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轟ましカごき’

　本研究はほとんど研究代表者が中心となり、平成7年度から平成9年度にかけ

て行った「確率変分解析の基礎研究」に関する研究成果をまとめたものである。

研究計画調書の研究計画・方法のところでも述べたように、研究成果を単に学会

や国際会議や関連する国内の研究集会で講演・発表等により公表するだけでなく、

成果が得られ次第、随時論文等として発表することにも気を配った。研究実績の

細かい説明を掲載する代わりに、本成果報告書の終わりに論文のコピーを掲載し

た。それをみれば一目瞭然であるが、比較的短い期間に量的にはかなりのことを

行えたと自負している。なお本研究の研究組織および研究経費は下記の通りであ

る。

　　　　　　　　　　　　　　　　　　　　　　　　　　　1998年2月

　　　　　　　　　　　　　　　　　　　　　　　　　　　道工　　勇

基盤研究（C）・理学一数学・数学一般（確率論・統計数学）・304

課題番号：　07640280
研究課題：確率変分解析の基礎研究

研究組織：

　　　研究代表者　道工　　勇　　（埼玉大学教育学部　助教授）

　　　研究分担者　瀧島都夫　　（埼玉大学教育学部　教授）

　　　　　　　　　木村　　孝　　（埼玉大学教育学部　助教授）

研究経費：
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　　　平成9年度
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計 1、　500千円
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1．研究概要と研究成果

無限次元の解析学のひとつであるホワイトノイズ解析の枠組みの下で、「無限次元の調和解

析」を展開しようという試みは、21世紀に向けての数学の無限次元化の流れの中にあっ

ては、現代解析学の発展の自然な方向性の一翼を担う重要な課題である。そのための第一

ステップとして、無限次元の各種ラプラシアンのホワイトノイズ解析におけるそれぞれの

異なる役割を数学的に見極めることは重大な意義をもつ。そのひとつの方法として、主部

をラプラシアンにもつ無限次元方程式の解の性質を調べることが考えられるが、特にホワ

イトノイズ解析では確率変分をとるほうがより自然な場合も多いので、確率変分方程式に

関する研究が重要となってくる背景がある。以下に本研究における成果の概要を述べるが、

大体大まかに云って、次の4点に分けられる。1）新しいタイプの無限次元ラプラス作用

素の研究、2）擬フーリエ・メーラー変換（PseudひFburier－Mehler変換、以下擬FM変換

と略記）に関する研究、3）確率変分と確率変分方程式の研究、4）ホワイトノイズ解析

の確率境界値問題への応用に関する研究である。

　ホワイトノイズ解析における飛田微分に付随した新しいタイプのラプラシアンハpを無限

次元多様体上に構成した。それは従来の飛田のラプラシアンムHとは異なり、0。o不変性を

有する良い性質の作用素として実現出来たため、ド・ラーム＝ホッジ＝小平の分解定理の

無限次元版を示すことに成功した。

　ホワイトノイズ解析における無限次元フーリエ変換の変種として、擬FM変換Ψを構成

し、基本的な諸性質を導出した。また特にIntert、φningPropertiesと呼ばれる性質やフォッ

ク展開表現などを導いた。さらにその性質を詳しく調べていくうちに、その族｛Ψθ1θ∈R｝

が超汎関数空間（5）‡上の線形同相写像群の正則1変数部分群を成し、しかもその対応する

生成作用素が耀＋船とで与えられることが判明した。さらにはその擬FM変換の一般化の

方法が分かり、一般化FM変換Xθを構成した。その族｛Xθ1θ∈R｝はやはり（S）＊上の線形

同相写像群の正則な1変数部分群であり、その生成作用素がαノV＋βム苔（α，β∈C）で与え

られ、またこのことによって特徴付けられることが判明した。実際、このXθは無限次元の

F変換ヂ、FM変換ゐ、擬FM変換蛎をすべて含む、非常に大きなクラスである。

　確率変分方程式の解として、確率場X（3）がホワイトノイズ空間に実現され、そのS変換

に対して古典的変分法が適用可という条件を課すと、特別な場合に限り変分操作が可能で、

変分δXの具体的表現が得られる。超汎関数のクラスの確率変分を考える際のパラメータ集

合は、一般化球面と微分位相同形なd次元ユークリッド空間内の閉多様体に限られる。こ

の枠から外れると、Deformationによる極限操作で変分を計算する方法が適用できない。

　確率境界値問題を考察し、ホワイトノイズ解析における手法を適用することにより、一

般化された確率漸近解の定式化に基づき、確率解析的視点から解の構成を行った。また確

率系の振動論の観点、から、新しいタイプの極限定理を導いた。

‘



2．研究実績と関連資料

2．1擬FM変換の諸性質と抽象方程式への応用

ホワイトノイズ解析におけるフーリエ・メーラー変換論の一般化として擬FM変換を定義

し、その基本的な諸性質を導出した。特に

　1）ガウス白色雑音汎関数との関係の究明、

　2）変換論と類似の重要な諸関係式の導出、

　3）テスト汎関数に対する擬FM変換のImage領域の決定、
　4）同変換の全単射かっ強連続性の証明、

　5）同変換族の半群性、

　6）対応する生成作用素の導出，等

を行った。また擬FM変換の応用として，ホワイトノイズ空間上の近似コーシー問題を考

察し，擬FM変換を施すことによって，、近似解の収束性，弱解の存在性，強収束性を議論

し，解の存在・一意性定理を証明した。さらに，擬FM変換とホワイトノイズ解析におけ

る典型的な作用素，例えば，飛田微分作用素，Kubo作用素，ガトー微分作用素，その共役

作用素，掛け算作用素などとの問のIntertwining　Propertiesを調べた。それに基づき擬F

M変換の特徴付けを行った。また積分核作用素理論を用いて，擬FM変換とその双対変換

のフォック展開表現を求めた。

▽
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Pseudo-Fourier-Mehler Transform In White Nolse Analysls 

and Application of Lifted Convergence to 

A Certain Approxhnate Cauchy Problem 

Isamu DOKU* 

Dedicated to Professor Yoshio Nakamura on the occasion ot hiS retirement trom saitama Universit)' 

Abstract 

We consider a certain approximate Cauchy problem which is deeply connected with the abstract 

Cauchy problem for heat equation on the white noise space. We also propose the pseudo-Fourier-

Mehler transform and lifted convergence with a concept of Itfting. By using the former we can obtain 

an explicit form of the solution, and an application of the latter leads to a precise discussion of the 

convergence problem. 

S 1. Introduction 

Let us consider the following Cauchy problem for the heat equation on the white noise space, 

i.e., 

au 1 (pl) ~(t y) =~dGu(t,y), t >0, ye S'(R) at ' 
u(O,y)= f (y), 

where Ac is the Gross Laplacian and S'(R) is the space of tempered distributions on R. The 

Cauchy problem of this type has been studied by many researchers (e.g. [9,13] ; also [5,6] ). 

The operator part is also written as 

AG = ,_"-'0.2(Tr) = jC a~dt, 
(1.1) 

according t0+the theory'of kerriel operator [12] . at is the Hida differentiation [10] (see also 

1
 [4] ). We set P=TAc for convention. As well knbwn, the Gross Laplacian is a singular 

operator in the sense that it has a singular kernel (see Eq.(1.1)), so one of the basic ideas of 

treatihg the above equation is usually a certain ap~roximate approach in a proper manner. In 

fact, we may rewrite the above problem by using the formula (e.g. [12] ) : 

dcu=<x;Vu(x)>-Nu(x), ue(S), (1.2) 

where N is the number operator and (S) is the space of white noise test functionals [17] . 

* Research is supported in part by MEJ Grant SR05640089. 
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Hence we sha]1 ado~t the e -a~prbximation for instance. our approximation is as follows. For 

yeS'(R), there exists a sequence of ~=E V*(y) in S(R) such that 

(1.3) =･ . .- , . , :' ~d-~ Stro. ngly = in S'(R)~ . . . . =, =, 
where v, is given by v=~~ ~l/^=;T~y, ~nd 'iT^ is~ th~ projection frorh: S'(R) irito ~he subspace of 

Hermite polyhoinial~tofLordeir n: =Th'eni tve:hdve : ' : , ' , : = ' ,<: . " , , 

. 

 , <y.Vq'(y,)>j il~~~<~.,Vp(, y=)~fl~~~D7<p. (y>, in (S,)p~ (_p~O), 

(1.4) 

where (S)p is the completion of L2-space (L2) on S'(R) relative to the norm ll ･ Ilp=11F(A)p･ Il (with 

the second quantization P(A), A= - d2/dt~:+ t~+ 1, ~1'nd (L2)-norm ll ･ Il relative to the white noise 

r~leasure dp). [10,17j . Consequenty we have the following first approximate problem : 

(p2) au. (t y)=~(D~.u.(t y)-Nu.(t y))EP.u.(t y) t >0 xeES'(R) 

u.(O,y) = f (y). ' 
Note that P=~P in operator sense (actually more strongly, in uniform convergence sense) when 

~<-y ~trbngly in S'(R). 

Let us consider its Fourier transfonTled problem. Generally speaking, we cannot ~lpply the 

Fourier transform F(= F-transform for short) [14,15] in White Noise Analysis for (P1) because 

F(Acu(t, ･ ))(x) dose faol to exist, while the F-tansformation is valid for the operator P=. Hence 

we have 

' ( ! x) = --(N + Ac' ~ i< ･ , ~.>( ･ )) v.( t,x) ~~ P^.v<( t,x), 

v.(O) = f e ( L2) , 

where v=(t,x) is the F-transform of u<(t,y), i.e., v<(t,x),=F(v=(t,･))(x), and Ac* is the adjoint 

of AG. (N.B. The foundation of F is based upon the theory of U-functionals [19] .) Since the 

F-transform is a one-to-one mapping in the space (S)* of generalized white noise functionals (or 

Hida distributions) [19 1 , consideration of (P2) is almost equivalent to thinking of (P3). We 

are very* interested in this approximated problem (P3) and some convergence problems associat-

ed ¥vith (P3). Notice that there still exists a singular term <x,V'>v.(t,x) in (P3). In the 

following, unless otherwise *stated, we interpret the solution as like this : for example, as to the 

case of (P3), v.E v=(t,x) is said to be a solution of the peoblem (P3) if v= satisfies f
 
t
 

< v.( t), p> - <f^,q)> +~ JO <Nv.(s),q9>ds +~ <Ac' v.(s),q2>ds 

(1.5) . r 
=~jo <v=(s),<･,~<>q)>ds, 

for any q'~E(S)nF, and any t >0, ¥vhere F is a proper functional space, (which will be 

described precisely later). 

The purpose of this paper consists in studying the F-transformed problem (P3) and discussing 

some conv.ergence problems in white noise space. In S 2, we shall introduce some notations used 

in succeeding sections, and state some results on existence and uniqueness of solutions for 

problems (P2) and (P3). The proofs for those assertions will given in S 3-S 7. In S 3 we will 

discuss amoothing and finite-dimensional approxirnation of the problem (P3). S 4 gives conver-

gence result of approximate solutions z~,6(t,x). The existence and. uniqueness theorems for 

weak solutions of the smoothened problem (P5) are proved in S 5. Its strong convergence is 
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discussed in S,6. Then we will show in S 7 the existence and uniqueness of solutions for the 

modified Cauchy problem (P4). We define the Pseudo-Fourier-Mehler transform in S 8 and 

study the properties of the transformation precisely, and also discuss the S;3-transformed 

problem in connection with the newly introduced 1~rFM transform. In S 9 we introduce the 

concept of a lifting and discuss lifted convergence of the F-transformed problem. As for other 

applications of the F-transform related to (P1), see [5,6] (cf. also [3] ). 

S 2. Notation and Some Results 

Define lllq)lll2.' : = Il(1+N)'12q91[ for q)e p where P rs algebra of complex polynomlals over S (R) 

and we denote by D2.' the completion of P with r~spect to the norm lll･lll2,', and (D2.',111 ･ Ill2,.) 

becomes a Hibert space of (L2). For simplicity, we also write GEllG*. Let llq)llN.2 (resp. Ilq;llc,2) 

denote the graph norm of the operator N(resp. 11~*) in (L2) fo.r the element q) of Dom (N) (resp. 

Dom(Ac*)), and also HN2 (rest. Hc2) denotes the completion of Dom (N) (rest. Dom(AG*)) with 

respect to the graph norm ll･1!N,2 (rest. Il･llG,2). Notice that (HN2, Il･llN,2) becomes a Hibert space 

of (L2) and that the space D2.2 js canonically isomorphic to HN2. Then the dual space (HN2)* js 

written as HN2, and this type of notation would be used exfensively*for other functional spaces 

unless otherwise stated. Occasionally the equivalent norm l]q91lx:=(llq)I12+11Xq2112)1/2 will be used 

in what follows for X = N or X=Ac* instead of [1･[lN,2, Il･llc,2 and there will be no confusion 

in terms of, the context. We will use (',') for the inher product, and <･,･> denotes the dual 

pairing whereas we mean the canonical bilinear form. 

Let T be an open interval (O,t.) for finite t*, and T denotes its closure, i.e., the closed interval 

1
 [O,t*] . We fix p>- throughout the paper. When X is an operator on a Hilbert space then 

X indicates the corresponding bilinear form assoc!ated with the operator X such that 

X(q', ip)=<Xq', ip>; 

for instance, X = N or X = G. Nexi we introduce the regularized spaces, suggested by the 

theory of abstract evolution equations [18] . We define R~N(HN2) (resp. R~c(Hc2)) as the whole 

space of peHN2n (S)p (resp. peHc2n(S)p) satisfying that there exists some constant IN (resp. 

lc) such that the ineqtiality ReN(q',q') +ANl[ Pll2~~allq'll~,2, a>0 (resp. ReG( p,q)) +Acll q?ll2~~ ~ll q'll~,2, 

~ > o) holds. When V is a topo.lQgical vector space, then L2( T ; V) is the whole space of 

V-valued square integrable funct.ions on T. We assl;me that a mapping : t - f(t) be strongly 

measurable for any element fEL2( T;V) so that the Bochner integral [7] of f_ can make 

sense. Moreover, notive that N (resp. Ac*) Proves to be a continuous linear operator from 

L2( T;R~N(HN2)) (rest. L2( T;~~c(Hc2))) inbo L2( T;HN-2n(S)_p) (resp. L2( T;HG2n (S)_p)). iri what 

follows we set 

V:=R~N(Hi~N) n Rpc(H ) 

and denote by V* the dual space of V. Define (cf. [18] ) 

df W21(.T' V V'):={flfeL2( T' V) eL2( T' V*)}. 

' ' ,' ' Further when F is a functional space, then FTIF is the space bf fe(S)' such that f =FfE~. 

Now we introduce some results on the existence and uniqueness of solutions for the problems 
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(P3) and (P4). The proofs of those theorems below will be given in S 3 through S 7.1 

Theorem 2.1. The'le e-rists a ttniqtte soltttion v. of (P3) in W21(T; V, V*) such that v* satisftes 

av._pv tx (2.1) at - "( ' ) 

with the initial condition v<(O)=fe(L2). 

Theorem 2.2. There exists a function v.eCo( T;H) such that 

v.(t)=v.(t) holds in (L2), dt-a.e.t, 

where we put H=(L2). 

By virtue of the bijectivity of the Fourier transform F in ( S )*, -the following theorem is 

derived almost obviously from the above assertion. 

Theorem 2.3. There exists a ttnique solution u. (except dt-measure null set) of (P2) in F -1 W21( T; 

V, V*) n F-lCo( T;H) such that 

au at'(t,y) P,u.(t y) t>0 yeS (R) 

with u.(O)=f(y)e F-1(L2). 

S 3. Smoothing and Finite-dimensional Approximation 

The purpose of this section is to exclude the singularlity of coefficient of the operator in 

question by smoothing procedure and to make a finite-dimensional approximation of the 

smoothened equation. First of all we will begin with introducing the definition of Sl~ 

transformation, which gives an equivalent problem. 

We (iefine z=(t,x) (for e>0, t >0, xe S '(R)) as follows : 

(3. 1) z.( t ,x): = Sr I v.( t ,x) 

{ I } =exp -^+(2 AN+AG)t ･v=(t,x), 

Then we see that z.(t,x) satisfies the following modified equation : 

az 1
 -(NI + Gl ~ i<x, ~.>)z.( t,x) ~~ P *z.( t,x), ' ( t,x) = -

at 2
 

(P4) 

z.(O)=~e(L2), t'>0, xe S '(R), 

where Nl =N+ANI and Gl = G +Acl. We consider the smoothing of the coefficient <x, V=> . 

Let ,t~ be the proiection from S '(R) into the subspace of Hermite polynomials of order m, and 

set ~s~~1!~=/r:~x (e.g. [1l] ). Then it follows that ~s converges tb x in strong topology as (~ 

tends to zero, hence, of course, it holds that (P(e,6):=(~s,V.)-<x,~.>as 6 ~ O. If we write the 

smoothing operation as SM((~), then the new operator is given by P .,s: = SM(6) P .= -1~(; Nl 

+ G1 ~ ic(e,6)). The smoothened modified Cauchy problem is as follows : 

azs (p5) '(t,x)= P .,sz.8(t,x), t >0, xe S '(R) 
. at 
zg(O) = f e (L2). 

Next we shall consider a finite-dimensional approximation of the problem by the Faedo-

Galerkin method (e.g. [2] ). P~ denotes m-dimensional approximation map from (L2) into an 

m-dimensional vector space V ~. Then the smoothened modified Cauchy problem for P~ is 
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given by 

az"'s _ ~(Nl+G Ia)(c 6))z"s(tx) P~P.8z<(/x) (p6) ~a~t (t,x) - -2 
z~,s(O)=fe(L2), t >0, xe S '(R), 

and note that P~ P .,8= P .,sP", while P~ P *~ P *P~, implying that the smoothing SM((~) and the 

finite-dimensional approx.imation P~ is not commutative. As a matter of fact, this finite-

dimensional approximation is realized as follows : 

" (3.2) p~z,a( t ,x) = zr,s(t,x) = ~9,P,'~(t) wi(x), and 
i=1 

" (3.3) f ~(x) = ~ ~i,~ wi(x). 
i=1 

The sequence { wi}, (9'?,'~(t)}, and {~i,~} are described below and are settled in a well-defined 

manner. In fact, since the space V is separable, there exists a dense linear span (wl'w2,"', , w~ 
"'} in V. For a fixed mteger m ~,,~ rs defmed by (f w) for 1<l~m and f~(x) m (3 3) 

converges strongly to 7(x) in H=(L2) Moreover g'"'8(t)'={9~'~(t)} ･ eC~(VtET) satrsfres 

the following m-linear ordinary differential equation system, i.e., 

(3.4) d ~'",6(t) +~N~~'",s(t) + ; g m9~s(t) 2 H~sg~sr¥t) W~ d.t 

with ~'",s(O)=~~, 

where W~ is an mx m matrix given by ll(wi,wj)Hll, and N~ (resp. g ~) is an mxm matrix 

respectively given by llN~1(wi,wj)ll, Il GI( wi,wj)ll. H'"'s is also an m-square matrix defined by ll( ep(e, 

6)u,,w.)Hli and ~~ rs a vector gn'en by {~. l 
*'~/1<i<~' 

The well-definedness of ~･~,8 (t) and the validity of m-dimensional spproximation P~ for each 

meN is due to the following assertion. 

Theorem 3.1. ( i ) For each m~N, e>0, 6>0 (fizxed), there exists a unique solution vector 9'~'s (t) 

such that ~･~,s(.)e Co(T;C")n C i(T;C~) satis~5'ing Eq.(3.4). (ii ) Moreover, the solution can be 

eapressed by 

g'"'8(t)=exp(tC'"'8) ~~, (3.5) 

where the matrin C'"'s ts gwen by 

i(P(e 8)E~-'--21W~lN - 1 --2W~lg~, (3.6) 

and E~ Is an m-sqtrare unit matrix. 

Remark 3.2. When C '"'8=1lc(i(m;e,6)ll then the convergence criterion of a function exp(.) is 

given in the usual manner, that is, exp (t C '.'8) is said to be convergent if and only if the series 

~~=0 klt tkc(v~)(m;e,6) converges absolutely, where dv~) indicates the (t,j)-component of the k-th 

power matrix ( C '"'s)k. Actually it is guaranteed by the following estirriate : 

r
 
)
 

lc(~kl)(m;e,6)1< mk~It max !c(i(m;e,a)1 k 

¥1<iJ<m 

for 1~ n,1 ~ m. 

Proof of Theorem 3.1. We first note. that for each m, an aggregate of {wl'w2,"',w~} is linearly 

independent, so the Gram determinant det W~ is nonzero, hence the non-singular matrix W~ has 

its inverse W~l. Consequently when we write W~1=1lv(i"II, then the (i,j)-component cij (m ;e, 

(~) of the matrix C '"'8 defined by (3.6) is expressed by 
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cv(m,e,8) 2 c)(e 6)6.,j-Tk~._._lv,~~kN~1( wk, wj) -~k~_._.lvi"k ~l( wk, wj), 

where (~:ij is the Kronecker's delta. The assertion is direct result of the following lemma with 

9(t) 9~s(t) M=C"8 and ~ ~~ ~, 
Lemma 3;3. For 'n eN, Iet 9(t) be an R~-vidued vector function on T and M an m x 

m-matrin. Tlren the liear thfferential equation 

d
 (3.8) dt9(t)=M9(t) with 9(O) ~eR~ 

lws a tiniql'te soh-Ition satibfying g(')e Co( T;C~) n Cl(T;C~), and moreover, it has an expres~ion 

9( t) =exp( tM) ' ~. 

S 4. Convergence of Approximate Solutions z~'8(t) 

According to the results in the previous section, for each m, the vector function b'",8( t) is 

well-defined and uniquely determined, and 

9,~'~( . )~E C o( T;O n C l( T;O. 

So that, as far as meN, e>0, ani 6 >0 are fixed, we know from (3.2) and (3.3) that there exists 

a unique approximate solution z~.8(t,x) such that 

(4.1) z~,s(.)~ECo(T;V)nCl(T;V) (cL2(T;V)), 
satisfying Eq.(1)6). Then we have the following estimate. 

Lemma 4.1. Fo" each ,nEN (m>>1, sufficiently large), e>0, 6>0 (/i~:ed), for any feH=(L2) we 

can find someJ)o_sitive constant Co and 

(4.2) I Ilz ~'8 1 I1~ T, v ~ Co IV^l[2 < oo 
7(~~~~T 

holds u"hc"c' the constant r(a~,(;,6) a+~ 210(e 6)1 and lll91112.T,v is the usual norm of the 

space L2(T ; V). 

Remark 4.2. In the above (4.2), the constant y(a,fi ;e,(~) is able to remain positive for sufficient-

ly large a and p. By the passage to limit ~ ~ O, the term ~(e,6) approaches to a certain finite 

number for fixed e>0, so the inequality (4.2) is still valid. However, we cannot expect the 

existence of the limit when c tends to zero, as y proves to be-oo even for any a, ~>0. 

Proof of Lemma 4.1. From (P6) we get immediately 

a
 

1
 

1
 <-z~･s( t) u'j> +T<Nlz~,s(t) wj> +Y< Glz~,s( t), wj> at 

(4.3) 

=7<0(E 6)z" s(t) u' > 

for l'vje V. I ~j~ ,n, meN. The linearlity of the approximate smoothened modified equation 

allows us to derive 
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(4.4) (aatz."'8(t),z~,s(t))H+ .'<Nlz~,8(t),z~,8(t)>v 1
 ~ 
1' + Tv ' < Clz~,8( t),~~,s( t)~ . ~~(-21 ' a)(e,6)~~.8( t),z~,s( t))H , 

by multiplyjng (4.4) by the previously obtamed solution 9,F,'"s(t) and taking a summation from 1 

up to m. Recall the following formula : 

Lemma 4.3 Let H be a real Hilbert space. Then 

( , )H 
a
 
d
 

(4.5) 2 a･--tf(t)f(t) = dt l[f(t)llH 
holds for any f(t)e CI(T;H). 

By (4.5) we have 

(a , . ) _1 d (4.6) ~r dt llz~,6(t)ll Re -z"8t z~8/t _ at ' ( )' ~ ) 
H 

We may apply (4.6) for (4.4) to obtain 

(4 7) I d llz~'&(t)ll + ;Re <Nlz~8(t) z~8(t)> 
' dt 

1
 

+~Re.'< Glz~,s(t), z~,s(t)>v = ~1~~lm( O(e 8)z~ 8(t) z~ s(t))H 

Likewise as to the initial condition we have <z~,s(O), wj>=<f", wj>, i<j< m, from which we 

reads 

(4.8) Ilz~,8(O)[12=1~~ll2. 
Taking (4.8) into consideration we may integrate~Eq.(4.7) relative to the Lebesgue measure dt 

over the interval (O,t.), and get 

llz~,s( t.)ll2 - IV^~ll2 + Re N~1(z~,&( t), z~,s(t))dt 

+ Re "Cl(z~,6( t),z~,s(t))dt = -ImO(e,~) f "Ilz~.8(t)ll2dt. f
 The definitions of the regularized spaces R~N(HN2), R~G(HG2) mentioned in S 2 imply that the 

inepualities of the form 

Re fo t'X(p(t), q'(t))dt >Kx fo tellq'(t)Il2vdt 
(4.10) 

holds respectively for X = ~N* (or X = ~i) and the constants Kx = a(or=p), because we can 

find constants lN,lG for properly chosen a,~>0 in accordance with the norm values of V. 

While, since P~f^ converges to 7 in (L2) as m approaches to infinity, the continuity of norm can 

provide woth some positive constant Co such that 

(4.11) IV^"II ~: Coll21V^ll 
holds, whil~ Co is chosen uniformly with respect to m as far as m is sufficiently large. An 

estimation of Eq.(4.9) together with (4.10) a_nd (4.11) Ieads to 

r(a,~;e,6) JC telz~'6(t)ll2vdt ~ Col~ll2 

where y(a,fi ; b,6) (see L~mma 4.1) has a meaning for sufficiently large affi. By Remak 4.2 we 

conclude the assertion. [] 

The estimate Eq.(4.2) in Lemma 4.1 means that z~,c( .) ranges ih a bounded set in L2(T ; V), 

so we can extract a subsequence {z~(k).&}k Such that 

(4.13) z~(k).8(.)-z.8(.) weakly in L'(T ; V), 
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because a bounded set in the Hibert space is not compact, but is weakly corhpact. 

S 5. Existence of Weak Solutions to the Smoothened Problem 

In this section we shall show that the weak solutions obtained as a weak limit lie in W21( T; V, 

V*) and satisfy the smoothened modified Cauchy problem (P5) in distribution sense. The 

uniqueness is also proved (see Proposition 5.5). 

Lomma 5.1. The following equality 

d
 
(z~.s(t), u!j)+~{N~1(zg(t). Wj)+ ~1(z.s(t), u!j)} 

(5.1) 
dt 

=Tc(e,6)(z (t) w.), Vj 

holds in D'(T) sense with (z~(O), wj)=(/^, wj), where (~g(t), wj) is a modlfication of (z.s(t), wj) 

except dt-measure null set. 

Proof of Lomma 5.1. For simplicity we set A= m(k). Take p(t)e Cl( T) such that q'(t.)=0, and 

define q9j(t):=q)(t)･ bvj for A>j. From (4.3) in S 4, immediately ' 
a
 
1
 (5.2) <-zA's(t),pj(t)>+7N~1(zA's(t),q'j(t)) 

+~~l(z~'8(t), pj(t))=~(; c1(e,8)zA's(t), q'j(t))H. 

On the other hand, an application of integration by parts formula allows 

a
 ~Tz' "(t x)p (t x)dt x p(dr) JT Js' ( R) ' 
f
 

o
"
 
- 
zA's(t), q"j(t))dt - (f^A, pj(O))H. 

Hence we can rewrite (5.2) into ~ 
( f~A, q'j(O))H + jro t'i( O(e, 8)z.A'a( t), pj( t))Hdt 

=f {1~N~1(z~'s(t),q9j(t))+~~l(z~'s(t),q)j(t))-+(; z~'s(t),~'j(t))Jdt, '' 1
 

because we integrated (5.2) with respect to dt and substituted the above-mentioned result for it. 

If we take the limit A-oo in (5.3) by taking the weak convergence (4.13) and the (L2) conver-

gence of fA in S 4 into account, then the following equality 

t' 
( f^, q'j(O))H + i( (~( e, 6)z~( t), q'j( t))Hdt 

" 

=
j
 
{
 

1
 
N~1(z.s(t),q'j(t))+~~l(zg(t);q'j(t))-~(z.a(t), p'j(t)) dt 

holds. Actually the above is also true for ariy q' consisting in D (T) satisfying the condition that 

q) vanishes at the one end point t = t<. We denote it by the symbol D .(T), and put pj(t)= 

q'(t)wj(x) for pe D .( T). Exchanging epj(t) for this one we may rewrite (5.4) and readily get 

< d (z~.a(t),w.),q'>+ ; {Nl(z.(t),w.) + Gl(z.(t)>w.)},p> 

=<~c(e,6)(z.&(t),wj), p>, 

which implies the assertion. Note that (z,s(t),wj) is regarded as an element of D'(T) in the left 
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hand side of thc above express-ion (o'.5). [] 

Lomlna 5.2. Thc' c'qualit_v 

~(t)+~(Nl+Gl)zg(t)=~0(e,6)z.6(t), with z,s(O)=f, 
dt 

holds in V*. 

Proof of Lemma 5.2. Recall that ~j~jwj is dense in V for a basis { wj} of V. From (5.1) of 

Lemma 5.1 it is easy to see by virtue of linearity that 

d (~.s:(t),if')+ ; {Nl(z<(t) ip)+ G (z (t) ip)} 

dt 
(5.7) 

=10(e,6)(z~(t),ip) 
2
 

holds for arbitrary element IP of V. Immediately Eq.(5.7) implies that 

v'< ~ z.8( t) +~(NI + Gl)z.s( t) _~a)(e,8)z,a( t),ip> v =0,V ipe V, 

which completes the proof. [] 

Remark 5.3. Recall that the number dPerator N is a continuous linezir operator from L2( T; R 

~N(HN2)) into L2( T;HN-2 n ( S )-p), and that G=AG' is a continuous linear operator from L2( T; R 

~G(HG2)) into L2( T;HG-2 n ( S )_p), which is stated in S 2. We used this fact in the proof of Lemma 

5.2. 

If we combine Remark 5.3 with the fact that z~ lies in L2(T ; V), then it follows immediately 

that 

dt z~(t)=~(t)=~0(e,6)zg(t)-+(; N +Gl)z.(t)eL (T V ) d dz dt 
whre dd~zt~(t) is a L2-modification of dt d z~(t). Summing up, we therefore obtain 

Proposition 5.4. The smoothened modlfied Cauchy problem (P5) has a solution z~(t,x) in W21( T; 

V, V*), regarded as an evolution system. 

Proposition 5.5. The solution z~(t,x)e W21(T; V, V*) obtained in Proposition 5.4 is unique. 

Proof of Proposition 5.5. Assume that there are two solutions zg,1,zg,2e W21( T; V, V*) for the 

smoothened modified Cauchy problem (P5) (see S 3). Set w~=z.8,1_zg,2e W21(T; V, V*). From 

Lemma 5.2 wg satisiies 
1
 
i
 

d
 w.8:( t) + ~(NI + G2) w.s( t) =TO(e, 6) w,s( t) (5.8) 
dt 

In V* with the initial condition w.8(O)=0. Hence we get 
d
 
1
 v'< w.s(t),w.&(t)>v+~N~1(wg(t),w.s(t)) 
dt 

1
 

+~~l(w.8(t),w.8(t))= v ~ *<ic(e 6)w (t) w (t)> 

Inte~rating it with respect to dt, and repeating the similar argurnent in the proof of Lemma 4. 

l] w.8( t.)ll2 + f ReN~1( w.8( t ) , w.8( t)) dt 

+ f Re (~i( w.s( t), w.8( t)) dt = - Im O(e, 6) jC 11 w.J( t)ll2dt. 

The properties of operators N, AG' yield at once 
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l 11 w,~ 112. T, v = f 11 w,s( t) 112vdt ~ o, 

which implies that w,s(.)=0 in L2(T ; V), i.e., wg(t,･)=0eE V, dt-a.e. [] 

By virtue of uniqueness (stated in Proposition 5.5) the limit z.8(j) for each subsequence 

{z~J(k),s}k must be all conincident for distinct j's, so that, it deduces that 

(5.9) z~,s_zg weakly in L2(T,V), 
as m tends to infinity, jnstead of (4.13) in S 4. Moreover we can claim a stronger assertion as 

to the convergence of {z~,8}~ (see S 6). 

S 6. Strong Convergence 

We shall shovv in this section the strong convergence of {z~'s} in L2(T V) In fact we have '
 
"
 

Proposition 6.1. The sequence {z~,8}~ of approximate solutions converges strongly to z~ in L2(T ; 

V). 

Remark 6.2. It is interesting to note that by the strong convergence in Proposition 6.1 we can 

4educe directly from Remark 5.3 and P~ P =,8= P .,sP~ that 

az~'s azs 
a~t - at Strongly in L2(T; V*), (6.1 

as m tends to infinity, jf we take advantage of the equation in (P6). 

Proof of Proposition 6.1. It is sufficient to verify that fTllz~'s(t)_z,s(t)ll~dt-O as m-oo, and 

equivalently we have only to show that -
( a + ~) fo tellz~2s( t) _ zg( t)ll~dt + llz~,s( t.) _ z,s( t.)ll~ 

+ Im a) ( 5, 6) fo tell z~,s( t) _ z.8( t)ll2dt 

vanishes as rn approaches to infinity. We have the lemma : 

Lemma 6.3. The .following equality holds : 

o te 
llz~( t.)ll2-jV^ll2+Re N~1(z~(t),z~(t))dt 

f
 
f
 

o
t
'
 

o te 
+ Re ~l (zg( t ),zg( t)) dt + Im (P( e, 8) llz,s( t)Il2dt = O. 

Note that ¥ve have a similar type equality (4.9) for {z~,s} as we have seen in S 4. As a matter 

of fact, from Lemma 5.2 

d
 

v'< dt zg(t)+ ; (N + G )z (t) 2 O(e 6)z (t),z~ 8(t)> o 

holds for each tE T because z~･8(t)e V. From (5.9) a weak convergence of {z~,s} jn L2(T ; V) 

allows 
d
 
l
 

f < z,s( t ) zg( t)>dt + <(NI + Gl)z~( t),z,s( t)>dt f
 dt ' 2 

~ ･ , ~ 
1
 = <lO(e 6)z (t) z (t)>dt 

Therefore the assertion (6.2) follows directly from the same discussion in the proof of Lemma 

4.1. To go back to the proof of Proposition 6.1, we may then apply the inequalities (4.10) and 

the equality (4.9) to get 
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I
 

o
t
e
 

(a + fi) fo tellz~'s( t) _ z~( t)ll2vdt + Ilz~'s( t<) ~z.s( t.)il~+ Itn a)(e,8) Ilz~'s( t) _ zg( t)il2dt 

~ fo teReNl(z~ 8 zg,zr's_z.s)dt+1lz~'s(t.)_zg(t.)ll~ 

o t' ~ 
- 
.s) dt + Im a)(e,8) Ilz~'s( t)l[2dt + ReGl(z~'s_zg,z~'s 

{ f (z~ s( t),z.8( t))Hdt } te f
 

o
t
e
 

- 
m O(e, 8) (zg( t),z~'s( t) _ z.s( t))Hdt + . ' 

{It< f ~s ~s)dt o t' ~ 
= 
e~l(z~'s,z~'~)dt + ReG1(z< ' ,z. ' 

+ Ilz~'s(t.)li~+1mO(e,6) f t'lz~'s(t)II2dt} 

te 

- 
ReN1(z~,z~'s_z~dt + Re~l(z~,z~'s_z~dt 

f z~Hdt} 
o
t
e
 

+ (z.s( t.),z~'8( te) ~ z~( te))H + Im O( e, 6) (z~,z~'s _ 

f
 
f
 

te 

- 
eN~1(z~'s,z.s) dt + fo teRe ~l(z~'8,zg) dt 

ote . , ? ~'8( t.),zg( te))H + ImO(e,8) (z" s z2)Hdt 

and the last terms - o as m tends to infinity, because the group of expressions in the first brace 

is equal to IV^~ll2 and the term in the third brace together with IV^~ll2 converges to Eq. (6.2), 

implying the convergence toward null, and also because each term in the second brace con-

verges to zero where we iust employed the weak convergence result (5.9). [] 

On this account a direct 1lmit operation for (P6) gives the strong solution, i.e., 

Theorem 6.4. The problem (P5) has a unique strong solution in W21(T; V, V*). 

Furthermore wc' assert 

Theorem 6.5. The map : f ~z~ is continuous from (L2) H. W21 (T ; V. V*). 

Proof of Theorem 6.5. The continuity of norm and strong convergetlce (cf. Proposition 6.1) give 

llllz~slll2T V Illz~ll2T l<lllz~'8-z~lll2.T,v~~d (as m-~oo) 

Consequently it follows from (4.2) of Lernma 4.1 that 

l[iz~lll2.T,v=1imlllz~'8[ll2,T,v~ 

~-" 
for each e>0,6>0 and for sufficiently large a,~>0. Eq.(6 3) rmplies the assertron [] 

S 7 Existence and IJniqueness of Solutions for the Cauchy Probleln 

The purpose of this section is chiefly to give the proof of Theofem 2.1 (stated in S 2), one of the 

principal re~ults of'this paper. A~ is ci~at in the viewpoint df the properties of Si-transform (3. 

1) defined in S 3, the iproblem (P3) with p, is equivalent to the ~roblem (P4) with P ., so tha:t, as 

to the exi~tenbe part of Theorein 2.1 it is sufficient to show the following, i.e., 

Theorem 7.1. There exists a solutioh z. of (P4) (see in S 3) in W21 (T : V,V*). 

N.B. As a consequence; by virtue of Theorem 7.1_ it proves to be t~ue that (P3) has a solution 

v~=Slz.l~ W21 (t : V,V*'). 

Proof of Theoretn 7.1 Recall Remzirk 4.2 in S 4 and the smoothing argument stated in the 
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beginning of S 3. We have lim 8-0 c(e,6)= s '<x,~.> s , and, for e>0, for sufficiently large a,~ 

>0, Iim 8-0 r(a,~;e,6)= r'(a,~;e) where y'(a,p ;e) is given by the number a+ p-21<x,~.>1 >0. It 

is thus follows from (6.3) of Theorem 6.5 that 

(7.1) l&i~lllzgl[12.T, v ~ V,~f~ 11 < oo 

It is interesting to note that 

lim P .,8=1imSM(8) P .= P . (7.2) 

8-0 8-0 

holds in strong sense of operator, and more strictly, it goes in uniform sense as well. 

On the one hand, (6.3) suggests that a bounded sub.set of {Z.~8 is weakly compact relative to the 

topology of L2(T ; V). Clearly we have 

lrm ReN(zs(k)(t) q') Re <Nlz=(t),p>, and 
k-* 
lrm Re G1(zg(k)( t), q)) = Re v * < Glz*( t ) , p> v, 

k-* 
where z<(t) denotes a weak limit of {z.s}8 in terms of L2(T ; V)-topology and the element Nl z 

. (t) (resp. G*z. (t)) is at least contained in HN-2n( S )_p (resp. HG-2n(S )-p) for each te: T. As 

a consequence we deduce together with (7.2) that z.(t) satisfies 

f <(Nl+G1)z<(t),q'(t)>dt o t' 

t' 

= 

 i(x, ~.>z.( t),q'( t)> dt + 2 fo te<z.( t), q"( t)> dt 

f
 for any q'eE C o( T; V), which is a weak version of the problem (P4). One the other hand, from 

(5.6) in S 5, it is obvious that 

lim zg(t) =- -~(NI + G1)z.( t)e V 2 <x,V'>z (t) 
8-0 dt 

for each te T, and further its L2(T)-limit also exists and we know that the solution z.(t) of (P4) 

lies in W21(T; V,V'). [l 

As a consequence, immediately we obtain 

Proposition 7.2. The solution z, has a pontinuous modlfication z= such that z~.e C o( T;H), and 

it satisfies the following equation : 

<z.(t),q'> - <f^,q'> +~ o t<(NI + Gl)z.(t),q'>dt 

ir =TJO <<x,7<>z.(t),q?>dt 

for each t E T, any ~'e(S). 

N.B. The proof of the former part in Proposition 7.2 goes similarly as in that of Theorem 2. 

2, see the argument given below. 

As to the uniqueness of solutions of (P3), we consider S;~-transform and we can prove the 

uniqueness of solution for the transformed problem, which is equivalent to (P3). We need some 

truncation technique here. .Take M >0 and let it be foxed. We set ~M:={xe S '(R):llxllq~;M, 

Vq},J~iMEKoM(e):=sup *=BMls'<x,7.>sl(<oo), and A(e):=AN+2J(~M(e) Note that this number l(~M 

is well-defined and remains finite as far as e>0. A(e) eventually diverges as e(or M) tends to 

zero (or infinity). Then there can be found some functional ~H(x)e rF.c,ket ( S '(R)) such that 

cM(x) =1, for xeBM, and =0, for xe:~~+1, and we set for each te T,wu(t,x)= w(t,x)cM(x). 

