鉄筋コンクリート構造物の耐震補強工法に関する研究

(研究課題番号 11355200)

平成11年度~平成13年度科学研究費補助金(基盤研究(A)(1))研究成果報告書

平成14年3月

研究代表者 町田 篤彦 (埼玉大学 工学部 教授) 平成11年度~平成13年度科学研究費補助金(基盤研究(A)(1))研究成果報告書

研究課題:鉄筋コンクリート構造物の耐震補強工法に関する研究

研究課題番号:11355200

研究代表者:

町田 篤彦 (埼玉大学 工学部 教授)

研究分担者:

睦好	宏史	(埼玉大学 工学部 教授)
角田舅	貝史雄	(北海道大学 大学院工学研究科 教授)
上田	多門	(北海道大学 大学院工学研究科 助教授)
関	博	(早稲田大学 理工学部 教授)
辻	幸和	(群馬大学 工学部 教授)
魚本	健人	(東京大学 生産技術研究所 教授)
丸山	久一	(長岡技術科学大学 工学部 教授)
大即	信明	(東京工業大学 大学院理工学研究科 教授)
梅原	秀哲	(名古屋工業大学 工学部 教授)
二羽湾	之一郎	(東京工業大学 大学院理工学研究科 教授)
原田	哲夫	(長崎大学 工学部 教授)
島	弘	(高知工科大学 工学部 教授)
服部	篤史	(京都大学 大学院工学研究科 助教授)

研究経費 (配分額)

(金額単位:千円)

	直接経費	間接経費	合計
平成11年度	12,000	0	12,000
平成12年度	9,100	0	9,100
平成13年度	7,000	0	7,000
総計	28,100	0	28,100

研究発表:

١.

1)小泉秀之,睦好宏史,他:RC1層ラーメン橋脚梁部の耐震補強に関する研究,コンクリート 工学年次論文集, Vol.23, No.1, 2001

2) Ha MINH, Hiroshi MUTSUYOSHI et al. : Experimental and FEM Study for Shear

Strengthening of Reinforced Concrete Beams using Different Techniques, コンクリート工学 年次論文集, Vol.23, No.1, 2001

3) 関谷圭介,上田多門:損傷域における炭素繊維シートの平均ひずみによる補強橋脚のじん性能の評価,コンクリート工学年次論文集, Vol.24, 2002 (発表予定)

4) 高澤秀樹,飯塚信太郎,関 博:軸引張力と曲げモーメントを受けるRC部材のせん断耐力に 関する研究,コンクリート工学年次論文集,Vol.24,2002 (発表予定)

5) 辻 幸和,杉山隆文,山口光俊:鉛直打継目を有するRCはりの鋼板被覆による補強効果,土 木学会論文集,No.697/V-54,2002

6) 辻 幸和,杉山隆文,池田正志:鉛直打継目を有するRCはりのせん断性状におけるプレスト レスの導入効果,プレストレストコンクリート (発表予定)

7) 高羅信彦,魚本健人:温度解析に基づいたサーモグラフィー法によるコンクリート中の空隙および斜めひび割れの検査方法に関する基礎的研究,コンクリート工学年次論文集,Vol.23,2001
8) 高羅信彦,足立一郎,魚本健人:サーモグラフィー法によるひび割れ角度の検査手法の開発,コンクリート工学年次論文集,Vol.24,2002 (発表予定)

9) Harsha SOORIYAARACHCHI, Taketo UOMOTO, Tsugio NISHIMURA: BEHAVIOR OF FLEXURAL RC-ELEMENT WHEN TENSION REINFORCEMENT IS EXPOSED OVER DIFFERENT SPANNING LENGTHS, コンクリート工学年次論文集, Vol.24, 2002 (発表予定) 10) 宮本一成,魚本健人,勝木 太:各種要因がPCグラウトの充填性に及ぼす影響,コンクリ ート工学年次論文集, Vol.24, 2002 (発表予定)

11) 横田 稔, 下村 匠, 上原子晶久, 丸山久一:連続繊維シートとコンクリートの付着特性が 補修補強部材の力学特性に及ぼす影響, コンクリート工学年次論文集, Vol.24, 2002 (発表予 定)

