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Pseudo-Fourier-Mehler Transform in White Noise Analysis
and Application of Lifted Convergence to
A Certain Approximate Cauchy Problem

Isamli DOKU*

Dedicated to Professor Yoshio Nakamura on the occasion of his retirement from Saitama University

Abstract
We consider a certain approximate Cauchy problem which is deeply connected with the abstract
Cauchy problem for heat equation on the white noise space. We also propose the pseudo-Fourier-
Mehler transform and lifted convergence with a concept of lifting. By using the former we can obtain
an explicit form of the solution, and an application of the latter leads to a precise discussion of the
convergence problem.

§ 1. Introduction

Let us consider the following Cauchy problem for the heat equation on the white noise space,

ie.,
ou 1
tv :_—A tr )
(P1) or Ly =g doult,y) £>0, yES'(R)

u(0,9)=1(y),
where 4¢ is the Gross Laplacian and S’(R) is the space of tempered distributions on R. The
Cauchy problem of this type has been studied by many researchers (e.g. (9,13] ; also [5,6] )
The operator part is also wrxtten as

(1.1) do=EoTr)= [ &,
according to:the theory-of kernel operator [12] . 9 is the Hida differentiation [10] (see also
[4) ). We set P#—é—dc for convention. As well known, the Gross Laplacian is a singular

operator in the sense that it has a singular kernel (see Eq.(1.1)), so one of the basic ideas of
treating the above equation is usually a certain approximate approach in a proper manner. In
fact, we may rewrite the above problem by using the formula (e.g. [12] )

(1.2) dou=<x,Vu(x))—Nu(z), uc(S),

where N is the number operator and (S) is the space of white noise test functionals [17] .

* Research is supported in part by MEJ Grant SR05640089.

Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803-4918, USA / e—mail : doku@marais.
math.Isu.edu
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Hence we shall adopt the e-approximation for instance. our approximation is as follows. For
yE€ S’(R), there exists a sequence of 7.=75(y) in S(R) such that

) ey strongly in SY(R) . : ,
where 77E 1s glven by 775——7]lln nny, and m. 1s the prOJectlon from S (R) mto the subspace of
Hermite polyhotnials’of order #. Then wer have ' SRR '

(1.4) o Ly, V¢(y)>—11m<ve,V¢(y)>~hmD,,,¢(y) in (S),, (1>>0)

where (S), is the completion of L?-space (L?) on S’(R) relative to the norm ||| ,=|I"(A)?-| (with
the second quantization I'(A), A=—d*/dt*+t*+1, and (L?)-norm |-| relative to the white noise
measure du) [10,17] . Consequenty we have the followmg first approx1mate problem :

e (1) =-Dere( t.) ~ Nuwelt,4)) = Paue(,9), £ >0, € S'(R),
u(0,y)=7(y).

Note that P.— P in operator sense (actually more strongly, in umform convergence sense) when

(P2)

ne—y strongly in S'(R ).

Let us consider its Fourier transformed problem.. Generally speaking, we cannot apply the
Fourier transform F(= F-transform for short) [14,15] in White Noise Analysis for (P1) because
F(dcu(t,-))(x) dose faol to exist, while the F-tansformation is valid for the operator P.. Hence
we have

IV (,2)= — (N + e~ i (el t,2)= Peve(t:c)

we(0)=f E(LZ)
where vc(¢,x) is the F-transform of u(¢,y), i.e., vt,x),=F(ve(t,*))x), and ds* is the adjoint
of 4. (N.B. The foundation of F' is based upon the theory of U-functionals [19] .) Since the
F-transform is a one-to-one mapping in the space (S)* of generalized white noise functionals (or
Hida distributions) [19] , consideration of (P2) is almost equivalent to thinking of (P3). We
are very interested in this approximated problem (P3) and some convergence prohlems associat-

(P3)

ed with (P3). Notice that there still exists a singular term <{x,7>ve(f,x) in (P3). In the
following, unless otherwise stated, we interpret the solution as like this : for example, as to the
case of (P3), ve=rv(#,x) is said to be a solution of the peoblem (P3) if v. satisfies

0dD).g>= o>+ [ Nods),edds+ [ <ot vels), o ds
(1.5) ;e

271 Cve(s),$+,pe> @ ds,
for any ¢=(S)NF, and any ¢{>0, where F is a proper functional space, (which will be
described precisely later).

The purpose of this paper consists in studylng the F-transformed problem (P3) and discussing
some convergence problems in white noise space. In § 2, we shall introduce some notations used
in succeeding sections, and state some results on existence and uniqueness of solutions for
problems (P2) and (P3). The proofs for those assertions will givenin §3—8§7. In § 3 we will
discuss amoothing and finite-dimensional approximation of the problem (P3). § 4 gives conver-
gence result of approximate solutions z2%(¢,z). The existence and uniqueness theorems for
weak solutions of the smoothened problem (P5) are proved in §5. Its strong convergence is

____'56 -
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discussed in §.6." Then we will show in § 7 the existence and uniqueness of solutions.for the
modified Cauchy problem (P4). We define the Pseudo-Fourier-Mehler transform in § 8 and
study the properties of the transformation precisely, and also discuss the S;-transformed
problem in connection with the newly introduced ¥FM transform. In §9 we introduce the
concept of a lifting and discuss lifted convergence of the F-transformed problem. As for other
applications of the F-transform related to (P1), see [5,6] (cf. also [3] )

§ 2. Notation and Some Results

Define ||¢|llo.- : =|(7+N)"?¢| for ¢ P where P is algebra of complex polynomials over S’(R),
and we denote by D2 the completion of P with respect to the norm ||+|lz.r, and (D7} lz,)
becomes a Hibert space of (L?). For simplicity, we also write G=4c*. Let | ¢|n.2 (resp. | ol¢.2)
denote the graph norm of the operator N (resp. 4dc*) in (L?) for the element @ of Dom (N) (resp.
Dom(4¢*)), and also HF (rest. H3 denotes the completion of Dom () (rest. Dom(d¢*)) with
respect to the graph norm [+~ (rest. |+{lc.2). Notice that (HZ, |-|~.2) becomes a Hibert space
of (L? and that the space D*? is canonically 1somorphlc to Hi. Then the dual space (HN)* I

written as Hx?, and this type of notation would be used extenswely for other functional spaces

O will be used

unless otherwise stated. Occasionally the equivalent norm | ¢|x:= ([ ¢[*+| Xl
in what follows for X = N or X=/A4c* instead of |||lxz2, |*llc.2 and there will be no confusion
in terms of the context. We will use (-,+) for the inner product, and <-,-> denotes the dual
pairing whereas we mean the canonical bllmear form.

Let 7 be an open interval (0,¢,) for fm1te fe, and T denotes its closure, i.e., the closed interval
[0,.) . We fix 1)>T throughout the paper. When X is an operator on a Hilbert space, then

X indicates the corresponding bilinear form associated with the operator X such that
X(p, §)=<Xo, ¢»;

for instance, X =N or X = G. Next we introduce the regularized spaces, suggested by the
theory of abstract evolution equations [18] . We define Riv(H?) (resp. Réc(HE)) as the whole
space of o€ HZN(S)» (resp. o€ HZN(S),) satisfying that there exists some constant Ay (resp.
A¢) such that the inequality ReN(p,p)+Anl@l’ > al@lk .2, @>0 (resp. ReG(e,9) +Aclol? = Bl ¢l%..,
B>0) holds.” When V' is a topological vector space, then LXT ; V) is the whole space of
V-valued square integrable functions on T. We assume that a mapping : { — f(¢) be strongly
measurable for any element f&€LX(T; V) so that the Bochner integral [7] of f can make
sense. Moreover, notive that N (resp. dc*) proves to be a continuous linear operater from
LA T;Rin(HE)) (rest. LA T;R}c(H2))) into LZ(T H7*N(S)- p) (resp. LA T:Hs?N(S)-p)). In what
follows we set

V:=R$~(H§r)ﬂR$c(H5)
and denote by V* the dual space of V. Define (cf. [18] )'

2TV, V) ={flfeLXT; V) eLz(T V*)).

’ a’t -
Further when F is a functional space, then F-'F is the space of f&(S)* such that f FfeF.
Now we introduce some results on the existence and uniqueness of solutions for the problems



(P3) and (P4). The proofs of those theorems below will be given in § 3 through § 7."
Theorem 2.1. There exists a unique solution ve of (P3) in Wi(T;V, V*) such that ve satisfies

(21) %l;t = eVe(t,x)

with the initial condition v(0)=F&(L?).
Theorem 2.2. There exists a function ve€ CXT;H) such that
ve(t)=ve(t) holds in (L?), dt—a.e.t,

where we put H =(L2). _
By virtue of the bijectivity of the Fourier transform F in (S)*, the foIfoV‘ving theorem is
derived almost obviously from the above assertion.
Theorem 2.3. There exists a unique solution u (except dt-measure null set) of (P2)in F'WT;
V.,V )YNF'CYT;H) such that
é’ue

(ty) Paudt,y), t>0, y=S'(R)
with u0)=f(y)€ F~(L?.

§ 3. Smoothing and Finite-dimensional Approximation

The purpose of this section is to exclude the singularlity of coefficient of the operator in
question by smoothing procedure and to make a finite-dimensional approximation of the
smoothened equation. First of all we will begin with introducing the definition of S-
transformation, which glves an equivalent problem.

We define z:(t,x) (for €>0, >0, x€ S’(R)) as follows:
(3.1) z(t,x): =S ve(t,x)

=exp{ —%(/bv +Ac) t} - ve(t,2),

Then we see that z.(¢,x) satisfies the following modified equation :
aZ:

(t )_ 2(N1+Gl Z<I Ue))ze(t .Z') PeZc(t .Z')

25(0)=f€(L2), >0, x= S(R),
where Mi=N+Ax and Gi=G+AcI. We consider the smoothing of the coefficient <x, 7o -.
Let z, be the projection from S’(R) into the subspace of Hermite polynomials of order »z, and
set &=C&m=mnx (e.g. [11] ). Then it follows that & converges to x in strong topology as ¢
tends to zero, hence, of course, it holds that @(e,8):=(&s,7.)—<x,7.>as & 1 0. If we write the

(P4)

smoothing operation as SM(d), then the new operator is given by Pes=SM (8)P;v= —%(Nl
+Gi—i®(¢,8)). The smoothened modified Cauchy problem is as follows:
9 (1, 2)=P cuzl(t,z), 1>0, 7€ S'(R)
zX0)=F&(L?).
Next we shall consider a finite-dimensional approximation of the problem by the Faedo-

Galerkin method (e.g. [2] ). P, denotes m-dimensional approximation map from (L?) into an
m-dimensional vector space V, Then the smoothened modified Cauchy problem for P, is

(P5) .

12



given by

9L (1 1) = — LN+ G i0(e,))28(8,2) = PaPesz{1,2),

ze "’(0)=f€(L’). t>0, z€S(R),
and note that Pn P ¢s= P ¢sPn, while Pn P ¢+ P Pn, implying that the smoothing SM (6) and the
finite-dimensional approximation P, is not commutative. As a matter of fact, this finite-

(P6)

dimensional approximation is realized as follows:

(3.2) Przi(t,x)=21 "(t x)= lgf_',‘,',(t)w,-(x), and

(3.3) F™(x) =i2=15.-,mw,-(.r).

The sequence {w:}, {gfa(t)}, and {£:.»} are described below and are settled in a well-defined
manner. In fact, since the space V is separable, there exists a dense linear span {w, w2, ", wn,

.-} in V. For a fixed integer m, &;,. is defined by (., w,) for 1<i<m, and f™(x) in (3.3)
converges strongly to F(x) in H=(L?). Moreover, g&*(t)={g54(t)}i<ccn EC™(V t € T) satisfies
the following m-linear ordm-a-ry d1fferent1a1 equatlon system, i.e.,

(3.4) Wm 779 g5%(1) +—= ngm"(t)+ gng‘(t)~~an"g,i"(t),

with gﬁis(O):Em,

where W,, is an m X m matrix given by |[[(w:;,w;)x], and N, (resp. &€ ,) is an m X m matrix
respectively given by |Ni(w:,w:)], | Gi(we,w;)|. H&? is also an m-square matrix defined by [[(@(e,
Nws,w;)ul and &, is a vector given by {£im}i<i<m. -

The well-definedness of g&° (£) and the validity of m-dimensional spproximation P, for each
m&EN is due to the following assertion.
Theorem 3.1. (i) For each mEN, >0, § >0 (fired), there exists a unique solution vector gg° (¢)
such that g5°(-)e CA(T:C™)N CYT;C™) satisfying Eq.(3. 4) (i1) Moreover, the solution can be

expressed by

(3.5) g=°(8)=exp(tC5°)* &m,
wheve the matrix C5° is given by ‘

(3.6) i0(,8) En— 2 W' Nu— S W5 € m,

and E, is an m-square unit matvix.
Remark 3.2. When C5°=|cy(m;e,8)|, then the convergence criterion of a function exp(:) is
given in the usual manner, that is, exp (¢ C&°) is said to be convergent if and only if the series

=0T kl rt*ci(m;e,8) converges absolutely, where c{f’ indicates the (g j)-component of the k-th

E,é‘)k

power matrix (C %)% Actually it is guaranteed by the following estimate :

st (mie,0)| < m*- ( max |co(m;e a)|)

for 1<n,/<m.

Proof of Theorem 3.1. We first note that for each m, an aggregate of {w;,ws, -+, wn} is linearly
independent, so the Gram determinant det W, is nonzero, hence the non-singular matrix W, has
its inverse Wx'. Consequently when we write Wx'=[ 04", then the (i, 7)—component c;; (m ;¢,
6) of the matrix C&’ defined by (3.6) is expressed by
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(3.7 ci(m;e,8)= ——(D(e 8)8u— 72 2 vBN(wr, w;) — P z: vBG(we,w;),

where d;; is the Kronecker s delta. The assertion is direct result of the following lemma with
ad(D=g5°(t), M=C5® and E=En:

Lemma 3.3. For m €N, let g(t) be an R™valued vector function on T and M an m X
m-matrix. Then the liear differential equation - : : '

(3.8) Wg(t)=Mg(t> with g(0)=£ER™

has a unique solution satisfying b(-)e CAT:C™NCYT;C™), and moreover, it has an expression
g(t)=exp(tM)-&.

§ 4. Convergence of Approximate Solutions z7%(¢)

According to the results in the previous section, for each m, the vector function g&%(¢) is
well-defined and uniquely determined, and V

g53(-)E CAT;C)N CH T;C).
So that, as far as mEN, €>0, ani 6 >0 are fixed, we know from (3.2) and (3.3) that there exists
a unique approximate solution z*(¢,x) such that
(4.1) ' ZM()eCA T, VNC(T;V) (CLXT;V)),
satisfying Eq.(’6). Then we have the following estimate.
Lemma 4.1. For each mEN (m>1, sufficiently large), € >0, 8 >0 (fixed), for any f € H=(L?) we
can find some J)sz'tz've constant Cy and

4.2) mZe |"2 T, V_m"f"z<oo

holds, where the constant ¥(a,B;¢,8)=a+ B—2|0(¢,8)|, and |gllar.v is the usual norm of the
space LX(T ; V).

Remark 4.2. In the above (4.2), the constant y(«,8 ;&,6) is able to remain positive for sufficient-
ly large « and B. By the passage to limit ¢ | 0, the term ®(¢,d) approaches to a certain finite
number for fixed €>0, so the inequality (4.2) is still valid. However, we cannot expect the
existence of the limit when & tends to zero, as y proves to be—oc even for any a, 8>0.
Proof of Lemma 4.1. From (P6) we get immediately

LNz (), 10,0+ <Glz;" O

250(), w>+—+ 5

al‘
—<d>(e 8)z2%(¢),w;»

4.3)

for w,€& V., 1<j<m, m&N. The linearlity of the approximafe smoothened modified equation
allows us to derive '



@) (a0, 2B+ NZE (), 28D

+100G2P 1), 221 = 0(,8)28 (1) 2N,

by multiplying (4.4) by the previously obtained solution gf:4(#) and taking a summation from 1
up to m. Recall the following formula :
Lemma 4.3 Let H be a real Hilbert space. Then

45) 2(-SA(DAD), =Dl

holds for any f(¢)e CY(T;H).
By (4.5) we have

(4.6) Re(i L), zm "(t)) -gdlz-llzé""‘(t)lP.
We may apply (4.6) for (4.4) to obtain

@D DO+ Res Nl (1), 281y
+Rey (Gl (1), 2 (1)>y= —Im(0(e,8)28(8), 2241,
Likewise as to the initial condition we have <z™(0), w,>=<f", w;>, i<j<m, from which we
reads
(4.8) Iz22(0) =17l

Taking (4.8) into consideration we may integrate Eq.(4.7) relative to the Lebesgue measure df
over the interval (0,£,), and get

(4.9) 22— 17"+ Re [ “Riz2(0), 28(8))d

Re [“Ga2(1) 21 dt=—Im0(e,8) [ Var (1) at.

The definitions of the regularized spaces Rin(H2), Ric(HE mentioned in § 2 imply that the
inepualities of the form

(4.10) Re ﬁ teX'(qo(t), o(1))dt > Kx A te||¢(t)||2va’t

holds respectively for X = N, (or X = () and the constants Ky = a(or=2), because we can
find constants Ax,A¢ for properly chosen a,8>0 in accordance with the norm values of V.
While, since Pnf converges to 7 in (L?) as m approaches to infinity, the continuity of norm can
provide woth some positive constant C, such that

(4.11) - S s B 17

holds, while G, is chosen uniformly with respect to m as far as m is sufficiently large. An
estimation of Eq.(4.9) together with (4.10) and (4.11) leads to

@) o Aesed) [ loPa<ClT,

where y(a,8; €,0) (see Lemma 4.1) has a meaning for sufficiently large «,8. By Remak 4.2 we
conclude the assertion. []

The estimate Eq.(4.2) in Lemma 4.1 means that 2™%(-) ranges in a bounded set in L¥T ; V),
so we can extract a subsequence {z7*%}, such.that :
(4.13) 2085 2%)  weakly in LX(T ; V),
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because a bounded set in the Hibert space is not compact, but is weakly compact.
§ 5. Existence of Weak Solutions to the Smoothened Problem

In this section we shall show that the weak solutions obtained as a weak limit lie in W2(T;V,
V*) and satisfy the smoothened modified Cauchy problem (P5) in distribution sense. The
unique'ness is also proved (see Proposition 5.5).

Lemma 5.1. The following equalz'ty

6.1 (ze(t) w;)+ {N;(zﬁ(t) w;)+ Gi(24¢), wy)}

:7’d>(e,6)(z‘3(t), w;), A

holds in D'(T) sense with (zX0), w;)=(F, wy), where (zX¢t), w;) is a modification of (2Xt), w;)
except di-measure null set.

Proof of Lemma 5.1. For simplicity we set A=m(%). Take ¢(¢) C(T) such that ¢>( te)=0, and
define ¢, {t):=¢(t)-w; for A>;. From (4.3) in § 4, immediately

52) Z .ol >+ R0, 040)

+= Gl(zé Xt), oit))= —(@(e 8)z(t), @it))n.
On the other hand, an apphcatlon of integration by parts formula allows
// 3t 2%t x)pi(t,x)dt X p(dx)
S’ (R)
= [“((8), ¢ XNt =T 0O

AV

Hence we can rewrite (5.2) into

(Prod0n+ [ i 0(e8)21),0)ndt
Z[; {‘z—Nl(zﬁ"’(z‘),%(t))+7G~1(zé"’(t),§o,-(t))—%(zé'”(t),go'j(t))}a’t,

because we integrated (5.2) with respect to df and substituted the above-mentioned result for it.

(5.3)

If we take the limit A—o0 in (5.3) by taking the weak convergence (4.13) and the (L?) conver-
gence of 7* in § 4 into account, then the following equality

o0+ [ i(0(e,8)2K 1), 041 udt |
= [ (30,00 +F Gl D, oAt =D, o)}t

holds. Actually the above is also true for any ¢ consisting in D(T) satisfying the condition that

(5.4)

@ vanishes at the one end point t=¢f. We denote it by the symbol D.7T), and put ¢,(¢)=
o()wix) for €D T). Exchanging ¢st) for this one we may rewrite (5.4) and readily get

G, w05+ T D), w) + G2t ws)) 9>
(5.5) .
=< 0(&,0)((8),w:), 0,

which implies the assertion. Note that (2X(¢),w;) is regarded as an element of D’(T) in the left
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hand side of the above expression .(5.5). []
Lemma 5.2. The equality

(5.6) 7 zs(f)+—(N1+(n)z(t)'—‘%(p(e,a)zf(t), with  zX0)=7,

holds in V*.
Proof of Lemma 5.2. Recall that 23,5w; is dense in V for a basis {w;} of V. From (5.1) of
Lemma 5.1 it is easy to see by virtue of linearity that

LA+ TKD,9)+ Cul22).0))
(5.7) .
=5 0(e,8)(z8),¢)

holds for arbitrary element ¢ of V. Immediately Eq.(5.7) implies that
—(N1+Gl)2 (t)———(D(e 3)2 (t) ¢>V 0,V¢1€ V,

dt
which completes the proof. (]
Remark 5.3. Recall that the number operator N is a continuous linear operator from LX T;R
in(HE) into LA T;Hx*N(S)-p), and that G=4c* is a continuous linear operator from L¥ T;R
3c(HE) into LA T;Hz*N(S)-p), which is stated in § 2. We used this fact in the proof of Lemma
5.2.
If we combine Remark 5.3 with the fact that zZelies in LT ; V), then it follows immediately
that

2 x1)= %}(t) Lo(e,8)2u1) - —(N1+Gl)z(t)€L2(TV)
dZe

whre (t) is a L?-modification of —szE(t) Summing up, we therefore obtain

Proposmon 5.4. The smoothened modified Cauchy problem (P5) has a solution zX(t,x) in W T;
V,V*), regarded as an evolution system.

Proposition 5.5. The solution zXt,x)€ Wi(T;V,V*) obtained in Proposition 5.4 is unique.
Proof of Proposition 5.5. Assume that there are two solutions 22,22’ W(T;V,V*) for the
smoothened modified Cauchy problem (P5) (see § 3). Set w&=2z'—z¥c W,)(T;V,V*). From
Lemma 5.2 w? satisfies

(5.8) ; : P We(t)+_(M+ Ga)w? (t)———(D(e N wi(t)
In V* with the 1mt1a1 condition w? (0) 0. Hence we get

) v+- Nl(w;’(t) wi(t))

dt
+7G~1(w§(t),w§(t))=—— “G0(e,8) wit),wX£)dv.

Integrating it with respect to dt, and repeating the similar argument in the proof of Lemma 4.
1, we can obtain

kil + [ ReMi(wl(1)wk(e))dt

+ [ ReGi(w(®), w 1)) dt=~Im(e,8) [ I 1)[Fat.
The properties of operators N, dc* yield at once -
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eo8llgrv= [ Nwd(lait <0,

which implies that wX(-)=0in L¥T ; V), ie., wit,*)=0€V, dt-ae. E]

By virtue of uniqueness (stated in Proposition 5.5) the limit 2%(j) for each subsequence
{zm%»3), must be all conincident for distinct j’s, so that, it deduces that
(5.9) 4 z*—z¢ weakly in LXT,V),
as m tends to infinity, instead of (4.13) in § 4. Moreover we can claim a stronger assertion as
to the convergence of {2%}n (see § 6).

§ 6. Strong Convergence

We shall show in this section the strong convergence of {27} in Lz(T ; V). In fact we have
Proposition 6.1. The sequence {z™°}n of approximate solutions converges strongly to z8in LT ;
V). A

Remark 6.2. It is interesting to note that by the strong convergence in Proposition 6.1 we can
deduce directly from Remark 5.3 and Pn P ¢s= P ¢sPn that

028 | 022
ot ot

as m tends to infinity, if we take advantage of the equation in (P6).
Proof of Proposition 6.1. It is sufficient to verify that f]z7%(¢)—2X¢)|3dt—0 as m—oo, and
equivalently we have only to show that

(a+8) [ T (6) = 2 Odt + 222~ 2t
+1m0(e,8) [ N2¥t) ) ar

6.1 strongly in L¥ T ; V*),

vanishes as m approaches to infinity. We have the lemma :
Lemma 6.3. The following cquality holds; :

et~ 17IF+Re [ “Fi(aK0) 20
+Re [ G20, dt +Im0(e8) [ T DIdr=o0.

Note that we have a similar type equality (4.9) for {z™°} as we have seen in § 4. As a matter
of fact, from Lemma 5.2

(6.2)

*<er(z‘)+ (N,+G,)z(t)——<z>(e 8)24(¢),z2m%(t)v=

holds for each t& T because z™%(¢)€ V. From (5.9) a weak convergence of {z7°} in LT ; V)

allows

[ akn) & D>ds+ [N+ G)2) 2 D)>d

- ]; 5<i0(e,8)241),24(1)>dt.

Therefore the assertion (6.2) follows directly from the same discussion in the proof of Lemma
4.1. To go back to the proof of Proposition 6.1, we may then apply the inequalities (4.10) and
the equality (4.9) to get
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(a+,8)f llz2+2(6) — 22(£)IVat + | 28*(te) — zE(£)E+- Im O (e, 8)/ l225(¢)— Zg(t)ﬂzdf
sfo ReNi(2l — 28,2 — 20 dt 4[| 2(te) — 2 te)%
+£teReél(z?'8—z§,ze S 2Ddt +1Imd(e, 6)£ lz22(8)|Pat
_Im@(6,6){£w(z§(t),zé’““(t)—zé’(t))ya’t+'£ (zé"f"(t),zﬁ(t))ydt}:
={£teReN1(z? 8 = ’)dt+f ReGi(2%,20%) dt
2B+ Im(e,8) [ et dt |
—{AteReNl(zf,zé"“’—zf)dt-i-j;teReél(zﬁ,zé'""—zé’)dt
(1), 2810 = 21D +Im0(,8) [ (28— 2)ut]
{f ReNy(z ,zﬁ)dt+/teRe(§1(zé" 8 2d)dt -

+(2I%(te),2%te))n +Im O (e, 8)[ (200,29 Ha’t} ,

and the last terms — 0 as m tends to infinity, because the group of expressions in the first brace
is equal to |#™|* and the term in the third brace together with |[/™|? converges to Eq. (6.2),
implying the convergenee toward null, and also because each term in the second brace con-
verges to zero where we just employed the weak convergence result (5.9). [

On this account a direct limit operation for (P6) gives the strong solution, i.e.,
Theorem 6.4. The problem (P5) has a unique strong solution in WANT;V,V*).

Furthermore we assert
Theorem 6.5. The map : 7 —2z2is continuous from (L2 — Wi (T'; V, V*).
Proof of Theorem 6.5. The continuity of norm and strong convergence (cf. Proposition 6.1) give

W22l r,v — W22z 7. v < | 22% = 28]2,7,v—0 (as m—>o0)

Consequently it follows from (4.2) of Lemma 4.1 that

(673) _ : 128112, , v—hmlllze Uz, 7, V<1/ WV”<OO

for each €>0,6 >0 and for sufficiently large ¢,6>0. Eq.(6.3) implies the assertion. []
§ 7 Existence and Uniqueness of Solutions for the Cauchy Problem

The purpose of this section is chiefly to give the proof of Theorem 2.1 (stated in § 2), one of the
principal‘reSults of this paper. As is clear in the viewpoint of the properties of S,-transform (3.
1) defined i m §3, the problem (P3) with P. is equlvalent to the problem (P4) with P & SO that as
to the eXIStence part of Theorem 2.1 it is sufficient to show the following, i.e.,
Theorem 7. 1. There exists a solution ze of (P4) (see m §3) in W2 (T: V,V*.
N B. Asa consequence by virtue of Theorem 7. 1 it proves to be true that (P3) has a solution
=S12.& Wi (T : v, V*)
Proof of Theorem 7.1 Recall Remark 4.2 in §4 and the smoothing argument stated in the
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beginning of § 3. We have lim ;.o @(&,8)= s x,7:> S, and, for >0, for sufficiently large @,8
>0, lim s-0 y{@,B;¢,0)=7"(a,B;¢c) where y'(a,8 ;&) is given by the number e+ 8—2[<x,7:>| >0. It
is thus follows from (6.3) of Theorem 6.5 that

. 8 CO
(7.1) lgg)llllzelllz.r.vs‘/ m"f"<°°

It is interesting to note that
(7.2) 1}$P5.3=I}EI(}SM(6)P¢= P.

holds in strong sense of operator, and more strictly, it goes in uniform sense as well.
On the one hand, (6.3) suggests that a bounded subset of {Z&}; is weakly compact relative to the
topology of LXT ; V). Clearly we have

lim ReNi(z8%(¢t),p)=Rev*<Niz(t),p>, and

hm ReGi(22¥(t),p)=Rev*<Gizt),pdv,

where z(t) denotes a weak limit of {z%; in terms of L¥ T ; V)-topology and the element N, z
e (t) (resp. Gy z. (1)) is at least contained in Hy*N(S )-» (resp. Hz2N(S)-p) for each tE€T. As
a consequence we deduce together with (7.2) that z.(t) satisfies

f<(Nl+Gl)ze(t) o(t)>dt
= / Gl ez £),@()>dt +2 / Caol), ¢/ (£)>dt

for any @< Co( T; V), which is a weak version of the problem (P4). One the other hand, from
(5.6) in § 5, it is obvious that

1;59%,2?(1):7’@,09250) —%(Nl +Gz()E V*

for each t& T, and further its L% T')-limit also exists and we know that the solution z:(t) of (P4)
lies in WX(T;V,V*). [

As a consequence, immediately we obtain
Proposition 7.2. The solution z has a continuous modification Ze such that z.€ C(T;H), and
it satisfies the following equation : L

“ ¢
G0, = F o>+ [ <N+ Gzl 0), ol
3) o »
=7Z£ Kz, per2t), p>dt

for each t € T, any ¢=(S).
N.B. The proof of the former part in Proposition 7.2 goes similarly as in that of Theorem 2.
2, see the argument given below.

As to the uniqueness of solutions of (P3), we consider S,-transform and we can prove the
uniqueness of solution for the transformed problem, which is equivalent to (P3). We need some
truncation technique here. . Take M >0 and let it be foxed. We set Bu:={xE S(R):||z|. <M,
V g}, K= K{(e):=sup zesm|s’<x,7e>s/(<0), and A(e):=Ar+ 2K €). Note that this number K2
is well-defined and remains finite as far as €>0. A(e) eventually diverges as e(or M) tends to
zero (or infinity). Then there can be found some functional ¢*(x)E€ C™Frecher (S’(R)) such that
éu(x) =1, for xE By, and =0, for xE Bf+1, and we set for each t€ T, w(¢,x)=w(¢,x)¢"(x).
Then clearly w™ coincides with w itself for x within the ball By and it vanishes for x outside
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the ball By.:. The S,-transform is defined by
(7.4) ge(t,x):=S7"ve(¢t,x)

=exp{ —HA&)+a)t} vl 1,2),
for each ¢, x. Then the problen (P3) is changed into

age(t )= —-—(Nz + G gt x)+-2 <.r ne>ge(t,x),

g(0)=F&(L?), ¢t>0,xr&S'(R),
where Nf=N+A(e)-I. Hence we have its truncated problem

%L (1,2)= —-L(NE+ G (1, 2) +-<z ndgH(1,2),

gt (0) =Ff(x)e(L?).
According to Theorem 7.1, suppose that there are two solutions g!,g¥*, and set w;=g¥'— gt
e W T;V,V*), with w¥(0)=0. This is obvious, because the problem (P3) is equivalent to the
above (7.5) and the S,-transform is W2(T;V,V*)-invariant, and g.€ W T:;V,V*) if so is vve..
Then it is easy to see that

(7.5)

(7.6)

2

1

V*<8t wi(e), ué”(t))h-l———Nf(wé"(t) we(t)) +—5 Gx(wé"(t) wi(¢))

;—(z<x 7> w(8), w¥(t))x.

By integrating it with respect to df we readily obtain
1 M, 2, 1 te N7 M 1 [ A M
(7.7 7“ w(t)| +—2~£ ReNs(w¥ w¥)dt +7£ ReGi(w¥, w) dt

=fteiRe(i<.r,7ie> wet),wé(t))udt.

Because |(i<x,7e> wX(¢), wi()u|< sup zeaml<x,ne|- fw(t, x)w(t,x)p(dr), we may combine
definition of the regularized spaces in §2  with Eq.(4.10) type estimates to get

02-—1 [l 024 ¢ )]Iz—KM(e)-/telle(t)szt +—1 fteReN'(w” w¥) dt
2 ‘e\te 0 o € "9 o 1 e, We
+lfteReG~( Mwhd .[te M rd
(¥ widt+ | (KM e) w¥ w) udt

25l P+ [T Olfadt+4 [ “To(Olfact

By the passage to limit M0, we can easily get
Jlelwd ot Bl a <0

for @ /3>0 implying that we(¢)=0 in HZN HZN(S),, dt-a.e., because
hm,u({llxlquM V g U{lwd(t) — w)llv>eP=0 -

holds for &'>0 except the Lebesgue measure df-null set. Therefore the problem (7.5) has a
unique solution ge in W3 (T V,V*). We thus attain the assertion of Theorem 2.1 stated in § 2
and know that the problem (P3) has a unique solution v. in W(T;V,V*) satisfying (2.1).
Consequeritly, Theorem 2.1 is a.direct result of Theorem 2.1. Actually it is derived by a kind
of routine work which is well known in the theory of evolution equations. We shall give a
sketch of the proof below. First of all note that the Density theorem for WX(T;V,V*) is true:
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D(T ; V)is dense in W2(T;V,V*). Then it follows easily from the above fact and a method
of extension by reflection [18] that there exists an continuous linear operator E:Wi(T;V,
V*)—-W2(R; V,V*) such that E(u)=u, dt-ae. on T. Hence the localized situation can be
attributed to the global case so that we may take much advantage of the standard theory of
vector-valued distributions [20] . An application of the diagonalization argument [1] (see
also [8] ) together with the aforementioned Schwartz theory [20] leads to the following
assertion :
Proposition 7.3. If « € W (T;V,V*), them

ue CY T,[ v, V*]l/z),
where [V ,V*]),,,is the intermediate space.

In particular, since [ V,V*] .,,=H in our case, we can conclude that there exists v.€ C%T;
H) such that v{t)=v(¢t)in H, dt-a.e. t if ve lies in W(T;V,V*). Moreover, as we have stated
in § 2, we immediately get Theorem 2.3 by virtue of the bijectivity of the F-transform on (S)*.
Remark 7.4. The assertion in Proposition 7.3 means that if u€ W5 (T;V, V*), then the function
u(t) is an intermediate space [ V,V*] ,, valued continuous mapping to 7" after a possible
modification on a set of Lebesgue df-measure zero.

