表面弾性波の干渉を利用した微細粒子のトラッピング

Trapping of Fine Particles by Using Interference of Surface Acoustic Waves

プロジェクト代表者:加藤 寛(理工学研究科 人間支援・生産科学部門 教授) Hiroshi KATO (Professor, Division of Mechanical Science and Engineering, Graduate School of Science and Engineering)

1 緒 言

近年, MEMS(Micro Electro Mechanical System)に関 して多くの研究がなされているが, MEMS を構成す る部品は微小であり, その加工, 製作に当たって微 小物体を精密に位置制御する技術が必要となる.

現在, 微小物体の位置制御, マニピュレーション 技術としては, レーザー光を用いて細胞や粒子等を トラッピングするレーザートラッピング法[1]や, 走 査型トンネル顕微鏡 (STM)を用いた電荷トラッピ ング[2]などが知られている.しかし, レーザートラ ッピング法ではレーザー光を透過させるために透 明な媒体を必要とする.また, STM 法では静電気 力や電磁気力を用いるため,磁性体や誘電体には応 用できない.これに対し, 超音波の干渉を利用して 微小物体の位置制御を行なうための技術の開発が 進められており,これに関する報告[3]~[5]もすでに なされている.これらは水中などの媒体中を伝播す る超音波の重ね合わせを利用しているが,本研究で は、表面弾性波の干渉により出現させた定在干渉波 を利用して、微小粒子の位置制御を行なわせるため の技術の開発を目的としている.そこで、まず、表 面弾性波の重なりによる定在干渉波の発生を確認 し、次いで、定在干渉波による微小粉末の縞状分布 の観察を試みることとした.

2 実験方法

2.1 表面弾性波の発生及び減衰測定

表面弾性波の発生方法には幾つかの方法があり, 例えば,表面弾性波発生用の接触型探触子も市販さ れている.また,物体表面にくし型電気回路を描き, 直接,表面弾性波を発生させる方法も実用的に用い られている.本研究では,以下の方法により表面弾 性波を発生させた.すなわち,水中にある物体の表 面に,入射角度 30°で超音波を入射させると,Snell の法則により物体表面近傍を伝播する表面弾性波 が生じる.そこで,試験片の面法線方向から 30°傾

Fig. 1 Setup for generating standing interference wave.

けて発信子(発信周波数5MHz,非集束型)を配置 し,発信させた.これにより,試験片表面に表面弾 性波が発生・伝播していった.試験片表面からの高 さを変えて受信子(発信周波数5MHz,非集束型) を移動して,音圧分布を測定した.なお,受信子の 移動は0.0525mm単位で行なった.

次いで, Fig.1 に示すように,2個の発信子を対向 する方向に配置し,逆向きに表面弾性波を発生・伝 播させて重ねあわせ,定在干渉波を生じさせ.受信 子を種々の高さで移動して音圧分布を測定した.

2.2 定在干渉波に従う微小粒子の周期的分布の観察

まず、平均粒径 0.06 µmのアルミナ粒子を水中で 撹拌して、ポリティ A550 で分散させたものを用意 した. 次いで、Fig.2 に概要図を示すように、2 個の 発信子を対向させて配置し、発信させた. 定在干渉 波が発生していると思われる中央部付近に、ピペッ トでアルミナ粒子を含む液体を注入した. この操作 を実体顕微鏡の下で行い、超音波発信の前後でアル ミナ粒子の分布を撮影した.

3 結果及び考察

3.1 表面弾性波の音圧分布に及ぼす測定位置の影 響

Fig. 3 に、表面弾性波を干渉させた場合の、音圧 分布を示す. その結果、表面弾性波が Al 合金平板 上を伝播する場合の波長の半分(約0.3mm)の周期 を持つ正弦波状振幅分布を生じることが分かった が、測定位置 (Y_R)が高くなるに従って、音圧は高 くなった. これは、水中を伝播する際の減衰を考慮 すると、予想とは逆の結果であった.

そこで、表面弾性波の伝播に伴う音圧の変化を測 定した結果、Fig. 4 に示すように、伝播距離が長く なるに従って、表面弾性波の強度は指数関数的に減 衰していった.これに対し、受信子の高さを変化し て音圧変化を測定した場合、測定範囲内(試験片表 面~高さ 30 mm 程度)でほぼ一定となった.この 結果より、表面弾性波が固体表面を伝播していく場

Fig. 2 Setup for distribution of alumina particles under cyclic distribution of sound pressure of SAW.