12) 新保学幸,下村 匠,丸山久一:連続繊維シート補強RC柱部材のじん性予測に関する研究, コンクリート工学年次論文集, Vol.24, 2002 (発表予定)

13) 大月信明, 他: 電着補修した後の陸上鉄筋コンクリート部材の耐久性に関する検討, 材料 (発表予定)

14) 服部庄吾, Shahid NASIR, 梅原秀哲: 主鉄筋の座屈を考慮した鉄筋コンクリート柱の履歴挙 動解析, コンクリート工学年次論文報告集, Vol.23, No.3, 2001

15) Shahid NASIR, Supratic GUPTA, Hidetaka UMEHARA et al. : An efficient method for the construction of bridge piers, Engineering Structures published by ELSEVIER, Vol.23, 2001

16) 三木朋広,二羽淳一郎,他:動的格子モデル解析による鉄筋コンクリート橋脚の耐震性能の 評価,土木学会論文集 (発表予定)

 17) 三木朋広, Manakan Lertsamattiyakul, 二羽淳一郎:鉄筋座屈を考慮した格子モデルによるRC橋脚の静的正負交番解析, コンクリート工学年次論文集, Vol.24, 2002 (発表予定)

18) 原田哲夫,他:端部増貼り補強による炭素繊維シートの定着耐力向上に関する研究,コンク リート工学年次論文集, Vol.22, No.1, 2000 19) 原田哲夫,他:HEM を用いた鉄筋継手に関する実験的研究,コンクリート工学年次論文集, Vol.23, No.3, 2001

20) 久保田慶太,原田哲夫,他:曲げ補強用炭素繊維シートの剥離機構と定着法に関する研究, コンクリート工学年次論文集, Vol.23, No.1, 2001

21) 久保善司,山本 晋,服部篤史,他:ASRがコンクリートの曲げ部材の耐荷性状に与える 影響,材料, Vol.50, No.9, 2001

22) 柴田都江,他:ASRにより劣化したコンクリートにおける炭素繊維シートの補強効果,コンクリート工学年次論文集, Vol.23, No.1, 2001

23) 山本貴士,服部篤史,他:炭素繊維シート補強部材の耐荷特性に与える鉄筋腐食の影響,材料, Vol.50, No.8, 2001

23) 山本貴士, 柚本真介, 服部篤史, 他: 腐食鉄筋を有する炭素繊維シート横拘束曲げ部材の変 形特性, コンクリート工学年次論文集, Vol.23, No.1, 2001

24) 軸方向プレストレスを有するコンクリート巻立て補強に関する研究,土木学会論文集, No.683/V·52, 2001

研究成果の概要:

連続繊維シートを用いた鉄筋コンクリートラーメン橋脚の耐震補強

本研究は、RC ラーメン実橋脚をモデル化した供試体を製作し、連続繊維シートにより梁部をせん断補強して、ラーメン橋脚全体の耐震性を向上させることを目的としたものである。実験供試体は既設高速道路に供用されている1層2柱式RC ラーメン橋脚を想定したもので、実構造物の約1/7スケールである。実験から、以下のことが明らかとなった.

1)梁部帯鉄筋量は、柱部が耐震補強された RC1 層ラーメン橋脚の破壊性状や変形性能を決める 支配的な要因である。

2)梁部に連続繊維シート補強を行うことで RC ラーメン橋脚の耐震性状が向上した。特に、梁 を完全に閉合し巻き立てることにより補強材が有効にその補強効果を発揮し、梁部のせん断破壊 を防ぎ柱基部での曲げ破壊に移行させることができた。

連続繊維シートを用いた鉄筋コンクリートはりのせん断補強

本研究は、炭素、アラミド連続繊維シートを用いた RC 梁のせん断補強について、1)貼り付け方法がせん断耐力に及ぼす影響、2)補強後のせん断耐力算定評価方法について実験的に明らかにしたものである。実験に用いた供試体は高さ 300mm、幅 300mm の正方形断面で長さ3500mmの RC 梁で、引張鉄筋として D32 を 4本、圧縮鉄筋として D22 を 4本配置した。実験要因は、繊維種類、繊維シートの接着形式、供試体上面部への折曲げ長さによるせん断補強効果の違いとした.