Remark7.5. In fact, by the above-mentioned Extension theorem, # in Proposition 7.3 (as a
continuous mapping on R) is the function with modification appearing in CYR;[V,V*1i).
However, there may be an ambiguity in the set on which # is modified, i.e., the set on which
the function is modified depends on € W(T;V,V*). As a matter of fact, we can restate the
above assertion more precisely : A map: D(T ; V)—>D(T ; V) extends by continuity to a map:
WHNT;V.V*)>CYT;[V,V*]2). This follows immediately from

llac]] < Cllul

HR;[V,V*]e) VVzl(‘R; V., V*,

because we have only to rewrite it into € D(R; V) by making use of the extensionmap E [1,
20] .
Remark?7.6. More generally, our assertion (Proposition 7.3) is a Corollary of the so-called
Intermediate Derivative theorem. If # belongs to the space

W T)={ue LAT, V) L= ume LT, V),
then we first know that ¥V L¥T;[ V,V*]m)X1<j<m—1); furthermore, the map: W™(T)—
LAT; [V, V*,.] )is a continuous linear operator, where [V,V*] ;. is the intermediate
space [18] . But if you look at it in a larger space [V, V*] Giuzyn(D[V,V*];im), then it can
be regarded as a continuous function with values in the larger space, and bedides, the map: «

—u" is continuous from W™(T)— CT;[ V,V*1;+12ym).

§ 8. Pseudo-Fourier-Mehler Transform

The study of the Fourier transform F in white noise calculus was initiated and has been
developed to a mature level by H-H. Kuo [14,15] (also [17] ). While, the Fouriet-Mehler
transform F, is a kind of generalization of F [16] (also [12] ), which furnishes the theory
of infinite dimensional Fourier transforms in white noise space with adequately fruitful and
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profitable ingradients. In this section we introduce the Pseudo-Fourier-Mehler (¥ FM for short)
transform having quite similar nice properties as the Fourier-Mehler transform in white noise
analysis possesses. In connection with the WFM transform, we shall define later the S(e)-
transformation and discuss the S:(e)-transformed problem. Consideration of the Si(e)-
transformed problem gives us a fecund suggestion sbout a concept "lifting”, which is the main
theme in the last section. '
We begin with introducing the ¥YFM transform.

Definition 8.1. {F%0€R} is said to be the Pseudo-Fourier-Mehler (¥FM) transform if F%
is a mapping from (S)* into itself for §ER,whose U-functional is given by

8.1) S(F%0)(&)=F(e“t)-explie”sinf|£?], &€ S(R),
or equivalently 7
(8.2) S( F%®)(E)=<@,€Xp[e“’<',E>—%—|€|2]>, £€S(R),

for @E(S)*, where S is the S-transform in white noise analysis and F denotes the U-fiunctional

of @ [19] .

Proposition 8.2. The following properties hold :

(i) F%=1d; (Id denotes the identity operator.)

(ii) F$+ F for any 0=R\{0};

(iii) F¢+ F, for any 0€R\{0};

where F is the Fourier transform and F o is the Fourier-Mehler transform (cf. [16] ).

Proof. As to (i), it is easy to see that S(F%Q@)(&)=SO(&)=F(£). By virtue of the characteri-

zation theorem (e.g. [12, Theorem 4.38, p.123] ), we obtain F%=1Id. (iii) is obvious from

definitions (see Definition 8.1 and [16] ). Since Fo=Id and F_,,=F (e.g. [16] ), it follows

clearly from (iii) that F # F% for any <R except §=0. [J

Proposition 8.3. The inverse operator of theW FM transform is given by (F&)'=F3’ for &

R.

Proof. It is sufficient to show that F3’ F%=F % F’=1Id. As a matter of fact, for 0=(S)* we

get from the definition (8.1)

(8.3) S(F(F$0))(&)=S(F %0)(e ") exp(—ie”“sinb|&[*)
=(S0)(e®(e~"*€))-exp(ie?sinfle~*£]2) - exp(— e~ “sind| &)
=(S0)(&)-exp(0)=S(Ud- 0)(&), (£€S(R))

because we used the relation S(F7°0)(&)=S0(e &) -exp(—ie “sind|&[?) so as to obtain the

second line of Eq.(8.3). An application of the chatacterization theorem’to Eq.(8.3) gives F#’F

$=1d. As for the other part of the desirted equalities, it goes almost similarly. [

Next let us consider what the image of the space (S) under F %is like (see Corollary 8.6 below).

The ¥FM transform F & also enjoys some interesting properties on the product of Gaussian

white noise functionals (see Theorem 8.4 and Theorem 8.5).

Theorem 8.4. Let g be a Gaussian white noise functional, i.e., g.(-): =N exp (-—2—lc|-|2> with

renormalization N. For §ER the following equalities hold :
(i) Fe0:9c0=I(e“ld)0, VO&(S)*
(ii) for any pER, |FeD:gcale=[0ls. VOE(S)s;
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where : denotes the Wick product (e.g. [12,p.101] ) and the parameter c(6) is given by c(8)=
—(27'ie"®cosecl +1).
Proof. Noting that the U-functional of g. is given by exp (—27(1+¢)7'|£[%), we readily obtain
8.4) S( ngwl!]c(o))(f)=3( F%di)(é) ‘(Sgc(a))(f)

=50(e“£)-2(60,6), £€S(R),
bevause we employed Eq. (8.1) and put

o — - P60 2__ 1 z)
Z(6,8): exp<ze sind|&| 51T (@ )Ié'l
Then we cannot find any §<R such that (8.4)=Sd>(.‘5)=e“%"Iz {@,e“"*>> may hold, which
implies that F %0:gc* @ for any @<(S)*. However, when d)(x)=§°<:x®":,fn>, fnes_p(R”)

(the symmetric S-,(R") space), then its U-functional S@(£) is given by f} C(E®" >, so that, we
easily get from definition of the second quantization operator I'le.g. [17] )
r.hs. of (8.4)= 2<(e“’)"é°” >+ E(60,6)=S(I'(e*Id)0)(£)-5(6,£).

Hence, if 2i(1+ c(8))e®sind=1 holds, then clearly Z(4,&) proves to be 1, suggesting with the
characterization theorem that F%0:9.0=0"(e”Id)®. Moreover, it is easy to see that | F $0:
gewolo=T(e”1d) @|»,=] @], holds for any p€R. [

If we take the assertion obtained in Theorem 8.4 into account, then the following questions
will arise naturally : whether the WFM-transformed ®(i.e. F%®) can be represented by the
Wick product of something like a transformed ® and a Gaussian white noise functional g. ;
furthermore, if so, what is the parameter ¢ = ¢(6) then? First of all, on the supposition that

@(I)=20<:x“":,ﬁz>€(S)*, a simple computation gives, for £ S(R)

(8.5) S(F%0)(€)=S0(e”¢)-exp(iesinb|&[P)
=S(I'(e”Id) ®)(&)-exp(ie’sinb|&]P).

We know from Eq. (8.5) that there is no possibility that F %® may coincide with ® : gk even
Jor any K(6),6§<R, because
(8.6) S(P:gx0)(€)=SO(&)*(Sgr@)(&)=SP(&)- A(K(6),£)
with A(7,&):= exp {—27(1+»)7'|€/*}. On the other hand, since the S-transform of I'{(e“)® : gk(a
is given by S(I'(e”Id) ® X&) - A(K(8),&), it is true from (8.5) that F%@=I"(e”ld)D:gx(s may
possibly hold for @<(S)*, 8€R as far as 2i(1+ K(60))e®’sinf@+1=0 is satisfied. Let us next
consider the evaluation of the term F $@(@&(S),) relative to the (S),-norm (pER). We need
to determine the parameter A(8), which comes from the relation between ['e®)®: gk and T'(e
)P : gns ). By a similar calculation in (8.5) we readily obtain
8.7

S (e®Id)(P:9ao))(&)=S(0:ga)(e?E)

=(S®)(e“’§)-A(A(0),e“’5)=(80)(e""5)°exp{—z(—lf;l—(e—)jlélz},
by making‘ use of Eq.(8.6). A comparison of (8.7) with S(I'(e”)®)(&)- A(K (6),&) provides with

I'(e”Id) 0:gx0=T"(*1d X D:9uc0)
if the equality e*®(1+K(8))=A(8)+1 holds, ie., as far as A()=27"ie™>*.cosecf—1. It
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.therefore follows that
“ F?vd) "pzur(em[d)@igxw)"p
:"F(emld)(@39A(a))“p:"(DigA(a)"p

for all O€(S),,pER, and any §=R. Summing up, we thus obtain
Theorem 8.5. The following equalities hold for any ER,

) if K(6) =2""ie “cosecd—1, then

Fo@=I(e“Id)D:g9xy, PE(S)*;
(i) if A(8) =27'ie **cosecd—1, then
1F&@lo=|0:9als, @E(S)s

for all pER.

Let us think of the image of &(S) under the Pseudo-Fourier-Mehler transform. It is easily
checked that g.: g«=1 holds with ¢c+d=—2. So we have
(8.8) : georgr=1.

From (ii) of Theorem 8.4, immediately, ¢<(S) if and only if F%¢:9:6<(S), so that, it is
eduivalent to

F ¢0:9c0r: 9k E(S ):gxo,
Where (S): gke denotes the whole space of elements ¢ : gxe for =(S). Consequently, it is
obvious that F%9&(S ):gk), by virtuq of Eq.(8.8.). Therefore we obtain
Corollary 8.6. For R,
ImFYUS)=(S ):gxr={p:9x0;,9#E(S)},
where K(0)=2""'ie *cosecd—1. :
Remark 8.7. The results in Theorem 8.4 and Theorem 8. 5 are quite similar to those of the
Fourier-Mehler transform. In fact, for pER, @E(S),, [(Fs@):9a10llp=[2|» and | F :D[»=] ©@:
gezolls hold with ¢,(8)= —icot8—2, and c:(8)=icotf—2 (e.g. [12, §9.H] ).
Remark 8.8. The image of (S) under the Fourier-Mehler transform Fo is given by (S) : gicot
6, while that of (S) under the Fourier transform F coincides with the space (S): §o:={¢: 80 ¢
€(S)), where &, is the delta function at 0 and limg.og.= do(e.g. [12,Chapter 9] ).

From Proposition 8.3 our Pseudo-Fourier-Mehler transform F$ is injective and surjective.
Moreover, it is easy to check that F% is strongly continuous from (S)* into itself. Thus we
have the following theorem. '
Theorem 8.9. The Y FM transform F%: (S)*—(S)* is a bijective and strongly continuous linear
operator. ‘ '

Proposition 8.10. {F%6<R)} is a semigroup.

N.B. In other words, with Theorem 8.9, the set { F%68<R} forms a one parameter group of
strongly continuous linear operators acting in (S)*. :

Proof of Proposxtlon 8.10. For 0€(S)*, £€S(R), any 6, 7€R, from (8 2) we have

®9) S(F¥0)(6) =<0, exp{e"X: ,s>—~|5|2}

While, from (8.1)
(8.10)
S(FHF)&)=S(F 20)(e”¢)-expl ze“’smﬁl.’:‘l’]
=F(e"(e”£))-exp[ie”sin ple®s|?]- exp[ze"’smﬁ]Elz]
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= FI I e < e e> Y Lex plie’®( e ' sing +sind)| &)
=<0, exple ¢, & —41€Rp, | |

with the U-functional F of ®. By Comparing (8.9) with (8.10), we get
S(F#"0)(&)=S(F%F%0)(&).
Consequently, the characterization theorem leads to F%"®@=F%- F}®, 0<(S)*, which com-
pletes the proof. [ ,
We are now in a position to state the principal result in this section. This is a very important

property of the YFM transform, especially on an applicational basis.
Theorem 8.11 The infinitesimal generator of {F%0ER} is given by i(N+dc*), where N is the
number opreator and dc* is the adjoint of the Gross Laplacian Ade.
Remark 8.12 It is well known that the infinitesimal generator of the Fourier-Mehler transforms
{Fa0=R} is IN +i4c* while the adjoint operator of { F o0 <R} has iN-+34c as its infinitesimal
generator (e.g. see [12] ). The proof of Theorem 8.11 is almost similar to the above ones.
Proof of Theorem 8.11. First of all we set Fo(£):=S(F§®P)(€) and Fo(£):=S(0)(€) for 0E
(S)*, £& S(R), paying attention to (i) of Proposition 8.2. From (8.1) we have Fy(&)=Fo(e'£)-
explze“sing|£1?]. Since F,is Fréchet differentiable, the functional Fu(&) is differentiable in 8 as
well, and it is easy to check that
(8.11)

lim{Fi( &)~ Fi(&)

=<E»’(e’”§),ie”’§>-exp[z'e""sin0|5|2|0=n+Fo(e""é)-T?t—exp[z'e“’sinﬁlélz]lo:o

=i{F'(£).5+ |- F(&). :
While. we can easily check that the U-functional 7 {Fs(&)— Fo(€)},0ER satisfies the uniform
bounded criterion: 3 Co>0 so that

igglﬁ_'{ﬁg(zé)—ﬁo(zf)}|ﬁCoeXp{Cchzlfl%},
lzl=R ' v
holds for all R >0, all £&€ S(R) with ¢, >0, ¢2>0, where Fyx denotes an entire analytic extension
of F. Hence. the strong convergence criterion theorem [19] (see also [12, Chapter 4] )
allows convergence of ST (O Y{F,(-)—Fo( )N x)=0"YF%@(x)— @(x)} in (S)*as @ tends to
zero. We need the following two lemmas.
Lemma 8.13 (cf. (12, Theorem 6.11, p.196] ) Let F(&)=S0(&), £ S(R) for @<(S)*. Then
(1) F s Frcchet differentiable ;
(ii) the S-transform of N ®(x) is given by <F(€),6> , EES(R);
where N is the nwimber operalor. 7
Lemma 8.14. (cf. {12, Theorcm6.20, p.206] ) For any ®in (S)*, the S-transform of Ac*@(x) is
given by [SPSO(S). s€ S(R).
We may deduce at once that

(8.12) S(N® + de* O)(&)=(F'(&), &>+IEPF(£), §ES(R),
with simple applications of Lemma 8.13 and Lemma 8.14 ; moreover, it is easily verified from
(&.11) anf (8.12) together with the above-mentioned convergence result that

— 72 _—
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"11m 6(F’§/ Ia’)d)(:c)—th ( {Fol+)— Fo(+ )})(x)
=S 1(z(F(.»E), E>+i|& F(f))—z(N#—AH)@(x), in (S)*,
whi_ch concludes the‘assertion. []

Finally we define the S,(¢)-transformation. When we define g(¢,x):=Ss(€)™'* ve(¢,x)=exp
(— z<.r 77;)!) ve(t,x), then the problem (P.3) is rewritten into

(8.13) (f z)=- —(N +4c%)g(t,x),

wa g(0)=f€(L2). S

We have already proved Theorem 2.1-Theorem 2.3 in § 7. Accordif{g to Theorem 2.1 (or
Theorem 7.1) and Theorem 2.2 (see also § 7), the solution ve (£x) of (P.3) lies in W2(T;V,V*),
hence it follows lmmedlately from defmltlon of g that there exists a unique solution g(+)&
W (T;V,V*) satlsfymg Eq.(8.13) and Egé CYT:H) such thatg(tx)=g{tx) in H, dt-a.e., since
exp(—i<-,p>t)E(S); and the space V is a (S)-module. Then it is easy to see that such a

solution g satisfies formally 81‘ 99t 2)=i(N+dc*)g+ h(t,x) with g(0)=F=(L?), where h(t,x)=
K(N+G)ge CAT:H), Ko= —(z'+—%*)€C. So that, we may apply Theorem 8.11 to obtain

t
o(t.x)= Ftuf(x)+£ F % °h(s,x)ds,
and if we set @«(¢.x):=exp(iCxr.g:>f), then clearly v (£x) can be expressed by
" ¢
(8.14) O t.2) F(2)+ 0lt,2) [ Fhs,z)ds.

§9. The Limit of ¢-Approximation and Lifted Convergence

In this section we shall explain the concept of lifting as well as how and from what it comes
out and give the definition of its lifted convergence. Based upon it, we shall discuss in a sense
the limit of &-approximation which was introduced in § 1, and state our main result in this paper
on the convergence problem for the approximate problem (P.3). We start with introducing
some notations to be used in this section. We denote the renormalization of @ relative to x by

the symbol N, ®(x) instead of : ®(x): (n. Recall that we fix p> (see § 2), then we have Tr:
=18:2dt€S_,(R? and | T7|-p.s2=1lA2||1s, moreover'.r®"'€§_p(R”) holds for #EN with

9.1) ™) p < VT (|2]-p+ | A~ Es)”
(e.g. [12] ), where [-|us is the Hllbert Schmidt norm. So we put A.(p)=|T7r{?p.s2*|El3", EES
(R). For simplicity, we set

re(n)=:1<{n,E>" for &>0, rln)=«Ky,Em,

R(n)=|r(n)—r(n)|, and Q(p) (:En;Ak(p)Re(n—Zk),

where G(n) denotes the Gauss symbol for the number /2. We write
EX0)={Qin(p)— Qp)}/Qi(p) and En(p)=sup EXp).

Let I(nk)=n!{2"k(n—2k)!}"' and Ifxn)=max{I(n,k);0<k<G(n)}, and besides we put
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M(n)=IL{»n)"'. Assume that 34 >0 and 3 {K.(p)}», a strictly decreasing sequence (p&N) such
that Ku(p)>0 and ;
(9.2) {1+ Ea(9): Kne1(9) <(n+1)Kn(p)

holds for any t&€(0,t,]. For each pEN, we set Tp(¢):=tan(2xt/t,), t >0. Hp acts for A=2} n

as H,,A=27 M(n)-Kip)an for pN (cf. Remark 9.8 below).

Roughly speaking, a lifting is something like a new functional obtained by a sort of cancella-
tion method of singularlity. Suggested by Eq.(8.14), we write Ne(¢,2)=(N :0:/®:)(¢,x), €>0 and
No(t,2)=(N:00/D0)(t,x), where formally Out,x)=exp(ilz,y>¢t) for x,y=S’(R). Note that only
the renormalized ®, has a meaning. Actually we have N @(¢,-)(S) and N.0@«¢t,-)(S)* for
fixed y,for each £ >0. Let v. be the solution of the problem (P.3) (cf. Therem 2.1 and the latter
part of § 8). When we write an multiplicative operation of the singular weighted factors {/N:(¢,
Z)}eso by L€, then L°ve, €>0, is in fact given by N:®@.-g, while L% is expressed as N:®o*g,
where we may regard that v, is given a priori by the intuitively formal expression :

Ot 1) F 47 () + ol t,z) f Fyon(s.z)ds.

Let us consider now the above each term. L ‘ve(#,) lies in V at least for each ¢ since @(¢,*)
itself belongs to (S) for any f. So canonically, L ve(¢,+) is always well-defined as an element
of (S)* for any £>0. On the other hand, there is a problem indeed in defining L°2°. Although
(S)* is a (S)-module, we do not know generally whether V+(S)*C(S)* or not. However, if
we think of N.®@(¢,x) : g(¢,x) instead of the aboce L°us, then the validity easily follows. As a
matter of fact, we have

9.3

S(Nz@o(t,+) : g(t,))(&)

= SN0, N SF &) +S( [ Fvonts, s (@), e S(R),

because we employed the expression of g given in the last part of § 8.
Lemma 9.1. We can find some positive constant C, such that for £€S(R)

sup 207,&%(1@",(25)85 < Ci-exp(aR|€&ly), (for fixed x<= S’'(R))

2| R -
holds for any R>0, and for some a>0, p&No.
Proof. x°" has the decomposition [12, p334] :

9.4) x®”=z§:(—2%)(2k—1)! 2o =20 Q) Ty 0k

The assertion follows immediately from the following estimate.

S Loz, (z6)°ml

n=0

[ nG n h

<SS N or—1)11CTr, E@e [zt goo-y)
=1 n (G(n)
E’LEL = >(2k DU Tr|5p,e2:x® 2% |S p(Rn-m}lflp,

where we used (9.1) and (9.4). (]
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Lemma 9.2. Let ¢ be in (L2, Then there can be found some positive constant C, such that
supl Se(2d)| < Co-exp(aR?l$[3)

|2l =R ,
holds for any R>0, and for some a>0, p&No, where ~ indicates an entive analytic extension

of Se(€), £€S(R).
Proof. Because the Wiener-It6 decomposition in L? (S’(R), du) allows the expression ¢(x)=

2)(:1”"":, 2>, F»ELAR”) (the symmetric L?space), we have the following estimate of Sp(A£) as
a function of A€R,

(SP)AE) < <, (26) ™

1
<(ZEarien ) (En11ts) =lol-rexo( Glariel),
by employing the Schwarz inequality. Hence it follows that Se(-&) has an entire analytic
exension to z&C for every £ S(R), and the inequality |(§¢)(z€)l$Cﬁxp(%lzlz(éli), zeC

holds with C,=|¢|, whereby can easily follow the assertion. [
By applying Lemma 9.1, we can easily see that for fixed y= S'(R), 3 C:>0 such that
sup|S(N:0u(t,-))(2€)|< Ci exp(aR|ls), R>0,
lzZl=R
holds for some a>0, p&N,. While, the estimate
sup| S(F %/ )(2€)|< C: exp(aR?|£[})

lz|=R

(9.5)

(9.6

is a direct result of Lemma 9.2 with an easy inequality |S (F%rf YEN < Fofll-p e2'® ', because
F47(-) is contained at least in V for any ¢ except df-null set. As to the team S /0 tF Sh(s,
)ds)(£), it is sufficient to find the estimate of S(F % H(s,))(€), since

N N

SUm2F & k(s ) 4o )(§) =Um B S(F & *hse,*))(€) - L
from the continuity of the S-transform. Derivation of the same type estimate for this term
again turns-out to be the attribution to Lemma 9.2. Hence, if we regard the multiplication *
of N ,® * ¢ asthe Wick product, then it is well-defined and makes sense as an element of (S )*
for each #>0. On this account, we attain the following definitions.
Definition 9.3. (Lifting) We define the lifting of ve as
LEZ“‘C(t,'):': NI¢€(t’.)zg(t)‘)e( S )*) 6>0’ t >0v
and the lifting of v as '
L°uo(t,-):=NzO(t,"):9(t,-)E(S)*, t>0.

Definition 9.4. (Lifted Convergence) Let Wn(t),'%(t)E(S)*, t>0, be liftings in the sence of
Definition 9.3. Then we say that V() converges towards VYo(t) in lifting sense with H, as n
approaches to o if for each t, . »

Ho(ST(t))( &)~ Ho(ST(£))E), £€S(R),

as n —oofor some p&=N.
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Remark 9.5. It seems to be quite natural and reasonable that we should define the convergence
of liftings as Hp(ST)(&)— Hx(ST)(E), £E€ S(R) as n —o© for some pN. However, on an
applicational basis, it would be better and more useful to formulate it in the framework
including the parameter, because our liftings in question have the parameter ¢.

For convention, taking (9.2) into consideration, we may give the definition of lifted conver-
gence as a concept attached to the parameter given. When ¥(¢,-)e(S)* for each ¢ and we
write the U-functional of ¥(¢,+) as F(¢, &), £ S(R), then we define an operator H, by H,F (¢,
E)=HF(T;'(1), £).

Definition 9.6. (Lifted Convergence associated with the parameter) Let ¥ (t), Wo(t)E(S)* be
liftings for each t>0. We say that ¥, (t) converges toward Vot) in lifting sense with (H,, Tp)
as n approaches to © if

Hu(ST()(E)-H(ST())(E), £€S(R),
as n—oo for each t>0. and for some p&N.

Now we shall state our principal result in this section.

Theorem 9.7. Let {ve}e be the solution of the problem (P.3). Then, under the assertion (9.2),

ve(t,?) converges to volt,-) in lifting sence with (Hp,, Tp)ase | 0, for any t>0, and some p>~41—.

Remark 9.8. It is interesting to note that our assumption (9.2) is always true as far as
Kua(p)/Kx(p)<K1. In fact, wa have

Q5P = QD)= 2 AP Rn—2k+1) ~ R(n—24))

with n=2m, m&EN (essentially the same expression is giver{ for n=m+1), where we put Ao
(p)=1 and R0)=0 as a matter of convenience. As a consequence, Qs+ {(p)— Qi(p)=0(Rn
+1)) as Re(1)—0, hence E(p) is finite for any p, any .
Lemma 9.9. Four each nEN,
(7, EOm—Ky, ™, £€S(R),

as € lends to zero. ' /
Proof. Since 7. converges strongly to ¥ in S’(R) from our major premise (cf. Eq.(1.3) in § 1),
it is true that <7, & — <y. &> as e | 0 for any £€ S(R), and so is the assertion. [J
Lemma 9.10. The inequality

[Kne "=y ", £I<I(n)-Qi(p), £ES(R),

holds for n&N, and € >0, and /)>A11

Proof. A direct computation gives
l<775- n_y.~ n‘ $n>|

<(§)< f )(2/,_1)”|<(, ) oy RN T ok, £07))]
— i=o\2k AN o . ,
G(ny
< 3101, K Tr, ERON - [Cpe 20—y >n=2h, gotn2my)
G(n)
S[o(ll)ago'TI‘I’—{p.:nZISI?)le’?c, 5>"'_2kI“:<y, E)"—Zk:l
G(n) S
=1(0) S AU rdn=20) ~ ron 20| =To 35 A(p)- R n—24),

because we employed the. formula(9.4) and (9.1). [

—_ 76 -
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Proposition 9.11. Under the assumption (9 2), the series
2 7t "Ka(D)- Qi(p)

is sbsolutely convergent uniformly in €=(0,1) for any tE(t tp], and for some p>%.
Proof. Set a.=a.(p,t,¢): ——t"K,,(p) - Q(p). Then we have

ans1 ¢ K 1(P) €
o =T Kilp) (LHEXD).

In fact, under(9.2), as far as K,..(p)/ Ka(p) <1(sufficiently small), the inequality (@,../@)(D,t,&)<

(n+1)"'t-(14+ Eu(p))<1 holds for Ve<(0,1), ViE(0,t], p>%, together with Remark 9.8. [

Proof of Theorem 9.7. For £& S(R), we have
0.7 [Hp[S(Lv))(&)]— Hol S(Lu())(&)]] _
=|Hp[ S(N:@(£):9(1))(&)]— Ho[ S(N:Do(2):9(£))(8)]]
=|Hp[{SIN20(£))(&) — S(N o :))(E)} - S(g(¢ N(E)]]
= <|Hp[S(N:0())(&) — S(N 2o ))(E)] - |S (o D)(E).
An application of Lemma 9.1 and Lemma 9.2 allows the estimate
supl(So())(28)| < C exp(aR?lEl}), EES(R), R>,

| ol =R
together with(9.3), (9.5), and(9.6), so that it is sufficient to estimate the first term in the right
hand side of Eq.(9.7). As a matter of fact, it is easy to see from the formula [12, p.333] that
(9.8) Ist term in r.h.s of Eq.(9.7)

|Hp[s<§ Lo i (@)~ S L (i) )@

(P)Kpe"—y®", &M,

n'
Since the mequality in Lemma 9.10 is valid for each #&N, Eq.(9.8) can be estimated majorantly

by the series Z ol I"Kn(p) Q:(p), the convergence of which is guaranteed by Proposition 9.11.

Therefore it follows from(9.2) that

9.9 [H,[S(Lve())(E)]—Hp[S(L v ))(&)]]
=|Hp[ S(L v T (NNE)]— Hpl S(L 0o T (NN E]
< ClH{ SN T ())(§) ~ S(NI(DO( T (N

< 2”—{ Ty l(f)}nKn(D) Qn(.ﬁ) <oo,

uniformly in e€ (0, 1) for any £>0, j)>—. Consequently,

(9.10) | hmz——{ Ty ‘(t)}"Kn(p) Q)= Z‘hm—{ () Ka(p)- Qu(0),
where we paid attention to Remark 9.8. Moreover,
, . . Gn 1 .
(9.11) limQi(p)= g Ax(p)-limR(n—2k), and
9.12) leig)lRe(n——2k)=1€i£{)1|re(n-—2k)-.*ro(n—2k)|=0,
— 77 — .

3



because we applied Lemma 9.9. Combining all the results from Eq.(9.9) through Eq.(9.12), we
finally obtain that H[S(L cve(#))(€)] converges to H[S(L%00(£))(&)], £ S(R), as & tends to

zero for any >0, some p>%, which completes the proof. []

Remark 9.12. In checking the criterion of series convergence, the seight M(»n) associated with
the operator H, provides with the same effect as to put the condition {I{(zn+1)/L(n)} A1l
which made a contribution to simplifying the computation.
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ON PSEUDO-FOURIER-MEHLER TRANSFORMS
AND INFINITESIMAL GENERATORS
IN WHITE NOISE CALCULUSY

Isamu DOKU (BT &)

Department of Mathematics
Saitama University
Urawa 338 Japan
e-mail: doku@sacs.sv.saitama-u.ac.jp

§1. Introduction

The study of the Fourier transform F in white noise calculus was initiated and
has been developed to a mature level by H.-H. Kuo [16,17] (also [19]). While, the
Fourier-Mehler transform Fj is a kind of generalization of F [18] (also [11]), which
furnishes the theory of infinite dimensional Fourier transforms in white noise space
with adequately fruitful and profitable ingradients.

In this article we introduce Pseudo-Fourier-Mehler (PFM for short) transform
having quite similar nice properties as the Fourier-Mehler transform possesses. It
was originally defined in [5] and used for application to abstract equations in infinite
dimensional spaces. In connection with other Fourier type transforms in white noise
analysis, we can compute the infinitesimal generator of the PFM transform directly
and show that our Pseudo-Fourier-Mehler transform enjoys intertwining properties.
We shall state the characterization theorem for PFM transforms, which is one of
our main results in this article. The Fock expansion of PFM transform can be
‘derived as well: Lastly we shall introduce a generalization idea of PFM transform
and investigate some properties that the generalized transform should satisfy.

The Pseudo-Fourier-Mehler transform is a very important and interesting oper-
ator in the standpoint of how to express the solutions for the Fourier-transformed
abstract Cauchy problems ([5,6]; see also [4,8]).

In [1] they have studied the two dimensional complex Lie group G explicitly and
succeeded in describing every one parameter subgroup with infinitesimal generator
(232t2)Ag + bN, where N is the number operator and Ag is the Gross Laplacian.
Furthermore, one can find in [24] another related work, especially on a systematic
study of Lie algebras containing infinite dimensional Laplacians.

We are able to state our results in the general setting (e.g., [23]; see also [7])
of white noise analysis. As a matter of fact, almost all statements in our theory

*) Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC
Grant-in-Aid CR(A) 05302012.
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rernains valid under non-minor change of the basic setting. However, just for sim-
plicity we adopt in this article the so-called original standard setting [11] in white
noise analysis or Hida calculus to state our results related to the PFM transform.

§2. Notation and Preliminaries

Let S = S(R) be the Schwartz class space on R and §* = S'(R) its dual space.
Then S(R) C L%(R) C S'(R) is a Gelfand triple. We define the family of norms
given by |¢|, = |APE], p > 0, £ € S(R), where the operator A = —d?/dt? +1 + 1
and |-} is the L?(R)-norm. Let S, = S,(R) be the completion of S(R) with respect
to the norm |- |,,p > 0. We denote its dual space by S; = S,(R), and we have
Sp(R) € L*(R) C S)(R). Let p be the standard Gaussian measure on S'(R) such
that

[ exsv7T(e,)ulde) = exp (- 316P),

-

for any ¢ € S(R). (L?) denotes the Hilbert space of complex-valued p-square
integrable functionals with norm | - ||. The Wiener-It6 decomposition theorem
gives the unique representation of ¢ in (L?), i.e.,

(1) A Y= ZIn(fn)) fn € f’é(Rn),

where I, denotes the multiple Wiener integral of order n and fJ%(R”) the space of
symmetric complex valued L?-functions on R™. The second quantization operator

['(A) is densely defined on (L?) as follows: for ¢ = 5> >°  I,(f,.) € Dom(I'(4)),

oo

(2 | T(A)p= ) In(A®" fn): o

n=0

For p € N, define Jjgll, = [C(A)Pgl] and let (S), = {p € (L) llpll, < oo} and
the dual space of (S), is denoted by (S);. Let (S) be the projective limit of
{(8)p;p € N}. Tt is called a space of test white noise functionals. The elements in
the dual space (S)* of (S) are called generalized white noise functionals or Hida
distributions. In fact, (S) C (L?) C (S)* is a Gelfand triple [11]. For convention all
dual pairings (-, ), resp. {((-,-)) mean the canonical bilinear forms on $* x S (resp.
(8)* x (8) ) unless otherwise stated.
The S-transform of ® € (S)* is a function on S defined by

(3) (S@)(€) := ((®,: exp(-,€):)), £ €S(R),

where :exp (-,£): = exp (-, £) - exp (—3/¢|*). Then note that a mapping : C 3 z
(59)(z¢ + n) is entire holomorphic for any £, € S. A complex valued function F
on & is called a U-functional if and only if it is ray entire on S and if there exist
constants Ci,Cy > 0, and p € NU {0} so that the estimate

IF(2)] < Cr exp(CalePl€],?)

may hold for all z € C,£ € §S. We have the following Characterization Theorem
[25]: :
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Theorem 1. If & € (S)*, then S® is a U-functional. Conversely, if F is a U-
functional, then there exists a unique element ® in (S)* such that S® = F holds.

Based upon the above characterization we are able to give rigorous definitions
to Fourier type transforms of infinite dimensions. The Kuo type Fourier transform
F [16,17] of a generalized white noise functional ® in (S)* is the generalized white
noise functional, S-transformation of which is given by

(4) S(F2)(§) = ((®,exp(-i(-,£)))), €S

Likewise, the Fourier-Mehler transform Fy (8 € R) [18] of a generalized white noise
functional ® in (S)* is the generalized white noise functional, S-transformation of
which is given by

() SF)E) = (@ en{e(, ) - secostle? ), ces

The Fourier-Mehler transform Fy, 8 € R is a generalization of the Kuo type Fourier
transform F. Actually, o = Id, and F_,/, is coincident with the Fourier transform
F. It is easy to see that 7/, is the inverse Fourier transform F~1. Hence we have

SFRNE) = (Se)@) e (5 le7),  £es

§3. Pseudo-Fourier-Mehler Transform

We begin with introducing the Pseudo-Fourier-Mehler transform in white noise
analysis.

