A STUDY OF AUTOMORHIC FORMS

HISASHI KOJIMA

(Department of Mathematics, Faculty of Science, Saitama University)

$\S 1$ Notation and genus characters. We denote by $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We fix an totally real number field F of degree n with class number one and denote by \mathfrak{o}, d_{F}, and \mathfrak{d}, the maximal order of F, the discriminant of F and the different of F relative to \mathbb{Q}, respectively. We denote by E the unit group of F. Let $\tau_{1}, \cdots, \tau_{n}$ be the isomorphisms of F to \mathbb{R}. For each $\alpha \in F$, we put $\alpha^{(\nu)}=\tau_{\nu}(\alpha)(1 \leq \nu \leq n)$. We assume that $\left[E: E^{+}\right]=2^{n}$ with $E^{+}=\{\epsilon \in E \mid \epsilon \gg 0\}$. For an element N of o satisfying $N \gg 0$, put $\tilde{\Gamma}_{0}(N)=\left\{\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathfrak{o})|N| c\right.$ and $\left.\operatorname{det} \gamma \gg 0\right\}$. Put $\mathfrak{H}=\{z \in \mathbb{C} \mid \Im(z)>0\}$. We define two actions of $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathfrak{o})$ on \mathfrak{H}^{n} and $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ by
$z \rightarrow \gamma(z)=\left(\frac{a^{(1)} z_{1}+b^{(1)}}{c^{(1)} z_{1}+d^{(1)}}, \cdots, \frac{a^{(n)} z_{n}+b^{(n)}}{c^{(n)} z_{n}+d^{(n)}}\right) \quad$ for every $z=\left(z_{1}, \cdots, z_{n}\right) \in \mathfrak{H}^{n}$
and
$(\tau, z) \rightarrow \gamma(\tau, z)=\left(\frac{a^{(1)} \tau_{1}+b^{(1)}}{c^{(1)} \tau_{1}+d^{(1)}}, \cdots, \frac{a^{(n)} \tau_{n}+b^{(n)}}{c^{(n)} \tau_{n}+d^{(n)}} ; \frac{z_{1}}{c^{(1)} \tau_{1}+d^{(1)}}, \cdots, \frac{z_{n}}{c^{(n)} \tau_{n}+d^{(n)}}\right)$
for every $(\tau, z)=\left(\tau_{1}, \cdots, \tau_{n} ; z_{1}, \cdots, z_{n}\right) \in \mathfrak{H}^{n} \times \mathbb{C}^{n}$. We also define an action of $(\lambda, \mu) \in \mathfrak{o}^{2}$ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ by

$$
(\tau, z) \rightarrow(\lambda, \mu)(\tau, z)=\left(\tau_{1}, \cdots, \tau_{n} ; z_{1}+\lambda^{(1)} \tau_{1}+\mu^{(1)}, \cdots, z_{n}+\lambda^{(n)} \tau_{n}+\mu^{(n)}\right)
$$

for every $(\tau, z) \in \mathfrak{H}^{n} \times \mathbb{C}^{n}$. Let N and $k=\left(k_{1}, \cdots, k_{n}\right)$ be elements such that $N \in \mathfrak{o}, k \in \mathbb{Z}^{n}$. We consider a holomorphic function $\phi(\tau, z)$ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ satisfying the conditions:

$$
\text { (i) } \phi(\gamma(\tau, z))=(c \tau+d)^{k} e\left[\operatorname{tr}\left(\frac{N}{\delta}\left(\frac{c z^{2}}{c \tau+d}\right)\right)\right] \phi(\tau, z) \text { for every } \gamma=\left(\begin{array}{ll}
a & b \tag{1-2}\\
c & d
\end{array}\right)
$$