実験結果から、以下のことが明らかとなった.

1)折曲げ長さが長いほどせん断補強効果が顕著に上がることが確認された。

- 2)折曲げ方式で接着させると、破壊性状が繊維シートの剥離による破壊から、折曲げ部周辺の かぶりコンクリートの破壊と繊維シートの破断による破壊になることが確認された。
- 3) 繊維シートの有効折曲げ長さの明確な定義付けはできなかったが、コンクリートの側面かぶ りと最外縁の鉄筋を覆うような長さと考えてよいと思われる。

連続繊維シートにより補強された鉄筋コンクリート柱の終局変形

連続繊維シートにより巻立て補強された鉄筋コンクリート部材の終局変形の定量化は,終局変 形を決める破壊モードを区別しないで準実験式的な形で行われてきた.本研究では,破壊モード 別に終局変形の定量化を行なうべきであるという趣旨のもとに,まず,より頻度の高い破壊モー ドである連続繊維シートが破断する場合の終局変形を推定する手法を提示したものである.

炭素繊維シートにより巻立て補強された鉄筋コンクリート柱の実験結果を詳細に検討すること により、シートのひずみの平均値と作用せん断力との関係、作用せん断力と変形との関係を推定 するためのモデルを構築した.前者のモデルは、せん断抵抗機構をいわゆるトラスが負担するせ ん断力とコンクリートが負担するせん断力とに分けて考えることにより導いているが、曲げ降伏 後に変形の増加とともにシートのひずみが増加する実験的事実をコンクリートが負担するせん断 力が減少すると仮定することにより説明している.後者のモデルでは、柱の曲げ変形とせん断変 形とを構築したモデルで計算し、それに柱基部での伸出しによる変形を加えることにより変形を 計算している.2 つのモデルを合わせることにより、シートのひずみの平均値と柱の変形との関 係が算定される.さらに、シートのひずみの平均値の正負交番荷重の繰返しによる増加を推定す るモデル、シートの平均ひずみと最大ひずみとの関係を推定するモデルを組合せ、シートの最大 ひずみが破断ひずみに到達するときの変形、すなわち、終局変形を算定することを可能としてい る.

モデルにより算定された終局変形と実験で得られた終局変形とを比較し,モデルが適度の精度 を持って終局変形を推定することが可能であることを示した.また,アラミド繊維シートで巻立 て補強された柱の場合とも比較をした結果,提案したモデルは実験結果を推定できることが可能 であることが示された.

破断ひずみが大きい新しい連続繊維シートによるじん性補強

従来の炭素繊維シートやアラミド繊維シートによる巻立て補強の場合,終局状態はシート自体 の破断で決まるのが普通である.シートの破断はそれ以降の材料としての抵抗が一切期待できず 性状が脆性的になりがちであることから,本来であれば避けたい破壊モードである.本研究は従 来のシート素材と比較し,破断ひずみが格段に大きいポリアセタール繊維(PAF)を用いたシー トによる巻立て補強後の力学性状を明らかにすることを目的とした研究である.

PAF は地盤の補強材料として適用されてきているが、鉄筋コンクリートの補強材としての実績 は実質上ない.現在,実験データを集積している段階といえる.限られた実験データではあるが, 終局変形性能が向上すること,せん断耐力が向上することが明らかにされている.剛性が同じ場 合,終局時に破断する従来の連続繊維シートと比較して,破断ひずみが大きいゆえ,終局変形や せん断耐力の向上がより大きくなることも確認された. 通常の終局状態では PAF シートは破断しない.

土木分野での片持ち形式の柱による実験と、建築分野での両端固定の柱による実験との結果を 合わせ、破断を伴わない場合の終局変形を推定するモデルを構築した.このモデルによれば、実 験結果を適度な精度を持って推定できることが明らかとなった.

