BEREFRICNT OBNTFHL
2 EViED EDH—EROME

(GERAZES 11640367)

RN FEE~TR 13 EERFHREMDE (ZBHRE © 2)
MERRBEE

TR 1443 A
MEREE kR BB
(B EXFEBPEHHIR)

BERFHIEHNEEE

MR

998005257




k-1~

15 EARFMIEXEE

LA 998005257

BAYBESBCEER, EVETR, FREGR COBMEEEFROETIREZERIIC
ELLREBRTSZ L3, BROUHEDEFZIIBITIEROBETH S, @ﬂ:%%f‘%ﬁik
FHEERIIONWTIE, ETHEOBERFTRETHILEZLNTHEE, 4f BEFE2ET
BEVETRIELEWOLLIX, BEBETHELNZ S,

BAHEEFROBEFREBELRT 511, "—FJ—- 77&/%&“14&73(&90 LDA
WP ERAWEAY FRER, RENICE—FEIETH 201, EEREBOMELSMIE
L GBI TE RV,

AR ORBIR & 1X, BIORFZTHIE, BRI — o FAZRIAF—BNAV K. =
RINX—FZDPICEEDRFRRIRTH Y, BHBEYEORRIZIZ, Pt d, AUF
R & BRFBRO®E S TE LWERSLETH D, ZNIZBEXHERY, BNSFIEER
(Dynamical Mean-Field Theory(DMFT)L2TCH 275, ZDOEH®BITIAL L RIZBIT55FH
ELLERGLTEY, mEEY, ZEMRT d DERXOFREHLRBRTIX, BEBIZELWY
LB, Lo T, d=3 128V TiE, Vd 0BKRELZERT 5 LWV HIEKRIZBWTE
Pl L 2523, ¥4FsH O Hubbard #52351) 5 Mott—Hubbard &8 % 2k TX 3,
SRDEBGIZELL 743k 25k Y, ThETORMBEBEFROBERITIIRVE
NEMEEE-TEY, ERMHICLIVI LS, BFTLFT O, FRROBRENE
LR ELDOEBENPLALMICENTWS, ¥, EFRCHTIBNSFHEERD,
— M) — Tty 7B (BEFRORFREREFITINDZELH D) %zt/zék:bb‘
BoFHEREDOKREREVE, BFNREEDIRETXTRVRARAIBZLTHD, =

iz, BRSFHERCIVE, BT LOBTFEERR, AOEEFTD 1 @0 (ZEHR
DY) FAHYBHBIIREIND O THD, ZORMPBEEZELETIX, RETHZR
BRIIELELED TT_NTRYV AL Z ENTE S,

Lo LAans, BNSTFHEERIE, 1V/doBREZERLTWSHIZ, ERBNICER >
FELZEFRDVANAZIENTERY, ZOXRKAIIKL, 1/d OBROZNEE RERITEY
AMNBRABLRENTWS, ERETSIITFRISND LY, d=xoizRiT3 1 HORMY)
OO VIZ, THBDI TAZ—2W/IFETHD, ZEEOLHIFICII2EYHY, DE
ZRICBIT DR 7 7 AF -, Fiid, QERERIIBIZIFRE—Y, 2ZNEH
WMAT B, REOFEX, TIAT Y « =V AOBREEDROETREERES D, A&
REHFOERRKE <, EEMTIIEEROMEE (N7 7RF5—) 2F->Tn5HZ
LB, LEBR-TINDOOFETIE, REZEEFERARAETERICRS, EEEE

UNSREE) OMBEMRIIMVIADRNI LIRS, £, ThbDERITRREBOK
BHEEZSEL L, N FHELHEAEDETREOWEICEBT 5ITIZmMR,

—F, BFBERAICBITAIEIELEFALE2RERT 2B RmL LU, FALLDE
CEEEDACVELEFOEHR YBMOATVWS, Z0ERITZ, BHMEOEFREZATET



RPA JFZHERE LT, ACVDRELEZIV AL, WS DDOEREEH 55, Hi
DEBHANZ, LOLEAEEZOWEERIL T, BEREIIXT2RMAIZFH AN
T, zt/ﬁaéwﬁﬁémwﬁbté%%ﬁﬁmﬂ EHEELTWS, FTADIE, i
PHEMABEOBVWETRICBILREL TERL 9, EROMBITIZHHRIIL T3,

KR O BB, r W7z 2 DOFE, [BNSFEER) L AV VELEDER)

EHAL, BHEEEFRIIHLTHLAVSZE0TES, Lib, TEAHBYIZukE
BT 2E-o, SRS FEEREBATRAEVELEFOUREEALER) 28875
ZEithot, FOBEIHILoT, FHxlx, AR 1 THYBEORE L L CUIREES
ErE, BN FEEROHERX T L THMREFRHRELRD, FRE2 AL TE
FROBWEHREERD T, ZRICH LAV EOEOERELEAL, BMANZ L >T—
BEMROBEEREEZRDRBL TS, AV UVELTOHERBIZBVWTRER L LA
WARZ ERZEVEBBERIIR> TWEE, BEFERREEOEEORRIX, THORE Y
BOLTOHEGBLAKOEE TR TH A,

FERELTIE, APUCORLELEDEZFLERECEBE IR >TRVWIE, K
EEHHBEAOTVB2HI, BRIZIZ7uREMERZITR>TWHRWI E, BhiFbh
Ho INBHIX, d<olZxtT 27 FRAZ—EHELBELEND, SBREBLARThERL2
[N

ZAECDOERLENEELRBREZRZLTVBELVDbRTWEHEEL LTIX, BABHR
(B—Ry 7R, ~NVFHE) BbiFond, K, BEEEFRIIBT 2AEDHE
PEBINTEY, BNEEADHRICER L T=RXAF—ITKkE {EETHIRED, K&7%
BETBHMRE LT E L THBEIN TS, LrLARAS, BEBERICBIT ZEES
RIEITNETHELIARLGN TR, £ZT, FHFETE, U1 OKRLBHEL TE
TR ERRE, & <IZYbBiz & FeSi OBERIZ OV TOFEEITo 2, FeSilzonTix
N FHETRODONTWAREEEZHY, ZTRETHAWTE & 2-30 FERNZ, EX
BHOTNZEENTWB EEET R E, ERZISHUATESL Z Loz, YbBrziZ
DWTI, REROHETIHEENZ o2 L BBMTERLAEDLRIRBZENDI-
7o ZALIL, YbBe BRE VBEETH DI LILL D, HEOHBITOVWTHAERTHTH
5, INHDERY, BELHMERICBIPREHREL LTRELE, HEL, Sk
mahf@,%%ﬁ%%ﬁ%ﬁib,%T%EXE/@%E%imbﬁhfﬁﬁbrwé
HOD, kﬁ%&zey%6§wﬁ%%mbﬁhﬂﬁﬂﬁiiﬁf%f%%f,%ﬁ@ﬁ
BTHD, AL VELERBERNX—ICBITIEFORHIET ) r— "NREEE2 25
T, TOMREERLI-ER m*b&hrwé

1) W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62 (1989) 324.
2) A Georges, et al., Rev. Mod. Phys. 68 (1996) 13.



3) A. Schiller and K. Ingersent, Phys. Rev. Lett. 75 (1995) 113.

4) M. H. Hettler, et al., Phys. Rev. B58 (1998) R7475.

5) T. Moriya, “Spin Fluctuations in Itinerant Electron Magnetism” (Springer Verlag, 1985)
6) T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64 (1995) 960.

oA
MRAKE R GR (FEXRFEFERER)

Bsr 88 (&FBANAL : TH)
EERE R &8t
PR 1 1R 1,500 0 1,500
YRR 1 2 4ERE 900 0 900
SRR 1 34EEE 700 0 700
et 3,100 0 3,100
HRHER

(1) #&#HF

BN FHEERAEDOELEOREERICETHHX

1. T. Saso, A Unified Theory of Dynamical Mean Field and Spin Fluctuations,

J. Phys. Soc. Jpn. 68, No.12 (1999) 3941-3947

2. K. Urasaki and T. Saso, Effects of Strong Correlation and Magnetic Field on Kondo
Insulators,

JJAP Series 11, Physics of Strongly Correlated Electron Systems (1999) 100.

3. K. Urasaki and T. Saso, Correlation Effects on Optical Conduectivity of FeSi,
J. Phys. Soc. Jpn. 68, No.11 (1999) 3477-3480.