Definition 1. {¥y,8 € R} is said to be the Pseudo-Fourier-Mehler (PFM) trans-
form [5,6] if Uy is a mapping from (S)* into itself for 6 € R, whose U-functional is
given by

(6) SW@ed)(€) = F(£%6) - exp(ie?sindle?), €€,

or equivalently

@ S@e)(€) = (@, 00((,6) — SlE)), €€,

for ® € (S)*, where S is the S-transform in white noise analysis and F denotes the
U-functional of ®.

By virtue of Theorem 1, the right hand sides in Eq.(6) and Eq.(7) are U-
functionals, and Wp® exists for each ® in (S)*. Therefore the above-mentioned
Pseudo-Fourier-Mehler transform is well-defined. Hence we have
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Proposition 2. The following properties hold:
(i) Yo = Id; ( 1d denotes the identity operator.)
(i) U # F  for any 0 € R\ {0},

(iii) Wo # Fo  for any 0 € R\ {0}.

Proof. As to (i), it is easy to see that S(¥®)(£) = SP(¢) = F(£). The char-
acterization theorem allows the equality ¥, = Id. (iii) is obvious from definitions.
Since Fo = Id and F_,/, = F, it follows clearly from (iii) that F never coincides
with Wy for any 6 € R except § = 0. O

Proposition 3. The invese operator of the Pseudo-Fourier-Mehler transform Wy
is given by (W)™ = W_, for § € R.

Proof. It is sufficient to show that ¥_sWy = YpW_g = Id. As a matter of fact,
for ® € (S)* we get from the definition (6)

(8)  S(@_o(®))(E) = S(®)(e™€) - exp(—ie™sin 0]¢|?)
= (5®)(e"*(e¢)) - exp (i€ sin e~ ¢]? ) - exp(—ie ™ sin 4J¢[? )
= (S®)(€) - exp(0) = S(I1d - @)(¢), £€s,

because we used the relation

S(T_g®)(€) = SB(e=¢) - exp(—ie—i" sin o|g|2)

50 as to obtain the second line of Eq.(8). An application of the characterization
theorem to Eq.(8) gives W_gWy = Id. As for the other part of the desired equalities,
it goes almost similarly. [J

Next let us consider what the image of the space (S) under ¥y is like (see Corol-
lary 6 below). The Pseudo-Fourier-Mehler transform @y also enjoys some interesting
properties on the product of Gaussian white noise functionals (see Theorem 4 and
Theorem 5).

Theorem 4. Let g, be a Gaussian white noise functional, i.e., g.(-) := Nexp(—|-
|2/2¢) with renormalization N and ¢ € C, ¢ # 0,—1. For § € R the following
equalities hold:

(i) We® : goo) = T(91d)®, Vo € (S)*;
(it) for anyp € R, ||W® : ge(g)llp = |®llp, VR € (S),;

where : denotes the Wick product (e.g. [11,p.101]) and the parameter c(0) is given
by ¢(8) = —(271i e ¥ csc O+ 1).

Proof. Noting that the U-functional of g. is given by exp(—.2_1 (1+c)7t |€]?),
we readily obtain

(9) S(Te® : g(6))(€) = S(Tp@)(£) - (Sgc(0))(€)
= S®(e%¢)- 2(0,¢), €€,
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because we employed Eq.(6) and put
=(6,¢) := exp(ieiosinﬂfz ———52>
(6, e ol

Then we cannot find any § € R such that

(9) = 58(¢) = exp(~ 5 [£7) - (@, )

may hold, which implies that ¥ ® : g9y # ® for any ¢ € (S)*. However, when

d(z) = 2%, (2% ¢, fu),fa € S_p(R™) (the symmetric space S_,(R") ), then
its U-functional S®(¢) is given by Y. oo, (£®™, f,.), so that, we easily get from
definition of the second quantization operator I'

e o]

rhs.of (9) = Y ((e¥)"€®™, fn) - E(6,€) = S(D(e1d)®)(£) - (6, ¢).

n=0

Hence, if 2i(14-¢(#))e® sin 6 = 1 holds, then clearly Z(6, £) proves to be 1, suggesting
with the characterization theorem that

We® : gorq) = I'(e*1d)D.
Moreover, it is easy to see that
126® : ge(a)llp = [T (e Id)2]l, = [| @],

holds for any p € R. O

If we take the assertion obtained in Theorem 4 into account, then the followmg
questions will arise naturally: whether the PFM transformed & (i.e. ¥p®) can be
represented by the Wick product of something like a transformed ® and a Gaussian
white noise functional g.; furthermore, if so, what is the parameter ¢ = ¢(6) then?
First of all, on the assumption that ®(z) = 300 (: z®" :, f,) € (S)*, a simple
computation gives, for { € S

(10) S(We®)(€) = SB(e*) - exp(z’eio sin 0[£|2>
= S(T(e®Id)®)(¢) - exp (ieio sin‘9|£|2).

We know from Eq.(10) that there is no possibility that ¥y® may coincide with
® : gk(e) even for any K(0),0 € R, because

(11) S(® : gk ())(€) = S2(£) - (Sgx(e))(&) = SB(E) - A(K(0),€)

with

A €) 1= exp{ - g lel* ).
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On the other hand, since the S-transform of I'(e*®)® : gk (g) is given by
S(T(e*Id)®)(€) - A(K(6),£),

it is true from (10) that ‘
Te® = ['(eId)® : gye(o)

may possibly hold for & € (S§)*,6 € R as far as ,
2i(1 4+ K(0))e®sind +1=0

is satisfied. Let us next consider the evaluation of the term ¥y ® (® € (S), ) relative
to the (S),-norm (p € R). We need to determine the parameter A(#), which comes
from the relation between I'(e*®)® : gx(s) and T'(e*®)(® : ga(s)). By a similar
calculation in (10) we readily obtain

(12) S(F(eioId)(Q) : gA(o))) (&) =S(@ :'gA(g))(ew{)
= (5®)(e’¢) - A(A(6),€*)
, o216
= (5@)(e*¢) - exp{—m‘w—))|€|2},

by making ﬁse of Eq.(11). A comparison.of (12) with S(I'(e®)®)(¢) -A(K (6),¢)
provides with . '
T(e*Id)® : gx(o) = T(e*Td)(® : ga(o))

as far as A(0) = 27 tie""® csc§ — 1. It therefore follows that
1%, = ID(c*1d)8 : gicols
= |T(e®1d)(® : gac))llp = 1 : ga(o)llp
for all ® € (S),,p € R, and any § € R. Summing up, we thus obtain

Theorem 5. The following equalities hold for any 6§ € R:
(i) if K(6) =27 Yie " csch — 1, then

Tp® =T(eId)® : gg(g), @ €(S)™;

() if A(8) =27 tie P cscd — 1, then

NP2, = |12 : g4p)llp, B E(S)
for allp e R.
Let us think of the image of ¢ € (S) under the Pseudo-Fourier-Mehler transform.
It is easily checked that g.: g4 =1 holds with ¢+ d = —2. So we have
(13) 9e(0) * 9K (0) = 1.
From (ii) of Theorem 4, immediately, ¢ € (S) if and only if
Yo : ge(a) € (S),
so that, it is equivalent to
Pop : ge(o) : 9k (6) € (S) : gk (6)>
where (S) : gk(g) denotes the whole space of elements ¢ : gg(g) for ¢ € (S).

Consequently, it is obvious that W € (S) : gk (6, by virtue of Eq.(13). Therefore
we obtain ' ‘
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Corollary 6. For 6 € R,
Im%(S) = (S5) : gk(o) = {¥ : 9x(0); ¢ € (S)},
where K(0) =27 Yie ¥ cscd — 1.

Remark 2. The results in Theorem 4 and Theorem 5 are quite similar to those
of the Fourier-Mehler transform. In fact, for p € R, ® € (S),,

1(Fe®) : gey(o)llp = 12l and [|Fo@|lp = | : gey(o)lly

hold with ¢,(8) = —icot 8 — 2, and c3(8) = icot § — 2 (e.g. [11,§9.H]).

Remark 3. The image of (S) under the Fourier-Mehler transform Fy is given by
(S) : gicots, while that of (S) under the Fourier transform F coincides with the
space

(8): b0 ={p: 805 v €(S)},

where 8 is the delta function at 0 and

lim g. = 4o
(e.g. [11, Chapter 9).
84. Infinitesimal Generators
First of all, for all § € S we define
0e(z) = 3 = (2O, gon)
n=0

with z € 8*,¢6 € §. We call it an exponential vector. Then {Gy,0 € R}'is an
operator on (S) defined by

(14) (Gowe)(z) := peisg(x) - exp (iew sin 0]5]2).
Let 7 denote the distribution in (S ® §)* given by

(r,6@n) =(n), &neS.
Note that it can be expressed as
_T:/6t®5tdt= Zej@)ej € (S®S)*,
R ¢
=0

where {e,,} denotes a complete orthonormal basis for LZ(R). Moreover we have

T®n= 6t1®6t1®"'®6t,,, ®6tndt1"'dtn.
R®

The following is an easy exercise. The next lemma provides with a general expres-
sion for elements of general form in (S).

43



40

Lemma 7. Whenp(z) =327 (: 2®":, fn) € (S) with f, € S(R™),(the symmetric
S(R™)), then Goyp is given by

(Gop)(x) = Y (:2®" 1, gn),
n=0

and

‘P) Z (n + 2m) ZSIH a)m 1,(n+m)0 Qm

|m| * f2m+na

where for the element fopmin in 3(R2m+") the term 7™ x fa,. . actually has the
following integral expression

(T®m * f2m+n)(t1) Tt :tn)

= f fomtn(81,81,7 7 8my Smy b1, i )dsy oo - ds
Rm™

On this account, we obtain immediately

Proposition 8. The Pseudo-Fourier-Mehler transform {Wy; 0 € R} is given by the
adjoint operator of {Gy; 8 € R}, i.e.,

Ty = G

holds in operator equality sense for all 0 € R.

The next proposition gives an explicit action of the PFM transform ¥y for the
generalized white noise functionals of general form. It is due to a direct computa-
tion.

Proposition 9. For & € (8)* given as ®(z) =3 oo, (: 2®" 1,F,), it holds that

o0

Ue®(z) = Z( z®" Z a(l,m,9)- F,®T®m>,

n=0 +2m=n

where the constant a(l,m, ) is given by
a(l,m,0) = '(H'"‘)o(z sin 6)™.

Remark 4. Similar results for Fourier-Mehler transform as the above can be
found in [23]. For the proof of Proposition 9, it is almost the same as those given
in [23].

It follows from Proposition 3 that the Pseudo-Fourier-Mehler transform ¥, is
injective and surjective. Moreover, it is easy to check that ¥y is a strongly contin-
uous operator from (S)* into itself, when we take Lemma 7 and Proposition 8 into
consideration. Thus we have the following theorem.
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Theorem 10 [5]. The Pseudo-Fourier-Mehler transform ¥, : (8)* — (8)* is a
bijective and strongly continuous linear operator.

Theorem 11 [5]. The set {¥p;0 € R} forms a one parameter group of strongly
continuous linear operator acting on the space (S)* of Hida distributions.

Proof. For ® € (8)*, £ € S, and any 6,7 € R, from (7) of Definition 1 we have

(15) S(Wh4n@)(€) = (@, exp{ () — gl }).
While, from (6)
(16)

S(26(2))(€) = S(Z,®@)(e¢) - exp(ie?sin 0]¢?)

= F(e"(e"¢)) - exp (iei" sin n[ei0£|2> - exp (ieio sin 0|§|2)

= e e (g ot e exp{ie™ (e 0+ siny + sin 0) [¢[?}

= (@, exp{e () - ZJe* ),
with the U-functional F of ¢. By comparing (15) with (16), we get

S(Po4n®)(£) = S(Fp¥ @)(£)-
Consequently, the characterization theorem leads to
Po1n® =¥y - ¥, 9, ® € (S),

which completes the proof. {1

We are now in a position to state one of the principal results in this paper. This
is a very important property of the Pseudo-Fourier-Mehler transform, especially on
an applicational basis.

Theorem 12 [5]. The infinitesimal generator of {¥y; § € R} is given by i(N+AY),
where N s the number operator and AY, is the adjoint of the Gross Laplacian Ag.

Remark 5. It is well known that the infinitesimal generator of the Fourier-Mehler
transforms {Fy; 0 € R} is iN + %A&, while the adjoint operator of {Fy; 8 € R} has
iN +%AG as its infinitesimal generator (e.g. see {11]). The proof of Theorem 12 is
almost similsr to the above ones.

Proof of Theorem 12. First of all we set

Fo(€) = S5(%e@)(§) and  Fo(£) := S(®)(¢)

for @ € (5)*, £ € S, paying attention to (i) of Proposition 2. From (6) we have
Fo(€) = Fo(e) - exp [ie' sin 0]¢|?]. Since Fy is Fréchet differentiable, the functional

45

41



42

Fo(£) is differentiable in 6 as well, and it is easy to check that

(a7 lim S{Fa(€) = Fo(€)}
= (F(e¢), ie) - exp(ie sin bl¢ )|
+ Fo(e®¢) - % exp (ieio sin 0|§|2) l
= i(F'(£),€) +1l¢” - F(§).

6=0

6=0

While, we can easily check that the U-functional 67! - {Fp(¢) —Fo(£)}, 6 € R
satisfies the uniform bounded criterion: 3Cy > 0 so that

Slelg %{ff’g(zﬁ) - ﬁ‘o(zf)}l < Cy exp(clR°2|£|12,)
jz|=R

holds for all R > 0, all £ € § with c1‘ > 0,¢, > 0, where F, denotes an entire
analytic extension of F'. Hence, the strong convergence criterion theorem [25] (see
also {11, Chapter 4]) allows convergence of

57 (SR = Bo(1}) (@) = 5 10e(z) - 8(2))

in (8)* as @ tends to zero. We need the following two lemmas.

Lemma 13. (c¢f. [11,Theorem 6.11,p.196]) Let F(§) = S®(£),£ € S for @ € (S)*.
Then :

(i) F is Fréchet differentiable;

(it) the S-transform of N®(x) is given by (F'(£),£), € € S;

where N s the number operator.

Lemma 14. (c¢f. [11,Theorem 6.20,p.206]) For any ® in (S)*, the S-transform of
AL®(z) is given by |¢|* S®(£), £ € S.

We may deduce at once that

(18) S(N® + A52)(€) = (F'(€),&) + [EI'F(¢), €€,

with simple applications of Lemma 13 and Lemma 14. Moreover, it is easily verified
from (17) and (18) together with the above-mentioned convergence result that

lim -(]5(% ~ 1d)2(z) = lim g1 (%{Fo(') - Fo(')})(-r)
= STU(E(F'(£), &) + il - F(8))
= i(N + AL)®(z), in (S)",

which completes the proof. O



§5. Application of PFM Transform

The purpose of this section is to show a typical example of application of the
Pseudo-Fourier-Mehler transform ¥y to the Cauchy problem.

Erample 6. (A simple application of the PFM transform) Let us consider the
following abstract Cauchy problem on the white noise space:

(19) @%%m_) =1Nu(t, z) + ¢(z),

u(0,-) = f(-) € (5),

with ¢t > 0, where N denotes the number operator. One of the most remarkable
benefits of white noise analysis consists in its application to differential equation
theory and how to solve the problem (cf. [1], [2,3], [4,8]). Especially in [4,8], by
resorting to the analogy in the finite dimensional cases we have applied the infinite
dimensional Kuo type Fourier transform to the Cauchy problem for heat equation
type with Gross Laplacian, and have succeeded in derivation of the general solution
and also in direct verification for existence and uniqueness of the solution. On this
account, we think of using the Fourier transform to the aforementioned problem.
Recall the formula:

(20) F(N®) = N(F®) + AL(F®),  forall ® € (5)*,

We set v(t,y) = (Fu(t,))(y) for each t € Ry. We may employ. the Fourier trans-
form F for (19) so as to obtain

(21) P9 _ iNo(ty) +iage(ty) + o),
with  (0,9) = f(y),

because we made use of the formula (20) and set I = FF. The operator part of the
Fourier transformed problem (21) is exactly equivalent to the infinitesimal generator
of PFM transform with parameter ¢ (see Theorem 12). Hence, the semigroup theory
in functional equation theory allows immediately the following explicit exression of
the solution in question:

(22) oty =wfw) + / Ty ply)ds.

We can show the existence and uniqueness of the solution by applying Theorem 4
and Theorem 5 to (22) under a certain condition on the initial data ¢, f. In that
case the integral term appearing in (22) should be interpreted as Bochner type one.
So much for the Cauchy problem, because this is not our main topic in this article:
We shall go back to the PFM transform and proceed further in the next section.

47

43



44

§6. Intertwining Properties

In this section we shall investigate some intertwining properties between the Pseudo-
Fourier-Mehler transform ¥, and other typical operators in white noise analysis,
such as Gateaux differential, the adjoint of Gateaux differential, Hida differential
operator, and Kubo operator (the adjoint of Hida differential), etc. Furthermore,
we shall introduce the characterization theorem for PFM transforms, which is one
of our main results in this paper.

We begin with definition of the Gateaux differential D, in the direction y € S*.
For y € S* fixed, for the element ¢ in (S) given by ¢(z) = > 00, (: z®n frn), we
put

o(z + 0y) — ¢(z)
0 )

(23) Dyp(z) = gir% r €S

The limit existence in the right hand side of (23) is always guaranteed, and D,¢(z)
is actually given by

oo

(24) Dyole) = 3 nfa® ) L ydufa), s e

n=0

In fact, D, becomes a continuous linear operator from (S) into itself. Since the
Dirac delta function 6, lies in &*, adoption of §; instead of y does make sense in
the above (23) and (24). On the other hand, the Hida differential operator 8; (=
0/8z(t)) is originally proposed by T. Hida [9] and defined by

]

o= 5" g

£es

(cf. [15]; see also [7]). It is well known that the action of d; is equivalent to that of

D;, on the dense domain [11] (or [7],[14]). So we can define

t

0t = Ds,, teR.

The Kubo operator 9; [15] is the adjoint of Hida differential 8;, defined by

(072, 9)) = ((®,8:9)),

for & € (8)*, ¢ € (S). As a matter of fact, J; (resp. 9;) can be considered as a
continuous linear operator from (S) (resp. (S)*) into itself with respect to the weak
or strong topology. More precisely, the Hlda. differential proves to be a continuous
mapping from (S)p4, into (S), for ¢ > 7, p > 0, while the Kubo operator turns
out to be the one from (S)_, into (8)_(p4¢) for the same pair p, g as given above.
For £ € S, ¢ € (S), the derivative (D¢p)(z) is defined in the usual manner, and
there exists its extension D¢ : (S)* — (S)*. Even for that, we shall henceforth use
the same notation D; for brevity, as far as there is no confusion in the context. We
set g¢ = ¢(D¢ + D), where Dy is the adjoint of Dg.

A%



Lemma 15. For each 8 € R, t € R,
| Wy(8; ®) = €0} (¥ ®)
holds for all @ € (S)*.

Proof. First of all, note that S(8;®)(¢) = £(t) -S(®)(&). So, for the generalized
white noise functional & € (S)* given in the form ®(z) = Y 00, (: 2®":, f.), z €
S* we readily get

(25) S(We(0; 8))(€) = €6(8) - D (fn, e™O€5™) - exp(ie® sin O]¢)%).

While we establish
(26) S(Wo(0; ®))(€) = € S(8; (%6 2)) ()
by applying (25), because we made use of the relation

S(8; (We®))(€) = £(t) - (S3)(*€) - exp(ie™ sin 6]¢[?).

An application of the Potthoff-Streit characterization theorem (Theorem 1) to (26)
leads to the required equality in Hida distribution sense. O

Proposition 16. For each8 e R, t e R
(i) Pg(8,®) = e 98,(Wyg®) — 2i sin 89} (¥y®),
(i) Up(z(t)®) = e~z (t)(Te®);

hold for all ® € (S)*.

" Remark 7. The assertion (i) of Proposition 16 follows from a direct computation.
We have only to employ the following two rules

6 .
S0 A )= S7IE@)S()
The second assertion (ii) is also due to a simple computation together with the
first assertion (i) and Lemma 15. Moreover, we need to apply the multiplication
operator: z(t)(-) = (8; +9;) (-) (e.g. [19]). Those proofs go almost similarly as in
the proof of Lemma 15 and are very easy, hence omitted.

The next proposition indicates some intertwining property between the PFM
transform and Gateaux differential operator.

50:() =

Proposition 17. For each parameter § € Rt € R
(i) e ®De(86®) = Wo(De®) + 2isin 6 - D} (¥d);

(i) De(¥o®) + D¢(¥o®) = *%y((,£)%);
hold for all generalized white noise functionals in (S)*.

Proof. It is interesting to note that Gateaux differential D¢ and its adjoint D¢
enjoy the integral kernel operator theoretical expressions in white noise analysm
(see the next section; or [11,12], [23]). Namely,

(27) De = ( /R §(t)8tdt)~, and D} := /R ((t)ardt, VeeS.
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Let A = {tx} be a proper finite partition of the ¢ parameter space, and |A| denotes
the maximum of increment Aty over 1 < k < m. The assertion (i) yields from (i)
of Proposition 16. In fact, by linearity of the PFM transform we get

(28) kag (t&) - (90, @) = ¥ (Z €(te )y, Aty - <1>),
k=1 k=1

for V¢ € S. Consider the same type finite summation for the other terms in (i) of

Proposition 16. By taking the limit m — oo and by continuity of ¥ (Theorem 10),

we can obtain the desired result with consideration of Eq.(27).

As to (ii), note first that we can have the expression

(29) i =ie6) = (i [ stoear) |

by virtue of the multiplication operator m(t)() (cf. Remark 7). With (ii) of Propo-
sition 16, we may take advantage of continuity of ¥y and (29) to deduce that

e (D + D})(%®) = e-"" (/R :c(t){(t)dt) (Ty®)

= lim %(kag(tk z(t ) <I>)

m—+ OO

= Up((z ,5)' )

by passage to the limit |A| — 0. O
The following theorem gives the characterization for Pseudo-Fourier-Mehler
transforms {Wy; § € R}, which is one of our main results in this paper.

Theorem 18 [6]. The Pseudo-Fourier-Mehler transform {Wy;0 € R} satisfies the
following conditions:

(P1) Wy : (S)* — (S)* is a continuous linear operator for foralld € R;

(P2) Wo(De®) = €9 D¢(Vp®) — 25in 0 - §c(Tp);

(P3) Ug(3c®) = € 4c(T®);

where ® € (S)*, £ € S. Conversely, if a continuous linear operator Ag : (S)* —
(S)* satisfies the above conditions: (P1) ~ (P3), then Ag is a constant multiple of
Ty.

Proof. (P1) is obvious (Theorem 10). (P2)(resp. (P3)) yields from (i)(resp. (ii))
of Proposition 17. It is due to a simple computation. Conversely, suppose that the
operator Ag be compatible with (P1),(P2) and (P3). We need the following results.

Lemma 19. We assume that Ag be a continuous linear operator from (S)* into
itself, satzsfymg the three conditions (P1 ) ~ (P38). Then the following relations
(1) (T ue)De Ds(%— Zo);

(i1) (T3 Z0)ge = q¢(¥5 ' Ep);

(iii) (T3 'S0)Df = DE(¥y 'Eo);

hold for all£ € S, § € R.

The proof will be given below. The next theorem is well known (e.g. [12,
Theorem 3.6, p.267] or {23, Prop.5.7.6, p.148]).
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Theorem 20. Let A be a continuous linear operator on (S)*, satisfying
(1) Ade = GeA, for any £ € S,
(1) AD¢ = DgA, for any £ € S.

Then the operator A is a scalar operator.
Thus, by taking (ii),(iii) of Lemma 19 into account, we may apply Theorem 20
for Ag to obtain the assertion: W{lAg is a scalar operator. (J

Proof of Lemma 19. Basically it is due to a direct computation. Each proof goes
similarly, so we shall show only (iii) below. For the other two we will give just
rough instructions. First of all, note that we have only to consider ¥_g4 instead of
¥, by virtue of Proposition 3. As to (i), it is sufficient to calculate it with (P2)
for both and (P3) for the PFM transform. As for (ii), simply (P3) for both A4 and
Wp. As to (iii), for V® € (§)*, V€ € S

(30) (W ' Ag)Di® = —iW; ' (Agqe)® — ¥, ' (Ag D)@,
=~ (W, qc) Ae® — (W, 1 De)Apd

because we used a relation
(31) : D} = —ig — Dg

in the first equality and also employed (P2),(P3) in the second one. An application
of (P2),(P3) to the last expression in (30), together with (31) again, gives

(30) = —ige(¥,; 1 Ap)® — De(W,; " Ap)®
= (—ige — De)(W; ' Ag)® = D (¥, A9),

which completes the proof. O
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§7. Fock Expansion

Let £((S), (8)*) denote the space of continuous linear operators from (S) into (S)*.
The space Sf’m(R"*m) is a symmtrized space of &'(R!*™) with respect to the first [,
and the second m variables independently. By virtue of the symbol characterization
theorem for operators on white noise functionals [21](see also [23]), for the operator
M lying in £((S), (S)*) there exists uniquely a kernel distribution &, in Sf’m(R’+m)
such that the operator II may have the Fock expansion:

-1 = Z Hl,m(Kl,m)»
0

I,m=

Moreover, the series Iy, ¢ € (S) converges in (S)* [21]. Generally, each component
I1;,,, of the Fock expansion has a formal integral expression:

Hl,m(n) = /n;l+m K/(sl)"' :sl7tl>"’ )tm)
(82088, - By, dsy - dsydty - din.

Remark 8. We call it an integral kernel operator with kernel distribution k. The
theory of integral kernel operators and the general expansion theory in white noise
analysis were proposed and have been developed enthusiastically by N. Obata [21-
23] (see also [11]). Those topics are closely related to quantum stochastic calculus,
which has been greatly investigated in chief by Hudson, Meyer, and Parthasarathy.
More details on this topic will be found in, for instance, (i) K.R.Parthasarathy:
An Introduction to Quantum Stochastic Calculus, Birkhduser, Basel, 1992; (ii)
P.A Meyer: Quantum Probability for Probabilists, Lecture Notes in Mathematics
Vol.1538, Springer-Verlag, Heidelberg, 1993. .

We shall give below two typical examples of the integral kernel operators in white
noise analysis.

Ezample 9. (The number operator N) Let 7 € (S ® S)* be the trace operator
defined by

(T,f@"’?):(fﬂ))y 6,7768

The number operator N is usually expressed as

/ 0] O,dt
R

by Kuo’s notation in white noise analysis. By the Obata theory, N has the following
representation as a continuous linear operator from (S) into itself, namely,

N = Hl’l(T) =/ T(s,t)(?:@tdsdt.
R2

Ezample 10. (The Gross Laplacian Ag ) By the usual notation in white noise
analysis we have the expression

Acr./afdt.
R
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Then the Gross Laplacian Ag can be also expressed by

AG = Ho,z(T) = / T(Sl,Sz)aslaszdsldSZ
R2

as a continuous linear operator from (§) into (S).

Let us consider the general expansion of our Pseudo-Fourier-Mehler transform.
We may take advantage of Obata’s integral kernel operator theory in order to obtain
Fock expansion representations of ¥y and its adjoint Gy. That is to say,

Theorem 21. For § € R, the PFM transform Wy and the adjoint operator Gg have
the following Fock expansions:

oo

1 o bie

(1) Y= Z Z'—ml(ze’osmﬁ)l(eo—l) .H21+m’m(,r®l®)\m);
Lo, Uim!

11 - 1 - 10 _: my i

() Go= 3 (i sind)™ (e — 1) Thyiam(h @ 75"
{,m=0 e

where the kernel \,,, € (§®*™)* is given by

)\m:: Z . ei1v®"'®eim®‘ei1®“.®e‘i’m'

Co 1,2, ;1m=0

§8. Generalization
Let GL((S)) be the group of all linear homeomorphisms from (S) into (S). Then

we have

Proposition 22. {Go; 0 € R} is a regular one parameter subgroup of GL((S)) with
infinitesimal generator i(N +Ag). ' '

Let us consider some genera.lizaﬁon. Suggested by [1], for example we propose
to define the generalized PFM transform Xy, § € R as operator on (S)* whose
U-functional is given by

(32) S(Xe2)(6) = {(@,exp (e, &) — 57 (a B50)[E[*)))
(cf. Eq. (7) in Definition 1 of PFM transform), for £ € S, ® € (S)*. We set

J(a, B;8) = €**® — 2H(a, §;6),
with H(avﬂ; 0) = h(a’ﬁ) ' (620:0 - 1)1

where h(a, 8) = /2¢, for a, B € C, @ # 0. Then we denote the adjoint opefator
of Xo by Zg.

Claim 23. The set {Z4;0 € R} is a regular one parameter subgroup of GL((S)).
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Claim 24. The infinitesimal generator of {Zy; 8 € R} is given by the operator aN
+ fAg.

Claim 25. The generalized PFM transform {Xg; 6 € R} is a one parameter sub-
group of GL((S)*).

Claim 268. The infinitesimal generator of { Xy; 6 € R} is given by the operator aN
+ BAG.

Remark 11. The above definition (32) of generalized PFM transform X, can be
alternatively replaced by the following expression:

S(Xo®)() = F(e*¢) - exp(H(a, ;0) - ¢,

where F' denotes the U-functional of ® in (S)*, i.e,, S® = F.

Remark 12. Especially when a = § = i(€ C), then the above-defined generalized
PFM transforms Xy are, of course, attributed to the simple PFM transforms ¥y
given by (6), (7)-in the section 3.
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Soine Intertwining Properties
of the Pseudo-Fourier-Mehler Transform*

Isamu DOKU**

§ 1. Introduction

The study of the Fourier transform in white noise calculus was initiated and has been developed
to a mature level by H. -H. Kuo [12]. While, the Fourier-Mehler transform is a kind of generaliza-
tion of Fourier transform [13], which furnishes the theory of infinite dimensional Fourier trans-
forms in white noise space.

In this article we investigate Pseudo-Fourier-Mehler (PFM for short) transform having quite
similar nice properties as the Fourier-Mehler transform possesses. It was originally defined in [3]
and used for application to abstract equations in infinite dimensional spaces [3] (see also [1], {2],
[4], [6-9]). In connection with other Fourier type transforms in white noise analysis, we can
compute the infinitesimal generator of the PFM transform directly and show that our Pseudo
-Fourier-Mehler transform enjoys intertwining properties.

§ 2. Notation and Preliminaries

-

Let S=S(R) be the Schwartz class space on R and S*=S'(R) its dual space. Then S(R) C L?
(R) CS'(R) is a Gelfand triple. We define the family of norms given by |&|,=|A%&|, p>0, &€
S(R), where the operator A=—d?/di*+#*+1 and +| is the L*(R)-norm. Let SP—ES,,(R)' be the
completion of S(R) with respect to the norm |+|,, p>0. We denote its dual space by S}=S:(R),
and we have S,(R)CL?(R)C S;(R). Let u« be the standard Gaussian measure on S’'(R) such that

Lexp { V=1, & | u(dx)=exp [.___é_lglz] ’

for any £€S(R). (L? denotes the Hilbert space of complex-valued y-square integrable func-
tionals with norm | +ll. The Wiener-Ité6 decomposition theorem gives the unique representation of
@ in (L%, ie,

(1)  e=3L(),  AELe®,

where I, denotes the multiple Wiener integral of order » and L2 (R™ the spéce of symmetric
complex valued L2-functions on R” The second quantization operator I"(4) is densely defined on

* Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC Grant-in-Aid CR(A) 05302012.
**Department of Mathematics, Faculty of Education, Saitama University, Urawa 338, Japan.
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(L?) as follows: for =3 L (f) €EDom(T'(4)),

n=0

2) T'(A)p= iz (A®7f,)

For pEN, define lel,=IT(A) Pl and let (S), ={p<E (L?) ; l@l,<o} and the dual space of (S),
is denoted by (S)%. Let (S) be the projective limit of{ (S),; PEN}. It is called a space of test white
noise functionals. The elements in the dual space (S)* of (S) are called generalized white noise
functionals or Hida distributions. In fact, (S)C (L?)C (S)*is a Gelfand triple [10]. For convention
all dual pairings<+,*>, resp. <{+,*>>mean the canonical bilinear forms on S*XS(resp. (S)*X (S))
unless otherwise stated.
The S-transform of ®< (S) * is a function on S defined by
(3) (S®) (&) : =<KD,: expl, & : M, £€S(R),

where : exp<+, & : =exp<(-, & exp(——%—léﬂz). Then note that a mapping: €22+ (S®) (2&+7)

is entire holomorphic for any &, #€S. A complex valued function F on S is called a U-functional
if and only if it is ray entire on S and if there exist constants C;,, C;>0, and pNU {0} so that
the estimate

| F (28) | < Ciexp(Gyl 2|2 £12)
may hold for all zeC, &=S. We have the following Potthoff-Streit Characterization [10, 14] :
THEOREM 1. If @< (S)* then S® is a U ~functional. Conversely, if F is a U-functional, then there
exists a unique element ® in (S)* such that S®-F holds.

Based upon the above characterization we are able to give rigorous definitions to Fourier type
transforms of infinite dimensions. The Kuo type Fourier transform F [12] of a generalized white
noise functional ® in (S)* is the generalized white noise functional, S-transformation of which is
given by
(4) S(F®) (&) =D, exp(—i <+, £, EES.

Likewise, the Fourier-Mehler transform %, (§€R) [13] of a generalized white noise functional ®
in (S)* is the generalized white noise functional, S-transformation of which is given by

(5) S(F,®) (8)=<<®, exple” <+, & — %ef”cosﬁl‘,‘flzb), £€S,

The Fourier-Mehler transform %,, 6= R is a generalization of the Kuo type Fourier transform 7.
Actually, F,=1d and F_,, is coincident with the Fourier transform F. It is easy to see that 7.,
is the inverse Fourier transform F~!. Hence we have '

S(F70) (§) =(S®) (B)exp(——1£1), ses.

§ 3. Pseudo-Fourier-Mehler Transform

We begin with introducing the Pseudo-Fourier-Mehler transform in white noise analysis.
Definition 1. {¥,, R} is said to be the Pseudo-Fourier-Mehler (PFM) transform (3] if ¥ ,
is a mapping from (S)* into itself for § €ER, whose U-functional is given by
(6) S(¥,®) (&) =F (e?&) + exp(ie?sind| &|%r, &£E€S
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or equivalently

(7) S(¥,®) (&) =<K, exple? <-, €>—,%|§|2)>>, £e s,

for ®E (S)*, where S is the S-transform in white noise analysis and F denotes the U-functional of
o.