Then clearly WM coincides with w itself for x within the ball BH and it vanishes for x outside 

- 6 -
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the ball E~.1+1. The S,_-transfot~m is dcfined by 

(7. 4) 9.( t ,.r ) : = S~ I v.( t ,x) 

=exp -~(2 A(e)+AG)t ･v<(t,x), 

for each t, x. Then the problen (P3) is changed into 
1
 
i
 

ag= 
(N2' + Gl)9'( t,x) + ~r<x, ~.>9=( t ,x), ( t,x) = --

at 2
 

(7.5) 

9'(O)=fe(L2), t >0,xeS'(R), 

where N2'=N+A(e) ' I. Hence we have its truncated problem 

ag~ 1 (t x)= -~(N2'+ G1)9'M(t x)+ 2 <x ~ >9M(t x) 

(7.6) at ' g~(O) =_f^(x)e(L2). 
According to Theorem 7 1 suppose that there are two solutions 9M 1,9~.2, and set u'.M;=9~,1 - g~,2 

e W21( T; V, V*), with u'~*f(O)=0. This rs obvrous because the problem (P3) rs equrvalent to the 

abovd (7.5) and the S;~~transform is W21(T; V, V*)-invariant, and 9=e W21(T; V: V*) if so is vL'.. 

Then it is eas~ to see that 

a
 
v'<~w.M(t) u'.M(t))>v+~N (wM(t) wM(t))+ ; G (wM(t),w.M(t)) 

at ' 
~(1_2 i<x,~=>w.M(t),w.M(t))H. 

By integrating it with respect to dt we readily obtain 

te 

(7.7) ~ll w.M(t )ll +T ReN (WM w~)dt +~ ReG1(w.M,w~)dt 

_ t*1 

f
 
-

~ Re(1<x,~.>wM(t) wM(t))Hdt 

Because l(i<x,~.>u'.M(t),w.M(t))HI~ sup .~BMl<x,~.>i･fw.M(t,x)w.M(t,x)p(dT), we may combine 
definition of the regularized spaces in S 2' with Eq.(4.10) type estimates to get 

I I ReNl( w.M, w~) dt o te O ~~ ~ll u'.M( t<) I12 - KoM(e) ' Il w.M( t) Il2dt + I
 

o
t
e
 
_
 

T 
1 te ~ 

t
*
 

f
 
Re Gl( w~ w~) dt + ( J~iM(e) w~ w~)Hdt 

te ~ ~ll w.M( t.) I12 + ~ ll wM( t) IIN 2dt +~ 11 w.M( t)Il~.2dt. 

f ･ 2 f 
o
t
e
 
2
 

By the passage to limit M-oo, we can easily get 

~ {all w.( t)~.2 + e[1 w.( t)Il~,2} dt ~ O 

for a,P>0, implying that w.(t)=0 in Hi~NnH:~Gn(S )p, dt-a.e., because 

IMi~~ P({llxllq :~ M,V q} U {ll w.M( t) - w.(t)II v > s'}) =0 

holds for e' > o except the Lebesgue measure dt-null set. Therefore the problem (7.5) has a 

unique solution 9. in W21(T; V, V*). We thus attain the assertion of Theorem 2.1 stated in S 2 

and know that the problem (P3) has a unique solution v. in W21( T; V, V') satisfying (2.1). 

Consequently, Theorem 2.1 is a direct result of Theorem 2.1. Actually it is derived by a kind 

of routine work which is well known in the theory of evolution equations. We shall give a 

sketch of the proof below. First of all note that the Density theorem for W21(T; V. V*) is true : 
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D(T ; V) is dense in V~~1( T; V, V*). Then it follows easily from the above fact and a method 

of extension by reflection [18] that there exists an continuous linear operator E:W21(T; V, 

V*)- W21(R; V, V*) such that E(u)=u, dt-a.e. on T. Hence the localized situation can be 

attributed to the global case so that we may take much advantage of the standard theory of 

vector-valued distributions [20] . An application of the diagonalization argument [1] (see 

also [8] ) together with the aforementioned Schwartz theory [20] leads to the following 

assertron : 

Proposition 7.3. If u ~E W21( T; V, V*), them 

zt e C o( T;[ V, V']ll2), 

u'here [ V, V*]ll2is the inter,nediate space. 

In particular, since [ V, V*] 1,2=H in our case, we can conclude that there exists ~<e Co(T; 

H) such that v*(t)= v.(t) in H, dt-a.e. t If v= Iies in W21( T; V, V*). Moreover, as we have stated 

in S 2-, we immediately get Theorem 2.3 by virtue of the bijectivity of the F-transform on (S )*. 

Remark 7.4. The assertion in Proposition 7.3 means that if ue W21( T; V, V*), then the function 

ll(t) is an intermediate space E V,V'] l!2 valued continuous mapping to T after a possible 

modification on a set of Lebesgue dt-measure zero. 

Remark7.5. In fact, by the above-mentioned Extension theorem, u in Proposition 7.3 (as a 

continuous mapping on R) is the function with modification appearing in C~(R;[ V,V*]1/2). 

Howevel~, there may be an ambiguity in the set on which u is modified, i.e., the set on which 

the function is modified depends on Ite W21(T; V, V*). As a matter of fact, we can restate the 

above assertion more precisely : A map : D(T ; V)-D(T ; V) extends by continuity to a map : 

VT ( T V V )-C (T [ V V*]l/2). This follows immediately from 

II u 11 ~ Cll u ll 
C~(R;[ V, V']l/2) W21(R; V, V'), 

bccause ¥ve ha¥'e only to rewrite it into uED(R; V) by making use of the extension map E [1, 

20] 

Remark7.6. More genera]ly, our assertion (Proposition 7.3) is a Corollary of the so-called 

Intermediate Deri¥'ative theorem. If u belongs to the space 

~ Vl:.""( T): = { u e L2( T; V), - J d ~u 
~u(~)~L2(T;V*) , 

dt~ 

then ~~'e first know that u(j)~L2( T;[ V, V']j/~)(1~j~ m- 1) ; furthermore, the map : W~(T)-

L'(T; [ V, V'J,,~] ) is a continuous linear operator, where [V,V'] j/~ is the intermediate 

space [18] . But if you loo.k at it in a larger space LV,V*] (j+1/2)/~(1)[V, V*]j/~)' then it can 

be regarded as a continuous function with values in the larger space, and bedides, the map : u 

-zt('i) is continuous from TV~(T)- Co( T;[ V, V*](j41/2)/~)' 

S 8. Pseudo-Fourier-Mehler Transform 

The study of the Fourier transform F in white noise calculus was initiated and has been 

developed to a mature le¥'el by H.-H. Kuo [14,15] (also [17] ). While, the Fouriet-Mehler 

transform Fe is a kind of generalization of F [16] (also [12] ), which furnishes the theory 

of infinite duTrensional Fourier transf()rm_s in white noise space with adequately fruitful and 
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profitable ingradients. In this section we introduce the Pseudo-Fourier-Mehler (1~rFM for short) 

transform having quite similar nice properties as the Fourier-Mehler transform in white noise 

analysis possesses. In connection with the lg!FM transform, we shall define later the S~(e)-

transformation and discuss the S3(e)-transformed problem. Consideration of the SJ(e)-

transformed problem grves us a fecund suggestion sbout a concept "lifting", which is the main 

theme in the last section. 

We begin with introducing the lg;rFM transform. 

Definition 8.1. { F~6eR} is said to be the Pseudo-Fourier-Mehler (1~rFM) transform if F~ 

is a mapping from (S)* into itself for eeER,whose Ufunctional is given by 

(8.1) S( F~O)(~)=F(eie~).exp[ie'esinel~[2], ~cE S(R), 
or eql'dvalently 

S(F~a))(~)=<0,exp[ei0<･,~>-~l~12]>, ~E S(R), (8.2) 

for cIe( S )*, where S is the S-transform in white noise analysis and F denotes the Ufiunctional 

of (~ [19] 

Proposition 8.2. The following propc'rties hold ; 

( i ) Fo~=1d; (Id denotes the identity operator.) 

(ii) F~~ F for any eER¥{O}; 

(iii) F~~ Fe for any 6eR¥{O}; 

where F is the Fou'ic'r transform. and Fo is the Fourier-Mehler transform (cf. [16] ). 

Proof. As to ( i ), it is easy to see that S ( Fo~r(~)(~)=Sc)(~)=F(~). By virtue of the characteri-

zation theorem (e.g. [12, Theorem 4.38, p.123] ), we obtain Fo~=1d. (iii) is obvious from 

definitions (see Definition 8.1 and [16] ). Since F0=1d and F_*/2=F (e.g. [16] ), it follows 

clearly from (iii) that F ~ F~ for any 6~R except e=0. [] 

Proposition 8.3. The inverse operator of thel~rFM transform is given by ( Fo~)-1= F~~e for 6e 

R. 

Proof. It is sufficient to show that F ~e F ~= F ~ F~c=1d. As a matter of fact, for (~e( S )* we 

get from the definition (8.1) 

(8.3) S(Fv (Fvep))(~)=S(F~(~)(e~ie~).exp( Ie 'esmel~l ) 

(SO)(e'o(e 'o~)) exp(te'esmele 'o~i2) exp(-ie~iosin6l~l2) 

=(SO)(~)'exp(O)=S(Id･c)(~), (~e S(R)) 
because we used the relation S( F-Ifeep)(~)=Sc(e~io~).exp(-ie~iesinel~l2) so as to obtain the 

second line of Eq.(8.3). An application of the chatacterization theorem'to Eq.(8.3) gives F ~e F 

v~ld. As for the other paft of the desirted equalities, it goes almost similarly. [] 

Next let us consider what the image of the space (S) under F ~ is like (see Corollary 8.6 below). 

The lg~FM transform F ~ also .enjoys some interesting properties on the product of Gaussian 

white noise functionals (see Theorem 8.4 and Theorem 8.5). 

Theorem 8.4. Let g~ be a Gaussran white nolse functronal, l.e., 9.(') : = N exp - 2c 

renormalization N. Fo/ eeR the following equalities hold : 

( i ) F~O:9.(e)=F(eield)O, VOe(S)*; 

(ii) for any pER IIF~c･9 il =110[1 Va)e(S)p' , "(o] p p, , 
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where : dc'lote's the 'Vick prodttc/ (e.g. [12,p.10l] ) and the parameter c(6) is given by c(e)= 

- 
2- I ie~ iocosec 6 + I ). 

Proof. Noting that the U-functional of 9, is given by exp (-2~1(1+c)~ll~l2), we readily obtain 

(8.4) S( F ~O:9.(o))(~) = S( F ~c))(~) . (S9.(e))(~) 

=SO(e'e~)'E(e,~), ~eS(R), 

bevause w'e employed Eq. (8.1) and put 

S(e,~):=exp(ieiesin6l~l2- I I~l2) 

Then we cannot find any 6eR such that (8.4)=SO(~)=e~~lEl' <(p e< e> , ', 

implies that F~ep:9.(e)~0 for any cIe(S)'. " ^:,f^>, f~e:~_p(R") However, when c(x)= ~ <:x 
^=0 

~ (the symmetric S_p(R") space), then its U-functional Sep(~) is given by ^~0<~o^,f^>, so that, we 

easily get from definition of the second quantization operator r(e.g. [17] ) 

~ r.h.s. of (8.4)=~=0<(e'o)"~'", f.> ~(6,~)=S(F(e'old)O)(~) ~(e,~). 

Hence, if 2i(1 +c(O))eiosin6=1 holds, then clearly E(e,~) proves to be 1, suggesting with the 

charactenzatron theorem that F vO:9.(o)=r(eield)c. ~/1:oreover, it is easy to see that 11 F ~(i): 

9*(6)llp=11F(eiold)Ollp=110ilp holds for any peER. [] 

If we take the assertion obtained in Theorem 8.4 into account, then the following questions 

will arise naturally : whether the 1~fFM-transformed (~(i.e. F ~a)) can be represented by the 

Wick product of something like a transformed (~ and a Gaussian white noise functional g* ; 

furthermore, if so, what is the parameter c = c(e) then ? First of all, on the su, pposition that 

~ a)(x)= ~ <:x" ":,f,,>e( S )', a simple computation gives, for ~e S(R) 
*=0 

(8.5) S( F ~(~)(~)=S(P(e'e~) exp(te'osm6l~i ) 

= ( F(eiold ) O)( ~) ' exp( ieiosin 61 ~l2). 
We know from Eq. (8.5) that there is no possibility that F~ep may coincide with ~) : 9K(e) even 

for any K(a),aeR, because 

S(O:9K(e))(~)=S(P(~).(S9K(e))(~)=Sa)(~)'A(K(e),~) (8.6) 

with A( r,~):= exp { -2~1(1 + r)~ll~l2}. O.n the other hand, since the S-transform of P(eie)~) : 9K(o) 

is given by S(P(eield) (~ )(~) 'A(K(e) g) rt rs true from (8 5) that F 1c1 F(e'eld)O 9K(e) may 

possibly hold for (Pe:(S )*, 6eR as far as 2i(1+K(6))eiesin6+1=0 is satisfied. Let us next 

consider the evaluation of the term F ~0(ce:( S )p) relative to the ( S )p-norm (pe:R). We need 

to determine the parameter A(6), which comes from the relation between r(eie)~, : 9K(o) and r(e 

io)(~) : gA(e) ) By a srmllar calculation m (8 5) we readily obtam 

(8.7) 

S(F(eiold )( (~ :9A(o)))(~) = S( O :9A( e))(eio~) 

=(S(P)(eio~).A(A(6),e'o~)=(S6)(e'o~).exp - e2io 

~
l
2
}
 

{
 ~~f~~~T ' by making use of Eq.(8.6). A comparison of (8.7) with S(r(eio)(~)(~).A(K(e),~) provides with 

F(eiold ) O:9K(o) = F(e'eld )( O 9A(e)) 

rf the equallty e2'o(1+K(e)) A(e)+1 holds le as far as A(e) 2 ie~3ie.cosec6-1. It 
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'therefore follows that 

Il ~ ~0 Il p = Il F(ei~ld ) ap:9K(o)Ilp 

= 
l F(eield )( O:9A( o))II p = Il O :9A(o)ll p 

for all Oe(S )p,peR, and any eeR. Summing up, we thus obtain 

Theorem 8.5. The following equalities hold for any eeR; 

( i ) if K(e) =2-lie~iecosec6-1, then 

F ~(p =F(e'eld ) ap gK(o) ce( S ) 

(ii) tf A(a) =2-lle 3,0cosece I then 

Il F ~Oll p = Il O'9 Il Oe ( S )p 
' A(e) p, 

for all pe:R: 

Let us think of the image of q'e( S ) under the Pseudo-Fourier-Mehler transform. It is easily 

checked that 9. : 9d=1 holds with c + d = -2. So we have 

(8.8) 9.(o):9K(~r 1. 
From ( ii ) of Theorem 8.4, immediately, q'eE(S ) if and only if F~q':9.(e)eE(S ), so that, it is 

equivalent to 

F ~q':9.(o) 9K(e)e( S ) 9K(e) 

Where ( S ) : 9K(e) denotes the whole space of elements q' : 9K(e) for q'e(S ). Consequently It rs 

obvious that F ~q'E(S ):9K(e), by virtue of Eq.(8.8.). Therefore we obtain 

Corollary 8.6. For 6eR, 

Im F ~( S ) =( S ):9K(o):= {p:9K(e); pe( S )}, 

where K( 6) =2-1 ie~iecosece - 1. -

Remark 8.7. The results in Theorem 8.4 and Theorem 8.5 are quite similar to those of the 

Fourier-Mehler transform. In fact, for peR, Oe( S )p, Il( FeO):9ct(e)llp=1101lp and li FeOllp=11 O: 

9'2(c)llp hold with cl(e)=~icote-2, and c2(e)=icote-2 (e.g. [12, S 9.H] ). 

Remark 8.8. The image of ( S ) under the Fourier-Mehler transform F e is giveri by ( S ) : gicot 

e, while that of ( S ) under the Fourier transform F coincides with the space ( S ): 60:={q': 60;q' 

e(S)}, where (~~o is the delta function at O and lim.-c9.= (~~o(e.g. [12,Chapter 9] ). 

From Proposition 8.3 odr Pseudo-Fourier-Mehler transform F~ is injective and surjective. 

Moreover, it is easy to check that F ~ is strongly continuous from (S)* into itself. Thus we 

have the following theorem. 

Theorem 8.9. The lg~FM transform F ~: ( S )*-(S )* is a bljective and strongly continuous linear 

operator. 

Proposition 8.10. { Foip~,6eR} is a semigroup. 

N.B. In ot'her words, with Theorem 8.9, the set { F oip;, e e R} forms a one parameter group of 

strongly continuous linear operators acting in (S)*. 

Proof of Proposition 8.10. For epe(S )', ~e S (R), ahy O, ~eR, from (8.2) we have 
{
 
}
 

S(Fev+7c)(~)=<0, exp ei(e+n)<･,~>-~l~l2 . 

While, from (8.1) 

(8.10) 

S( F e~ F ~))(~) = S( F ~O)(eie~) . exp[ ieiesin el ~l2 J 

= 
(e'7(e'e~)) . exp[ ie'7sin 7le'o~12] . exp[ ie'osine[~l2] 
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e 21*"""~l'<0,e<"et""'e>> exp{le'o(ei(e+u)sin7 +sine)I~l2} 

<0 exp{ei(0+?)<･,~>-~l~l2 , }
 
>
 

with the U-functional F of tp. By Comparing (8.9) with (8.10), we get 

S( F ov+? O)(~) = S( F ~F ~ep)(~). 

Consequently. the characterization theorem leads to Fov+7(p= F~' F~ep, OeE( S )*, which com-

pletes the proof. [] 

We are now in a position to state the principal result in this section. This is a very important 

property of the lg;rFM transform, especially on an applicational basis. 

Theorem 8.11 The iplfinitesilna! generator of { F~;6eR} is given by i(N+AG*), where N is the 

nl!mbc;' op,~'a/or tmd Ac* i.~ the acljoi;It of the Gross Laplacian Ac' 

Remark 8.12 It is ¥vell known that the infinitesimal generator of the Fourier-Mehler transforms 

{ F o;OeR} is iN+~Ac* while the adjoint operator of { Fe;el~R} has iN+~AC as its infinitesimal 

generator (e.g. see [12] ). The proof of Theorem 8.11 is almost similar to the above ones. 

Proof of Theorem 8.11. First of all we set Fo(~):=S(F~(P)(~) and Fo(~):=S(O)(~) for Oe 

( S )', ~E S (R), paying attention to (i) of Proposition 8.2. From (8.1) we have F6(~)=Fo(eic~). 

exp[ Ie"'smel~:2]. Since Fois Fr~chet differentiable, the functional Fo(~) is differentiable in a as 

¥vel], and it is easy to check that 

(8. 1 1) 

1
 lim { F,,( ~) -- F~,( ~~)} 

6--o e 

d
 ¥F, (e'o~-) le'o~> exp[le'osmOI~I Io 0+F(eio~). dt exp[ie'osmel~l lle o 

= <F'(~),~> + !1~12 . F(~). 
¥~'hi]e, ¥ve can ea~i]y check that the LT-functional 6-1{Fo(~)~Fo(~)},6~ER satisfies the uniform 

b(-)mldecl critt'ri()11 : ~ C0>0 so that 

~~~l e- I { Fo(z~) - Fo(z~)} I < Coexp{ c R"I~12} 

lzl = R 

holds for 21]1 A' :~O, tll] ~~E S (R) ¥¥'ith cl >0, c2 >~, where F~* denotes an entire analytic extension 

of F. Hencc, the strong convergence criterion theorem [19] (see also [12, Chapter 4] ) 

a]lo¥vs con¥'erg"ence of S-1(O-I{Fe(')~J;~o(')})(x)=6~l{ F~(~(x)- O(x)} in (S)'as e tends to 

7ero. Wt nc'L'd th(, follo¥¥'ing tl¥,'o lemmas. 

Lemma S.13 (cf. L1~, T/1('o't";! 6.11. /;.196] ) Let F(~)=SO(~), ~e S(R) for (Pe(S)'. Then 

( i ) F is F,t(ch('/ d!j_fcrcntiab!(' ; 

( ii ) l/ic .~.'-1'7!l!Vi;'-"! of N (~(x) is ~!Th'cl/ b_v <F'(~,~> , ~eES(R); 

l'h ,r' A' is !ll(' ,l!nnbc'l' vpc'7dor 

Lemma <q.14. (cf. 'l2,= T/1(-'o'~'m6.2O, p.206] ) For any (~in (S)*, the S-transform of Ac*(~(x) is 

g'Itc'/ bl l*'['S(i)(~). ~~ S(R). 

We mav deduce at once that 

(8.12) S(~'ap~'Ac'O)(~)=<F'(~), ~>+1~I2F(~), ~eS(R), 
¥vith simple applicati()ns of Lemma 8.13 and Lemma 8.14 ; moreover, it is easily verified from 

(<~.11) anf (~.12) t()~~'('ther ¥vith the above-mentioned convergence result that 
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lol~~(F~ Id)a)(x) IimS-1 {Fo(')~Fo(')}¥)(x) 
= 

 

1
 o-o ~~~ 

=S-1(i<F'(~), ~>+ii~l2.F(~))=i(N+Ac')(P(x), in (S)', 

which concludes the*~ssertion. [] 

Finally we define the S3(e)-transformation. When we define 9(t,x):=S3(g)-1_. v.(t,x)=exp 

(-,i~x,~~>_t)･ v.(t,x), the~,,the problem (P.3) is rewritten into 

a9 1 --(t x)= --(N+AG )9(t x) 

9(O) = f e ( L2) . 

We have already proved Theorem 2 1 Theorem 2 3 m S 7 Accordi~rg to Theorem 2.1 (or 

Theorem 7.1) and Theorem 2.2 (see also S 7), the sol~tion v. (t,x) of (P.3) Iies in VV21(T; V, V'), 

hence it follows imrh~diately from definition of 9 that there exists a unique solution 9(')e: 
W21( T; V, V*) satisfying Eq.(8.13)'~n~ ~'~~E Cb( T;H) such that~(t,x)=g(t,x) in H, dtla.e., since 

exp(-i<･,V'>t)e(S ). and the space V is a (S)-module. Then it is easy to see that such a 

solution 9 satisfies formally aa9-t(t,x)=i(N+Ac')9+ h(t,x) with 9(O)=fe(L2), where h(t,x)= 

Ko(N+ G)9~E Co( T;H). Ko:= ~(i+~)~EC. So that, we may apply Theorem 8.11 to obtain 
f
 
t
 

9( t,x) = F ~f (x) + F t~~'h(s,x)ds, 

and if we set a)=(/,x):=exp(i<~,V<>t), then ciearly v< (t,x) can be expressed by f
 
t
 

(8.14) 0=( t,x) F t~:f"(x) + 0=(t,x) F tv~Sh(s,x)ds. 

S 9. The Limit of e-Approximation and Lifted Convergence 

In this section we shall explain the concept of hfting as well as how and from what it comes 

out and give the definition of its lifted convergence. Based upon it, we shall discuss in a sense 

the limit of e-approximation which was introduced in S 1, and state our main result in this paper 

on the convergence problem for the approximate problem (P.3). We start with introducing 

some notations to be used in this section. We denote the renormalization of ~) relative to x by 

the symbol N.(~~(x) instead of : (~)(x) : (.). Recall that we fix p >~ (see S 2), then we have Tr: 

=f6i 2dteS'^_p(R2) and I Trl-p.,,2=11A-2pIIHs, moreover:x'":eS_~ p(R") holds for neN with 

l:x === ":1-p ~ /~T([xl-p + IIA-2p[llhs)" (9.1) 

(e.g. [12J ), ~A'here [1･IfHs is the Hilbert-Schmidt norm. So we put A^(p)=fTrf~p,*2'1~l2p", ~e S 

(R). For simplicity, we set 

r=(n)=:<v.,~>": for e>0, ro(n)=:<y,~>":, " 
c(~] 

R.(n)=1;-.(n)-'h(n)1, and Q,',(p) ~Ak(p)R<(n-2k), 
k=0 

where G(n) denotes the Gauss symbol for the number n/2L We write 

E~(p)={Q,･,.1(p) - Q~(p)}/Q~(p) and E~(p)=sup E~(p). 
0<'<1 

Let I(n k) Itf{2"kt(n 2k)!}-1 and lo(n)=maxfl(n,k);0<_k~G(n)}, and besides we put 
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M(n)=10(n)~1. Assume that ~ tp >0 and ~ {K~(p)}~, a strictly decreasing sequence (peN) such 

that K^(p) >0 and 

(9.2) t(1 + E.( p)) . K~+1( p) < (n + 1)K^( p) 
" holds for any t~E(O,tp]. For each peN, we set Tp(t):=tan(27rtltp), t >0. Hp acts for A=~~ a^ 

. 
as pA=~^ M(n)'K^(p)a~ for peN (cf. Remark 9.8 below). 

Roughly speaking, a lifting is sornething like a new functional obtained by a sort of cancella-

tion method of singularlity. Suggested by Eq.(8.14), we write N.(t,x)=(NJrO,./ep.)(t,x), e >0 and 

No(t,x) =(N*Oo/Oo)(t,x), where formally co(t,x)=exp(i<x,y>t) for x,ye S'(R). Note that only 

the renormalized (~)o has a meaning. Actually we have N.c.(t,･ )e( S ) and N*co(t,･ )e( S )* for 

fixed y,for each t >0. Let v* be the solution of the problem (P.3) (cf. Therem 2.1 and the latter 

part of S 8). When we write an multiplicative operation of the singular weighted factors {N.(t, 

x)}.>0 by L', then L v e>0 rs m fact grven by N.ep. g while L v rs expressed as N*(Po 9 

where we may regard that vo is given a priori by the intuitively formal expression : 

Oo( t,x) F t~f^(x) + oo(t,x) f t F tv~Sh(s,x)ds. 

Let us consider now the above each term. L'v=(t,･) Iies in V at least for each t since O.(t,･) 

itself belongs to (S) for any t. So canonically, L *v=(t,･) is always well-defined as an element 

of ( S )* for any E>0. On the other hand, there is a problem indeed in defining Lovo. Although 

(S)* is a (S )-module, we do not know generally whether V'( S )*c(S )* or not. However, if 

we think of N*a)o(t,x) : g(t,x) instead of the aboce Lovo, then the validity easily follows. As a 

matter of fact, we have 

(9.3) 

S(N.co(t,･) : 9(t ))(~) 

=S(N.epo(t, ･ ))(~){S( F t~:f~)(~) + S( f tF tp-sh(s, ' )ds)(~)}, ~~E S (R), 

because we employed the expression of 9 given in the last part of S 8. 

Lemma 9.1. We can find some positive consiant C1 such that for ~e S (R) 

-1 suD ~ ! <x'" (z~)o~> <CI exp(aRf~l ) (fior fixed xe S (R)) 
.=e ^=0 n. 

holds for any R>0, and for some a>0, pe;No. 

Proof. xo' has the decomposition [12, p334] : 

(9.4) G("Y~ n ) xon= 2k I f f xo(~ 2k). Trok k~0 2k ( ~ )": ~ .~ . 

The assertion follows immediately from the following estimate. 

"I ~o nl i<xo~, (z~)'">l 

< ~kL ~ : g~o(~-2k)¥/I _ "G(~Y n )
 
(2k- 1) ! ! l< Tr, ~R~>Ik ･1<:xo(~-2k) '=0 n! k=0~2k 

= iLI*.1" fc(^Y n ~ ~=0 n! I k~=0~2h (2k- 1) ! ! I Trl~p,021:xo(n-2k) Is p(R" ,.) 
- 

~
l
 

where we used (9.1) and (9.4). [ll 
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Lemma 9.2. Lc'/ {c:^ b(' i,1 (1.2). 'Fh('n th(',~~ c'an be fol,md somc positive constant C2 such t/'1at 

s.u~~I S q9(z~)1 <- C~ ' e¥p(aR2l~･--1~',) 

lzl = R 

holds for any R )>0, and for somt' a>0, peNo, where - indt:cates an entire analytic extension 

of Sp(~), ~e S (R). 

Proof. Because the ¥~Tiener-It6 decomposition in L2 (S '(R), dp) allows the expression p(x)= 

~ '": f,,>, f^~L2(R") (the symmet.ric L2-space), we have the following estimate of Sq'(A~) as ~ <:x , 
^=0 

a function of )teR, 

. I(Sq))(A~)l~,~, ol<f,,, (A~)= ">f 

- 
= ! " 2p" = . ~ ) (~ p) <(~"ot; [A[2 [~{ )2 (~1lflj~,,12p = flq'fl-pexp ; fAf2j~12 , 

~o 
by employing the Sch¥~'arz inequality. Hence it follows that Sp('~) has an entire analytic (

1
 
)
 

exension to ze~C for every ~eE S (R), and the inequality l(~rq')(z~)I~C2exp ~lzi2(~l~ , zeC 

holds ¥vith C2=ilq'll, whereby can easily follow the assertion. [] 

By applying Lemma 9.1, ¥ve can easily see that for fixed y~ S '(R), ~ Cl >0 such that 

(9.5) s.u=~lS(N*a)o(t,･))(z~)l~CI exp(aRl~lp), R>0 
lzl = R 

holds for some a>0, p~ENo' While, the estimate 
sup[ S( F t~:f^)(z~)1 ~ C2 exp(aR2l~l~) 

l-71 = R 

is a direct result of Lemma 9.2 with an easy inequality l~(_F'ilf)(~)1 <- [1 F t~f^ll-p e~iel3 el~l', because 

Ft~f^(') is contained at least in V for any t except dt-null set.' As to the team S(JCtFt~-'h(s, 

')ds)(~), it is sufficient to find the estimate of S(F tvSH(s,'))(~), since 

S(hm~F~ s'h(s )11*.)(~)=1im~S(Ftv~s*h(sk,'))(~)'A*. 

N~* k N~* h from the continuity of the S-transform. Derivation of the same type estimate for this term 

again turns out to be the attribution to Lemma 9.2. Hence, if we regard the multiplication * 

of N x~ * g as the Wick product, then it is well-defined and makes sense as an element of ( S )* 

for each t >0! On this account, we attain the following definitions. 

Definition 9.3. (Ltfting) We define the lifting of v. as 

L z (t,･):=NxO.(t,･):9(t,･)e(S)', e>0 t>0 
and the llfti!~g~of vo as 

Lobo(t, ･ ):= N.apo(t,･):9(t, ･)e( S.)', t >0. 

Definition 9.4. (Llfted Convergence) Let ~;~(t), ~fo(t)e(S)$, t>0, be Itftings in the sence of 

Definition 9.3. Tlren we say that qr.(t) converges towards 1lro(t) in hfting sense with Hp as n 

approaches to oo tf for each t, 

H (Sep;(t))(~)-Hp(S~;o(t))(~), ~e S(R), 

as n -oofor some peN. 
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Remark 9.5. It seems to be quite natural and reasonable that we should define the convergence 

of liftings as Hp(S~;,,)(~)-Hp(S~;o)(~), ~~ S(R) as n -'oo for some pEN. However, on an 

applicational basis, it would be better and more useful to formulate it in the framework 

including the parameter, because our liftings in question have the parameter t. 

For convention, taking (9.2) into consideration, we may give the definition of lifted conver-

gence as a concept attached to the parameter given. When ~(t,･)e(S )* for each t and we 

write the U-functional of 1~r(t, ･ ) as F(t, g), ~e S (R), then we define an operator Hp by HpF(t, 

~)=HpF( Tp-1(t), ~). 

Definition 9.6. (Llfted Col'lvergenc'e associated with the parameter) Let 1~r~(t), q~0(t)e(S)* be 

hftings for each t >0. 14~ sa_v that 1~rn(t) converges toward 1lro(t) in hfting sense with (Hp, Tp) 

as n app,vaches to oo ljf 

Hp(S~:,,(t))(~)-Hp(S~fo(t))(~), ~eS(R), 

as ;1 ~oo _for each t>0, anc/ for somc' p~N. 

Now' we shall state our principal result in this section. 

Theorem 9.7. Le/ { v.}, bc' t/ze solution of the problem (P.3). Then, under the assertion (9.2), 

1
 l/*(t,･) conz;(~'ges to b'o(t,･) ilq lifting sence tvith (Hp, Tp)ase ~ O, for any t>0, and some p>T' 

Remark 9.8. It is interesting to note that our assumption (9.2) is always true as far as 

K,,+1(p)/K,,(p)~~(1. In fact, ¥¥"a have 

,,* 

Q~-1(p)-Q,',(p)=~Ak(p){R=(n-2k+1) R (n 2k)} 
^=0 

¥vith le=2,n, mEN (essentially the same expression is give~ for n=m +1), where we put Ao 

(p)=1 and R.(O)=0 as a matter of convenience. As a consequence, Q~+1(p)- Q~(p)=0(R=(n 

+1)) as R=(n)-O, hence E^(p) is finite for any p, any n. 

I.emma 9.9. Fv;' each ;l~EN, 

:<~', ~>":-:<y, ~>":, ~eS(R), 

(/s e /crid.~ to zero. 

Proof. Since ~< converges strongly to y jn S '(R) from our maior premise (cf. Eq.(1.3) in S l), 

it is true that <V', ~> - <y, ~> as c ~ O for any ~e S(R), and so is the assertion. [] 

Lemma 9.10. The incqua!it_v 

, y , ~="'>I~Io(n)'Q~(p), ~eS(R), l<~ -,, ,' 
l
 ll(,Ids for ;l~EN, and e>0, anc/ p)> . ~
 

Proof. A direct computation gi¥'es 

I<v~'t-y' , ~'">l ,, 

~
 

c( " ) 
(
 
~
 

< ~ ~ n (2k-1)f fl<(･~ - l/ (" 2k) )~Tr'k ~e'>l 
_ /+-=0 2k " 
c( " ' 

~ ~ ~ I(n, /,')1< T,-, ~R~>lh.1<:~< ("--2h) yR(~ 2k) 
/<='] 

c(") 
<Io(1l) ~ IT,'1h .I~l2hl'<v. ~>" 2/' <y ~>" 2k I 
- '=*2 ~ /' ' ' 
a=0 

= 
o( ") ~ Ah( p)1 ,-<( n - 2k') - ,7]( n - 2k)1 =10 ~ Ap( p) ' R=( n -2k), 

bccaus.'e ¥¥'e emp]oyed the forrnulil(9J) and (9.1). [] 
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Proposition 9.11. Under the assttlnption (9.2), the series 

~o ~ t"K^(p)'Q~(p) 

1_ is sbsolutel_v coplve'gent um:formly in ee(0,1) for any teE(t,tp], andfor some p> . 
4
 

Proof. Set a^~~a,,(p,t,e)i nl t"K.(p)'Q~(p). Then we ha~e 

a=_~~l - n~1 K_k~!(-pp)) (1+E~(p)). 

In fact, under(9.2), as far as K^+*(p)/K.(p)<~(1(sufficiently small), the inequality (ah+1/a~)(p,t,e)< 

1
 (n+1)-Itp･(1+E^(p))<1 holds for Vee(0,1), Vte~(O,tp], p> , T together wrth Remark 9 8 [] 

Proof of Theorem 9.7. For ~E S (R), we have 

(9.7) IHp[S( L 'v<( t))(~)] - Hp[S( L ovo( t))(~)]l 

=1Hp[S(N.O.(t):9(t))(~)]-Hp[S(N.Oo(t):9(t))(~)]l 

= 
Hp[ (S( N.(~.( t))(~) - S( N.(~o( t))(~)} ' S(9( t))(~)]l 

= ~ IHp[S( N .0<( t))(~) - S( N.Oo( t))(~)]l ･ I S(9(t))(~)1. 

An application of Lemma 9.1 and Lemma 9.2 allows the estimate 

s.u=~i(S9(t))(z~)1< C exp(aR2j~l2) ~eS(R),. R>0, 

lzl = R 

together with(9.3), (9.5), and(9.6), so that it is sufficient to estimate the first term in the right 

hand side of Eq.(9.7). As a matter of fact, it is easy to see from the formula [12, p.333] that 

(9.8) Ist term in r.h.s of Eq.(9.7) 

=1Hp[S(~ f <:x'=":,(ItV ) ">)(~)-S(.~0 nl <:x'" (Ity)'">)(~)li 
~=0 n. 

" '" ~~ M(n) K(P)1<~ " y=", ~'=">1. 
^=0 n ! 

Since the inequality jn Lemma 9.lO is valid for each neN, Eq.(9.8) can be estimaied majorantly 

"I by the series ~ f t"K,,(p) ' Q~(p), the convergence of which is guaranteed by Proposition 9.11. 
"=0 n. 

Therefore it follows from(9.2) that 

(9.9) I H p[S( L 'v.( t))(~)] - H p[S( Lovo( t))(~)]l 

= Hp[S( L 'v<( Tp-1( t)))(~)] - Hp[S( Lovo( Tp-1( t)))(~)]l 
~ CI Hp[ S( N*c.( Tp-1( t)))(~) - S( N .Oo( Tp-1(t)))(~)] l 

-1 ~ ~ { Tp-1(t)}"K.(p) ' Q~(p) < oo 
1
 umformly m ee (O 1) for any t>0, p>T' Consequently 

-. 1 . -1 lim~ I {Tp-1(t)}"K~(p)'Q~(p)=~lim~{1 Tp-1(t)}"K~(p)'Q"'(p), (9.10) 
~=0 '-o n. =-o ^=0 n . 

where vve paid attention to Remark 9.8. Moreover, 

l~~Q;(p)= ~ Ak(p)'1imR.(n-2k), and (9.11) 

- k=0 '-o 

l~~R=( n - 2k) = Iiml r.( n - 2k) * ro( n - 2k)1 = O, (9.12) 

- -o 
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because ¥ve applied Lemma 9.9. Combining all the results from Eq.(9.9) through Eq.(9.12), we 

finally obtain that Hp[S( L 'v.(t))(~)] converges to Hp[S( Lovo(t))(~)], ~e S (R), as e tends to 

1
 zero for any t>0, some p>T, which completes the proof. [Il 

Remark 9.12. In checking the criterion of series convergence, the seight M(n) associated with 

the operator Hp Provides with the same effect as to put the condition {Io(n+1)/Io(n)} A1, 

which made a contribution to simplifying the computation. 
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ON PSEUDO-FOURIER-MEHLER TRANSFORMS 
AND INFlNITESIMAL GENERATORS 
IN WHITE NOISE CALCULUS*) 

ISAMU DOKU (~:1 ~;) 

Department of Mathematics 
Saitama University 

Urawa 338 Japan 
e-mail: doku@sacs.sv.saitama-u.ac.jp 

S1. Introduction 

The study of the Fourier transform f in white noise calculus was initiated and 

has been developed to a mature level by H.-H. Kuo [16,17] (also [19]). While, the 

Fourier-Mehler transform iFIO is a kind of generalization of f [18] (also [11]), which 

furnishes the theory of infinite dimensional Fourier transforms in white noise space 

with adequately fruitful and profitable ingradients. 

In this article we introduce Pseudo-Fourier-Mehler (PFM for short) transform 

having quite similar nice properties as the Fourier-Mehler transform possesses. It 

was originally defined in [5] and used for application to abstract equations in infinite 

dimensional spaces. In connection with other Fourier type transforms in white noise 

analysis, .we can compute the infinitesimal generator of the PFM transform directly 

and show that our Pseudo-Fourier-Mehler transform enjoys intertwining properties. 

We shall state the characterization theorem for PFM transforms, I~hich is one of 

our main results in this article. The Fock expansion of PFM transform can be 

derived as well.･ Lastly we shall introduce a generalization idea of PFM transform 
and investigate some properties that the generalized transform should satisfy. 

The Pseudo-Fourier-Mehler transform is a very important and interesting oper-

ator in the standpoint of how to express the solutions for the Fourier-transformed 

abstract Cauchy problems ([5,6] ; see also [4,8]). 

In [1] they have studied the two dimensional complex Lie group g explicitly and 

succeeded in describing every one parameter subgroup with infinitesimal generator 
(_2"22~:t:~b)AG + bN, where N is the number operator and AG is the Gross Laplacian. 

Furthermore, one can' find in [24] another related work, especially on a systematic 

study of Lie algebras containing infinite dimensional Laplacians. 

We are able to state our results in the. general setting (e.g., [23]; see also [7]) 

' of white noise analysis. As a matter of fact, almost all statements in our theory 

') Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC 

Crant-in-Aid CR(A) 05302012. 
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remains valid under non-minor change of the basic setting. However, just for sim-

plicity we adopt in this article the so-called original standard setting [11] in white 

noise analysis or Hida calculus to state our results related to the PFM transform. 

S2. Notation and Preliminaries 

Let S ;E S(l~) be the Schwartz class space on IR and S* ~ S'(I~) its dual space. 

Then S(E~) C L2(l~) C S'(I~) is a Gelfand triple. We define the family of norms 

given by l~lp = IAP~l, p > o, ~ e S(JR), where the operator A = -d2/dt2 + t2 + 1 

and I ' I is the L2(E~)-norm. Let Sp E~~ Sp(1~) be the completion of S(~~) with respect 

to the norm I ･ Ip,P > o. We denote its dual space by S; s ~(~), and we have 
Sp(E~) C L2(I~) C S'p(I~). Let /L be the standard Gaussian measure on S'(I~) such 

that 
fs' exp(VII<x ~)),t(dx) exp 1

 
- 

 

= ~l~l 

for any ~ e S(I~); (L2) denotes the Hilbert space of complex-valued u-square 

integrable functionals with norm ll ･ Il. The Wiener-It6 decomposition theorem 
gives the unique representation of (p in (L2), i.e., 

= =~ (1) I~(fn)' fn e L~(JRn), ~
'
 

~=0 

where I~ denotes the multiple Wiener integral of order n and L~(E~n) the space of 

symmetric complex valued L2-functions on J~n. The second quantization operator 

r(A) is densely defined on (L2) as follows: for ~' = ~~oo=0 I~(fn) e Dom(r(A)), 

oo 
r(A)(p= ~; 

- 2) I*(A~)nf･~t)~' n=0 

For p ~ N, define ll(pllp = Ilr(A)P~)ll and let (S)p ~E {~) e (L2); II~'Ilp < oo} and 

the dual space of (S)p is denoted by (S);･ Let (S) be the projective limit of 
{(S)p;P e N}. It is called a space of test white noise functionals. The elements in 

the dual space (S)' of (S) are called generalized white noise functionals or Hida 

distributions. In fact, (S) c (L2) C (S)* is a Gelfand triple [11]. For convention all 

dual pairings (', '), resp. ((', ')> mean the canonical bilinear forms on S' x S (resp. 

(S)' x (S) ) unless otherwise stated. 

The S-transform of ~ e (S)' is a function on S defined by 

(S~)(~) .- ((~, . exp(', ~) .)), ~ e S(u~), 

where :exp (',~) : ~: exp (', ~) ' exp (- ;-f~l2). Then note that a mapping : C ~ z h~ 

(S~)(z~ + n) is entire holomorphic for any ~, n ~ S. A complex valued function F 

on S is called a U-functional if and only if it is ray entire on S and if there exist 

constants C1' C2 > o, and p e N U {O} so that the estimate 

( 2 2~ IF(z~)1 ~ C1 exp~C2lzl l~lp ) 

may hold for all z e C,~ e S. We have the following Characterization Theorem 
[25]: 
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Theorem 1. If ~1 e (S)*, then S~) is a U-functional. Conversely, if F is a U-

functional, then there exists a unique element ~ in (S)* such that S~ = F holds. 

Based upon the above characterization we are able to give rigorous definitions 

to Fourier type transforms of infinite dimensions. The Kuo type Fourier transform 

f [16,17] of a generalized white noise functional ~ in (S)' is the generalized white 

noise functional, S-transformation of which is given by 

(4) S(f~)(~) <<~ exp( c( ~)))), ~ ~E S. 

Likewise, the Fourier-Mehler transform f:o (C ~ I~) [18] of a generalized white noise 

functional (~ in (S)* is the generalized white noise functional, S-transformation of 

which is given by 

(5) S(flo~))(~) ((~ exp{eto( ~) Ieiocos6l~l ~ e S. 
. 

}
 
,
 ~ 

The Fourier-Mehler transform f:o, e e E~ is a generalization of the Kuo type Fourier 

transform f. Actually, flo = Id, and f_7r/2 is coincident with the Fourier transform 

f. It is easy to see that f:1rl2 rs the mverse Fourrer transform f Hence we have 

S(f-l~)(~) - (S~)(i~)exp -;I~l2 ~ e S. )
 - 

S3. Pseudo-Fourier-Mehler Transform 

We begin with introducing the Pseudo-Fourier-Mehler transform 'in white noise 
analysis . 

Definition 1. {~76,6 e ~} is said to be the Pseudo-Fourier-Mehler (PFM) trans-

form f5,6J if ~;;o is a mapping from (S)' into itselffor e <E JR, whose U-functional is 

given by 

S(~:e~)(~) = F(eio~) exp(se'osmel~l2) , 

or equivalently 

1
 (7) S(~:e~)(~) = <(~, exp(eio(., ~) _ ~i~i2))>, ~ ~ S, 

for ~ e (S)', where S is the S-transform in white noise analysis and F denotes the 

U-functional of ~. 

By virtue of Theorem 1, the right hand sides in Eq.(6) and Eq.(7) are U-
functionals, and ~:6~ exists for each ~~ in (S)'. Therefore the above-mentioned 

Pseudo-Fourier-Mehler transform is well-defined. Hence we have 
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Proposition 2. The following properties hold: 
(i) ~jo = Id; ( Id denotes the identity operator.) 

(ii) ~;:o ~ f for any 6 e ~ ¥ {O}j 

(iii) ~;o ~ fle for any e e ~ ¥ {O}. 

Proof. As to (i), it is easy to see that S(~jo~)(L) = S~~(~) = F(~). The char-

acterization theorem allows the equality ~lo = Id. (iii) is obvious from definitions. 

Since flo = Id and f_*/2 = f' it follows clearly from (iii) that f never coincides 

with ~7:o for any e e J~ except O = O. [II 

Proposition 3. The invese operator of the Pseudo-Fourier-Mehler transform ~7e 
is given by (~:6)-1 = ~7_o for e e E~. 

Proof. It is sufflcient to show that ~7_o~:o = ~:0~7-0 = Id. As a matter of fact, 

for ~ e (S)' we get from the definition (6) 

(8) S(~:_o(~:o~))(~) = S(~;o~;)(e~io~) . exp - ' ~ ee 'osinel~l 

= 
S~))(ei6(e~io~)) . exp (iei6 sin O]e~io~l2) . exp (-ie~io sin gl~l2) . 

= S~)(~) ' exp(O) = S(Id ' ~)(~), ~ e S, 

because we used the relation 

S(~7 6~)(~) S~(e '0~) exp( ze~'osin6l~l2) 

so as to obtain the second line of Eq.(8). An application of the characterization 

theorem to Eq.(8) gives ~7_o~:o = Id. As for the other ipart of the desired equalities, 

it goes almost similarly. [] 

Next let us consider what the image of the space (S) under ~70 is like (see Corol-

lary 6 below). The Pseudo-Fourier-Mehler transform ~;e also enjoys some interesting 

properties on the product of Gaussian white noise functionals (see Theorem 4 and 

Theorem 5). 

Theorem 4. Let gc be a Gaussian white noise functidnal, i.e., gc(') := J¥r･exp(-1 -
12/2c) with renormalization J¥r and c (E C, c ~ O,-1. For e (~ E~ the following 

equalities hold: 

(c)~:6~ 9.(o) = r(eiold)~, V~ e (S)'! 

(ii) for any p e ~, ll~:o~1 : g.(o)llp = Il~Ilp, V~ e (S) ' 
p' 

where : denotes the Wick product (e.g. fll,p.101J) and the parameter c(e) is given 

by c(6) = -(2~1i e~io cscO + 1). 

Proof. Noting that the U-functional of g. is given by exp(-2~1 (1 + c)~1 I~12), 

we readily obtain 

(9) S(~:e~ : g.(o))(~) = S(~':e~;)(~) . (Sg.(o))(~) 

= ~(eie~) . E(6,~), e e S, 
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because we employed Eq.(6) and put 

(e, ~) ( ' io sin el~l2 2(1 + c(e)) I~l _ 1 )
 

E := exp oe
 

Then we cannot find any O ~ E~ such that 

(9) = S~(~) = ( 1 
- 
~l2) . (<~,e("~))) 

exp 2
 

may hold whrch Implies that ~:o~ : g.(o) ~ ~! for any ~ e (S)'. However when 

~(x) ~~'o__o <: xR~ :,f~),f~ ~ S (~") (the symmetrrc space S p(I~~) ) then 
its U-functional S~(~) is given by ~noc=0 <~R~,f~), so that, we easily get from 

definition of the second quantization operator r 

= rhs of (9) = ~((e ) ~ ,f~) ' E(9,~) S(r(e'old)~)(~) (O ~) i6 ~ R~ 

~=0 

Hence, if 2i(1+c(O))eio sin O = I holds, then clearly 3(e, ~) proves to be 1, suggesting 

with the characterization theorem that 

~:o~; : g.(o) = r(eiold)~. 

Moreover, it is easy to see that 

ll~:o~ : 9'(o)llp = Ilr(eiold)~!1lp = Il~l]p 

holds 'for any p e I~. [] 

If we take the assertion obtained ip Theorem 4 into account, then the following 
questions will ~rise naturally: wheth~r the PFM transformed ~ (i.e. ~lo~~) c an be 

represented by the Wick prbduct of something like a transformed ~ ~nd a Gaussian 

white noise functional g.; furthermore, if so, what is the parameter c = c(e) then? 
First of all, on the assumption that ~)(x) = ~"co=0 <: xe~ :,fn) e (S)', a simple 

computation gives, for ~ e S 

(10) 
(
 

. )
 

S(~:e~)(~) = S~(eio~) . exp ~ie'o sm el~l 

S(r(e'6ld)~)(~) exp (ceio sin Ol~l2) . 

We know from Eq.(10) that there is no possibility that ~:o~) may coincide with 

~1 : gK(o) even for any K(6),O e I~, because 

(11) S(~ : 9K(o))(~) = S~(~) . (S9K(e))(~) = S~(~) ' A(K(O), ~) 

with 

: {_ 1 2}. 2(1 + r) I~] A(r'~) = exp 
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On the other hand, since the S-transform of r(eio)~ : gK(o) is given by 

S(r(eield)~)(~) . A(K(e), ~), 

it is true from (10) that 

~o~ = F(eiold)~ : gK(6) 

may possibly hold for ~ e (S)', C e I~ as far as 

2i(1 + K(O))eio sin O + I = O 

is satisfied. Let us next consider the evaluation of the term ~:6~ (~! e (S)p ) relative 

to the (S)p-norm (p e JR). We need to determine the parameter A(9), which comes 
from the relation between r(eio)~ : gK(o) and r(eio)(~ : gA(o))' By a similar 

calculation in (10) we readily obtain 

(12) S(r(eiold)(~ : gA(o)))(~) = S(~ : gA(o))(eio~) . 

= 
~~~)(eio~) . A(A(e), eio) 