4. T. Saso, Investigation of the Two-Particle-Self-Consistent Theory for the
Single-Impurity Anderson Model and an Extension to the Case of Strong
Correlation,
dJ. Phys. Soc. Jpn. 69 No.12 (2000) 3912-3916

5. K. Urasaki and T. Saso, Correlation Effects in Multi-Band Hubbard Model and
Anomalous Properties of FeSi,

“New Properties of Matter due to Ordering and Fluctuation of Electron
Orbitals--Comprehensive Study of f- and d-Electrons--" News Letter Vol.1 No.2




(2000) p.83-86

6. T. Kitajima and T. Saso, Unified Theory of Dynamical Mean Field and
Self-Consistently Renormalized Spin-Fluctuations,

Physica B 281 & 282 (2000) 853-854.

7. K. Urasaki and T. Saso, Many-Body Effects on the Optical Conductivity of the
correlated Band Insulators,

Physica B 281 & 282 (2000) 313-314.

8. T. Saso, Theory of Kondo Insulators under Strong Magnetic Field,
Physica B 281 & 282 (2000) 315-316.

9. T Saso, Iterative Perturbation Theory for Strongly Correlated Electron Systems with
Orbital Degeneracy, |
J. Phys. Cond. Matter 13 (2001) 1.141-146.

10. T. Saso, Hybrid theory of the dynamical mean field and the spin-fluctuations in
strongly correlated electron systems, to appear in Proc. 2001 International
Conference on Strongly Correlated Electrons

11. T. Saso, Spin Fluctuation Theory for Heavy Fermions and Kondo Insulators,

New Properties of Matter due to Ordering and Fluctuation of Electron Orbitals
---Comprehensive Studies of f- and d-Electrons---, Newsletter Vol.2 No.2 (2001)
190-193.

12. K. Urasaki and T. Saso, Kondo semiconductor---Study of FeSi from the view point of
strong correlation,

Proc. 25th International Conference on Semiconductors (2001) p.1695-1696

SRVVBEEBOH S ERERAEORERICET HmX

13. T. Saso and K. Urasaki, Thermopower of Kondo Insulators,
to appear in Proc. of Int'l Symposium ISSP-Kashiwa 2001 Correlated Electrons
(2001)

14. T. Saso and K. Urasaki, Seebeck Coefficient of Kondo Insulators,
to appear in Proc. of Int'l Conference on Strongly Correlated Electrons with Orbital
Degree of Freedom (2001)

15. /BIERAER, HERERR, Al MHEEETROBAEEOHERBROIRLEE)
BELH R T A 2001 (TEC2001) F3xE (BEFHE) p.11-19

16. =R . BRMAEEFROE—Ry JZEIZ DV T , to appear in TECJ Newsletter
(2002)

BF Fy bIEBIT 5B RICET X



17. O. Takagi and T. Saso, Magnetic Field Effects on Transport Properties of a Quantum
Dot Sudied by Modified Perturbation Theory,
d. Phys. Soc. Jpn. 68, No.6 (1999) 1997-2005.

18. O. Takagi and T. Saso, Modified Perturbation Theory Applied to the Kondo-type
Transport through a Quantum Dot under Magnetic Field,
J. Phys. Soc. Jpn. 68, No.9 (1999) 2894-2897.

19. O. Takagi and T. Saso, Modified Perturbation Theory for Strongly Correlated
Electron Systems,
JJAP Series 11, Physics of Strongly Correlated Electron Systems (1999) 218.

20. O. Takagi and T. Saso, Excitation Spectra of Anderson Impurity under Magnetic
Field,
Physica B 281 & 282 (2000) 185-186.

21. O. Takagi and T. Saso, Transport properties through a quantum dot in Kondo regime
by modified perturbation theory,
Proc. 25th International Conference on Semiconductors (2001) p.1083-1084.

(2) DEEX

BApERZR
R BRMEBEETRIEBII2BHMOFRLAVVELEOREENR 11 HAHEZE
1999429 A 24 B 24pYR-8

IR RAER, R N FEHEOREEEZ AV - FeSi ONZEEEICBIT 254
BRI BEAYEFEEL 199949 H24 H 24pYR-9

FERTER BEHERO D 2 BMBEEFRIITIXRREES R 1[I HBAPHEFES 2000
#£3 H23H 23aIN-10

EAWR, EFER BREHRICKEHEERICBITISZEF Ny FoLEMSE II A4AY
S 200043 A 25 H  25aK-4

TR REAER, R MDD D Rk FeSi I281) 2 LB E HREE DIRERAL 11
AAYESES 200043 8 24 B 24aIN-2

EREER 1 REiM Anderson #ALZ 545 TPSC Bfa & SCRER DO HER L URBEE RO
PAEAEH 1T BAMESS 200049 A 23 H  23pSD-8

I ERRR, SRR WO FHEFITET 5 2-band Hubbard AR O RER 11 BAHHE
¥4 200049 A 238 23pSD-9

R BEEETROAEBEOCEROENR BAYEFST RV LA 2001 F3 A
27 B 27pYJ-4

HEREER IAEERAOERECHER I BAYEFES 2001F9H 19H 19a¥D-1



THI KRR, TR MEEOH SN N FeSi OZAERE 11 RAAYEES 2001
F9H19H 19a¥YD-2
VesZR B SRR OBEREDOER 111 A AYWEFES 200283 8 25 B 25aWA-7

BR=

eRERy  TBRMHBEEFRONEROHER) FEEKRFUWENERERMNES (X7 7
NEA MEBMOREYYE L BET HEEME) 2000410 A 25 A

TR [dRIOf EFAEEREIIRITI SRR, ALUELE, BEDR X
RREHHFEFTESRES RS, SETIIBIT BB &RILEYDORIE]
2000 % 12 A 14-15 H

TR AER, TR [9RMEE - 20 K AV VWL E)  BERSHE (B) 18
HEORFLLBOLEICLDH LV — [ EBF L dBETOREGHIHE~ B
e 200041 H 6-8H

TGRS, HERERS, AL MAHEEEFROAEEOCEROBENRLEE] AEZE
#a LR A 2001 (TEC2001) #B#53EE 200148 A 8 H

T [BVEFRBIVEEEZRECHT2AVCELEORER] FEBRRHEE

(B) IBFHEOKFILLELTZLZFH LV N — (ETF L AETFOHESE

BBFgE— ) BFZE4 200141 A 5-T H

EixaE BRSO ORUIA

TEisE KRR, fE=3Er  Many-Body Effects on the Optical Conductivity of the correlated
Band Insulators, International Conference on Strongly Correlated Electron
Systems (E%), 1999 £ 8 B 27 H

BT, =¥ EF  Excitation Spectra of Anderson Impurity under Magnetic Field,
International Conference on Strongly Correlated Electron Systems (& EF),
199948 § 25 H

L &#4T, % =#E8 Unified Theory of Dynamical Mean Field and Self-Consistently
Renormalized Spin-Fluctuations, International Conference on Strongly
Correlated Electron Systems (&B), 1999 Z£ 8 § 25 B

7 8ER  Theory of Kondo Insulators under Strong Magnetic Field, International
Conference on Strongly Correlated Electron Systems (£%), 1999 4£ 8 A 27
B

TSRS, #2=%#ER Kondo semiconductor---Study of FeSi from the view point of
strong correlation, International Conference on Semiconductors (Kfk),
2000598218



e 2T BR  “Description of the Electronic States of Strongly Correlated Systems
including Spin-Fluctuations”, International Symposium on New
Developments in Strongly Correlated Electron Phase under Multiple
Environment (KPR AKZ:) 20004E 11 H 6-8 H

e, VEIEfE KB Seebeck Coefficient of Kondo Insulators, International
Conference on Strongly Correlated Electrons with Orbital Degree of
Freedom (fli&) ,2001 49 A 12 A

s rER, JRiREAES Thermopower of Kondo Insulators, International Symposium
ISSP-Kashiwa 2001 Correlated Electrons (IR KF8EFZEERT) , 2001 £ 10
A3H

=4 B8  “Hybrid theory of the dynamical mean field and the spin-fluctuations in
strongly correlated electron systems”, International Conference on Strongly
Correlated Electrons (Michigan, USA), 2001 8 H 7 B



typeset using JPSJ.sty <ver.1.0b>

Correlation Effects in Multi-Band Hubbard Model and
Anomalous Properties of FeSi

Kentaro Urasaki* and Tetsuro Saso**
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The two-band Hubbard model with the density of states obtained from the band calculation
is applied for FeSi, which is suggested to be a Kondo insulator or a correlated band insulator.
Using this model, the correlation effects on FeSi are investigated in terms of the self-consistent
second-order perturbation theory combined with the local approximation. The calculated optical
conductivity spectrum reproduces the experiments by Damascelli et al. semiquantitatively and
the specific heat explains the anomalous contribution at about 250 K observed in FeSi. Inclusion
of the spin fluctuation and the extension to the case of strong correlation are also discussed.