Fig. 3 Pressure distribution of SAW along specimen surface at different height Y_{R} .

Fig. 4 Change in peak intensity of SAW with propagation distance.

合の減衰は、水中を伝播する縦波の減衰に比べて非 常に大きいことがわかった.この結果を受けて、水 中を伝播する縦波の減衰を無視し、表面弾性波の減 衰のみを考慮して、試験片表面からの高さを変えて 測定した結果を比較した結果、Fig.5に示すように、 測定高さを変化した場合の音圧分布(図中○)は、 受信子を試験片に沿って水平に移動して測定した 音圧分布(図中●)とよく一致した.

以上の測定結果より,固体表面を表面弾性波とし て伝播する場合は,超音波が水中を伝播する場合に 比べて非常に大きく減衰する事がわかった.

3.2 定在干渉波の下での微小粒子の分布

Fig. 6 (a)に、表面弾性波を干渉させて定在干渉波 を生じさせた領域にアルミナ粒子を投入した場合 のアルミナ粒子の分散状況を示す.分散剤を用いた にもかかわらず、アルミナ粒子は凝集して塊状とな ったものが多く、明確な分布が観察されなかった. そこで、超音波発信の前後の画像の差を取り、凝集 していないアルミナ粒子の分布状況を観察した結 果を Fig. 6 (b)に示すが、やはりアルミナ粒子は明確 に縞状分布を示さなかった.

表面弾性波の干渉によりアルミナ粒子の縞状分 布が観察されなかったことから,超音波による音圧 が不十分であったものと考え,更に音圧の高い状況 で超音波干渉による微細粒子の分散を観察した.す なわち,超音波が試験片表面に入射すると,その多 くは表面で反射される.そこで,相対する発信子の 表面反射波を水面近傍で干渉させ,定在干渉波を生 じさせ,水面に浮遊させた微細粒子の分布を観察し た.微細粒子として小麦粉を用い,測定した結果を Fig.7に示すが,小麦粉の縞状分布は観察されなか った.

以上の結果,表面弾性波並びに反射縦波を干渉さ せて生じさせた定在干渉波による微細粒子の縞状 分布は観察されなかった.今後は,超音波探触子か らの発信波を直接対向させて干渉させ,得られた定 在干渉波により微細粒子が縞状分布を形成する状 況を観察していく.

Fig. 5 Comparison of peak intensity of SAW obtained under different measurement directions.

4 結 言

- 表面弾性波が固体表面を伝播するに従って減衰 していくが、この減衰は水中を伝播する縦波の 減衰に比べてかなり大きいことが分かった.こ れらの減衰の違いを考慮した結果、種々の条件 で測定された音圧分布は同一の曲線上にプロッ トされた.
- 表面弾性波の干渉により生じさせた定在干渉波 により、微細粒子を縞状分布させる試みを行っ たが、微細粒子の縞状分布は明瞭に観測されな かった。

参考文献

- 例えば,
 細川陽一郎ら:日本レーザー医学会誌, vol. 26,
 No. 1, pp. 45-52, 2005
 池野順一:セラミックス, vol. 38, No. 11, pp. 877-879, 2003
 [2] 例えば,
 - S.W. Hla: J. Vac. Sci. Technol. B, vol. 23, No. 4, pp. 1351-1360, 2005 A. Kraus: Surface Interface Anal., vol. 37, No. 2, pp. 96-100, 2005 水谷 亘:精密工学会誌, vol. 68, No. 11, pp.
 - 1411-1414, 2002

(a) Particle distribution

(b) Image difference

Fig. 6 Distribution of alumina particle under interference wave of SAW.

(a) Particle distribution

(b) Image difference

Fig. 7 Distribution of wheat powder under interference of surface reflection wave (SRW).

G Meyer: Rev. Sci. Instrum, vol. 67, No. 8, pp. 2960-2965, 1996

- [3] J.F. Spengler and W.T. Coakley: AIchE J., vol. 49, No. 11, pp. 2773-2782, 2003
- [4] W.T. Coakley, et. al.: Collids. Surf. B, vol. 34, No. 4, pp. 221-230, 2004
- [5] 小塚晃透:日本音響学会誌, vol. 61, No. 1, pp. 154-159, 2005