By virtue of Theorem 1, the right hand sides in Eq.(6) and Eq.(7) are U-functionals, and ¥,
® exists for each @ in (S)*. Therefore the above-mentioned Pseudo-Fourier-Mehler transform is
well-defined. Hence we have
Proposition 2 [3]. The following properties hold:

(i) Yo=1Id; (Id denotes the identity operator.)

(ii) Wo+F for any 6ER\{0};

(iii) ¥, =F, for any 0ERN{0}.

Proposition 3 [3]. The invese operator of the Pseudo-Fourier-Mehler transform ¥, is given by (¥
2) 1=V _, for 6€ER.

Next let us consider what the image of the space (S) under ¥, is like (see Corollary 5 below).
The Pseudo—Fourier—Mehler transform ¥, also enjoys some interesting properties on the product
of Gaussian white noise functionals (see Theorem 4).

Theorem 4. The following equalities hold for any 6ER:
(i) if K(8)=2"'ie¥csc— 1, then
Y, 0=T(e’Id)®: gxw, DE(S)*
(ii) if A(8)=2"'ie"csch—1, then
W, @1,=1®: gawly, o< (9),
for all pER.

Let us think of the image of @€ (S) under the Pseudo-Fourier-Mehler transform. It is easily
checked that g.: gs=1 holds with c+d=-2. So we have
(8) guo: &xw=L
Immediately, o€ (S) if and only if

Y@: LwE(S),
so that, it is equivalent to
Y@ : ot Ex <€ (S) : ks
where (S) : gk denotes the whole space of elements @ : gk for @& (S). Consequently, it is
obvious that ¥, o€ (S) : gk, by virtue of Eq.(8). Therefore we obtain
Corollary 5. For <R,
Im¥, (S)=(S) : gxkw = {@: gxw; €S}
where K () =27'ie’csc6d—1.

Remark 2. The results in Theorem 4 is quite similar to that of the Fourier-Mehler transform.

In fact, for pER, < (S),,
(Fe®) : gawlp=1®l, and |Fy@l,=1®: 8200 ll »
hold with ¢, (8) =—icoté— 2, and c,(8) =icotd—2(e.g. [10, §9. H]).

Remark 3. The image of (S) under the F ourier-Mehler transform ¥, is given by (S) : o,

while that of (S) under the Fourier transform & coincides with the space
(S): &% =He: & ¢(S)},

— 3 — ™
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where &, is the delta function at 0 and
lim &= Py
(e.g. [10, Chapter 9]).

§ 4, Infinitesimal Generators

First of all, for all § €S we define
@ (x): =Zo—;‘— (o x®n:, E®n)
with x&€ S*, £€ S. We call it an exponential vector. Then {G,, §ER} is an operator on (S) defined
by
9) (Go @) (%) : =@e’&(x) -exp(ie’singd|&|?).
Let 7 denote the distribution in (S®S)* given by

{1, EQn>=X&, >, & nE€S.
Note that it can be expressed as

r= [,6®@sdt= 3 ¢,®e,E (S®9)*,
j=0
where {e,} denotes a complete orthonormal basis for L?(R). Moreover we have
Rn
T = /R§t1®§t1®"'®§m®§tndt1"'dtn-

The following is an easy exercise. The next lemma provides with a general expression for elements
of general form in (S).

Lemma 6, When ¢ (x) = ’20 Cox®re, foe(S) with €S (R, (the symmetric S(R™), then G, @
s given by

(Gog)()=3 <: 2%, g,
and
&n = gn(q))

1 (m+2m)! . . :
= z gW‘)— (sin@) mein+ml Z @M f v
m=0

where for the element fymin 0 S(R2™") the term 8™ % fym,n actually has the following integral
expession
(T®m*fém+n) (tl; Y tn)

= R-\f:-’.m+n(sl; Sty Smy Smy b, 7, tn) ds;** dsm.

On this account, we obtain immediately
Proposition 7. The Pseudo-Fourier- Mehler transform {¥, ; R} is given by the adjoint operator
of {G,; 6€ R}, ie.,
v, =G;
holds in operator equality semse for all 6ER.
The next proposition gives an explicit action of the PFM transform ¥, for the generalized
white noise functionals of general form. It is due to a direct computation.
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Proposition 8. For ®€ (S)* given as ®(x) = f‘, < g  FoD, it holds that

n=0

\If,,CID(x):i'_O‘,()(: ®: 2 all, m, 6) « FQT®™,

+2m=n

where the constant a(l, m, ) is given by
a(l, m, 6) =—=e """ ising) ™.
m!

Remark 4. Similar results for Fourier-Mehler transform as the above can be found in [14]. For the
proof of Proposition 8, it is almost the same as those given in [14].

It follows from Proposition 3 that the Pseudo-Fourier-Mehler transform ¥, is injective and
surjective. Moreover, it is easy to check that ¥, is strongly continuous operator from (S)* into
itself, when we take Lemma 6 and Proposition 7 into consideration. Thus we have the following
theorem.

Theorem 9 [3] [4] [6). The Pseudo-Fourier-Mehler transmform ¥, : (S)*—(S)* is a bijective and
strongly continuous linear operator.

Theorem 10 [3] [4] [6]. The set {¥, ; 6 ER} forms a one parameter group of stromgly continuous
linear operator acting on the space (S)* of Hida distributions.

We are now in a position to state the following remarkable result on PFM transform. This is
a very important property of the Pseudo-Fourier-Mehler transform, especially on an applicational
basis [3] [4] [6-8] (see also [1], [2], [9]).

Theorem 11 [3] [4] [7]. The infinitesimal generator of {¥, ; 6ER} is given by i (N +AE), wherve
N is the number operator and Af is the adjoint of the Gross Laplacian Ac.

Remark 5. It is well known that the infinitesimal generator of the Fourier-Mehler transforms

(F,: 6R} is iN+-§—A3, while the adjoint operator of {F, ; #&R}has iN +%AG as its

infinitesimal generator (e.g. see [10]). The proof of Theorem 11 is almost similsr to the above ones.

§ 5. Intertwining Properties

In this section we shall investigate some intertwining properties between the Pseudo-Fourier
~Mehler transform ¥, and other typical operators in white noise analysis, such as Gateaux
differential, the adjoint of Gateaux differential, Hida differential operator, and Kubo operator (the
adjoint of Hida differential), etc. Furthermore, we shall introduce the characterization theorem for
PFM transforms, which is one of our main results in this paper.

We begin with definition of the Gateaux differential D, in the direction y& S*. For y & S* fixed,

for the element ¢ in (S) given by @ (x) = i < x®:, £, we put

(10) | Do ()= lim 2EEB oW g

The limit existence in the right hand side of (10) is always guaranteed, and D, (x) is actually
given by

6l



(11) D, (x)= f} nd: x®n y@g‘,,), 1rES*.
n=0

In fact, D, becomes a continuous linear operator from (S) into itself. Since the Dirac delta function
d; lies in S*, adoption of &, instead of ¥ does make sense in the above (10) and (11).0On the other
hand, the Hida differential operator 9,(=9/ax(¢)) is originally proposed by T. Hida [10] and
defined by

)
o0& (1)

(cf. [ 5]). It is well known that the action of 8, is equivalent to that of D, on the dense domain [10]

9 =571 S, &€S5

(or [5]). So we can define
&=Da, tER.
The Kubo operator 9% is the adjoint of Hida differential o,, defined by
K3!®, p)>=Kd, 2,9 ,
for = (S)* @ €(S). As a matter of fact, o, (resp. %) can be considered as a continuous linear
operator from (S) (resp. (5)*) into itself with respect to the weak or strong topology. More
precisely, the Hida differential proves to be a continuous mapping from (S) p,, into (S), for ¢>

—i—, » >0, while the Kubo operator turns out to be the one from (S) _, into (S) _p4 for the same

pair p, g as given above. For £€ S, p& (S), the derivative (D, @) (x) is defined in the usual manner,
and there exists its extension D, : (S)*—(S)*. Even for that, we shall henceforth use the same
notation D, for brevity, as far as there is no confusion in the context. We set ¢, : =i(D,+D}),
where D/ is the adjoint of D,.
Lemma 12. For each 6€ER, tER,
¥, (87®) =e" 3! (¥, ®)

holds for all @€ (S)*.

Proof. First of all, note that S(3;®) (&) =& (¢)-S(®) (&). So, for the generalized white noise

functional ®< (S) * given in the form ®(x) = i‘o G 5 fo, x&€S* we readily get
(12) S, (87®)) (&)
=e?&(t) - § o € E® Yy exp(ie’sing| &2).
n=90

While we establish
(13) S(¥, (310)) (£) =e"S (a3 (¥,d)) (&)
by applying (12), because we made use of the relation

S(33(¥, @) (&) =&(1)+(S®) (e°&) ~exp(ie”sin 6] £]?).
An application of the Potthoff-Streit characterization theorem (Theorem 1) to (13) leads to the
required equality in Hida distribution sense.
Proposition 13. For each 6<R, tER

(i) ¥,(8:0)=e “3,(¥,®)—2isinda; (¥, d) ;

(i) ¥, (x(D®) =e “x() (¥, D) ;
hold for all @< (S)*.

Remark 6. The assertion (i) of Proposition 13 follows from a direct computation. We have only
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to employ the following two rules:

J * () =G .
é‘g(t)S(')’ 21 (+)=ST1&()S(+).

The second assertion (ii) is also due to a simple computation together with the first assertion (i)

So, () =

and Lemma 12. Moreover, we need to apply the multiplication operator: x (¢) (¢) = (3,+3%) («) (e.
g. [10]). Those proofs go almost similarly as in the proof of Lemma 12 and are very easy, hence
omitted.
The next proposition indicates some intertwining property between the PFM transform and
Gateaux differential operator.
Proposition 14. For each parameter §<ER, tER
(i) eD, (¥, ®) =¥, (D,®)+2ising+ D} (¥, D) ;
(ii) D, (¥, ®)+D}(¥,) =e"W, ({:;£0) ;
hold for all generalized white noise functionals in (S)*.
Proof. It is interesting to note that Gateaux differential D, and its adjoint D} enjoy the integral
kernel operator theoretical expressions in white noise analysis (see [14]; or [10, 11]). Namely,

(14) B,: = [[R £(8) atdt] ~ and Di: =[ £(Watdl, vEES

Let A ={t,}be a proper finite partition of the ¢ parameter space, and |A| denotes the maximum of
increment Atf, over 1<k <m. The assertion (i) yields from (i) of Proposition 13. In fact, by linearity
of the PFM transform we get

(15) élAtkef(tk) T, (840) =T, [ g«f(m Bty * @] ,

for VZ€S. Consider the same type finite summation for the other terms in (i) of Proposition 13.
By taking the limit » — o0 and by continuity of ¥, (Theorem 9), we can obtain the desired result
with consideration of Eq. (14).

As to (ii), note first that ‘we can have the expression

(16) G, =iz, £>= [z’fnx(t)g(t)dt] -

by virtue of the multiplication operator x (£) (+) (cf. Remark 6). With(ii) of Proposition 13, we may
take advantage of continuity of ¥, and (16) to deduce that

e (D +D}) (¥,@) =€ [/Rx(t)g(t) dt] (¥,®)

=limy, ( goAtkg(tk)x(tk) -'q:]

=T, Kx, &>+D)
by passage to the limit |A|—0. :
The following theorem gives the characterization for Pseudo-Fourier- Mehler transforms
{¥,; 6 €}R, which is one of our main results in this paper.
Theoreml15 [4] [6] (8]. The Pseudo-Fourier-Mehler transform *{\If; ;‘ 6 €R} satisfies the following
conditions : :
(P1) ¥, : (S)* — (S)* is a continuous linear operator for for all 6ER;
(P2) ¥, (D, ®) =e"D, (¥, ®) —2sinb-7, (¥,®) ;
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(P3) ¥, (3, @) =e 'q, (¥, D) ;

where ®< (S)*, £€S.

Conversely, if a continuous linear operator A, : (S)* — (S)* satisfies the above conditions : (P1)
~(P3), then Ayis a constant multiple of ¥, .

Proof. (P1) is obvious (Theorem 9). (P2) (resp. (P3)) yields from (i) (resp. (ii)) of Proposi-
tion 14. It is due to a simple computation. Conversely, suppose that the operator 4, be compatible
with (P1), (P2) and (P3). We need the following results.

Lemma 16. We assume that A, be a continuous linear operator from (S)* into itself, satisfying the
three conditions. (P1)~(P3). Then the following relations

(i) (\I’;lAa)Dg:Dg (\I';IAa);

(i) (¥,7'A0)gs=q, (¥, 'A,);

(i) (¥,~'4,) D =D, (¥, 7'4,);

hold for for all £€S, §€R.

The proof will be given below. The next theorem is well known (e.g. [11, Theorem 3.6, p. 267]
or [14, Prop. 5.7.6, p. 148]). ‘

Theorem17. Let A be a continuous linear operator on (S)*, satisfying
(1) AG;=d: A, for any EES; '

(ii) AD}=DZA, for any EES.

Then the operator A is a scalar operator.

Thus, by taking (ii), (iii) of Lemma 16 into account, we may apply Theorem 17 for A, to
obtain the assertion: ¥3A,is a scalar operator.

Proof of Lemma 16. Basically it is due to a direct computation. Each proof goes similarly, so
we shall show only (iii) below. For the other two we will give just rough instructions. First of all,
note that we have only to consider ¥, instead of ¥, ! by virtue of Proposition 3. As to (i), it is
sufficient to calculate it with (P2) for both and (P3) for the PFM transform. As for (ii), simply
(P3) for both A, and ¥,. As to (iii), for V@< (5)*, V€S
(17) (P A,)Di®o=—iV,/(A,q.)0—V; (A, D),
=—e’(¥7q,)A,)d—e’ (¥;D,) A, @
because we used a relation '
(18) Di=—ig.—D,
in the first equality and also employed (P2), (P3) in the second one. An application of (P2), (P3)
to the last expression in(17), together with (18) again, gives

(17) =—1iq, (¥§A,)®—D, (¥;4,)®
=(- iqe _Dg) (\I’}lAa)q):D; (¥/A,)®,
which completes the proof.
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A Fock Expansion of the
Pseudo-Fourier-Mehler Transform*

Isamu DOKU**

§ 1. Introduction

In this article we study Pseudo-Fourier-Mehler (PFM for short) transform having quite similar
nice properties as the Fourier-Mehler transform [12] possesses. It was originally defined in (5] and
used for application to abstract equations in infinite dimensional spaces. In connection with other
Fourier type transforms in white noise analysis, we can compute the infinitesimal generator of the
PFM transform directly and show that our Pseudo-Fourier-Mehler transform enjoys intertwining
properties [9]. We have also obtained in [9] the characterization theorem for PFM transforms. In
this article, we shall introduce an example of PFM transform applied to the abstract Cauchy
problem and also state the Fock expansion of PFM transform. Lastly we shall introduce a
generalization idea of PFM transform and investigate some properties that the generalized trans-
form should satisfy.

The Pseudo-Fourier-Mehler transform is a very important and interesting operator in the
standpoint of how to express the solutions for the Fourier-transformed abstract Cauchy problems.
Related works on application of infinite dimensional Fourier type transforms can be found ([4,11] ;
see also [2, 3], [7, 8]).

In [1] they have studied the two dimensional complex Lie group € explicitly and succeeded in

describing every one parameter subgroup with infinitesimal generator (-—29—2~Q—

is the number operator and Ag is the Gross Laplacian. Furthermore, one can find in [15] another

)Ag+ BN, where N

related work, especially on a systematic study of Lie algebras containing infinite dimensional
Laplacians. ' »

We are able to state our results in the general setting (e.g. [14] ; see also [6]) of white noise
analysis. As a matter of fact. almost all statements in our theory remains valid even without minor
change of the basic setting. However, just for simplicity we adopt in this article the so-called
original standard setting [12] in white noise analysis or Hida calculus to state our results related
to the PFM transform.

§ 2. Notation
Let S=S(R) be the Schwartz class space on R and S*=S’ (R) its dual space. Then S(R)C L2

*Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC Grant-in-Aid CR(A) 05302012.
**Department of Mathematics, Faculty of Education, Saitama University, Urawa 338, Japan
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(R)C S’(R) is a Gelfand triple. We define the family of norms given by |&|,=|A?&|, » >0, &=
S(R), where the operator A=—d?/dt*+t>*+1 and || is the L?(R) ~norm. Let S=S,(R) be the
completion of S(R) with respect to the norm |+|,, » >0. We denote its dual space by S3=S,(R),
and we have S,(R)C L?*(R)CS;(R). Let u be the white noise measure in White Noise Analysis.
Actually it is a standard Gaussian probability measure on S’ (R). (L?) denotes the Hilbert space of
complex-valued y-square integrable functionals with norm | «|l. The second quantization operator
in white noise analysis is denoted by I"'(A), which is densely defined on (L?). For pEN, define |
@ll,=IT(A)?pl and let (S), ={p< (L? ;lel,<o} and the dual space of (S), is denoted by (S)
+. Let (S) be the projective limit of {(S),; » €N}. It is called a space of test white noise
functionals. The elements in the dual space (S)* of (S) are called generalized white noise func-
tionals or Hida distributions. In fact, (S)C (L2?) C(S)* is a Gelfand triple [12]. For convention all
dual pairings <+,*>, resp. <{*,*>> mean the canonical bilinear forms on S* X S?(resp. (S)*X (S))
unless otherwise stated.
The S-transform of ®< (S)* is a function on S defined by
(D (S®) (&) : =KD, exp<;, &), £eS(R),

where : exp{+,&>: = exp<-, §>'6XD(—%|5|2)-

We now introduce the Pseudo-Fourier-Mehler transform in white noise analysis.
Definition 1 [5] [9]. {¥,, 6&R}is said to be the Pseudo-Fourier-Mehler (PFM) transform if ¥
o 1S a mapping from (S)* into itself for € R, whose U-functional is given by
(2) S (¥, @) (&) =F(e?&) « (exp(ie?sind| &%), £eSs,

or equivalently

3 S (1,0) (§) =@, exp(e’C, HH—— £, ges,

for ®E (S)*, where S is the S-transform in white noise analysis and F denotes the U-functional of
® (see also [7, 8]).

By virtue of Potthoff-Streit characterization [12], the right hand sides in Eq. (2) and Eq.(3) are
U-functionals, and ¥, ® exists for each ® in (S)*. Therefore the above-mentioned Pseudo-Fourier
-Mehler transform is well-defined.

§ 3. Application of PFM Transform

The purpose of this section is to show a typical example of application of the Pseudo-Fourier
-Mehler transform ¥, to the Cauchy problem.

Example 2. (A simple application of the PFM transform)
Let us consider the following abstract Cauchy problem on the white noise space:

ou(l x)
(4) ~—ar

u(0, ) =f()e(S),

with >0, where N denotes the number operator. One of the most remarkable benefits of white

=iNu(t, x) +¢(x),

noise analysis consists in its application to differential equation theory and how to solve the problem
(cf. [1], {2, 3], [4, 11)). Especially in {4, 11], by resorting to the analogy in the finite dimensional
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cases we have applied the infinite dimensional Kuo type Fourier transform to the Cauchy problem
for heat equation type with Gross Laplacian, and have succeeded in derivation of the general
solution and also in direct verification for existence and uniqueness of the solution. On this account,
we think of using the Fourier transform to the aforementioned problem. Recall the formula :
(5) FN®)=N(FO)+AL(F D), for all ®< (S)*.
We set v(t y)=(Fu(t +)) (y) for each t€R,. We may employ the Fourier transform ¥ for
(4) so as to obtain
oV (L v)
ot

because we made use of the formula (5) and set F=FF, The operator part of the Fourier

(6) =iNv(t, y)+intv(t »)+@ (),  with  v(0, ) =F (),

transformed problem (6) is exactly equivalent to the infinitesimal generator of PFM transform
with parameter ¢(see [5], [9]). Hence, the semigroup theory in functional equation theory allows
immediately the following explicit exression of the solution in question:

0 o(t, =V )+ [0, 0 () ds.

We can show the existence and uniqueness of the solution by applying Theorem 4 in [9] to (7) under
a certain condition on the initial data ¢, f. In that case the integral term appearing in (7) should
be interpreted as Bochner type one. So much for the Cauchy problem, because this is not our main
topic in this article. We shall go back to the PFM transform and proceed further in the next section.

§ 4. Fock Expansion

Let £ ((S), (S)*) denote the space of continuous linear operators from (S) into (S)*. The space
S, . (R'™™) is a symmtrized space of S’ (R'*™) with respect to the first /, and the second m variables
independently. By virtue of the symbol characterization theorem for operators on white noise
functionals [13](see also [14]), for the operator II lying in &£ ((S), (S)*) there exists uniquely a
kernel distribution x;. in S}, (R"™)such that the operator II may have the Fock expansion :
n:me‘; Ty Gt
Moreover, the series g, @€ (S) converges in (S)* [13]. Generally, each component II nof the
Fock expansion has a formal integral expression :
H,,m(k)=/a,+mx(sl, o Sy, by, v, ) 08050yt Omds,  ds b+ A,

Remark3. We call it an integral kernel operator with kernel distribution x. The theory of
integral kernel operators and the general expansion theory in white noise analysis were proposed
and have been developed enthusiastically by N. Obata [13, 14](see also [12]). Those topics are
closely related to quantum stochastic calculus, which has been greatly investigated in chief by
Hudson, Meyer, and Parthasarathy. More details on this topic will be found in, for instance, (i) K.
R.Parthasarathy : An Introduction to Quantum Stochastic Calculus, Birkhiuser, Basel, 1992 ; (ii) P.
A Meyer : Quantum Probability for Probabilists, Lecture Notes in Mathematics Vol.1538, Springer
-Verlag, Heidelberg, 1993. '

We shall give below two typical examples of the integral kernel operators in white noise
analysis.

Example 4. (The number operator N)

— 13 —

69



Let . €(S®S)* be the trace operator defined by
{z, EQRQn>=X&, >, &, nES.
The number operator N is usually expressed as
a0 00t
by Kuo’s notation in white noise analysis. By the Obata theory, N has the following representation
as a continuous linear operator from (S) into itself, namely,
N=I,,(7) = f 7 (s, t) O 0.dsdt.

Example 5. (The Gross Laplacian Ag) y

By the usual notation in white noise analysis we have the expression
Ao= [noudt
Then the Gross Laplacian A¢ can be also expressed by
Ag=II,,(7) = fn.r(sl, S;) 98, 98,ds, ds,

as a continuous linear operator from (S) into(S).

Let us consider the general expansion of our Pseudo-Fourier-Mehler transform. We may take
advantage of Obata’s integral kernel operator theory in order to obtain Fock expansion representa-
tions of ¥, and its adjoint G,. That is to say,

Theorem 1. For <R, the PFM transform ¥, and the adjoint operator G, have the following Fock

expansions .
: — 1 LY L 9 m ! .
(i) ¥,= Z,—m,(te sing) (e’ ~1) ™ * Myyemm (7% — @A) ;
tm=0 "
:: _ \ 1 T m( aif I1 ®@m
(i) Ge= Z l'm'(le sing) ™(e”—1) “I, 14 om (L, Q7% ;
Im=0 : :

where the kernel 1,< (S®7)* is given by

/lm . = § =Voeﬂ@'"®eim<>§eil®. ..®eim'

Wb, im

§ 5. Generalization

Let GL ((S)) be the group of all linear homeomorphisms from (S) into (S). Then we have
Proposition 2. {G, ; 6€R} is a regular one parameter subgroup of GL((S)) with infinitesimal
generator (N +Ag). ' '
Let us consider some generalization. Suggested by [1], for example we propose to define the
generalized PFM transform X,, #€R as operator on (S)* whose U-functional is given by

(8)  S(X,0)(§)= K&, exple™s, &>——] (a, £; 15195,

(cf. Eq.(3) in Definition 1 of PEM transform), for £€ S, &< (S)*. We set

J(a, B; 6)=e**—2H(a, B: 6), with H (a, 8 ; 8) =h(a, B) « (e*°—1),
where h(a, 8) =8/2a, for @, BEC, a+0. Then we denote the adjoint operator of X, by Z,.
Cram 3. The set{Z, ; 6€R} is a regular one parameter subgroup of GL((S)).
Cram 4. The infinitesimal generator of {Z, ; 6ER} is given by the operator aN + BAq.
Cram 5. The generalized PFM transform {X, ; GERY} is a one parameter subgroup of GL((S)*).
Cuam 6. The infinitesimal generator of {X,; 6ER} is given by the operator aN +pBA¢.

‘10



Remark 6. The above definition (8) of generalized PFM transform X, can be alternatively
replaced by the following expression:
S(X,®) (&) =F (e*8) - exp(H (a, 8; 0)+1&]),
where F denotes the U-functional of @ in (S)*, ie., SO=F.
Remark 7. Especially when a=g8=i(€C), then the above-defined generalized PFM trans-

forms X, are, of course, attributed to the simple PFM transforms ¥, given by (2), (3) in the section
2.
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PREFACE

The seventh Japan-Russia Symposium on Probability Theory and Math-
ematical Statistics was held at The Meiji Mutual Life Insurance Co. Corpo-
rate training Center in Tokyo, July 26-30, 1995, under the joint auspicies of
the Mathematical Society of Japan and Institute of Statistical Mathematics.
There were 35 participants from Russia, Ukraina, Lithuania and Georgia, 142
from Japan, and 4 from other European and Asian countries.

This volume contains papers presented at the Symposium. Records of the
meetings and a list of the Organizing Committee are attached at the end of the
volume. The Symposium proved to be very fruitful in promoting scientific ex-
changes among probabilists and statisticians from various countries including
Japan and Russia.

Previous six (Japan-USSR) Symposia were held in Khabarovsk(1969), Ky-
oto(1972), Tashkent(1975), Thilisi(1982), Kyoto(1986) and Kiev(1991). The
Proceedings of the Symposia were published from Springer-Verlag as Vol.330,
550, 1021 and 1299 of Lecture Notes in Mathematics. The Proceedings of the
last one at Kiev was published from World Scientific in 1992.

We are very grateful to all those who have contributed to the success of
the Symposium. Thanks are due to Professors H.Nagai and A.A.Novikov for
their great efforts in preparing this Proceedings. We would like to express our
sincere gratitude to The Meiji Mutual Life Insurance Co. and Japan World
Exposition (*70) Commemorative Fund for their truly generous support.

S. Watanabe
M. Fukushima
Yu.V. Prohorov
A N. Shiryaev
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~ON'A CLASS OF INFINITE DIMENSIONAL
FOURIER TYPE TRANSFORMS IN WHITE NOISE CALCULUS*

ISAMU DOKU
Department of Mathematics, Saitama Universily
Urawa 338, Japan

E-mail: doku@sa,cs.sv.saitama-u.ac. ip

ABSTRACT

We consider the Pseudo-Fourier-Mehler transform in white noise analysis and study various kinds
of properties such as intertwining properties, with result that its characterization theorem is proved.
Through this, we propose a new concept on a class of infinite dimensional Fourier type transforms,

which is a one parameter subgroup and is also characterized in terms of its infinitesimal generator.
1. Introduction

The study of the Fourier transform F ° in white noise calculus was initiated by
Kuo. While, the Fourier-Mehler (FM) transform is a kind of generalization of F.1°
In this paper we introduce Pseudo-Fourier-Mehler (PFM) transform ® having quite
similar properties as the FM transform possesses. It was used for application to
abstract equations in infinite dimensional spaces.® In connection with other Fourier
type transforms in white noise analysis, we can compute the infinitesimal generator
of the PFM transform (§2.2) and show that our PFM transform enjoys intertwining
properties (§3.1). We shall state the characterization theorem for PFM transforms
(§3.2), which is one of our main results in this article. The Fock expansion of PFM
transform can be derived as well (§3.3). Lastly we shall introduce a generalization
idea of PFM transform and investigate some properties that the generalized transform
should satisfy. Then we come to a recognition of two dimensional complex Lie algebras
naturally containing the adjoints of infinite dimensional Laplacians. Above all we
propose a new class of infinite dimensional Fourier type transforms (§4). Actually it
turns out to be a differentiable one parameter subgroup of linear homeomorphisms
on the space of Hida distributions, having aN + BAy as its infinitesimal generator.
As to related works, Chung and Ji ! have studied a certain subgroup with generator
(2—“2ib)AG + bN from a slightly different point of view.

1.1 Notation

We adopt the so-called general setting * in white noise analysis throughout this
article. Let T be a separable topological space equipped with a o-finite Borel measure

*Research is supported in part by JMESC Grant-in-Aid SR(C) 07640280 and also by JMESC
Grant-in-Aid CR(A) 05302012.

Typeset by AaS-TEX
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dv(t) on the topological Borel field B(T). Further suppose that v be equivalent to
the Lebegue type measure. We consider the real Hilbert space H := L?*(T,dv;R)
with norm |- |o. Let A be a positive selfadjoint operator in H with Hilbert-Schmidt
inverse. Its eigenvalues and normalized eigenvectors are denoted by {A.} and {e.}
respectively. Then {e,} becomes a complete orthonormal basis of H. We assume that
1< X <A £++-— 00, where Ay = inf Spec(A). Let E = S4(T) be the standard
countably Hilbert space !? constructed from (H, A). In fact, E becomes a nuclear
space and we have a Gelfand triple E = S4(T) C H = L*(T,dv;R) C E* = S3(T),
where E* denotes the dual space of E. It follows by construction that

E=()E, ®projimE,, , E*= |J E-p ®indlim E_,,
P20 poo P20 reee

where E, is the Hilbert space equipped with the norm [£|, = |AP£]o. Suggested by
Kubo-Takenaka formulation 8, we assume: (i) for every ¢ € E there exists a unique
continuous function € on T which coincides with ¢ up to v-null functions; (ii) for each
t € T the evaluation map §; : t — £(t), € € E, is continuous, i.e., § € E*; (iii) the
map t + & is continuous from T into E*. Let p be the standard Gaussian measure
on E* such that

/E exp(v=T(a, £))u(dz) = exp(—5¢R),

for any £ € E. (L?) denotes the Hilbert space of complex-valued p-square integrable
functionals with norm ||-||o. The Wiener-1t6 decomposition theorem gives the unique
representation of ¢ in (L?), i.e.,

(1) o(@) = In(fa)= D (:2%" 1 fa), fo€H®", z€E",
n=0 n=0

where I,, denotes the multiple Wiener integral of order n and Hc®" denotes the n-
fold symmetric tensor product of the complexification of H and the symbol : 8" : is
the Wick ordering of the distribution z®". The second quantization operator I'(4) is
densely defined on (L2) as follows: for ¢ = Y oo o In(fn) € Dom(I'(4)),

n=0

(2) F(A)(P = Z In(A®nfn)'

n=0

For p € N, define |j¢|l, = [[T(4A)P¢|lo and let (E), = {¢ € (L?); ||¢ll, < oo} and the
dual space of (E), is denoted by (E)}. Let (E) be the projective limit of {(E),; p € N}.
It is called a space of test white noise functionals. The elements in the dual space
(E)* of (E) are called generalized white noise functionals or Hida distributions. In
fact, (E) C (L?) C (E)* is a Gelfand triple. For convention all dual pairings (-,-),
resp. ((+,:)) mean the canonical bilinear forms on E* x E (resp. (E)* x (E) ) unless
otherwise stated. The space with subscript C means its complexification. '
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Remark 1. E is topologized by the projective limit of Hilbert spaces {E,} with
inner products (+,-), and E* is equipped with the inductive limit convex topology.
In fact, the strong dual topology of E* coincides with the inductive limit topology in
our setting.

1.2 Preliminaries
The S-transform of ® € (E)* is a function on E¢ defined by

(3) (52)(£) := ((®,: exp(-,£):)), { € Ec,

where :exp (-, €): = exp (-,£) - exp (—1¢|?). Based on the Potthoff-Streit theorem 1*
we are able to give rigorous definitions to Fourier type transforms of infinite dimen-
sions. The Kuo type Fourier transform F of @ in (E)* is the generalized white noise
functional, S-transformation of which is given by °

(4) - S(Fe)E) = ((@,exp(—2(,E))), €€ Ec.

Likewise, the Fourier-Mehler transform Fy (6 € R) of ® in (E)* is the generalized
white noise functional, S-transformation of which is given by 1°

() SFEOE) = (B (e, 6 ~ 56 st ), €€ Be.

The Fourier-Mehler transform Fy, 6 € R is a generalization of F. Actually, Fo = Id,
and F_y /7 is coincident with F. We denote by Dyp the Gateaux differential of
¢ € (E) in the direction y € E*. In fact, D, becomes a continuous linear operator
from (FE) into itself. The symbol 8, indicates the Hida differential operator in white
noise analysis. It is well known that the action of 0, is equivalent to that of Ds, on
the dense domain.* So we can define §; = Ds,, t € R. The Kubo operator 8; 8
is the adjoint of Hida differential. For { € E, ¢ € (E), the derivative (ngo)(z) is
defined in the usual manner, and there exists its extension D¢ : (E)* — (E)*. Even
for that, we shall henceforth use the same notation D¢ for simplicity, as far as there
is no confu_sion. We set g¢ := (D¢ + Df), where Dy is the adjoint of De.

{1



2. Pseudo-Fourier-Mehler Transform

We begin with introducing the PFM transform in white noise analysis.

Definition 1. {¥y,0 € R} is said to be the Pseudo-Fourier-Mehler(PFM) transform®
if U, is a mapping from (E)* into itself for § € R, whose U-functional is given by

© 5@ = (& ep(<%,6) — ), €€ B, @€ (B).

By virtue of the Potthoff-Streit theorem, the above-mentioned PFM transform is
well defined. Immediately, ¥y = Id (Id denotes the identity); ¥s # F,Fy for any

6 € R\ {0}. It is easy to see that the invese operator of the PFM transform Wy is
given by (¥g)~! = ¥_g for § € R.

2.1 Image of the Space (E) under PFM Transform

Let us consider what the image of the space (E) under ¥y is like. The PFM
transform ¥y enjoys some interesting properties on the product of Gaussian white
noise (GWN) functionals. Let g be a GWN functional, i.e., gc(-) := Mexp(—|- [*/2¢c)

with renormalization A and ¢ € C, ¢ # 0,—1. The symbol : denotes the Wick
product.®

Theorem 1. The following equalities hold for any § € R:
(i) if a(6) = 27 Yie™ csc 6 — 1, then Wp® = I'(€?Id)® : ga(e), ® € (E)
(ii) moreover, for all p € R, [ ®|l, = || : ga(e)llp> ® € (E),.