$\in S L_{2}(\mathfrak{o})$,
(ii) $\quad \phi((\lambda, \mu)(\tau, z))=e\left[-\operatorname{tr}\left(\frac{N}{\delta}\left(\lambda^{2}+2 \lambda z\right)\right)\right] \phi(\tau, z) \quad$ for every $(\lambda, \mu) \in \mathfrak{o}^{2}$ and

$$
\text { (iii) } \phi(\tau, z)=\sum_{n, r \in \mathfrak{o}^{2}, 4 N n-r^{2} \gg 0} c(n, r) e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right]\right. \text {, }
$$

where $\quad(c \tau+d)^{k}=\prod_{i=1}^{n}\left(c^{(i)} \tau_{i}+d^{(i)}\right)^{k_{i}}, e\left[\operatorname{tr}\left(\frac{N}{\delta}\left(\frac{c z^{2}}{c \tau+d}\right)\right)\right]=e\left[\sum_{i=1}^{N} \frac{N^{(i)}}{\delta^{(i)}}\left(\frac{c^{(i)} z_{i}^{2}}{c^{(i)} \tau_{i}+d^{(i)}}\right)\right]$, $e\left[-\operatorname{tr}\left(\frac{N}{\delta}\left(\lambda^{2} \tau+2 \lambda z\right)\right)\right]=e\left[-\sum_{i=1}^{n}\left(\frac{N^{(i)}}{\delta^{(i)}}\left(\left(\lambda^{(i)}\right)^{2} \tau_{i}+2 \lambda^{(i)} z_{i}\right)\right)\right.$ and $e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right)\right]$ $=e\left[\sum_{i=1}^{n}\left(\frac{n^{(i)}}{\delta^{(i)}} \tau_{i}+\frac{r^{(i)}}{\delta^{(i)}} z_{i}\right)\right]$. We denote by $J_{k, N}^{\text {cusp }}$ the set of all such functions ϕ. We call such a ϕ a Jacobi cusp forms of index N and of weight k over F. We introduce the Jacobi group $\Gamma(1)^{J}=\left\{\left(\gamma,(\lambda, \mu) \mid \gamma \in S L_{2}(\mathfrak{o}), \lambda, \mu \in \mathfrak{o}\right\}\right.$ determined by the group law $(\gamma,(\lambda, \mu)) \cdot\left(\gamma^{\prime},\left(\lambda^{\prime}, \mu^{\prime}\right)\right)=\left(\gamma \gamma^{\prime},(\lambda, \mu) \gamma^{\prime}+\left(\lambda^{\prime}, \mu^{\prime}\right)\right)$ for every $\gamma, \gamma^{\prime} \in S L_{2}(\mathfrak{o})$, (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right) \in \mathfrak{o}^{2}$. We define an action of $(\gamma,(\lambda, \mu)) \in \Gamma(1)^{J}$ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ by (1-3)

$$
(\tau, z) \rightarrow(\gamma,(\lambda, \mu))(\tau, z)=\left(\frac{a \tau+b}{c \tau+d}, \frac{z+\lambda \tau+\mu}{c \tau+d}\right) \quad \text { for every }(\tau, z) \in \mathfrak{H}^{n} \times \mathbb{C}^{n}
$$

For a function ϕ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ and $(\gamma,(\lambda, \mu)) \in \Gamma(1)^{J}$, define a function $\left.\phi\right|_{k, N}$ $(\gamma,(\lambda, \mu))$ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ by

$$
\begin{equation*}
\left.\phi\right|_{k, N}(\gamma,(\lambda, \mu))(\tau, z)=(c \tau+d)^{-k} e\left[\operatorname{tr}\left(\frac{N}{\delta}\left(\frac{-c(z+\lambda \tau+\mu)^{2}}{c \tau+d}+\lambda^{2} \tau+2 \lambda z+\lambda \mu\right)\right)\right] \tag{1-4}
\end{equation*}
$$

$\times \phi(\gamma,(\lambda, \mu))(\tau, z)$ for every $(\tau, z) \in \mathfrak{H}^{n} \times \mathbb{C}^{n}$.
For α and β in \mathfrak{o} satisfying $(2, \beta)=1$, define a symbol $\left(\frac{\alpha}{\beta}\right)$ by

$$
\left(\frac{\alpha}{\beta}\right)=\prod_{i=1}^{s}\left(\frac{\alpha}{\mathfrak{p}_{i}}\right)^{e_{i}} \text { and }\left(\frac{\alpha}{\mathfrak{p}_{i}}\right)=\#\left\{x \in \mathfrak{o} / \mathfrak{p}_{i} \mid x^{2} \equiv \alpha\left(\bmod \cdot \mathfrak{p}_{i}\right)\right\}-1
$$