2i6 

= 
}
 

(S~)(e'6~) exp -2(1 +A(O))l~l , 

by making use of Eq.(11). A comparison.of (12) with S(r(ei6)~)(~) .A(K(O),~) 

provides with . 
r(e'old)~ : gK(o) = r(eiold)(~ : gA(o)) 

as far as A(e) = 2-1ie~~o cscO - 1. It therefore follows that 

ll~:o~flp = flr(eiold)~; : gK(o) Ilp 

= 
lr(eiold)(~ : gA(o))1lp = Il~ : gA(o)llp 

for all ~ e (S)p,P ~ I~, and any O e ~. Summing up, we thus obtain 

Theorem 5. The following equalities hold for any e e If~: 
(i) if K(e) = 2-lie~io cscO - 1, then 

~:o~ F(e'6ld)~ gK(o), ~ e (S)'; 

(ii) if A(e) = 2-1ie~ie csce - 1, then 

Il~:e~;llp ll~~ gA(o)llp, ~ e (S)p 

for all p e I~. 

Let us think of the image of {p e (S) under the Pseudo-Fourier-Mehler transform. 

It is easily checked that g* : gd = I holds with c + d = -2. So we have 

(13) 9.(e) : gK(o) = 1. 

From (ii) of Theorem 4, immediately, ~) ~ (S) if and only if 

~;e(p : g.(e) e (S), 

so that, it is equivalent to 

~:ofP : g.(o) : gK(o) e (S) : gK(6), 

where (S) : gK(o) denotes the whole space of elements Y) : gK(o) for p e (S). 
Consequently, it is obvious that ~:op e (S) : gK(o), by virtue of Eq.(13). Therefore 

we obtain 
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Corollary 6. For e e I~, 

Im~:o(S) (S) gK(o) ~ {Y' : gK(o); {p e (S)}, 

where K(e) = 2-lie~io csc e - 1. 

Remark 2. The results in Theorem 4 and Theorem 5 are quite similar to those 
of the Fourier-Mehler transform. In fact, for p e I~, ~ e (S)p, 

ll(flo~) : g.1(o)llp = Il~llp and llflo~llp = Il~ : g..(o)llp 

hold with cl(e) = ~icotg - 2, and c2(6) = icote - 2 (e.g. [11,S9.H]). 

Remark 3. The image of (S) under the Fourier-Mehler transform flo is given by 

(S) : gicote, while that of (S) under the Fourier transform f coincides with the 

space 
(S) : 60 E {~' : 60; {p ~ (S)}, 

where 60 is the delta function at O and 

:1_*mo 9' = 50 

(e.g. [11, Chapter 9]). 

S4. Infinitesimal Generators 

First of all, for all e e S we define 

= ~'~(x) : ~ ~(･ :, ~ ) ' R~ en 
~=0 

with x ~E S*,~ e S. We call it an exponential vector. Then {Go,O e ~} 'is an 
operator on (S) defined by 

(. . . 2) ~e$0 sm 6l~l -(G6~'e)(x) := ~eiee(x) ' exp (14) 

Let T denote the distribution in (S @ S)* given by 

(T,~ ~) n> = (~,~), ~ n e S 

Note that it can be expressed as 

oo 

f
l
;
~
 

T = 6t ~) 6tdt = ~ ej ~ e3 e (S R S) 

j=0 

where {en} denotes a complete orthonormal basis for L2(I~). Moreover we have 

Ten=fR 6tl@6 R @6 @6 dt dtn 

The following is an easy exercise. The next lemma provides with a general expres-

sion for elements of general form in (S). 
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Lemma 7 When Y)(x) ~n~-0<: xon :, fn> e (S) wcth fn e S(I~n) (the symmetrcc 
S(1~:n)), then Go~ is given by 

oo 
(Go")(x) = ~ : ( xen :,gn>, 

n=0 

and 
9n ~ gn(fP) oo (n + 2m)!(isin e)mei(n+m)oTe)m * f2m+n' 

=: 

m=0 

where for the element f2m+n in S(JR2m+n) the term TRm *f2m+n actually has the 

following integral expression 

(Tem * f2m+n)(tl' ' ' "tn) 

f~& 2m+n(sl sl s t ,tn)dsl ' ' ' dsm' 
=: f , " ,' ,sm' m' 1"" 
~ 

On this account, we obtain immediately 

Proposition 8. The Pseudo-Fourier-Mehler transform {~70; e e I~:} is given by the 

adjoint operator of {Go; C e I~}, i.e., 

~:o ::: G~ 

holds in operator equality sense for all O ~ ~. 

The next proposition gives an explicit action of the PFM transform ~':o for the 

generalized white noise functionals of general form. It is due to a direct computa-

tion. 

Proposition 9. For ~ e (S)* ' oo = gwen as ~(x) ~ 
n-o 

oo 
~:o~(x) = ~( :, xOn _ a(1,m,e) ' Ft~T~)m 

n=0 l+2m=n 
where the constant a(1,m. , O) is given by 

~ t(1+m)o(isin6)m. 
a(1,m, O) = ~Te 

Remark 4. Similar results for Fourier-Mehler transform as the above can be 
found in [23]. For the proof of Proposition 9, it is almost the same as those given 

in [23]. 

It follows from Proposition 3 that the Pseudo-Fourier-Mehler transform ~:o is 

injective and surjective. Moreover, it is easy to check that ~:o is a strongly contin-

uous operator from (S)* into itself, when we take Lemma 7 and Proposition 8 into 

consideration. Thus we have the following theorem. 
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Theorem 10 [5]. The Pseudo-Fourier-Mehler transform ~76 : (S)' -' (S)' is a 

btjective and stron9ly continuous linear operator. 

Theorem 11 [5]. The set {~70;O ~ ~} forms a one parameter 9roup of stron9ly 
continuous linear operator acting on the space (S)' of Hida distributions. 

Proof. For ~ <~ (S)', ~ e S, and any 6,n ~ I~, from (7) of Definition I we have 

(15) S(~:0+n~)(~) = ((~'exp ei(0+n)(.,~) _ ;l~i2 )). {
 

}
 

While, from (6) 

(16) 

S(~:o(~:1?))(~) = S(~:TI~)(ei0~) ･ exp(ie sinel~12) *o 

= 
(etl7(eio~)) ' exp(ie'l7sin~lei6~l2 . ( exp ~ieto sm el~l 

e e'(e+~)el2((~,e("e e))) . { ･ io( i(0+n) ) 2} = -~1 ' i(e+') 
sinn + sine l~l exp ee e 

<(~ exp{ei(0+?7)(.,~) _ ~l~12 )) 

}
.
 
,
 

with the U-functional F of ~. By comparing (15) with (16), we get 

S(~:6+'?~)(~) = S(~:o~:,7~)(~). 

Consequently, the characterization theorem leads to 

~:0+,7~ = ~70 ' ~7:17~' ~1 ~ (S)', 

which completes the proof. [] 

We are now in a position to state one of the principal results in this paper. This 

is a very important property of the Pseudo-Fourier-Mehler transform, especially on 

an applicational basis. 

Theorem 12 [5]. The infinitesimal genemtor of {~;o; g ~ ~} is given by i(N+A~), 

where N is the number operator and A~ is the adjoint of the Gross Laplacian AG. 

Remark 5. It is well known that the infinitesimal generator of the Fourier-Mehler 
transforms {f;o; e e ~} is iN + ~A~, while the adjoint operator of {f;o; 6 e J~} has 

iN +;-AG as ljts infinitesimal generator (e.g. see [11]). The proof of Theorem 12 is 

almost similsr to the above ones. 

Proof of Theorem 12. First of all we set 

Fo(~) S(~:o~)(~) and Fo(~) := S(~)(~) 

for ~~ e (S)', ~ (E S, paying attention to (i) of Proposition 2. From (6) we have 
Fo(~) = Fo(eio) . exp [ieio sin Ol~l2]. Since Fo is Fr6chet differentiable, the functional 
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Fo(~) is differentiable in O as well, and it is easy to check that 

1
 (17) Iim -{Fo(~) - Fo(~)} 

o-o 6 

= 
Fol(ei0~), ieio) . exp (ieio sin el~l2) I0=0 

+ Fo(ei0~) ･ ~ exp iei6sinOl~l2) I0=0 (
 

= 
<F'(~), ~) + il~12 . F(~). 

While, we can easily check that the U-functional 0-1 ' {Fo(~) -Fo(~)}, e ~ I~ 

satisfies the uniform bounded criterion: ~Co > o so that 

sup l{F~e(z~) - F~o(z~)} < C exp(c R"I~I ) 

'ec e 
l'l=R 

holds for all R > o, all ~ e S with cl > o,c2 > o, where F~+ denotes an entire 

analytic extension of F. Hence, the strong convergence criterion theorem [25] (see 

also [11, Chapter 4]) allows convergence of 

S~1 {Fo(') - F ( )} (x) - ~{~70l~(x) - ~(x)} 1
 o' ) -(
 
~
 

in (S)' as 9 tends to zero. We need the following two lemmas. 

Lemma 13. (cf. fll,Theorem 6.11,p.196J) Let F(~) = S~(~),~ e S for ~ e (S)'. 

Then 
(i) F is Fr6chet differentiable' 

(ii) the S-transform of N~~(x) is given by (F'(~),~), ~ e S; 

where N is the number operator. 

Lemma 14. (cf. fll,Theorem 6.20,p.206J) For any ~ in (S)', the S-transform of 
A~~(x) is 9iven by l~l2 S~(~), ~ e S. 

We may deduce at once that 

S(N~ + A~~)(~) = <F'(~), ~) + I~12F(~), ~ e S, (18) 

with simple applications of Lemma 13 and Lemma 14. Moreover, it is easily verified 

from (17) and (18) together with the above-mentioned convergence result that 

1
 
l
 lim ~70 - Id)~(x) = Iim S (-{Fo(') ~ Fo(')})(x) 6-0 ~e ( o-o e 

= S-1 (i<F'(~), ~) + il~l2 . F(~)) 

= , in (S)', i(N + A~)~;(x) 

which completes the proof. [] 
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S5. Application of PFM Taansform 

The purpose of this section is to show a typical example of application of 

Pseudo-Fourier-Mehler transform ~:o to the Cauchy problem. 

Example 6. (A simple application of the PFM transform) Let us consider 

following abstract Cauchy problem on the white noise space: 

the 

the 

(19) 
au(t, x) 

= Nu(t, x) + ~(x), at 

u(O, ') = f(') ~ (S), 

with t > o, where N denotes the number operator. One of the most remarkable 
benefits of white noise analysis consists in its application to differential equation 

l[ [ l theory and how to solve the problem (cf. [1 , 2,3], 4,8 ). Especially in [4,8], by 

resorting to the analogy in the finite dimensional cases we have applied the infinite 

dimensional Kuo type Fourier transform to the Cauchy problem for heat equation 

type with Gross Laplacian, and have succeeded in derivation of the general solution 

and also in direct verification for existence and uniqueness of the solution. On this 

account, we think of using the Fourier transform to the aforementioned problem. 

Recall the formula: 

(20) f(N~) = N(T~) + A~(f~), for all ~ e (S)'. 

We set v(t, y) EE (fu(t, .))(y) for each t e ~+' We may employ- the Fourier trans-

form ~r for (19) so as to obtain 

(21) 
av(t, y) 

= Nv(t, y) + iA~v(t, y) + ~(y), at 

with v(O,y) = f(y), 

because we made use of the formula (20) and set F = fF. The operator part of the 

Fourier transformed problem (21) is exactly equivalent to the infinitesimal generator 

of PFM transform with parameter t (see Theorem 12). Hence, the semigroup theory 

in functional equation theory allows immediately the following explicit exression of 

the solution in question: 

(22) v(t, y) = ~:t f(y) + ~7t_'c(y)ds 

We can show the existe. nce and uniqueness of the solution by applying Theorem 4 

and Theorem 5 to (22) under a certain condition on the initial data {p, f. In that 

case the integral term appearing in (22) should be interpreted as Bochner type one. 

So much for the Cauchy problem, because this is not our main topic in this article: 

We shall go back to the PFM transform and proceed further in the next section. 
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S6. Intertwining Properties 

In this section we shall investigate some intertwining properties between the Pseudo-

Fourier-Mehler transform ~:e and other typical operators in white noise analysis, 

such as G~teaux differential, the adjoint of Gateaux differential, Hida differential 

operator, and Kubo operator (the adjoint of Hida differential), etc. Furthermore, 

we shall introduce the characterization theorem for PFM transforms, which is one 

of our main results in this paper. 

We begin with definition of the Gateaux differential Dy in the direction y e S'. 

For y e S' fixed, for the element Y) in (S) given by ~~(x) = ~~"e0=0 <: xR~ :, f~), we 

put 

(23) 
Y)(x + 6y) - {p(x) 

D fP(x) = ;i_,mo x e S*. 

The limit existence in the right hand side of (23) is always guaranteed, and DyY'(x) 

is actually given by 

(24) 
= Dy{P(x) ~ = 
(: xR(n-1) y~)If~) 

~=0 

x e S*. 

In fact, Dy becomes a continuous linear operator from (S) into itself. Since the 

Dirac delta function 6t lies in S*, adoption of 6t instead of y does make sense in 

the above (23) and (24). On the other hand, the Hida differential operator 6t (= 

6/6x(t)) is originally proposed by T. Hida [9] and defined by 

(cf . 

D 6t 

6
 a = -15~(t)S, ~eS 

[15]; see also [7]). It is well known that the action of at is equivalent to that of 

on the dense domain [1l] (or [7],[14]). So we can define 

6t = D8 
t' 

t e I~. 

The Kubo operator at [15] is the adjoint of Hida differential at, defined by 

((at~, ~)> = ((~;, a*~)>, 

for ~ ~: (S)', fP e (S). As a matter of fact, at (resp. at) can be considered as a 

continuous linear operator from (S) (resp. (S)') into itself with respect to the weak 

or strong topology. More precisely, the Hida differential proves to be a continuous 

mapping from (S)p+q mto (S)q for q > ~, p ~: O, while the Kubo operator turns 

out to be the one from (S)_p into (S)_(p+q) for the same pair p, q as given above. 

For ~ e S, ~2 e (S), the derivative (D(p)(x) is defined in the usual manner, and 

there exists its extension j)E : (S)* H, (S)*. Even for that, we shall henceforth use 

the same notation De for brevity, as far as there is no confusion in the context. We 

set qe := i(D~ + D~), where De rs the adjoint of D(. 

JMf 



Lemma 15. For each 6 e ~~, t e I~, 

~:6(a;~) = eioat(~:e~) 

holds for all ~ (E (S)'. 

Proof. First of all, note that S(6~~)(~) = ~(t) .S(~)(~). So, for the generalized 

white noise functional ~1 e (S)' given in the form ~~(x) = ~nOO=0 (: xRn :, fn)' x e 

S* we readily get 

oo 

~ ino R~ iosin Ol~l2). (25) S(~:6(at~))(~) = ei0~(t) . (fn' e ~ ) ' exp(ie 

~=0 

While we establish 

(26) S(~:o(at~)))(~) = eios(at(~:o~))(~) 

by applying (25), because we made use of the relation 

S(a;(~:o~))(~) = ~(t) . (S~i)(eie~) ' exp(ieio sin el~12) . 

An application of the Potthoff-Streit characterization theorem (Theorem 1) to (26) 

leads to the required equality in Hida distribution sense. [] 

Proposition 16. For each 6 ~ I~, t e I~ 
(i) ~:6(at~) = e~ioat(~l6~) - 2isin aa;(~:e~),' 

(ii) ~:o(x(t)~)) = e~i6x(t)(~7;o~); 

hold for all ~ ~ (S)'. 

Remark 7. The assertion (i) of Proposition 16 follows from a direct pomputation. 

We have only to employ the following two rules: 

5
 Sat(') = ~(t)S('), 6 ( ) S ~(t)S( ) 

The second assertion (ii) is also due to a simple computation together with the 

first assertion (i) and Lemma 15. Moreover, we need to apply the multiplication 

operator: x(t)(.) = (at +at) (･) (e.g. [19]). Those proofs go almost similarly as in 
the proof of Lemma 15 and are very easy, hence omitted. 

The next proposition indicates some intertwining property between the PFM 
transform and Gateaux differenttal operator. 

Proposition 17. For each parameter e e I~,t e ~ 
(i) e~ieDe(~:o~) = ~:6(D~~)) + 2isine ' D~(~:o~)); 

(ii) be(~:o~~) + D~.(~7:o~~)) = eie~:6(<･,L)~)/ 

hold for all genemlized white noise functionals in (S)' . 

Proof. It is interesting to note that Gateaux differential Dc and its adjoipt De 

enjoy the integral kernel operator theoretical expressions in white noise analysis 

(see the next section; or [11,12], [23]). Namely, 

~ ( t , )
 

- 

= 
R~(t)a dt and D~ := fR~(t)a;dt V~ e S 

(27) De 

4q 
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Let A = {tk} be a proper finite partition of the t parameter space, and IAI denotes 

the maximum of increment Atk over I ~ k ~ m. The assertion (i) yields from (i) 

of Proposition 16. In fact, by linearity of the PFM transform we get 

(28) 
~  
~Atk~(tk) ~7:e(at ~~) ~:6 

= ~(tk)at Atk ~ 

for V~ e S. Consider the same type finite summation for the other terms in (i) of 

Proposition 16. By taking the limit m -~ oo and by continuity of ~:o (Theorem 10), 

we can obtain the desired result wit~ consideration of Eq.(27). 

As to (ii), note first that we can have the expression 
(
 
~
 

)
,
 

(29) ~g = i(x,~) = i fEj~x(t)~(t)dt 

by virtue of the multiplication operator x(t)(.) (cf. Remark 7). With (ii) of Propo-

sition 16, we may take advantage of continuity of ~70 and (29) to deduce that 

e~io(Dg + D~)(~:o~)) = e~'e ( fl;~ x(t)~(t)dt) (~70~) 

m (~ Atk~(tk)x(tk) . ~) = Iim ~70 

~= k=0 
= :o((x, ~) ' ~) 

by passage to the limit IAI -~ O. [] 

The following theorem gives the characterization for Pseudo-Fourier-Mehler 
transforms {~:e; 9 e I~}, which is one of our main results in this paper. 

Theorem 18 [6]. The Pseudo-Fourier-Mehler transform {~:o;e ~ E~} satisfi~s the 

following conditions: 

(P1) ~:o : (S)' -~ (S)' is a continuous linear operator for forall6 e ~~; 

(P2) ~:o(D~~) = eioDe(~:o~) - 2sin e ' ~e(~70~)' 

(p3) ~:o(~e~) = e~ie~~(~:0~); 

where ~~ e (S)*, ~ e S. Conversely, if a continuous linear operator Ao : (S)' -

(S)' satisfies the above conditions: (P1) - (P3), then Ao is a constant multiple of 

~:o. 

Proof. (P1) is obvious (Theorem 10). (P2)(resp. (P3)) yields from (i)(resp. (ii)) 

of Proposition 17. It is due to a simple computation. Conversely, suppose that the 

operator Ao be compatible with (P1),(P2) and (P3). We need the following results. 

Lemma 19. We assume that Ao be a continuous linear operator from (S)' into 
itself, satisfying the three conditions (P1) - (P3). Then the following relations 

(i) (~70 :~e)DE = De(~70 I~o); 

(ii) (~70~lE:o)q( = qe(~70 Ico); 

(iii) (~70 I~e)D~ = D~(~76 1::o); 

hold for all ~ e S, O ~ ll~. 

The proof will be given below. The next theorem is well known (e.g. [12, 

Theorem 3.6, p.267] or [23, Prop.5.7.6, p.148]). 
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Theorem 20. Let A be a continuous linear operator on (S)', satisfying 

(i) A~E = ~~A, for any ~ ~ Sj 

(ii) AD~ = D~A, for any ~ ~ S. 

Then the operator A is a scalar operator. 

Thus, by taking (ii),(iii) of Lemma 19 into account, we may apply Theorem 20 
for Ao to obtain the assertion: ~70~1Ao is a scalar operator. [] 

Proof of Lemma 19. Basically it is due to a direct computation. Each proof goes 

similarly, so we shall show only (iii) below. For the other two we will give just 

rough instructions. First of all, note that we have only to consider ~7_o instead of 
~7e~1 by virtue of Proposition 3. As to (i), it is suflicient to calculate it with (P2) 

for both and (P3) for the PFM transform. As for (ii), simply (P3) for both A6 and 

~:6. As to (iii), for V~ e (S)','V~ ~ S 

(30) (~/ Ae)D~~~=-i~~1(Aoqg)~ - ~7~1(AoDe)~~, 

= 
eie(~70~1q()A6~ - eio(~70~lD~)Ao~ 

because we used a relation 

(31) D~ = -~q~ De 
in the first equality and also employed (P2),(P3) in the second one. An application 

of (P2),(P3) to the last expression in (30), together with (31) again, gives 

(30) = -iqe(~70~lAo)~ - De(~70~lA6)~ 

(-iq~ - D~)(~7~lAo)~ = D~(~7~lAo)~, 

which completes the proof. [] 

~
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S7. Fock Expansion 

Let L((S), (S)*) denote the space of continuous linear operators from (S) into (S)'. 

The space Sj,m(~l+m) is a symmtrized space of S'(J~l+m) with respect to the first l, 

and the second m variables independently. By virtue of the symbol characterization 

theorem for operators on white noise functionals [21](see also [23]), for the operator 

H Iying in L((S), (S)*) there exists uniquely a kernel distribution /cl,m in ~j,m(~l+m) 

such that the operator II may have the Fock expansion: 

oo 

H Hl,^('~l,-)' 
l ,m=0 

Moreover, the series ll{p, ~2 e (S) converges in (S)' [2l]. Generally, each component 

nl,m of the Fock expansion has a formjal integral expression: 

Hl m('e) = fRt+- n(sl' ' ' ' ' ' t~). 
',sl,tl .. 

asl aslatl ' ' ' at~dsl ' ' ' dsldtl . . . dt. 

Remark 8. We call it an integral kernel operator with kernel distribution fe. The 

theory of integral kernel operators and the general expansion theory in white noise 

analysis were proposed and have been developed enthusiastically by N. Obata [21-

23] (see also [11]). Those topics are closely related to quantum stochastic calculus, 

which has been greatly investigated in chief by Hudson, Meyer, and Parthasarathy. 

More details on this topic will be found in, for instance, (i) K.R.Parthasarathy: 

An Introduction to Quantum Stochastic Calculus, Birkh~user, Basel, .1992; (ii) 

P.A.Meyer: Quantum Probability for Probabilists, Lecture Notes in Mathematics 
Vol.1538, Springer-Verlag, Heidelberg, 1993. 

We shall give below two typical examples of the integral kernel operators in white 

noise analysis. 

Example 9. (The number operator N) Let T ~ (S R S)1 be the trace operator 

defined by 

(T,~ Rv> = (~,v>, ~ V e S 

The number operator N is usually expressed as 

fR 6t6tdt 

by Kuo's notation in white noise analysis. By the Obata theory, N has the following 

representation as a continuous linear operator from (S) into itself, namely, 

N 111 1(T) = T(s, t)a~&tdsdt. 
R2 

Example 10. (The Gross Laplacian AG ) By the usual notation in white noise 

analysis we have the expression 

f
R
 

AG = a~dt 

5a 
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Then the Gross Laplacian AG can be also expressed by 

, = 
~2 T(sl,s2)as as dslds2 

AG = no 2(T) 

as a continuous linear operator from (S) into (S). 

Let us consider the general expansion of our Pseudo-Fourier-Mehler transform. 

We may take advantage of Obata's integral kernel operator theory in order to obtain 

Fock expansion representations of ~:o and its adjoint Go' That is to say, 

Theorem 21. For O e ll:~, the PFM transform ~70 and the adjoint operator Ge have 

the following Fock expansions: 

oo 

 (ieiosine)1(eio _ 1)m . 1121+m,m(T~l R Am); 

(~) ~70 = ~; l!m! 

l ,m=0 

~
 
1
 (ii) Go 1)1 . Hl,1+2m(AI RTRm); (i eie sin e)m(eio _ 

~ J Ifml 
l,m=0 ' ' 

where the kernel Am e (SR2m)* is given by 

oo 

:= ~ Am eil R ' ' ' R ei_ R eil R R e _ 
," ,i_=0 tl,t2 ' 

S8. Generalization 

Let GL((S)) be the group of all linear homeomorphisms from (S) into (S). Then 

Proposition 22. {Go; O e ~} is Q regular one parameter subgroup ofGL((S)) with 

infinitesimal gelterator i(N +AG). 

Let us consider some generalization. Suggested by [1], for example we propose 

to define the generalized PFM transform Xo, e e ~ as operator on (S)' whose 

U-functional is given by 

(32) S(Xo~)(~) = ((~,exp ea6(.,~) _ ;J(a,p; O)l~l2 )), )
 

(
 

(cf. Eq. (7) in Definition I of PFM transform), for ~ e S, ~) e (S)'. We set 

J(a, p; O) = e2ae _ 2H(a, p; e), 

with H(a,p;e) = h(a,p) . (e2ao _ 1), 

where h(a, p) = pl2a, for a, p e C, a ~ O. Then we denote the adjoint operator 

of Xe by Zo' 

Claim 23. The set {Z6; e e E~} is a regular one parameter sub9roup of GL((S)). 
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Claim 24. The infinitesimal genemtor of {Z6; e e I~} is given by the operator aN 

+ pAG. 

Claim 25. The generalized PFM transform {Xo; e e I~} is a one parameter sub-
group of GL((S)'). 

Claim 26. The infinitesimal gene~tor of {Xo' e ~E I~} ,is given by the operatoT aN 

+ pA~-

Remark 11. The above definition (32) of generalized PFM transform Xo can be 

alternatively replaced by the following expression: 

S(Xo~)(~) F(e"e~) exp(H(a,p;O) ' I~l2), 

where F denotes the U-functional of ~; in (S)', i.e., S~) = F. 

Remark 12. Especially when a = p = i(e ~, then the above-defined generalized 

PFM transforms Xo are, of course, attributed to the simple PFM transforms ~:o 
given by (6), (7).in the section 3. 
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Some Intertwining Properties 

of the Pseudo-Fourier-Mehler Transform* 

ISAMU D~KU** 

S 1. Introduction 

The study of the Fourier transform in white noise calculus was initiated and has been developed 

to a mature level by H. -H. Kuo [12] . While, the Fourier-Mehler transform is a kind of generaliza-

tion of Fourier transform [13], which furnishes the theory of infinite dimensional Fourier trans-

forms in white noise space. 

In this article we investigate Pseudo-Fourier-Mehler (PFM for short) transform having quite 

similar nice properties as the Fourier-Mehler transform possesses. It was originally defined in [3] 

and used for application to abstract equations in infinite dimensional spaces [3] (see also [1] , [2], 

[4], [6-9]). In connection with other Fourier type transforms in white noise analysis, we can 

compute the infinitesimal generator of the PFM transform directly and show that our Pseudo 

-Fourier-Mehler transform enjoys intertwining properties. 

S 2. Notation and Preliminaries ' 
Let S~*-~S (R) be the Schwartz class space on R and S*~S' (R) its dual space. Then S (R) c L' 

(R) c s' (R) is a Gelfand triple. We define the family of norms given by I ~ I p = I A;~ I , p > o, ~e 

S (R) , where the operator A = - d2/dt2+t2+1 and I ･ I is the L2 (R)-norm. Let S,_--Sp (R) be the 

completion of S (R) with respect to the norm I ･ I p, p > o. We denote it~ dual space by S~ES~(R) , 

and we have Sp (R) c L2 (R) c S~(R) . Let p be the standard Gaussian measure on S' (R) such that 

1
 - 

 

.
 
J
 

f..exp [ fll<x ~> p (d~) =exp 2 1 ~1 

for any geS(R) . (L2) denotes the Hilbert space of complex-valued p-square integrable func-

tionals with norm ll ･ Il . The Wiener-It6 decomposition theorem gives the unique representation of 

ep in (L2), i.e., 

" f~e L2c (R") , ' q'= ~ I~(j;~), (1) 

*=0 

where I~ denotes the multiple Wiener integral of order n and L2c (R") the space of symmetric 

complex valued L2-functions on R". The second quantization operator r (A) is densely defined on 
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~ (L ) as follows for q)=~ I~(f~)EDom(r(A)), 
,*=0 

~ (2) r (A) q' = ~ I~ (AR~f~) . 
*=0 

For peN, define ll9 Ilp= IIP (A) pq) Il and let (S) p ~E{ q)e (L2) ; Ilq' ilp< oo} and the dual space of (S) p 

is denoted by (S) ;. Let (S) be the projective limit of{ (S)p ; PeN}. It is called a spac6 of test white 

noise functionals. The elements in the dual space (S) * of (S) are called generalized white noise 

functionals or Hida distributions. In fact, (S) c (L2) c (S) *is a Gelfand triple [10] . For convention 

all dual pairings<･,･>, resp. <<･,･>>mean the canonical bilinear forms on S* x S (resp. (S) * x (S) ) 

unless otherwise stated. 

The S-transform of ~e (S) * is a function on S defined by 

(3) (S~) (~) : =<<~),: exp<･, ~> : >>, ~eS(R), 
where : exp<･, ~> : E exp <･, ~> ･ exp(- I I gl2). Then note that a mapping : C3z ~ (S~) (z~+,7) 

2
 

is entire holomorphic for any ~, 17eS. A complex valued function F on S is called a U-functional 

if and only if it is ray entire on S and if there exist constants Cl' C2>0, and peNU {O} so that 

the estimate 

l F (z~) I ~ Clexp (C2 1 z 1 2 1 g 1 ~) 

may hold for all z~~C, g~ES. We have the following Potthoff-Streit Characterization [lO, 14] : 

THEOREM 1. If tpe (S) *, then S~ is a U-functional. Conversely, if F is a U-functional, then there 

exists a unique element ~) in (S) * such that S~-F holds. 

Based upon the above characterization we are able to give rigorous definitions to Fourier type 

transforms of infinite dimensions. The Kuo type Fourier transform ~ [12] of a generalized white 

noise functional tp in (S) * is the generalized white noise functional, S-transformation of which is 

given by 

S(~~) (~) -<<~, exp(-i <･, g>)>>, ~eS. 
Likewise, the Fourier-Mehler transform ~e (eeR) [13] of a generalized white noise functional (~) 

in (S) * is the generalized white noise functional, S-transformation of which is given by 

(5) S(~re(~)) (g)=<<~), exp{e'e <･, ~>- -~e; iecos6lgl'}>> , geS. 

The Fourier-Mehler transform ~o , eeB is a generalization of the Kuo type Fourier transform ~. 

Actually, 3r0=1d, and ~_./2 is coincident with the Fourier transform y. It is easy to see that ~.12 

is the inverse Fourier transform 3r-1. Hence we have 

l
 S(~r-*(~) (~) = (S~) (ig)exp(- 2 Igl2), geS. 

S 3. Pseudo-Fourier-Mehler Transform 

We~ begin with introducing the Pseudo-Fourier-Mehler transform in white noise analysis. 

Definition 1. {We , eeR} is said to be the Pseudo-Fourier-Mehler (PFM) transform [3] if 1! e 

is a mapping from (S) ' into itself for 6 e R, whose U-functional is given by 

(6) S(1~r,~) (~) =F(eieg) . exp(ieiesine I gl2>, ~eS, 

-2~ 
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or equivalently 

1
 (7) S(1~r ~)) (~) <<~ exp(e'e < ~>~ 2 Igl2)>> ~ES 

* where S is the S-transform in white noise analysis and F denotes the U functional of for ~~(S) , 

~). 

By virtue of Theorem 1, the right hand sides in Eq.(6) and Eq.(7) are U-functionals, and l~re 

~ exists for each ~) in (S) *. Therefore the above-mentioned Pseudo-Fourier-Mehler transform is 

well-defined. Hence we have 

Proposition 2 [3]. The following properties hold~ 

( i ) 1~r0=1d ; (Id denotes the identity operator.) 