It is due to the following lemma. The proof goes almost similarly as Theorem 8.5.3

Lemma 2. For 6 € R the following equalities hold:

(i)  Pe® : go(ey = I'(e1d)3, V& € (E);

(ii) forany p€R,  [[T®: ge(o)llp = 1®llp, VR €(E)p;
where c(8) = —(271i e *® csc 6 4 1).

Let us think of the image of ¢ € (E) under the PFM transform. It is easily checked
that g. : ga = 1 holds with c+d = —2. So we have g(9) : ga(9) = 1. From (ii) of Lemma
2, immediately, ¢ € (E) if and only if Wge : g.s) € (E), so that, it is equivalent to
Do : ge(o) * Ja(s) € (E) : ga(s), Where (E) ga(s) denotes the whole space of elements
@t gae) for ¢ € (E) Consequently, it is obvious that Typ € (E) : gq(s)- Therefore
we obtain

Theorem 3. For § € R, im%(E) = (E) : go0) = {9 : 9a(e); ¥ € (E)}.

Remark 2. The results in Theorem 1 and Lemma 2 are quite similar to those of
the Fourier-Mehler transform. In fact, for p € R, ® € (S),,
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I(F62) : ger(oyllp = [|2lp and [[Fo®lp =2 : gerorll,
hold with ¢;(f) = —icot § — 2, and c3(8) = 1 cot 6§ — 2.
Remark 3. The image of (S ) under the FM transform F; is given by (S) : g; cot 5
while that of (§) under the Fourier transform F coincides with the space (8): 6 =
{¢ : 0; € (5)}, where & is the delta function at 0 and lim.—.o g. = b.

2.2 Infinitesimal Generators

First of all, for all § € R we define p¢(z) 1= Y g (s 227 :,¢®") withz € E*,£ €
Ec. Then {Gy,8 € R} is an operator on (E) defined by

(™) (Gope)(z) = pein () - exp (ie simbJ¢[?).

Let 7 denote the distribution in (F ® E)* given by (7, @ n) = (€,1), ,n € E. Note
that it can be expressed as 7 = fT 8¢ ® byv(dt) = E 06 ®ej € (EQ® E)*. Moreover
we have

=// 8;, @by, ® - ® &y, ® b, v(dty)---v(dty).
Tﬂ

The following is an easy exercise. The next lemma provides with a general expression
for elements of general form in (FE).

Lemma 4. When o(z) =Y 07 ((: 28" :, f5) € (E) with f, € Eg", then Gy is given
by (Gg(p)(iv) = E?:_-O (2 z®n Y gn), and

gn=an(e) = Y CEI G gymetrmisrom y g,
m=0
Where'('r@m * f2m+1)(t) = me f2m+1(31, S1ycc ,smasmat)u(dsl) .o V(dsm)-
On this account we obtain immediately '

Proposition 5. The PFM transform {Wy; 6 € R} is given by the ad Jomt operator of
{Ge; 0 € R}, i.e., ¥y = G} holds in operator equality sense for all § € R.

The next proposition gives an explicit action of the PFM transform Wy for the
generalized white noise functionals of general form.

Proposition 6. For & ¢ (E)* given as &(z) = Y00 (:2®" 1, Fr), Fn € (EE™)2yms
it holds that

(o o]

Ted(z) = Z( %" . Z a(l,m,9) - Fl@’l’ém>,

n=0 +2m=n

32



where the constant a(l,m, ) is given by a(l,m,6) = L:e+™(;sin 6)™.

The proof is greatly due to some computational techniques in §5.6.1% It follows
that the PFM transform ¥, is injective and surjective. Moreover, it is easy to check
that W, is a strongly continuous operator from (E)* into itself, when we take Lemma
4 and Proposition 5 into consideration. Thus we have the following theorem.

Theorem 7. (i) The Pseudo-Fourier-Mehler transform ¥y : (E)* — (E)* is a bijective
and strongly continuous linear operator.

(ii) The set {Wy;0 € R} forms a one parameter group of strongly continuous linear
operator acting on the space (E)* of Hida distributions. '

We are now in a position to state one of the principal results in this paper. This is
a very important property of the Pseudo-Fourier-Mehler transform, especially on an
applicational basis.3+%:2

Theorem 8. The infinitesimal generator of {Wy; 8 € R} is given by i(N + AY,), where
N is the number operator and A, is the adjoint of the Gross Laplacian Ag.

Remark 4. The assertions in Theorem 7 and Theorem 8 have been proved under
the standard setting.?

Proof of Theorem 8. Set Fy(£) := S(¥p®)(£) and Fy(€) := S(®)(€) for @ € (E)*,
¢ € E. From definition we have Fyp(¢) = Fy(e?) -exp [ie*® sinf|(|?]. Since Fy is
Fréchet differentiable, Fp(€) is differentiable in  as well, and it is easy to check that

®) lim 2 {Fo(€) — Fo(€)) = i(F(€),) +lél? - F(&).

While, the U-functional =1 -{Fy(¢) —Fp(€)}, 6 € R satisfies the uniform bounded cri-
terion: 3Cy > 0 so that sup{[%{ﬁ'g(zﬁ)——ﬁo(zf)}l; z € C,|z] = R} < Co exp(c1 R°2|€[2)
holds for all R > 0, all £ € E with ¢; > 0,c; > 0, where F, denotes an entire analytic
extension of F. Hence, the strong convergence criterion theorem ¥ allows conver-

geﬁce of §—1 (%{Fg(-) - Fo()}) (z) = ${%®(z) — ®(z)} in (E)* as 8 tends to zero.
Therefore the assertion follows immediately from Theorem 6.11(p.196) and Theorem
6.20(p.206).5 O |
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3. Operator Analysis of PFM Transforms

3.1 Intertwining Properties

In this section we shall investigate some intertwining properties between the PFM
transform ¥y and other typical operators in white noise analysis, such as Gateaux
differential, its adjoint, Hida differential operator, and Kubo operator, etc.

Lemma 9. For each § € R, t € R, ¥y(9;®) = €'98} (¥ ®) holds for all & € (E)*.
Proof. Note that S(a*@)(f) = &(t) -S(®)(€). So, for & € (E)* given in the form

®(z) = 300, (: 2®7 , Fy), « € E* we readily get
(9) S(s(0; ®))(€) = €“6(2) - ) (Fn,e™*¢®") - exp(ie®® sinb|¢[*).

While we establish S((9;®))(¢) = ¢ S(6; (¥s®))(€) by applying Eq.(9), because
we made use of the relation S(9;(¥p®))(¢) = £(t) - (SB)(e*%) - exp(ie* sin O[¢[?).
Hence, an application of the Potthoff-Streit theorem leads to the required equality in
Hida distribution sense. O

Proposition 10. Foreach e R,t € R

(i) W(0:®) = e 00,(¥p®) — 2i 5in 69} (T ®);

(ii) To(z(t)®) = e 02(t)(Fd);
hold for all ® € (E)*.

Remark 5. The above assertion (i) follows from a direct computation. We have
only to employ the following two rules: SG;(-) = 3%55'(-), 9 () = S7X()S(). (i1)
is also due to a simple computation together with (i) and Lemma 9. Moreover, we
need to apply the multiplication operator: z()(-) = (8; +8;) (-). Those proofs go
almost similarly as in the proof of Lemma 9 and are very easy, hence omitted.

The next proposition indicates some intertwining property between the PFM trans-
form and Gateaux differential operator.

Proposition 11. For each parameter 6 € R, t € R
(i) e De(Ty®) = Tp(DeP) + 2isin - D*(!Pg@)

(ii) De(¥o) + DF(¥e®) = e %4((-,£)%);
hold for all generalized white noise functionals in (E)*.

Proof. First of all, we have

(10) D= ( /T f(t)_atu(dt))N, and D} i= /T E€(t)drv(dt), VEE€E.

Let A = {tx} be a proper finite partition of T', and |A| denotes the maximum of
increment Aty over 1 < k < m. The assertion (i) yields from (i) of Proposition
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10. In fact, by linearity of the PFM transform we get ) po, Av(te) €(t) - Yo(Os, @)
= V(X re; E(4x)0r, Av(ty) - @), for V€ € E. By taking the dimit {A| — oo and by
continuity of ¥y (Theorem 7), we can obtain the desired result with consideration of
Eq.(10). As to (ii), it goes similarly. We have only to note

(11) ge = i(z, ) = (z /T x(t){(t)u(dt))N,

by virtue of Remark 5. With (ii) of Proposition 10 we deduce that

e~(Dg + D})(#0®) = e-""_( I w(t)ﬁ(t)l/(dt))(%@) = Uy((z,€) - 9). O

3.2 C’hamcterization for PFM Transforms

In this section we shall introduce the characterization theorem for PFM transforms,
which is one of our main results in this paper.

Theorem 12. The PFM transform {¥y; 6 € R} satisfies the following conditions:
(P1) ¥y : (E)* — (E)* is a continuous linear operator for V6 € R;

(P2) Ug(De®) = ¢ D(Wp®) — 25in 6 - (T );

(P3) Te(§e®) = e 9G:(Pe®); where @ € (E)*, ¢ € Ec.

Conversely, if a continuous linear operator Ag : (E)* — (E)* satisfies the above
conditions: (P1) ~ (P3), then Ag is a constant multiple of ¥y.

Proof. (P1) is obvious(Theorem 7). (P2)(resp. (P3)) yields from (i)(resp. (ii))
of Proposition 11. Conversely, suppose that the operator Ag-be compatible with
(P1),(P2) and (P3). We need the following results.

Lemma 13. We assume that =g be a continuous linear operator from (E)* into
itself, satisfying the three conditions (P1) ~ (P3). Then the following relations hold
for V¢ € E¢, 6 €R. 4

(i) (1’5—1?9)17& = D¢(5 ' Z); (i) (5 'Ee)ge = 9¢(Ty ' Zo);

(i) (5" "E6)D} = D} (T3 Es).

The proof will be given below. The next result(Prop.5.7.6,p.148)!2 is well known.

Theorem 14. Let A be a continuous linear operator on (E)*, satisfying
(1) AGe = GeA, for any € E;
(i) AD; = DgA, for any € € E.

Then the operator A is a scalar operator.

Thus,_by taking (ii),(iii) of Lemma 13 into account with Ay = Zg, we may apply
Theorem 14 for Ag to obtain the assertion: ¥y 1 A4 is a scalar operator. [
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Proof of Lemma 13. Basically it is due to a direct computation. Each proof goes
similarly, so we shall show only (iii) below. For the other twg we will give just rough
instructions. First of all, note that we have only to consider ¥_g4 instead of ¥, 1 As
to (i), it is sufficient to calculate it with (P2) for both Ag and ¥y, and with (P3) for
the PFM transform. As for (ii), use simply (P3) for both. As to (iii), for V® € (E)*,

(12) (%5 As)D;® = ~iy " (Asge)® — ¥y ' (Ae Dg)®,
= —e" (U, q¢)Ag® — e*(F; 1 D) A, V¢ € E,

because we used a relation Df = —1g¢ — D¢ in the first equality and also employed

(P2),(P3) in the second one. An application of (P2),(P3) to the last expression in
Eq.(12) gives

(12) = —ige(¥; " Ag)® — De(¥; " A)@ = (—ige — De)(¥; ' Ao)® = Dy (¥, ' 46)2,
which completes the proof. O '

3.8 Fock Ezpansion

Let L((E),(E)*) denote the space of continuous linear operators from (E) into

(E)*. The space (Eg(H'm)):ym(l,m) is a symmtrized space of (Eg(’+m))* with re-
spect to the first I, and the second m variables independently. By virtue of the
symbol characterization theorem for operators on white noise functionals,!! for the

operator II lying in L((E), (E)*) there exists uniquely a kernel distribution & m
Eg(H'm))*

in ( sym(l,m) such that the operator II may have the Fock expansion: II =
>t m=0 Li,m(K1,m). Moreover, the series Ilp, ¢ € (E) converges in (E)*. Generally,

each component II; ,,, of the Fock expansion has a formal integral expression:

/ K,(Sl, s 481, tl, Tty tm) . 6:1 e Bj,atl e 6tm V(dsl) e l/(dS[)l/(dtl) e V(dtm)
Tl+m

We call it an integral kernel operator with kernel distribution k. We shall give below
two typical examples in white noise analysis.

Ezample. The number operator N has the following representation as a continuous
linear operator from (E) into itself, namely,

N=I,()= / /T 7(s,2)0; Bev(ds)v(dt).

While, the Gross LapIacia.n Ag can be also expressed by
Ag =TIl o(r) = //T? 7(81,82)0s,0s,v(ds1)v(ds2)

as a continuous linear operator from (F) into (E). O

Let us consider the general expansion of our PFM transform. We may take ad-
vantage of Obata’s integral kernel operator theory in order to obtain Fock expansion
representations of ¥y and its adjoint G4. That is to say,
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Theorem 15. For 8 € R, we have the following Fock expansions:

. = 1 . ;
() o= 7 (i sin0)(e” — )™ Mytgmm(r® @ Am);
(oo Um! N
‘. > 1 . 10 . mys 1 Qm
(1) Go= Z m(’e 5in0)™(e" — 1)' - My pp2m( N ® TO™);
lm=0
where Am € (E&™)* isgiven by 3.0, i €, ® Qe Qe Q- e,

4. A Class of Generalized F-Type Transforms

Let GL((E)) be the group of all linear homeomorphisms from (F) into (E). Then

we have

Proposition 16. {Gg¢;0 € R} is a regular'? one parameter subgroup of GL((E))
with infinitesimal generator i(N +A4g).

Let us consider some generalization. Suggested by N.Obata(personal communica-
tion) and Chung-Ji' we propose to define a class of infinite dimensional Fourier type
transforms Xy, 8 € R as operator on (E)* whose U-functional is given by

(18)  S(XeB)E) = (@ exp(e(,6) ~ 5I(a, B ONEP)), €€ B, B e (B

We set J(a, §;6) = €2*° — 2H(a, B;6), with H(a, B;0) = £ - (€2*® — 1), where o,
€ C, a # 0. We call it a generalized F-type tramsform. Then we denote the adjoint
operator of Xg by Zy.

Proposition 17. The set {Zy;8 € R} is a regular one parameter subgroup of
GL((E)) with infinitesimal generator aN + fAg.

Theorem 18. The generalized F-type transform {X,; 8 € R} is a differentiable one
parameter subgroup of GL((E)*) with infinitesimal generator aN + BAE.

Remark 6. The above definition Eq.(13) of generalized F-type transform X can be
alternatively replaced by the following expression: S(X,®)(¢) = F(e*%¢)-exp(H(a, B;
6) -|€|?), where F' denotes the U-functional of ® in (E)*, i.e., S® = F.

Remark 7. Especially when @ = = (€ C), then the above-defined generalized
F-type transforms X are attributed to the PFM transforms ¥y given by Eq.(6) in
§2. Andalsofora =1, = -,i;, simply Xy = Fp.

Generally, in white noise analysis, any rotation invariant operator’ in L((E), (E)*)
is generated by N, Ag, and Ag. In that sense we can say that our F-type transforms
are chatacterized by its infinitesimal generator aN 4+ BAg. The generalized F-type
transform is a highly interesting and stimulating object in the standpoint of infinite
dimensional harmonic analysis.

-3
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§ 1. Introduction.

We are greatly interested in the Laplacian on a space of white noise func-
tionals. To have in mind aspects of application to mathematical physics, we
can say that it is common in general to use the weak derivative D on a given
basic Hilbert space, so as to define d, which just corresponds to the de Rham
exterior differential operator. In doing so, one of the remarkable characteristics
of our work consists in adoption of the Hida differential @, instead of D. This
distinction from other related works does provide a framework of analysis
equipped Wifh the function for perception of the time ¢, with the result that it
is converted into a more flexible and charming theory which enables us to
treat time evolution directly. It can be said, therefore, that our work is suc-
cessful in deepening works about the general theory done by Arai-Mitoma [2],
not only on a qualitative basis but also from the applicatory point of view in
dirept description of operators in terms of time evolution.

The differential 9, has its adjoint operator 0¥ in Hida sense and it is called
the Kubo operator. Indeed, 0¥ is realized by extending the functional space
even into the widest one (E)* where a Gelfand triple (E)G (L?) G (E)* is a
fundamental setting in white noise analysis, in accordance with our more general
choice of the basic Hilbert space H. On the contrary, we define the adjoint
operator d,* of d, associated with 0, without extending the space up to that
much. Consequently the Laplacian A, constructed in such an associated manner
with d, (so that, with ;) is realized as an operator having analytically nice
properties, such as C*=-invariance, etc. On the other hand, when we take the
Kubo operator as its adjoint, then the so-called Hida Laplacian Ay is naturally
derived. It is, however, well-known that Ay is an operator which maps (S)
into (S)* or in our general setting from (£) into (E)* which means that it

* This work was éupported in part by the Grant-in-Aid for Scientific Research 03640015.
The author was also partially supported by the Grant JAMS3-120.
Received March 31, 1993. Revised September 6, 1993.
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transforms a smooth class not into itself, but into the widest class of generalized
white noise functionals (or the so-called Hida distributions). On this account
the following problem is highly interesting in the standpoint of operator theory
or infinite-dimensional analysis.

Let us choose the Hida differential @, as the starting point of the theory.
Then if we assume that the Laplacian A constructed according to the de Rham
theory should possesse a nice property such that it maps a smooth class into
itself (i.e. A: C*—C=), what on earth would its adjoint d,* naturally corre-
sponding to 0. (hence d,=d,(9:)) be like? This is one of our motivations in
this paper (cf. the beginning of §5). The followings are in fact outstanding
features of our work and what have been acquired in connection with the
aforementioned problem: (1) in regard to the adjoint operator d,*=d,*(@;) of
d,=d,(0:), we have as a matter of fact succeeded in constructing it in such a
satisfactory manner as to fit into our requirement; (2) as a consequence the
constructed Laplacian A,, which is associated with 9, enjoys extremely nicer
properties on analytical basis, i.e., A, is a C>-invariant operator on a space of
white noise functionals (cf. Theorem 7.7); 3) moreover, peculiar ideas of
generalized functions totally released from smearing with respect to time ¢
produces the corresponding higher version of theory in operators on functionals,
which allows us, despite its implicity, to draw the description of time evolu-
tion; (4) our A, primarily settled with the Hida derivative 8, is a Laplace-
Beltrami type operator getting possession of such a nice property, and it is
completely distinct from other Laplacians in' white noise analysis, such as the
Lévy Laplacian A;, the Gross Laplacian Ag, and the Volterra Laplacian Ay ; (5)
the Laplacian is in a sense successfully constructed in concrete and satisfactory
manner, simply corresponding to our more general choice of the basic Hilbert
space H, and the explicit form A,w of the Laplacian on @@ (the space of
polynomials) is also obtained (cf. Proposition 6.3); (6) as one of applications in
terms of our Laplacians, this paper includes several versions of the so-called de
Rham-Hodge-Kodaira decomposition theorem associated with Hida derivative in
white noise calculus or Hida calculus (cf. Theorem 5.3, Theorem 7.1, and
Theorem 7.8). To comment upon the above (4) in addition, it is therefore
expected in a quite natural way that A, should play a remarkable and proper
role in white noise analysis, which is entirely different from those of the other
Laplacians. [t remains to be stimulating object in relation with other works
[21, 28 & 30] on Laplacians, and it is highly interesting as well.

- This paper is organized as follows:

§1. Introduction.
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Laplacian on a space of white noise functionals 95

§2. Notation and preliminaries.

§ 3. Hida differentiation.

§4. De Rham complex.

§5. Laplacians A,(6, 3.) of de Rham complex {d (@, 9,)}.

§6. Explicit forms of the Laplacians A,(O, a,).

§6. De Rham-Hodge-Kodaira decompositions associated with Hida derivative.
§ 8. Concluding remarks.

In §2 we shall introduce notations commonly used in this whole paper, and
preliminary results are also stated in §2, some of which are generalizations
[9-11] of the well-known results on basic and fundamental theorems in white
noise analysis, having been obtained by many pioneers and forerunners [17, 24,
25 & 27]. §3 is devoted to general but brief explanations on the basic ideas,
important concepts, and interpretations of Hida differentiation. This will be
the key to understand the succeeding sections. There are contained some asser-
tions, simply corresponding to our general setting (cf. [12-15]). §4-§7 are the
main parts of our paper. In §4 we shall construct de Rham complexes. For
a complex Hilbert space K, let APK be the space of exterior product of order
p. Consider a nonnegative selfadjoint operator A on a given normal Hilbert
space H, and we denote by the symbol & the linear closed operator: Hc—K,
determined regarding A. Then the operator d, from P(A?K) into P(AP*'K),
depending on O, is able to be realized by making use of the Hida differential
operator. In §5 we shall state a systematic construction of Laplacians A, of
{dy}. The corresponding Laplace operator can be constructed theoretically and
get into entity when we take advantage of the adjoint operator and have resort
to functional analytical method (see Proposition 5.2). By virtue of closedness
of the sequences of complexes we can obtain the de Rham-Hodge-Kodaira
theorem (Theorem 5.3) in L*sense [16]. In §6 the explicit form of the Lapla-
cian A, will be obtained by a direct computation (see Proposition 6.3), where
the leading idea is similar to [2], however, as stated before, the employed
calculus and basic mathematical background are actually different, since we are
totally based upon the white noise calculus or Hida calculus. In §7 we shall
make mention of several versions of de Rham-Hodge-Kodaira type theorem
associated with Hida derivative [8]. It is easy to see that such a type of
decomposition holds for the space of smooth test functionals, induced by the
Sobolev type space H** of functionals relative to the Laplacian (Theorem 7.1),
namely,

HE=(NHK)=Im [A,(6) [ H*“(AY(K))]DKer A,(6) .

13



96 Isamu DOKU

On this account we may employ the Arai-Mitoma method (1991) to derive the
similar decomposition theorem even for the category (S)(APK), just correspond-
ing to the space of white noise test functionals (see Theorem 7.8). -Basically,
principal ideas for proofs are due to the spectral theory. However, some of
statements include subtler precise 'estimates, for which we are definitely re-
quired to execute elaborate computation with some other results in orthodox
probability theory and Malliavin calculus. \
Finally it is quite interesting to note that this sort of result leads to the
study of Dirac operators on the Boson-Fermion Fock space (cf. [1]), and also
that our analysis could be another admissible key to the supersymmetric quantum
field theory (e.g., [34]). We believe that this formalism proposed in this paper
should be possibly regarded as a clue to open a new pass towards analysis of
Dirac operators in quantum field theory through the framework of Hida calculus.

§2. Notation and preliminaries.

Let T be a separable topological space equipped with a o¢-finite Borel mea-
sure dy(t) on the topological Borel field 8(T). Further suppose that v be equi-
valent to the Lebesgue type measure dt. H:= L¥T, dv; R) is the real separa-
ble Hilbert space of square integrable functions on 7. Its norm and inner
product will be denoted by |-|, and (-, ). Let A be a densely defined non-
negative selfadjoint operator on H. We call A with domain Dom (A) standard
if there exists a complete orthonormal basis {e,}n-cCDom (A) such that

(A.1) Ae,=Aye, for .,€R,
(A.2) 1AL - —> o0,
(A.3) i‘, 2, "2<oo  holds (cf. [9, 10]).

Obviously, A™' is extended to an operator of Hilbert-Schmidt class. Put
p:=2""=lAop,
and

o:=( B a) " =14 us

where ||+]lop is the operator norm and ||-flus is the Hilbert-Schmidt norm. We
also note the following apparent inequalities:

0<p<l, p<ad.

For a complex separable Hilbert space K, we further assume that
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(A.4) There exists a densely defined, closed linear operator
6 from H¢ into K such that A=0*6,

where we define the complexification He=H+iH as usual way, and ©* means
the adjoint of 6. .

Given such a standard operator A on H, we can construct a Gelfand triple
in the standard manner (see [22, p. 2591, [27]). For p=0 let £, be the com-
pletion of Dom (A?) with respect to the Hilbertian norm [&{,:= | AP&},, Eé
Dom (A?), where Dom (A?)=H for p<0. Then E, becomes a Hilbert space
with the norm |-|,. We thus obtain a chain of Hilbert spaces:

o CE,C - CE,C - CHC -
i CE_C - CE_,C -
for 0<¢<p. Equipped with the Hilbertian norms {|-{,} 2o,
E=NE,

D20

becomes a nuclear Fréchet space. E is topologized by the projective limit of
Hilbert spaces {Ep} pez with inner products (§, ), (§, pE€E), and is called the
space of test functions on 7. The topological dual space E* of E is obtained as

Ex:= \JFE_,,

p20

i.e., the dual space E* of E is the inductive limit of E_, as p—oco. E* is
equipped with the inductive limit convex topology (e.g. [10, Eq. (3.1), §III]).
The triplet ECHCE#* is called a rigged Hilbert space [3] or a Gelfand triple.
Then note that the dual space E¢*=(F¢)* is equivalent to (E¥)o=E*-+{E* It
is known that the strong dual tbpology of E* coincides with the inductive limit
topology in our setting (see [35]). Let p be the Gaussian probability measure
on the measurable space (E*, #) whose characteristic functional is uniQuely
determined, by virtue of the Bochner-Minlos theorem, by

ey ewie, pen=en (-5 161s), éeE,

where @ is the ¢-algebra containing cylinder sets. For simplicity we denote
only by <., -> the canonical bilinear forms between any dual pairs unless it
causes any confusion in the context. For instance, when <., -> is a bilinear
form on E*X E, then it is naturally extended to a C-bilinear from on Ec*X Eg.
We will denote the space L*E*, 8, u; C) briefly by (L?) according to the
notation in [17]. Let |||l denote its norm. Note htat (L?) is a complex Hilbert
space. We them assume the following three conditions (cf. [9-11]) which are
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suggested by Kubo-Takenaka [24].

(A.5) For every £ FE there exists a unique continuous function
£ on T which coincides with & up to y-null functions.

(A.6) For each 1T the evaluation map 0d,: £—&(t), é€E,
is continuous, i.e., §, = E*.

(A7) The map 1—9, is continuous from T into E*.

By virtue of (A.5) we agree then that E consists of continuous functions. The
symbol E.®" denotes the n-fold tensor product of the complexification of E.
For feE®" and p<R, define |fl, en:= I(A’;)@’"flo. Let (E,,)cé" be the n-fold
symmetric tensor product of (E,)e. Ec®" denotes the projective limit of (Ep)c®"
and (Ec®®" the inductive limit of (E_,,)c@" as p tends to infinity. In the fol-
lowing we shall consider all the time the inductive limit space together with
the inductive limit convex topology.

REMARK 2.1. Note that the measure v is supposed to be rotation invariant
in the setting of white noise calculus. T is often thought of as time parameter
space. In the above we have in mind.the harmonic oscillator Hamiltonian [19,
p. 148] as a concrete model of A (cf. Example 2.1 given later in §2), which is
typical in Hida calculus (see [7, 27]).

By the Wiener-It6 decomposition theorem we have
2.2) (L= 3 ®K.,

where K, is the space of n-fold Wiener integrals I.(f.), foEH®" (cf. [24,
1981] or [9, Remark 1.2, §1]). H8" is the n-fold symmetric completed Hilbert
space tensor product of the complexification of H, hence H®" is again a Hilbert
space. It is a fact that (L?) is canonically isomorphic to the Fock space over
H¢, that is,

@2.3) (L= 3 OHS" .

For each p&(L?) there exists a unique sequence {fa»} 5o, fnEHP" such that

(2.4) ~lgle= B0t faldon,
and
2.5) p0)=[C O, £y, pace xSE*.
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where the right hand side is an orthogonal direct sum of functions in (L?) (e.g.
[9, Theorem 2.3]; see also [20]). The symbol :x®": is the Wick ordering of
the distribution x®*(E®")*, which is defined inductively as follows:

1x®=1, 1 x®i=x,

L x® = x® 1 x®-h . ——(n—l)z'@) x®mm . (n22)
where re(E@E)* is the distribution defined by
(2.6) (v, EQn>=<&, >, & nEE.
Note that 7 is also expressed as |
@7 e={ 3= S ee;.
When we define S-transform as
2.8) Sp©=|, p(IF€; Dpax),
then we have (SI(fa))€)=<fa, £€%">, where

F(§; x)=:exp{x, £): =exp (<x, E>—% IEIOZ)

(see [24]; also [9, §1]). Based upon the result in (2.4) and (2.5) we may intro-
duce a second quantized operator /'(A) on (L?). Let Dom (I'(A4)) be the sub-
space of p=(L*?) given as in Eq. (2.5) such that

(i) fn=0 except finitely many n;

(i) fa€Dom (A)Qa14 - Qare Dom (A) (n-times).
Then for ¢=Dom (I"'(A)) we put

2.9) (I (D))= 3 [n(A%" f2)() .
Let (E,) be the completion of Dom (I"(A)P) with respect to the Hilbertian norm

Il s* = 1T (A)Pple= S 111 fal oo

= 3 n11(A7°" falien,
where f,e(E,)c®". Equipped with the norm {||-|} pzo,
(E):=N(Ep)
P20

becomes a nuclear Fréchet space. Let (E)* be the dual space of (E). For any
¢<(E), ¢ has a continuous version ¢, and it is bounded on each bounded set
of E*, moreover the evaluation map 0,: ¢—@(x) is a continuous linear func-
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tional on (E), i.e., d,(E)* for any xeE* (cf. [25]; see also [10, 11]). By
the above fact we always regard (F), as a space of continuous functions on E*,
An element in (E) (resp. (E)*) is called a test (resp. generalized) white noise
functional. We denote by (-, ) the canonical C-bilinear form on (E)*X(E).

Lastly we introduce an example, which is enough to show that our general
setting stated above is not unsubstantial.

ExaMPLE 2.1. When T=R, du(t)=dt, and when we choose A=1+t*—(d/dt)?,
then O is given by d/dt—t (teR) with H,=K=L*R), and we have (E)*=(S)*,
(E)=(S) with Gelfand triple

(S)S(LHT(S)*.

This is a typical model of white noise spaces in Hida calculus, originally intro-
duced by T. Hida [17, 18] and developed by others [19, 22, 24 & 29] (see also
[7, 26] for its applications).

§ 3. Hida differentiation.

We now introduce a differential operator @, which plays a fundamental and
important role in white noise calculus. We call 0, the Hida differential and
0:¢(x) a Hida derivative. Originally the operator 0, is written as

0/0x(t)=0/0B(t)

under the framework of choice H=L*R; dt), where B(t) indicates the formal
time derivative of one-dimensional Brownian motion B(t), teR (cf. [17, 18]).
Because the causal calculus or Hida calculus is the analysis on white noise
functionals and its basic idea is to take a white noise B(f) to be the system of
variables of white noise functionals, it is quite natural to consider 8,=d/0B(t)
as its coordinate differentiation. It is needless to say that T. Hida’s original
idea was a farsighted choice of coordinate system fitting for the causal calculus,
if one sees its rapid excitirig development and progress in white noise analysis
(WNA) for the last few decades (cf. [19, 20 & 22]).
For p=(F) and d,=E* we put

(3.1) dup(x):= (D5, )(x)

Ms

n{:x®0 ) Gk fa)

n=1

where foeEf". Note that él:Dh is a continuous linear operator on (E) [12].
It is known that
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(Bup)(x)= glm 0~ Ho(x+8-0.)—p(x)},
—0

for p=(E). For @&(E)*, its generalized U-functional U(§)=Ue() is defined

to be
ULDIE):=(D, :e"*), E€E.

where :exp (-, &: = exp (-, &> Xexp (—(1/2)|&|H)E(E) (see [29] for its charac-
terization). We can rephrase the above definition as follows: (S@OY&)=U[D](E).
In white noise calculus the collection {B(t);t=R} is taken as a coordinate sys-
tem, Thus we need to define the coordinate differentiation with respect to
this system. This can be done directly through the U-functional. Let @ be in
(E)*. Suppose that the U-functional F of @ has the Fréchet functional deriva-
tive F'(¢; u)=0F(£)/0&(u). If the function F'(.;t) is a U-functional, then the
Hida derivative 0,9 of @ is the element in (E)* with U-functional F’(-;¢), i.e.,
Ul0.91(€)=F’(£;t). Note that in general 6,® is a distribution as a function of
t. In other words, according to Kubo-Takenaka [24] we have

0
e Q-1
(3.2) _ 0.9(x)=S -was(t)S@(x),
(cf. [12-157). Let @ be the set of polynomials in E*, and its element PE® is

expressed as

Pa)= B CGa% 0, fad,  faE B

We know that, for teT, 0, and the Giteaux derivative in direction d; coincide
on @ (see [14, Lemma 2.2]). '

If ¢=(E) has chaos expansion {f,;n&N,}, then denoting by ¢ and f,,
ne N, their corresponding continuous versions (cf. [9, Remark 3.4], [10, Th.
3.1], and [11, Th. 2.1]), we have

n(:x® v Fut, )y,  teT,

Ms

3,¢(x):n 1

where - fa(t, -)=8%fa=<0;, fa> (see [14, Remark 3.2]). We always identify
pe(E) with its continuous version ‘on E*, so that, in the following we shall
suppress the distinction between them on a notational basis. The number
operator N is defined by '

3.3 'N(g,;(:x@":, f,,)):é‘{n(:x@":, fa>.

By [14, Theorem 3.5], genefally, for any yeE*, D, extends from @ to a con-
tinuous linear map from (E) into itself. In particular, (E) is infinitely Giteaux
differentiable in every direction of E* moreover, for any goE(E) the function
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y—D,¢ is strongly continuous from E* into (E). Therefore, in particular, the
function t—a.¢ is continuous from T to (E) (see also [12, 13]). The followings
are verified by employing reflexiveness of (E) (Lemma 4.1 in [14]) with the
celebrated Schwartz kernel theorem: namely, for ¢&(E), Vo EQ(E) holds,
and for every yeE*, )

(3.4) Dyo=<y, Vo>, p—a.e.,

suggesting that Ve is the Fréchet derivative of p<(E). In particular, if heH,
then

(3.5) Dhgosth(t)a;gpdv(t), p—a.e.,

where the integral should be interpreted as a Bochner integral. Furthermore,
every p&(F) is infinitely Fréchet differentiable and the k-th Féchet derivative
of ¢ is given by V”ger@”‘@)(E) (cf. Theorem 4.3 and Theorem 4.4 in [14]).
Moreover, the gradient V extends from & to a continuous linear operator from
Dom (+/N) into L¥T—(L?; dv) (see [15]), where (Vo)(t, x)=0:¢(x).

§4. De Rham complex.