where $(\beta)=\prod_{i=1}^{s} \mathfrak{p}_{i}^{e_{i}}$ with an odd prime ideal $\mathfrak{p}_{i}(1 \leqq i \leqq s)$. Let ρ and Δ be elements satisfying the conditions that

$$
\begin{equation*}
\rho \in \mathfrak{o} / 2 N \mathfrak{o}, \Delta \in \mathfrak{o}, \Delta \gg 0 \text { and } \Delta \equiv \rho^{2}(\bmod .4 N) \tag{1-5}
\end{equation*}
$$

We consider a set of quadratic forms $L_{N, \Delta, \rho}$ defined by

$$
\begin{equation*}
L_{N, \Delta, \rho}= \tag{1-6}
\end{equation*}
$$

$$
\left\{\left.Q=[N a, b, c]=\left(\begin{array}{cc}
N a & b / 2 \\
b / 2 & c
\end{array}\right) \right\rvert\, a, b, c \in \mathfrak{o}, b^{2}-4 N a c=\Delta \text { and } b \equiv \rho(\bmod .2 N)\right\}
$$

Assume that D_{0} is an element of \mathfrak{o} such that $D_{0} \mid \Delta$ and Δ / D_{0} is square modulo $4 N$. Moreover, we impose the following condition: $D_{0} \ll 0,\left(D_{0}, 4 N\right)=$ 1 , the finite part of the conductor of the abelian extension

$$
\begin{equation*}
F\left(\sqrt{D_{0}}\right) \text { over } F \text { equals }\left(D_{0}\right) \text { and } D_{0}=\pi_{1}^{*} \cdots \pi_{l}^{*} \text { with distinct primary } \tag{1-7}
\end{equation*}
$$

odd prime elements π_{i}^{*} of $F(1 \leqq i \leqq l)$. We define a genus character $\chi_{D_{0}}(Q)$ by

$$
\chi_{D_{0}}(Q)= \begin{cases}\left(\frac{m}{D_{0}}\right) & \text { if }\left(a, b, c, D_{0}\right)=1 \tag{1-8}\\ 0 & \text { otherwise }\end{cases}
$$

for every $Q=[N a, b, c] \in L_{N, \Delta, \rho}$, where m is an element of \mathfrak{o} such that $\left(m, D_{0}\right)=1$ and $m=a N_{1} x^{2}+b x y+c N_{2} y^{2}$ for some N_{1}, N_{2}, x and $y \in \mathfrak{o}$ with $N=N_{1} N_{2}$ and $N_{1} \gg 0, N_{2} \gg 0$. Let $r_{0}, n_{0}, r, n^{\prime}$ and $b \in \mathfrak{o}$ denote elements such that

$$
\begin{equation*}
D_{0}=r_{0}^{2}-4 N n_{0}, D=\Delta / D_{0}=r^{2}-4 N n^{\prime} \text { and } b \equiv r_{0} r(\bmod .2 N) \tag{1-9}
\end{equation*}
$$

Given an integral ideal (a) in F, we define a sum F_{a} by

$$
\begin{equation*}
F_{a}=F_{a}\left(N, r_{0}, n_{0}, r, s, n^{\prime}\right)=N(a)^{-1} \sum_{\lambda(a)^{*}} \sum_{x, y \in(a)} e\left[\operatorname{tr}\left(\frac{\lambda F(x, y)}{a \delta}\right)\right] \tag{1-10}
\end{equation*}
$$

with $F(x, y)=N x^{2}+r_{0} x y+n_{0} y^{2}+r x+s y+n^{\prime}$ with $s=\left(r_{0} r-b\right) / 2 N$.