KEYWORDS: two-band Hubbard model, FeSi, optical conductivity, specific heat

In the study of a specific material among the strongly
correlated electron systems, the effect of the band struc-
tures often plays a crucial role when one compares a the-
oretical calculation to the experiments. Use of a simple
theoretical model might not capture the salient features
of the material. Development of a theoretical method
that is capable of taking proper account of the realistic
features of the material is necessary. We report our re-
cent approach to the study of the anomalous properties
of FeSi in such direction.

FeSi is well known for more than thirty years and a
number of studies from various aspects have been done,
stimulated by the fascinating physical properties. The
early study by Jaccarino et al.l) showed that the suscep-
tibility is much enhanced over the value expected from
the band paramagnetism at finite temperatures and has
a broad peak at about 500 K. It was also reported that
the specific heat seems to have an anomalous enhance-
ment at about 250 K. These behaviors were explained
by a band model with an energy gap, but unphysical-
ly narrow bands were necessary, so that this difficulty
has attracted interests of many researchers. From the
conductivity measurements, FeSi is an insulator at low
temperatures but shows metallic behavior at room tem-
perature. To explain these unusual properties of FeSi,
several theoretical approaches have been proposed, but
the most successful one is the spin fluctuation scenari-
o by Takahashi and Moriya.?) It explains the anomalous
magnetic property of FeSi and their idea of the thermally
induced magnetic moment was confirmed by the neutron
scattering experiment.?)

The recent optical studies,*”) however, revealed the
unusual properties of FeSi again. Schlesinger et al. te-
ported that the gap of about 60 meV (~700 K) opened
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** e-mail address: saso@phy.saitama-u.ac.jp

*¥* Proceeding of the workshop on “New Properties of Matter due
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at low temperatures is filled and almost closed at room
temperature (about 250~300 K), which they attributed
to the correlation effect. The following experiments al-
so reported the evidence of the correlation effects at low
temperatures.8~11) In these contexts, Aeppli and Fisk!?
suggested that FeSi can be viewed as a Kondo insulator
or a strongly correlated insulator.

Kondo insulators have been found in the f-electron
systems and typical examples are YbBjp!®) and
CesBisPt3!¥ and so on. They have correlated f-bands
and small energy gaps at low temperatures. Although
there are many similarities among FeSi and these mate-
rials, the correlation in FeSi may not be so strong. How-
ever, the same physics can be recognized both in FeSi
and Kondo insulators, if one reexamines the experimen-
tal data carefully. From this aspect, Fu and Doniach!%)
proposed an extended Hubbard model with two mixed
conduction bands, which is based on their band calcu-
lation!®) for FeSi, and confirmed the importance of the
correlation effects in physical quantities. Their calcula-
tion, however, seems to include some errors about the
treatment of the self-energies. Therefore, we reinvesti-
gated this model carefully and calculated the correlation
effects in more correct way,!”) and confirmed that the
correlation effects do play important roles, but the shape
of the spectrum in the optical conductivity did not co-
incide with the experimental data, because of the use of
the too simple model Hamiltonian.

Therefore in the present report, we use an extended
two-band Hubbard model with the density of states ob-
tained from the band calculation, and attempt to explain
the low temperature anomalies of FeSi observed in the
optical conductivity'® and the specific heat consistently.

The band calculations!® 23 for FeSi predict that the
ground state is a band insulator and a recent calcula-
tion®® reproduces the gap size close to the observed
one. Therefore, we start from the band insulator model,
which consists of two Hubbard bands for d-electrons as
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follows.
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where the ¢l (cias) creates (destroys) an electron on
site ¢ in band ¢ =1, 2 with spin . The tight binding
parameters t{; should be fitted to the band calculation
and U, Us, U3 and J denote the Coulomb and exchange
interactions.

Since one can expect that the optical conductivity
spectrum reflects the structure of the quasi-particle den-
sity of states {DOS) of a system, we use the DOS ob-
tained from the band calculation for FeSi by Yamada et
al.?® for the initial DOS so as to enable detailed com-
parison with the experiment.

Furthermore, we start from the following general ex-
pression of the current operator,

J—eZZ o’ fkc ko &)

akmm'

where m denotes the band indices and derive the con-
venient expression for the optical conductivity. For sim-
plicity, we set the intra- and interband contributions to
be equal (v""" = v)). Moreover, we assume that the
momentum conservatlon is violated in real systems by
some defects and phonon-assisted transitions. There-
fore, using the linear response theory, we consider the
current-current correlation function as below,

[<(z°-’n / dre®aT Z Z VYV
mm! kkgg!
(T)cmkd(r)cmlkral (O)lekldl(o) >

~ Z Z Z vkvk,gk ) gk' (v + dwn)

mm’ ! kk:
X [Bider + TR ® (i iwn )G, ()G (i + itwn)], (3)

x<T,.c

where TT%™'7 (iu;4w,,) denotes the vertex function, and
set [...] constant. For the present case, this leads to the
following expression for the optical conductivity,

o(w, m(ev)? Z/ dv fv) ~fv+w) fu+w)
><[p°’(V) +P2( ST (v +w) + 43 (V+w)] (4)

where pJ(v) denotes the DOS for the band a. This joint-
DOS-like form for the optical conductivity is simple but
convenient for the present case. We set (ev)?/h =1 for
simplicity.

Firstly, we show the optical conductivity obtained from
the Hartree-Fock approximation (HFA) or a rigid band
model in Fig. 1. The used DOS is displayed in Fig. 2
by the solid line for T'= 0. The DOS is independent of
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Fig. 1. Fig. 1 Calculated optical conductivity within the Hartree-

Fock approximation or a rigid band model.

the temperature within HFA. At 0 K, only the interband
contribution survives and reproduces the shape of the
spectrum of the experiment at 4 K in Fig. 3. Therefore,
the band calculation by Yamada et al.?3) seems to give
a good result about the whole structure of the DOS at
T = 0 but with a slightly smaller gap size (see the com-
parison with the experiment below). Within the rigid
band model, however, since the gap is filled only with the
intraband (Drude) contribution, the temperature varia-
tion is monotonous and the spectrum does not become
flat at a temperature of the order of the gap size. This
disagreement was shown by Fu et al. first. Ohta et al.%)
also calculated the optical conductivity in the joint-DOS
form from their band calculation, but the flat part of the
optical conductivity spectrum within the gap could not
be reproduced. Therefore, the rigid band model is not
sufficient to explain the experiments.

Next, we investigate the correlation effect in the
low energy and low temperature region of this model.
Therefore we calculate the correlation effect by the self-
consistent second-order perturbation theory (SCSOPT)
combined with the local approximation. The second-
order self-energies are given by

o0
= // . deqdeqdes
(U2p7% (e1)p] (e2)P (e3)
+U3p37 (€1)p7(62)p5 7 (€3)
+U3 05 (1)6 (€2)5 (€3)

+7%p37 (€1)p5 (€2)p7 7 (€3)]
Jlee)fea)flea) + fle) f(—e2)f (-53)

WeEL—e3—~€3+1id

za””w) =(162), (5)
where pJ(w) = —-(1/7)ImG] (w + id) and
=%qum
k



Coarrelation Effects in Multi-Band Hubbard Model and Anomalous Properties of FeSi

* 1
= depl (e) .
: /—-oo pa’( )w—E—ES;Z)o(w)

Here, N is the number of sites, f(¢).the Fermi function
and p%9(e) the DOS of band a for the non-interacting
case. To make numerical calculation easy, we take & finite
(5 = 1077) in eq. (6) and convert these equations with
the transformations?)

A= [ dem ) f06)
Bl = [ depg@f-a. )

These equations have to be solved self-consistently. In
this paper, we set U = U —~J and U3 = U —-2J in
order to reduce the number of parameters. In this case,
the Hamiltonian is rotationally invariant in spin and real
spaces if the two bands are degenerate.?%)

In the following results, U = 0.5 eV and J = 0.35U are
chosen so as to reproduce the shape and the temperature
dependence of the optical conductivity spectrum. The
solid line for T = 0 in Fig. 2 indicates the initial DOS
at 0 K, and the correlation effect is absent except the
Hartree-Fock contribution since the band 1 is filled and
the band 2 is empty.