連続繊維シート巻き立てによる RC 柱部材のじん性向上メカニズムの検討

鉄筋コンクリート部材の耐震補強として,連続繊維シートを巻き立てる工法は、地下構造物や 建築物などで、重機が使用し難い場合に適用されている.シートを巻き立てることにより、ひび 割れたコンクリートを拘束し、大きな変形に対しても、部材の耐荷性能を保持できることが実験 で確認されている.実構造に適用する場合には、対象とする構造形式に対して、所要の変形性能 (じん性能)が得られるようシートの種類、強度、貼付枚数、接着剤、貼付範囲等を、実験結果 を基に決めているのが現状である.

本研究においては、連続繊維シートによる補強がどのようなメカニズムによって鉄筋コンクリ ート柱部材の変形性能を向上させているのかを実験的に検討し、シートの弾性係数あるいは剛性、 シートの強度や終局ひずみが部材のじん性能の向上にどのように影響しているのかを明らかにす るとともに、その結果に基づいて、じん性能の向上に関する予測モデルを提案するものである.

実験においては、せん断スパン比が 2.7 程度の鉄筋コンクリート柱を対象とした. この柱部材 は、繰り返し漸増荷重を受けると、塑性率が4程度で大きな斜めひび割れを生じて、耐荷力を失 う状態になるものである. これに、炭素繊維シート、アラミド繊維シート、ポリエステル繊維シ ートを用いて全範囲を巻き立て、シートの剛性、強度、終局ひずみの違いによる変形性能を調べ た.

荷重が繰り返し負荷されると、柱部材に斜めひび割れが発生し、ひび割れ部からシートの剥離 も進展していた.この際、シートの剛性が大きく、かつ、コンクリートとの付着性能が高い場合 には、ひび割れ部でのシートの応力集中度が高くなり、シートの強度がある程度大きくても、シ ートの破断が早期に生じ、耐荷性能を失うことになるのが明らかになった.一方、シートの剛性 が小さく、かつ、終局ひずみが大きい場合には、ひび割れ部から剥離が展開してゆくものの、大 きな変形に至るまでシートは破断せず、柱部材は耐荷力を保持していた.

繰り返し荷重の初期段階では,柱基部にほぼ 45 度の斜めひび割れが正負交番載荷に応じて発生 するが、シートにより、ひび割れたコンクリートが十分に拘束されていると、変形が大きくなる につれて、徐々に上方にも斜めひび割れが発生し始めていた.この現象を詳細に検討し、著者ら が開発した連続繊維シートとコンクリートとの付着剥離モデルを適用して、柱部材のじん性向上 がある程度予測できることを明らかにした.

RC 部材の曲げ補強効果に及ぼす連続繊維シートの付着特性の影響

鉄筋コンクリートはりやスラブの曲げ補強では,連続繊維シートとコンクリートとの付着特性 が支配的である.よりよい付着特性を得るためには,コンクリート表面を適切に処理し,パテ等 を用いて平面状態をよくするのが理想である.しかし,実構造への適用においては,必ずしも理想的な施工が実施され難い場合が多い.

本研究では、表面処理やパテの有無による付着特性の変化を調べるとともに、その特性の違い が、鉄筋コンクリート部材の曲げ補強にどのような影響が現れるかを、はり供試体を用いて実験 的に検討することを目的とした.

連続繊維シートとコンクリートとの付着性能は、土木学会規準に示されている試験により実験 的に検討した.シートはアラミド繊維シートで、実験パラメータは、表面処理としてのディスク サンダー磨きの有無、磨き後のパテの有無である.付着試験結果から、荷重一変位曲線、付着応 カー相対変位関係を求め、界面剥離破壊エネルギーを算出した.その結果、最大付着応力は、表 面処理、パテの影響は非常に小さかったが、界面剥離破壊エネルギーは、無処理で 0.36N/mm² であったものが、十分な処理を施すと、0.75N/mm²と倍程度になった.

次に、この処理の違いがはりの曲げ性状にどのような影響を及ぼしているかを検討するために、 鉄筋コンクリートはりの曲げ試験を行った.はりは、断面が 100×200mm で曲げスパンは 1200mm、主筋として D10 を1本配置し、せん断破壊をしないよう、十分なせん断補強筋を配置 した.供試体数が3本と少ないため、断定的な結論にはならないが、シートの補強効果は、界面 剥離破壊エネルギーを基にした計算ほどには、表面処理の影響が現れない結果となった.今後、 より詳細な検討が必要である.