Proposition 1.1. Suppose that D_{0} satisfies the condition (1-10). Then

$$
N(a)^{-1} \sum_{(d) \mid a, d \gg 0}\left(\frac{d}{D_{0}}\right) F_{a / d}=\left\{\begin{array}{lc}
\chi_{D_{0}}\left(\left[N a, b, \frac{b^{2}-\Delta}{4 N a}\right]\right) & \text { if } a \left\lvert\, \frac{b^{2}-\Delta}{4 N}\right. \tag{1-11}\\
0 & \text { otherwise }
\end{array}\right.
$$

§2 A correspondence from Jacobi forms to Hilbert modular forms. Let $k=\left(k_{1}, \cdots, k_{n}\right)$ be an element of \mathbb{Z}^{n} with $k_{i}>1(1 \leqq i \leqq n)$. We denote by $S_{2 k}\left(\tilde{\Gamma}_{0}(N)\right)$ the space of cusp forms of weight $2 k$ with respect to $\tilde{\Gamma}_{0}(N)$. Given Δ and D_{0} satisfying (1-5) and (1-7), we define a function $f_{k, N, \Delta, \rho, D_{0}}(z)$ on \mathfrak{H}^{n} by

$$
\begin{equation*}
f_{k, N, \Delta, \rho, D_{0}}(z)=\sum_{Q \in L_{N, \Delta, \rho}} \frac{\chi_{D_{0}}(Q)}{Q(z, 1)^{k}} \text { for every } z=\left(z_{1}, \cdots, z_{n}\right) \in \mathfrak{H}^{n} \tag{2-1}
\end{equation*}
$$

where $Q(z, 1)^{k}=\prod_{i=1}^{n}\left(N^{(i)} a^{(i)} z_{i}^{2}+b^{(i)} z_{i}+c^{(i)}\right)^{k_{i}}$ with $Q=[N a, b, c]$. We see that $f_{k, N, \Delta, \rho, D_{0}}(z)$ belongs to the space

$$
\begin{equation*}
M_{2 k}(N)^{\operatorname{sgn} D_{0}}=\left\{f \in S_{2 k}\left(\tilde{\Gamma}_{0}(N)\right) \left\lvert\, f\left(-\frac{1}{N z}\right)=\left(-N z^{2}\right)^{k}\left(\operatorname{sgn} D_{0}\right) f(z)\right.\right\} \tag{2-2}
\end{equation*}
$$

with $\operatorname{sgn} D_{0}=\prod_{i=1}^{n} \operatorname{sgn} D_{0}^{(i)}$. Given a $(n, r) \in \mathfrak{o}^{2}$ satisfying $r^{2}-4 N n \ll 0$, we define a function $P_{k, N,(n, r)}(\tau, z)$ on $\mathfrak{H}^{n} \times \mathbb{C}^{n}$ by

$$
\begin{equation*}
P_{k, N,(n, r)}(\tau, z)=\left.\sum_{\gamma \in \Gamma_{\infty}^{J}(1) \backslash \Gamma^{J}(1)} e^{n, r}\right|_{k, N} \gamma(\tau, z), \tag{2-3}
\end{equation*}
$$

where $\Gamma_{\infty}^{J}(1)=\left\{\left.\left(\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right),(0, \mu)\right) \right\rvert\, n, \mu \in \mathfrak{o}\right\}$ and $e^{n, r}(\tau, z)=e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right)\right]$.
Define a function $\Omega_{k, N, D_{0}, r_{0}}(w ; \tau, z)$ on $\mathfrak{H}^{n} \times\left(\mathfrak{H}^{n} \times \mathbb{C}^{n}\right)$ by

$$
\begin{align*}
& \Omega_{k, N, D_{0}, r_{0}}(w ; \tau, z)=c_{k, N, D_{0}} \tag{2-4}\\
& \quad \times \sum_{(n, r)}\left(4 N n-r^{2}\right)^{k-1 / 2} f_{k, N, D_{0}\left(r^{2}-4 N n\right), r_{0} r, D_{0}}(w) e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right)\right]
\end{align*}
$$

with $c_{k, N, D_{0}}=(-2 i)^{k-1} 2^{n-1} \delta^{-3 / 2} N^{1-k} \pi^{-k}\left|D_{0}\right|^{k-1 / 2}$, where (n, r) runs over $c(N)=$ $\left\{(n, r) \in \mathfrak{o}^{2} \mid 4 N n-r^{2} \gg 0\right\}$. We may deduce the following theorem.