Note that the gap in the DOS is widened by 16 % so
as to reproduce the shape of the spectrum of the optical
conductivity at 4 K in the experiment, which does not
change the essence of the following result. Then, the gap
size (Ey) of 75 meV is obtained if the steepest parts of the
DOS at the both sides of the gap are extrapolated and
the tails are neglected. (If we regard the gap as the region
inside the tails of the gap edge, we obtain 60 meV.) The
band 1 and 2 in our Hamiltonian correspond to the upper
and lower part of the DOS with respect to the Fermi level
(Erp =0) as is seen in Fig. 2, where we introduce a cut
off for each band so as to include one state per spin in
each band. Then the band width for the band 1 and 2 are
about 0.56 eV and about 0.85 eV, respectively. Although
the DOS is asymmetric, the chemical potential is fixed
at w = 0 and assumed to be temperature independent.
One can see in Fig. 2 that the correlation is introduced
at finite T through the thermally excited electrons and
holes and the gap existing at 0 K is almost filled up at
the temperature of the order of its size, which results in
the temperature variation of the interband contribution
of the optical conductivity (see below).

In Fig. 3(a), the temperature variation of the optical
conductivity calculated from the temperature-dependent
DOS in Fig. 2 is shown. In our calculation (Fig. 3(a)),
the gap is almost filled up at 300 K as well as the rapid
increase in the gap region from 150 to 300 K is seen. This
is consistent with the experiment (Fig. 3(b)), where the
gap is filled rapidly from 100 K to 300 K. Reflecting
the correlation effects, the peak at the gap edge shifts
to lower frequency region, as is seen in the experiment.
In our calculation, however, there are dips between the
Drude and the interband contributions in contrast to the
experiment. This may be caused by the simplification in
deriving eq. (4). However, the almost flat spectrum is
obtained at 300 K, which comes from the temperature

(6)
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Fig. 2. The temperature dependence of the quasi-particle DOS
and the initial DOS obtained from the band calculation(Ref.
26) at T = 0. At finite T, the DOS is strongly temperature
dependent due to the correlation effects.
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Fig. 3. (a)The temperature dependence of the optical conductiv-
ity calculated with the eq. (4). (b)The experimental data from
Ref. 11. The peaks due to phonons observed in the gap are
omitted.

dependence of the interband contribution.

We also calculate the temperature variation of the spe-
cific heat with the same parameters as in the optical con-
ductivity. Starting from the equation of motion,?®) we
obtain the following expression for the total energy per
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site: ) :
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where ¢} (e} ) is the Fourier transformation of t ().
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Fig. 4. Calculated specific heat using the same parameters as in

Fig. 3(a).

The specific heat can be calculated from the numerical
differentiation of the energy as Cy = (9E/8T)v. The
difference between the cases with U = 0 and 0.5 eV in
Fig. 4 indicates the contribution from the correlation ef-
fect, which results in a peak of about 4 J/K mol at about
250 K, and explains the “anomalous” contribution (~6
J/K mol) in the specific heat at about 250 K report-
ed by Jaccarino et al.!) Note that they evaluated the
anomaly by subtracting the specific heat of CoSi after
the normal electronic contributions +pesi and ycosi are
removed, respectively. In the above calculations, we con-
firmed that the correlation effect is essential to explain
the temperature dependence of the optical conductivity
and the specific heat in FeSi. At higher temperatures or
for magnetic properties, however, it is also important to
take the spin fluctuations®?”) into account.

The self-consistent renormalization (SCR) theory of
spin fluctuations has succeeded in describing the itin-
erant magnetism and the quantum critical phenomena
with a small number of parameters.?®® On the other
hand, the dynamical mean field theory (DMFT) is one of
the most powerful schemes to take account of the strong
local correlation. One of the authors has proposed a new
and practical scheme that unifies DMFT and SCR in a
microscopic way.?”) Application of this theory to FeSi
may improve the present calculation towards the inclu-
sion of the effects of spin fluctuations at finite tempera-
tures and the intermediate coupling.
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Hybrid theory of the dynamical mean field
and the spin-fluctuations in strongly
correlated electron systems

Tetsuro Saso *
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338-8570 Japan.

Abstract

In order to take account of the spatial fluctuation beyond the dynamical mean
field theory (DMFT), the two-particle self-consistent theory is carefully reinvesti-
gated and is proved to be unable to reproduce the correct low energy scale in the
strong correlation limit. An improved theory is proposed which starts from DMFT
and is combined with the spin-fluctuation theory (SFT) in a phenomenological form.
The present theory therefore encompasses DMFT and SFT, and describes the quan-
tum critical behavior properly with the same exponent as SF'T. The local quantum
dynamics is fully taken into account as in DMFT in contrast to the phenomenolog-
ical treatment in SFT.

Key words: dynamical mean field theory, two-particle self-consistent theory,
spin-fluctuation theory, strongly correlated electron systems

The most powerful method for the description of the strongly correlated elec-
tron systems (SCES) may be the dynamical mean-field theory (DMFT).[1] It,
however, lacks the effect of intersite spin fluctuations, which becomes impor-
tant, e.g. in the vicinity of the quantum phase transitions.[2] Several methods
were proposed to overcome this deficiency of DMFT by taking account of
the cluster instead of the effective impurity in DMFT,[3,4] but none of them
has succeeded in the description of the quantum critical phenomena (QCP)
because of the use of the finite size of the cluster. The extended DMFT is
proposed by Si and Smith[5] for the fermion-boson model, which can describe
the properties at QCP. The other successful approachs to QCP are the spin
fluctuation theories (SFT’s).[6,2] The SFT by Moriya was further developped
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in a form which is more phenomenological but flexible in use.[9] The two-
particle self-consistent theory (TPSC)[7] has been proposed to improve SFT.
We, however, recently proved that TPSC cannot reproduce the correct low
energy scale in the strong correlation limit of the single impurity Anderson
model (STAM), and therefore cannot be a good candidate for an improved
theory.[8] The proof proceeds as follows. For the symmetric case of STAM, the
TPSC equation for the spin sector

TZ 1 _211_1]01-}(:])( ) =n- 2<nTnl>7 (1)

reads as

U, 2 We

- =8 A/

(2)

where w, denotes a cutoff frequency of the order O(A) (resonance width), and
we have used the low energy form for the poralization function IIj(w). The
above equation determines the effective interaction U; in the spin channel and
the static susceptibility x; = 1/2(mrA — Us) = 1/4Tx. However, the above
equation (2) yields the Kondo temperature Tgx — (7/2)w.exp(—n?/2) for
U — oo which is finite and does not vanish.

We then propose a theory which avoids the above defect and combines both
DMFT and SFT. This is done first by introducing the effective vertex I'(w) =
U/[1 + Ullp(w)] and expressing the local dynamical susceptibility approxi-
mately as (gup = 1)

where Iy(iw) = =T >, G(ie)G(ie + iw) and the Green’s function G(ie) is the
solution of DMFT. x.(0) diverges when and only when U — oo at T = 0,
which is the desired property for impurity. Actually, we modify this as

o 1
XL(W) - XL(W)_I —iCw’ (4>

and determine the parameter C' by the sum rule, eq.(1), to correct the low
energy scale as a fine tuning.

Next task is to construct the wave-vector-dependent dynamical susceptibility
x(g,w) by taking account of the 1/d corrections. In d — oo limit, x(¢,w) can
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be calculated from the knowledge of the effective impurity[1] as

o) =5 =gl ©
where
Xo(iw)ee = =D Glk,ie)G(k + q,i€ +iw) e, (6)

k

and I'(iw)e = Flie,i€,iw) = [xI{iw)™ — xi(iw) e is the vertex function
which is local and the matrix of the Matsubara frequencies ¢, €’ and xz (iw) =
Y ee XL (1w)eer . G(k,i€) is the Green’s function in d — oo.

For d < 00, the calculation of x(q,w) is not easy, but it has a general form as

x(g,w) = [xu(w)™ = J(gw)] ™ (7)

Therefore, we rather adopt Moriya’s approach[9] and use the approximate
long-wavelength expansion form around the ordering vector :

X(@Q+q,w) = [Ruw) ™ = Jo(T) + 497, (8)

and determin Jg(7T) by the sum rule similar to [1] but including the wave-
vector sum. If Jo(T = 0) is chosen so that x(Q,w = 0,T = 0)7! = xp(w =
0,7 =0)"!— Jo(T = 0) = 0 (QCP), the specific heat, staggered susceptibility
and resistivity show 7%/? behaviors at low temperatures[10] in accord with the
SFT.[9] An example for the Hubbard model[10] is shown in Fig. 1.