曲げ補強用炭素繊維シートの剥離破壊機構の解明と端部定着法

部材の耐震性能を含む安全性能が低下する場合には、補強が必要となる。炭素繊維シート(CFS) を用いた部材の補強は、材料の高耐久性あるいは環境遮断性への期待もあって、補強工法として 極めて有用と考えられる。しかしながら、CFS を接着して RC はり部材の曲げ補強に使用する場 合、接着長をいくら長くしても、剥離発生荷重および終局荷重は増大しないというのが、CFS 接 着工法の問題点で、いかに端部を定着するかが重要である。また、このときの剥離メカニズムも 十分に解明されているとは言いがたい。端部定着にはアンカーボルトを用い、剥離の進展を防止 する機械式定着法が存在する。しかし、柔らかいものには、柔らかいもので定着するという考え 方が重要と思われる。

そこで本課題では、 CFS のような柔らかい材料には、それと同一の性質を有する材料を用い て定着する端部定着法の検討と、RC はりの曲げ補強における CFS の剥離進展メカニズムを明ら かにすることを目的としている。

検討の結果,曲げ補強用 CFS の進行性の剥離は,曲げひび割れに付随した付着斜めひび割れを 起点とすることがわかった。また,この剥離は,端部に U字巻きつけ補強とすることで緩和でき ること,さらには,端部増貼り補強と U字巻きつけ補強を適切に組み合わせることにより,CFS で曲げ補強したはりの終局状態を剥離ではなく,曲げ圧縮破壊とすることが可能であるとの知見 を得た。

鉄筋コンクリート巻き立て補強や鋼板巻き立て補強の補強範囲

地震により崩壊した鉄筋コンクリート柱では、曲げ破壊が卓越する場合は軸方向鉄筋の座屈が 多く見られる。この場合はほとんど、柱の終局状態が鉄筋の座屈によって決まる。特に柱とフー チングの境界部で作用モーメントが最も大きくなるため、主鉄筋の座屈は境界部から柱部の中に はいった最初の帯鉄筋までの間で生じやすい。

柱の耐震性を向上させるために、鉄筋コンクリート巻き立て補強や鋼板巻き立て補強が行われ ている。せん断破壊が卓越する場合は、一般に柱の全高にわたって補強する方法がとられている が、主鉄筋の座屈による曲げ破壊を防ぐのであれば、柱とフーチングの境界部から最初または2 番目の帯鉄筋までを巻き立て補強すれば十分と考えられる。

そこで、その補強範囲を調べるために解析を行った。ファイバーモデルによる柱の解析を行い、 その中で用いる材料モデルの中で、鉄筋の圧縮側の応力ひずみ関係の中に座屈の影響を考慮した モデルを組み込んだ。このモデルは帯鉄筋間隔と柱主鉄筋径をパラメータとしている。コンクリ ート中の主鉄筋は帯鉄筋やかぶりコンクリート等により拘束されており、主鉄筋の支持状態は明 らかでない。そこで、柱主鉄筋の拘束を有効座屈係数という新たなパラメータを導入し、帯鉄筋 間隔と有効座屈係数を乗じることにより、有効座屈長を表すものとした。

有効座屈係数が 1.0 の時は座屈の影響が顕著に現れ、有効座屈係数が 1.0 から減少するにつれ て有効座屈長が短くなるため座屈の影響が小さくなる。補強していない鉄筋コンクリート柱の場 合は、有効座屈係数が 0.65 の時、荷重変位関係がほとんど実測結果と一致した。一方、柱の全高 にわたって鋼板巻き立て補強を行った場合は、有効座屈係数が 0.1 の時、荷重変位関係がほとん ど実測結果と一致した。柱とフーチングの境界部から2番目の帯鉄筋までを鋼板巻き立て補強し た場合の挙動を解析しようと試みたが、有効座屈係数の値により挙動が異なり、主鉄筋の座屈に よる曲げ破壊を防ぐのであれば、柱とフーチングの境界部から最初または2番目の帯鉄筋までを 巻き立て補強すれば十分であるとの確証を得るまでいたらなかった。