(ii) 1~re~~ for any a~~R¥{O} ; 

(iii) Ig!e~5re for any 6ER¥{O}. 

Proposition 3 [3]. The invese operator of the Pseudo-Fourier-Mehler transform lg~e is given by (~r 

e)~1=1g;r_e for 6~R. 

Next let us consider what the image of the space (S) under 1~re is like (see Corollary 5 below). 

The Pseudo-Fourier-Mehler transform l~re also enjoys some interesting properties on the product 

of Gaussian white noise functionals (see Theorem 4). 

Theorem 4. The following equalities hold for any eeR : 

( i ) if K(e) =2-lie~iecsce I then 

1~re ~=r (eiald) (~ : gK(e), (~e (S) 

( ii ) if A (e) =2-lie~iecsce-1, then 

lll~re ~llp= Il~) : gA(e)Ilp, ~)E (S) p 

for all peER. 

Let us think of the image of ep e~ (S) under the Pseudo-Fourier-Mehler transform. It is easily 

checked that g. : gd=1 holds with c+d=-2. So we hav.e 

( 8 ) g.(e) : gK(e)=1. 

Immediately, q' E (S) if and only if 

1~re q' : g.(e)e (S), 

so that, it is equivalent to 

1~re q) : g.(e) : gK(e)e (S) : gK(e). 

where (S) : gK(e) denotes the whole space of elements ep : gK(e) for ~p e (~) . Consequently, it is 

obvious that lg~e q)e (S) : gK(a), by virtue of Eq. (8) . Therefore we obtain 

Corollary 5. For eeR, 
Imlg;re (S) = (S) : gK(e) E {q' : gK(e) ; q'~E (S) } 

where K (e) = 2-lie*ecsce- 1. 

Remark 2. The results in Theorem 4 is quite similar to that of the Fourier-Mehler transform. 

In fact, for peR, ~)e (S) p, 

[1 (3re~) : g.1(e)llp= Il~)Ilp and llFe~)lip=1l~ : g.2(e) Il p 

hold with cl (6) = - icote- 2 , and c2 (e) =icot6-2(e.g. [lO, S9. H]) . 

Remark 3. The image of (S) under the Fourier-Mehler transform 5re is given by (S) : g 
i"*e, 

while that of (S) under the Fourier transform ~ coincides with the space 

(S) : ~dio E{q' : ~d:o; q'e (S)} 

-3-5
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where (5io is the delta function at O and 

lim g. = ~(5)o 

.-o 
(e.g. [10, Chapter 9]). 

S 4. Infinitesimal Generators 

First of all, for all e ~ S we define 

" 1
 =~ q)g (x) : < : x~)* :, g~> 
n! 

~=0 
with xeS*, ~eS. We call it an exponential vector. Then { Ge , e~ER} is an operator on (S) defined 

by 
(Ge q)g) (x) : =q)eie~(x) 'exp(ieiesine I ~12) . (9) 

Let 7 denote the distribution in (S@S) * given by 

<7, gR,7>=<~, ,7> , ~, ,7eS. 

Note that it can be expressed as 

7- 
R(~;tR(~;tdt= ~ ej@e:i~ (SRS) ', " 

j=0 

where { e~} denotes a complete orthonormal basis for L2(R). Moreover we have 

R~ _r T ~ R(~:tlR(~:tl~)"'R6t~R(~;t~dtl"'dt~. 
The following is an easy exercise. The next lemma provides with a general expression for elements 

of general form in (S). 

" Lemma 6. When q)(x) = ~ < : xe~ , f~>e(S) wathfieS (R ) (the symmetrrc S(R )) then G q) 
~=0 

is given by 

" (qeq))(x)=~ < xR^ ,g~> 
~=0 

and 
g~ ~ g,1(q') 

~ n+2m) ! (isine) ~e'(~+~)e T~~,* f2~+~' =~ 
nfmT 

~ =0 

where for the element ~~+~ in S^(R2~+~) the term 7R~*f2~+~ actually has the following integral 

expessron 

(T~~*~~+~) (tl' "" t~) 

= R 2~+~ 1' I ' ' I ' 
On this account, we obtain immediately 

Proposition 7. The Pseudo-Fouri~r-Mehler transform {1~re ; 6eR} is given by the adjoint operator 

of {Ge ; eE R}. i.e.. 

lg;re =Gt 

holds in operator equality sense for all e'ER. 

The next pfoposition gives an explicit action of the PFM transform qre for the generalized 

white noise functionals of general form. It is due to a direct computation. 

-4-
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Proposition 8. For (~e (S) ' given as (~(x) = ~ < : x~~ :, F.>, It holds thot 

~=0 

~ 1lr tp(x)=~<:x@~. ~ a(1 m 6) F~)1 > 
~=0 /+2~=~ 

where the constant a(1, m , e) is gwen by 

a(1, m, e) =~Te'(1+~)e(rsm6)" 

Remark 4. Similar results for Fourier-Mehler transform as the above can be found in [14] . For the 

proof of Proposition 8, it is almost the same as those given in L14]. 

It follows from Proposition 3 that the Pseudo-Fourier-Mehler transform lg!e is injective and 

surjective. Moreover, it is easy to check that 1~re is strongly continuous operator from (S) * into 

itself, when we take Lemma 6 and Proposition 7 into consideration. Thus we have the followin~ 

theorem. 
Theorem 9 [3] [4] [6]. The Pseudo-Fourier-Mehler transmform 1~re : (S) '~ (S) ' is a bljective and 

strongly continuous linear operator. 

Theorem 10 L3] [4] [6]. The set {1g;re ; 6 eR} forms a one parameter group of strongly continuous 

linear operator acting on the space (S) ' of Hida distributions. 

We are now in a position to state the following remarkable result on PFM transform. This is 

a very important property of the Pseudo-Fourier-Mehler transform, especially on an applicational 

basis [3] [4] [6-8] (see also [1] , [2] , [9]). 

Theorem 11 [3~ [4] [7]. The infinitesimal generator of {1g;re ; eeR} is given by i(N+A~), where 

N is the number operator and A~ is the adjoint of the Gross Laplacian Ac. 

Remark 5. It is well known that the infinitesimal generator of the Fourier-Mehler transforms 

{~re ; eeR} is iN+ 2 Ag, while the adjoint operator of {~re ; eER}has iN+ 2 Ac as its 

infinitesimal generator (e,g. see [10] ) . The proof of Theorem 11 is almost similsr to the above ones. 

S 5. Intertwining Properties 

In this section we shall investigate some intertwining properties between the Pseudo-Fourier 

-Mehler transform lg;fe and other typical operators in white noise analysis, such as Ga^teaux 

differential, the adjoint of Gateaux differential, Hida differential operator, and Kubo operator (the 

adjoint of Hida differential), etc. Furthermore, we shall introduce the characterization theorem for 

PFM transforms, which is one of our main results in this paper. 

We begin with definition of the Gateaux differential Dy in the direction y e S* . For ye S* fixed, 

= for the element q) in (S) given by q' (x) = ~ < : x~~ f > we put 
"=" 

(10) Dyq) (x) = IJ~L q' (x+ey6_) -q' (x) xeS'. 

The limit existence in the right hand side of (10) is always guaranteed, and Dyq) (x) is actually 

given by 

-5-
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" (11) Dyq' (x) = ~ n< : xR(^-1) :, y~J~>, xeS'. 
'=0 

In fact, Dy becomes a continuous linear operator from (S) into itself. Since the Dirac delta function 

(~;t lies in S*, adoption of (~:t instead of y does make sense in the above (10) and (1D.On the other 

hand, the Hida differential Qperator at(=a/ax(t)) is originally proposed by T. Hida [10] and 

defined by 
(
~
 at: =S-1(~;~(t)S, g~~S 

(cf. [ 5 1 ) . It is well known that the action of at is equivalent to that of Dst on the dense domain [10] 

(or [ 5 l). So we can define 

at=D6t' t~R. 
The Kubo operator a ~ is the adjoint of Hida differential at, defined by 

<<at*~), q'>>=<<~, atep>> , 

for ~)~~ (S) , q' eE (S) . As a. matter of fact, at (resp. a~) can be considered as a continuous linear 

operator from (S) (resp. (S) *) into itself with respect to the weak or strong topology. More 

precisely, the Hida differential proves to be a continuous mapping from (S)p+q into (S) q for q> 

j , p >0, while the Kubo operator turns out to be the one from (S) _p into (S) _(p+q) for the same 

pair p, q as given above. For ~~ S, q'~E (S) , the derivative (Dg q)) (x) is defined in the usual manner, 

and there exists its extension Dg : (S) *-(S) *. Even for that, we shall henceforth use the same 

notation D~ for brevity, as far as there is no confusion in the context. We set qg : =i(D~+D~). 
where D~ is the adjoint of Dg. 

Lemma 12. For each eeR, teR, 
ie 

lg~e (at*(~) =e at (1~re(~) 

holds for all ~)e (S) *. 

Proof. First of all, note that S(at~)) (~) = ~(t) ･S(~) (~) . So, for the generalized white ncnse 

~ < xR~ :, f~>, xeS' we readily get functional ~)e (S) * given in the form (~(x) = ~ : 
~=0 

(12) S(1~re (af~)) ) (~) 

e'e~(t) ･ ~ <f~, e'"egR~>･exp(ie sinelgl2). 'e 

~=0 

While we establish 
(13) S(1~re (a~(~) ) (~) =eicS(a~ (1g!e ~) ) (~) 

by applying (12), because we made use of the relation 
io 

S(a~ (1~re ~) ) (~) = ~(t) ･ (S~) (eie~) .exp(ie sin e I gl 2) . 

An application of the Potthoff-Streit characterization theorem (Theorem 1) to (13) Ieads to the 

required equality in Hida distribution sense. 

Proposition 13. For each eeR, teR 

( I ) qr (a(~)) e 'ea (1~r (~)-2isinea;(~re(~) ' 

(ii) We(x(t)(~))=e x(t)(1g;re(~) ; 

hold for all ~e (S) *. 

Remark 6. The assertion (i) of Proposition 13 follows from a direct computation. We have only 
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to employ the following two rules : 

Sat (') = ~ S(') a~ ( ･) = S-1g(t) S(･) . 
(~;g ( t) ' 

The second assertion ( ii ) is also due to a simple computation together with the first assertion (i) 

and Lemma 12. Moreover, we need to apply the multiplication operator: x (t) (･) = (at+ a~) (･) (e. 

g. [10]). Those proofs go almost similarly as in the proof of Lemma 12 and are very easy, hence 

omitted. 

The next proposition indicates some intertwining property between the PFM transform and 

G~teaux differential operator. 

Proposition 14. For each parameter 6~R, teR 
( i ) e~ie~~ (1g;retp) =1~re (~~(~)) +2isine'D~(1~rctp) ; 

(ii) Dg(1g;rd~) +D~(1g;re~)) =eiel~e (<･;~>~)) ; 

hold for all generalized white noise functionals in (S) *. 

Proof. It is interesting to note that Ga~teaux differential Dg and its adjoint D~ enjoy the integral 

kernel operator theoretical expressions in white noise analysis (see [14] ; or [10, 1l]). Namely, 

(14) ~ f j - ~ : =f ~ : = g(t)a;dt, VgeS. R g(t) atdt , and D R D 
Let A = { tk}be a proper finite partition of the t parameter space, and I A I denotes the maximum of 

increment Atk over I _<k ~ m. The assertion (i) yields from (i) of Proposition 13. In fact, by linearity 

of the PFM transform we get 

[
 

J
 

~ " 
~ Atkg(tk)･1~re (atk~)) =1g;re ~ ~(tk)atkAtk ･ (~ , (15) 
k=1 k=1 

for V geS. Consider the same type finite summation for the other terms in (i) of Proposition 13. 

By taking the limit m -' oo and by continuity of lg!e (Theorem 9) , we can obtain the desired result 

with considerati9n of Eq. (14) . 

As to ( ii ) , note first that 'we can have the expression 

~g=i<x~, g>= LIJ Rx(t)~(t)dtj ' (16) 

by virtue of the multiplication operator x (t) (･) (cf. Remark 6) . With ( ii ) of Proposition 13, we may 

take advantage of continuity of lg;ro and (16) to deduce that 

e~ (De+D~) (1lre~) =e~ie [ f Rx(t)~(t)dtlj (1~r ~) ie 

[
 
l
 

= 
"i~~1g~e ~ Atk~ (tk)x (tk) ･~) 

~ =0 
=1g;re (<x; g>･~) 

by passage to the limit I A I -O. 

The following theorem gives the characterization for Pseudo-Fourier- Mehler transforms 

{1lre ; e e }R, which is one of our main results in this paper. 

Theoreml5 [4] [6] [8]. The Pseudo-Fourier-Mehler transform ~l~re ; e eR} satisfies thefollowing 

conditions : 

(Pl) 1~re : (S) * H, (S) * is a continuous linear operator for for all eeR ; 

(p2) Ig;re (D~'~') =eie~g (1gte tp) ~2sine' ~g (1~ro ~)) ; 

-7-
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-ie (P3) 1lre (~g(~) =e ~g (1~re~) ; 

where ~eE (S) *, ~~S. 

Conversely, if a continuous linear operator Ae : (S) * - (S) * satisfies the above conditions : (P1) 

-(P3), then Ae is a consiant multiple of 1~re ' 

Proof. (P1) is obvious (Theorem 9) . (P2) (resp . (P3)) yields from (i) (resp. ( ii ) ) of Proposi-

tion 14. It is due to a simple computation. Conversely, suppose that the operator Aa be compatible 

with (P1), (P2) and (P3) . We need the following results. 

Lemma 16. We assume that Ae be a continuous linear operator from (S) * into itself satis~!ing the 

three conditions (P1)-(P3). Then the following relations 

( i ) (1~r~lAc ) Dg =Dg (1g~~lAe ) ; 

( ii ) (1~re ~lAO ) qg = qg (1~r6 -lAe ) ; 

(iii) (1g;re ~lAe ) D~ = Dg (1~re ~1AC ) ; 

hold for for all ~eS, eeR. 

The proof will be given below. The next theorem is well known (e.g. [11, Theorem 3.6, p. 267j 

or [14, Prop. 5.7.6, p. 148]). 

Theoreml7. Let A be a continuous linear operator on (S) *, satis~!ing 

( i ) A~~=~~A, for any ~eS; 

(ii) AD~=D~A. for any geS. 
Then the operator A is a scalar operator. 

Thus, by taking ( ii ), (iii) of Lemma 16 into account, we may apply Theorem 17 for Ae to 

obtain the assertion : Ig;r~lAeis a scalar operator. 

Proof of Lemma 16. Basically it is due to a direct 'computation. Each proof goes similarly, so 

we shall show only (iii) below. For the other two we will give iust rough instructions. First of all, 

note that we have only to consider lg;r_e instead of l~re ~1 by virtue of Proposition 3. As to (i), it is 

sufficient to calculate it with (P2) for both and (P3) for the PFM transform. As for ( ii ) , simply 

(P3) for both Ae and 1~re' As to (iii), for V~e (S) *, VgeS 

(1g;r~lAa ) D~~) = - ilg;r~l (Ae qg ) tp -1g!~ (Ae D g ) ~. (17) 

=-e (1lr~lqg)Ae)~~e (1~r~lDg)Ae(~ 

because we used a relation 

(18) D~ = - iqg -Dg 
in the first equality and also employed (P2), (P3) in the second one. An application of (P2), (P3) 

to the last expression in(17), together with (18) again, gives 

(17) = - iqg (1g~~lAe ) ~~Dg (1g;r~lAe ) ~ 

= ( - iqg -Dg ) (1g;r~lAe ) ~)=D~ (1~r~lAe ) ~. 

which completes the proof. 
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A Fock Expansion of the 

Pseudo-Fourier-Mehler Transform* 

Isamu D~KU** 

S 1. Introduction 

In this article we study Pseudo-Fourier-Mehler (PFM for short) transform having quite similar 

nice properties as the Fourier-Mehler transform [12] possesses. It was originally defined in [5] and 

used for application to abstract equations in infinite dimensional spaces. In connection with other 

Fourier type transforms in white noise analysis, we can compute the infinitesimal generator of the 

PFM transform directly and show that our Pseudo-Fourier-Mehler transform enjoys intertwining 

properties [9]. We have also obtained in [9] the characterization theorem for PFM transforms. In 

this article, we shall introduce an example of PFM transform applied to the abstract Cauchy 

problem and also state the Fock expansion of PFM transform. Lastly we shall introduce a 

generalization idea of PFM transform and investigate some properties that the generalized trans-

form should satisfy. 

The Pseudo-Fourier-Mehler transform is a very important and interesting operator in the 

standpoint of how to express the solutions for the Fourier-transformed abstract Cauchy problems. 

Related works on application of infinite dimensional Fourier type transforms can be found (L4 , 1l] ; 

see also L2, 3], L7, 8]). 

In [1] they have studied the two dimensional complex Lie group ~ explicitly and succeeded in 

2a + b 
describing every one parameter subgroup with infinitesimal generator ( ) AG + bN, where N 

2
 

is the number operator and AG is the Gross Lap]acian. Furthermore, one can find in [15] another 

related work, especially on a systematic study of Lie algebras containing infinite dimensional 

La placianS. 

We are able to state our results in the general setting (e.g. [14] ; see also [6]) of white noise 

analysis. As a matter of fact. almost all statements in our theory remains valid even without minor 

change of the basic setting. However, just for simplicity we adopt in this article the so-called 

original standard setting [12] in white noise analysis or Hida calculus to state our results related 

to the PFM transform. 

S 2. Notation 

Let S~~S (R) be the Schwartz class space on R and S*~S' (R) its dual space. Then S (R) c L' 

*Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC Grant-in-Aid CR(A) 05302012. 

"Department of Mathematics, Faculty of Education, Saitarna University, Urawa 338, Japan 
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(R) cS' (R) is a Gelfand triple. We define the family of norms given by I glp= I Apgl, p >0, ge 

S(R) , where the operator A= -d'/dt'+t2+1 and I ･ I is the L2(R)-norm. Let Sp_--Sp(R) be the 

completion of S (R) with respect to the norm I ･ I p, p > o. We denote its dual space by S;ES~(R) , 

and we have Sp (R) c L ' (R) c S~(R) . Let p be the white noise measure in White Noise Analysis. 

Actually it is a standard Gaussian probability measure on S' (R) . ( L2) denotes the Hilbert space of 

complex-valued p-square integrable functionals with norm ll ･ Il. The second quantization operator 

in white noise analysis is denoted by P (A) , which is densely defined on ( L 2) . For peN, define ll 

q' Ilp= 11P(A) pq) Il and let (S)p ~{q)e (L') ;llq)llp<oo} and the dual space of (S)p is denoted by (S) 

;･ Let (S) be the projective limit of { (S)p; p eN}. It is called a space of test white noise 

functionals. The elements in the dual space (S) * of (S) are called generalized white noise func-

tionals or Hida distributions. In fact, (S) c (L') c (S) * is a Gelfand triple [12]. For convention all 

dual pairings <･,･>, resp. <<･,･>> mean the canonical bilinear forms on S* xS2(resp. (S) * x (S)) 

unless otherwise stated. 

The S=transform of ~e (S) * is a function on S defined by 

(1) (S~)) (g) : =<<(~, : exp<:, ~>:>>, geS(R), 

where: exp<･,~> : E exp<･, ~>･exp(- I I~l'). 
2
 

We now introduce the Pseudo-Fourier-Mehler transform in white noise analysis. 

Definition I [5] [9]. {1g~e, eeR}is said to be the Pseudo-Fourier-Mehler (PFM) transform if 1~r 

e is a mapping from (S)* into itself for eeR, whose U-functional is given by 

(2) S (~re ~)) (g) = F (eie~) ･ (exp(ieiesine I ~ I ') , gES, 
or equivalently 

S(1~re~)( )=<<~, exp(eie<･, >- I 12)>>, eS, 

for (~e (S) *, where S is the S-transform in white noise analysis and F denotes the U-functional of 

(~)(see also [7, 8]). 

By virtue of Potthoff-Streit characterization [12] , the right hand sides in Eq. (2) and Eq. (3) are 

U-functionals, and ~rc ~ exists for each (~) in (S) *. Therefore the above-mentioned Pseudo-Fourier 

-Mehler transform is well-defined. 

S 3. Application of PFM Transform 

The purpose of this section is to show a typical example of application of the Pseudo-Fourier 

-Mehler transform lg;re to the Cauchy problem. 

Example 2. (A simple application of the PFM transform) 

Let us consider the following abstract Cauchy problem on the white noise space: 

(4) au(t, x) =iNu(t, x) +q)(x), 
at 

u(O, ') =f (.) ~E (S), 

with t > o, where N denotes the number operator. One of the most remarkable benefits of white 

noise analysis consists in its application to differential equation theory and how to solve the problem 

(cf. [1], [2, 3], [4, 1l]). Especially in [4, 1l], by resorting to the analogy in the finite dimensional 

- 2 -
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cases we have applied the infinite dimensional Kuo type Fourier transform to the Cauchy problem 

for heat equation type with Gross Laplacian, and have succeeded in derivation of the general 

solution and also in direct verification for existence and uniqueness of the solution. On this account, 

we think of using the Fourier transform to the aforementioned problem. Recall the formula : 

(5) 3r (N(~~) =N (3r(~)) +Ag (y(~~) , for all ,~~e: (S) *. 

We set v (t, y)E(~ru(t, ･)) (y) for each teR+. We may employ the Fourier transform 3r for 

(4) so as to obtain 

aV(t, y) = iNV (t, y) + iA~v (t, y) + c (y) , with v(O, y) =f (y) , (6) 
at 

because we made use of the formula (5) and set f=~rF. The operator part of the Fourier 

transformed problem (6) is exactly equivalent to the infinitesimal generator of PFM transform 

with parameter t(see [5J, [9]) . Hence, the semigroup theory in functional equation theory allows 

immediately the following explicit exression of the solution in question : 
v (t, y) =1g!t f (y) + f :Wt_,ip (y) ds. 

(7) 

We can show the existence and uniqueness of the solution by applying Theorem 4 in [9] to (7) under 

a certain condition on the initial data q), f. In that case the integral term appearing in (7) should 

be interpreted as Bochner type one. So much for the Cauchy problem, because this is not our main 

topic in this article. We shall go back to the PFM transform and proceed further in the next section. 

S 4. Fock Expansion 

Let ~~ ( (S) , (S) *) denote the space of continuous linear operators from (S) into (S) *. The space 

~l'~(R/+~) is a symmtrized space of S' (R!+~) with respect to the first l, and the second m variables 

independently. By virtue of the symbol characterization theorem for operators on white noise 

functionals [13](see also [14]), for the operator H Iying in ~~ ( (S) , (S) ') there exists uniquely a 

kernel distribution xi,~ in ~{.~ (Rl+~)such that the operator 11 may have the ~ock expansion : 

" n= ~ nL~(xL~) 
l,~=0 

Moreover, the series llq', epe (S) converges in (S) * [13]. Generally, each component H~~of the 

Fock expansion has a formal integral expression : 

Hl~(x) = fR/'~'((sl, "' , sl' tl' "" t~) ･a='1"'a"iaa"'at~ds dsldtl dt~ 

Remark3. We call it an integral kernel operator with kernel distribution x. The theory of 

integral kernel operators and the general expansion theory in white noise analysis were proposed 

and have been developed enthusiastically by N. Obata [13, 14](see also [12]). Those topics are 

closely related to quantum stochastic calculus, which has been greatly investigated in chief by 

Hudson, Meyer, and Parthasarathy. More details on this topic will be found in, for instance, (i) K. 

R.Parthasarathy : An Introduction to Quantum Stochastic Calculus. Birkh~user, Basel, 1992 ; ( ii ) P. 

A.Meyer : Quantum Probability for Probabilists. Lecture Notes in Mathematics Vol,1538, Springer 

-Verlag, Heidelberg, 1993. 

We shall give below two typical examples of the integral kernel operators in white noise 

analysis. 

Example 4. (The number operator N) 

- 3 -
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Let . e (S@S) * be the trace operator defined by 

<r, ~R,7>=<~, 17> ~ ,7eS 

The number operator N is usually expressed as 
f R a; atdt 

by Kuo's notation in white noise analysis. By the Obata theory, N has the following representation 

as a continuous linear operator from (S) into itself, namely, f
R
 

N=Hl,1 (T) = T(s, t) a: atdsdt. 
Example 5. (The Gross Laplacian AG) ' 

By the usual notation in white noise analysis we have the expression 

G f -A = Ra;dt 
Then the Gross Laplacian AG can be also expressed by 

f
 

AG = H0.2 (7) = R,r(sl' S2) asl as2dslds~ 

as a continuous linear operator from (S) into (S) . 

Let us consider the general expansion of our Pseudo-Fourier-Mehler transform. We may take 

advantage of Obata's integral kernel operator theory in order to obtain Fock expansion representa-

tions of lg;re and its adjoint Ge ' That is to say, 

Theorem 1. For eeR, the PFM transform ~re and the adjoint operator Ge have the following Fock 

expansrons : 

" 

e ~ ･ -
1
 ( i ) 1~r = l!m!(le'esme)1(e'e 1) H21+m.~(1~1_Rl~) ; 

!"~ =0 

= 1
 e ~ ･ -( ii) G = l!m!(le'esme)~(e'e 1)1'n~1+2~(llRr~~ 

!"* =0 

where the kernel l~e (S~2~)* is given by 

" 1~ : = ~ , eilR"'~ei~ReilR"'@ei~. 
i,.~,. .,* 

S 5. Generalization 

Let GL ( (S)) be the group of all linear homeomorphisms from (S) into (S). Then we have 

Proposition 2. {Ge ; 6eR} is a regular one parameter subgroup of GL((S) ) with infinitesimal 

generator i(N+AG) . 

Let us consider some generalization. Suggested by [1], for example we propose to define the 

generalized PFM transform Xe , eeR as operator on (S) * whose U-functional is given by 

( 8 ) S (X ~)) (g) <<~) exp(e"e< ~>- I J (a, p,; e) Igl2)>> , 
2
 

(cf Eq ( 3 ) m Defmitlon I of PEM transform) for ~eS ~)e (S) *. We set 

J((Y, ~ ; e) =ez.e_2H(a, p : e), with H(a, fi ; e) =h(a. P) ' (e2.e_1), 

where h(a, P) =p/2a, for a, fieC, a~0. Then we denote the adjoint operator of Xe by Ze' 

CLAIM 3. The set{Ze ; eER} is a regular one parameter subgroup of GL((S)). 

CLAIM 4. The infinitesimal generator of {Ze ; eeR} is given by the operator cfN+pAG. 

CLAlht 5. The generalized PFM transform {Xe ; GeR} is a one parameter subgroup of GL((S) *). 

CLAIM 6. The infinitesimal generator of {Xe ; eeR} is given by the operator aN+pAg. 

- 4 -
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Remark 6. The above deflnition (8) of generalized PFM transform Xe can be 

replaced by the following expression : 

S(Xe~) (g) =F(e"cg) ･ exp(H (o!, p; e) ' Igl2), 

where F denotes the U-functional of ~ in (S) *, i.e., S(~)= F. 

Remark 7. Especially when c! =p=i(eO, then the above-defined generalized 

forms Xe are, of course, attributed to the simple PFM transforms ~fe given by(2) , (3) 

2
.
 

alternatively 

PFM trans-

in the section 
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2．2　擬FM変換の一般化

無限次元のフーリエ型変換をホワイトノイズ解析における一般的枠組みの下で統合的に論

じた。特に，擬FM変換については詳しくその性質を調べ，その特徴付け定理を導いた。

さらに代数的観点から作用素解析を行い，その生成作用素によって特徴付けられる無限次

元の変換群について論じた。またラプラシアンとNumber作用素から決まる生成作用素を

もつ超汎関数空間上の位相同形写像群の可微分部分群として無限次元のF型変換を定義す

ることを提唱し，その新しい定式化の下では，ホワイトノイズ解析のクオ型フーリエ変換，

フーリエ・メーラー変換，および擬FM変換等がすべて典型例として含まれてしまい，統

一的に扱うことができることを指摘した。
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PREFACE 
The seventh Japan-Russia Symposium on Probability Theory and Math-

ematical Statistics was held at The Meiji Mutual Life Insurance Co. Corpo-

rate training Center in Tokyo, July 26-30, 1995, under the joint auspicies of 

the Mathematical Society of Japan and Institute of Statistical Mathematics. 

There were 35 participants from Russia, Ukraina, Lithuania and Georgia, 142 

from Japan, and 4 from other European and Asian countries. 

This volume contains papers presented at the Symposium. Records of the 

meetings and a list of the Organizing ComrDittee are attached at the end of the 

volume. The Symposium proved to be very fruitful in promoting scientific ex-

changes among probabilists and statisticians from various countries including 

Japan and Russia. 

Previous six (Japan-USSR) Symposia were held in Khabarovsk(1969) , Ky-

oto(1972), Tashkent(1975), Tbilisi(1982), Kyoto(1986) and Kiev(1991). The 

Proceedings of the Symposia were published from Springer-Verlag as Vol.330, 

550, 1021 and 1299 of Lecture Notes in Mathematics. The Proceedings of the 

last one at Kiev was published from World Scientific in 1992. 

We are very grateful to all those who have contributed to the success of 

the Symposium. Thanks are due to Professors H.Nagai and A.A.Novikov for 

their great efforts in preparing this Proceedings. We would like to express our 

sincere gratitude to The Meiji Mutual Life Insurance Co. and Japan World 

Exposition ('70) Commemorative Fund for their truly generous support. 

S. Watanabe 

M. Fukushima 

Yu.V. Prohorov 

A.N. Shiryaev 
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’

　　　　　　　ON’A　CLASS　OF　INFINITE　DIMENSIONA：L

FOURIERTYPE　TRANSFORMS　IN　WH皿E　NOISE　CALCULUS＊

　　　　　　　　ISAMU　DOKU

Depαr‘meπ‘ρ∫Mα飢emα‘‘C5ρ3α就αmαUπ向er8麗y

　　　　　　　Urα初α338，」αpαπ

　　RmaiLd・ku◎s鰯．sv．saitama－u。乞cjp

　　　　　　　　　　　　　　　　　　　　　ABSTRACT

　Weconsiderthe　Pseudo・・Fburier－Mehlertransfbrminwhitenoiseanalysis　andstudy　variouskinds

of　propertiessuch　as　intertwining　Properties，with　result　that　its　dlaracterization　theorem　is　proved・

Through　this，we　propose．a　new　concept　on　a　class　of　in6nite　dimensional　Fourier　type　transfbrms｝

which　is　a　one　parameter　subgroup　and　is　also　char㏄terized　in　terms　of　its　infinitesimal　generator，

1．Introduction

　The　study　of　the　Fburier　transfbrm∫9in　white　noise　calculus　was　initiated　by

K亡o．Wh11e，the　rburier－Mehler（FM）tr㎝sfbrm　is　a　kind　of　generalization　of∫。10

1n　this　paper．we　introduce　Pseudo－R）urier－Mehler（PFM）transfbrm3having　quite

similar　properties　as　the　FM　transfbrm　possesses。It　was　used　fbr　apphcation　to

abstract閃uations　in　infinite　dimensionaユspaces。31n　connection　with　other　Fburier

type　transfbrms　in　white　noise　analysis，we　can　compute　the　inHnitesimal　generator

of　the　PFM　trεmsfbrm（§2．2）｛md　show　that　our　PFM　tran忌fbrm　enjoys　intertwining

pr・perties（§3．1）．W6shall　state　the　ch肛acteriz哉tion　theorem　fbr　PFM　tr～msfbrms

（§3。2），whidh　is　one　of　our　mI虹n　results　in　this肛ticle・The　Fbck　exp｛msion　of　PFM

trεmsfbrmαm　be　derived　as　we11（§3。3）．Lastly　we　sha皿introduce　a　generalization

ldeaofPFMtransfbmandinvestigate　someproperties　that　the　generalized　tra皿sfbrm

shouldsatisfy．Thenwe　cometo　areoognitionoftwo　dimensionaユcomplex：Lie　algebras

naturally　oontaining　the　adjoints　of　infinite　dimensiona1：Laplaciams．Above　all　we

propose　a　new　class　ofin丘nite　dimensional　Fourier　type　transfbrms（§4）．Actua皿y　it

tums　out　to　be　a　di飾rentiable　one　paエameter　subgroup　of　linea■homeomorphisms

o阜the　space　of　Hid琴distributions，hayingαN十β△とas　its　inHnitesimal　generator。

As　to　relatedΨorks，Chung　and　J玉1have　stu面ed　a　certain　subgroup　with　gen，era，tor

（写）△σ＋研丘・maslightly出舳entp・int・飼ew・

1、1　ハroオαオ‘0π

　V％a，dopt　the　so－called　generaユsetting4in　wbte　noise　analysis　th■oughout　this

article．Let　Tbe　asepaエabletopological　space　eguipped　with　aσ．丘nite　Borel　measure

　＊Research五＄supPorted　in　part　by　JMESC　Grant－in－Aid　SR（C）07640280and　also　by　JMESC

Grant．in－Aid　CR（A）05302012。

Typeset　by〆㌧Mβ一耶
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dv(t) on the topological Borel field B(T). Further suppose that v be equivalent to 

the Lebegue type measure. We consider the real Hilbert space H := L2(T, dv;~) 

with norm I ･ io' Let A be a positive selfadjoint operator in H with Hilbert-Schmidt 
inverse. Its eigenvalues and normalized eigenvectors are denoted by {An} and {en} 

respectively. Then {en} becomes a complete orthonormal basis of H. We assume that 

1 < Ao ~ A1 ~ . . . H> oo, where Ao = inf Spec(A). Let E = SA(T) be the standard 

countably Hilbert space 12 constructed from (H, A). In fact, E becomes a nuclear 

space and we have a Gelfand triple E = SA(T) C H = L2(T, dv; IR) C E' = S~(T), 

where E* denotes the dual space of E. It follows by construction that 

E Ep ~~ projlim Ep, E_p ~; mdlim E_p, , E= 

where Ep is the Hilbert space equipped with the norm l~lp = IAr~io' Suggested by 

Kubo-Takenaka formulation 8 we assume: (i) for every ~ e E there exists a unique 

continuous function ~ on T which coincides with ~ up to v-null functions; (ii) for each 

t ~ T the evaluation map 6t : t H, ~(t), ~ ~ E, is continuous, i.e., 6t e E'; (iii) the 

map t h~ 6t is continuous from T into E'. Let // be the standard Gaussian measure 

on E* such that 
1
 fE. = - I~lo)' exp(V~r(x ~)),4(dx) exp( 2 
~
 

for any ~ ~ E. (L2) denotes the Hilbert space of complex-valued fl-square integrable 

functionals with norm ll ･ Ilo' The Wiener-It6 decomposition theorem gives the unique 
representation of Y2 in (L2), i.e., 

(1) oo oo Y'(x) = ~In(fn) = ~(: xRn , fn)' fn e HcRn, x ~E E 

n=0 n=0 
where In denotes the multiple Wiener integral of order n and Hc~n denotes the n-

fold symmetric tensor product of.the complexification of H and the symbol : x(~n . is 

the Wick ordering of the distribution x~n. The second quantization operator r(A) is 

densely defined on (L2) as follows: for (p = ~nco=0 In(fn) e Dom(r(A)), 

(2) 
= r(A)fP = ~ I~(A(~)'f ) 

~=0 

For p e N, define llfPllp = llr(A)PY'Ilo and let (E)p ~ {P e (L2); IIY'Ilp < oo} and the 

dual space of (E)p is denoted by (E);･ Let (E) be the projective limit of {(E)p; P e N}. 
It is called a space of test white noise functionals. The elements in the dual space 

(E)' of (E) are called generalized white noise functionals or Hida distributions. In 

fact, (E) C (L2) C (E)' is a Gelfand triple. For convention all dual pairings <･, ･>, 
resp. ((', ')) mean the canonical bilinear forms on E' x E (resp. (E)' x (E) ) unless 

otherwise stated. The space with subscript C means its complexification. 

l~ 



　Remα摘1，E　is　topologized　by庫e　projective　limit　of　Hilbert　sp＆ces｛Ep｝with

inner　products（．，．）p　and　E＊is　equipped　with　the　inductive　limit　convex　topology。

In　fact，the　strong　dual　topology　of　E＊coincides　with　the　inductive　limit　topology　in

・ursetti箪9．4

1．2P7eτ‘7痂παT‘ε3

The　S．transfbrm　ofΦ∈（E）＊is　a　functlon　on　Ec　de丘ned　by

（3） （SΦ）（ξ）：＝〈〈Φ，：exp（・，ξ〉：〉〉， ξ∈耽，

where：exp〈・，ξ〉：≡…exp（・，ξ〉・exp（一垂1ξ12）・Based　on　the　PotthoH」Streit　the・rem13

we　are　able　to　give　rigorous　de丘nitions　to　Fburier　type　transfbrms　of　infinite　dimen－

sions．The　Kuo　type　Fburier　transfbrm∫ofΦin（E）＊is　the　generalized　white　noise

functiona1，S－transfbrmation　of　which　is　given　by9

（4） S（∫Φ）（ξ）＝〈（Φ，exp（一ε（・，ξ〉）〉〉，　ξ∈Ec・

Likewise，the　R）urier－Mehler　transfbrmゐ（θ∈R）ofΦi耳（E）＊is　the　generalized

white　noise　fmctiona1，S－transfbrmation　of　which　is　given　by　lo

（5）
S（ゐΦ）（ξ）一（（Φ，exp｛e‘θ〈・，ξ〉一圭eぎθc・sθ1ξ12｝〉〉，

ξ∈Ec．

The　R》urier－Mehler　transfbmゐ，θ∈R　is　a　generalization　of　j『。Actually，ゐ＝14，

a血dフなπ／2is　coincident　with∫・V％de算ote　by　P9幹the　Gateaux　diffbrential　of

幹∈（E）in　the　direction写∈E＊．In　fact，Pg　becomes　a　continuous　linear　operator

from（E）into　itself。The　symbo1∂重indicates　the　H：ida　dif驚rential　operator　in　white

noise　a⑩aユysis。It　is　well　known　tha，t　the　action　of∂‘is　equivalent　to　that　of　P6、on

the　dense　domain．6，4So　we　can　def血e∂‘＝工）6。，老∈R．The　Kubo　operator．∂夢8

istheadj・int・fHida雌renti瓠・恥rξ∈E，9∈（E），thede翻ive（Dξψ）（¢）is

de丘nedlntheusu寵m㎝ner，副theree虹stsitsextensi・nかξ：（E）＊→（E）＊・Even

fbr　that，we　shall　hencefbrth　use　the　same　notation1）ξfbr　simplicity，as　fa■asもhere

is　no　confu5ion．W6set　gξ：＝ε（Pξ＋1）ξ）l　where．D～is　the琴（1joint　of．Dξ．

窒0



2．Pseudo－Fburier－Mehler　Transfbrm

　W6begin　with　introducing　the　PFM　transfbrm　in　white　noise　analysis。

Definition1．｛吻，θ∈R｝fs謝d孟o　beむ血e　Pseudo－R）urfer．1晩hler（pFM）むransfbrm3

どψθfsamapPfng」をom（E）＊1nむof舌self食）rθ∈R，w血oseU㌦血nc舌fonalfsgfven猷ア

Φ∈（E）＊ξ∈1％
5（重θΦ）（ξ）一く〈Φ，exp（eiθ（・，ξ〉一IIξ12）〉〉

（6）

　By　virtue　of　the　Pottho岱Streit　theorem，the　above－mentioned　PFM　transfbrm　is

we11－deHned．Immediately，ψbニ14（14denotes　the　identiもy）1ψθ≠∫，ゐfbr　any

θ∈R＼｛0｝・It　is　easy　to　s㏄一that　the　invese　operator　of　the　PF￥transfbrmψθis

givenby（ψθ）一1＝ψ一θ飾rθ∈R・

2．1．㎞，αge・μんe5Pαce‘Eノ冠π4eTPFMTrαπ3釦俄

　Let　us　consider　what　the　image　of　the　space（E）underψ6is　like．The　PFM

transfbrm蛎enjoys　some　interesting　properties　on　the　product　of　Gaussian　white

noise（GWN）functionals。LetgC　bea　GWNfunctiona1，i．e．，gC（・）：二万exp（一H2／2c）

with　renormaliz甜on万and　c∈C，c≠0，一1．The　symbol：denotes　the　Wick
pr・duct．6

Theorem1．丁血e　fbllo面ng　equalf孟1es　holdfbranyθ∈Rぽ
ωffα（θ）＝2－1¢e－iθcscθ一1，亡henψθΦ＝r（eiθld）Φ：9α（θ），　Φ∈（E）＊1

ωm・re・ver，fbr田1P∈R，脇ΦllP＝”Φ：9α（θ）IIP，　Φ∈（E）P・

　It　is　due　to　the　fbllowing　Iemma．The　proofgoes　almost　similarly　as　Theorem8。5．3

：Lemma2．Fbrθ∈Rむhefbllowin8equ誼むfes　holdf
　ω頭＝9。（θ）＝r（¢iθ1d）Φ，　∀Φ∈（E）＊∫

　ω餅御P∈B，　”鞭＝9c（θ）”PニIIΦ”P，　∀Φ∈（E）P∫．
曲erec（θ）＝一（2－1εe一‘θcscθ＋1）．

　Let　us　thin丘oftheimageofψ∈（E）underthe　PFMtransfbrm。It　is　easily　checked

that　g。：g4＝1holdswithc午d＝一2．Sowehaye　g，（θ）；gα（θ）＝1。From（ii）ofLemma

2，immediatelylψ∈（E）if　and6nly　if賜ψ：9c（θ）∈（E），so　that，it　is　equivalent　to

鞠ψ：gc（θ）：gα（θ）∈（E）：gα（θ），where（E）：gα（θ）denotes　the　whole　space　of　elements

望：gα（θ）fbr卯∈（E）．Consequently，it　is　obvious　that鞠ψ∈（E）：gα（θ）．Therefbre

weobtain

Theorem3．Fbrθ∈R，㎞鞠（E）＝（E）：gα（θ）≡｛望：gα（θ）1ψ∈（E）｝．

　Re鵬α挽2．The　results　in　Theorem　l　an（i　Llemma2a■e　guite　similaどto　those　of

the　R）urier．Mehlertransfbm1．In　fact，fbr　p∈R，Φ∈（5）p，

㍉

別



　　　　　Il（んΦ）：9c、（θ）”P＝llΦIlpandl協ΦllPニ”Φ：9C2（θ）”P

hold　with　c1（θ）＝一εcotθ一2，and　c2（θ）＝乞cotθ一2．

　丑ε瓢摘3．The　image　of（5）under　the　FM’transfbrmゐis　given　by（5）：g‘、。tθ，

while　that　of（5）under　the　Fbur圭er㌻ransfbrm∫coincides　wiむh　the　space（5）：δo≡

｛ψ：δolψ∈（5）｝，where60is　the　delta　function　at　O　and　limc→ogc＝δo。

2．2．耽伽伽伽ατσeπeTαオ・T8

　First　of　a11，fbr　a11θ∈R　we　define卯ξ（¢）：＝Σ窪o毒〈：¢⑭π：，ξ⑭れ〉with¢∈五1＊，ξ∈

五lc．Then｛（穿θ，θ∈R｝is　an　operator　on（E）defined　by

（7）　　（σθ幹ξ）（¢）：〒ψe‘θξ（¢）・exp（乞e‘θsinθ1ξ12）・・

Let　T　denote　the　distribution　in（E⑭」r）＊given　by（7，ξ⑭η〉＝〈ξ，η〉，ξ，η∈E．Note

that　it　can　be　expressed　asτ・＝∫r6‘⑭δεレ（dオ）＝Σ）界oεゴ⑭εゴ∈（E⑭E）＊．Moreover

wehave

　　　　7⑭鴨一〃…み6ε一⑭δε・⑭…⑭6㌔⑭卿オ・）…レ（鵡）・　｝

The　fbllowing　is　an　easy　exercise．The　next　lemmaprovides　with　a　general　expression

fbr　elements　of　generaHbrm　in（E）。

Lemma4．Whenψ（¢）一雅。〈：ω⑭π：，∫π〉∈（E）wfむ嫉∈E§π，舳σθgfsgfven

毎（σθψ）（¢）ニΣ箔。〈：¢⑭π：，9れ〉，a皿d

　　　　卿π（ψ）＝愛（η欝）！（歪sinθ）叩e‘（π＋m）θτ⑭m＊ゐm＋脆，

　　　　　　　　　　m＝0

曲ere
（7⑭m＊痂＋・）（オ）一1ひ論鵬＋・（s、，ε、，…，8m，5m，¢）y（ゐ・）…レ（48m）・

　On　this　account，we　obtain　i㎜edia，tely

Pr・P・siti・n5・丑eP剛伽曲㎜｛蛎1θ∈R｝f噌v㎝瞬血eaの・fnゆera舌・r・f
｛σθ；θ∈R｝，f・e・，吻＝σ多ぬd由加叩eτa‘・req卿卵enεe鉛r詔θ∈R・

　The　next　proposition　gives　an　expli¢it　action　of　the　PFM　transfbrm吻fbr　the

generalizedwhitenoise㎞，cもionals・fgeneralfbrm．

Pr・P・siti・n6・恥Φ∈（E）＊ダvena8Φ（の）＝Σ）窪。（：¢⑭π：，凡〉，鑑∈（罐π）蓋拠，

fオ五〇1dsむha孟

　　　　　　　　　　　　　　　　　吻Φ（¢）〒Σ〈　⑭れ：，Σα（～，m，θ）・聴⑭m〉・

　　　　　　　　　　πニ0　　　　　　　　　ど十2π喜＝＝π
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where the constant a(1, m, O~ is given by a(1, m, O) = JLei(1+m)e(isine)m 
m. 