The present theory thus encompasses DMEFT(1] and SFT[9], and describes the
quantum critical behavior properly with the same exponent as SFT.[8] The
local quantum dynamics is fully taken into account as in DMFT in contrast to
the phenomenological treatment in SE'T. It could acquire a microscopic basis if
one would be able to calculate J(g,w) microscopically up to O(1/d). Further-
more, a formula for calculating the self-energy from x(g,w) is not yet estab-
lished in the case of strong correlation except for the fermion-boson model.[12]
For d — oo, the self-energy can be calculated with a rather good accuracy by
using the iterative perturbation theory[11]. An extension of it to the case with
orbital degeneracy would be a future issue[13].

This work is supported by Grant-in-Aid for Scientific Research No.11640367
from the Ministry of Education, Science, Sports and Culture.
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Spin fluctuation theory for strongly correlated electron systems is constructed. First, the two-

particle-self-consistent theory is applied to the single-impurity Anderson model.
that it cannot reproduce the small energy scale in the strong correlation limit.

It is found
A modified

scheme to overcome this difficulty is proposed by introducing an appropriate vertex correction
explicitly. Using the same vertex correction, the self-energy is investigated, and it is found that
under certain assumptions it reproduces the result of the modified perturbation theory which
interpolates the weak and the strong correlation limits. Based on these, a new spin fluctuation
theory which is applicable to the case of strong correlation is proposed.

KEYWORDS: spin fluctuation, two-particle self-consistent theory, dynamical susceptibility, self-energy

§1. Introduction

The dynamical mean field theory?) (DMFT) is the
most powerful method for describing the effect of strong
correlation. It becomes exact in the limit of large spatial
dimension d — oo, where the lattice problem is reduced
to solving an impurity problem embedded in an effec-
tive medium self-consistently. Thus the local fluctuation
is fully taken into account, but the spatially extended
fluctuations are neglected. In order to describe the spa-
tial fluctuations, the so-called seif-consistent renormal-
ization (SCR) theory? was proposed, first for d-electron
systems, where the correlation is not very strong, and
it was extended later to the case of strong correlation
phenomenologically.®) SCR theory describes a system by
only small number of parameters, and hence details of
the structure specific to the system are not taken into
account. Purpose of the present paper is to propose a
theory for strongly correlated systems which starts from
DMFT and interpolates between DMFT and SCR.

For this purpose, we first investigate the two-particle
self-consistent theory (TPSC)% and apply it to the
single-impurity Anderson model (SIAM) in §2. TPSC
can be regarded as an extension of SCR theory for weak
correlation,?) and has proved to be successful in the s-
tudy of the Hubbard model in the weak and the in-
termediate correlations. It is considered to be superi-
or to the fluctuation-exchange approximation (FLEX)®
in that only TPSC can reproduce the side peaks in the
single-particle spectrum in the case of strong correlation.

We will, however, show in §2 that it cannot reproduce
a small energy scale in SIAM in the strong correlation
limit.% In §3 we propose an improved scheme which is ap-
plicable to the case of strong correlation by introducing
vertex corrections. We also investigate the self-energy us-
ing the same approximation and find that under certain
assumptions our theory reproduces the modified pertur-
bation theory (MPT),”® which interpolates the weak

* E-mail: saso@phy.saitama-u.ac.jp
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and the strong correlation limits. Thus the phenomeno-
logical character of MPT is partially resolved. Finally,
in §4 we construct a theory for the lattice system with
strong correlation which interpolates DMFT and SCR
theories.!®) It is applicable to heavy electron materials
and Kondo insulators. The effect of spin fluctuation lead-
s to the quantum critical behavior at the phase boundary,
in which the critical exponents are the same as those by
SCR but the properties specific to the materials can be
taken into account beyond the ordinary SCR theory.

§2. The Two-Particle-Self-Consistent Theory

for the Single-Impurity Anderson Model

The Hamiltonian for SIAM is written as
H= Z Ekc;:o_ckq + Ef z Nfo
ko a

+V > (fere + ¢l f2) + Unpngy

ko

(2.1)

in the ordinary notation, where ¢, and Ey denote the
energy of the conduction and f electrons, respectively, V
the hybridization, and U the Coulomb repulsion between
f-electrons. In the following, the subscript f in ny, will
be dropped. The orbital degeneracy is neglected.

In TPSC, the charge and the spin susceptibilities are
expressed in the form similar to those of RPA, but with
the renormalized interaction parameter U. and U, for
charge and spin channels, respectively. These parameters
are determined by the sum rules,

D o)t -, (22
TZ : _23"1(1‘:)]&)) n - 2(nyny). (2.3)

Here w denotes the Matsubara frequency, n = (n)+(n,)
and U; are related to (nyn,) by Us; = U{nny)/(ny)(ny)-
Thus, U can be determined from the second equation,
while U, can be obtained by solving the first equation
once U, is solved. If we set gup 1 (g = 2 is the
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g-factor), the static susceptibility x = x** is given by

_ _1 14 (0) __1_
““‘m'§1—mndm‘2ﬂ“

where II(0) = 1/7A. It is well known that x is propor-
tional to the inverse of the Kondo temperature T and
diverges to infinity for U — oo in the symmetric case
since T vanishes. I have proved,®) however, that it is
not the case. I obtained T — (n/2)w. exp(~n2/2) for
U - 00 (w. is a cutoff) which is finite. Therefore, it
is clalified that TPSC can not be applied to the strong
correlation limit.

(2.4)

§3. Improvement of Two-Particle-Self-Consistent

Theory

The dynamical susceptibility of the Anderson impurity
can be generally expressed by the diagram shown in Fig.1
and the equation,

Xt (w) =Ty xT (i i, w),

€€’

(3.1)

X (ie, i€, iw) = —G4(i€) G (i€’ + iw)

X | 8¢, e +TZI“(ie”,ie',iw)x“““(ie”,ie’,iw)J . (3.2)

e

We calculate the irreducible vertex function I'(ie, i¢’, iw) ap~

£+0 £4+0) £+ £+ E%W 4o
€ € € g £ % 4

Fig. 1.
The square denotes the vertex function I'(ie, i€’, iw).

go g+ L I
= |+ X+ x4

Fig. 2. The diagram for the vertex function I'(ie, ie’, iw)-

proximately by taking account of the maximally crossed
diagrams (Fig.2) as

U
. s I . —_
I(ie, ie', iw) = 1+ UK (i€ + ie,iw)’

(3.3)

K(ie+i€  iw) = TZ G\ (ie+ie' —ie")Gy(ie” +iw). (3.4)
Here the unperturbed Green’s function Gy, should be
substituted for G, and K is denoted as Ky. Then, we
find that K4(0,w) = Ko(w,0) = Hp(w). (Ilo(w) denotes
the polarization function.) If we approximate I'(ie, i€’ iw)

The Feynman diagram for the susceptibility ¥+~ (ie, ie/, iw)-

by I'(iw) = I'(0, 0, iw), then we obtain
Ho(iw)

T W) ——— .
X)) = T T ) (3:5)
. U
F(IW) = Fm. (3.6)

Note that at T = 0 and the low frequency limit, the
effective interaction becomes

re)=—2

1+U/rA’°

which smoothly interpolates between I'(0) = U for small
U and I'(0) — 7A for U — oo. (A denotes the resonance
width of the f level.) Therefore, the magnetic susceptibil-
ity x**(0) = (1/2)x*~(0) diverges when and only when
U — oo. This is a desired property. Within the present
approximation, eq.{3.5) becomes

X7 (iw) = To(iw)[1 + UTlp (iw)].

(3.7

(3.8)

Namely, the terms higher than the second order with re-
spect to U in the perturbational expansion of x(w) are
completely canceled out with the terms from the ver-
tex correction, which is of course an artifact of the ap-
proximation. Note also that eq.(3.8) is correct up to
O(U).lo’u)

Actually, eq.(3.8) does not satisfy the sum rule
eq.(2.3), so that we previously proposed!® to modify
x*T~ (w) into

1
+= () —
X (w) - X+_(w)_1 __ij7

(3.9)

and determine the parameter C by the sum rule. This
is essentially corresponding to modifying the low energy
scale. The imaginary parts of the dynamical susceptibil-
ity calculated with this C' term correction are shown in
Fig.3. We set A =1 here and henceforth.