First of all we start on a notation. & is the whole space of C-valued poly-
nomials on E* as described in §3. Note that @ is dense in (L?). For peN,,
the p-fold exterior product space APK is defined by A?K .= {we®*K: o(w)=
sgn(0)-w, Vo&4,}, where G, is the symmetric group of order p. We intro-
duce the following metric in A?K: i.e., for any o, y& APK such that o=/;A
- Nfp =8N - N&p, [+EK, gr€K (for any k=1, 2, -+, p), the inner pro-
duct between w and y is given by

<o, ?PNPX:= 3] sgn (v)ill {Srs Borrdk -

sedyp

APK¢ denotes the completion of APK by the above metric <., -)""%, with
A°K°=C. Its element is called a p-fold skew symmetric tensor, and A, is an
alternating operator from ®PK into APK. When B:= 66* then D*(B):=
mQN Dom (B™). We denote by @(A?K¢) the whole space of A”K‘-valuedv poly-

nomials on E*, whose element is expressed by
@.1) ox)= R By (x)-b, xeE*,
n=1

where ﬁne_@, E.€ A, (®?D(B))c APK°. Notice that P(APK*®) is dense in
A2(K), and AZ(K) is defined to be (LHQAPK® which is identified with
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LAE*—APK®; dy) in a usual manner [32].
Now we will introduce a linear operator d, from ®(A?K¢) into @P(AP+'K°®)
for each peN,. Actually, for any weP(A?K¢) especially of the form (4.1),
the operator d, (=d,(0)=d,(6, 0,)) is defined as
k A
4.2) dpa)<x>:_—_(p+l)n§1 Ap+1(9'atPn(x)®$n),
where d, is the Hida differential (see §3). We have P, in our standard repre-

sentation of element in (L?%):

(J»)— <x®’ fo,

where f,; is the element in Ec& given by
fl: 2 ba7]al.l® ®val.l; baEC: ﬂaj.lEEC »
aeN! .
Note that all representations of P, are everywhere defined, continuous functions

on E*. Therefore, the U-functional of d,(@)w is given by
4.3) ULdp(0)0])

k. (N(n) l
=32 { 2 3 D00t O Gt O Gyt O

i=1
O, IDAWSN - Awp,™, (EE,

where the symbol V means omission of the term. For each peN,, d,(0) is
densely defined linear operator in A,?(K), and, it is easy to see that

(4.4) " dpi(0, 8)0d (0, 3)=0  on P(APK®).
Its adjoint operator d,*(@)=d,*(, 0;) from A,”*'(K) into A.?(K)is defined by

(do(O)a, 1) 4p41g, =<@, dp (9)7>Apm
for o= AZ(K), TEAP“(K)

REMARK 4.1. Note that the U-functional representation of d,*(@)w is
given by

k[Pl N(n) J
@5 UH0010= 3| DR 5 be T g O
aEN.

— N(n) j
X (6%, c>HC—( 2 2 ba D am i)

‘(7]a1.j, Q- (vam-fv’ Q- (7)“!'1’ o G*wl(m)ﬁc}_

XW ™A - AN - /\an(n)] ’
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for {FE (cf. Lemma 6.2). 0

It follows immediately from (4.4) that
(4.6) d,X(6, 8)edy*(6, 3)=0  on Dom (d,,.¥(6)).

It can be deduced from denseness and the adjoint argument that d,(6) becomes
closable for each pN,. We write its extension d, of d,, and we put A,*:=

ioAZP(K). Then the sequence (A*(K), {d,(O, 0,)}) forms a de Rham complex.
p=

REMARK 4.2. For {€E, weP(A?K®), we have
k N(n) L o )
S0)O=Z (2 B be L Dasy Qe )i ™A -+ Ay ™.
Recall Eq. (3.2) in §3, then (4.3) is obvious.

REMARK 4.3. In general, the operator d,(6, 0,) constructed in such a way
is not necessarily closable. The closability of d,(®, d;) depends on the struc-
ture of the measure p on E*. This is a very touchy problem indeed. How-
ever, fortunately in our case d,(0, 0;) is well-defined for the Gaussian white

noise measure g defined in (2.1).

§5. Laplacians A,(®, 9;) of de Rham complex {d,(0, 3.)}.

As we have stated in §1, it is clear why we stick to the Hida differentia-
tion, for we are aiming at opening a new pass toward analysis in mathematical
physics through the framework of Hida calculus. On the other hand, when we
say that an operator is called to be smooth if it transforms the space of smooth
elements into itself, there is the fact that the Hida Laplacian (cf. §1) is not
smooth any longer in the above sense. That is why we would like to know
what the desired Laplacian should be like, which is one of our motivations.
One may find an answer to the matter in this section (see also Theorem 7.7
in §7).

Thanks to the fact that Im(d,_,(@)) and Im (d,*(®)) are closed for pEN,
in our case, by making use of the sesquilinear form and elaborate functional
analysis methods we can define a unique nonnegative selfadjoint operator acting
in A,?(K). This is nothing but the desired Laplacian corresponding to the de
Rham complex {d,(8, 3;)}. In the last we shall give a primictive version of
the de Rham-Hodge-Kodaira type decomposition for the p-forms in the L*-sense.

We first consider the bilinear function J, on Dom (J,(8)):= Dom (d ,(©))N
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Dom (d,_,*(@)), which is dense in A,?(K). For peN,, J,(0)=],6, d,) is de-
fined to be

(6.1) Jo(OXw, 7):i= {d(O)o, dH(B)r>r,p+1 x>
+{d ¥ O)w, dp-l*(9)7’>,\21’“(m

for any w, yeDom (J,(©)). This J, turns to be a sesquilinear form on A,?(K)
X A,P(K). Note that this formalism indicates the Laplacian A, to be roughly
given by dp*d,+d,_1dp_* as usual. As a matter of fact, it is easy to see
that the form J,(@) is a nonnegative, densely defined, closed form on
Dom (/,(6)). On this account, we obtain the following representation of Frie-
drichs type.

PROPOSITION 5.1 [16]. Let J,(0, d,) be a nonnegative closed sesquilinear
form with the dense domain Dom (J,(0)). Then there exists a unique nonnega-
tive selfadjoint operator A,(@)=Ay(0O, 0,) acting in A,P(K) such that
(5'2) <CD, AP(@)7>AZP(K):]Z7(9)(0)) r):
for weDom (J,(0)), y€Dom (A,(8)), pEN,.

REMARK 5.1. In the above assertion, Dom (4,(0)) is dense in Dom (J,(6))
in the sense of J,(@)-form norm, as a consequence Dom (A,(@)) is also naturally
dense in A,?(K). For the proof, see Theorem 2.2 and § Il in [16]. O

Proposition 5.1 and the second representation theorem [23, VI. 2] im-
mediately gives:

PROPOSITION 5.2. There exists a unique nonnegative selfadjoint operator
A, (O, 0.) in A °(K) such that the equality

(5.3) ‘ (A, M(O)w, Ap X (O)ydag?cxr=Jo(OX@, 7)

holds for every w, y€Dom (A,"'*(0@))=Dom (J,(0)), pEN., (see also [16, Theorem
2.3]). :

REMARK 5.2. Proposition 5.1 is unsatisfactory in that it is not valid for
all u, veDom (J,), which is furnished by Proposition 5.2. What is essential in
(5.3) is that A, %) is selfadjoint, nonnegative, (A,'/%0))*=A,(O, 0,), and that
Dom (4,(6)) is a core of A,Y*6). O

For the case p=0, we need to define the operator A®) properly. The
answer will be given by a version of the well-known von Neumann type theo-
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rem [32, II]. Hence we can define A(@)=A,(O, d;) by
Ao(@_) = (do*go)(@) .
Thus we attain that {A,(@)}3= is the Laplacians associated with the de Rham

complex {d,(0)}5-,. Now we are in a position to state a decomposition theorem
of de Rham-Hodge-Kodaira type for the sapace A,?(K) in L2-sense [16, Th. 2.5].

THEOREM 5.3 (Decomposition of de Rham-Hodge-Kodaira type for the space
A2(K)). For all pEN.,, the space N,P(K) admits the following orthogonal de-

composition

(5.4) A ?(K)=Im (d,-(0))PIm (d,%(6))DKer A,(6).

N.B. Notice that the above decomposition assertion (5.4) is valid even for
»=0 with d_,(@)=0 for convension.

§6. Explicit forms of the Laplacians A,(©O, d,).

Here we shall give an explicit form of the Laplacians {A,(®, d:)}, on
{P(APK®)} p, which is extremely important on a basis of the fundamental pro-
perties of our Laplacians. We first consider the element weP(A?K®) of the

form:

o= 3 Px) 6 (x€E%, Bre®)

= é« X8, fa> WA - AwgP,
where f,eE2", £,€A,(Q?D=(B)). Then, recalling Eq. (4.2) we have

(6.1) L @)= 3 3 bS5, FOm (s ; 1)

n=1 agN" [=1

XONawy, s OAWLIN - Awp™
where we put
k
A\

E5 (4 £)1= faw.a® +  Batnr.n

and employed a formula for exterior products. Notice that

6L’l‘fn: 2 ba/n'kgl ﬂa(k).n(t)'gé(n_l)(n*; k) .

acN™®

Then its U-functional (cf. (4.3)) is given by
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Uldp(0)o]é)= 35 ba 2(77a(1) ns €)

n=1 acN? i=1

\"2
a (7]a(i).m £) - (7]a(n).m )
le(n)(i’ t; @)sz(n)/\ /\lz}p+l(n) ’ (EEE) :-
where we set wW;™:=w,; ‘" for ;=2,3, -, p+1, and @, t; O):=

O acy, a(t)).

LEMMA 6.1. For any ye®(AP"K*) with the form 3 Qux)n., d,*O)(x)
=1
s given by

6.2) dp*<6>r<x>:",§ (—17t 3 Qi) <x(0), 65 (wP))

P ~ \Y
_(Q*Uj(l)’ ale(x))HC} 'vl(l)/\ /\Uj(l)/\ /\Up+1(l)
PrROOF. By the isomorphism in A,»*(K) we get

(6.3) <Jp(6)(0, T28.P k)

k k D+l
= 2 2 E sgn (0') E b E H <w1,( ); va(z)( )>K
I=t 0€8pyy a j=1 i=1

XSE*Cx@‘""”:, Ber=0(p s i x® 1, gou(dx)

where note that only @,‘™ depends on the parameter ;. By employing a direct
result derived from the coordinate multiplication operator formula in WNA (cf.
Remark 6.3 below), we may apply Lemma 2.2 [14] for (6.3) to obtain

P+l

ok
22 3 sgn(a) I <™, v, Yok
=2

n=l l=1 0€4p 1

XSE*<x(t), O* 0oy >+ (2 281, fad <1 2%, gou(dx)

k. k

-2 2 2 sgn(a)H<wl‘"’ Vo) Pk

=1 l=1 d€lp;

XSE*<: X8, fo) (B*,y P, 0 x® 1, @) op(dx)

=:1,+1,,

because we used above the Fubini type theorem relafive to dy and dy. Note
thgt the relation ’

105



108 . . Isamu Do6xu

n \4
(64) ll/\ /\ln: 2(—1)b_llk®(ll/\ /\lk/\ <ln)
k=1

By making use of (6.4) we can rewrile

k p+1

Ii== 3} S(=1V"o, (%0, 3:Qu(x)uc

v
XU DA o AVFPOA - AVpa a2 k)

where
= L B .
0:Qu(x)=C: x®4 01, 3 bp 23 9par ) ECTV(nu; DD
BeNt =t

when g, is given by 3 bp-wm,;@) ®7)ﬁ<1>.z' Likewise as to the I, term,
pen?

we conclude the assertion. q.e.d.

REMARK 6.1. We need to explain how to interpret the term <x(t), @*v,u,"’>.
The element O*v,,"" in H, is well approximated by a sequence {y.}iiCE¢
under our abstract setting. So we can define it by a limiting procedure.

REMARK 6.2. As a technical merit of computation in white noise calculus
(cf. Remark 1.1 and Lemma 2.4 in [9]), we have

nd
1 <{x, f1> e Lx, fn>:= 1I=Il az. leu'?xfff)ilzl:...:gn;_—o . O

In fact, the operation of d,* on @(A?P*'K°) is also described evidently by
the U-functional (cf. Remark 4.1).

LEMMA 6.2. The U-functional of dp¥O)y(x) (xEE*) is given by
+1
65 ULdORO= 31 3 S 1 oo, ©
X(6w,®, &)+ ?bﬁzé (O*w; V), npur,1)

11 : :
XTLMgumrn, 6)— 2 g 2 S aar.e &)
ﬁ:i BeN1  i=1 i:% .

4 X (@D, np, l(t))}

\
XUSOAUPNA - AVSONA - Avpa®, (E€E).

PrOOF. By Lemma 6.1 we immediately obtain
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(6.6) ULd,*(O)r1(€)=5(dp*O))&)

P+l

=3 (—l)f“é (S@.(x)- <x(t), O*wsPPNE)

—(B%0;D, S@.Q (X)) ENwc

\2
. le(l)/\v2(l)/\ /\vj(l)/\ A vp“(l)
While, we easily get

6.7) S<a,§z<-»<e>:%5<ézxs>

= 2} bg 2 Npw. @) Msw . Eree

T gémt
. (7],9«),1, e (Maw.1 Edng, EEE.

To compute S(@l(-)-<x, Ox(w;V)»)E) (E€E), we may utilyze similar type
equalities as in Remark 6.2 (cf. Lemma 2.5 and §IV in [9]) to obtain

©6.8) s<:ir3<-, D a1 <D, OFw;NE)

1
= B0, B Gk s 8
FYSNT 1)t-k-1
+2(@ @), ppw. l)(l 1)|2( 1) iy

X(ﬂﬁul),z’{"‘”'“ +77ﬁ(ji),l+ +7]ﬁ(jk),l, &t

where we put
ﬁﬁ(k),l =N, L (fOI’ k=1, 2, ey l) ,

Jpasn, 1= B*(w; ), for k=I(41).

In connection with Remark 6.1, commutativity between the S-transform and the
limiting procedure with 2—co is required in the above computation. However,
it is verified with the Lebesgue type bounded convergence theorem with respect
to the Gaussian white noise measure. To complete the proof it is sufficient to
substitute (6.7) and (6.8) for (6.6), paying attention to the fact that

S(C: 592, gid+<a (D), O¥v D))
= 3,00 S(: T <%, acar. > :<x(0), O¥D)®).

g.e.d.

REMARK 6.3. When we observe carefully the computation of the term
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{dp(@)w, ¥Da,p+1(x in the proof of Lemma 6.1, then we may regard that it is
roughly equal to

C(p)Ap10<0.F,, Q"
where C(p) is some constant depending on pN,. Then
0cPr, Quo2=(P,, [x1Qr—<F,, 3.0
=<P,, @050 —<P,, 3.0.>7

where we used the significant discovery on the coordinate multiplication operator
by x(#) in WNA (cf. [26]). The above computation means roughly that the
adjoint d.* is employed in order to determine d,*(@), but in ©-dependent man-
ner. It is interesting to note that our discussion in Lemma 6.1 and Lemma 6.2
provides a subtle framework to construct a nicer Laplacian A,(8, 0;) by making
use of the operator &. We would be able to take much advantage of it to

apply our theory later for the problems arizing in quantum physics (see §7 or
8. » O

Now we are in a positon to express the explicit form of our Laplacian
A,(B, 3;) on P(APK®). By the discussion’ in §5, we have only to compute
dp,¥(O0)d (@)w(x) and d,..d, ,*w(x) respectively. To take (6.1) and (6.2) into
consideration, it is easily checked that '

+1
69) 4O O(x)= B b B[ T (-1
A x®D Eé(”_”(ﬂ*; 0y -<x (@), @Xw;™))
—(O*W;™, 9, : x® 1, Eé‘"_”(v*; D>))u o)
\Y%
X T DG, 3 OVADDA - AD ;DA - /\17),,1‘"’].
Next we consider the other part: in fact,

dp-1(0)dp 1 X(O)(x)=d 5_1(O)(d ¥ O)(x))

M~

= 3 (1 5 [y (Pu(eXx(®), 64w, ™)

J=1

v .
X (WA ... /\ij)/\ /\wp(")}]

L
~ B 5 [y (FFw, 3PV

A\
W WA - /\wj(n)/\ /\wp(")}]
= jx‘*‘jz .
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As to J,-part computation, it is verified with ease that
Ay TP (D), OFws ™) w0 DA o AN o Ay ]
= S1ba B x0T, FOO (g 1)) (2 (D), O¥ws ™))
X O ar, AP = AULDA - Awy™
+Bo(x)- OLOR w0 MOTAWDA o AN e AW,
As to J,-part computation, it goes almost similarly. Indeed,
Ty l(0%10,7, 3PN w0 P A - AWSPA e A, )

n

= Ealba 2 ; (O*w;™, Neay. ang -
kRl

(rx®rmr, FOn[FEC(y, s D](R))
X0, Mk, 13 OIAWDA o WP o Aw, @
Finally we attain the principal result in this section.
PROPOSITION 6.3. For p=N,, we have
k
A0, 3:)60(?6)=n§l {§ ba %}(x(t), O*O(Naimy, a ()
(o x®mh s B8y )y~ T b, B T
a I m

m*1

‘(Pacmy, 2B, 8*OMacty. a O ¢
RET AL EN 5@(11—2)[5@(11-1)(,7* : l)](m)}}

le(n)/\wz(n)/\ /\w,,“”

Mh‘

+ 2=

J=1n

ﬁn(x)'wl(n)/\wz(")/\ A@@*wj(")/\ /\wp(n).

Il

1

§7. De Rham-Hodge-Kodaira decompositions associated
with Hida derivative.

The purpose of this section is to introduce two distinct decomposition
theorems of de Rham-Hodge-Kodaira type [8] (R-H-K type for short). Similar
results in infinite dimensional analysis or stochastic analysis may be found in
[2] & [31]. It is quite natural to employ the weak derivative in some sense
in order to define the exterior differentials on forms, instead we do adopt the
Hida differential to realize it. This is only our unique point, compared with
other related works. Our decompositions being supplying with interesting and
stimulating objects in mathematical physics, namely, with those especially
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oriented to analysis of Dirac operators in quantum physics, are naturally derived
as one of applications in terms of our Laplacians constructed in the previous
sections, which can be said to be the R-H-K type theorems associated with
Hida derivative in WNA,

For peN, we define

D(A,(6):= N Dom (4,(6)") ,
Moreover, for we D*(A,(O)), we define
k 1/2
lollx = { 2 1U+AO) 0l bacerr?xsam |

and denote by H**(A,?(K)) the completion of D=(A,(@)) with fespect to the
norm |-]l.. When we set

(7.1) HE~(AP(K)):= () HEH(AK)),
k=0
then (H%=(A,P(K)), |-|l:) is a complete, countaply normed space. We denote

the spectrum of operator A by the symbol ¢(A). The second quantization
operator d/'(A) for a selfadjoint operator A in H; is defined by

(A (Aw)(x)= % Cix®ry, A®IR]fRD, wEP

where A®1[k]:=IQ --- ®‘j\1® -+ QI (k=<n). Then dI'\(A) is a uni'quely deter-
k

mined, selfadjoint operator acting in (L%). We define the operator dI’y(B) by
AT, ®(B):= ¥ BI[k],

k=1

which is a nonnegative selfadjoint operator acting in APK°. Recall that the
operator B is given by @O%* (cf. §4). So let us write the operator acting in
- AP(K) as

(7.2) L(0):= dI'(ARQI;+1,Qd I, P(B)

with identities: I,:= I, I, := I pge. Further we define the unique nonnega-
tive selfadjoint operator I',(A) acting in (L?) by

T(A):= s—*( > A®">S ,
n=0
where S is the S-transform (see (2.8)). Then it holds that
T(Aaw(x)= 2 Cox®me, A®nf

for we(L?), with I(A)1=1 (see (2.9)). The nonnegative selfadjoint operator

10
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I'y(B) in APK¢ is defined by

r,»(B):=®"B, (p=0).
Let
I'p(0):=I''(ARQI:'"(B)

acting in A,?(K). For weDom (I',(0)*) (k=1), we define the norm
ol := 1T+ 1O 0l s, k)

and denote by (S):(APK) the completion of Dom (I",(@)*) with respect to the
inner product induced by the norm ||-l;. Then (S).(A?K) becomes a Hilbert
space. Set

(7.3) (SYAPK):= [§I<S>k<ApK>.

((SYAPK), [I-ll) is a complete, countably normed space.
Now we shall state the first decomposition  theorem :

THEOREM 7.1 ([8], 1992). Suppose that inf oc(O*E@)\{0} >0. Then the decom-
position of R-H-K type

(7.4) He=(AP(K)=Im [A,(0) | H*~(A,*(K))]PKer A, (O)
holds for all pEN,.

We need the following lemma:

LEMMA 7.2. For all pN,, we have
. A
(7.5) : Af(O@)=L,(0)  (in AP(K))
holds in operator equality sense.
PrROOF OF LEMMA 7.2. We put

'—'E’m@n[ﬂ*; 9*6] = 77&(1),n® @6*6(7]af(m).n(t))® ®77a(n).n .

A simple computation with Proposition 6.3 and the recursive relation of the
Wick ordering (cf. §2) gives

n k ENPN
Ay(@)(x)= 3 2X: 71, Nbe-En 4 : 6%61))
WA e AW,

+;§1 nglpn(x)-wl(n)/\ e ABB* W I /\w,,‘"’)

=(dI'(B*6)RI )o(x)+(1,Qd T P(B6¥)w(x),
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which implies that (7.6) holds on @(A?K*). Clearly £,(0) is essentially self-
adjoint on P(APK®), since so is dI';(A) (resp. dIP(B)) on @ (resp. P(APK®)).
Therefore the closedness verifies the assertion. q.e.d.

PrOOF. By virtue of the spectral property of the second quantization -
operators and the Deift theorem [4] for commutation formulae of operators, it
follows immediately from Lemma 7.2 thzit inf a(A,(@)\ {0} >0. Obviously we
have

AP(K)=Im (A,(0))PKer A,(O) .

Roughly speaking, the matter is whether A,?(K) should be replaced with
H*=(A,?(K)) when we put restriction on the domain of A,(0) to H**(A,?(K))
in the right hand side. However, clearly this turns to be true. An application
of the spectral representation theorem leads to

DF(Ap(0)=Im [A,(6) | D=(A,(0))1QKer A,(6) .

To complete the proof we have only to note _that H*=(A,?(K)) is isomorphic to
D=(A,(®)) as a vector space. ) q.e.d.

REMARK 7.1. In Lemma 7.2, when p=0 then we have .£,(0)=d,*O)-d(O),
which is, of course, a nonnegative and selfadjoint operator. This is due to
von Neumann theorem.

REMARK 7.2. It is generally right that the heat equation method is even
effective for the proof of decomposition theorem on the space of the type like
H*=(A,P(K)). In fact, similar works on R-H-K type decompositions by Shige-
kawa [31] and Arai-Mitoma [2] are greatly due to the heat equation method. [

Finally we shall introduce our second decomposition theorem for the space
(SYAPK) (see Theorem 7.8). However, since the structure of (S} A?PK) is dif-
ferent from that of H**<(A,”(K)), the heat equation method is not applicable
any more to the case. So necessity will occur that we have resort to the Arai-
Mitoma method. Their method is principally due to a comparison theorem,
which is derived by a series of finer estimates based on precise computation of
weighted norms. There the spectral theory plays again an essential role in
reduction of the problem, representation of the operators, and precise estimates.
Before mentioning the decomposition theorem we need to prepare for the basic
estimates whereby the nice property of our Laplacians reveals itself, namely,
our Laplacians do serve as desired operators which map the space of smooth
p-forms into itself (see Theorem 7.7 below).

1
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LEMMA 7.3. Suppose that
(7.6) @*@Z(I‘FE)IHC

holds with a positive constant €. Then for each s>0, all p&N, and FEN,,
there exists a positive constant Co(e, k) and there can be found a proper positive
integer k, such that the inequality

(7.7) ”’fs"‘(I+Ap(@))kw]]A2p(K,§Co(s, k)N +1"5(0)) 0@l o, )
holds for every w&Dom (I",(0)*0), where Tot= I'(e)Q1;. 0

The proof is an easy exercise. It follows from the spe‘c'tral theory and the
fundamental properties of Ornstein-Uhlenbeck semigroups.

REMARK 7.3. We write the Ornstein-Uhlenbeck semigroup (e.g. [33]) on
(L% as Ts:=I"\(e™®), s=0. There exists its inverse operator 7,~! being self-
adjoint, which is given qy 7T, '=1I"i(e*), s=0. Moreover, its natural extension
to A.?(K) is written as 7' := I'(e*)®1,, which appeared in the above (7.7). O

As a direct corollary of Lemma 7.3 we readily obtain

LEMMA 7.4. Under the assumption (1.6), for all p&N, and k<N there
exists a positive constant Cy(e, k) such’that the inequality

NI +Ap(0)) 0] p,2 5= Cile, B)-IUT+T (@) 0llp,2 k)
holds for every wsDom (I',(O)F). v o ]

Therefore, by repeating the reduction to the subspace KX,?:= K,QAPK®
and employing the limiting proceeding for the acquired relative to £(A?K°), we
can easily see that

~

LEMMA 7.5. Under the assumption (7.6) we have
Dom (I"5(8)*)cDom (A,(6)*)
for all keN and pEN,. ‘ O
The next proposition is a comparison theorem for the spaces H*“(A,P(K))
and (S)(APK), whéreby our second decomposition can be derived according to
the Arai-Mitoma theory. One may find some of familiar techniques and methods

useful and effective in this argument-as well, and those have been used well
in the Malliavin calculus [33]. ' ‘

13
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PROPOSITION 7.6. Suppose (7.6). Then the inclusion
(7.8) (SYAPK)C H®=(A,?(K))
holds for all peN,.

As to the proof it is sufficient to show that ”T"kéél“]’l"n, (reP(APK®)),
for any N>k (N, keN), each pN,, and some positive constant C. In fact,

an application of Khinchin’s inequalities yields the assertion by virtue of hyper-
contractivity of T,. The next assertion indicates that our Laplacians have such

a nice property as stated in §1.

THEOREM 7.7. Under the assumption (7.6) we have
(7.9) Ap(O)(SHAPK)IC(SXAPK)
for all pEN,.

It is sufficient to prove
A,(O@)wesDom (I",(O)*),

for w=(SK(APK)NX,?, all k=N, and each peN,. It is easy, hence omitted.
Ultimately, we are now in a position to state our R-H-K type decomposition
theorem for (S} A?K). '

THEOREM 7.8 ([8], 1992). Assume the condition (7.6). Then the space
(SXA?K) admits the decomposition
(7.10) ~ (SYA?PK)=Im [4,(0) I (SXAPK)]DKer A,(6)
for all peN,. ‘

PrROOF. According to Theorem 7.1 and Proposition 7.6 the element o of
(SYAPK) is decomposed into

0=0+w0,=A,(O)n+0w,,

with @o,€Im [A,(O) | H**(A,”(K))], w,=Ker Ap(®), and

1=Q,(O={ (K ; Oo—w)dsc H=(A7(K)),

where Ky(p; 0):= S:oe‘”dE,,(@; 2), (s20) and {E,(@; ); AR} is a family of

spectral measures associated with the operator A,(6). Because of (7.9), it results
from the following lemma:
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LEMMA 7.9. Under the condition (7.6) we have
Qp(O)we(S)(APK), (weDom (I"p(6)*))
for all k=1, each peN,. g.e.d. O

§ 8. Concluding remarks.

After having finished writing this paper, the author learned that H.-H. Kuo,
J. Potthoff, and J.-A. Jan had obtained very useful and important resuits in
“Continuity of affine transformations of white noise test functionals and appli-
cations”, Stochastic Processes and their Applications 43 (1992), 85-98. They
succeeded in obtaining a direct simple proof of the fact that the space of white
noise test functionals is infinitely differentiable in Fréchet sense, which is closely
related to our results in §3. We found it very interesting and suggestive, and
stimulating as well.

In addition, we were informed of the publication of H.-H. Kuo’s paper
entitled “Lectures on white noise analysis”, which appeared as Special Invited
Paper in Soochow J. Math. 18 (1992), 229-300. There can be found at pp. 251-
266 very interesting and remarkable descriptions about a variety of differential
operators iri white noise analysis$, which are deeply connected with the contents
of §3 and §5 in our paper (cf. [12-15]). Especially so excellent are his works
on the characteristics of various sorts of Laplacians (pp. 279-249) via an infinite
dimensional version of the Fourier transform which is compatible with Hida
calculus (see [7], [26]). |
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2.4 HREHEHBELSFERXL SUVEEVE~DOIGA

HAABE OB OERIIBIT 28Kk = 20 4 U — BRI BN H k=2 U o
VH—FRRE, RTIA DA XD 2IROMERES FHERAE ZRL LR 6 U,
FIHERESIRITICHE TL LB BAEFIC, TOEZHEDE WA EIR KT D FFIfRITHINL
Bhrbimli,
F-EFENGICBIT D7 ¥ a7 RO FENIRHI IO T HEBE LZ, bAM4 T
IWHTRE T 2T IR OBIRZ STFRSHENBHR L, 7327 W ERTIINM» 515
D B OB NEE LR RE LRI L TWA DL, F- %0 E F DAL
BIERAT52E, REAMIIIEROBEFENHOIEGREE LS B2 DD, EiT—Haxth
X9 D IEEHGROERICMi e 622 2L, M T, 7vaThERIzL-T
BERE7> Wheeler-DeWitt FRERNIEF 2 o TINI R BEIERIA H = X L2 OWTELEY
1To 7,
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Tomonaga-Schwinger Supermany-Time Formalism and
Hida’s Stochastic Causal Calculus

Isamu DOKU*

Abstract

We give a rough sketch of the idea on Tomonaga-Schwinger supermany-time formalism in
Quantum Field Theory, which is originally based upon P.A.M. Dirac’s many-time formalism in
Quantum Mechanics. It is well-known that the so-called Tomonaga-Schwinger equation plays an
important role in supermany-time theory. And besides we introduce only a core part of Hida’s
stochastic causal calculus, namely, stochastic variational calculus. We can say that its mathemati-
cal essence is very peculiar in White Noise Analysis. Especially one of the most remarkable
characteristics consists in Hida’s theory of stochastic variational equations, which is originally
suggested by P. Lévy’s infinitesimal equation, and is chiefly motivated by the above-mentioned
Tomonaga-Schwinger equation as well. Lastly we discuss a physical perspective for stochastic
variational formulation of the problem in connection with other analytical tools provided in White
Noise Analysis.

§1. Introduction

The Pauli-Heisenberg Theory is a kind of Relativistic Theory, i.e., in the sense that the
magnetic field is contained in a dynamical system, and of course, the electron itself is there
expressed in a form of quantization of wave. It is an idea of elaborate treatment of both of light
field and electron field in the same level as objects of Quantum Mechanics [14]. On the contrary,
Dirac proposed the many-time formalism [1]. He thinks it is the electron itself that should be the
object of Quantum Mechanics. He considers basically a many-body problem in Quantum
Mechanics with its own time to each particle. Clearly it is a philosophy that the electromagnetic
field is nothing but a measures to observe states of electron.

Generally speaking, the Heisenberg representation is extremely useful in theoretical considera-
tion on quantum field theory, but the field operator is too complicated in expression and we cannot
say that it is suitable for concrete computation of S matrices [9]. On the other hand, although the
Schrodinger representation does not have time in the field operator and is, on this account, very
simple (implying that it is expressed in a simple manner), we cannot use it for relativistic covariant
theory because it allows us to regard time as a special quantity. Thus it is required to seek for an
intermediate representation in which we can take advantage of its covariant treatment and the field

* Department of Mathematics, Faculty of Education, Saitama University, Urawa 338, Japan. E-mail address: H00060 @
sinet. ad. jp

— 1 —
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operator is described in a simple form as well. It had been thought for years and has been found
now ; we call it an inferaction picture.. In the interaction picture, the field operator satisfies a four
dimensional commutation relation (cf. §2), and the state vector or probability amplitude may
possibly vary only in the part of interaction.

This paper is organized as follows. §2 is devoted to a rough explanation of Tomonaga
-Schwinger supermany-time formalism, where a basic idea of the supermany-time theory will be
stated from a point of view of mathematical physics. In §3 we introduce Hida’s stochastic
variational equations in accourdance with his causal calculus. There can be found that his theory
on variational equations in white noise analysis is deeply motivated by the idea of Tomonaga
-Schwinger equations which comes from the supermany-time formalism. In § 4 we discuss a
physical perspective for stochastic variational formulation in line with white noise analysis.

§ 2. Tomonaga-Schwinger Supermany-Time Formalism

In this section we shall review a physical perspective for famous and celebrated Tomonaga
-Schwinger Supermany-Time formalism [18]. First of all we shall give a description of quantum
field theory in terms of cananical form (e.g. see [14], [16]). Let @(x) be a free neutral scalar field
with mass x, where a terminology “neutral” means that ¢(x) should be Hermitian. The lagrangian
density of @(x) is given by

L) =410" o) 8, o) —* 9*()],
and the action integral is given by
5= [ ax L),

On the other hand, we regard ¢(x)as a canonical variable including parameter in the quantum field
theory via canonical form. When 9,¢(x)= ¢ (x), its canonical conjugate quantity z(x) is denoted by

_9 f(x)_ .
7t(x):—_—a q-)(x)—fp(x)-

Then the Hamiltonian H is as follows: »
= [ @ 2 pw-LWl =5 [ &z (P +Z (0. o@]*+u* 90},

We set w,=4pu?+p? as usual. As is well known, @(x) can be expanded as

1 . .
<p(x)=(2,;lW f a’p Jz—a);x[a(p)e"Px+a*(p)e+‘P*]

with pe=wp, pPx=7p"+x,. @"(x) (resp. @' (x)) denotes respectively the positive (resp. negative)
frequency. part of @(x). Hence it follows that

1 _ .
a(p):zz—;)-g;'A/_‘é:% [ @ e X [0, 00, )+i #(0, D)],

1 ) .
a*(p):@#?m f d*x e P X [wp (0, x)— ¢ 7(0, x)],

Thus we readily obtain the commutation relation

—_— —
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(a(), a"(p)]=38(p—q),
and [a(p), a(@]=[a"(p), a(@)] =0.
On this account, the four dimensional commutation relation is given by

[ox), )] =LpP(x), @ W]+ LeTA(x), @M (y)] f d3p (e L N )

So much for preliminaries (cf. [9]). We are in a position to state the supermany-time formal-
ism in quantum field theory, which will be prerequistites for better understanding of Hida’s
stochastic variational formulation in his causal calculus to be introduced in the following section.