The proof is greatly due to some computational techniques in S5.6;2 It follows 

that the PFM transform ~76 is injective and surjective. Moreover, it is easy to check 

that ~:e is a strongly continuous operator from (E)* into itself, when we take Lemma 

4 and Proposition 5 into consideration. Thus we have the following theorem. 

Theorem 7. (i) The Pseudo-Fourier-Mehler transform ~:o : (E)' H, (E)* is a bijective 

and strongly continuous linear operatot. 

(ii) The set {~:o; e e H~} forms a one parameter group of strongly continuous linear 

operator acting on the space (E)' of Hida distributions. 

We are now in a position to state one of the principal results in this paper. This is 

a very important property of the Pseudo-Fourier-Mehler transform, especially on an 
applicational basis.3,5,2 

Theorem 8. The infnitesimalgenerator of{~7:o; e e ~} is given by i(N+A~), where 

N is the number operator and A~ is the adjoint of the Gross Laplacian AG. 

1~emark 4. The ~ssertions in Theorem 7 and Theorem 8 have been proved under 
the standard setting.3 

Proof of Theorem 8. Set Fo(~) := S(~7:6~)(~) and Fo(~) := S(~~)(~) for ~' e (E)*, 

~ e E. From definition we have Fo(~) = Fo(eio) . exp [ieie sinel~l2]. Since Fo rs 

Fr6chet differentiable, F6(~) is differentiable in e as well, and it is easy to check that 

(8) 
;i~{i ~{Fo(~) - Fo(~)} = i(F'(~)'~) + il~l2 . F(~)' 

While, the ~J-functional e-1 .{F6(~) -FO (~)}' e e ~ satisfies the uniform bounded cri-

terion: aOo > O so that sup{il_e{F~e(z~)-F~o(z~)}1; z e C, Izl = R} ~ co exp(cIRC2 I~l~) 

holds for all R > o, all ~ e E with cl > o, c2 > o, where F* denotes an entire analytic 

extension of F. Hence, the strong convergence criterion theorem 13 allows conver-
gence of S-1 (~{Fo(') - Fo(')})(x) = ~{~:e~)(x) - ~(x)} in (E)* as e tends to zero. 

Therefore the assertion follows immediately from Theorem 6.11(p.196) and Theorem 
6.20(p.206).6 C] 

83 



3．Operator　Analysis　ofPFM　Transfbrms

3．1血ピeγ伽ゴπfπgPTOP87擁ε8

　In　this　section　we　shaユ1investigate　some　intertwining　Properties　between　the、PFM

transfbrmψθand　other　typical　operators　in　white　noise　analysis，such　as　Gateaux

diHbrentia1，its　adjoint，H：ida　di飾rentiaユoperator，an（1Kubo　opera，tor，etc．

Lemma9．Fbr　eachθ∈R，オ∈R，ψθ（∂『Φ）＝eiθ∂オ（賜Φ）五〇1dεfbr　a11Φ∈（E）＊。

　Proo£Note　that　S（∂才Φ）（ξ）ニξ（亡）・S（Φ）（ξ）。So，fbrΦ∈（E）＊given　in　the　fbrm

Φ（¢）＝Σ譲。〈：の⑭π：，鑑〉，¢∈E＊wereadilyget

（9） ）
　
2
ξ
　
θ
　
n

　
．
田

　
沼

　
。
伽
e（
　
即
　
鳴う

　
⑭ξ
　
θ
　
π

　
じ
ヨ　
ρ佛

・・

圓

レα曳
　
。
ぜ

　
＝OX）　Φ

　
＊
‘＠

　
吻灰

While　we　establish　S（蝋∂蓄Φ））（ξ）＝eiθ3（∂渉（ψθΦ））（ξ）by　apPlying　Eq。（9），because

we　made　use　of七he　relation5‘（∂『（重θΦ））（ξ）ニξ（ピ）・（SΦ）（eiθξ）・exp（ぎeiθsinθ1ξ12）。

Hence，an　application　of　the　Pottho岱Streit　theorem　Ieads　to　the　required　equality　in

Hida　distribution　sense．口

Proposition10．1受）reachθ∈R，オ∈R
　ω％（∂εΦ）ニe－iθ∂ε（ψθΦ）一2乞sinθ∂夢（ψθΦ）∫

　ω蝋¢（オ）Φ）＝e－iθの（オ）（ψθΦ）∫

hold丑》ra11Φ∈（E）＊。

　　　ぎ　RemαTゐ5．The　above　assertion（i）fbllows　from　a　direct　computation．W6have
only　to　employ　the　fbllowing　two　rules：5『∂ε（・）＝論S（・），∂～（・）＝S－1ξ（オ）S（・）・（ii）

is　also　due　to　a　simple　computation　toget五er　with（i）and　Lemma9．Moreover，wg

need七〇apply　the　multiplica篭ion　operator：¢（オ）（・）＝（∂f十∂茗）（・）．Those　proof8go

almost　simila■1y　as　in　theproofof　Lemma9and　aエe　very　easy，hence　omitted．

　ThenextpropositionindicatessomeintertwiningpropertybetweenthePFM　trans．

fbmandGateauxdi饒rentiaoperator．

Proposition11．Fbr　ea（ぬpaぼameむerθ∈R，オ∈R
ωe一’θかξ（ψθΦ）二蝋かξΦ）＋2εsinθ・P葛（蛎Φ）∫

　ωPξ（吻Φ）＋Pε（ψθΦ）＝e‘θ吻（（・，ξ〉Φ）∫

血・1dfb圃18ener曲ed・而むen・fsefhnc孟fon田sfn（E）＊．

　Proof．First　of　a皿，we　have

（・・ゆξ：一（孟ξ（オ）ク‘レ（df））～，一dD～：一孟ξ（オ）㈱），∀ξ∈El・

Let△：＝｛オ為｝be　a　proper痂te　paエtition　of　T，and　l△I　denotes　the　maximum　of

increment△砺oved≦ゐ≦7η．The　assertion（i）yields　from（i）of　Propo5ition
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10．In　fact，by　linearity　of七he　PFM　transfbrm　we　getΣ濃1ムレ（ωξ（ωψθ（∂ε露Φ）

＝鞠（Σ⊃匙1ξ（姦）∂‘為ムレ（オ為）・Φ），fbr∀ξ∈E・By　taking　the4imit　l△1→oo　and　by

continuity　ofψθ（Theorem7），we　can　obtain　the　desired　result　with　consideration　of

Eg。（10）．As　to（il），it　goes　similaど1yし．W6have　only　to　note

（11）

委一乞〈蘭〉一（誘¢（ε）ξ（オ）レ（d老））～・

by　virtueofR’emar辱5・With（ii）ofProposition10we　deduce毛hat

e－iθ
Pξ＋購Φ）一e－」1（か（オ）ξ（オ）綱（鞠Φ）一ψθ（（¢・ξ〉・Φ）・・

3．20んαTαcオε再zαオ∫oπ1bTPFM野απ5」ら77η5

　InthissectionweshallintrbducethechamcterizationtheoremfbrPFM　tr㎝sfbrms，
which　is　one　of　our　main　results　in　this　paper．

Theorem12．ThePFM孟ransfb土m｛吻1θ∈R｝sa孟fs五es孟hefbllowlng　cond姫onsご
伊1坪θ：（E）＊」｝（E）＊1sac・nむfnu・uslfne訂・pera孟・r血r∀θ∈R∫
（P2馬（かξΦ）＝eεθかξ（ψθΦ）一2sinθ・ζξ（重θΦ）∫

θ3泌（グξΦ）ニe－iθζξ（吻Φ）∫曲ereΦ∈（E）青，ξ∈Ec．

σ・nVerSe1潟ffaC・n伽U・USlfne肛・peraむ・r且θ：（E）＊→（E）＊Sa亡fS五eS孟heab・Ve
condfむfons∫（P1）～（P3），亡hen・4θfs　a　consむanむm寵1むfple　ofψθ．

　Proo£（P1）is　obvi6us（Theorem7）．（P2）（resp．（P3））yields　f士om（i）（resp。（ii））

of　Proposition11．Conversely，suppose　that　the　operatorイ4θ・be　compatible　with

（P1），（P2）and（P3）．W6need．the　fbllowing　results．

Lemma13．W6aεsumdhaむ亘θbeac・n哲fnu・usllne肛qper＆ωr丘・m（E）＊fηω
fむse14εaむfs取血9舌he必reec・証亡f・ns（P1）～θ3）・丑en孟血e血11・曲grelaむf・nsh・1d

fbr∀ξ∈瓦c，θ∈．R．

　ω（町1三θ）1）ξ＝Dξ（町1三θ）∫　ω（町1ヨθ）9ξ；9ξ（ψr1三θ）∫

　㈹（蜷1三θ）P卜D奢（％1三θ）・

　The　proof　will　be　given　below．The　next　result（Prop。5．7．6，p。148）12is　wel　known．

Theorem14．Le孟A　be　a　coh伽uouslfnearρperaむor　on（E）＊，saむf吻fng

　ωAσξ＝ζξA，伽aηyξ∈五フ∫

　ωAI）ε＝PぎA・飴r鰐ξ∈E・
Then孟he・pera孟orAisaεc田肛qpera‘or．

　Thus，．by　ta』dng（五），（iii）of：Lemma13into　account　with44θ＝……θ，we　may　apply

Theorem14fbr44θto　obtain　the　assertion：町144θis　a　scaユaどoperatoL口

、
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Proof of Lemma 13. Basically it is due to a direct computation. Each proof goes 
similarly~ so we shall show only (iii) below. For the other twQ' we will give just rough 

instructions. First of all, note that we have only to consider ~7_6 instead of ~:e~1' As 

to (i), it is sufiicient to calculate it with (P2) for both A6 and ~:o, and with (P3) for 

the PFM transform. As for (ii), use simply (P3) for both. As to (iii), for V~ e (E)', 

(12) (~70~lA6)D~~1 = -i~7e~1(Aoqe)~ - ~70~1(AoDe)~, 

= eio(~76~1qe)Ao~ - eio(~70~1De)Ao~, Ve e E 

because we used a relation De = -i~e - De in the first equality and also employed 

(P2),(P3) in the second one. An application of (P2),(P3) to the last expression in 

Eq.(12) gives 

(12) = -iqe(~7~lAo)~ - De(~76-lA6)~ = (-iqe - De)(~70~1Ao)~ = D~(~70~1A6)~, 

which completes the proof. [] 

3.3 Fock Expansion 

Let L((E), (E)*) denote the space of continuous linear operators from (E) into 
(E)'. The space (ECe)(1+m))sym(1,m) rs a symmtrized space of (Ec~)(1+m))* with re-

spect to the first l, and the second m variables independently. By virtue of the 
symbol characterization theorem for operators on white noise functionals,11 for the 

operator II Iying in L((E), (E)') there exists uniquely a kernel distribution fel,m 
in (EcR(1+m) )

 
sym(1,m) such that the operator H may have the Fock expansion: n = 

~;l~m=0 nt,m(/el,m)' Moreover, the series H(p, ~) e (E) converges in (E)*. Generally, 

each component nl,m of the Fock expansion has a formal integral expression: 

fTt+ 'e(sl, ' ' ' sl'tl' 'tm) asl asla I e ~v(dsl) ' ' ' v(dsl)v(dtl) ' ' 'v(dtm)' 

We call it an integral kernel operator with kernel distribution /c. We shall give below 

two typical examples i'n white noise analysis. 

Example. The number operator N has the following representation as a continuous 

linear operator from (E) into itself, namely, 

N nl,1(T) = ffT2 T(s, t)e~a v(ds)v(dt) 

While, the Gross Laplacian AG can be also expressed by 

AG ll0,2(T) = f fT2 T(sl , s2)aslas2 v(dsl)v(ds2) 

as a continuous linear operator from (E) into (E). C] 

Let us consider the general expansion of our PFM transform. We may take ad-
vantage of Obata's integral kernel operator theory in order to obtain Fock expansion 

representations of ~le and its adjoint G6' That is to say, 
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Theorem15．Fbrθ∈R，we五ave　fhe　fbllowfng　rbck　e客pansfons’

　　　　　　　oo　1　　　（ゼ）ψθ一Σ扁（乞elθsinθ）’（e’θ一・）m・n21＋m，鵬（τ⑭’⑭λm）1

　　　　　　　‘，m＝0　　　　　　　　　　　　　　　　＼

　　　　　　　　　　　　（乞乞）σθ一Σ詣（歪e’θsinθ）m（e‘θ一・）～・nμ＋2m（λ1⑭7＆m）1

　　　　　　　ど，m＝0
曲ereλ肌∈（踏2m）＊fS8fVen取Σ毘」2，…，im一。e」1⑭…⑭eim⑭ei1⑭…⑭eim・

4．A　CI＆ss　of　Generalized　F－Type　Transfbrms

　Letσ．L（（E））be　the　group　of　a111inear　homeomorphisms　from（E）into（E）．Then

wehave

Proposition16．｛σθ1θ∈R｝f5a　r昭ula■20nθparamθ孟er5ロb8γoロp　of　O1ン（（E））

咄hln五nf舌eslm飢generaむ・rε（1〉＋ハG）。

　Let　us　consider　some　generalization．Suggested　by　N。Obata（personaユcommunica－

tion）and　Chung－Jil　we　proposeもo　deHne　a　class　ofin丘nite　dimensional　Fburier　type

transfbrms　Xθ，θ∈R　as　operator　on（E）＊whose　U－functional　is　given　by

（・3）S（XθΦ）（ξ）一＠，exp（eαθ（・，ξ〉一I」（α，β；θ）1ξ12）〉〉，ξ∈E，Φ∈（E）＊・

Wbset」（α，β1θ）＝e2αθ一2E（α，β1θ），withE（α，β1θ）一盈・（e2αθ一1），whereα，β

∈C，α．≠0．W6caユl　it　a　geπe7α蔦ze4F一匁peかαm8／bTm．Then　we　denote　the　adjoint

operator　ofXθby　Zθ．

Proposition17・Tぬe　se亡｛Zθ1θ　∈　R｝1s　a　r¢gular　one　paτameむer　sub8roup　of

σL（（E））M’孟h血伽fむeslm訓genera亡・rα1〉＋βムσ．

Theorem18．The8ellera五zed　F一毒ype孟ransfb卿｛Xθ1θ∈】R｝js　a　df丑わren‘fable　one

P肛㎝e傭sub伊・up・fσL（（E）＊）M’むh加五n1亡esf副8㎝αaむ・rαN＋βハと．

　1～εη祝zγゐ6・The　above　de£nition　Eq．（13）of　generahzed　F－type　trans丘）皿Xθ（㎜be

altematively　replaced　by　the　fbllowing　expression：S（XθΦ）（ξ）竃F（eαθξ）・exp（H（α，β1

θ）・1ξ12），where　F　denotes　the　U一致mctional　ofΦin（E）＊，i．e．，、SΦ＝F．

　Remα摘71Especially　whenαニβ＝¢（∈℃），then　the　above－defined　generalized
F．type　transfbmユs　Xθare　attributed　to　the　PFM’ ra皿sfbrms巧given　by　Eq．（6）in
§2・And　also　fbrα＝＝ε，β＝垂，simply　Xθ＝ゐ・、

　Genera皿yl　in　white　noise　ana1乎sis，a皿y　rotation　invaどiant　operator7in乙（（E），（E）＊）

is　generatedby1〉，ムσ，andハと。In　that　sense　we　caln．say　that　our　F－type　transfbrms

ae　chatacterized　by　its　in』fhitesimal　generatorαN十β△と．The　generalized　F。type

transfbrm　is　a　highly　in七eresting　and　stimulating　object　in　the　stε皿dpoint　of　infinite

dimensio箕aユh肛monic　alnalysis・
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2．3　無限次元ラプラス作用素

数理物理への応用上の必要性から無限次元多様体を念頭に置き，外積空間値のホワイトノ

イズ汎関数を考え，その上のooo不変な性質の良いラプラス作用素を構成し，その作用の

具体的表現も導出した。本研究の最も特徴的な点はホワイトノイズ解析における飛田微分

の採用をその基礎にしたことにある。その結果として時間発展の記述の概念が定義自体の

中に取り込まれ，因果性（Causahty）を考慮の対象に含むpro｛bundな表現形式の理論が具現

されている。またこのラプラス作用素の応用として，無限次元版ド・ラーム＝ホッジ＝小

平型分解定理の飛田微分に付随したV6rsionをいくつか示すことができた。
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ON THE LAPLACIAN ON A SPACE OF 
WHITE NOISE FUNCTIONALS 

By 

Isamu D6KU* 

S 1. Introduction. 

We are greatly interested in the Laplacian on a space of white noise func-

tionals. To have in mind aspects of applicatlon to mathematical physics, we 

can say that it is common in general to use the weak derivative D on a given 

basic Hilbert space, so as to define dp which just corresponds to the de Rham 

exterior differential operator. In doing so, one of the remarkable characteristics 

of our work consists in adoption of the Hida differential at instead of D. This 

distinction from other related works does provlde a framework of analysis 

equipped with the function for perception of the time t, with the result that it 

is converted into a more fiexible and charming theory which enables us to 

tr:eat time evolution directly. It can be said, therefore, that our work is suc-

cessful in deepening works about the general theory done by Arai-Mitoma [2], 

not only on a qualitative basis but also from the applicatory point of view in 

direct description of operators in terms of time evolutlo~1. 

The differential at has its adjoint operator at in Hida sense and it is called 

the Kubo operator. Indeed, a*t is realized by extending the functional space 

even into the widest one (E)*, where a Gelfand triple (E) C~ (L') C~ (E)* is a 

fundamental setting in white noise analysis, in accordance with our more general 

choice of the basic Hilbert space H. On the contrary, we define the adjoint 

dperator dp* of dp associated with at without extending the space up to that 

much. Oonsequently the Laplacian Ap constructed in such an associated manner 

with dp (so that, with at) is realized as an operator having analytically nice 

properties, such as C"-invariance, etc. On the other hand, when we take the 

Kubo operator as its adjoint, then the so-called Hida Laplacian AH is naturally 

derived. It is, however, well-known that AH is an operator which maps (S) 

into (S)*, or in our general setting from (E) into (E)*, which means that it 

* This work vas supported in part by the Grant-in-Aid for Scientific Research 03640015. 

The author was also partiauy supported by the Grant JAMS3-120. 

Received March 31, 1993. Revised Septembcr 6, 1993. 
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transforms a smooth class not into itself, but into the widest class of generalized 

white noise functionals (or the so-called Hida distributions). On this account 

the followlng problem is highly interesting in the standpoint of operator theory 

or infinite-dimensional analysis. 

Let us choose the Hida differential at as the starting point of the theory.-

Then if we assume that the Laplacian A constructed according to the de Rham 

theory should possesse a nice property such that it maps a smoott, class into 

itself (i.e. A : C--C"), what on earth would its adjoint dp* naturally corre-

sponding to a, (hence dp=dp(at)) be like? This is one of our motivations in 

this paper (cf. the beglnning of S 5). The followings arb in fact outstanding 

features of our work and what have been acquired in connec. tion with the 

aforementioned problem : (1) in regard to the adjoint operator dp*~dp*(at) of 

dp~dp(a*), we have as a matter of fact succeeded in constructing it in such a 

satisfactory manner as to fit into our requirement ; (2) as a consequence the 

constructed Laplacian Ap, which is ~ssociated with a,, enjoys extremely nicer 

properties on analytical basis, i.e., Ap is a C"-invariant operator on a space of 

white noise functionals (cf. Theorem 7.7) ; (3) moreover, peculiar ideas of 

generalized functions totally released from smearing with respect to time t 

produces the corresponding higher version of theory in operators on functionals, 

which allows us, despite its implicity, to draw the description of time evolu-

tion ; (4) our Ap Primarily settled with the Hida derivative a, is a Laplace-

Beltrami type operator getting possession of such a nice property, and it is 

completely distinct from other Laplacians in white noise analysis, such as the 

L~vy Laplacian AL, the Gross Laplacian AG, and the Volterra Laplacian Av ; (5) 

the Laplacian is in a sense successfully constructed in concrete and satisfactory 

manner, simply corresponding to our more general choice of the basic Hilbert 

space H, and the explicit form Apco of the Laplacian on (~,eE~ (the space of 

polynomials) is also obtained (cf. Proposition 6.3) ; (6) as one of applications in 

terms of our Laplacians, this paper includes several versions of the so-called de 

Rham-Hodge-Kodaira decomposition theorem associated with Hida derivative in 

white noise calculus or Hida calculus (cf. Theorem 5.3, Theorem 7.1, and 

Theorem 7.8). To comment upon the above (4) in addition, it is therefore 

expected in a quite natural way that Ap Should play a remarkable and proper 

role in white noise analysis, which is entirely different from those of the other 

Laplacians. It remains ~o be stimulating object in relation with other works 

[21, 28 & 30] on Laplacians, and it is highly interesting as well. 

This paper is organized as follows : 

S 1. Introduction. 

q~ 



Laplacian on a space of white noise functionals 95 

S 2. Notation and preliminaries. 

S 3. Hida differentiation. 

S 4. De Rham complex. 

S 5. Laplacians Ap(e, at) of de Rham complex {dp(e, at)}. 

S 6. Explicit forms of the Laplacians Ap(e, at). 

S 6. De Rham-Hodge-Kodaira decompositions associated with Hida derivatlve. 

S 8. Concluding remarks. 

In S 2 we shall introduce notations commonly used in this whole paper, and 

prelim:nary results are also stated in S 2, some of which are generalizations 

[9-1l] of the well-known results on basic and fundamental theorems in white 

noise analysis, having been obtained by many pioneers and forerunners [17, 24, 

25 & 27]. S 3 is devoted to general but brief explanations on the basic ideas, 

important concepts, and interpretations of Hida differentiation. This will be 

the key to understand the succeeding sections. There are contained some asser-

tions, simply corresponding to our general setting (cf. [12-15]). S 4-S 7 are the 

main parts of our paper. In S 4 we shall construct de Rham complexes. For 

a complex Hilbert space K, Iet ApK be the space of exterior product of order 

p. Consider a nonnegative selfadjoint operator A on a given normal Hilbert 

space H, and we denote by the symbol e the llnear closed operator : Hc~K, 

determined regarding A. Then the operator dp from ~~(ApK) into ~~(Ap+1K), 

depending on e, is able to be realized by maklng use of the Hida differential 

operator. In S 5 we shall state a systematic construction of Laplacians Ap of 

{dp}. The corresponding Laplace operator can be constructed theoreticallyand 

get into entity when we take advantage of the adjolnt operator and have resort 

to functional analytical method (see Proposition 5.2). By virtue of closedness 

of the sequences of complexes we can obtain the de Rham-Hodge-Kodaira 

theorem (Theorem 5.3) in L2-serise [16]. In S 6 the explicit form of the Lapla-

cian Ap will be obtained by a direct computation (see Proposition 6.3), where 

the leading idea is similar to [2], however, as stated before, the employed 

calculus an.d basic mathematical background are actually different, since we are 

totally based upon the white noise calculus or Hida calculus. In S 7 we shall 

make mention of several versions of de Rham-Hodge-Kodaira type theorem 

associated with Hida derivative [8]. It is easy to see that such a type of 

decomposition holds for the space of smooth test functionals, induced by the 

Sobolev type space H2,k of functionals relative to the Laplacian (Theorem 7.1), 

namely, 

H2,*(A~(K)) Im [A (e) r He *(AP(K))]eKer A (G) 

13 
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On this account we may employ the Arai-Mitoma m~thod (1991) to derive the 

similar decomposition theorem even for the category (S)(APK), just correspond-

ing to the space of white noise test functionals (see Theorem 7.8). Basically, 

principal ideas for proofs are due to the spectral theory. However, some of 

statements include subtler precise estimates, for which we are definitely re--

quired to execute elaborate computation with some other results in orthodox 

probability theory and Malliavin calculus. , 
Finally it is quite interesting to note that this sort of result leads to the 

study of Dirac operators on the Boson-Fermion Fock space (cf. [1]), and also 

that our analysis could be another admissible key to the supersymmetric quantum 

field theory (e.g., [34]). We believe that this formalism proposed in this paper 

should be possibly regarded as a clue to open a new pass towards analysis of 

Dirac operators in quantum field theory through the framework of Hida calculus. 

S 2. Notation and preliminaries. 

Let T be a separable topological space equipped with a o-finite Borel mea-

sure dL,(t) on the topological Borel field ~(T). Further suppose that v be equi-

valent to the Lebesgue type measure dt. H:= L2(T, d,); R) is the real separa-

ble Hilbert space of square integrable functions on T. Its norm and inner 

product will be denoted by I ･ Io and (･, ･)o. Let A be a densely defined non-

negative selfadjolnt operator on H. We call A with domain Dom (A) standard 

if there exrsts a complete orthonormal basrs {e.}~=0CDom (A) such that 

(A.1) Ae~=~~e* for I eR 
(A.2) 1<10~11~ "' ~~ oo , 

" (A.3) ~ 1~-2<00 holds (cf. [9, 10]) . 
~=0 

Obviously, A-1 is extended to an operator of Hilbert-Schmidt class. Put 

p:=~0~1=11A II･p, 

and 

l/a .-( ~ ) .- ~ 6 -2 = J] A-111 Hs ~1 
*=Q 

where ll ･ll･p is the operator norm and ll ･ IIHS is the Hilbert-Schmidt norm. We 

also note the following apparent inequalities : 

0<p<1 , p<~ . 

For a complex separable Hilbert space K, we further assume that 

cvF 
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(A.4) There exists a densely defined, closed linear operator 

e from Hc into K such that A=e*e 

where .we define the complexification Hc=H+iH as usual way, and e* means 

Given such a standard operator A on H, we can construct a Gelfand triple 

in the standard manner (see [22, p. 259], [27]). For p~~O Iet Ep be the com-

pletion of Dom(AP) with respect to the Hilbertian norm l~lp:= IAP~lo, ~eE 

Dom(AP), where Dom(AP)=H for p<0. Then Ep becomes a Hilbert space 

with the norm I ･ I p. We thus obtain a chain of Hilbert spaces : 

" EpC "' CEqC "' CHC " 

CE_qC "' cE_pc ･-

for 0<q<p Equrpped wrth the Hilbertran norms {1 ･ Ip}p~0, 

E:= nEp 
p~0 

becomes a nuclear Fr6chet space. E is topologized by the projective limit of 

Hilbert spac~s {Ep}pez with inner products (~, V)p (~, ~eEE), and is called the 

space of test functions on T. The topological dual space E* of E is obtained as 

E*:= U E_p , 
p~o 

i.e., the dual space E* of E is the inductive limit of E_p as p-oo. E* is 

equipped with the i.nductive limit convex topology (e.g. [10, Eq. (3.1), S 11l]). 

The triplet ECHCE* is called a rigged Hilbert space [3] or a Gelfand triple. 

Then note that the dual space Ec*=(Ec)* is equivalent to (E*)c=E*+iE*. It 

is known that the strong dual topology of E* coincides with the inductive limit 

topology in our setting (see [35]). Let p be the Qaussian probability measure 

on the measurable space (E*, ~) whose characteristic functional is uniquely 

determined, by virtue of the Bochner-Minlos theorem, by 

' E. exp (i<x e>)p(dx)-exp - ; o , l
 

(2.1) 

where ~f is the (r-algebra containing cylinder sets. For simplicity we denote 

only by <･, ･> the canonical bilinear forms between any dual pairs unless it 

causes any confusion in the context. For instance, whe~l <･, ･> is a bilinear 

form on E*XE, then it is naturally extended to a C-bilinear from on Ec*XEc. 

We will denote the space L2(E*, J~, p ; C) briefly by (L2) according to the 

notation in [17]. Let ll ･Ilo denote its norm. Note htat (L2) is a complex Hilbert 

space. We them assume the following three conditions (cf. [9-1l]) which are 

~~ 



suggested by Kubo-Takenaka [24]. 

(A.5) For every ~eE there exists a unique continuous function 

; on T which coincides with ~ up to v-null functions. 

(A.6) For ~ach teT the evaluation map 6t : ~-~(t), ~eE, 

is continuous, i. e., 5teE*. 

(A.7) The map t-6t is continuous from T into E* 

By virtue of (A.5) we agree then that E consists of continuous functions. The 

symbol Eco~ denotes the n-fold tensor pr0~uct of the complexification of E. 

For feEo~ and peR, define Iflp,o~ := l(AP)e~flo' Let (Ep)ce* be the n-fold 

symmetric tensor product of (Ep)c. Ec~~ denotes the projective limlt of (Ep)c~,, 

and (Ec*)~~ the inductive limit of (E_p)co~ as p tends to infinity. In the fol-

lowing we shall consider all the time the inductive limit space together with 

the inductive limit convex topology. 

REMARK 2.1. Note that the measure ~' is supposed to be rotation invariant 

in the setting of white noise calculus. T is often thought of as time parameter 

space. In the above we have in mind the harmonic oscillator Hamiltonian [19. 

p. 148] as a concrete model of A (cf. Example 2.1 given later In S 2), which is 

typical in Hida calculus (see [7, 27]). 

By the Wiener-It6 decomposition theorem we have 

" (2.2) (L2)= ~ ~K* , *=0 

where K~ is the space of n-fold Wiener integrals I*(f*), f~eHc~* (cf. [24, 

198l] or [9, Remark 1.2, S I]). Hco~ is the n-fold symmetric completed Hilbert 

space tensor product of the complexification of H, hence Hce~ is again a Hilbert 

space. It is a fact that (L2) js canonically isomorphic to the Fock space over 

Hc, that is, 

" (2.3) (L2)~: ~) ~l~Hc~* 
*=Q 

For each pE(L ) there exrsts a umque sequence {f*}~=0, f*eHc~~ such that 

~ (2,4) !lpll 2= ~ n !If 1 2 o ~ o*o~ , *=0 

and 

~ (2,5) = ~ < : xo~ : , f*> , ~)(x) p-a.e. xeE* ~=Q 

q6 
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where the right hand side is an orthogonal direct sum of functions in (L2) (e.g. 

[9, Theorem 2.3] ; see also [20]). The symbol :xe~: is the Wick ordering of 

the distribution xo*E(E~~)*, which is defined inductively as follows : 

: xeo = : xol '= x , : 1, 

: xo~ ~ o('-1) : _(n-1)T~ : xo("-2) (n:~2) := xR : x 

where 1:~E(E~E)* is the distribution defined by 

(2.6) <T, ~Rv>=<~, v> , ~ ~e~E 
Note that r is also expressed as 

l
 

= t= ~t02dl/(t)= ~ ejRej . (2.7) 

T j=0 
When we define S-transform as 

f
 Sp(~)= JE.P(x)F(~ ; x)p(dx) , (2.8) 

then we have (SI^(f~))(~)=<f~, ~e~>, where 

F(e x) exp <x ~>: = exp <x ~>-~1~1 2) ( ' o 
(see [24] ; also [9, S I]). Based upon the result in (2.4) and (2,5) we may intro-

duce a second quantized operator F(A) on (L2). Let Dom (r(A)) be the sub-

space of pE(L2) given as in Eq. (2.5) such that 

(i) f~=0 except finitely many n ; 

(ii) f~eDom(A)R*lg .･･ R*lg Dom(A) (n-times). 

Then for ~)eDom (F(A)) we put 

" (2.9) (F (A) p)(x) = ~~O I *(Ao* f * )(x) . 

Let (Ep) be the completion of Dom (F(A)P) with respect to the Hilbertian norm 

" o ~ n ! I f* I p~~" ll~Jl pz := [lF(A)Ppll 2= 

*=0 

" = ~ n !1(AP)e~f j 2' 
~ o,o~ , 

*=0 

where f e(Ep)co~. Equipped with the norm {ll ･ Il}p~o, 

(E) := n (Ep) 
p~o 

becomes a nuclear Fr6chet space. Let (E)* be the dual space of (E). For any 

pe(E), ~) has .a continuous version ~, and it is bounded on each bounded set 

of E* moreover the evaluatron map ~ p-p(x) is a continuous linear func-

q7 
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tional on (E), i.e., 5.e(E)* for any xeE* (cf. E25]; see also [10, Il]). By 

the above fact we always regard (E), as a space of continuous functions on E*. 

An element in (E) (resp. (E)*) is called a test (resp. generalized) white noise 

functional. We denote by <<･, ･)> the canonical C-bilinear form on (E)*X(E). 

Lastly we introduce an example, which is enough to show that our generai 

setting stated above is not unsubstantial. 

EXAMPLE 2.1. When T=R, dv(t)=dt, and when we choose A=1+t2-(d/dt)2, 

then e is given by dlat-t (teER) with Hc=K=L2(R), and we have (E)*=(S)* 

(E)=(S) wlth Gelfand triple 

(S)C(L2)c(S)* , 

This is a typlcal model of white noise spaces in Hida calculus, originally intro-

duced by T. Hida [17, 18] and developed by others [19, 22, 24 & 29] (see also 

[7, 26] for its applications). 

S 3. Hida differentiation. 

We now introduce a differential operator at which plays a fundamental and 

important role in white noise calculus. We call at the Hida differential and 

atp(x) a Hida derivative. Originally the operator at is written as 

alax(t) =a/a~(t) 

under the framework of choice H= L2(R ; dt), where B(t) .indicates the formal 

time derivative of one~limensional Brownian motion B(t), teR (cf. [17, 18]). 

Because the causal calculus or H.ida calculus is the analysis on white noise 

functionals and its basic idea is to take a white noise ~(t) to be the system of 

variables of white noise functionals, it is quite natural to consider at=a/a~(t) 

as its coordlnate differentiation. It is needless to say that T. Hida's original 

idea was a farsighted choice of coordinate system fitting for the causal calculus, 

if one sees its rapid exciting development and progress in white noise analysis 

(WNA) for the last few decades (cf. [19, 20 & 22]). 

For pe(E) and 3teE* we put 

(3.1) atp(x) := (D6tp)(x) 
" = ~ n< : xQ(" 1) ~ , 6t*f~>, 
~=1 

where f*eEc~*. Note that a D6 Is a contmuous Imear operator on (E) [12] 

It is known that 

q8 
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(atp)(x)= }imo 6~1 {~(x+c '6t)-~)(x)} , 

for pe(E). For ce(E)*, its generalized U-functional U(~)=Uc(~) is defined 

to be 

U[c](~) := <<ep, : e("'~ :>> , ~eE . 

exp <･, ~>Xexp (-(112)j~lQ2)e(E) (see [29] for its charac-where :exp <･, ~> : := 

terization). We can rephrase the above definition as follows : (Sc)(e)=U[c](~). 

In white noise calculus the collection {JB(t) ; te:R} is taken as a coordinate sys-

tem. Thus we need to define the coordinate differentiation with respect to 

this system. This can be done directly through the U-functional. Let ep be in 

(E)*. Suppose that the U-functional F of c has the Fr~chet functional deriva-

tive F'(g ; u)~~~F(~)/5~(u). If the function F'(･ ; t) is a U-functional, then the 

Hida derivative ata) of c is the element in (E)* with U-functional F'(･ ; t), i. e., 

U[atc](~)=F'(~ ; t). Note that in general atc is a distribution as a function of 

t. In other words, according to Kubo-Takenaka [24] we have 

6
 (3. 2) at c (x )= S- 1 ~(t) Sc(x) 

(cf. [12-15]). Let ~ be the set of polynomrals m E* and Its element Pe~ rs 

expressed as 

P(x)= ~ < :xo~ : , f~> , f eEcs" 

~=0 

We know that, for teT, ae and the G~teaux derivative in direction 6t coincide 

on ~p (see [14, Lemma 2.2]). 

If ~)e(E) has chaos expansion {/* ; neNo}, then denoting by ~ and f~, 

n e No their corresponding continuous versions (cf. [9. Remark 3.4], [lO, Th. 

3.1], and [11, Th. 2.1]), we have 

~ ~t~(x)=*__~In<:xo("-1) f*(t, )>, teT, 

where f~(t, ･)=6t*f~=<6t, f*> (see [14. Remark 3.2]). We always identify 

pe(E) with its continuous version 'on E*, so that, in the following we shall 

suppress the distinction between them on a notational basis. The number 

operator N is defined by 

(3.3) N( ~ < : xo~ : , f.> = ~ n< : x~~ : , f~> . )
 
. 

~=0 ~*1 
By [14, Theorem 3.5], generally, for any yeE*, Dv extends from ~~? to a con-

tinuous linear map from (E) into itself. In particular, (E) is infinitely G~teaux 

differentiable in every direction of E*, moreover, for any pe(E) the function 

qq 



y-D1'p is strongly continuous from E* into (E). Therefore, in particular, the 

function t-atp is continuous from T to (E) (see also [12, 13]). The followings 

are verified by employing reflexiveness of (E) (Lemma 4.1 in [14]) with the 

celebrated Schwartz kernel theorem : namely, for q)e(E), V~)eER(E) holds, 

and for every y eE* 

(3.4) DyP=<y. Vp> , p-a. e., 
suggesting that Vp is the Fr6chet derivative of pe(E). In particular, if h eH, 

then 

(3.5) Dh p= JTh(t)at pd L,(t) , p -a, e. , 

where the integral should be interpreted as a Bochner integral. Furthermore, 

every pe(E) is infinitely Fr6chet differentiable and the k-th F~chet derivative 

of ~) is given by VkpeEekR(p) (cf. Theorem 4.3 and Theorem 4.4 in [14]). 