10

Fig. 3. The imaginary parts of the dynamical susceptibility
x+~{w)’ are shown for U/A =0, 2, 4 and 8.

Next, we investigate the self-energy. The Feynman
diagram is shown in Fig.4, which may be expressed as

Tr(ie) =Uny +---

48
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+T3 3" T(ie,ic,w)Gr(ie)G, (i€’ +iw)

" w) - Gr(ie")G (i€ + w)
x T(ie", ie,iw) x G (ie +iw) + - - -

x D(ie, ie
(3.10)
Keeping the behaviors of Ko(0,w) and Ky(e,0) in mind,

Fig. 4. A typical Feynman diagram for the self-energy.

we approximate (i, i€', iw) at the left and the right ends
by the separable form [I_‘(ie)l"(iw)]l/ 2, where I'(ie) denotes
some average of I'(ie,i¢’,iw) on ¢ and w. T(iw) 1s given
by eq.(3.6) and T'(ie) is approximated as

U

1- B’ (ie) /Un,

L(ie) ~

(T (ie, i€, iw))., (3.11)

where B’ is an adjustable parameter. This form is in-
ferred by comparing the first- and second-order self-
energies.®) Now the self-energy is written as

ET(iG) ~
T'(ie) TZF iw) T

We further note that
TG
) ___y
1-— F(xw)Ho (l(x))
which holds within the present approximation. Therefore
we obtain

Ty(ie) =

Uny +
1o (iw)

T Tlaneay Cole + 1) (312)

(3.13)

UT 3, o (iw)Go, (i€ + iw)
1-B'S{) (ie)/Un,
= (ie)
1- Bz (ie)’

U’I’l¢+

=Uny + (3.14)
where B = B’/Un,. This is exactly the same form as the
interpolative self-energy proposed by Martin-Rodero, et
al.,”) which bridges between the second-order and the
atomic limit self-energies in both the symmetric and the
asymmetric cases. B was determined so as to reproduce
the correct self-energy in the atomic limit when U — occ.
Namely, one obtains B = (1 ~ 2n_,)/Un_s(1 —n_,).
Since the above formula for the self-energy does not
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3

satisfy the Friedel sum rule, one has to introduce an ef-
fective d level energy to be adjusted to fulfil the sum
rule,®% or to subtract £(0) from X(e)'V) to approxi-
mately satisfy it. Details of the calculations will be found
in ref.9. Note that B vanishes for the symmetric case.
Namely, the self-energy becomes equal to the second-
order one due to the cancelation of the higher order terms
in the present approximation.

§4.

In this section, we first discuss the dynamical suscep-
tibility of strongly correlated electron systems (SCES).
In extending SCR. theory to the case of SCES, Moriya
and Takimoto®) assumed the following form for the dy-
namical susceptibility, motivated by the duality picture
of Kuramoto and Miyake:!?)

X(@+gw) = (W)™ - Jo(T) + Ag’] ™,

where x1.(w) denotes the local susceptibility of each mag-
netic ion and Q an ordering vector. In SCR, x,(w)™?! is
expanded up to the linear term of w, yielding
SCR — XL
XL (w)— 1—iw/I‘L’
below certain cutoff frequency w.. Here, I'y, is of the or-
der of the Kondo temperature of the magnetic ion. In
contrast to SCR theory, we retain full dynamical struc-
ture of xp(w).

In DMFT, the dynamical susceptibility x(g,w) of the
lattice can be obtained once the effective impurity prob-
lem was solved.! Namely,

W
(i) ] P

x5 (@
Z,: [1 — [(iw)x3 (iw) ..

Spin Fluctuation Theory for the Lattice

(4.1)

(4.2)

x(g,iw) =

where

XS (w)ee = — Y Gk, i€)G(k + g,i€' +iw)beer, (4.4)
)
and I'(iw).e = T'(i¢, i€, iw) is the vertex function. The
procedure, however, needs rather tedious calculations.
Ohkawa'®) and Miyake and Narikiyo!®) discussed a gen-
eral form of x(g,w) and derived the following equation

x(g,w) = [xp(w)™" — J(g,w)] ™" (4.5)

where J(q,w) ~ U2Axo(g,w) + A(g,w) in the strong cor-
relation limit. Axp(g,w) denotes the intersite part of the
dynamical susceptibility of the lattice,

)= -T> xJ(w)eer,

ee’

NZXO Q;lw

and A(g,w) contribution from the mode-mode coupling
of spin fluctuations. J(g,w) includes both the mean
field contribution to the exchange interaction, which is
0O(1/d°), and the fluctuations from the mean field, which
is O(1/d). Here we assume that J(g,w) can be expand-
ed around a certain ordering vector @ as J{@ + ¢,w) =
Jo(T) — Ag® + - - - and w-dependence can be neglected.

XO Q; (4‘6)

Axolg, iw) = xo(g, iw) (4.7)



4 Tetsurc SASG

Then we obtain x(@Q +¢,w) in the same form as eq.(4.1}.
We can determine Jg(T') by the condition that the spin-
fluctuation amplitude

Y 3 [

§E = ;/ dw(l + 2n(w)Imxo(w) (4.8)

0

stays constant: SZ(Twn) = SE(T), where Ty is the or-
dering temperature. Both quantum and thermal fluc-
tuations are included in S2(T'). When there is no long
range order, we set Ty = 0 in the above condition. In
eq.(4.8), xo(w) is defined by

o) = xS x@+aw).  (49)

The frequency dependence of xo(w) and the tempera-
ture dependence of x(Q,0) are plotted in Figs.5 and 6 for
Jo =0.5, 0.6, 0.7 and J.. It is seen that the low energy
structure of xg(w) becomes singular and much narrower
than xr,(w), and x(Q,0) becomes proportional to 7°/2
at QCP, as expected.?)

Xolw)

Fig. 5. The real (solid line) and imaginary (broken line) parts of
the dynamical susceptibility yo(w) at T = 0 are plotted.

T3f2

Fig. 6. The susceptibility x(0) is plotted as a function of T for
Jg =0.5, 0.6, 0.7 and J,. from upper to lower curves.

Once these calculations are done, we recalculate the
self-energy. It must be done in a manner consistent with

the IPT calculation. We proposed to use the formula

S(ie) = UT Y _ Gie + w)Xo(w), (4.10)
. i) II2(i
%o (iw) = M(iw) + '11V >- f(ﬁg 3_ q‘:’g;;‘gw) (4.11)

where J(g,w) is replaced with Jo(T) — Ag®. Note that
the second term of Xg(w) has the same criticality as
xo{w). If we set J(Q + ¢,iw) = 0 in this form, the
self-energy eq.(4.10) recovers the IPT result.

It is seen that ImX(e) at € ~ 0 becomes singular in
contrast to the Fermi liquid behavior ImX(e) o € in
IPT. Theoretical analysis leads to ImX(e) o €¥/2 at QCP
and T = 0.

Using the above self-energy, we calculate the density
of states again. We find that the peak at Er becomes
thinner and singular due to the strong renormalization
by the spin fluctuation.

Finally, the total energy is calculated from

E=2 / def(e) (--71;) Tm{e - %(Un,, +2(O)GE).
= (4.12)
The specific heat is obtained by numerical derivative of
E as C = E/BT. We find that C(T)/T x —VT at
QCP as in SCR.Y
The electrical resistivity in the dimensionless form is
calculated by the formula,?

R(T) = /0 " n(W)[1 + n@)|mxolw).  (413)

Since this formula is an approximate one, we do not take
care whether we should use ¥q(w) in stead of xg(w).
Furthermore, the behaviors of xg(w) and xo{(w) are the

same at the critical point. The numerical result seems
consistent with the theoretical analysis R(T) o< T%/2.%)
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Seebeck Coeflicient of Kondo Insulators
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Seebeck coefficient S of the Kondo insulators is investigated theoretically within the framework
of the dynamical mean field theory. It is found that the temperature dependence changes from
the ordinary behavior S(T) o« T~! in semiconductors to approximately S o« T at low temper-
atures due to the finite imaginary part of the electron self-energy in the Kondo insulators with
strong correlation. Realistic models for YbB, and FeSi based on the band calculations are also

investigated.
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Introduction

§1.

