the
mixed-type mixing A3 and B1 as an example of the ex-
plicit forms of Mf :

Me =




c1 b1 a1

c2 b2 a2

cA1 c3 cA1 b3 cA1 a3


 , (4.1)

4



Md =



cB1 c1 cB1 c2 cB1 c3
b1 b2 b3
a1 a2 a3


 , (4.2)

Mu =



cB1 c

′
1 cB1 c

′
2 cB1 c

′
3

b′1 b′2 b′3
a′1 a′2 a′3


 . (4.3)

Here, Mf have been defined by fLMffR (f = u, d, e).
Note that the mass matrix Md has a form different from
MT

e because of the mixing factors. Usually, if we consider
one type of Higgs scalar of SU(5) 5-plet (5-plet), it is dif-
ficult to obtain realistic mass matrices Mf (f = u, d, e).
Therefore, the present model has a possibility to improve
this problem. However, whether we can give reasonable
mass matrix forms of Mf or not is a future task to us.

Now, we would like to give a comment on the Higgs
sectors. In Sec. II, we have assumed that although the
superfield 5L(+) is decoupled below µ = MX , the com-

ponents (2, 1)(+) of 5L(+) can contribute to low energy
phenomena through the mixing (2.3). If we consider the
Higgs fieldsHd(+) andHd(−) with SU(5) 5-plet, and if we

assume a situation similar to the matter fields 5L, then
we obtain

Hd = (2, 1)(+) + (1, 3)(−) , (4.4)

where we have assumed a perfect interchange between
(2, 1)(−) and (2, 1)(+), not a mixing. Note that in this
scheme, the Higgs scalar component (3, 1)(−) cannot cou-

ple to the fermions dRu
c
R with z = +1 independently

of the mixings Ai and Bk, so that the scalar (3, 1)(−)

cannot contribute to the proton decay and it need not
be super-heavy. (Although it couples to the fermions
(νc

LdL − ec
LuL), these interactions cannot contribute to

the proton decay.) We can consider a similar mecha-
nism for the Higgs fields Hu with SU(5) 5-plet. The
interactions of (1, 3)(−) with uc

LdL and eRu
c
R are ab-

sent, so that the scalar (1, 3)(−) need not be super-heavy.

The so-called µ-terms are composed of Hu(+)Hd(+) and

Hu(−)Hd(−).

V. CONCLUSION

In conclusion, we have investigated possible forms
of radiatively induced neutrino mass matrix under an
ansatz [(2.3) and (2.6)] within the framework of the SU(5)
SUSY model. We have assumed two types of matter
fields ΨL = 5L + 10L, Ψ(±), which are transformed as
Ψ(±) → ±Ψ(±) under the Z2 symmetry. We have as-
sumed that the Z2 symmetry exactly holds, even if SU(5)
is broken. The essential ansatz is in the mixings (2.3) and
(2.6). Although the origin of the mixings (2.3) and (2.6)
is still an open question, if we admit this ansatz, we can
obtain very interesting and simple neutrino mass matrix

form, which can give satisfactory numerical results for the
observed neutrino data. How we can justify the ansatz
is a future task for us.
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i k = 1 k = 2 k = 3
1 sB

1 λ
′
1j1 0 0

2 sB
1 λ

′
2j1 0 0

3
cA3 s

B
1 λ

′
3j1

+sA
3 c

B
1 λ3j1

sA
3 λ3j2 sA

3 λ3j3

TABLE I. Rule of the replacement λijk in the mass matrix
(3.3) for the case of A3 and B1 mixings.
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