Moreover, the gradient V extends from ~ to a continuous linear operator from 

Dom (1/N) into L"(T-(L2) ; dv) (see [15]), where (V~))(t, x)=at~(x). 

S 4. De Rham complex. 

First of all we start on a notation. ~? is the whole space of C-valued poly-

nomials on E* as described in S 3. Note that ~ is dense in (L2). For peEN+, 

the p-fold exterior product space APK is defined by APK:= {(oeRpK: o((o)= 

sgn (a)'o,. Vae~~~p}, where ~~p is the symmetric group of order p. We intro-

duce the following metric in APK: i.e., for any (o, TeAPK such that a,=flA 

p), the inner pro-"' fp, r=glA "' Agp, fkeK, gkeK (for any k=1, 2, ･･･ , 
duct between co and r is given by 

<Q,, r>APK:= ~ sgn(a) ll<fk, g.(k)>K 

"e9p k=1 
APK' denotes the completion of APK by the above metric <･, ･>APK, with 
AoK'=C. Its element is called a p-fold skew symmetric tensor, and Ap is an 

alternating operator from RpK into APK When B := ee*, then D"(B):= 

~r~jeNDom (B~). We denote by ~(APK') the whole space of- APK'-valued poly-

nomials on E*, whose element is expressed by 

(4.1) (o(x)= ~ p*(x)'~* , x eE* ~ 

~=1 

where P~"e~?, ~~eAp(RpD"(B))CAPK'. Notice that ~(APK') is dense in 

A~(K), and A~(K) is defined to be (L2)RAPK' which is identified with 

I OO 
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ム2（E＊→APκc；4μ）in　a　usual　mamer［32］．

　　Now　we　will　introduce　a　linear　operator4p　from　g（APκ‘）into　g（AP＋1κ‘）

for　eachρ∈ハ㌦．Actua1五y，for　anyω∈9（Apκc）especiaHy　of　the　form（4．1），

the　operator4P（……4P（θ）＝＝4P（θ，∂‘））三s　defined　as

　　　　　　　　　　　　　　　セ　　　　　　　　　　（4．2）　　　　　　　　　4ρω（x）…≡…（ρ十1）Σz4p＋1（θ・∂‘P隠（κ）⑭ξπ），

　　　　　　　　　　　　　　π＝1
where∂εis　the　Hida　differential（see§3）．We　have　Pπin　our　standard　repre－

sentation　of　element　in（L2）：

　　　　　　　　　　　　ヤ　　　　ルしアの
　　　　　　　　　　　Pπ（万）＝Σく；兀頓：，ん〉，
　　　　　　　　　　　　　　　こ謂1

whereんis　the　element　in　Eσ⑭εgiven　by

　　　　　　　　　　　　　ム　　　　　ム　　　　　　　∫Fα黒εδαηα・」⑭●”⑭ηαレbわα∈c・ηα♪こ年Eσ》

　　　　　　　　　　　　　　　Note　that　all　representations　of　Pπare　everywhere　defined，continuous　functions

on　E＊．　Therefore，the　U－functional　of4p（θ〉ωis　given　by

（4．3）　　　　．U［4P（θ）ω］（ζ）

　　　　　　一識｛警α尋εδα譲、（ηα、，‘・ζ）…（ηα肌，王鴎ζ）…（η　ζ）｝

　　　　　　　・θ（ηαμ，‘（オ））〈躍1（π）〈・9・〈ωP（π㌧　ζ∈E／

where　the　symbol〉means　omission　of　the　term．For　eachρ∈瓦，賜（θ）1s

densely　de行ned　linear　operator　in　A2P（κ），and，三t　is　easy　to　see　that

　　　　　　　　　　　　　　　　　　　　　　　　　　●（4．4）　　　　　’　4p＋1（θ，∂o）。4ρ（θ，∂¢）＝＝O　　on9（Apκ‘）．

Its　adlqint　operator4P＊（θ）≡4P＊（θ，∂ε）from　A2P＋1（κ）lnto　A2P（κ）is　defined　by

　　　　　　　　〈4P（θ）ω・7〉A翌＋・（κ）＝〈ω・4P＊（θ）7〉A召（κ）

forω∈A碧（κ），γ∈A召＋1（κ）．

　REMARK4・1・NotethattheU－functionalrePresentationof4P＊（θ）ωis
givenby

（生5）・U［4P＊（θ）ω］（ζ）；冶［嶺（一1）ε一・／署α曇、礁（η　ζ）πσ

　　　　　　　　　　　×（θ＊ω・（粉・ζ）Eσ一（署α器’δα壽、ηα恥ゴ（ご）

　　　　　　　　　　　・（η殉・カζ）…（ηα拠」鳩ζ）…（η　ζ幽・（π》）Eσ｝．

　　　　　　　　　　　×ω・（π）〈…〈必・（π》〈…〈ωP＋一（π）］・

．101
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for ~eE (cf. Lemma 6.2). [l 
It follows immediately from (4.4) that 

(4.6) dp*(e, at)'dp+1*(~), at)=0 on Dom (dp+1*(e)) . 

It can be deduced from denseness and the adjoint argument that dp(e) becomes 

closable for each peN+. We write its extension dp of dp, and we put A2* := 

" ~ A2P(K). Then the sequence (A2*(K), {dp(e, at)}) forms a de Rham complex. 
p=0 

REMARK 4.2. For ~eE, (oe~~(APK'), we have 

k (N(~) l c) I "' (Sa')(~= ~¥ ~ ~ b*H(V*i,t, ~H w (")A Aw (~) 
~=* l=1 *eNt i=1 

Recall Eq (3 2) m S 3, then (4.3) is obvious. 

REMARK 4.3. In general, the operator dp(e, at) constructed in such a way 

is not necessarily closable. The closability of dp(e, at) depends on the struc-

ture of the. measure p on E*. This is a very touchy problem indeed. How-

ever, fortunately in our case dp(e, at) is well-defined for the Gaussian whlte 

noise measure p defined in (2.1). 

S 5. Laplacians Ap(e, at) of de Rham complex {dp(~, at)}. 

As we have stated in S 1, it is clear why we stick to the Hida differentia-

tion, for we are aiming at opening a new pass toward analysis in mathematlcal 

physics through the framework of Hida calculus. On the other hand, when we 

say that an operator is called to be smooth if it transforms the space of smooth 

elements into itself, there is the fact that the Hida Laplacian (cf. S 1) is not 

smooth any longer in the above sense. That is why we would like to know 

what the desired Laplacian should be like, which is one of our motivations. 

One may find an answer to the matter in this section (see also Theorem 7.7 

in S 7). 

Thanks to the fact that Im (dp_1(G)) and Im (dp*(e)) are closed for peN. 

in our case, by making use of the sesquilinear form and elaborate functional 

analysis methods we can define a unique nonnegative selfadjoint operator acting 

in A2p(K). This is nothing but the desired Laplacian corresponding to the de 

Rham complex {dp(e, at)} . In the last we shall give a primictive version of 

the de Rham-Hodge-Kodaira type decomposition for the p-forms in the L2-sense. 

We first consider the bilinear function Jp on Dom (Jp(e)) := Dom (dp(e))rl 

t0~ 
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Dom(dp_**(e)), which is dense in A2P(K). For peN+, Jp(e)~Jp(e, at) is de-

fined to be 

(5.1) ./p(e)((v, 1') := <dp(e)(o, dp(6))r>A*v+'(1") 

+<dp_**(e)co, dp_**(e)r>A2P-*(K) 

for any Q,, reEDom(Jp(e)). This Jp turns to be a sesqullinear form on A*P(K) 

X A.P(K). Note that this formalism indicates the Laplacian Ap to be roughly 

given by dp*dp+dp_*dp_** as usual. As a matter of fact, it is easy to see 

that the form Jp(e) is a nonnegative, densely defined, closed form on 

Dom (Jp(e)). On this account, we obtain the following representation of Frie-

drichs type. 

PROPOSrrlON 5.1 [16]. Let Jp(e, at) be a nonnegative closed sesquilinear 

form with the dense domain Dom (Jp(e)). Then there exists a unique nonnega-

tive selfadjoint operator Ap(e)~~Ap(e, at) actirig in A,P(K) such that 

(5.2) <(v, Ap(e)r>A.P(K) =Jp(6))(co, T) , 

for (t,eDom (Jp(e)), reDom (Ap(e)), peN.. 

REMARK 5.1. In the above assertion, Dom (Ap(e)) is dense in Dom(Jp(e)) 

in the sense of Jp(e)-form norm, as a consequence Dom (Ap(e)) is also naturally 

dense in A*P(K). For the proof, see Theorem 2.2 and S 111 in [16]. [] 

Proposition 5.1. and the second representatron theorem [23 VI 2] Im 

mediately gives : 

PROPOsrrlON 5.2. There exists a unique nonnegative selfadjoint operator 

Ap(e, at) in A.P(K) such that the equality 

(5.3) <Ap*/'(e)(,, Ap*12(e)r>A8P(K) =Jp(e)(w, T) 

holds for every (o, reDom (Ap*/'(G))=Dom (Jp(e)), peEN+ (see also [16, Theorem 

2.3]). 

REMARK 5.2. Proposition 5.1 is unsatisfactory in that it is not valid for 

all u, veDom (Jp), which is furnished by Proposition 5.2. What is essential in 

(5.3) is that Ap*/"(e) is selfadjoint, nonnegative, (Ap*/2(e))'=Ap(e, a,), and that 

Dom (Ap(e)) is a core of Ap*/'(G). [] 
For the case p=0, we need to define the operator Ao(G) properly. The 

answer will be given by a version of the well-known von Neumann type theo-

I03 



rem [32, Il]. Hence we can define Ao(e)E:AQ(e, at) by 

Ao(e) := (do*do)(e) ' 

1 hus we attam that {A (e)}~=0 is the Laplacians associated with the de Rham 

complex {lp(e)}~=0' Now we are in a position to state a decomposition theorem 

of de Rham-Hodge-Kodaira type for the sapace A2P(K) in L2-sense [16, Th. 2.5] . 

THEOREM 5.3 (Decomposition of de Rham-Hodge-Kodaira type for the space 

A2P(K)). For all peN+, the space A2P(K) admits the following orthogonal de-

composition : 

(5.4) A2P(K)=1m (lp_1(e))~lm (d p*(e))eKer Ap(e) . 

N. B. Notice that the above decomposition assertion (5.4) is valid even for 

p=0 with 1_1(e)=0 for convension. 

S 6. Explicit forms of the Laplacians Ap(e, at)' 

Here we shall give an explicit form of the Laplacians {Ap(~, at)} p on 

{~~(APK')}p, which is extremely important on a basis of the fundamental pro-

perties of our Laplacians. We first consider the element coe~(APK') of the 

form : 

co(x)= ~ p~(x)'~* (xeE*, P*e~) 
~=' 

= ~ < : xo~ : , f*> w(")A Aw(p~) 

~=1 

where f~eEEce^, ~*eEA (RpD"(B)) Then recallmg Eq (4 2) we have 

(6.1) , dp(e)(2'(x)= ~ ~ b. ~ < : xe(~-1) _~e("-1)(V* ; l)> ~^ 
~=* *eN" l=1 

X e(~･(1),*(t))Awl(~)A "' Awp(") 

where we put 

*o(~-1)(~*; k):= v*(1),* ･･' "' RV*(~),~ R ~ 
and employed a formula for exterior products. Notice that 

6*f~= ~ b./n' ~~･(h),･ -^ o(" )(V* ; k) . (t) . -" ~ "eN" h=1 
Then its U-functional (cf. (4.3)) is given by 

I0+ 
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U[dp(e)co](~)= ~ ~ ba ~ (~ ~) ,* 

* (1), ,*, 

'*=i *eN" i=1 

v 
"' ~*(i).~' e) "' (~^("),"' ~) 

Xi~l(Is)(i, t ; G)Ai~2(n)A "' A12)p+1('*) (~eE) , 

where we set w (") w, 1('*) for j=2, 3, ..., p+1, and 12)1('*)(i, t;e):= 

e(V (t)). *(t), n 

LEMMA 6.1. For any reE~~)(AP+1Kc) with the form ~ ~1(x)~l, dp*(e)r(x) 

l=1 
is given by 

p+1 
(6.2) d *(G)T(x) ~ ( 1)J I ~ {Q (x) <x(t) e*(v(1))> 

j=1 l=1 
v ((~*v (t) atQe(x))I[c} v (1)A Av (1)A "' Avp+1(1)' 

PROOF. By the isomorphism in A2P+1(K) we get 

(6.3) <dp(e)Q,, r>A2P+i(K) 

p+1 
:= ~ ~} ~ sgn(a)~b* ~ ll<i~i(~), v.(*)(t)>K 
~=1 1 1 aegp+1 = * f=1 i=1 J
 
E
.
 

X < : x~(~-1) ' ;?~("-1)(~* ; j)>< : xot : , gl>p(dx) 
,~ 

where note that only 22)1(~) depends on the parameter j. By employing a direct 

result derived from the coordinate multiplication op~rator formula in WNA (cf. 

Remark 6.3 below), we may apply Lemma 2.2 [14] for (6.3) to obtain 

k
 
k
 p+1 
~ ~ ~ sgn(a)H<t~i(~), va(i)(1)>K 
n-1 l=1 'e. gp+1 i=2 

I
 
<x(t), e*vc(1)(1)>･<: xo* f > < xel X E* . : , gl>p(dx) 
k k P+1 - n-1 l=1 'e9p+1 t=2 j
 
:
 X <: x~~ , f~> (G*v.(1)(1), a < xol gl>)HcP(dx) 
E* 

= : 11+1s ' 

because we used above the Fubini type theorerrl relative to dp and d,,. Note 

that the relation 

l05 
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　　　　　　　　　　　　　ハ　　　　　　　　　　　　　　　　　
（6．4）　　　」、〈…〈」協＝Σ（一1）鳶一1」盈⑭（」、〈…〈」為く…〈」π）．

　　　　　　　　　　　　　盈冒1

By　making　use　of（6．4）we　can　rewrile

　　　　　　　　　　あ　カロ　　　　　　　　　　　　　　　　パ
　　　　　　　12＝一ΣΣ（一1）ノー1くω，（θ＊”ノ（ε），∂‘ρこ（κ））物

　　　　　　　　　」冨1’昌1

　　　　　　　　　　　　　　　　　　　　　　　　　×り1（りく…〈”’（りく…〈秒P＋・（り〉A2P（κ），

where

　　　　　　　パ　　　　　　　　　　　　　　　　　　　　ニ　　　　　　　　　むハ
　　　　　　∂ε（？1（π）＝く：癖（ε一1）：，Σ砺Σηβ（‘），こ（ご）・・ヨ⑭（1－b（η＊；f）〉

　　　　　　　　　　　　　　　β∈坪1　伺

　　　　　　　　　　　　　　　　ム　　　　　ムwhen8・‘is　given　by　Σわβ・ηβ（1），ε⑭…⑭ηβ（‘），」．　Likewise　as　to　the1ユterm，

　　　　　　　　　　β∈1vl
we　conclude　the　assertion。　　　　　　　　　　　　　　　　　　　　　　　　q．e．d，

　　REMARK6．1．We　need　to　explain　how　to　interpret　the　term＜κ（’），θ＊びσ（1）（り〉．

The　elementθ＊びσ（1）（ε》in　Ho　is　wel夏approximated　by　a　sequence｛ぬ｝畏1⊂Ec

under・urabstractsetしing・S・wecandeHneitbyalimitingPr・ced旦re・

　　REMARK6，2．As　a　technical　merit　of　computation　in　white　noise　calculus

（cf．Remark1．1and　Lemma2．4in［9］），we　have

　　　　　　　　　　　　　　　　π　4　　　　　　：〈Xy∫・〉・●0〈X・∫π〉：＝翫え‘二eく工一ヲ砂：h・一暁等…

　　In　fact，the　operation　of4p＊on9（AP＋1κ‘）is　also　descr孟bed　evidently　by

’the　U－functional（cf．Remark4．1）．

　　LEMMA6．2。　Th2U一勉ηoごガo麗」ゆ∫4p＊（θ）γ（π）（κ∈E＊）ガsgi泥ηδ』y

（6・5）　U［糊γ］（ξ）一習（一・発・細δβ、典（ηβ（‘》。ε・ξ）

　　　　　　　　　　　　　　　　　　　　　ニロユ　　　　　　　　　　　　×（θ（巧σ），ξ）十ΣδβΣ（θ＊（びゴ‘り），ηβ（‘》，ε）

　　　　　　　　　　　　　　　　　　　β　　f＝1

　　　　　　　　　　　　　レ　　　　　　　　　　　　　　　　　む
　　　　　　　　　　　　×蔑（ηβ（盈）」・ξ）一β黒、δβ‘ヨ鳶ヨ（ηβ（鳶）1星・ξ）

　　　　　　　　　　　　　勘≠‘　　　　　　　　　　　　　　　　　鳶≠‘

　　　　　　　　　　　　×（節ηβ（の，ε（♂〉）｝

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　×び一G》〈び2（屡）〈…〈びノ（ε）〈…〈びP＋、（り，　（ξ∈E）．

　　PRooF．By　Lemma6，1we　imme（1iately　obtain
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(6.6) U[dp*(e)r](~)=S(dp*(e)r)(~) 

P+1 k ~ = ~~ (-1)j-1 ~ {S(Qt(x)'<x(t), e*(vj(t))>)(~) 

j=1 l=1 
-(~~T5j(1), S(atQl(x))(e))1!c} 

v Xvl(1)Av2(1)A "' Avj(1)A "'A vp+1(1) 

While, we easily get 

(6 7) ~ 5 ~ 6~(t) S(Q I )(~) . S(atQ I ( ' ))(~) = 

= ~ bp ~ Vp(i),1(t)･(VP(1),1' ~)Hcc 

peN1 t=1 

"' 
vp(i) Iv, ~)Hc ~' (~p(t),1, e)Hc ' ~eE . 

To compute S(~1(')'<x, e*(vj(1))>)(~) (~eE), we may utilyze similar type 

equalities as in Remark 6.2 (cf. Lemma 2.5 and S IV in [9]) to obtain 

(6.8) S( : fi < ･, ~p(i), l> : <(･)(t), e*(vj(1)>)(~) 

t=1 

1 l+1 = ~ (-1)1-i'l ~ (~ p(jl)' l+~p(j~), l+ "' +~p(jk), l, ~)1'1 
(1+1) ! t=1 jl<j2<"'<ji 

l-1 1 1-l + t~1 (e*(vj(1)), V , ~ (-1)t-k-1 ~ p(i) l) 

(1-1) ! i=1 jl</2<"'<jk 

v X(Vpul) t (j ) l+ +vp jk),1, ~)1-l . H"" +vp t ' 

where we put 
.~p(h),1 := vp(k),t, (for k=1, 2, ... , l) , 

~p(1+1)'1 := G*(vj(1)), for k=1+1) . 

In connection with Remark 6.1, commutativity between the S-transform and the 

limiting procedure with k-co is required in the above computation. However, 

it is verified with the Lebesgue type bounded convergence theorem with respect 

to the GatiSsian white noise measure. To complete the proof it is sufficient to 

substitute (6.7) and (6.8) for (6.6), paying attention to the fact that 

S(< : xol : , gl> <x(t) e*(v (1))>)(e) 

(
 

= ~ bp'SI : H <x, ~fi(k),1> :<x(t), e*(vfl')>)(~). 

peNl ¥ k=1 
q, e. d. 

REMARK 6.3. When we observe carefully the computation of the term 

I 07 



<dp(e)(o, r>A2P+1(K) in the proof of Lemma 6 1 then we may regard that it rs 

roughly equal to 

C(p)Ap+1e<atp~~, ~l>p 

where C(p) is some constant depending on peN+. Then 

<atp~. Q >p=<P~^, [x]Q >p-<p~~, at~l>p 

=<P~~, (at+at*)~l>p-<p~^, at~l>p 

where we used the significant discovery on the coordinate multiplication operator 

by x(t) in WNA (cf. [26]). The above computation means roughly that the 

adjoint at* is employed in order to determine dp*(e), but in e-dependent man-

ner. It is interesting to note that our discussion in Lemma 6.1 and Lemma 6.2 

provides a subtle framework to construct a nicer Laplacian Ap(e, at) by making 

use of the operator e. We would be able to take much advantage of it to 

apply our theory later for the problems arizing in quantum physics (see S 7 or 

[8] ) . [
]
 

Now we are in a positon to express the explicit form of our Laplacian 

Ap(e, at) on ~)(APK'). By the discussion in S 5, we have only to compute 

dp*(e)dp(e)a'(x) and dp_Idp_1*co(x) respectively. To take (6.1) and (6.2) into 

consideration, it is easily checked that 

(6.9) d p*(e)dp(e)co(x)= ~ ~ b~ ~ [P~l (_1)j-l 

~=1 ~ I j=1 
' {< : x':~(~~1) . ;7~("~1)(V* ; l)>･<x(t), e*(i~j(~))> 

'~ 
-(e*i~j("), at<: x~("-1). ~R("-1)(V*; l)>)!Ic} 

,~ 

J
 

v Xi~l(*)(i, t e)Aw (^)A "' AtZrj(*)A "' Ai~pl(~) . 

Next we consider the other part : in fact, 

lp_1(e)dp_1*(G)co(x)=dp_1(e)(d *(e)Q,(x)) 
p-l 

= ~ (-1y-1 ~ [dp_1 {P~~(x)<x(t), e*(wj(~))> 

j=1 ~*l 
v Xw (")A "' Awj(~)A "' Awp(")}] 

jP~1 (~1)jll ~ [dp_1 {(~~~~1j("), atp~~(x))Hc 

= ^=1 
v Xwl(~)A "' Awj(~)A "' Aw (~)}] 

= : Jl+J2 ' 

l08 
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As to Jl~part computation, it is verified with ease that 

v 
dp 1[P (x)<x(t) e*(wj("))>･wl(~)A "' Awj(~) " A ' Aw (n)] 

= b. ~ < : xo(~-1) . ~lo("-1)(~* ; l)>･<x(t), e*(wj(~))> '~ 
v 

' wj(*)A " Xe(V (t))Aw (~)A " ' Awp(~) ^(1),* 1 
+p~n(x)'e[(e*wj(~))(t)]Awl(n)A "' v Aw (~)A "' Awp(~) . 

As to J2-part computation, it goes almost similarly. Indeed, 

v lp_1 {(e*wj(~), atp~n(x))Hc'wl(~)A "' ' Awp(")} Awj(")A " 

= ~b~ n~1 ~{ (e*wj(~), ~･(1),~(t))~c ' 

k*l 

'<:xe(n-2) . g(~(n-2)[_~~e(n-1)(~*;1)](k)> 

v XiZ)1(-n)(k, t; e)Awl(n)A "' Awj(n)A "' Aw (^) 

Flnally we attain the principal result in this section. 

PROPOSfTION 6.3. For pe:N+, we have 

~Lp(e, at)co(x)=n~kl {~b* ~ <x(t), e*e(V･(m) ~ , (t)> 

= " ~ 
~ '< : x~(~-1) . R(~-1)(V* : In)> ~)b^ ~ ~ * ,~ Im In+1 

'(V*(~),n(t), ~*e(~ . *(1) ~(t)))Hc 

~ '<: xe(n-z) : _*~(n-2)[_"~~(n I) ~ V*; l)](In)>} 

Xwl(~)Aw (~)A Aw (n) 

+ ~ ~p~(x)'wl(n)Aw2(~)A "' Ae~*wj(~)A Aw (n) ~ 
j=1 ~=1 

S 7. De Rham-Hodge-Kodaira decompositions associated _ 
with Hida derivative. 

The purpose of this section is to introduce two distinct decomposition 

theorems of de Rham-Hodge-Kodaira type [8] (R-H-K type for short). Similar 

results in infinite dimensional analysls or stochastic analysis may be found in 

[2] & [3l]. It is ,quite natural to employ the weak derivative in some sense 

in order to define the exterior differentials on forms, instead we do adopt the 

Hida differentral to realize it. This is only our unique point, compared with 

other related works. Our decompositions being supplying with interesting and 

stimulating objects in mathematical physics, namely, with those especially 

lO~ 
~
 



oriented to analysis of Dirac operators in quantum physics, are naturally derived 

as one of applications in tenhs of our Laplacians constructed in the previous 

sections, which can be said to be the R-H-K type theorems associated with 

Hida derivative in WNA. 

For peEN+ we define 

D"(Ap(e)) := (~ Dom (Ap(e)~), 
~eN 

Moreover, for (~,eD*(Ap(~)), we define 

llcollk := ~ ll(1+Ap(6)))1(oll~2(E*-APK' ap) 112 

l =0 

and denote by H2,k(A2P(K)) the completion of D"(Ap(e)) wlth respect to the 

norm ll･llk. When we set 

~ (7.1) H2,=(A2P(K)) := r~j H2,k(A2p(K)) , 
k =0 

then (H2,*(A2P(K)), !! ･ Ilk) is a complete, counta~ly normed space. We denote 

the spectrum of operator A by the symbol o(A). The second quantization 

operator dF1(A) for a selfadjoint operator A in Hc is defined by 

(dF1(A)(o)(x)= ~ < : x~~ : , Ael[k]f~> , (~'~E~? 

k=1 

where A~l[k] := IR ･･･ RA/¥R "' R1 (k~n). Then dF*(A) is a uniquely deter-

mlned, selfadjoint operator acting in (L2). We define the operator dF2(~) by 

dF (P)(~):= ~ ~ol[k] , 

k=* 

which is a nonnegative selfadjoint operator acting in APK'. Recall that the 

operator B is given by ee* (cf. S 4). So let us write the operator acting in 

A2P(K) as 

(7.2) I p(e) : = d Fl(A)RIf +1bRd F2(P)(B) 

with identities : Ib := I(L2), If := IAPK,. Further we define the unique nonnega-

tlve selfadjoint operator F1(A) acting in (L2) by 

F (A) S-1 ~ Ao~)S 1 := 
~=0 

where S is the S-transfortn (see (2.8)). Then It holds that 

" F (A)co(x) ~ < xo~: , Ao*f~> 
~=0 

for o,e(L2), with F1(A)1=1 (see (2.9)).- The nonnegative selfadjoint operator 

llO 
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r2（β）in　Apκc　is（ie負ned　by

　　　　　　　　　　几（P）（β）：＝⑭Pβ，　（ρ≧0）．

Let

　　　　　　　　　　T『ρ（θ）：＝1－、（ハ）⑭∫▼2（P）（β）

acting　in　A，P（κ）．Forω∈Dom（rp（θ）た）（た≧1），we　define　the　norm

　　　　　　　　　　lllω11』：＝II（1＋rp（θ））距ωIIA2P（κ），

and（1enote　by（S）ぬ（Apκ）the　completion　of　Dom（rp（θ）た）with　respect　to　the

inner　product　induced　by　the　norm　II卜lllた．Then（S）々（APκ）becomes　a　Hilbert

space、　Set

　　　　　　　　　　　　　　　　　（7．3）　　　　　　（S）（Apκ）：＝（（S）々（Apκ）．

　　　　　　　　　　　　　　　　々＝1
（（S）（Apκ），胴llた）is　a　complete，countably　normed　space．

　　Now　we　shall　state　the　first　decompositiong　theorem：

　　THEoREM7。1（［8］，1992）。S砂ρos2オ1副infσ（θ＊θ）＼101＞0．　丁加π地24260η1一

力OS魏ono11～一H一κりρ2

（7．4〉　　　　　H2・。。（A2P（κ））＝lm［△P（θ）『H2・。。（A2P（κ））］（王）Ker△P（θ）

h・」4s∫・7αiゆ∈瓦．

　　We　need　the　following　Iemma：

　　LEMMA7．2。Fo7α〃カ∈瓦1麗加びo
　　　　　　　　　　　　、
（7．5）　　　　　　　　　△p（θ）等∫p（θ）　（伽A2P（κ））

んoJ4∫彪0加7α0γ09παJffys2ηS2．’

　　PRooF　oF　LEMMA7．2．We　put

　　　　ハ　　ハ　　　　　　　　　　　　　　　　　　　　　　　　　ハ　　　　　ハ　　　　　　　　　　　　　　　　　　ム　　　　　ム
　　　　8肌⑭π［η＊；θ＊θ］：＝ηα（・》，π⑭…⑭9＊θ（ηα（肌），π（オ））⑭…⑭ηα（π），π．

A　simp豆e　computation　with　Proposition6．3and　the　recursive　relation　of　the

Wick　ordering（cf．§2）gives

　　　　△P（θ）ω（π）譲、（かκ⑭π：，多δα・θ肌歯π［η＊1θ＊θ］＞）

　　　　　　　　　・勘（π》〈…〈ωP（π）

　　　　　　　　　千煮（夢（π）・ω・（のく…〈θθ＊ω∫（π）〈…〈ψP（π》）

　　　　　　　　＝（4TF1（θ＊θ）⑭1∫）ω（兀）十（1δ⑭‘∫T’2（P！（θθ＊））ω（κ），

川

、



which implies that (7.6) holds on ~p(APK'). Clearly !p(e) is essentially self-

adjoint on ~(ApK'), since so is dF1(A) (resp. dF2(P)(B)) on ~p (resp. ~p(ApK')). 

Therefore the closedness verifies the assertion. q. e. d. 

PRooF. By virtue of the spectral property of the second quantization 

operators and the Deift theorem [4] for commutation formulae of operators, it 

follows immediately from Lemma 7.2 that inf (T(Ap(e))¥{O}>0. Obviously we 

have 

A2p(K)=1m (Ap(e))~Ker Ap(e) . 

Roughly speaking, the matter is whether A2P(K) should be replaced with 

H2,*(AzP(K)) when we put restriction on the domain of Ap(e) to H2.*(A8P(K)) 

in the right hand side. However, clearly this turns to be true. An application 

of the spectral representation theorem leads to 

D-(Ap((9))=1m [Ap(e) r D"(Ap(e))]RKer Ap(e) . 

To complete the proof we have only to note that H2,*(A2P(K)) is isomorphic to 

D~(Ap(e)) as a vector space. q. e.d. 
REMARK 7.1. In Lemma 7.2, when p=0 then we have !o(~)=do*(e).do(e), 

which is, of course, a nonnegative and selfadjoint operator. This is due to 

von Neumann theorem. 

REMARK 7.2. It is generally right that the heat equation method is even 

effective for the proof of decomposition theorem on the space of the type like 

Hz *(A p(K)) In fact slmilar works on R-H-K type decompositions by Shige-

kawa '[3l] and Arai-Mitoma [2] are greatly due to the heat equation method. [] 

Finally we shall introduce our second decomposition theorem for the space 

(S)(ApK) (see Theorem 7.8). However, since the structure of (S)(APK) is dif-

ferent from that of H2,=(A2P(K)), the heat equation method is not applicable 

any more to the case. So necessity will occur that we have resort to the Arai-

Mitoma method. Their method is principally due to a comparison theorem, 

which is derived by a series of finer estimates based on precise computation of 

weighted norms. There the spectral theory plays again an essential role in 

reduction of the problem, representation of the operators, and precise estimates. 

Before mentioning the decomposition theorem we need to prepare for the basic 

estimates whereby the nice property of our Laplacians reveals itself, namely, 

our Laplacians do serve as desired operators which map the space of smooth 

p-forms into itsel~ (see Theorem 7.7 below). 

It~ 
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LEMMA 7.3. Suppose that 

(7.6) e*e ;~ (1 + e)1 Ilc 
holds with a positive constant e. Then for each s>0, all peN+ and keN+, 

there exists a positive constant Co(e, k) and there can be found a proper positive 

integer ko such that the inequality 

ll ~s~1(1 +Ap(e))k(~)IIA2P (K) ~ Co(e, k) ･ Il (1 +Fp(e))koo,IIA2P(1() (7.7) 

holds for every (oeDom (Fp(e)ko), where ~* F (e')RIf ~1 := I . C] 
The proof is an easy exercise. It follows from the spectral theory and the 

fundamental properties of Ornstein-Uhlenbeck semigroups. 

REMARK 7.3. We write the Ornstein-Uhlenbeck semigroup (e.g. [33]) on 

(L2) as T*:= F*(e~*), s~~O. There exists its inverse operator T*-* being self-

adjoint, which is given qy T,-1=F1(e*), s>=0. Moreover, its natural extension 

to A2P(K) is written as ~*-* := Fl(e*)RIf' which appeared in the above (7.7). [] 

As a direct corollary of Lemma 7.3 we readily obtain 

LEMMA 7.4. Under the assumption (7.6), for all peN+ and keN there 
exists a positive constant Cl(e, k) such~that the inequality 

ll(1+A (e))k(~,IIA2P(K)~ C1(e, k)･ II(1+Fp(e))k(~,llA2P(K) 

holds for every (oeDom (Fp(e)k). C] 
Therefore, by repeating the reduction to the subspace JC~P:= K~RAPK' 

and employing the limiting proceeding for the acquired relative to ~?(APK'), we 

can easily see that 

LEMMA 7.5. Under the assumption (7.6) we have 

Dom (Fp(e)h)CDom (Ap(e)k) 

The next proposition is a comparison theorem for the spaces H2.*(A2P(K)) 

and (S)(APK), whereby our second decomposition can be derived according to 

the Arai-Mitoma theory. One may find some of familiar techniques and methods 

useful and effective in this argument as well, and those have been used well 

in the Malliavin calculus [33]. ' 

ll3 
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　　PRoPosITIoN7．6．

（7．8）

ho’43∫07　α〃　ノ》∈…1V÷．

Isamu　DδKU

Sπρρoso　（7．6）．　　Th2π　ごん2　ぎ箆oJμs∫oη

　　（S）（Aρκ）⊂H2・o。（A2P（κ））

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　ゆ　　As　to　the　proof　it　is　sufHcient　to　show　that　Ilγ”為≦αiγ”IN，（γ∈g（APKc）），

　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　for　anyハr＞た（1〉1た∈N），eachヵ∈ハな，and　some　positive　constant　C．In　fact，

an　apPlication　of　Khinchin7s　inequalities　yields　the　assertion　by　virtue　of　hyper－

contractivity　of　T¢．　The　next　assertion　indicates　that　our　Laplacians　have　such

a　nice　property　as　stated　in§1．　　　　　（

　　THEOREM7．7．

（7．9）

∫0γαμρ∈ハし．

U加『27ガh2αss麗彿ヵごズon（7．6）ω2h⑳6

　　　△P（θ）［（S）（Apκ）］⊂（S）（Apκ）

　　It　iS　SU伍cient　tO　prOVe

　　　　　　　　　　　　　　　△Pπ（θ）ω∈Dom（Tpπ（θ〉た），

forω∈（S）た（APκ）（沢πP，a11々∈ハζand　eachρ∈ハな．It，is　easy，hence　omitted．

Ultimately，we　are　now　in　a　position　to　state　our　R－H－K　type　decomposition

theorem　for（S）（Apκ）．

　　THEoREM7．8（［8］，1992）．　14ssκ解θオh200π4臨oπ（7．6）．

（S）（Apκ）α4雁ずs疏24000勉ρos露1oη

（7ユ0）　　　　．　（S）（Apκ）＝Im［△P（タ〉『（S）（Apκ）］∈DKer△p（θ）

∫0γαμρ∈ハな．

’Th2ηオhes加02

　　PRooE　According　to　Theorem7．1and　Proposition7．6　the　elementωof

（S）（Apκ）is　decomposed　into

　　　　　　　　　　　　　　　　ω＝ω1＋ω2＝△P（θ）η＋ω2，．

with・ω1∈lm［△P（θ）田2・o。（A2P（κ））］，ω2∈Ker△P（θ），and

　　　　　　　　　η一ρP（θ）ω一∫1（瓦（ρ；θ）ω一ω2）4s∈H2…（A2P（κ）），

柚ere瓦（ぞ；θ）：一∫le一・惚p（⑳（s≧・）andlEp（θ；え）；λ∈丑lisafamily・f

spectrai　measures　associated　with　the　operator△p（θ）．Because　of（7．9），it　results

from　the　following　lemma：

”4・
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LEMMA 7.9. Ueder the condition (7.6) we have 

Qp(e)(oe(S)h(APK) , 

for all k~l, each peN+. 

((oE Dom (Fp(e)k )) 

q.e.d. C] 

S 8. Concluding remarks. _ 
After having finished writing this paper, the author learned that H.-H. Kuo, 

J. Potthoff, and J.-A. Jan had obtained very useful and important results in 

"Continuity of affine transformations of white noise test functionals and appli-

cations", Stochastic Processes and their Applications 43 (1992), 85-98. They 

succeeded in obtaining a direct simple proof of the fact that the space of white 

noise test functionals is infinitely differentiable in Fr6chet sense, which is closely 

related to our results in S 3. We found it very interesting and suggestlve, and 

stimulating as well. 

In addition, we were informed of the publication of H.-H. Kuo's paper 

entitled "Lectures on white noise analysis", which appeared as Special Invited 

Paper in Soochow J. Math. 18 (1992), 229-300. There can be found at pp. 251-

266 very interesting and remarkable descriptions about a variety of differential 

operators in white noise analysls, which are deeply connected with the contents 

of S 3 and S 5 in our paper (cf. [12-15]). Especially so excellent are his works 

on the characteristics of various sorts of Laplacians (pp. 279-249) via an infinite 

dimensional version of the Fourier transform which is compatible .with Hida 

calculus (see [7], [26]). 
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2．4　確率変分と確率変分方程式および数理物理への応用

理論物理の場の理論における朝永＝シュヴィンガー超多時間理論に現れる朝永＝シュヴィ

ンガー方程式と，ホワイトノイズ解析の2次の確率変分方程式とを対比しながら論じた。

また確率変分解析に出てくる変換の具体例や，その定義の意味を無限次元の調和解析的立

場から論じた。

　また量子重力理論におけるアシュテカ形式の数学的枠組みにっいても考察した。カイラ

ル分解とアシュテカ変数の関係を幾何学的立場から論じ，アシュテカ理論では分解から得

られる自己共役接続が重要な役割を果たしていること，また微分幾何の接続をその基本変

数に採用するなど，表面的には従来の量子重力の理論と著しく異なるが，実は一般相対論

に対する正準理論の変種に他ならないことを指摘した。加えて，アシュテカ形式によって

難解なWheele卜DeWitt方程式が非常にシンプルになる数理的メカニズムについて考察を

行った。
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Tomonaga-Schwinger Supermany-Time Formalism and 

Hida's Stochastic Causal Calculus 

Isamu DOKU* 

Abstract 

We give a rough sketch of the idea on Tomonaga-Schwinger supermany-time formalism in 

Quantum Field Theory, which is originally based upon P.A.M. Dirac's many-time formalism in 

Quantum Mechanics. It is well-known that the so-called Tomonaga-Schwinger equation plays an 

important role in supermany-time theory. And besides we introduce only a core part of Hida's 

stochastic causal calculus, namely, stochastic variational calculus. We can say that its mathemati-

cal essence is very peculiar in White Noise Analysis. Especially one of the most remarkable 

characteristics consists in Hida's theory of stochastic variational equations, which is originally 

suggested by P. L6vy's infinitesimal equation, and is chiefly motivated by the above-mentioned 

Tomonaga-Schwinger equation as well. Lastly we discuss a physical perspective for stochastic 

variational formulation of the problem in connection with other analytical tools provided in White 

Noise Analysis. 

S 1. Introduction 

The Pauli-Heisenberg Theory is a kind of Relativistic Theory, i.e., in the sense that the 

magnetic field is contained in a dynamical system, and of course, the electron itself is there 

expressed in a form of quantization of wave. It is an idea of elaborate treatment of both of light 

field and electron field in the same level as objects of Quantum Mechanics [14]. On the contrary, 

Dirac proposed the many-time formalism [l]. He thinks it is the electron itself that should be the 

object of Quantum Mechanics. He considers basically a many-body problem in Quantum 

Mechanics with its own time to each particle. Clearly it is a philosophy that the electromagnetic 

field is nothing but a measures to observe states of electron. 

Generally speaking, the Heisenberg representation is extremely useful in theoretical considera-

tion on quantum field theory, but the fi.eld operator is too complicated in expression and we cannot 

say that it is suitable for concrete computation of S matrices [9]. On the other hand, although the 

Schrddinger representation dbes not have time in the field operator and is, on this account, very 

simple (implying that it is expressed in a simple manner), we cannot use it for relativistic covariant 

theory because it allows us to regard time as a special quantity. Thus it is required to seek for an 

intermediate representation in which we can take advantage of its covariant treatment and the field 
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operator is described in a simple form as well. It had been thought for years and has been found 

now ; we call it an interaction picture. In the interaction picture, the field operator satisfies a four 

dimensional commutation relation (cf. S 2), and the state vector or probability amplitude may 

possibly vary only in the part of interaction. 

This paper is organized as follows. S 2 is devoted to a rough explanation of Tomonaga 

-Schwinger supermany-time formalism, where a basic idea of the supermany-time theory will be 

stated from a point of view of mathematical physics. In S 3 we introduce Hida's ~tochastic 

variational equations in accourdance with his causal calculus. There can be found that his theory 

on variational equations in white noise analysis is deeply motivated by the idea of Tomonaga 

-Schwinger equations which comes from the supermany-time formalism. In S 4 we discuss a 

physical perspective for stochastic variational formulation in line with white noise analysis. 