Thermoelectric power (TEP) is currently attracting
renewed interest because of the increasing need for a
portable refrigerator without use of vapor coolant.!
Narrow gap semiconductors have been intensively stud-
ied so far for such purpose and Bis;Te; and its. alloys are
found to be the most efficient material (highest figure
of merit Z = S%/kp, where S, « and p denote, respec-
tively, Seebeck coefficient, the thermal couductivity and
the resistivity). It has been known that the magnetic al-
loys with the Kondo impurities exhibit large TEP. This
is because of the strong energy-dependence of the carri-
er relaxation time due to Kondo-type scattering in these
materials, and has been studied theoretically by using
the non-crossing approximation and the Bethe Ansatz
approach.2"%) The latter yields

)T

~ 7
S(T) = oot (
at low temperatures, where v, ny and N denote the spe-
cific heat coefficient, f-electron number and the degen-
eracy of f-orbit, respectively. Thus the formula predicts
the positive (negative) for Ce (Yb) ions, mostly in a-
greement with the experiments. The TEP makes a peak
around the Kondo temperature Tk and the absolute val-
ue decreases above it.

The many heavy fermion materials also show large
TEP (|S|< 100 pV/K) and can be understood by the
same mechanism as the Kondo alloys mentioned above.
In some of the compounds (e.g. CeCu;Siy), however, the
TEP changes the sign at low temperatures, which can not
be explained by the above mechanism. This phenomena
is sometimes attributed to the effect of magnetic fluctu-
ations, but a details are still not clear.

Recently, however, materials with much higher values
of |S| were found in the compounds called Kondo insu-
lators. For example, YbB,,, a typical Kondo insulator
with the energy gap of the order of 100K, shows |S|max ~
140 pV/K at arount T =100 K,'®) and FeSi, the Kon-
do insulator of the transition metal element, exhibited
Smax ~ 500 pV/K at T =50 K. These materials show

Ty (1.1)
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large TEP only at rather low temperatures, but it may
be advantageous for a refrigerator which works at low T.

It is well known!) that S(T) ~ —(kg/e) (Eeo —
©)/ksT for semiconductors, where E. , denotes the gap
edge position of the.conduction or valence bands and u
the chemical potential. Qur first concern in the present
study is how this is modified by the strong correlation in
the Kondo insulators. We study it by using the dynam-
ical mean-field theory (DMFT)? for the periodic An-
derson model (PAM), and will find that the rise of S
in proportion to 7! turns into approximately S « T
at low temperatures due to the finite imaginary part of
the electron self-energy. We also study two-band mod-
els with the density of states calculated from the APW
band calculations and apply them to YbB;; and FeSi.
Comparisons with experiments and discussions will be
presented in the last section.

§2.

Seebeck coefficient S is given by the sum of the electron
diffusion and the phonon drag terms. As will be found
below, the former is enhanced in most of the strong-
ly correlated materials. Therefore, we focus only on the
electron term and call it simply as S. By using the Boltz-
mann equation, S is given by

ST =~ [[dettee - (-
of
/ [aere (-5F),
where L(e) = p.(€)ve(€)?Tc(€) and pe(€), ve(e) and . (¢)
denote the density of states (DOS), velocity and the re-
laxation time of conduction electrons, respectively. This
formula yields the well-known result S(T) ~ —(kg/e)
(E.,» — 1)/ kT for semiconductors. On the other hand,
the Peltier coefficient Il is related to S as I[I = T'S, hence
II ~ (E., — p)/e remains finite even at low temperature
limit. The Peltier coefficient is defined as the heat ab-
sorbed or emitted at the junction of two elements when
a unit charge flows through it. Therefore, it would turn

Boltzmann Equation Approach

of
Je

(2.1)

‘out that the third law of the thermodynamics is bro-



2

ken if II remains finite at T — 0. Careful investiga-
tion of the electron-phonon coupled Boltzmann equation,
taking full account of the nonequilibrium state of the
phonon system, did not resolve this contradiction.?) In
the present paper, we will show below that the many-
body effect will resolve this problem through the self-
energy which is not included in the Boltzmann approach.

§3.
In DMFT,” the TEP is given by the same formula as
(2.1) but with

L(e) = WLN S v [ImGe(k, o),
k

Effect of Strong Correlation

(3.1)

where G.(k, €) and v, are the Green’s function and the
velocity of conduction electrons. The vertex correction
drops out in this theory.

Schweitzer and Czycholl® applied this scheme to the
PAM and calculated the TEP for the metallic cases by
using the self-consistent second-order perturbation theo-
ry. We here investigate the case of the Kondo insulators.

The Kondo insulators are the band insulators with
strong correlation between f (or d in the case of FeSi)
electrons.'®) The PAM is the simplest model for them.
We use the DMFT scheme mentioned above and calcu-
late the self-energy by the iterative perturbation theory
in a modified form (mIPT).}?

To evaluate eq.(3.1), however, one has to perform the
k-summation over the Brillouin zone, which requires te-
dious numerical calculations. When the anisotropy is
absent and the damping of quasi-particle is weak, how-
ever, L(e) can be approximated by L(e) ~ vk pc(€)7:(€).
Here the velocity is assumed constant and replaced by
the Fermi velocity vg. In the case of the PAM, p.(€) and
T.(€) are given by

1 ' 1
pele) = —;r—ﬁlmzkj s (32)
R 7R TIC)
V2
1= 2lm——————— .
7e(e) m T (3.3)

where E¢ and X(¢) denote the level position and the
self-energy of an f-electron. V denotes the mixing and
¢r the energy of the conduction electrons.

The results are shown in Fig. 1 for the various f-
electron level positions. The DOS of the conduction band
is assumed to be a semicircular form with the half-width
W =1 around € = 0 and the resonance width of the f-
level is set A = 0.5. The Coulomb repulsion U between
f-electrons is chosen as U = 2. Ef = —1 corresponds to
the so-called symmetric case and express the Kondo in-
sulator, and the other cases with Ef > —0.7 are metallic
and hole-like, while E; = —0.7 and 0.8 are insulators.
Ey = —0.6 is marginal. These may corrspond to the Ce
compounds. The calculations with E;y < —1 yield the
same results with the opposite sign of S and may cor-
respond to the Yb compounds. In the present model,
the TEP can be finite only when there is an electron-
hole asymmetry. The cases Ey = —0.7 and —0.8 show
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steep rises of S at low temperatures similar to the ordi-
nary semiconductors as mentioned in §2, but S turns to
decrease almost linearly at lower temperatures. This is
because the quasi-particle DOS p.(€), which has an ener-
gy gap of the order of the Kondo temperature at T = 0,
becomes temperature-dependent, so that the DOS with-
in the gap becomes finite at finite temperatures. Note
that the inverse relaxation time 7! near Ep decreases to
very small values at low temperatures also, but the prod-
uct p.(€)7:(€) < L(€) exhibit a gap at T = 0. This gap is
filled up gradually at finite temperatures. However, the
numerical calculation at the lowest temperatures is deli-
cate, and we could not determine the value of L'(0)/L(0)
at low temperature limit precisely, so that S(T) « T is
obtained only approximately.

600 . :

Ee=-1

E=-0.8
Ee=-0.7
E=-0.6
Ee=-0.5
E=-0.3

FiS
(o)
(=]

cC »p O & D> ¢ X

r
o
=)

S(T) [LV/K]

0.2

Fig.1. The thermoelectric power of the periodic Anderson model
for various values of E;.

§4. Two-band Models for FeSi and YbB,,

In order to understand the behavior of TEP for a spe-
cific material, it is important to start from the knowledge
of a band calculation since the TEP is sensitive to the
details of the electronic structure. For most of the Kon-
do insulators, the band calculations exhibit energy gaps
at the Fermi levels. The simplest way to express these
results is to use a two-band model, each of which is ex-
pressed by the DOS of the corresponding bands located
below and above Eg obtained from the band calcula-
tion. The mixing between f and conduction electrons is
already included in these bands. Therefore, the Coulomb
repulsion could have band-off-diagonal terms, even if it
were diagonal in orbitals in the form of PAM. But since
we do not have such knowledge at hand, we simply in-
troduce the Coulomb interactions only within the same
band and neglect the interband terms. Also, we neglect
the effect of f-level degeneracy in YbBis and treat only
the spin degeneracy. A full analysis including the orbital
degeneracy is to be done in the next stage.