Distinguished from the case in Heisenberg picture, the state vector changes itself as time ¢ does
in the interaction picture. However, it is contrary to the principle of relativistic covariance that
we may regard the state vector simply as a function of {. For instance, it is impossible to describe
a relativistic many-body problem in a covariant manner when we consider the common time ¢ for
each space coordinates x®, x®, --- x” corresponding to # particles in the many-body problem. In
order to satisfy the covariance requirement, it is necessary to introduce times %", -+, %™ corre-
sponding to each particle. If fortunately
(2.1) , (x?— 2920
holds for all distinct pair j, k, then thanks to the Einstein causality, we can define without
contradiction a concept of the state being in possession of many time like the above. We call it
many-time formalism [1]. Supermany-time formalism [18] is the one obtained by extending this
many-time formalism so that we may gear it to quantum field theory [14]. Now we consider
introducing a concept of spacelike hypersurface o (or = C) instead of a finite number of times. The
hypersurface is the totality of points which are expressed as
(2.2) % =f o(X),
where f, is a continuous function. We assume that any two points on Eq. (2.2) consist in a mutually
spacelike position as indicated in (2.1). Generally speaking, the function form of f, may change by
a Lorentz transformation, but there would not be any change in the result that the transformed one
should still lie in a spacelike hypersurface. We denote a state vector by the symbol |o> in
supermany-time formalism. The time evolution in supermany-time formalism is to see how | o>
varies in accordance with the change of . Let o, be a spacelike hypersurface which is distinct
from ¢ only in the neighborhood of a point x, on ¢, and wx denotes a four dimensional volume of
the infinitesimal part which is surrounded between o, and ¢. The sign of w, will be defined as
follows for convention : it is plus (resp. minus) when oy consists in the future (resp. past) side of o.
That is to say,

(2.3) 0e= [ &x [fol®)—fox)].

Then the variation %(x) | o> with respect to ¢ is defined by

_d
"8 olx

0> — | o>

?

(2.9) 3@ | > = lim

w0 @x
where the above definition should be interpreted not only as an extension of time derivative but also
as an operation of taking its density even spatially.

In the interaction picture the Hamiltonian H is given by

— 3 —
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H=H,+H,,
where H, is a Hamiltonian of the free field, and H; is a Hamiltonian of the interaction. Then we
have the following Schriédinger equation

i% | t>s=H | t>5,

where | t>s denotes the state at time ¢ in the Schridinger representation. The state vector | ¢>
; in the interaction picutre is given by

| ¢>,= e | t>5.
Thus it follows immediately that

2.5) i% | t>=H0) | £>,

with H(t)= exp{: H, t}*H; éxp{—i H, t}. If any derivative coupling is not contained in the
interaction, then H; is obtained by integrating a polynomial of several field operators ¢; over a
three dimensional space. Since those operators are independent of time in Schrodinger representa-
tion, writing them as ¢;(x) (=1, 2, ---, n), we have the following expression

H;=H[p:x), @2(x), =, @alx)].
On this account H;(f) can be rewritten into

Hi()= Hilau(t x), -, @alt, x)].
Essentially, ¢;(¢ x) is nothing but an operator ¢;(x) of the free field, so that, we can say that H ;(¢)
is an interaction Hamiltonian by which the free field operator is described. Furthermore, in the
case without derivative coupling, it turns out to be that

H (x)=~Li(x),
where H; is an interaction Hamiltonian density, and L;is an interaction Lagrangian density. Then
we may employ the above to rewrite Eq. (2.5) into

)
¢ olx)

Notice that H; in Eq. (2.6) is a polynomial of the free field @;(x) (j=1, -+, n). We call (2.6) a
Tomonaga-Schwinger equation. It is interesting to note that Eq. (2.6) is itself a covariant equation.

(2.6) ) l o‘>1:ﬁ1(x) | o>

The Tomonaga-Schwinger equation Eq. (2.6) looks like an infinite simultaneous partial differential
equations, so the necessary and sufficient condition in order that the solution of Eq. (2.6) may exist,
is as follows: ‘

2 2
, m)g‘g&—@—)l 6>1::5‘;-(y_)6_()%—(;¢5 | o>
holds for any x,, v.€ C, where C is the totality of points such that x,—, is spacelike. While, an
application of Eq. (2.6) enables us to rewrite the condition Eq. (2.7). As a matter of fact, inorder
for Eq. (2.7) to hold for any | o>, it must be that
(2.8) : [H 1(x), H1(»)]=0,
as far as (x—y)*<0. We call it the integrability condition.

(2.7)

Remark. If there exists a derivative coupling in the interaction, then the relation Hi(x)=—Li(x)
fails to hold, with the result that the Tomonaga-Schwinger equation Eq. (2.6) can never be covariant
any longer in relativistic sense.
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§ 3. Hida’s Stochastic Variational Calculus.

We introduce briefly stochastic variational calculus for a random field {X(C)}, C being a
surface in a Euclidean space, which lives in the space of generalized white noise functionals [10].

Let us consider a random field { X(C)} indexed by a manifold C which is supposed to run in the
parameter space R% The important thing is that we assume through this paper that X(C) be a
generalized white noise functionals. In other words, X(C)E(S)* [3] (see also [5], [7], [8]).
Actually an admissible parameter class C in Hida’s theory {12] is taken to be the totality of simple
closed convex manifolds C which is diffeomorphic to the sphere S?°!. Based upon the basic Hilbert
space L¥C, do(s)) with the surface element do(s) over C, we get a Gelfand triple

E(C)c LG, do(s))T EX(C)

relative to the white noise space as usual [8]. The white noise measure yc is able to be defined
uniquely on the above-mentioned white noise space. Suggested by Lévy’s well-known stochastic
infinitesimal equation [15], T. Hida proposed the analysis of random fields { X(C); C&C} in line
with the white noise analysis, and discussed in [12] stochastic variational equations of the form
3.1 X (C)=2(X(Q), ()T(C), Y(uls), uls)eC, C, oC),
with a functional X(C) of the special form

(3.2) X(C)Z@(fm F(C, x(u), u)du),

for x€ E*, where (C) denotes the open domain enclosed by C. While, Si Si [17] discussed the
existence of unique solution to equations in the form

sUG)= [, f(n, U, s) £cls) onls) do(s)

with the initial condition U, = U(#,), under the assumtion on a continuous function f with stronger
additional conditions, where U(z) is the S-transform [3] of X(C). An elaborate example of the
Schrodinger typé stochastic variational equation was also given by T. Hida [12], which is closely
related to the so-called Tomonaga-Schwinger equations (cf. Eq. (2.6) in §2) appearing in the
relativistic quantum field theory. .

Let us consider the class H of formally selfadjoint operators acting on (S)*, whose element is .
a polynomial of 9, and 9.* (f€R9 with degree 2 at most, where 9, is the Hida differential {4] (see
also [6]) in white noise analysis and 3 .* is the Kubo operator [6] [8]. 9. just corresponds to the

annihilation operator and 9.* to the creation operator. When we set
3.3) HC)= [ o Flu, 1){3,0s+2,° 9, }dudv,

then H(C)eH, and a requirement of the operator exp{: H(C)} to be (S)*—invariant provides with
the restriction that it should be at most of order 2, because of the Potthoff-Streit characterization
theorem [10] (cf. [8]). On that occasion the kernel F is supposed to be symmetric as a generalized
function. It is interesting to note that the objects to be investigated are restricted to only the case
where the integrand in H(C) is free from dependency on C€C. We define - '

(3.4) X(C)=: exp{i H(C)}: X(Cy),

where C, C,€C, and (G)C(C), and notice that C, is fixed. When we consider the equation

— 5 —
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6X(C), . _ . 8X(C)
(3.5) “oC (s)=1 —é\c—{s) X(C),
or equivalently,
(3.6) X y=i: (0. f, Fls ) 84 dut 3. [, Fls, w) 8,* du}H(C): X(C)
with the initial condition X((G)=X,, then the following assertion was obtained by T. Hida [12],

namely

Theorem 3.1. The random field X(C) defined by (3.4) satisfies the stochastic variational equation
(3.5). Conversely, the solution to the Cauchy problem (3.5) is given by (3.4). ]
Generally speaking, it is a task of extreme difficulty to solve a stochastic variational equation
directly. For this purpose, it seems that a kind of deformation from C into C+ 6C allows us to
obtain the stochastic variation §X(C) in Hida sense, only by making use of a one parameter family
of diffeomorphisms which is deeply connected with an infinite dimensional rotation subgroup named
whisker [13] (see also § 4 below). '

Theorem 3.2. [11] When o; denotes the variations of C in Hida sense by the ome parvameter
Jamily of diffeomorphisms in Re, then an integrability condition for the equation of the type (3.5) is
given by

d 8 X(C)_ g, & X(CO)
(3.7 oC 00  0Q oC -

Remark. The existence theorem for a much generaler form of stochastic variational equation
will be fund in [12]. T. Hida discussed in [11] the problem of integrability conditions for a wide
class of variation equations. Moreover, it is in [12], we have to refer, that a similar sort of

theorem as the above Theorem 3.1 is proved for the case of high level where the Lévy Laplacian
Ar(C) is contained in H(C).

§4. A Ph_ysical Perspective for Stochastic Variational Formulation.

-

Let R® be the para{meter space in this section. We define the space Dy(R% as the totality of
&€ C=(RY such that

(4.1) S ul—e C=(R9).

Then it follows immediately that

Proposition 4.1. Dy(R9) s a nuclear space.
We call it the Basic Nuclear Space, and set E: =D,(R% in the following. Let us define the
characteristic functional C(&) on E as

(12) | C@=exp(—5 &1, £€E,

where | « || means a usual L*—norm. The Bochner-Minlos theorem allows us to obtain a unique
probability measure g, called the white noise measure, with parameter space R on the dual space
E* of E.

Definition 4.1 g is said to be a rotation of E if (i) g is a transformation on £, and is also a linear
isomorphism of E ; (i) g is orthogonal in the sense that lg&l =&l holds for any &€ E.

— 6 —
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The symbol O(E) denotes the collection of such g’s as described in the above. Then we readily get

Proposition 4.2. O(E) forms a group under the usual product operation.
On this account, O(E) (or O.) is called a rotation group of E, or an infinite dimensional rotation
group when E is not explicitly mentioned. O(E) is topologized by the compact open topology.

Definition 4.2 The adjoint g* of g€ O(F) is defined by

(g* x, &>=Xx, g &, for x€E*, E€F.

Hence we set O*(E*)={g*; g€ O(E)}. We may employ the correspondence between g* and g™,
to establish

Proposition 4.3. O*(E*)=~ O(E). ;
The following theorem will give a connection between the probability measue g and the rotation
group O(E).

Theorem 4.4 (cf. Theorem 2 in [19]). For any g€ O(E), the relation g*u=yu holds.

Now we consider a subgroups of O(E). The subgroup consists of whiskers, and a whisker
means a one parameter subgroup of O(FE), that comes from automorphisms of the parameter space,
that is to say, we are supposed to have a time change in mind. More precisely we have:

Definition 4.3. {g;; t€R} is a whisker if eac}_l &: acts on E| in such a manner that -

(& W= st) |2 v,
with ¥(#)ER9 and a Jacobian % Ydu), and if g;*g;= g+ holds, or equivalently Fhe relation (s

(4))= Ve o(u) holds [19].
We shall give some examples of whisker, which are themselves very important in Probability
Theory.

Example 4.1 (T. Hida (1985) [19]). We consider shifts {S/; t€R}. S/ is defined by

(S¢ &) (m, -, u)=&(wy, =, u;— 1L, -, ug). '

Then {(S)*; t€R} is a flow on (E*, x). It is quite interesting to note that S’ can be regarded as.
the time shift whereby the flows may change as the time varies and they may express the so-called
random phenomena that are realized generally in the space of Hida distributions.

Example 4.2 (T. Hida (1985) [19]). Let us consider dilation {7;; t€R}. This comes from
isotropic dilations of the time variable, and is defined by

(T, &)w)= &le* u)e™ ™.

As for the dilation, the flow {(7})*; t€R} can provide us with an Ornstein-Uhlenbeck process.

Remark 4.1. One may wonder whether there is any relation between the aforementioned two
kinds of whiskers. Actually, the shifts are always transversal to the dilation in terms of a theory
of dynamical systems. And besides shifts are mutually commutative (cf. § 4 in [19]).
There is another approach to stochastic variational equations (cf. p. 55, § 2 in [12]). According to
T. Hida (1989) : Proc. 24th Karpacz WSTP report, the variation of X(C) will be assumed to be
gained by the action of the conformal group C(d). Of course, C(d) is one of the most important
and interesting subgroups of O.. It is well known [20] that a white noise enjoys the conformal
invariant property. So that, we may use the infinitesimal generators A; of the actions U/ that is
determined by one parameter subgroups {g.’} of C(d), in order to find the stochastic variational
equation, where U/ @(x)=@((g/)*x), for ¢ €(S)*, and any ;.

_ 7 —
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Remark 4.2. It seems reasonable for the present to restrict the operators acting on the random

field X(C) to the class of operators that come from the above-mentioned conformal group C(d).
Remark 4.3. The conformal subgroup C(d) is not only of a different type from the Lévy group
[11], but also distinct from those which are obtained by the limit operation to finite dimensional

rotation groups (see also [12], [13]).
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Mathematical Aspects of Complex Canonical Quantization
in Quantum Gravity

Isamu ‘D(A)KU *

Abstract

We consider the Ashtekar formulation in quantum gravity, because it is believed that the
Ashtekar theory should enable us to rewrite the general relativity into a new form much more
amenable and lead to a desirable consistent quantum gravity theory. Mathematical aspects of its
formalism is in particular discussed for applicational interest.

§ 1. Introduction

The Kaluza-Klein theory (cf. §19.7, pp.650-652 in [9]) is aiming at construction of the
Unification Theory by extending the Einstein theory to the space-time of higher dimension than
four dimensional one and taking in Gauge theory within the gravitational theory. While there is
another idea to connect Gauge theory with the gravitational theory by rewriting the four dimen-
sional Einstein theory itself into a diverse formalism that is close to Gauge theory. As a matter
of fact, A. Ashtekar proposed in 1986 [2] (see also [3], [5]) a new theory in line with the above
latter idea. The theory is nothing but a canonical theory of general relativity, however it is
completely different from the usual canonical thory [12] (cf. [1], [9], [10]). Its characteristics are
as follows: 1) the basic variable of the usual general relativity is a metric, on the contrary, a
connection is regarded as its basic variable; 2) so that, a Gauge theoretical method is naturally
taken in; 3) a complex momentum variable is adopted.

The purpose of Quantum Gravity Theory is to construct a consistent theory to unite the
quantum theory with the general theory of relativity (cf. Chapter 19, pp. 633-661 in [9]). So many
trials have been made, but any of them has not succeeded yet in its construction déspite such a long
history. The main mathematical tool in Quantum Cosmology nowadays, namely, Cosmology in
terms of Quantum Gravity, is the Wheeler-DeWitt equation [6]. However, as is weel known, there
have been left a plenty of unsolved problems on a technical basis as well as on an interpretational
one. A remarkable progress has been made by Ahtekar’s formalism [4]. That is to say, the
difficult Wheeler-DeWitt equation will be simplified in its form and will be changed into an
amenable one [7], [8] (see also [11], [13]), when are employed the new variables which Ashtekar
proposed. Therefore it is expected that Ashtekar formulation should be valid, useful, and powerful
especially in the field of Quantum Theory. ‘

* Department of Mathematics, Faculty of Education, Saitama University, Urawa 338, Japan. E-mail address: H00060 @
sinet. ad. jp
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§ 2. Einstein Formalism

- In Einstein’s general relativity, the rate of deviation of a space-time, namely, the curvature
denotes the strength of gravitational field. In order to describe it, the space-time metric g,, is
adopted as elementary variables of gravitational field. The Einstein equation is usually a field
equation which is satisfied by the gravitational field and material field. Its expression is very
convenient for checking a locally causal structure and a general covariance, but it can‘not' be
suitable for description of time evolution of a global space-time structure. As a coﬁsequence,
usually the formulation to regard the Einstein equation as an evolution equation for the dynamics
with infinite degree of freedom is used so as to investigate a global dynamics of the space—time.‘

Let us consider a (3+1) decomposition of the space-time. This is a sort of formulation that
a four dimensional physical quantity decomposes into a physical quantity on a three dimensional
hypersurface with time parameter, by regarding a four dimensional space-time as a one dimen-
sional time series 2(¢) of sapcelike three dimensional hypersurface. Let E(f) be a time-constant
surface, and » a unit normal vector of Z(f). We denote a lapse function by the symbol NV, then N
dt denotes a distance along the normal vector between two hypersurfaces 3(¢) and 2(¢+dtf). And
besides N’dt means a shift vector, indicating how far the point of intersection made by dropping
a normal vector on Z(¢+ dt) from a point on Z(¢) is shifted away from the curve x’=const. with a
constant space coordinate. Then we readily get

Lemma 2.1. When we set n:]%[ (0,—N’93,), then N dt n=(dt, —N’dt) under an ovdinary

representation by components.

Lemma 2.2. When we write the metric tensor of a three dimensional hypersurface 2(t) by q;u(t,
x7), then the corresponding four dimensional metric in question is given by

ds?=—N? dt*+ g;u(dx’+ N7 dt) (dx*+N* dt).

Proof. The assertion is a direct result from an orthogonal decomposition (dx*)=N dt n+(0,
dx’+ N’ dt), where x* is a point on Z(¢), and dx* is a vector the starting point x* and the terminal
point on 2(¢+dt).

g.ed.

An interpretation of the general relativity as a theory of dynamical system means to regard g;,

(¢, x%) as a dynamical variable of infinite components with parameter x’ and to express the Einstein
equation as a time evolution equation. In fact the equation can be easily derived by the correspond-
ing variational equation. On that occasion, needless to say, the Einstein-Hilbert action for gravity

1
So=[ dt Le; Lo=[ &x53/—2 R
and the action for material field
Sw=J dt Ln; Ln=[ &’xL,

play essential roles in derivation. By virtue of Dirac’s general theory for canonical formulation
[12] (see also [9]), the Einstein theory can be easily converted into the following canonicél theory
with constraints. Let ¢ be a complex scalar field, and let A, be the electromagnetic field with
interaction. We regard them as material fields. p;, is a generalized momentum being conjugate

13]



to g, and F,, is given by 9,4,~9,4,. We denote a complex conjugate of ¢ by ¢*, and D, is
a differential operator, i.e, D,= 9,—7 ¢ A,. E’ (resp, n, = *) denotes respectively a conjugate

momentum of A; (resp. @, ¢*).. When we set B-E% &in FX, then

Hmo:%—+ﬁ (D' @)* D, @ +V}+2J—EJE +[BBJ

Hni=2D; @ +(z D; @)+ eul*BY,
Ca=ie (np—n*p*)— 0L’

Theorem 2.3. The Lagrangian of canonical form for the gravitational field which has interaction

with a complex scalar field and an electromagnetic field can be expressed as )
(2.1) L:f d*x(—pi*qu+ c.p+7t*é)*+Ejzzl,-)—I‘[, H:f A3 x(A,Ca+N* H,+H.),
where Ho=19; [2Np*¥—pN7+x"2\/q D’N +AE].

Remark 2.1. The constraint H,=0 obtained from the above Lagrangian is conservative under
time ovolution, and so is the constraint for C4. So that, no other constraints appear except these
primary constraints.

Proposition 2.4. The following Poisson bracket velations hold :

{f Ho, g Ht=<f D’ g—g D' fYH, {<{fFHp, g Hp} =7 2,8) Ho—q'* g /P E; Cw,
{<f7 Hp, <g Hpt =S )7 H;+f7 g* F; Co, {Hu(x), Caly)}={Cax), Caly)}=0,
where (X>= f d3x X (%), and [f, g] is a bracket for bector fields f°, g’.
As for the proof of Proposition 2.4, it is simply due to a direct computation. It is easy but rather
tiresome, hence omitted.

§3. Wheeler—DeWitt Equation

First of all, let us recall the Dirac quantizatin. It is well known [9] that the gauge field theory
or the gravitational theory may be rewritten into the canonical theory with constraints of the first
kind, as far as the classical theory is concerned :

(Q, Pyy=6); F={F, H}; F=F(Q P); C.=0; {C., Ca}=f1, C,.
According to the canonical quantization procedure, these equations can be exchanged into the
commutation relation between operators corresponding to the canonical variables and the Heisen-
_'berg equation of motion ‘

(@, Bjl=i ¢}, F=i (A FI.
Notice that in the Dirac quantization we need exchange the constraints for the condition to state
vectors, namely.
(3.1) | C. | ¥>=0,
since the operator C. corresponding to the constraint function C, is not commutative to the
fundamental canonical variables. By taking it into consideration that the classical constraints are
of the first kind, we can readily get the commutation relation

(., Col=if%, C,
if we ignore the order problem of operator product, with the result that the condltlon Eq. (3.1)
becomes consistent with the commutation relation.

It is easy to apply the aforementioned for the canonical theory of gravity. As a matter of fact,

=11 —
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we obtain firstly
Lemma 3.1. The momentum constraint is given by

. é "
(32) . HJ\P:{ZZ qjl(X) Dk——'f’ls/a Tm} \I’[q, ¢]:0,
& gin(x)
where Toy=—1i D; @x) —2—
v ’ & ox)
Proof. For the operators corresponding to the canonical variables, we have only to adopt the
representation in which g¢;» and ¢ are diagonalized:

| ¥>-¥lg, ¢]; Gu®— gulx); P> —i5— s Ton (x) » M= 9lx); 2X)——i g(x)'

g.e.d.
Lemma 3.2. The wave function V[q, @] is invariant under the space coordinate transformation.
Proof. Because the wave function has an expression

s _ ;
s ¥lg, @l= fdax«/_w Tix g (x)+6cp6 zf d*x L H; ¥,
Eq. (3.2) in Lemma 3.1 indicates the assertion. g.ed.

Definition 3.1 The symbol C denotes the set of equivalence classes generated by the identifica-
tion of such elements in the whole set of configulation (¢, @) as can be transformed mutually by the
space coordinate transformations. We call the set C a superspace.

Remark 3.1. By virtue of Lemma 3.2 together with Lemma 3.1 we can regard the wave function
satisfying the momentum constraint as a function on the set C.

Lemma 3.3. The Hamiltonian constraint is given by the following functional differential equation
of second order for the wave functions :

o2 Va

(3.3) HO\I, {— ,\/_ J"‘”’()‘ T x o qu;‘( ) "x—3R+N/— 7Aﬁrm} ‘I'[q, <P:|:O;

where Giun= it Qem+ Qim Quu— ik Qim, and «/E Tnn 2[ 5 o(x +A/_{ 7* 0, ¢ Sr @+ V(¢)}-

We call this functional diffevential equatz'on» (3.3) a Wheeler—DeWztt equation.
Proof. It goes almost similarly as the proof in Lemma 3.1.
g.e.d.
Proposition 3.4. Generally we have
[<f A, <g A1, =i <f7 3, g) Ho.
Proof. The assertion follows immediately from the commutation relations for constraints (cf.
Proposition 2.4 in § 2).
q.e.d.
Seemingly the momentum constraint (3.2) and the Wheeler-DeWitt equation (3.3) consist of an
infinite number of simultaneous equations, just corresponding to the degree of freedom for the space
coordinates. However, because of the general relation (cf. Proposition 3.4), if another condition
<f Ho|¥>=0
is satisfied together with the momentum constraint for the function f such that 9; f never attains
null except a set of discrete points, then it follows automatically that all the Hamiltonian con-
straints are satisfied. This implies that there exists one.independent Wheeler-DeWitt equation
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under the momentum constraints.

Remark 3.2. The above-mentioned result does not mean that apparently the Wheeler-DeWitt
equation can be expressed as one equation on the superspace, since <f Hq>|¥> does not always
satisfy the momentum constraint even if the state vector|¥> satisfies the same condition.

It is quite interesting to note that the Wheeler-DeWitt equation possesses a hyperbolic struc-
ture in the sense of differential equation. Essentially it is greatly due to the property of Gjum.

Lemma 3.5. When we vegard Gjum as an innear product of the six dimensional linear space that
is genevated by three dimensional symmeltric tensor of ovder 2, then the eigenvalue has the following
sign: [—, +, +, +, +, +1].

Proof. Let Xy be a three dimensional symmetric tensor of order 2, and <X, Y > be a scalar
product defined by <X, Y>=Xy, Y.
We denote by V a six dimensional linear space generated by those tensors X, with the above
-defined inner product, and /% denotes the orthonormal basis of V. In particular we take
f11j:2_”2 (812 873+ 613 872),
f21j=2-”2 (813 Sp1+Sn 673,
f31]:2_”2 (6n 62+ 612 6n),
Fiy=2""(8n— 312,
Foy=6"12 (814 81—2813) 0,
and [ =3""29y.
We need the following lemma.
Lemma 3.6. (cf. Proposition 7.3.1, pp. 225-226 in [13])

5
1
20 Iy f‘}(L:—Z (0 S+ Sik)
=

holds. [
By making use of Lemma 3.6 and decomposing g** into the dreibein ¢’ like gi*=¢’s ek[, we can
deduce that '

5
G]KLMZZ 421 f‘}K faLM—fojK fOLM}
because we set GjKLMzejl e et e Gjum. This implies that Gykrx/2 may be diagonalize as [—1/
2, +1, +1, +1, +1, +1]. '
g.ed.
Theorm 3.7. The Wheeler-DeWitt equation (3.3) is of hyperbolic type for each point x of the
space.
Proof. Let é”; be the dual basis of ¢/, and we put

D=2 6% ¢, f2, -2

IS g (a#0),

and
1 P
D"i/§ DS
By virtue of the argument in the proof of Lemma 3.5 we readily obtain

6\2

Gippy
RS QxS Guim

5
=—Dy2+ >, D.%+(the first order differential term).
a=1
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Moreover we know that the second order part of functional differentials for the material field is
positive difinite. On this account, it is easy to verify the hyperbolicity of the Wheeler —DeWitt
equation.

q.ed.

Example. (Quantum Bianchi Model) For the class A Bianchi model except the type VI, (cf. p227

in [13]), the Wheeler —DeWitt equation on a four dimensional mini—superspace is given by the
following partial differential equation

(2 @' @ 3

2« 982 92p8% 9

It is certain that this equation should be of hyperbolic type with the conformal degree of freedom

2

-+2U =0,
P
a as its time direction.

§ 4. Chiral Decomposition

When we choose the metric as its fundamental variable, then the Einstein equation is derived
from the Einstein—Hilbert action integral (cf. § 2) which contains differentials up to second order
with respect to the metric. In fact, it is possible to rewrite such an action integral of order 2 into
an action integral with at most first order differentials relative to the fundamental variable, by
employing proper auxiliary variables. It is well known that there exist various sorts of rewriting
systems, and the Ashtekar theory is nothing but one of them, where the vierbein and connection
form are used as fundamental variables. The principle idea of the Ashtekar theory consists in the
fact that a complexification of the connection form provides with a complete change of the situation
and also that the formalism of making use of the vierbein would rather be simplified than the theory
of employing only the metric. Furthermore the key point of the Ashtekar theory lies in the novelty
that only the selfdual connection is used which is obtained by a chiral decomposition of the spin
connection with respect to the tensor indices.

The principle of equivalence asserts that the effect of gravity can be cancelled out for each
point, in other wdrds, that we area able to select a local inertial system in a proper way. Roughly
speaking, it allows us to think of the situation such that a flat Minkowski space M p is stuck down
as a tangent space Tp M [17], [18] for each space-time point pE M. Let e, be the vierbein, i.e.,
an ofthonorma_l basis of the vector field, and let 8¢ be its dual basis [17]. When A is a linear
connection: T(E)— I(T*M ® E) [14], then we write as A%, M (3.1) the connection form of A
with respect to the basis e,€T(E 1 U) [14], [15]. The metric g;; gives a distance of the space-time
in the general coordinates, and ds?= g;;dx’ dx’ [16]. While, we have ds*=2#,; dX* dX’ in the local
Minkowski space, where #;; is a Lorentz metric.

Lemma 4.1. Then the vierbein e, gives a relation
dXi=¢'; dx’
between the Minkowski space and the space-time vector, namely,
&ii= Nas €% €°;. ’ . U
For a Lorentz transformation A€ S0(3,1), we have
ed =e, (A™h)%,, 6'=A%, 8°.
If we introduce a spin connection w?®; as the gauge field for a group SO(3,1) of local Lorentz
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transformation, then we can describe the general relativity as a gauge theory, where the curvature
of the space-time is expressed by the strength of field of spin connection. The spin connection @??;
will play an important role to control-how to displace a vector of the local Minkowski space parallel
to a point in the infinitesimal neighborhood.

Remark 4.1. Especially when the connection form A%, corresponds to the Riemannian connec-
tion for the vierbein ¢,, then the scalar curvature [16]

s() =2, Ricle;, )
J
is expressed as e e% F,,;; by using the corresponding curvature form
3, =d A%+ A NAS,
where Ric is a Ricci tensor and RicET(T*M @ T*M) and (e;,) is an orthonormal basis of 7,M, and

seC=(M) (cf. [14], [15], [17]). O
Definition 4.1. The dual transformation * p is defined by

*p cr‘)ab:_%_&abcd GJCd

where £%¢? is a Levi-Civita complete antisymmetric pseudo-tensor. [
Let us consider the Lagrangian L and action integral S defined by

L: :2}c2 e et Fuui 16| d*s

1

:2—)(—2* (0a/\€b)/\Fab,

and S= f L for a general connection form A%, (cf. Remark 4.1), where notice that | 8| =det 6%=
J/—g, and * means the Hodge * operator (e.g. [14]).
Lemma 4.2. When @ is a torsion form
@°=d§* +A%NE> ; ,
for the comnection form A°, then the variation of L with respect to A is given by
2x% 64 L=d(0°NO°NA%? & Aap)—20°N0°N%? & Ay,

1
Wkere * p Aab:7 eade Acd.

- Proposition 4.3. The condition 04 S=0 is equivalent to the fact that the linear comnection
AELT(E); I(T*M Q E))
cotncides with the Riemannian connection V (cf. [15], [16]).
Proof. By virtue of Lemma 4.2, clearly the condition that the variation of the action integral
relative to A is equal to zero is equivalent to the condition
8[en6°]=0, '
where [ ] means antisymmetrization with respect to the indices indicated by the symbol [ ].
And besides it its easy to show that the above expression is equivalent to the condition ®2=(, which
implies the assertion.
q.ed.
If we define

(4.1) 1mab5%(mab$i %P 9%,
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then it turns out tp be that *w?®® (resp. ~@?°) represents respectively a proper state corresponding
to the eigenvalue+¢ (resp. —1¢) of the dual transformation.

Definition 4.2. We call *o (resp. ") a selfdual (resp. anti-selfdual) connection respectively. []
Then we get _

Proposition 4.4. (cf. [7], [8]) The spin connection @ allows the following unique decomposition :

(42) wab:+wab®—wab’

We call it the chival decomposition.

Remark 4.2. The reason why we call the above decomposition (4.2) a chiral one is due to the
following fact: when we adopt its spinor representation, then each decomposed part always
combine only with either a right chiral spinor or a left chiral spinor.

Remark 4.3 The above (4.2) is an orthogonal decomposition. As a consequence, the curvature
itself can be uniquely decomosed in a corresponding manner (see the theorem below). ]

Theorem 4.5. [13] When we define '

“Fu=y (Faoki %° Fa),

then the curvature form F<4, allows the following unique ovthogonal decomposition :
Fab:+Fab@-Fab- U

§ 5. Ashtekar Variables and Ashtekar Theory

Let S[g] be the action integral whereby the Einstein equation can be derived. Then
Slgl= [ 2z y=% R

where g is the metric. Although the metric is a fundamental variable in the above action integral,
we can rewrite it into another form S[e, @] in which the vierbein and the spin connection behave
themselves as fundamental variables. In fact

Lemma 5.1. S[e, w]:f —;—eabcd e’Ne’ AR w),

where R*(w) describes the strength of gauge field @® and is given by R (w)= d @®+ % \w.
Let S [e, *w] be the action integral that is obtained by adoption of the selfdual connection (cf. Def.
4.2 in § 4) instead of the spin connection in S[e, w].

Remark 5.1. This S[e, *w] is also an equivalent action integral by which we can derive the
Einstein equation. []
It can be said that the selfdual action integral just corresponds to a covariant form in the Ashtekar
theory. The Ashtekar variables are nothing but canonical variables in the case when we apply a
(3+1) decomposition for the action integral to transform it into a canonical form.

Indeed, a wise choice '
=N dt, e/ =el (dxi+N' dt)

gives a (3+1) decomposition of the vierbein. . e’ forms the dreibein being the orthonormal basis of
space vectors. For a metric ¢; of the three dimensional space, we have
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qy=e; e, aV=q" ¢} e},
Notice that its dual basis EY is a candidate of Ashtekar variables, and satisfies the relations

E) =), EY =4,
It is quite interesting to note that *w?® has only three independent vectors because of its selfduality.
We shall write them as A’= 2 *@%. Recall that originally ?® is a gauge field for a group SO(3,
1) of Lorentz transformations, but apparently A’ seems to be a gauge field for a group SO(3).
Taking its complexification into account, we get

. 1
Al=2 "= " —i 781]’,{ o’

Remark 5.2. Inthe above expression, the Lorentz boost is embedded in its real part and the part
for spatial rotation SO(3) is embedded in its imaginary part. Hence we get aware that there is no
loss in the degree of freedom of the gauge field for a group of Lorentz transformations.

Remark 5.3. Since only the Lie algebra for the gauge group does matter, we may regard A’ as

a gauge field for a complex group SU(2).
In the canonical formalism, a spatial component A’ of the gauge field for a complex group SO(3)
is a dynamical variable, and its conjugate momentum is given by the dreibein £;. More precisely,
it is a density of the dreibein; £%=4q E’;. Thus it is the canonical variable (A%, E%) that ave
Ashtekar variables.