Theorem 2.1(A basic identity). Suppose that $D_{0}=r_{0}^{2}-4 N n_{0}$ satisfies the assumption (1-7). Then

$$
\begin{align*}
& \Omega_{k, N, D_{0}, r_{0}}(w ; \tau, z)=c_{k, N, D_{0}}(2 \pi)^{k} i^{k-1}(k-1)!^{-1} \delta^{-k+1 / 2} \tag{2-4}\\
& \quad \times \sum_{m \in \mathfrak{0}, m \gg 0} m^{k-1}\left(\sum_{d d^{\prime}=m, d \in \mathfrak{0}^{+} / E^{+}}\left(\frac{d}{D_{0}}\right)\left(d^{\prime}\right)^{k} P_{k+1, N,\left(n_{0}\left(d^{\prime}\right)^{2}, r_{0} d^{\prime}\right)}(\tau, z)\right) e\left[\operatorname{tr}\left(\frac{m w}{\delta}\right)\right] .
\end{align*}
$$

Define a mapping $\Psi_{D_{0}, r_{0}}(\phi): J_{k+1, N}^{\text {cus }} \rightarrow M_{2 k}(N)^{\text {sgn } D_{0}}$ by

$$
\begin{equation*}
\Psi_{D_{0}, r_{0}}(\phi)(w)=\left\langle\phi, \Omega_{k, N, D_{0}, r_{0}}(-\bar{w} ; *)\right\rangle \text { for every } \phi \in J_{k+1, N}^{\text {cus }} \tag{2-5}
\end{equation*}
$$

By virtue of Theorem 2.1, we may deduce that

$$
\begin{align*}
& \Psi_{D_{0}, r_{0}}(\phi)(w) \tag{2-6}\\
& =\sum_{m \in \mathfrak{o}, m \gg 0}\left(\sum_{(d) \mid m, d \gg 0}\left(\frac{d}{D_{0}}\right) d^{k-1} c\left((n / d)^{2} n_{0},(n / d) r_{0}\right)\right) e\left[\operatorname{tr} \frac{m w}{\delta}\right]
\end{align*}
$$

with $\phi(\tau, z)=\sum_{(n, r) \in C(N)} c(n, r) e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right)\right]$. We may define Hecke operators on $J_{k+1, N}^{\text {cusp }}$. We may derive that this mapping $\Psi_{D_{0}, r_{0}}$ is commutative the action the Hecke operators.
§3 Fourier coefficients of Jacobi forms and the critical values of the zeta function associated with Hilbert modular forms. Let $\phi(\tau, z)=\sum_{(n, r) \in C(N)}$ $c(n, r) e\left[\operatorname{tr}\left(\frac{n}{\delta} \tau+\frac{r}{\delta} z\right)\right]$ be an element of $J_{k+1, N}^{\text {cusp }}$. We deduce the following theorem.

Theorem 3.1. Let D_{0} be an element satisfying the condition (1-7). Suppose that ϕ is an eigenfunction of Hecke operators on $J_{k+1, N}^{\text {cusp }}$ and satisfies the assumption about multiplicity one theorem concerning Hecke operators. Then

$$
\begin{equation*}
\left|c\left(n_{0}, r_{0}\right)\right|^{2}=\frac{\langle\phi, \phi\rangle}{\langle f, f\rangle}(k-1)!\frac{\delta^{k-3 / 2}\left|D_{0}\right|^{k-1 / 2}}{2^{2 k-1} N^{k-1} \pi^{k}}\left(E^{+}: E_{0}\right) D\left(k_{0}, \chi,\left(\frac{*}{D_{0}}\right)\right) \tag{3-2}
\end{equation*}
$$

where $D\left(s, \chi,\left(\frac{*}{D_{0}}\right)\right)$ is the zeta function attached to the eigenvalues χ of f twisted by a character $\left(\frac{*}{D_{0}}\right)$ in the sense of Shimura, $k_{0}=\max \left\{k_{1}, \cdots, k_{n}\right\}, E_{0}=\left\{\epsilon^{2} \mid \epsilon \in\right.$ $E, \epsilon^{2} \equiv 1\left(\right.$ mod. $\left.\left.D_{0}\right)\right\}$ and f is the primitive form associated with $\Psi_{D_{0}, r_{0}}(\phi)$.