S 2. Tomonaga-Schwinger Supermany-Time Formalism 

In this section we shall review a physical perspective for famous and celebrated Tomonaga 

Schwinger Supermany-Time formalism E18]. First of all we shall give a description of quantum 

field theory in terms of canonical form (e.g. see [14], [16]). Let q)(x) be a free neutral scalar field 

with mass p, where a terminology "neutral" means that q9(x) should be Hermitian. The lagrangian 

density of q)(x) is given by 

1
 r(x)=-[ a~ q)(x)' ap q'(x)-p2 q'2(x)], 
2
 

and the action Integral is given by 

S= f d4x r(x). 

On the other hand, we regard q'(x)as a canonical variable including parameter in the quantum field 

theory via canonical form. When aoq)(x) EE ~ (x), its canonical conjugate quantity l~(x) is denoted by 

a L(x) 
2r(x)E a ~ (x) = q' (x) 

Then the Hamiltonian H is as follows : 
r
 
1
 f

 
HEJ d3x [;t(x) ~(x)-r(x)] =- d3x {~2(x)+~[ak q)(x)]2+p2 q)2(x)}. 2

 
k
 We set (~,pEVIF~ as usual. As is well known, q'(x) can be expanded as 

1
 

1
 
r
 

x [a(p)e~ ip*+ al(p)e+ ip*] q' (x) = (2;r)3/2) d3p 
JT~~ 

with po = e,p, Px =pP.x~. q)(+)(x) (resp. q'(~)(x)) denotes respectively the positive (resp. negative) 

frequency part of q'(x). Hence it follows that 

1
 

1
 f
 
d3x e~ip*x [Q,p･q)(O, x)+ i 7t(O, x)], a(p) = (2 ~)3/2 ' 

1
 
1
 aA(p)=(2,T)3/2'/~~~ f d x e+ip'x[(~, q'(O x) t ;t(O x)] 

Thus we readily obtain the commutation relation 

-2-
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[a(p), a+(p)] = (~(p-q), 

and [a(p), a(q)] = [(rL(p), a+(q)] =0. 

On this account, the four dimensional commutation relation is given by 

1
 

1
 f

 
[q)(x), q)(y)] = [q)(+)(x), q)(~)(y)] + [ep(~)(x), q)(+)(y)] (e~ ip(*~y) - e+ ip(*- y) =(2,r)3 d3p 2 

)
.
 (~, p 

So much for preliminaries (cf. [9j). We are in a position to state the supermany-time formal-

ism in quantum field theory, which will be prerequistites for better understanding of Hida's 

stochastic variational formulation in his causal calculus to be introduced in the following section. 

Distinguished from the case in Heisenberg picture, the state vector changes itself as time t does 

in the interaction picture. However, it is contrary to the principle of relativistic covariance that 

we may regard the state vector simply as a function of t. For instance, it is impossible to describe 

a relativistic many-body problem in a covariant manner when we consider the common time t for 

x(~) corresponding to n particles in the many-body problem. In each space coordinates x(1), x(2) ... 

order to satisfy the covariance requirement, it is necessary to introduce times xb(1) " ' ( ~) 

xb corre-
sponding to each particle. If fortunately 

(x(j) - x(k))2 < O (2.1) 

holds for all distinct pair j, k, then thanks to the Eiristein causality, we can define without 

contradiction a concept of the state being in possession of many time like the above. We call it 

many-time formalism [1]. Supermany-time formalism [18] is the one obtained by extending this 

many-time formalism so that we may gear it to quantum field theory [14]. Now we consider 

introducing a concept of spacelike hypersurface a (or=C) instead of a finlte number of times. The 

hypersurface is the totality of points which are expressed as 

;~) = f .(x), (2.2) 

where f. is a continuous function. We assume that any two points on Eq. (2.2) consist in a mutually 

spacelike position as indicated in (2.1). Generally speaking, the function form of f. may change by 

a Lorentz transformat_ion, but there would not be any change in the result that the transformed one 

should still lie in a spacelike hypersurface. We denote a state vector by the symbol I (r > in 

superma'ny-time formalisrri. The time evolution in supermany-time formalism is to see how I (; > 

varies in accordance with the change of a. Let a* be a spacelike hypersurface which is distinct 

from ~ only in the neighborhood of a point xp On a, and Go* denotes a four dimensional volume of 

the infinitesimal part which is surrounded between (r* and c. The sign of (t,* will be defined as 

follows for convention : it is plus (resp. minus) when cf* consists in the future (resp. past) side of (r. 

That is to say, 

- 

 

(2.3) (~,*= d3x Cfq.(x)-f.(x)]. 
(
~
 Then the vanation (~ cr(x) I (;> wath respect to (i rs defmed by 

(~ a >- (r> l cF> EE ~imo 

(~ (i(x) (h,* ' 
where the above definition should be interpreted not only as an extension of time derivative but also 

as an operation of taking its density even spatially. 

In the interaction picture the Hamiltonian H is given by 

)a3 



H = Ho + HI, 

where Ho is a Hamiltonian of the free field, and HI is a Hamiltonian of the interaction. Then we 

have the following Schr~dinger equation 

' a t> Hlt> lat 
where I t > s denotes the state at time t in the Schrddinger representation. The state vector I t> 

I in the interaction picutre is given by 

l t>IE e'H't I t>s. 

Thus it follows immediately that 

.a I t>1=HI(t) I t>I (2.5) lat 
with HI(t)E exp{i Ho t}･HI exp{-i H* t}. If any derivative coupling is not contained in the 

interaction, then HI is obtained by integrating a polynomial of several field operators q?j over a 

three dimensional space. Since those operators are independent of time in Schrddinger representa-

tion, writing them as epj(x) U=1, 2, ･･･, n), we have the following expression 

HI=HI[q)*(x), ep,(x), "', ep~(x)] . 

On this account HI(t) can be rewritten into 

HI(t)E HI[q'*(t, x), "', q'~(t, x)]. 

Essentially, q?j(t, x) is nothing but an operator epj(x) of the free field, so that, we can say that HI(t) 

is an interaction Hamiltonian by which the free field operator is described. Furthermore, in the 

case without derivative coupling, it turns out to be that 

HI(x) = - LI(x), 

where HI is an interaction Hamiltonian density, and LI is an interaction Lagrangian density. Then 

we may employ the above to rewrite Eq. (2.5) into 

l i cf>1=j~1(x) I cr>I 
(~ (i(x) ' 

Notice that HI in Eq. (2.6) is a polynomial of the free field epj(x) ~=1, ･", n). We call (2.6) a 

Tomonaga-Schwinger equation. It is interesting to note that Eq. (2.6) is itself a covariant equation. 

The Tomonaga-Schwinger equation Eq. (2.6) Iooks like an infinite simultaneous partial differential 

equations, so the necessary and sufficient condition in order that the solution of Eq. (2.6) may exist, 

is as follows : 

I (;>1= I a>I (5:a(x) (~;a(y) ' (~a(y) (~a(x) 

holds for any x., y.eC, where C is the totality of points such that x.-yp is spacelike. While, an 

application of Eq. (2.6) enables us to rewrite the condition Eq. (2.7). As a matter of fact, inorder 

for Eq. (2.7) to hold for any I a>1, it must be that 

(~.8) [HI(x), HI(y)] =0, 
as far as, (x-y)2<0. We call it the integrability condition. 

Remark. If there exists a derivative coupling in the interaction, then the relation HI(x) = - LI(x) 

fails to hold, with the result that the Tomonaga-Schwinger equation Eq. (2.6) can never be covariant 

any longer in relativistic sense. 
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S 3. Hida's Stochastic Variational Calculus. 

We introduce briefly stochastic variational calculus for a random field {X(C)}, C being a 

surface in a Euclidean space, which lives in the space of generalized white noise functionals [lO]. 

Let us consider a random field {X(C)} indexed by a manifold C which is supposed to run in the 

parameter space Rd. The important thing is that we assume through this paper that X(O be a 

generalized white noise functionals. In other words, X(C)e(S)' [3] (see also [5], [7], [8]). 

Actually an admissible parameter class C in Hida's theory [12] is taken to be the totality of simple 

closed convex manifolds C which is diffeomorphic to the sphere Sd-1. Based upon the basic Hilbert 

space L2(C, d(r(s)) with the surface element d(7(s) over C, we get a Gelfand triple 

E(C)c L2(C, dar(s))c E*(C) 

relative to the white noise space as usual [8]. The white noise measure pc is able to be defined 

uniquely on the above-mentioned white noise space. Suggested by L6vy's well-known stochastic 

infinitesimal equation [15], T. Hida proposed the analysis of random fields {X(O ; CeC} in line 

with the white noise analysis, and discussed in [12] stochastic variational equations of the form 

~X(O=~)(X(Q), (Q)c(O, Y(u(s)), u(s)eEC. C, (~C), (3.1) 

with a functional X(C) of the special form 

X(C)=(~(fc) F(C, x(u), u)du), 
(3.2) 

for x~E*, where (C) denotes the open domain enclosed by C. While, Si Si [17] discussed the 

existence of unique solution to equations in the form 

(~U(17)= fc f(17, U, s) ~c(s) (~:17(s) d(r(s) 

with the initial condition Uo = U(170), under the assumtion on a continuous function f with stronger 

additional conditions, where U(17) is the S-transform [3] of X(C). An elaborate example of the 

Schrbdinger type stochastic variational equation was also given by T. Hida [12], which is closely 

related to the so-called Tomonaga-Schwinger equations (cf. Eq. (2.6) in S 2) appearing in the 

relativistic quantum field theory. , 
Let us consider the class H of formally selfadjoint operators acting on (S)*, whose element is 

a polynomial of a t and a t* (teR~ with degree 2 at most, where a t is the Hida differential [4] (see 

also [6]) in white noise analysis and a t* is the Kubc operator [6] [8], a t iust corresponds to the 

annihilation operator and a t* to the creation operator. When we set 

(3.3) H(O= ff c)' F(u, v){ a ~a ~+ a ~･ a .･}dudv, 

then H(OeH, and a requirement of the operator exp{ i H(O} to be (S)* -invariant provides with 

the restriction that it should be at most of order 2, because of the Potthoff-Streit characterization 

theorem [10] (cf. [8]). On that occasion the kernel F is supposed to be symmetric as a generalized 

function. It is interesting to note that the obiects to be investigated are restricted to only the case 

where the integrand in H(O is free from dependency on CeC. We define 

(3.4) X(C)= : exp{i H(O} : X(Co), 
where C, C:DeC, and (Co)c(O, and notice that Co is fixed. When we consider the equation 

12S 
I
 



(~:X(O (~:X(C) (3.5) (~C (s)=i~~~L((5C s) X(O, 
or equivalently, 

(5:X(C) _ . . (s) I {a fc F(s, u) a.du+a. fcF(s u) a du}H(O X(C) 
(5C 

with the initial condition X(Co)=Xo, then the following assertion was obtained by T. Hida [12], 

namely 

Theorem 3.1. The random field X(C) defined by (3.4) satisfies the stochastic variational equation 

(3.5). Conversely, the solution to the Cauchy problem (3.5) is given by (3.4). 

Generally speaking, it is a task of extreme difficulty to solve a stochastic variational equation 

directly. For this purpose, it seems that a kind of deformation from C into C + (~C allows us to 

obtain the stochastic variation ~X(O in Hida sense, only by making use of a one parameter family 

of diffeomorphisms which is deeply connected with an infinite dimensional rotation subgroup named 

whisker [13] (see also S 4 below). 

Theorem 3.2. [1l] When (~j denotes the variations of C in Hida sense by the one parameter 

family of dlffeomorphisms in Rd, then an integrability condition for the equation of the type (3.5) is 

given by 

(3.7) (5tl (5:2 X(C)_(5:2 (5:1 X(O 
(~C(~Q ~ (~Q~C ' 

Remark. The existence theorem for a much generaler form of stochastic variational equation 

will be fund in [12]. T. Hida discussed in L1l] the problem of integrability conditions for a wide 

class of variation equations. Moreover, it is in [12], we have to refer, that a similar sort of 

theorem as the above Theorem 3.1 is proved for the case of high level where the L6vy Laplacian 

AL(O is contained in H(O. 

S 4. A Physical Perspective for Stochastic Variational Formulation. 

Let Rd be the parameter space in this section. We define the space Do(R~ as the totality of 

~~ C=(R~ such that 

~( u ).lul-d~C"(R~. (4.1) 
T~T~ 

Then it follows immediately that 

Proposition 4.1. Do(R~ is a nuclear space. 

We call it the Basic Nuclear Space, and set E : =DO(R~ in the following. Let us define the 

characteristic functional C(g) on E as 

1
 (4.2) C(~) =exp(=~ Il gll2), g~E, 

where ll ･ Il means a usual L2-norm. The Bochner-Minlos theorem allows us to obtain a unique 
probability measure p, called the white noise measure, with parameter space Rd, on the dual space 

E* of E. 

Definition 4.1 g is said to be a rotation of E if (i) g is a transformation on E, and is also a linear 

isomorphism of E ; (ii) g is orthogonal in the sense that llggll = Il~ll holds for any ~~E. 

-6-
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The symbo] O(E) denotes the collection of such g's as described in the above. Then we readily get 

Proposition 4.2. O(E) forms a 'group under the usual product operation. 

On this account, O(E) (or O*) is called a rotation group of E, or an infinite dimensional rotation 

group when E is not explicitly mentioned. O(E) is topologized by the compact open topology. 

Definition 4.2 The adioint g* of geO(E) is defined by 

<g* x, g>=<x, g ~>, for xeE*, ~eE. 

Hence we set O*(E*)= {g* ; ge O(E)}. We may employ the correspondence between g* and g~i, 

to establish 

Proposition 4.3. O*(E*)~ O(E). 

The following theorem will give a connection between the probability measue // and the rotation 

group O(E). 

Theorem 4.4 (cf. Theorem 2 in [19]). For any geO(E), the relation g'p=p holds. 

Now we consider a subgroups of O(E). The subgroup consists of whiskers, and a whisker 

means a one parameter subgroup of O(E), that comes from automorphisms of the parameter space, 

that is to say, we are supposed to have a time change in mind. More precisely we have : 

Definition 4.3. {gt ; t~~R} is a whisker if each gt acts on E, in such a manner that 

(gt ~)(u)E ~(~t(u))'1 a ~t(u)ll/2 

au 
with l~t(u)eRd, and a Jacobian a l~t(u), and if gt'g*=gt+* holds or equrvalently the relatron lb (1b 

au 
(u))= Ib*+.(u) holds [19] . 

We shall give some examples of whisker, which are themselves very important in Probability 

Theory. 

Example 4.1 (T. Hida (1985) [19]). We consider shifts {Stj ; teR}. Stj is defined by 

(Stj g) (ul' "" ua)=g(ul' "" uj-t, ･･･, ud). 

Then {(St')* ; teR} is a flow on (E*, p). It is quite interesting to note that Stj can be regarded as. 

the time shift whereby the flows may change as the time varies and they may express the so-called 

random phenomena that are realized generally in the space of Hida distributions. 

Exalnple 4.2 (T. Hida (1985) [19]). Let us consider dilation { Tt ; teR}. This comes from 

isotropic dilations of the time variable, and is defined by 

(Tt g)(u)E ~(et u)etdl2 

As for the dilation, the flow {(Tt)* ; teR} can provide us with an Ornstein-Uhlenbeck process. 

Remark 4.1. One may wonder whether there is any relation between the aforementioned two 

kinds of whiskers. Actually, the shifts are always transversal to the dilation in terms of a theory 

of dynamical systems. And besides shifts are mutually commutative (cf. S 4 in [19]). 

There is another approach to stochastic variational equations (cf. p. 55, S 2 in [12]). According to 

T. Hida (1989) : Proc. 24th Karpacz WSTP report, the variation of X(O will be assumed to be 

gained by the action of the conformal group C(d). Of course, C(d) is' one of the most important 

and interesting subgroups of O*. It is well known [20] that a white noise enjoys t~e conformal 

invariant property. So that, we may use the infinitesimal generators Aj of the actions Utj that is 

determined by one parameter subgroups {gtj} of C(d), in order to find the stochastic variational 

equation, where Utj q'(x) q)((g')*x) for q'e(S) and any J 

- 
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Remark 4.2. It seems reasonable for the present to restrict the operators acting on the random 

field X(O to the class of operators that come from the above-mentioned conformal group C(d). 

Remark 4.3. The conformal subgroup C(d) is not only of a different type from the L6vy group 

[1l], but also distinct from those which are obtained by the limit operation to finite dimensional 

rotation groups (see also [12], [13]). 
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Mathematical Aspects of Complex Canonical Quantization 

in Quantum Gravity 

Isamu D~KU* 

Abstract 

We consider the Ashtekar formulation in quantum gravity, because it is believed that the 

Ashtekar theory should enable us to rewrite the general relativity i,nto a new form much more 

amenable and lead to a desirable consistent quantum gravity theory. Mathematical aspects of its 

formalism is in particular discussed for applicational interest. 

S 1. Introduction 

The Kaluza-Klein theory (cf. S 19.7, pp. 650-652 in [9]) is aiming at construction of the 

Unification Theory by extending the Einstein theory to the space-time of higher dimension than 

four dimensional one and taking in Gauge theory within the gravitational theory. While there is 

another idea to connect Gauge theory with the gravitational theory by rewriting the four dimen-

sional Einstein theory itself into a diverse formalism that is close to Gauge theory. As a matter 

of fact. A. Ashtekar proposed in 1986 [2] (see also [3], [5]) a new theory in line with the above 

latter idea. The theory is nothing but a canonical theory of general relativity, however it is 

completely different from the usual canonical th6ry [12] (cf. [1], [9], [10]). Its characteristics are 

as follows : 1) the basic variable of the usual general relativity is a metric, on the contrary, a 

connection is regarded as its basic variable ; 2) so that, a Gauge theoretical method is naturally 

taken in ; 3) a complex momentum variable is adopted. 

The purpose of Quantum Gravity Theory is to construct a consistent theory to unite the 

quantum theory with the general theory of relativity (cf. Chapter 19, pp. 633-661 in [9]). So many 

trials have been made, but any of them has not succeeded yet in its construction despite such a long 

history. The main mathematical tool in Quantum Cosmology nowadays, namely, Cosmology in 

terms of Quantum Gravity, is the Wheeler-DeWitt equation [6]. However, as is weel known, there 

have been left a plenty of unsolved problems on a technical basis as well as on an interpretational 

one. A remarkable progress has been made by Ahtekar's formalism [4]. That is to say, the 

difficult Wheeler-DeWitt eduation will be simplified in its form and will be charlged into an 

amenable one [7] , [8] (see also [1l], [13]), when are employed the new variables which Ashtekar 

proposed. Therefore it is expected that Ashtekar forrnulation should be valid, useful, and powerful 

especially in the field of Quantum Theory. 

' Department of Mathematics, Faculty of Education, Saitama University. Urawa 338, Japan. E-mail address : HO0060 @ 

sinet. ad. jp 
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S 2. Einstein Fornralism 

In Einstein's general relativity, the rate of deviation of a space-time, namely, the curvature 

denotes the strength of gravitational field. In order to describe it, the space-time metric gp" is 

adopted as elementary variables of gravitational field. The Einstein equation is usually a field 

equation which is satisfied by the gravitational field and material field. Its expression is very 

convenient for checking a locally causal structure and a general covariance, but it cannot be 

suitable for description of time evolution of a global space-time structure. As a consequence, 

usually the formulation to regard the Einstein equation as an evolution equation for the dynamics 

with infinite degree of freedom is used so as to investigate a global dynamics of the space-time. 

Let us consider a (3 + 1) decomposition of the space-time. Thls is a sort of formulation that 

a four dimensional physical quantity decomposes into a physical quantity on a three dimensional 

hypersurface with time parameter, by regarding a four dimensional space-time as a one dimen-

sional time series ~(t) of sapcelike three dimensional hypersurface. Let ~(t) be a time-constant 

surface, and n a unit normal vector of ~(t). We denote a lapse function by the symbol N, then N 

dt denotes a distance along the normal vector between two hypersurfaces ~:(t) and ~(t+ dt). And 

besides Njdt, means a shift vector, indicating how far the point of intersection made by dropping 

a normal vector on ~(t+dt) from a point on ~(t) is shifted away from the curve xj= const. with a 

constant space coordinate. Then we readily get 

1
 (a -Njaj), then N dt n=(dt,-Njdt) under an ordinary Lemma 2.1. When we set n=-N t 

representation by components. 

Lemma 2.2. When we write the metric tensor of a three dimensional hypersurface ~(t) by qjk(t. 

xj), then the corresponding four dimensional metric in question is given by 

ds2= -N2 dt2+qjk(dxj+Nj dt) (dxh+Nk dt). 

Proof. The assertion is a direct result from an orthogonal decomposition (d~")=N dt n + (O, 

dxj+Nj dt), where xP is a point on ~(t), and dxF is a vector the starting point x~ and the terminal 

point on ~(t+ dt). 

q.e.d. 

An interpretation of the general relativity as a theory of dynamical system means to regard qjk 

(t, x') as a dynamical variable of infinite components with parameter xj and to express the Einstein 

equation as a time evolution equation. In fact the equation can be easily derived by the correspond-

ing variational equation. On that occasion, needless to say, the Einstein-Hilbert action for gravity 

S -fdtL 'L =f 3 1 G- G . G d x 2,(2 f~ R. 

and the action for material field 

S~= f dt L~ , L~= f d3X L~ 

play essential roles in derivation. By virtue of Dirac's general theory for canonical formulation 

[12] (see also [9]), the Einstein theory can be easily converted into the following canonical theory 

with constraints. Let q, be a complex scalar field, and let Ap be the electromagnetic field with 

interaction. We regard them as material fields. pjk is a qeneralized momentum being conjugate 
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to qjk, and Fp" is given by apA.- a .Ap. We denote a complex conjugate of ep by q)*, and Dp is 

a differential operator, i.e., Dp E ~p-i e Ap. Ej (resp, 7r, 't * ) denotes respectively a conjugate 

momentum of Aj (resp. (p, ep'). When we set BjE~ ejkl Fkl, then 

EjE +~~ B.~j, 
H~0= A/~i +A/~i {(D q)) (D q9)+V}+2~/~; ' 2 ' 

H~j=,tDj q) +('z: Dj q')*+e,klEkBl 

CA=i e (,z:q'-;t*q)*)- ajEj. 

Theorem 2.3. The Lagrangian of canonicat form for the gravitational fietd which has interaction 

with a complex scalar field and an electromagnetic field can be expressed as 

f
 

f 3 -" . ' ' " d3x(AoCA+NP H~+H_), (2.1) L= d x( p'kq,k+;t ep+'z:*q'*+E'Aj)-H. H= 

where H*= ej [2Nkpki-pNj+x~2 A/~ DjN+AoEj] . 

Reluark 2.1. The constraint Hp = O obtained from the above Lagrangian is conservative under 

time ovolution, and so is the constraint for CA. S,o that, no other cdnstraints appear except these 

primary constraints. 

Proposition 2.4. The following Poisson bracket relations hold : 

{<f H0>. <g H0>} = <f Dj g-g Dj f) Hj>. {<fj Hj>. <g H0>} = <(fj ajg) Ho ~ q~1/2 g fj Ej CA>. 

{<fj Hj>. <gj Hj>}=<(U: g]j Hj+fj gk Fjk CA>. {Hp(x). CA(y)}={CA(x). CA(y)}=0, 
where <X>= fd3x X(x), ard U:.g] is a bracket for bector fields fj. g'. 

As for the proof of Proposition 2.4, it is simply due to a direct computation. It is easy but rather 

tiresome, hence omitted. 

S 3. Wheeler-DeWitt Equation 

First of all, Iet us recall the Dirac quantizatin. It is well known L9] that the gauge field theory 

or the gravitational theory may be rewritten into the canonical theory with constraints of the first 

kind, as far as the classical theory is concerned : 

{QI. PJ}=(~, ; fr={F. H} ; F~F(Q. P); C*=0 ; {C.. Cfi}=fy.p Cy. 

According to the canonical quantization procedure, these equations can be exchanged into the 

commutation relation between operators corresponding to the canonical variables and the Heisen-

berg equation of motion : 
[~[, pJ]=i (~,; ~=i [H'^. F]. 

Notice that in the Dirac quantization we need exchange the constraints for the condition to state 

vectors, namely. 

C^. I ~r>=0, (3.1) 

since the operator ~. corresponding to th~ constraint function C. is not commutative to the 

fundamental canonical variables. By taking it into consideration that the classical constraints are 

of the first kind, we can readily get the commutation relation 

[C~., ~p]=i f･*p C~r 

if we iguore the order problem of operator product, with the result that the condition Eq. (3.1) 

becomes consistent with the commutation relation. 
It is easy to apply the aforementioned for~the canonical theory of gravity. As a matter of fact, 
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we obtain firstly 

Lemma 3.1. The momentum constraint is given by 

(3.2) 6 +~/~; T^ni} 1~r[q q,]=0 fi .1~r= {2i qjl(x) D 

' k6 qjk(x) ' ' 
6
 where T^~i= - I D ~p(x) (~ q)(x)' 

Proof. For the operators corresponding to the canonical variables, we have only to adopt the 

representation in which qjk and q) are diagonalized : ' 

I Ig;r>- 1~r[q, q'] ' ~jk(x)- qjk(x) ' pjh(x)--i 6 (~ 
･ ip(x)- q'(x) ' ~:(x)--i ~ qjk(x) ' ' (~ ep(x)' ~ 

q.e,d. 

Lemma 3.2. The wave function ~r [q, q)] is invaria,It under the space coordinate transformation. 

Proof. Because the wave function has an expression 

r 6lg! (~l~r = 

 

(~ qr[q, q)] =) d3x A/~i {(~ qjk (~ qjk(x)+(~ q) 6 q,} ~i d3x Lj flj 1~r, 

Eq. (3.2) in Lemma 3.1 indicates the assertion. q,e,d. 

Definition 3.1 The symbol C denotes the set of equivalence classes generated by the identifica-

tion of such elements in the whole set of configulation (q, q)) as can be transformed mutually by the 

space coordinate transformations. We call the set C a superspace. 

Remark 3.1. By virtue of Lemma 3.2 together with Lemma 3.1 we can regard the wave function 

satisfying the momentum constraint as a function on the set C. 

Lemma 3.3. The Hamiltonian constraint is given by the following functional dlfferential equation 

of second order for the wave functions : 

(~ V~ (3.3) fiolg~={-~ Gjkl~~ qjk(x) (~ ql~(x)~;c~2 3R+~/~ T~~} Ig;r[q q)] O 

1 (~ where Gjkl~=qjl qk~+q,m qkl q,k ql~ and ~/~; T~^=-2~/;~ (~ q9(x)2+1/~{~q'k a q) ak q'+ V(q')} 

We call this functional defferential equation (3.3) a Wheeler - De Witt equation. 

Proof. It goes almost similarly as the proof in Lemma 3.1. 

q.e.d. 

Proposition 3.4. Generally we have 

[<fj nj>, <g n0>], =i <fj aj g) H0>. 

Proof. The assertion follows immediately from the commutation relations for constraints (cf. 

Proposition 2.4 in S 2). 

q.e.d. 

Seemingly the momentum constraint (3.2) and the Wheeler-DeWitt equation (3.3) consist of an 

infinite number of simultaneous equations, just corresponding to the degree of freedom for the space 

coordinates. However, because df the general relation (cf. Proposition 3.4), if another condition 

<f H0>11lr> =0 

is satisfied together with the momentum constraint for the function f such that aj f never ~rttains 

null except a set of discrete points, then it follows automatically that all the Hamiltonian con-

straints are satisfied. This implies that there exists one , independent Wheeler-DeWitt equation 
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under the momentum constraints. 

Remark 3.2. The above-mentfon,ed result does not mean that apparently the Wheeler-DeWitt 

equation can be expressed as one equation on the superspace, since <f H0> 11~r> does not always 

satisfy the momentum constraint even if the state vectorll~r> satisfies the same condition. 

It is quite interesting to note that the Wheeler-DeWitt equation possesses a hyperbolic struc-

ture in the sense of differential equation. Essentially it is greatly due to the property of Gjkl~' 

Lomma 3.5. When we regard Gjkl~ as an innear product of the six dimensional linear space that 

is generated by three dimensional symmetric tensor of order 2, then the eigenvalue has the following 

Proof. Let XIJ be a three dimensional symmetric tensor of order 2, and <X. Y> be a scalar 

product defined by <X. Y>=XIJ YIJ' 

We denote by V a six dimensional linear space generated by those tensors XIJ with the abo¥*e 

-defined inner product, and f"IJ denotes the orthonormal basis of V. In particular we take 

fIIJ=2~1!2 ((~12 (~J3+~13 (~J2), 

f21J=2~1/2 (~13 (~J1+~ll (~J3), 

f31J=2~1/2 ((~11 (~J2+(~12 (~Jl)' 

f 41J = 2~1/2 (~n ~ (~!2)(~u, 

f51J = 6~1/2 ((~II + (~12~2(~13)(~u, 

and f OIJ = 3- l/2 (~IJ' 

We need the following lemma. 

Lemma 3.6. (cf. Proposition 7.3.1, pp. 225-226 in [13]) 

~o f IJ f"KL=}((~IK 6JL+(~IL (~JK) 

holds. [] 
. By making use of Lemma 3.6 and decomposing qik into the dreibem el like q'k=el el, we can 

GJKLM=2 ~ f"JK f~M-foJK foLM, 

*=1 
j k I ~ because we set GJKLM=eJ e K e L e M Gjkl~' This rmplies that GJKLM/2 may be diagonalize as [ - 11 

2, +1, +1, +1, +1, +1]. 

q.e.d. 

Theorm 3.7. The Wheeler-DeWitt equation (3.3) is of hyt,erbolic t~pe for each point x of the 

s pace. 

Proof. Let elj be the dual basis of ejl' and we put 

D.=~e~ eJkf"IJ (~ (a~0), 
(~ qjk 

and 

1 (~ Do =~ qjk (~ qjk 

By virtue of the argument' in the proof of Lemma 3.5 we readily obtain 

Gjhl~ 6 qjk (~ ql~= ~D02+ ~ D.2+(the first order differential term). (~2 

*=1 

- 3 -
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Moreover we know that the second order part of functional differentials for the material field is 

positive difinite. On this account, it js easy to verify the hyperbolicity of the Wheeler-DeWitt 

equation. 

q.e.d. 

Example. (Quantum Bianchi Model) For the class A Bianchi model except the type Vlo (cf. p227 

in [13]), the Wheeler-DeWitt equation on a four dimensional mini -superspace is given by the 

following partial differential equation 

a2 a2 a2 a2 { 2-a c! a fi+2 a p_' a q)2 
It is certain that this equation should be of hyperbolic type with the conformal degree of freedom 

a as its time direction. 

S 4. Chiral Decomposition 

When we choose the metric as its fundamental variable, then the Einstein equation is derived 

from the Einstein-Hilbert action integral (cf. S 2) which contains differentials up to second order 

with r~spect to the metric. In fact, it is possible to rewrite such an action integral of order 2 into 

an action integral with at most first order differentials relative to the fundamental variable, by 

employing proper auxiliary variables. It is well known that there exist various sorts of rewriting 

systems, and the Ashtekar theory is nothing but one of them, where the vierbein and connection 

form are used as fundamental variables. The principle idea of the Ashtekar theory consists in the 

fact that a complexification of the connection form provides with a complete change of the situation 

and also that the formalism of making use of the vierbein would rather be simplified than the theory 

of employing only the metric. Furthetmore the key point of the Ashtekar theory lies in the novelty 

that only the selfdual connection is used which is obtained by a chiral decomposition of the spin 

connection with respect to the tensor indices. 

The principle of equivalence asserts that the effect of gravity can be cancelled out for each 

point, in other words, that we area able to ~elect a local inertial system in a proper way. Roughly 

speaking, it allows us to think of the situation such that a flat Minkowski space Mp is stuck down 

as a tangent space Tp M [17], [18] for' each space-time point peM. Let e~ be the vierbein, i.e., 

an orthonormal basis of the vector field, and let e" be its dual basis [17]. When A is a linear 

connection : P(E)- P(T*M R E) [14], then we write as A"beM (3.1) the connection form of A 

with respect to the basis e*er(E t U) [14], [15]. The metric gij gives a distance of the space-time 

in the general coordinates, and ds'= gij dxi dxj [16] . While, we have ds2= 17ij dXi dXj in the local 

Minkowski space, where 17ij is a Lorentz metric. 

Lemma 4.1. Then the vierbein e* gives a relation 

dXi= ei, dx' 

between the Minkowski space and the space-time vector, namely, 

For a Lorentz transformation AESO(3,1), we have 

e*'=eb (A-*)b*, e'"=A"b eb. 

If we mtroduce a spln connection (h,"bi as the gauge field for a group SO(3,1) of local Lorentz 
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transformation, then we can describe the general relativity as a gauge theory, where the curvature 

of the space-time is expressed by the strength of field of spin connection. The spin connection a)"b. 

will play an important role to control how to displace a vector of the local Minkowski space parallel 

to a point in the infinitesimal neighborhood. 

Remark 4.1. Especially when the connection form A"b corresponds to the Riemannian connec-

tion for the vierbein e*, then the scalar curvature [16] 

s(p)E~~ Ric(ej, ej) 

is expressed as e"i ebj F*bij by using the corresponding curvature form -

FabE d A"b+A'.AA'b, 

where Ric is a Ricci tensor and Ric~r(T*M R T*M) and (~j) is an orthonormal basis of TpM, and 

seC"(M) (cf. [14], [15], [17]). [] 

Definition 4.1. The dual transformation * p is defined by 

1
 *p (~,ab=~ "b 'd e .dG, 

where e ab'd is a Levi-Civith complete antisyrnmetric pseudo-tensor. [] 

Let us consider the Lagrangian L and action integral S defined by 

L' = I e"i ebj F*bij lel d4 
' 

1
 =2x2*(6 Ae )AF*b 

and S= f L for a general connection form A"b (cf. Remark 4.1), where notice that I e I = det e~= 

JI~F, and * means the Hodge * operator (e.g. [14]). 

Lemma 4.2. When @" is a torsion form 

for the connection form A"b, then the variation of L with respect to A is given by 

2;c2 (~A L= d(e"AebA * p (~ A*b)-2@"Ae.bA * p (~ Aab' 

_1 where * p Aab -- *bcd Acd' 2
 

Proposition 4.3. The conditio~ 6A S=0 is equivalent to the fact that the linear connection 

AeL(P(E) ; r(T*M R E)) 

coincides with the Riemannian connection V (cf. [15], [16]). 

Proof. By virtue of Lemma 4.2, clearly the condition that the variation of the action integral 

relative to A is equal to zero is equivalent to the condition 

@ [aAeb] =0, 

where [ I means antisymmetrization with respect to the indices indicated by the symbol [ I . 

And besides it its easy to show that the above expression is equivalent to the condition O " = O, which 

implies the assertion. 

q.e.d. 

If we define 

1
 (4.1) ~Q,"bE+(2 G)ablFi *p G,ab), 
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then it turns out to, be that +(h,"b (resp. ~G,"b) represents respectively a proper state corresponding 

to the eigenvalue+ i (resp. - i) of the dual transformation. 

Definition 4.2. We call +a' (resp. ~(h,)aselfdual (resp. anti-selfdual) connection respectively. [] 

Then we get 
Proposition 4.4. (cf. [7], [8]) The spin connection ~)"b allows the following uhique decomposition : 

(~) "b = + a, "b(~- (t' "b (4.2) 

We call it the chiral decomposition. 

Remark 4.2. The reason why we call the above decomposition (4.2) a chiral one is due to the 

following fact : when we adopt its spinor representation, then each decomposed part always 

combine only with either a right chiral spinor or a left chiral spinor. 

Remark 4.3 The above (4.2) is an orthogonal decomposition. As a consequence, the curvature 

itself can be uniquely decomosed in a corresponding manner (see the theorem below). [l 

Theorem 4.5. [13] When we define 

1
 F*bEET (F*b+z *p F*b), 

then the curvature form F"b allows the following unique orthogonal decomposit･ion : 

S 5. Ashtekar Variables and Ashtekar Theory 

Let S[g] be the action integral whereby the Einstein equation can be derived. Then 

S[g] = f d4x f~ RG~), 

where g is the metric. Although the metric is a fundamental variable in the above action integral, 

we can rewrite it into another form S[e,' a'] in which the vierbein and the spin connection behave 

themselves as fundamental variables. In fact 

Lemma 5.1. S[e (~,] 1 
= 

 

- *b.d e"AebAR'd(~)) 
where R"b(G,) describes the strength of gauge field (o"b and is given by R"b(a')E d Go"b+&,".AGo'b 

Let SEe. +(~,] be the action integral that is obtained by adoption of the selfdual connection (cf. Def. 

4.2 in S 4) instead of the spin connection in S[e. G,]. 

Remark 5.1. This S['e, +~)] is also an equivalent action integral by which we can derive the 

Einstein equation. [] 

It can be said that the selfdual action integral just corresponds to a covariant form in the Ashtekar 

theory. The Ashtekar variables are nothing but canonical variables in the case when we apply a 

(3+1) decomposition for the action integral to transform it into a canonical form. 

Indeed, a wise choice 

el= el,. (d~i+Ni dt) e0=N dt. 
gives a (3 + 1) decomposition of the vierbein. _ e!i forms the dreibein being the orthonormal basis of 

space vectors. For a metric qij of the three dimensional space, we have 
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/ I IJ qijeliel. qij=ei ej, (~ = 

Notice that its dual basis Eil is a candidate of Ashtekar variables, and satisfies the relations 

Ei e/･=6J Ei e/･=6i･. I * /, I j , 
It is quite interesting to note that +G, "b has only three independent vectors because of its selfduality. 

We shall write them as AI~ 2 +(~)ol. Recall that originally Go"b is a gauge field for a group SO(3, 

1) of Lorentz transformations, but apparently A[ seems to be a gauge field for a group SO(3). 

Taking its complexification into account, we get 

AI=2 +(~,ol_ (~,ol ' I IJK a,JK 

= 1 
Remark 5.2. In the above expression, the Lorentz boost is embedded in its real part and the part 

for spatial rotation SO(3) is embedded in its imaginary part. Hence we get aware that there is no 

loss in the degree of freedom of the gauge field for a group of Lorentz transformations. 

Remark 5.3. Since only the Lie algebra for the gauge group does matter, we may regard AI as 

a gauge field for a complex group SU(2). 

In the canonical formalism, a spatial component A~ of the gauge field for a complex group SO(3) 

is a dynamical variable, and its conjugate momentum is given by the dreibein J~il' More precisely, 

it is a density of the dreibein ; ~:il =~/~i Eil' Thus it is the canonical variable (A~, Eil) that are 

Ashtekar variables. 

Proposition 5.2. When we iake advaniage of the Ashtekar variabJes, then the constraints C(~. A) 

of the canonical formalism are given by 

C~E: Di Eil ; C~E E,~ F!jk ; CH~ eIJK E,J E~ FI;k, 

w.here Di (resp. Fljk) denotes respectively the covariant dlfferential with respect to the gauge field AI. 

(resp. the strength of field). 

IJKJ Note that FI,.k= aj Alk_ ak A~-i e Aj A~. C~ is called a gauge constraint and is a condition 

for requirement of gauge invariance. C~ is called a diffeomorphism constraint and is a condition 

for requirement of invariance under three dimensional di~feomorphisms. Lastly CH just corre-

sponds to the Hamiltonian constraint. Summing up remarkable characteristics of the Ashtekar 

theory, we obtain the followings : 

1) various expressions appearing in the theory are all simple differential polynomials of the 

fundamental variables ; 

2) the theory is given by a form of SC( 3, C) gauge theory, which means that not only the methods 

used in the ordinary gauge theory but also the results obtained there are quite useful for the 

investigation of gravitational theory ; 

3) the space-time is restricted to the case of four dimensional, because it plays an essential role in 

the theory that a chiral decomposition, consequently a * p operator transforms tensors of order 2 

into itself relative to the internal degree of freedom : 

4) the dynamical variable takes values in the complex number. 

S 6. Quantum Gravity via Ashtekar Fornralism 

Let us consider the canonical quantization. It is sufficient to adopt th~ op~rators (A^. E~) acting 
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on the space of state functions instead of the canonical variables (A. E), and we have only to change 

the constraints C = O into another constraints C 1~r=0 for state functions. As a matter of fact, 

since we habe (jj: ~)=(A, (~ ) in the A representation, it is easy to see the following. 

i6A 
Proposition 6.1. The quantum constraints are given by 

C^~ 1~r[A] E D. (~ 1~r[A] =0 

' (~ Alj ' 
(
~
 C~ 1lr[A]EFljk 6 Ar 1~r[A] O 

~H Ig;r[A] E CIJK FI ~ (~ 1~r[A] =0. [] jk (~ AJj 6 AKk 

Now we begin with the gauge constraint. The gauge constraint requires invariance under the 

gauge transformation, so that it is automatically satisfied if we take 1~r[A] as a gauge invariant 

f unctional. 

Definition 6.1. The Wilson loop W [A, y] is defined by 

N
 f

 W[A, y]~ Tr P exp (i , Ai d~i)=Tr lim H(1+i Ai(k) Axi(k)), (6.1) yy N _* k=0 
[
]
 

where P means to take a path order product. 