When we analyze the experimental data, we should not
forget the effect of the nonstoichiometry or impurities.
Both shift the chemical potential into the conduction or
valence bands, so that the material behaves as a metal at
lowest temperatures. The experimental data for TEP of
FeSi and YbB;; show S(T') x T at low temperatures. A
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careful experiment will clarify whether these are due to
the nonstoichiometry /impurities or the many-body effect
mentioned in §2. In FeSi, it was found that the electron-
doping by Ir leads to negative 5.5

First we show the results for FeSi, using the DOS cal-
culated by Yamada.!? Assuming the 0.01% hole-doping,
we have obtained a good agreement with the experiment
as shown in Fig. 2. Introduction of an intermediate value
of U = 0.5 eV, which gives rise to reasonable agreement
with the experiment on the dynamical conductivity and
the specific heat,'® changes the result only slightly since
the many-body effect becomes effective only at temper-
atures higher than 100K in this material.!?)

600 T T v T
8y = =1xl0%holes(U=0) |
1x10™ holes (U=0.5 eV)
400' L2 T2 Exp_ i
<
= 200F FeSi .
175} L &
0 N
R . { N i
2005 100 200 300
T [K]

Fig.2. The thermoelectric power of FeSi for hole-doped case with
and without Coulomb interaction is compared with the experi-
ment.

Fig. 3 shows the results for YbB;; calculated with-
out the correlation effect. The DOS is taken from the
LDA+U band calculation by Harima.!*) The peak at
10K in the experimental curve'®) is considered to be due
to the phonon-drag effect. The calculation for stoichio-
metric case (n = 0) shows a diverging upturn at lowest
temperature and does not fit the experiment. The curves
with 0.5% or 1% electron-doping seem to be consistent
with the experiment as regards the second peak at 40K,
which may be due to the f-electrons. However, the high
temperature behavior is not consistent with the exper-
iment. In YbBj2, the many-body effect is considered
to be important at low temperatures, so that the den-
sity of state may be strongly renormalized and becomes
temperature-dependent. The effective f-electron position
may be shifted from the vicinity to the Fermi level at low
temperatures to deeper positions at higher temperatures
than Tk, so that S becomes more electron-like and nega-
tive at high temperatures, improving the agreement with
the experiment. Such a calculation including the corre-
latin effect is now in progress.

§5.

The present study has investigated the Seebeck coeffi-
cient of the Kondo insulators in terms of the dynamical
mean-field theory. The vertex corrections and the Umk-
lapp processes are not included in this formulation. Ef-
fects of these have been studied for high T, cuprates with-
in the framework of the fluctuation-exchange (FLEX)
theory and were found to be significant.!® %) However,

Discussions

200 y ; . T

100

S(T) (LV/K)

U
3%
[
(=]
T
=
It
(=]
1

100
T K]

Fig.3. The thermoelectric power of the periodic Anderson model
for various values of Ef.

such effects are considered to be not not profound when
the anisotropy is weak in the three-dimensional material-
s. The effect would be mainly to renormalize the absolute
value of the conductivity, but may not affect the Seebeck
coefficient seriously since it is expressed by the ratio of
the transport integrals as in eq.(2.1).

Origins of the T-linear TEP at low temperatures in
FeSi and YbB,, are still not clarified. Whether it is due
to the nonstoichiometry or the many-body effect must
be uncovered by careful experimental and theoretical s-
tudies in the future.
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Abstract Using the modified perturbation theory for the
impurity Anderson model, we calculate the transport proper-
ties through a quantum dot in Kondo regime.[1] The method
is based on the second order perturbation theory with respect
to the Coulomb repulsion, but we modify the self-energy so as
to reproduce the correct atomic limit and to fulfil the Friedel
sum rule exactly. In the electron-hole symmetric case; when
odd number of electrons exist in the dot, the Kondo peak
appears at zero bias in the differential conductance (dI/dV)
as is observed in recent experiments.[2, 3, 4] In the electron-
hole asymmetric case, different ways of applying bias voltage,
which is given by the difference of the chemical potentials be-
tween the left and right leads as V=pur—ugr , have different
effects on the shape of the dI/dV.

It has been pointed out that the Kondo effect in a
quantumn dot system has brought up new and interesting
issues for physics, e.g., the tunable Kondo effect or the
nonequilibrium Kondo effect. Several theoretical meth-
ods have been devised to explain Kondo-type transport
through a quantum dot using the impurity Anderson
model.[5, 6, 7, 8, 9, 10]

The Hamiltonian for a quantum dot connected to the
leads is written as

H= Zeknka+Zeon,+UnTni

v.k,o

+ Z Vk ck,aco.d +co,qck,a): .

vk, o

(1)

where g and U represent an energy level and the Coulomb
repulsion in a dot. The change of ¢q is equivalent to the
change of the gate voltage in measurements. €] denotes
the conduction electron energy in the lead v(=R and L).
V¢ denotes the coupling between leads and a dot. We
neglect orbital degeneracy and the k& dependence of V.

The equilibrium Green’s function for the electron in
the dot is given by

(2)

where &, (w) is the self-energy to be calculated and I'/2 =
L = I'r = mp.(0)V? is the resonant level width and
Pc(0) denotes the density of states (DOS) of conduction
electrons at the Fermi level. In our modified perturba-
tion theory, we introduce the effective energy level &
in place of the Hartree-Fock level g9 + Un_,, where n,
denotes the electron number, and determine it so as to
satisfy the Friedel sum rule exactly and to reproduce
correct atomic-limit simultaneously. Thus the effective

Gr(w)=(w—€0—Un_g — Es(w) +iI‘)"1,

first-order Green’s function is given by

M (w) = (3)

Using this Green’s function, we first calculate the or-
dinary second-order self energy 25,2)(0.1). Then, we in-
troduce the modified self-energy which is correct in the
atomic limit as follows:

(w — oo +i0) 7%

Bo(w) = 50 (w)/{1 - BEP ()}, (@)
where B = {U(1- n ))+€o—EOa}/{Uzn(_lc);(l—n(-ll)}»
nlt) = n[GS,l)] and n[G,] = [dwf(w) (-=1/m)ImG,(w).

Next, we construct the second-order Green’s function as

GO (W) = (w0~ Unl) = S, (w) +i0)7L (5)

From this G&® (w), we calculate the second-order elec-

tron number n%?) = n[G (2)] Furthermore U nt) ‘., in the

denominator of eq. (5) is replaced by Un®® t.o find the
solutions for &; in a wide range of pa.rameters We cal-
culate n$? = n[G$?] again and n&FS = nFS[GP)] from
the Friedel sum formula,

@ _

Then we determine &g, S0 as to satisfy the relation ng

nIFS (Friedel sum rule).
Figure 1 shows the temperature dependence of the

- DOS in the dot for U=4, I'=0.5, eo0=—2(a) and 0(b).

89

In the case of the symmetry condition go=—U/2, side
peaks appear at w = %2 in addition to a Kondo peak
at w = 0 which is supressed by increasing temperature,
whereas in the asymmetric case €9 = 0, the side peaks
disappear and a single peak emerges at a little higher
than w=0.

As we have assumed a single energy level g for a
quantum dot, the current takes the form([11]

=25 [wii@ - R pE), @

where T’ = T'LI'r/(IL + Cr). For po(w) in eq.(7) we
employ the result of Fig.1 to investigate effects of tem-
perature on dI/dV in a quantum dot. The bias voltage
is given by the difference of the chemical potentials be-
tween the left and the right leads as V' = pp, — pr. The
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Fig. 1: The calculated DOS at various temperatures
are shown.

0.3 =0
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Fig. 2: The calculated dI/dV at various temperatures
are shown. The case ur=V and pr=0.
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Fig. 3: The calculated dI/dV at various temperatures
are shown. The case p;=2V/5 and pp=-3V/5.

transport properties, however, depend on how it is ap-
plied. We investigate the two cases, (1} pr. = V and
p#r =0 and (2) pr, = 2V/5 and pr = —3V/5 when gy is
kept unchanged.

Figures 2 (case 1) and 3 (case 2) show the tempera-
ture dependence of dI/dV in unit of 2¢2/A for U /T = 8.
Figure 2 shows that the shape of dI/dV is similar to
the result of DOS. Figure 3, however, displays a quite
different result, especially in the electron-hole asymmet-
ric case, showing qualitative agreement with the experi-
mental result.[4] These results suggest that we must be
careful to extract the DOS from the shape of dI/dV in
the electron-hole asymmetry.

This work is supported by Grant-in-Aid for Scientific
Research No.11640367 from the Ministry of Education,
Science, Sports and Culture.
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