Proposition 5.2. When we take advantage of the Ashiekar variables, then the constraints C(E, A)

of the canonical formalism are given by

C$= D, EY; CR= E', FYy; CH= ¥ F, E% F/,,
where D; (resp. FY,) denotes respectively the covariant differential with respect to the gauge field AL
(vesp. the strength of field).
Note that Fly=9; A4— 2. Al—i ¥ A AF. C§is called a gauge constraint and is a condition
for requirement of gauge invariance. C?% is called a diffeomorphism constraint and is a condition
for requirement of invariance under three dimensional diffeomorphisms. Lastly C# just corre-
sponds to the Hamiltonian constraint. Summing up remarkable characteristics of the Ashtekar
theory, we obtain the followings :
1) various expressions appearing in the theory are all simple differential polynomials of the
fundamental variables ;
2) the theory is given by a form of SC( 3, C) gauge theory, which means that not only the methods
used in the ordinary gauge theory but also the results obtained there are quite useful for the
investigation of gravitational theory ; ’
3) the space-time is restricted to the case of four dimensional, because it plays an essential role in
the theory that a chiral decomposition, consequently a * ? operator transforms tensors of order 2
into itself relative to the internal degree of freedom :
4) the dynamical variable takes values in the complex number.

§ 6. Quantum Gravity via Ashtekar Formalism

Let us consider the canonical quantization. It is sufficient to adopt the operators (4, £ ) acting
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on the space of state functions instead of the canonical variables (4, E), and we have only to change
the constraints C=0 into another constraints ¢ ¥=0 for state functions. As a matter of fact,

since we habe (4, £)=(4, ié‘LA) in the A representation, it is easy to see the following.

Proposition 6.1. The quantum constraints ave given by

A 1)

C§ wlA)= Di g7 wlAl=0,

C2w[Al=F A, ¥[A]=0,

CH \I’[A]—— GUK F;k Iy A] S AK \If[A] 0 D

Now we begin with the gauge constraint. The gauge constraint requires invariance under the
gauge transformatxon so that it is automatically satisfied if we take \I’[A] as a gauge invariant

functional.
Definition 6.1. The Wilson loop W [A, y] is defined by

6.1) WIA, y]=Tr Pexp (i §, A, dc)=Tr Jim 1‘[ (1+i Adk) Dxi(k)),

N oo f=
where P means to take a path order product. ]
Lemma 6.2. The Wilson loop W [A, v] is a functional of connection A, taking values in a closed
loop vy, and is invariant under the gauge transformation for connection A.
Remark 6.1. - Because the above W[A, ] is a family of infinite dimension with loop ¥ as its
parameter, we may think that it forms a basis of the solution for gauge constraint.
Lemma 6.3. The Wilson loop satisfied the Hamiltonian constraind. _
Lemma 6.4. The Wilson loop does not satisfy the diffeomorphism constraint.
Proof. It is impossible for the Wilson loop to keep invariant since the loop is deformed by the
action of coordinate transformation.
g.e.d.
By the above discussion, the Wilson loop W [A4, y] fails to become a solution for all the quantum
constraints. Then the following question naturally arises: whether it is possible to sum up the
Wilson loop relative to y so that the summed may satisfy the diffeomorphism constraint.
Remark 6.2. In connection with the above-mentioned problem, there is an idea of investigating
it by transforming the wave function ¥[A] of connection representation into ¥[y] of loop

representation. Actually analogous to Fourier transform, the integral ¥{y]= f [dA] WA, ]

W[ A] is proposed, however we are ignorant of how to define the integral mesure in questin.
Lemma 6.5. In the case where the cosmological term A exists, only the Hamiltonian constraint is
changed into

A (5\ A 6\
CH= UK 5 A5 AK (F]k—f-z 3 ik TAI’).
In fact, H. Kodama (1990) found the solution satisfying all the constraints in the above case.
Theorem 6.6. (cf. H. Kodama, Phys. Rev. D42 (1990), 2548) .

In the case wheve the cosmological term A exists, the solution satisfying all the quantum constraints
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is given by

6.2) w[A]=exp(— 52 Ssc[AD)

where SsclA] is a Chrn-Simon term. ]
It is well known that the Chrn-Simon term is a three dimensional topological invariant, and is
defined by

SsclAl= [, d*x e (A} B, Al—+ ¥ AL A} AT).
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WHITE NOISE ANALYSIS AND
THE BOUNDARY VALUE PROBLEM IN
THE SPACE OF STOCHASTIC DISTRIBUTIONS

Isamu DOku (GETL B)

Department of Mathematics, Saitama University

Urawa 338, Japan

ABSTRACT

We introduce the concept of functional process and consider the stochastic boundary value problem
and discuss the convergence of its asymptotic solution process. The formulation of the problem is totally
based upon the white noise analysis. In particular the so-called Hermite transform does play an essential
role in derivation of the corresponding partial differential equation. One of the pecﬁliar features under
adoption of HLOUZ formalism (1993) consists in interpretation of the stochastic integral term as an
integral of the Wick product of white noise functionals. We regard the solution of the problem as a
Kondratiev space valued functional process, and the corresponding asymptotic solution satisfies some

stochastic partial differential equation with a martingale term.
1. Preliminaries

1.1 White Noise Probability Space

Let d € N fixed, and it indicates the parameter dimension. S = S(R?) denotes a

Schwartz space on R?. S is a Fréchet space under a family of seminorms || - ||x,«, Where
ke = Suﬂg(l +lz[*)o*f(z)l, k>0,
T€

a= (a0, ,aq), |a| = o1+ +aq, and 8%f =8Il f/ox12,0% 2, - - - 0% 2y S’ =
S'(R?) is a dual of S, equipped with weak-* topology. It is called the space of tempered
distributions. We denote by B = B(S’) the family of Borel subsets of S’. By the Bochner—
Minlos theorem, there exists a unique Gaussian probability measure (called a white noise

measure) on B such that
/ =Pl du(e) = e B¥E, Vo e s,

where || is a L2(R¢)-norm. We call the triplet (S’, B, 1) a white noise probability space.
The canonical biliear form (z, ¢), for z € S, ¢ € L2(R?) is defined as follows: for Vo €
L*(R%); 3 {<pk} C & such that ¢ — ¢ in L%(R?) as k approaches to infinity, and define
(z,p) := L*limg_,o (T, k). In particular, when we define

Bt(w) = (m1X[0,t1]X'~-X[0,td])’ for le 2> 01 t= (tl, te ’td)a
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then it is well-known that there exists a {-continuous version B; of Bt, and we call it
a d-parameter Brownian motion, where x4 denotes an indicator of the set A. Next we
introduce a d-parameter white noise process (WN process for short) W = W,,, which can
be expressed in terms of 1t6 integral with respect to d-parameter Brownian motion B =

(By(z)), t € RY i.e., the white noise process is a mapping W: & x &’ — R, given by

(1) Wmmzmw=mw=memw zeS, peS.

1.2 The Space (L*) and its Representations

Let L? be the totality of square integrable measurable functions on S’ with respect
to the white noise measure u. We denote by the symbol (L%) = L?(S’, 1) the quotient
space of L? by the equivalence class, namely, the equivalent relation f ~ g is given by
[If = gll2 = 0. The Wiener-Ité6 expansion theorem gives the following decomposition of
the space (L?): indeed, (L?) = L*(S',p) = Yoy D K., where each K, is the totality
of multiple Wiener integrals I,(f,) of order n, and f, is an element of the symmetric
L2-space L*((R4)™). For V F € (L?) we have the expression:

F(z) = Z "y fa(u)dBI™(x) fn € iz(-(Rd)n)
n=0 "
= Z / h / fn(’lh, T ,'un)dB®”('u,1, co ’un)(x)1 ug € R%.
n=0 Rdn .
For the norm || - || (or = || - ||z ) of the Hilbert space (L?), we have
IFI* = i fal,
n=0

for f, € L*((R)™). |

We consider an alternative representation of the element of (L?). Let h,(y), n =
0,1,2,---, be Hermite polynomials defined by
2 4"

hn(y) = (_l)neyi— dyn

e77), yek

Then it is well-known that the Hermite functions £,.(y) are defined, by employing the

Hermite polynomials, as

ta(y) =7 H{(n— 1)) de Fhoy(VIy),  n>1L.
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Note that {€n(y)}52, forms an orthonormal basis of L?(R) for the case d = 1. Let § =
(B1, Bz, ,B4) € Z4 be a multi-index. Then there is always a proper ordering so that we

may rearrange the elements numerically and make it countable in the following manner:

{B= (P, ,Ba)} = {ﬂ(l),ﬂ(2),,3(3),~-~}, and A" = ( §")’ én),.. ("))

Therefore we can define e, = egwm) := £ﬁ§,.) ®€ﬂgn) Q- ®£ﬁgn). Note that e € S(Rd) for
each k. Thus we obtain an orthonormal basis {e,}n = {e1,€2,¢€3,--} (C 8) for L*(RY).
Set '

() := We,(x) =./R e;(t)dBi(z) = (x,e;), for j=1,2,--

For every multi-index a = (o, -+ ,am) € ZT, we define hy (ur, -+ ,um) = ho, (v1) -

ha,(us) -+ ha,, (Um), and set

3

Ho(z) := ha(01(2), -, 0m(z)) H o; (05(2)) = Hha,((w ej))-

It hence follows that with |a| =n=0a; + - + apn,

(2) / e®*gBolel = / 8. §eBmdBO™  (t e RY)
(Re)» (Re)~

= H ho; (0;) = Ha(z).

Theorem 1. (i) {Hq(');a € N* :m = 0,1,2,.--} forms an orthonormal basis of the
Hilbert space (L?).
(i) E[HZ] = [[Hol? = of, where ol =]}, o;!, @ = (en,-++ ,am).

On this account, an arbitrary element F' of (L?) can be expressed as

(3) F(z) = an - Ho(z), e €R, a€Z™, Vm.

[24

Moreover, the equality ||[F||? = ) a!c? holds.
Ezample 1. (White Noise Process) Recall the white noise process W, (cf. Eq.(1)),
which was introduced in the end of the section 1.1. For ¢y € S,z € &,

Wy(2) = (2,9) = / WOB(@) = |- / Wty 10)dBryt, (o).

Since we have ¥(t) = Ek 1(1,b,ek)ek € S by making use of the orthonormal basis {ek}
for L2(R9), it is easy to see that

(4) . W¢(-’L‘) — Z(d))ek) e@E(k)dB®|5(k)| = Z(l/),ek)HE(k)(:L‘),
k=1 (Re)x2 k=1
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' k
where we used Eq.(2) and a = ¢ = (k) = (0,---,0,1,0,---,0) € zy.

1.8 Stochastic Distributions

7

Recall that we have a Gelfand triple: § C L?(R?) C &’. It is possible to construct
a similar structure in functional level (i.e. infinite dimensional case), which is modelled

on the above-mentioned Gelfand triple in function level (i.e. finite dimensional case).
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Actually the second quantized operator I'(A) plays an essential role in its construction

(see e.g. [HKPS]), where A is a positive selfadjoint operator in L?(R?) with Hilbert-
Schmidt inverse. The standard construction (cf. pp.33-35,[OB] or [D5]) gives a Gelfand
triple (S) C (L?) C (S)*, where (S) is the space of test white noise functionals and
(S)* is the space of generalized white noise functionals. And besides the latter may
be called the space of Hida distributions. The Potthoff-Streit characterization theorem
(cf. pp.123-134, [HKPS]) for those spaces are based on the S-transform in white noise
calculus. In line with this characterization, a generalization of Hida distributions has
been established ([OB],[D7]). However, in fact there is another characterization based
on the so-called chaos expansion of functionals, whose basic concept is nothing but the
alternative representation given by Eq.(3) in the previous section. For near-future appli-
cation’s sake, we will go to the other way, different from the standard setting in white
caHao(z). We

are now in a position to state the characterization of the white noise test functionals and

noise analysis. For (L?) > F, we have the chaos expansion F(z) = )

Hida distributions in terms of the coefficients of their Hermite transforms (see the next

section) due to Zhang [Z)].
Theorem 2. (i) F' € (S) if and only if the condition

sup ¢ - o!(2N)** < oo

holds for any k < oo, k € N, where (2N)* := 15, (2¢ - ,ij)ﬁgj)ugﬁfij))“(j) if oo =

(a1, , am) with a; = ay) for simplicity.
(ii) G € (8)*, G =) _ boHy (formal series) if and only if the condition

sup b2 - a!(2N)™*? < oo
«
holds for some q > 0.

It is interesting to note that the action of G on F is given by
(5) - (G,F)=Y albs - cq

if G € (S)* such that G =3 _ baH, and F € (S) such that F = Yoo dlcaHy.
Next we shall introduce the Kondratiev spaces [KSW].
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Definition 1."(a) Let 0 < p < 1. We say f € (S)° if f = Y ca Ha € (L*) such that
(6) ”f“%,k = Z - (a)1+”(2N)°‘k <00, (Vk< ).

We call this (S)? the Kondratiev space of stochastic test functions.
(b) Let 0< p<1. Wesay Fe(S)? if F=3,, by Hy such that

(7) > B (a)PEN) < o0, (3¢ < o0),

where q need to be large enough (i.e. q¢ >1). (8§)™° is called the Kondratiev space of

stochastic distributions.

The family of seminorms ||f||2 , (k = 1,2,---) gives rise to a topology on the space
(8)?. In fact, the space (S)™ can be regarded as a dual of (S)” by the action (F, f) =
Yoo bala -l if F =3 boHy € (S)™ and f =3, calla € (S)°. It follows therefore
that :

(8) (S c(SycS)=E)cI)c@d)=E"c)*c&™

2. Elementary Wick Calculus

2.1 Wick Product

The purpose of this section consists in definition of the Wick product and its extension
for application to stochastic equations. We shall introduce first the primitive definition
of the Wick product, and later on try to extend it to the largest space, namely the
‘Kondratiev space.

N.B. We already know that there exist much larger spaces of generalized functionals in
white noise calculus, such as the Meyer-Yan space M* (cf. LNM 1485 (1991)), and the
Carmona-Yan space M* (cf. Prog. Probab. 36 (1995)). We have the following inclusion:

(L¥) c (8)* ¢ (S)™P c M* c M*.

Moreover there are continuous embeddings: M < M — (L?) & M* < M*. In
addition, M is a nuclear Fréchet space which is stable under Wick and Wiener products.
While, M* is the topological dual of the locally convex topological vector space M.
However, we need not use those spaces in this paper. The Kondratiev space is large

enough to discuss the stochastic problem here in question.
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In accordance with [HLOUZI], [HLOUZ2], we define the Wick product of X and Y as

(9) XY := // @ pdB®?

(R4)? /
if X = (z,9) = [ga@dB, (forz eS8, peS)andY = (z,9) = Jg« ¥dB, (for z € &',
¥ € S ). We can extend it with ease to (L?) by making use of the expression:

W)@ =3 [ [, ol B2 (fr e DR

n=0

Definition 2. (Representation by Ezpansion) If X andY are elements of (L?) such that
X =52, f(Rd)ﬂ fndB® andY = >, f(Rd)m gmdB®™, then the Wick product of
X andY is defined by

XOY = ' @ g dBO(Mt™)
0 ZO‘/ [Rd)n+m f ®g

n,m=
where the right hand side is considered as convengence in L'(S', u).

Next let us consider the alternative definition corresponding to the representation

Eq.(3).

Definition 3. If X and Y are elements of (L?) such that X = Y. aq Ha, and Y =
Zﬁ bg Hg, then

XOY = aobp - Hayp,
o,

—

where we consider the right hand side as convergence in LY(S', p) as far as it exists.

Needless to say, the above two definitions are equivalent. A direct computation leads

to the equivalence. As a matter of fact, by taking Eq.(2) into account we can easily get

J=1

HoOHs = (ﬁ b (e,-))o(f[ hg, (0,-)) = ( /( o e®°‘dB®|al) ( /(Rd), Yy B®Iﬁl)

- elotB) yg®latBl Hoyp(z),
(Ré)le+81

withn=|a|=a;+ -+ am andl = || = f1 + -+ + Bi. Note that the Wick-pr-oduct
XQY = Ea’ﬂ aqabg ‘Hayp which we have defined is independent of the choice of the
base {ex} of L?(R%).
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Ezample 2. (Wick Product and Stochastic Integral: cf. p.398, [HLOUZ1]) If Y; is an
adapted bounded stochastic process defined on the white noise probability space (Q2, F, P)
= (S', B, 1), then we have the following equality:

(10) /0 N Yi(2)dBu(a) = /0 Y oW (=),

2.2 Wick Product of Distributions and Wick Exponential

Likewise, we can define the Wick product even for Hida distributions. In general, the
spaces of stochastic distributions are stable under the Wick product. However, some
smaller spaces are not always stable. Actually the followings are verified:

(@) If F =3 aalas € (), and if G = } 5 bgHg € (S)*, then FOG = 3 5 anbg
Hqo4  holds.

(b) If f,g € (S), then f&g € (S).

(c) However, for F,G € (L?), FOG ¢ (L?) (not always!).

(d) For X,Y € L*(S’, p), suppose that there are X,,,Y, € (L?) such that X,, — X in
LYS', pu),and Y, —» Y in L}(S',p) (asn — o0). [ 3 Z := limy 00 XnOYn € LIS, p),
then we define XOY = Z.

It is interesting to note that the discussion in L!(S’,u) is very delicate, because
the space L'(S’, ) is not necessarily contained in the space (S)* of Hida distribu-
tions [HLOUZ1]. Next we shall introduce the Wick exponential, which is one of the
most important tools in Wick calculus applied to stochastic differential equations in the
standpoint of how to solve the problem. If X belongs to L}(S’, 1), then we define the
Wick exponential '

o0
1
. T yvon
(11) ExpX := Z n!X .
n=0
Of course, this definition is well-defined if there exists the Wick powers of X, namely,
3X°™ for any n, and if the series is convergent in L!(S’, p). Furthermore, we obtain the

exponential rule:

(12) Exp(X +Y) = ExpX{ExpY.

o
n=0

ho(z)t" /0! = exp{tz — t?/2}, it is easy to see that the WN process satisfies the relation

Example 8. (ExpWy: the Wick exponential of WN process) Since we have 3

ExpWy = exp(Wy — §|¢|§)-
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Let A be the algebra generatéd by exp(Wy). Since A is dense in (S), immediately
ExpWy € (S). Thus it follows that ExpWy € LP(S’, ), for any p € [1, 00).

For the elements of the Kondratiev space, we define

(13) FOG = Z aabﬁ . Ha+ﬁ,
o,f
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if F=3%_0.Ho€(S)™" and G= 2.3bs Hp € (S)™!. The well-definedness above is -

guaranteed by the following lemma.

Lemma 1. (i) f,g € (S)', then fOg € (S)'.
(ii) F,G € (S)71, then FOG € (8)7L.

2.8 Hermite Transform

We shall introduce the Hermite transform, which is a powerful tool in white noise

calculus, especially when it is used for the study of stochastic differential equations.

Definition 4. (Hermite Transform H) For VF € (L?) (resp. (8)*, (S)™! ) such that 3
its chaos expansion F =3  co Ha, the Hermite transform H of F is defined respectively

as

(14) HF = F := anz“,

where z = (21, z3,--+) € CN.
Note that, in the above, if & = (a;, - ,am) then 2% = 27 -+ 2%m.

Proposition 3 [LOU]. (i) If X = ¥ caHa € (L?), then for each M (< 00), each
n € N, its Hermite transform f((z) = Y., Caz® converges absolutely for z = (21, z,,
Tty 2y 0,0,"’ 10)’ |zk| S M (Vk )
(ii) (Therefore) for each n,

X(n)(zla"' ,Zn)EX(ZI)"' )z‘nao)"' )0)

is analytic on C".

Theorem 4 [LOU]. Suppose that X,Y € (L?) satisfying XOY € (L?). Then |

H(XQOY)=H(X) - H(Y)
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“»

holds, where indicates the usual compler product.

Ezample 4. (a)(WN process W,,) Recall that W(z) = 37, (¢, ex)H.(1)(z) = Ek.
(¢, ex)h1(0k) for z € §’, p € S (see Example 1). Then we have

H(W,) = Wso(z) = Z(‘/’, €k) * Zk.
k=1

(b) (The Square of WN process: W% = W, 0W,,) We have

o0

’H(Wﬁ?‘) = Z (p-ex)(p, €5)zk - 2j.
kyj=1

For Hida distributions, the same assertion as Theroem 4 holds; indeed, for F,G €
(8)*, 'H(FOG)- = HF “HG. What about the Kondratiev space? Is the same assertion
valid for the elements of (S)™°?

Remark 1. If F lies in (S)_"‘for p < 1, then it is easy to see that HF (2,29, )
converges for any finite sequence Z = (zy, 23, *++, 2m) of complex numbers for each m €
N.

Remark 2. If F is an element of (S)~!, then we can only obtain the convergence of
HF (21,2, --- ) in a neighborhood of the origin. Actually we have H = F = Yoo Car 2%
for F =) cqHqs So that, we get

(15) Ea: leal - 12%] < {Eajcg. (2N)_°“1}1/2 . {; 2o (QN)aq}

The first term of the right hand side in Eq.(15) clearly converges for ¢ > 1 (large enough),

1/2

because F € (S)~!. For such a value of ¢ (3> 1), the second factor is convergent if z is

taken from the set

(16) By(6) = {¢ = (G, ¢, ) €C Y IO (2N)°7 < 6}
: aZ0

for some 6 < oo (cf. [HLOUZ2]).
Proposition 5. If F,G € (S)71, then

H(FOG)(2) = HF(z2) - HG(z)
holds for any z € CN so that both HF and HG may exist.

The next assertion is of importance in applicational basis, especially when we apply
the Hermite transform to rewrite the stochastic equation into an ordinary one and discuss
the convergence of its approximate solutions. The topology on (S)! can conveniently be

expressed in terms of Hermite transforms as follows.
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Proposition 6. The following two convergences are equivalent:
(i) Xpn— X in (S)71.
(ii) 36 > 0, ¢ < 00, M < oo such that

-

HX.(2) » HX(2) (as n— o) for z € B,(6)

and |HX,(2)] < M for alln=1,2,---, Yz € By(8).

Theorem 7. (Characterization for the Kondratiev Space) Suppose that g(z;, z2, ---) be -
a bounded analytic function on By(6) (36 > 0, ¢ < 0o ). Then there exists an element
X in (8)7! such that HX = g holds.

Corollary 8. Suppose that ¢ = HX (31X € (8)~! ). Let f be .an analytic function
in the neighborhood of g(0) in C. Then there ezists an element Y in (S)~! such that
HY = fog.

Ezample 5. Let X € (§)~'. Then X0X = X©? € (§)7! is always true by (ii) of
Lemma 1. More generally, X" € (S)~! holds for Vn € N. Hence we attain that

[oo]
1
ExpX =) mX<>" e (8!

n=0

by applying Corollary 8 with f(z) = exp(z).
Remark 3. The Hermite transform H and the S-transform in white noise analysis are

closely connected. As a matter of fact, the following relation holds.
HF(Zl,Zz,"' ,Zm) = SF(Z1€1 + ze9 + - -+ Zmem)

for any z = (21,22, ,2m) € C™, (Im € N).

Theorem 9. (Interchangeability of Integration and Wick Product) Assume that F(,-)
€ LYS' xS, u®p). For any G € (S)*,

[ Pr.2)06@utn) = | P, 0)dun)0G()
s s :

Theorem 10. Assume that Y € (L?), and ¢ € C§°(R) such that supp ¢ C [a,b]. If
¥(s)Y (w) is Skorohod integrable, then

: b
Y (w)OWy(w) = / W(s) - Y (w)6B,(w)

holds, where the right hand side means the Hitsuda-Skorohod integral (cf. [HKPS]).
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3. Functional Process

3.1 (L?)-Functional Process
We write LP(S', 1) as (L?). When X is an (LP)-functional process, we write X € LP.

Definition 5. ((L?)-Functional Process) We say X € L? if X = X(¢p,t,2) is a mﬁpping
: S xRY xS — R such that

X((p,t,(l:) = an((p,t) ) Ha(m)';

where c4f-,+) is a mapping : S x R? — R for |a| > 1, and for each p € S, the mapping :
R? 3 t > calp,t) is Borel measurable, and if & = 0, co(-) is just a measurable function

on R?, independent of . Moreover,

E[X(p,t,)"] =) ch(p,t) ol < oo

[2 4
for any ¢ € S, and any t € RY.

Definition 6. ((LP)-Functional Process) We say X € LP if X = X(p,t,z) : SXxR4x S’
— R such that

(a) a mapping : R > t + X(¢,t,z) is Borel measurable for any ¢ € S, p-a.e. z € §';
and

(b) a mapping : S' 3 z — X(p,t,z) € (LP) for any ¢ € S, any t € R

The functional process X (¢,t,z) is called positive or a positive noise if X(p,t,z) > 0
holds p-a.e. z € S’ for any ¢ € S, any t € R%.

Ezample 6. (cf. [LOU]) Let X = X(p,t,z), Y = Y(¢p,t,z) be positive (L?)-functional
processes such that '

Xp(2) =3 0a(¢®) Halz), V(o)=Y bs(6®") - Ho(z).
B

o4

Then the Wick product X QY is also positive.

Theorem 11 [LOU]. ( Characterization of Positive Functional Process) Let X € (L?).
Then X is positive (u-a.e.- x € S') if and only if M™(y) = X(™(iy) - exp(~1|y|?)
positive definite as a matriz of M(n x n) for any n € N, y € R", where X{")(2) =
X(Zl,22,"' )zn7070)"' ,0)

™,

S

Let us consider the WN process. We shall introduce an interesting and important fact

that the WN process provides a typical example of (L?)-functional process, which very
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often can be found useful in applications to stochastic partial differential equations|B],
[D8], [HLOUZ1]. Set W(¢p,t,z) = W) (z), and define pi(u) = ¢(t)(u) = ¢(u - t).
Actually the WN process

Woo(@) = (@00 = [ pu)dBu(o)

is naturally regarded as an (L?)-functional process, i.e. W) € LP.

3.2 The Kondratiev Space Valued Process
Definition 7. (Stochastic Distribution Valued Process)
®=d(t,p,-): RxR"3 (t,p) — &, p)() €(S)™"

is regarded as a stochastic distribution valued process. We call such a function a (S)7!-

process.
Let us consider the derivative of (§)~!-process. Let F(t) be a (S)~!-process: namely,
F(t,):R>tw F(t,-) € (S)™".
Definition 8. = = Z(tp) € (S)~! s said to be a derivative of (S)~1-process F(t) with
respect to t at t =ty if there exists an element = in (S)™! such that
F(to + h) — F(to) _)
h
When the above limit exists, we write Z(to) = 4 (o) (€ (S)™F ).

= in (8)7' (as h—0).

We set HF(t) = ﬁ‘(tg; z) and HE(to) = é(to; z). By virtue of the characterization of
topology of (S)~! (see Proposition 6 in.§2.3), the aforementioned definition is equivalent
to the following:

. N )
an F(to+h,zlz (t"’Z)—»E(to;z) s B0

holds pointwise, boundedly for any z € B,(6) ( 3¢ < 00, § > 0 ). If the mapping : t
4 F(t;2) = £HF(t) is continuous in ¢, and uniformly bounded for any z € B,(6), and
any t in the neighborhood of ¢q, then instead of the condition (17), the condition

d - .
(18) “—OEF(t; z) =E(t;z) for t =tg, pointwise for each z € By(6)”

is just sufficient. Because, if Eq. (18) holds, we can write it as

F(to + h; z) — F(to; 2) _l/t°+hi
' h T hJ, ds

and therefore, this expression turns out to be uniformly bounded for z € By(6) as A tends

F(s;z)ds for small h,

toward zero. If éi—tF exists and is t-continuous, then it follows that (S)~-process F(t) ¢
Cl.
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4. The Stochastic Boundary' Value Problem

4.1 Formulation
We consider the following stochastic boundary value problem:
du(t,r) = {Au(t,r) + R(u(t,r))}dt + h(t,r)u(t,7)dBs,
(19) 0<t<T, rel0,1],
u(t,0) = u(t,1), u(0,7) = uoe(r),

where A is the Laplacian and R(y) is a polynomial of y € R. B; denotes a one dimensional

Brownian motion. h, u¢ are non random functions being continuous. In addition, assume
Ugp € C3.

Definition 9. (Functional Process Solution) u = u(¢p,t,r,z) is said to be a (S)™! func-

tional process solution of Fq. (19) if
u:CP(R) x [0,T] x R — (S)™*

s a Kondratiev space valued functional process and satisfies

(20)  u(t) = uo(r) + /O Avu(s)ds + / RO (u(s))ds + /0 hs, rYu(s)OW ooy (2)ds,

0

for € C§(R) such that ¢s(t) = @(t — s) with boundry condition.

We resort to the asymptotic solution theory. We shall say that u; is an asymptotic
solution for the problem (20) if there exists ux = ux(t,7) solving the reduced, modified

or simplified equation, satisfying
(21) ug(t,r) = u(t,r) in ()71

Let up = ug(p,t,7, z,w) satisfies the following stochastic partial differential equation
(SPDE for short):

(22) uk(t) = uok(r) + /OtAkuk(s)ds + /: R (ux(s))ds

t
+/ hi(s, m)ur(s)OWye)(2)ds + Mi(t,r,w),
0

with boundary condition, where w is an element of some proper probability space on
which a martingale My, is realized. We propose that the asymptotic problem for our case

is to show that

sup [ Xi(t) — @(t)|eo = 0 (k — o),
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for T > 0, if we take Eq.(21) into consideration with characterization of topology in (S)~!
in accordance with Holden-Lindstrgm-@ksendal-Ubge-Zhang formalism (cf. Proposition
6 in §2; see also [HLOUZ1], [HLOUZ2)).

i is a solution solving
(23) 2 (0) = (An +t,)alt) + REO)),

with the initial and boundary conditions, where we put ¢ = k- VTV‘,,. The corresponding -

model for asymptotic solution is described as

(24) ka(t) = (A/c -+ Ck)Xk(t)dt + R(Xk(t))dt + de(t),
with  Xi(¢,0) = Xi(£,1), Xi(0,7) = uor(r).

If we assume boundedness for R and the initial value, then the problem (23) has a
continuous bounded solution by virtue of the implicit approximation scheme. Under
further assumptions on R there exists a unique solution X} for the problem (24). In fact
we can construct it by employing the classical probability theory related to some jump

type Markov processes with suitable conditions.

Theorem 12. Under the assumption of convergence || X (0)—(0)|lcc — 0 in probability,

then we. get
(25) lim P(sup [ X (1) = (D)oo > €) =10,

as far as z € By(8), for some positive §,q.

4.2 The Probabilistic Model

Let us consider the totality of real valued step functions on [0, 1], and we extend those
functions periodically with period 1. We denote the extension by Hy. For f € Hy, we

e Akf(r);k?{f (r-i—%) —2f('r)+f(r——-llg)}.

We shall now introduce the discretized problem of Eq.(23), i.e.,

ot

with the corresp&lding initial and boundary conditions. Then we have the bounded

(26) O k(t,7) = (A + cu)iinlt, ) + R(ia(t, 7)),

solution @(t) for all ¢, and

sup ||@k(t) — @(t)]|eo < C(T, R,u0) - C'(k) for T >0,
t

b
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with C'(k) = O(k™1), ( k — c0).
While we consider the following SPDE driven by a martingale term M:

(27) dX(t,7) = {A, + c(t,r)}X (¢, 7)dt + R(X(t,7))dt + dM;.

We follow the standard notation in stochastic analysis (e.g. [IW]). Let M be a continuous
square integrable local martingale on (2, F,P; F,). If the quadratic variation process of
M is given by an integral of G(s,w)? relative to s over [0,t] where G(# 0) is a (F;)-
predictable process and belongs to LZ([0, T|) with probability one, then the representation
theorem for martingales(p.90, [IW]) guarantees that there exists an extension (', F',IP)
with F! and there exists an (F;)-Brownian motion such that M(t) = fot G(s) dB(s).
So we assume that Eq.(27) has a solution (X, B) on ', F,P). Define an Al process
(t, X) = —c(t,r) X(¢t,7) G(t)~*. Further suppose that

t
(28) Eexp(%/ |7(s,X)|2ds> <oo, Vt>0,
0

(29) Fexp{/ v(s, X)dB(s) — —2—/ lv(s, X)|2ds} is a (F;) — martingale.
0 0

- Put P = TP and B(t) = B(t) ——f; v(s,X)ds. An application of the Girsanov theorem|G]
allows that B(t) becomes a (F})-Brownian motion on (%, ', P). Therefore (X, B) on
(QV, F', P) solves the stochastic equation:

(30) dX(t,r) = AX(t,7)dt + R(X(t; r))dt + dM,,

with M(t) = fot G(s)dB(s). On the other hand, we consider the stochastic process U(t)
describing a density dependent birth and death process. In fact, let U(t) = (Uy(2),-- -,
Uk(?)) be a N*_valued jump type Markov process whose Markovian particle may diffuse
on the circle in accordance with simple random walk with jump rate 2k?, and besides
with birth rate pR;(U;/p) and with death rate pR,(U;/p) where p is a given parameter
and R = R; — R;. We can construct such a process U(t) by classical probability theory
and realize it as a cadlag process on some suitable probability space. FI denotes the
completed o-field of o(U(s);s < t). Let T(w) be an F} stopping time satisfying

{w e T(w) <ty eFP forvt, and sup{U(tAT(w)): Ip)>o(w)} < .
t

Then by martingale theory [LS] it follows that

tAT(w)
Uit A T(w)) — / (U, R, p, i s)ds
0
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is an F7-martingale [BL], where we set ®(U,R,p,4;s) = pR(U:(s)/p) + k*{Uip1(s) +
U;—1(s) — 2U(s)}. Define

Xe(t,7r) :=U;(t)/p for reli/k,(i+1)/k), i=1,2,---,k—1.

Thus we attain that the Hy valued Markov process X satisfies the discretized version
of Eq.(30):

(31) dX(t, 1) = ApXe(t,7)dt + R(X(t,7))dt + dM(t).

4.8 Law of Large Numbers for the Stochastic Problem

In order to prove Eq.(25) it is sufficient to show that

Poup 1 Xe(t) - i()]n > ¢}

converges to zero as k tends toward infinity. Set Ty = exp(tAg) and

Ye(t) = /0 oAl (s A T(w)).

Moreover, a simple calculation leads to ||[6X(t A T(w))||eoc = O(p~!) with precise esti-
mates. On this account, the problem can be attributed finally to computation of the

term sup, ||Yz(?)|lo- In fact we need to estimate

t€la,b| t€la,b]

sup [[Yi(t)lleo < C1l|¥i(a)lleo + C2 sup [[Mi(t A T(w)) — Mi(a AT(w))|leo-

By making use of Gronwall’s inequality, Markov’ inquality and Doob’s inequality, we
deduce that

IP’{C’;;(T) sup ||Yk(t)||°° > 8} < Cy(k,p,€),

t€lc,
because we applied martingale theory. For the final estimate, we need Lemma 4.4, p.135
[BL).
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