Lemma 6.2. The Wilson loop W [A, y] is a functional of connection A, taking values in a closed 

loop y, and is invariant under the gauge transformation for connection A. 

Remark 6.1. Because the above W [A, y] is a family of infinite dimension with loop y as its 

parameter, we may think that it forms a basis of the solution for gauge constraint. 

Lemma 6.3. The Wilson loop satisfied the Hamiltonian constraint. 

Lemma 6.4. The Wilson loop does not satis~, the deffeomorphlsm constraint. 

Proof. It is impossible for the Wilson loop to keep invariant since the loop is deformed by the 

action of coordinate transformation. 

q.e.d. 

By the above discussion, the Wilson loop W [A, y] fails to become a solution for all the quantum 

constraints. Then the following question naturally arises : whether it is possible to sum up the 

Wilson loop relative to y so that the summed may satisfy the diffeomorphism constraint. 

Remark 6.2. In connection with the above-mentioned problem, there is an idea of investigating 

it by transforming the wave function 1~r [A] of connection representation into qr [y] of loop 

representation. Actually analogous to Fourier transform, the integral qr [y] = f [dA] W [A, y] 

lg/ [A] is proposed, however we are ignorant of how to define the integral m~sure in questin. 

Lemma 6.5. In the case where the cosmological term A exists, only the Hamiltonian constraint is 

changed into 

CH- IJK (~ (~ ' 6 A
 K (Fljk+t ~ e,jk (~ AI.)' 

-e 

In fact, H. Kodama (1990) found the solution satisfying all the constraints in the above case. 

Theorem 6.6. (cf. H. Kodama, Phys. Rev. D42 (1990), 2548) . 

In the case where the cosmological term A exists, the solution satis~ing all the quantum constraints 

- 8 -
) 3~ 

t
 



is given by 

(6.2) 
3
 ~lr[A] exp(-i~XSsc[A]) 

where Ssc[A] is a Chrn-Simon term. 

It is well known that the Chrn-Simon term is a 

defined by 

Ssc LA] f
 
d3x e,~k (A a A 3 = 

[
]
 

three dimensional topological invariant, and is 

AJj A~). 
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2．5　ホワイトノイズ解析の確率境界値問題への応用

汎関数過程の概念を導入し，それに基づいて確率境界値問題を考察し，その漸近解の収束

性について論じた。問題の定式化はホワイトノイズ解析の手法に基づいて行った。その結

果，与えられた確率間題はエルミート変換を通して対応する通常の偏微分方程式の境界値

問題に帰着される。ここで採用したHLOUZ－Pbmalism（1993）の著しい特徴は，伊藤型の確

率積分を解釈し直して，ホワイトノイズ汎関数とのWick積を被積分関数とするLebesgue

型積分と見なせる点にある。この研究では飛田の超汎関数のクラスより広いクラスを解の

存在域に設定し，解をKondratiev空間に値をとる一般化汎関数過程と見なして，変換され

た系に対するランダムな漸近解がマルチンゲール項により駆動された確率偏微分方程式を

満たすことを導いた。さらに対応する解過程に関する確率的極限定理を証明した。
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　　　　WHITE　NOISE　ANALYSIS　AND

　　THE　BOUNDARY　VALUE　PROB：LEM　IN

THE　SPACE　OF　STOCHASTIC　DISTRIBUTIONS

　　　ISAMu　D6KU　（道工勇）
1）epα7加葛eπ彦o∫Mα餓e7παオゑc5，Sα麗α7παUπ動ε7ε麗び

　　　　　肝4切α338，1αpαπ

　　　　　　　　　　　　　　　ABSTRACT
　We　introduce　the　concept　offunctional　process　and　consider　the　stochastic　boundary　value　problem

and　discuss　the　convergence　of　its　asymptotic　solutiop　Process。The　formulation　of　the　problem　is　totally

　　　　　　　　　　　　、ba8ed　upon　the　wh1te　noise　analysis。In　parもicular七he　so－called　Hermite　transfbrm　does　play　an　essential

role　in　derivation　of　the　corresponding　Paどtial　differential　equation．One　of　the　peculiar　fbatures　under

adoption　of　HLOUZ　formalism（1993）consists　in　interpreta当ion　of　the　stocha5tic　integral　term　as　an

integral　of　the　Wick　product　of　white　noise　functionals。Wb　regard　the　solution　of　the　problem　as　a

Kondratiev　space　valued　functional　process，and　the　corresponding　asymptotic　solution　satisfies　some

stochastic　partial　differential　equation　with　a　martingale　term。

1．　Prelinlinaries

1．1陥鉱ε！Vo乞5εPγoδα玩あオ〃5Pαcε

　：Let4∈一四Hxedl　and　it　indicates　the　parameter　dimension．5＝5（IRd）denotes　a

Schwart年space・nR4・5isaR6chetspaceunderafamily・fsemin・rms”・1』，α7where

ll∫1』，α＝sup（1＋囹為）1∂α∫（の）1，

　　　＄∈Rd

κ≧0，

α＝（α、，α2，…，αd），1α1＝α、＋…＋αd，and∂α∫＝∂1α1∫／∂α・¢、∂α2z2…∂αdコ・4，5’＝

5’（Rd）isa』dual・f8，．equipPedwithweak一＊t・P・1・訂。ltiscalledthespace・ftempered

distributions．Weden6tebyβ＝ぢ（5’）thefamilyofBoreIsubsetsof5’．BytheBochner－

Minlos　theor6m，there　exists　a　unique　Gaussian　probability　measure（called　a　white　noise

measure）onβsuch　that

ゐe柚μ（の）一e蝿 ∀ψ∈5，

where卜12is　aL2（Rd）一norm　Wecallthethplet（5’，β，μ）awhite・noise　probabilityspace．

The　canonical　biliear　f6rm（¢，ψ〉，fbr¢∈8，甲∈L2（Rd）is　de丘ned　aβfbllows：for∀幹∈

五2（Rd）1ヨ｛婦⊂5suchthat悔→幹inL2（Rd）蹴apPr・achest・inBnity，andde丘ne

〈ω，ψ〉：：＝L2－1imκ→oo〈¢，戦〉．In　particular，when　we　define

βε（皿）：＝＝（コO，XlO，ε、】×＿×【0，f己1〉， fbr砺≧0，　‘ニ（君1，…　，¢d），

Typeset　by姻一聰く
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then it is well-known that there exists a t-continuous version Bt of Bt, and we call it 

a d-parameter Brownian motion, where XA denotes an indicator of the set A. Next we 

introduce a d-parameter white noise process (WN process for short) W E WY,, which can 

be expressed in terms of It6 integral with respect to d-parameter Brownian motion ~ = 

(Bt(x)), t e I~d' i.e., the white noise process is a mapping W: S x S! _~ n~, given by 

(1) W(~', x) ::: W~9(x) = (x, ~') = {p(t)dB (x) x e S ~p e S 
Rd 

1.2 The Space (L2) and its Representations 

Let L2 be the totality of square integrable measurable functions on S' with respect 

to the white noise measure ,t. We denote by the symbol (L2) = L2(S/,,h) the quotient 

space of L2 by the equivalence class, namely, the equivalent relation f - g is given by 

llf - gll2 = O. The Wiener-It6 expansion theorem gives the following decomposition of 

the space (L2): indeed, (L2) = L2(S/, pt) = ~nOO=0 e Kn' where each Kn is the totality 

of multiple Wiener integrals I~(fn) of order n, and f~ is an element of the symmetric 

L2-space L2((E~~d)n). For V F e (L2) we have the expression: 

oo 
F(x) = ~ fn(u)d~~n(x) fn e L2(.(E~d)n) 

n=0 ui&d* 

oof 
= 

 
J
 
'
 
'
 
'
 
f
u
~
d
'
 
f
n
(
u
l
 
'
u
n
)
d
B
R
n
(
u
l
 
'
 
'
 
'
 
)
(
x
)
,
 
u
k
 
e
 
I
~
d
 

, un 

For the norm li ･ Il (or E Il ･ I12 ) of the Hilbert space (L ) we have 

eo 
llFll2 = ~ n!If~12' 

n=0 

for fn e L2((E~:d)n). 

We consider an alternatrve representatron of the element of (L2 ). Let hn(y), n = 

O, 1, 2, . . . , be Hernilte polynomials defined by 

_ 
eL22 dn hn(y) := ( 1) dyn(e~2~.2 ), y e ~ 

Then it is well-known that the Hermite functions ~n(y) are defined, by employing the 

Hermite polynomials, as 

~n(y) =1r~~{(n l)t} e IL;hn l(1/~y) _ n ~ 1. 
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Note that {~n(y)}nco=1 forms an orthonormal basls of L (1R) for the case d I Let p 

, pd) e Z~ be a multi-index. Then there is always a proper ordering so that we (pl ' p2' ' ' ' 

may rearrange the elements numerically and make it countable in the fonowing manner: 

{p = (pl' ' ' "pd)} {p(1) p(2) p(3) . . . }, and p(n) = (p{n),fi;n) .. . ,p(dn)). _ 

Therefore we can define en ep(-) :== ~p(') ~~p(~) @ ' ' ' R~p(~)' Note that ek e S(I~d) for 

' ' ' ' ' 
each k. Thus we obtain an orthonormal basis {en}~ = {el e2 e3 

Set 
O (x) W j(x) = fRd ej(t)dB (x) (x,e3>, for 3 1,2, 

For every multi-index a = (al' ' ' ' , am) e Z~, we define ha (ul' ' ' "um) := hal(ul) ' 

ha2(u ) ' ' ' h _(um)' and set 
" 

I
I
 
H
 

Ha(x) := ha(el(x), ' ' ' , Om(x)) = haj (ej(x)) = haj (<x, ej>). 

j=1 j=1 
It hence follows that with lat = n = al + ' ' ' + am' 

f eeadBelal = f e' (2) ~al ~ . . . ~e~a_ d~~n (t e I~d) J(u~d)" ~ J(Rd)" 1 

m =ll , j ha (e ) = Ha(x). 
j=1 

Theorem 1. (i) {Ha(');a e Nm : m = O, 1, 2, . . . } forms an orthonormal basis of the 

Hilbert space (L2) . 

(ii) ~[Ha2] = flHa[12 = a!, where a! = H3~=1 aj!, a = ,am ' 
.. 

 

(al ' ' 

On this account, an arbitrary element F of (L2) can be expressed as 

(3) F(x) = T~L ca ' Ha(x), c* e ~, a e Zm Vm 
a 

Moreover, the equality liFll2 = ~a a!c~ holds. 

Example 1. (White Noise Proc~ss) Recall the white noise process Wlp (cf. Eq.(1)), 

which was introduced in the end of the section 1.1. For ip e S, x e Sl, 

Wc(x) = (x,ip> = Jr~d ip(t)dBt(x) E ' ' ' fui~ ip(t td)dB t (x) 
f d l, ･-

Since we have ip(t) = ~koo=1(ip, ek)ek e S by making use of the orthonormal basis {ek} 

for L2(~d), it is easy to see that 
f
 
.
 

(4) ~ = (ap, ek)He(k)(x), R'(k)dB(~le(k)1 ~; Wlp(x) = (ip, ek) e k=1 J(Rd)xl k=1 
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7n ~ m where we used Eq.(2) and a :~ ck =: c(k) = (O, ' ' ' ,Oj e Z+' ' ,0,1,v,' ' 

1.3 Stochastic Distributions 

Recall that we have a Gelfand triple: S C L2(l~d) C S/. It is possible to construct 

a similar structure in functional level (i.e. infinite dimensional case), which is mbdelled 

on the above-mentioned Gelfand triple in function level (i.e. finite dimensional case). 

Actually the second quantized operator r(A) plays an essential role in its construction 

(see e.g. [HKPS]), where A is a positive selfadjoint operator in L2(l~d) with Hilbert-

Schmidt inverse. The standard construction (cf. pp.33-35,[OB] or [D5]) gives a Gelfand 

triple (S) C (L2) C (S)', where (S) is the space of test white noise functionals and 

(S)* is the space of generalized white noise functionals. And besides the latter may 

be called the space of Hida distributions. The Potthoff-Streit characterization theorem 

(cf. pp.123-134, [HKPS]) for those spaces are based on the S-transform in white noise 

calculus. In line with this characterization, a generalization of Hida distributions has 

been established ([OB],[D7]). However, in fact there is another characterization based 

on the so-called chaos expansion of functionals, whose basic concept is nothing but the 

alternative representation given by Eq.(3) in the previous section. For near-future appli-

cation's sake, we will go to the other way, different from the standard setting in white 

noise analysis. For (L2) ~~ F, we have the chaos expansion F(x) = ~a c*Ha(x). We 

are now in a position to state the characterization of the white noise test functionals and 

Hida distributions in terms of the coefficients of their Hermite transforms (see the next 

section) due to Zhang [Z]. 

Theorem 2. (i) F e (S) if and only if the condition 

supca ' a!(2N)ak < oo 

a 
holds for any k ~ oo, k e N, where (2N)a .= H~ I (2 p{3)p;J) p(j))a(j) if a = 

(al' ' ' " am) with aj = a(j) for simplicity. 

(ii) G e (S)*, G = ~~a baHa (formal series) if and only if the condition 

sup b~ ･ a!(2N)-aq < oo 

a 
holds for some q > o. 

It is interesting to note that the action of G on F is given by 

<G, F> ~ ･ c 
a 

if G e (S)* such that G = ~ baHa and F e (S) such that F = ~a a!caH*. 
a 

Next we shall introduce the Kondratiev spaces [KSW] . 

~8 
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Defimtion 1. ' a) Let O ~ p ~ 1. We say f e (S)P if f = ~a ca ' Ha e (L ) such that 

Ilfll~,k := ~ 
(6) c~ ･ (a)1+p(2N)ak < oo, (Vk < oo). 

a 

We call this (S)P the Kondratiev space of stochastic test functions. 

(b) Let O ~ p ~ 1. We say F e (S)-P ifF = ~aba ' Ha such that 

~2. .-(7) ba (al)1 P(2N) aq < oo, (~q < oo), 
a 

where q need to be large enough (i.e. q >>1). (S)-P is called the Kondratiev space of 

stochastic distributions. 

The family of seminorms llfll~,k (h = 1, 2, . . . ) gives rise to a topology on the space 

(S)P. In fact, the space (S)-P can be regarded as a dual of (S)P by the action (F, f> = 

~a bac* ' a! if F = ~a baHa e (S)-P and f = ~a caHa e (S)P. It follows therefore 

that 

(8) (S) C (S)p c (S)o = (S) C (L2) C (S)' = (S)-o c (S)-p c (S)~1. 

2. Elementary Wick Calculus 

2.1 Wick Product <> 

The purpose of this section consists in definition of the Wick product and its extension 

for application to stochastic equations. We shall introduce first the primitive definition 

of the Wick product, and later on try to extend it to the largest space, namely the 

Kondratiev space. 

N.B. We already know that there exist much larger spaces of generalized functionals in 

white noise calculus, such as the Meyer-Yan space )Vt* (cf. LNM 1485 (1991)), and the 

Carmona-Yan space jVt* (cf. Prog. Probab. 36 (1995)). We have the following inclusion: 

(L2) C (S)' C (S)~p c J~lt* c J~f. 

Moreover there are continuous embeddings: )~t ,~ )Vt ,~ (L2) ,~ jL4* ,~ J~t'. In 

addition, M is a nuclear Fr6chet space which is stable under Wick and Wiener products. 

While, )~t* is the topological dual of the locally convex topological vector space ~;t. 

However, we need not use those spaces in this paper. The Kondratiev space is large 

enough to discuss the stochastic problem here in question. 

L
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　In　accordancewith　IHLOUZll，［肌OUZ2】，wedeHnetheWickproductofX　and　yas

（9）　　　X◇y：一π即）、ψ醐2　一，

ifX＝（記，望〉＝血d¢β，（forの∈5’，甲∈5）andy＝（¢，ψ〉＝∫良4ψ4β，（fbr田∈5’，

ψ∈5）．We　can　extend　it　with　ease　to（L2）by　making　use　ofthe　expression：

　　　　　　　　　　　　　　（L2）∋F（の）一暑∫…ん戸《（U・，…，㌦）4B密π，（血∈尤2（Bdn））・

Definition2．但εP7ε5eη観歪oπ6yE¢Pα商oπノ〃XαπdyαrεεJemeη哲5（ザ（L2）5ucん疏α孟

X一離。義R己）・∫π4B⑭παπdy一Σ賃＝・殴Rd）一9調⑭鵬7諺んε漁ε鰍P繍c呵

Xαπ4y乞5d頃πεd勾

　　　　　　　　　　　　　　　　　　　　　x◇y一混，∫…幕肌ん⑭9　　），

ωんerε伽吻ん餉απd5掘ε¢5C・η5乞伽ε4α5C・ηUεπ9εηC伽L1（5’，μ）．

　Next　let　us　consider　the　alternative　definition　corresponding　to　the　representation

Eq。（3）．

De伽ition3．∬Xαπ4yα陀eJε7πε伽oノ（L2）5駕c耐んαfXニΣ）αααπα，απ4y＝

Σβ6βπβ，オんεη

　　　　　　　　　　　　x◇y一Σαα6β・Eα＋β，

　　　　　　　　　　　　　　　　α，β
　　　　　しノωんε一ε磁4eT．伽吻んオんαη鰯eαεωπUε脚ε伽L1（5’，4）α吻α5乞彦翻5・

　Needless　to　say，the　above　two　definitions　are　equivalent．A　direct　computation　leads

to　the　equivalence．As　a　ma玩er　of　fact，by　taking　Eq．（2）into　account　we　can　easily　get

　　　　　　m　　　　　　　為購一（墓んα・（θゴ））◇（耳ん角（θ‘）Hん弁・　1α1）（んγ麹B⑭1β1）

　　　　r仙露厨β㌧　　 ヒ

withπニ1α1ニα、＋…＋αmandiニ1β1＝β、＋…＋β髭．N・tethatthewickpf・duct

X◇y≡Σα，βαα6β・Eα＋βwhich　we　have　de£ned　is　indepen（1ent　of　the　choice　of　the

b総e｛ε俺｝・fL2（R4）．

0
9
0
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Example 2. (Wick Product and Stochastic Integral: cf. p.398, [HLOUZ1]) If Yt is an 

adapted bounded stochastic process defined on the white noise probability space (~, f, ~)) 

= S/, B, I/)' then we have the following equality: 
~
 
~
 

(lO) Yt(x)dBt(x) = Yt~Wt(x)dt. 

2.2 Wick Product of Distributions and Wick Enponential 

Likewise, we can define the Wick product even for Hida distributions. In general, the 

spaces of stochastic distributions are stable under the Wick product. However, some 

smaller spaces are not always stable. Actually the followings are verified: 

(a) If F = ~a aaHa e (S)*, and if G = ~p bpHp e (S)*, then F~G = ~a,p aabp 

.Ha+p holds. 

(b) If f,g e (S), then f<>g e (S). 

(c) However, for F, G e (L2), F~G ~ (L2) (not always!). 

(d) For X, Y e L1(S/,/1), suppose that there are Xn'Yn e (L2) such that Xn ~' X in 

L1(S',l/), and Yn ~~ Y in Ll(S',p) (as n -~ oo). If I Z := Iim Xn~Yn e Ll(S/,ft), 
n-oo 

then we define X<>Y = Z. 

It is interesting to note that the discussion in L1 (S/,,1) is very delicate, because 

the space Ll(S',,l) is not necessarily contained in the space (S)* of Hida distribu-

tions [HLOUZ1]. Next we shall introduce the Wick exponential, which is one of the 

most important tools in Wick calculus applied to stochastic differential equations in the 

standpoint of how to solve the problem. If X belongs to Ll (Sl,,h), then we define the 

Wick exponential 

ExpX := IJ ~IX<>n. 

n=0 

Of course, this definition is well-defined if there exists the Wick powers of X, namely, 

~X<>n for any n, and if the series is convergent in Ll(S/, u). Furthermore, we obtain the 

exponential rule: 

(12) ~xp(X + Y) = ExpX<>ExpY. 

co Example 3L (ExpWlp: the Wick exponential of WN process) Since we have ~ 
n=0 

hn(x)tn/n! = exp{tx - t2/2}, it is easy to see that the WN process satisfies th~ relation 

ExpWlp = exp Wlp - ~lipl ) 

ISl 
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Letノ牝be　the　algebra　generated　by　exp（鴨）．Since。4is　dense　in（5），immediately

Exp鴨∈（5）。Thusit飴11・wsthatExp鴨∈P（5’，μ〉，f・rany』 ∈【1，・・）．

　For　the　elements　of　the　Kondratiev　space，we　de丘ne

　　　　　　　　へ（13）　　　　　F◇σ：一Σααδβ・Eα＋β，

　　　　　　　　　　　　α，β

ifF＝ΣαααHα∈（5）一1andO＝Σ）βδβ砺∈（5）一1・Thewel1－deHnednessab・veis4

guaranteed　by　the　fbllowing　lemma。

：Lemma1．（i）∫，9∈（5）1，伽π∫◇9∈（5）1．

（ii）F，σ∈（5）一1，εんeπF◇σ∈（5）一1，

2．311ε㎜漉7地凋b㎜

　W¢shall　introduce　the　Hermite　transform，which　is　a　powerful　tool　in　white　noise

calculus，espec三ally　when　it　is　used　fbr　the　study　of　stochastic　differential　equations．

De丘nition4・但εナ7π漉％αηげb㎜70Fb7∀F∈（L2）ひe5P．（5）＊，（5）一1／5ucん漉αオヨ

伽Cんα・5即α戚・πFニΣ）αCαHα，εんε∬ε㎜伽加π蜘㎜冗・∫F歪54ε伽ε伽3Pε伽吻

α5

（14） αZら
Σ
・＃

僧
F

一＝F冗

ωんε偶εZ＝（Z、，Z2，…）∈CN。

　Notetha，t，intheabove，ifαニ（α1，…　，αm）thenzαニzf1一・之負肌．

Pr・P・siti・n3［LOul．（i）万x＝Σαcα∬α∈（L2），孟んεゆ7εαcんMk。・ノ，εαごん

π∈闘，伽丑ε禰‘ε加α噛㎜X（z）＝Σ）αcα之αc・π鞠ε5αδ5・観吻力㍑＝（z、，z2，

…，zπ，0，0，…，0），lz亮1≦Mピ∀んノ。

（ii）ピTんε吻7eノカrεαcんπ，

又（n）（z1，…，zπ）≡又（z1，…，zπ，07…，0）

乞5απα嫡c．・πCπ・

Theorem4［：LOU】．5ψpo5ε伽¢X，y∈（L2）5α擁吻殉X◇y∈（L2），Tんεη・’

冗（X◇y）＝π（X）・π（y）

1
5
2



44 

holds, where /~ " indicates the usual complex product. 

Enample 4. (a) (WN process Wp) Recall that Wp(x) = ~k(fP' ek)HE(k)(x) = ~k 

((p, ek)hl(ek) for x e S', ~ e S (see Example 1). Then we have 

oo 
?i(WY,) = ~Wp(z) := ~J(Y" ek) ' zk. 

k=1 

(b) (The Square of WN process: W,p<>2 =: Wp~WY,) We have 

co 
7t(Wp~>2) = ~ (Y"ek)(~'e3)zk z 

k'j=1 

For Hida distributions, the same assertion as Theroem 4 holds; indeed, for F, G e 

(S)*, 7t(F~G) = 7tF '7tG. What about the Kondratiev space? Is the same assertion 

valid for the elements of (S)-p? 

Remark 1. If'F Iies in (S)-P for p < 1, then it is easy to see that 7tF(zl' z2, ' ' ' ) 

converges for any finite sequence Z = (zl ' z2 , ' ' ' , zm) of complex numbers for each m e 

N. 

Remark 2. If F is an element of (S)-1, then we can only obtain the convergence of 

7tF(zl' z2, ' ' ' ) in a neighborhood of the origin. Actually we have 7t = F = ~a ca' za 

for F = ~a caHa' So that, we get 

{ } {~lzaj2 (2N)aq} ~
 
~
 

(15) Ical ･ Izal < c~ ･ (2N)-aq 

The first term of the right hand side in Eq.(15) clearly converges for q >> I (Iarge enough), 

because F e (S)-1. For such a value of q (>> 1), the second factor is convergent if z is 

taken from the set 

(16) I~q(6) := {( = (Cl' C2, ' ' ' ) e CN; ~; Ical2 . (2N)aq < 62} 

a~0 

for some 6 < oo (cf. [HLOUZ2]). 

Proposition 5. IfF, G e (S)-1, then 

7t(F~G)(z) = 7tF(z) ' 7tG(z) 

holds for any z e CN so that both 7tF and 7tG may exist. 

The next assertion is of importance in applicational basis, especially when we apply 

the Hermite transform to rewrite the stochastic equation into an ordinary one and discuss 

the convergence of its approximate solutions. The topology on (S)1 can conveniently be 

expressed in terms of Hermite transforms as follows. 

153 
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Pr・P・siti・n6．Tんε解・痂9毒ω・c・π㈱e脆cε5α㎎e卿α」ε漱

（i）Xπ→X伽（5）｝1，

（ii）ヨδ＞0，9＜・・，M〈。。就耐履

　　　　　　　　　　　　　　　　　　　　　　　　　、
　　　　　　　πXれ（z）→πX（z）　（α5箆→∞）　ノbT之∈Bl9（δ）

αηd　l冗Xπ（z）1≦M和7αππニ1，2，…，∀z∈IBg（δ）・

Theorem7・ピ0加7uo診ε吻痂oπ勉坑θκoπ4剛蜘助αcεノS鶏PPo5εオhαオ9（z1，z2，…）わε『

α6・uπ4ε4απα煩c∫u戚乞・π・ηBg（δ）ピヨδ＞0，9＜・・ノ．Tんε偏んε7εε廊オ5απε」εm副

X加（5）一15賜c耐んαオπX＝9んo協．

Corol1＆ry8．S吻Po5ε漉αオ9＝πX　rヨX∈（5）一1ノ．五εε∫δε，α働απα」ツオ¢c血ηcオ乞oη

れfんεπε乞g妨OTんoo40∫g（0）歪ηC．Tんεη孟んε花ε漉5オ3απε」ε観eηオyれ（8）一15ucん孟んαオ

πy＝∫・g，

　翫αmμe5．Let　X∈（5）一1。Then　X◇X＝X◇2∈（5）｝1is　always　true　by（ii）of

：Lemma1．More　generally，X◇π∈（5）一1holds　for∀π∈N．Hence　we　attain　that

　　　　　　　　　　　　　　　　　　　　　　　　　ExpX≡Σ毒X◇π∈（5）一・

　　　　　　　　　　　　　　π＝O
by　applying　CoroUary8with∫（z）＝・exp（之）．

　Rε7πα摘3．The　Hermite　transfbrm7でan（i　the　S－transfbrm　in　white　noise　analysis　are

closely　connected．As　a　matter　of　fact，the　fbllowing　relation　holds．

解（z1，z2，…，Zm）＝SF（z・e・＋z2ε2＋…＋z肌ε肌）

魚ranyz＝（Z、，Z2，…，Zm）∈cm，（ヨm∈N）．

The・rem9・侮εκんαπ9εα6ぎ」ぎ⑳ゲ血勾纏・ηαπ4既ゐPm4駕cO且55徽e孟hα伊（・，・）

∈L2（5’×5’，μ⑭μ）、伽αηyσ∈（8）＊，

　　　　　　　ゐF（η・¢脚ごμ（η）一ゐF（榊（η脚・

Tkeorem10・且5εume伽εy∈（L2），侃4ψ∈（狩（R）5uc硯んαεsupPψ⊂1α，bl．写

ψ（5）y（ω）乞5Sゐ070ん04¢π孟eg飢況ε，εんeπ

　　　　　　　　　y（ω）◇叫（ω）一五6ψ（5）・y（ω）δ疏（ω）

ん・眺，”んe勉んε吻励απ4ε‘4emeαη5オん面醜4α一Sゐ・”ん・4歪吻mZ侮阻P幼．

、

1隣
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3．　］FUnctio21a〔［Process

3。1（LP）一Fμηc顔oηα’PTocε55

　W6wr1te　LP（5’，μ）㏄（P）。When　X　is　an（〃）一functional　process，we　write　X∈£P．

Definition5．r（L2）一凡πc孟歪oπαZP卯ocε53ノ四e5αッX∈£2ザXニX（卯，¢，の）歪εαm叩p乞ηg

，5×賦4×5’→R3鋤cん抗α孟

　　　　　　　　　　　x（ψ，哲，の）一Σcα（ψ，哲）・πα（コP），

　　　　　　　　　　　　　　　　α

ωんε猶εcα（・，・）65αm叩伽9’5×Rd→R例α1≧1，αη繭7εαc砂∈5，孟んε㎜卿吻’

Rd∋加Cα（幹，オ）ゑ5B・㎎」徊εα5u洲ε，α寵ザα＝0，c。（・）歪5掴α肌εα5徽ゐ’ε加cε伽

・πRd，弼θ卿伽オ｛卯．M・陀・びθ7，

　　　　　　　　　　EIX（甲，オ，・）2卜Σc乞（幹，孟）・α！＜。・

　　　　　　　　　　　　　　　　　α

抽αη鯉∈5，απ4α噸∈R4．

De丘nition6．ピ（〃）一施πcf乞oπαJP70cε55ノ昭ε5αyX∈βPザX＝X（ψ，む，の）∫5×Rd×5’

→R3ucんオんαオ

（a）αη即P乞π9’R4∋ひ→X（卯，ε，¢）25βo沼mεα5脚αδJe和丁απyψ∈5，μ一α．ε，の∈8’ノ

αη4

（b）α7παPP¢π9’5’∋の目X（ψ，君，¢）∈（LP）ノbTαπ9ψ∈5，απμ∈IRd。

　The　functional　processX（ψ，君，ω）is　called　po5歪伽εorαpo5乞痂επo歪5eifX（幹，オ，¢）≧O

h・1dsμ一a．e．偲∈8’恥ranyψ∈5，a血y諺∈Rd．

　翫α即置ε6．（cflLOU］）：LetX＝X（ψ，孟，の），y＝y（ψ，君，33）bepositive（L2）一functiona1

、processes　such　that

　　　　　xψ（¢）一Σαα（9⑭π〉・Eα（z），玲（¢）一Σ6β（ψ⑭れ）・砺（¢）・

　　　　　　　　　α　　　　　　　　　　　　　　’　β

Then　the　Wick　product　X◇y　is　also　positive。

Theorem11［：LOUl．ピσんαTαcfε勉α伽ηo∫Po5伽ε飛πc孟20ηαl　P偽oce53／LeεX∈（L2），

TんeπX細・5伽ε伽．ε．・3r∈5りザαη4・η尉Mπ（写）≡又（π）（勿）・exp（」秀團2）乞3

P・3蜘ε岬耽α5α幅短¢σ班（π×π）炉αημ∈国，y∈Rπ，ω厩又（π）（z）≡

X（z1，z2，…，Zn70，0，…，0）．

　Let　us　considertheWN　process．W6shallintroducean　interestingand　important飽ct

that　the　WN　process　provides　a　typical　example　of（P）一functiona　process，which　very

1ぢ写
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often can be found useful in applications to stochastic partial differential equations[B], 

[D8], [HLOUZ1]. Set W(p,t,x) ~~ Wlp(t)(x), and define Y2t(u) = ~2(t)(u) = ~(u - t). 

Actually the WN process 

Wp(t)(x) <x, ~'t) = f~d Y't(u)dBu(x) 

is naturally regarded as an (LP)-functional process, i.e. Wp(t) e CP. 

3.2 The Kondratiev Space Valued Process 

Definition 7. (Stochastic Distribution Valued Process) 

~; ~;(t,p, ) I~ x I~n 3 (t,p) H~ ~;(t,p)(') e (S)~l 

is regarded as a stochastic distribution valued process. We call such a function a (S)-1-

process. 

Let us consider the derivative of (S)-1_process. Let F(t) be a (S)-1-process: namely, 

F(t, .) : E~ ~ t h~ F(t, .) e (S)-1. 

E(to) e (S)-1 is said to be a derivative of (S)-1-process F(t) with Definition 8. E: EE 

respect to t at t = to if there exists an element E: in (S)-1 such that 

F(to + h) - F(to) 
-~ :E in (S)-1 (as h H' O). 

h
 d

 
F
 

When the above limit exists, we write E:(to) EE -(to) ( e (S)-1 ). d
 
t
 

We set ?iF(t) = F(to; z) and 7tE:(to) = E:(to; z). By virtue of the characterization of 

topology of (S)-1 (see Proposition 6 in. S2.3), the aforementioned definition is equivalent 

to the following: 

(17) F(to h;z! - F(to;z) _~ ~(to;z) as h -~ O 
holds pointwise, boundedly for any z e J~q(6) ( Iq < oo, 6 > o ). If the mapping : t h~ 

~F(t; z) = ~7tF(t) is continuous in t, and uniformly bounded for any z e ~q(6), and 

any t in the neighborhood of to , then instead of the condition (17), the condition 

(18) "~L~(t;z) = ~(t;z) for t = to, pointwise for each z e ll~q(6)" 
d
 
t
 

is just sufiicient. Because, if Eq. (18) holds, vye can write it as 

p(to + h; z) - fr(to; z) t0+h 

= 
to s-1
 h ~ ~~F(s;z)ds for small h, 

and therefore, this expression turns out to be uniformly bounded for z e ~~q(6) as h' tends 

toward zero. If ~F exists and is t-continuous, then it follows that (S)-1-process F(t) e 

C1 . 

l~G 
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4. The Stochastic Boundary Value Problem 

4.1 Formulation 

We consider the following stochastic boundary value problem: 

du(t, r) = {Au(t, r) + R(u(t, r))}dt + h(t, r)u(t, r)dBt, 

(19) O ~ t ~ T, r e [O, 1], 
u(t, O) = u(t, 1), u(O, r) = uo(r) 

where A is the Laplacian and R(y) is a polynomial of y e ~. ~t denotes a one dimensional 

Brownian motion. h, uo are non random functions being continuous. In addition, assume 

uo e C3. 

Definition 9. (Functional Process Solution) u E u(Y"t,T, x) is said to be a (S)-1 func-

tional process solution of Eq. (19) if 

u : Coco(I~) x [O,T] x E:~ -~ (S)~1 

is a Kondrateev space valued functional process and satisfies 

(20) u(t) = uo(r) + J( A.u(s)ds + J( R<>(u(s))ds + J( h(s,r)u(s)~W~o(')(x)ds, 

for ~' e COCO(E~) such that ~'s(t) = fP(t - s) with boundry condition. 

We resort to the asymptotic solution theory. We shall say that uk is an asymptotic 

solution for the problem (20) if there exists uk = uk(t,r) solving the reduced, modified 

or simplified equation, satisfying 

uk(t,T) -~ u(t,T) in (S)-1. (21) 

Let uk = uk(fP't,r, x,(L') satisfies the following stochastic partial differential equation 

(SPDE for short): 

(22) uk(t) = u~~(r) + Jo Akuk(s)ds + Jo R<~(uk(s))ds 

+ ~t hk(s, r)uk(s)~W,p(s)(x)ds + Mk(t, r, (~))' 

with boundary condition, where a) is an element of some proper probability space on 

which a martingale Mk is realized. We propose that the asymptotic problem for our case 

is to show that 

supIIXk(t) - I~(t)Iloo~~O (k -~ oo), 

IS7 

t
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for T > o, if we take Eq.(21) into consideration with characterization of topology in (S)-1 

in accordance with Holden-Lindstrcm-Q)ksendal-Ubce-Zhang formalism (cf. Proposition 

6 in S2; see also [HLOUZ1], [HLOUZ2]). 

~ is a solution solving 

a
 (23) ~~u(t) = (A +c(t r))u(t) + R(u(t)) 

with the initial and boundary conditions, where we put c = h . W~o ' The corresponding ~ 

model for asymptotic solution is described as 

(24) dXk(t) = (Ak + ck)Xk(t)dt + R(Xk(t))dt + dMk(t), 

with Xk(t,O) = Xk(t,1), Xk(O,r) = uok(r). 

If we assume boundedness for R and the initial value, then the problem (23) has a 

continuous bounded solution by virtue of the implicit approximation scheme. Under 

further assumptions on R there exists a unique solution Xk for the problem (24). In fact 

we can construct it by employing the classical probability theory related to some jump 

type Markov processes with suitable conditions. 

Theorem 12. Under the assumption ofconvergence llXk(O)-~(O)lloo ~~ O in probability, 

then we get 

~i_,mo IP)(sup l]Xk(t) - ~(t)ll 

as far as z e H~q(5), for some positive 6, q. 

4.2 The Probabilistic Model 

Let us consider the totality of real valued step funGtions on [O, I] , and we extend those 

functions periodically with period 1. We denote the extension by Hk. For f ~E Hk, we 

= 2 Akf(r) k {f ( -
1
 
1
 

We shall now introduce the discretized problem of Eq.(23), i.e., 

a
 -~;k(t, r) = (Ak + ck)~k(t, r) + R(i~k(t, r)), (26) 
at 

with the correspo'nding initial and boundary conditions. Then we have the bounded 

solution ~k(t) for all t, and 

sup ll~;k(t) - ~(t)llco ~ c(T,R,uo)'C'(k) for T > o 
te[o.T] 

, s8 
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with C'(k) = O(k-1), ( k H> oo ). 

While we consider the following SPDE driven by a martingale ~term M: 

(27) dX(t, T) = {A. + c(t, r)}X(t, r)dt + R(X(t, r))dt + dMt' 

We follow the standard notation in stochastic analysis (e.g. [IW]). Let M be a continuous 

square integrable local martingale on (~, jr, ~); f:t)' If the quadratic variation process of 

M is given by an integral of G(s,a))2 relative to s over [O,t] where G(~ O) is a (f:t)- ~ 

predictable process and belongs to L2 ([O, T]) with probability one, then the representation 

theorem for martingales(p.90, [IW]) guarantees that there exists an extension (~1, f', Ip)') 

with fi and there exists an (f{)-Brownian motion such that M(t) = fot G(s) dB(s). 

So we assume that Eq.(27) has a solution (X, B) on (~', ff, I~). Define an Al'l process 

nr(t,X) = -c(t,r) X(t,r) G(t)-1. Further suppose that 

1 t 

 

(
f
 

(28) ~exp 17(s, X)12ds) < oo, Vt > o, ~
 

1
 hr(s, X)12ds (29) r exp 7(s X)dB(s) ~ is a (fj) - martingale 

Put ~ = r.~y and ~(t) = ~(t) - ~ nr(s, X)ds. An application of the Girsanov theorem[G] 

allows that B(t) becomes a (f:t')-Brownian motion on (~f,J:/, EP). Therefore (X, B) on 

(~/, f/, p) solves the stochastic equation: 

(30) dX(t, T) = A.X(t, r)dt + R(X(t, r))dt + dMt, 

with ~~(t) = fot G(s)d~(s). On the other hand, we consider the stochastic process U(t) 

describing a density dependent birth and death process. In fact, Iet U(t) = (U1(t), . . . , 

Uk(t)) be a Nk-valued jump type Markov process whose Markovian particle may diffuse 

on the circle in accordance with simple random walk with jump rate 2k2 and besides 

with birth rate pR1(Ui/p) and with death rate pR2(Ui/p) where p is a given parameter 

and R = Rl ~ R2 ' We can construct such a process U(t) by classical probability theory 

and realize it as a cadlag process on some suitable probability space. jFtP denotes the 

completed cr-field of cr(U(s); s ~ t). Let T(c')) be an ftP stopping time satisfying 

{cv e ~;T(u') ~ t} e f~ for Vt, and sup{U(t AT(eu)) ' IT(~)>0(cv)} < oo. 

Then by martingale theqry [LS] it follows that 

tAT(~) f
 

Ui(t A T(c(;)) - ~(U, R, p, i; s)ds 

¥
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is an JFtP-martingale [BL], where we set ~(U,R,p,i; s) = pR(Cl~(s)/p) + k2{Ui+1(s) + 

Ui_1(s) - 2Ch(s)}. Define 

Xk(t,r) :=Ui(t)/p for r e [i/k,(i+1)/k), i = 1,2, k 1 

Thus we attain that the Hk valued Markov process Xk Satisfies the discretized versron 

of Eq.(30): 

(31) dXk(t, r) = AkXk(t, r)dt + R(Xk(t, r))dt + dMk(t). 

4.3 Law of Large Numbers for the Stochastic Problem 

In order to prove Eq.(25) it is sufficient to show that 

IP){sup llXk(t) - ~k(t)lloo > c} 

converges to zero as k tends toward infinity. Set Tt = exp(tAk) and ~
t
 
^
 

Yk(t) = Tt_sdMk(s A T((L')) 

Moreover, a simple calculation leads to ll6Xk(t A T((l)))l]oo = O(p~1) with precise esti-

mates. On this account, the problem can be attributed finally to computation of the 

term supt llYk(t)llco' In fact we need to est.ixnate 

sup l[Yk(t)Ilco ~ C111Yk(a)lloo +C sup llMk(tAT((v)) Mk(aAT((L'))l[oo 
te[a,b] 

By making use of Gronwall's inequality, Markov' inquality and Doob's inequality, w~ 

deduce that f
 
l
 
IP)lC3(T) sup llYk(t)lloo > cf ~ C4(k,p,c), 

te[c,dj 

because we applied martingale theory. For the final estimate, we need Lemma 4.4, p.135 

[BL] . 
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