今後は鋼板の巻き立て高さを変化させた実験を行い、有効座屈係数の値を求めるとともに、解 析を行って補強範囲を明確にしたいと考えている。

軸方向プレストレスを有するコンクリート巻立て補強

1995年1月の兵庫県南部地震を契機に,保有性能が要求性能に満たない既存橋脚に対して,曲 げ耐力,せん断耐力,靱性の向上を目的とした様々な補強工法が適用されてきた。一方で,重要 度の高い橋脚に対しては,十分な耐力および靱性を得ることができるとともに,地震による損傷 を限定された範囲にとどめ,地震後も比較的早期に復旧でき,機能を回復できる補強工法が必要 となる。これに対し,耐震補強工法の一つであるコンクリート巻立て工法の補強部コンクリート に軸方向のプレストレスを導入する工法が有効であると考えられる。この軸方向プレストレスに よって,ひび割れの制御,復元力あるいはせん断耐力の向上を期待するものである。しかし,こ のような構造を地震時に大きな慣性力を負担する橋脚に適用した場合,曲げ圧縮部コンクリート の終局ひずみへの早期到達あるいはPC鋼材の破断による脆性的な破壊性状となり,補強部材の塑 性変形性能が不足する可能性がある。

本課題では、コンクリート橋脚のエネルギー靱性を確保したうえで、復元力を向上させる補強

工法の適用性を検討することを目的に、コンクリート巻立て補強部コンクリートに軸方向プレス トレスを導入した部材を対象に、正負交番載荷曲げ試験を実施し、その曲げ変形性状、特に靱性 および復元特性に与える影響を検討した。

その結果,コンクリート巻立て補強への軸方向プレストレスの適用によって,曲げ耐力の増加 およびエネルギー靱性の確保に加えて,復元特性の改善を得ることにより,地震荷重に代表され る外力作用後の補修の容易さ,耐久性,美観および視覚的安全性の向上が可能であることが示さ れた。

軸引張力を受けるRC部材のせん断耐力

RC部材のせん断耐力に関しては、従来から多くの実験的・解析的研究が行なわれている。軸圧 縮力を受ける部材のせん断問題についても数多くの報告がなされているが、軸引張をうけるRC 部材の挙動については研究例も少なく、設計方法に関しても十分とはいい難いことが指摘されて いる。横方向力を受けるラーメン構造部材、直下型の地震を受ける柱部材などでは、軸引張力を 受ける場合も想定される。

本研究では、軸引張力、曲げモーメント、せん断力をうけるRC部材を取り上げて、実験を実施することにより部材のせん断挙動を検討すると共に、既存のプログラムを用いた解析によって その挙動を検証した。実験は断面が 120 x 180 mm の柱部材であり、鉛直方向に軸引張力を加え、 柱の所定位置に水平力を1方向に載荷した。実験条件は、せん断スパン比、軸引張力、帯鉄筋比、 主鉄筋強度である。さらに、破壊耐力を既往の設計式と比較した。既存の解析プログラムによる 解析でRC部材の挙動がほぼ予測できたので、パラメータ解析を実施し、破壊耐力の算定式を提示することを試みた。

上記の結果から、今回の実験および解析の範囲では、1)破壊モードは、曲げ鉄筋、帯鉄筋の いずれかの降伏を基準として判断することができる、2)軸引張力がせん断耐力に及ぼす影響は 既存の設計式では十分に予測できにくい、3)パラメータ解析による提案式で破壊耐力や破壊モ ードを予測することが可能である、などが明らかとなった。

動的格子モデル解析による鉄筋コンクリート橋脚の耐震性能の評価

兵庫県南部地震を契機に、大規模に鉄筋コンクリート(RC)構造物の耐震設計に関する基準類 の改訂が行われた。その基本方針は、大きな地震力に対して、構造物に弾性的な挙動を期待する のではなく、軸方向鉄筋降伏後の大きな塑性変形を許容することで、エネルギー吸収能の向上を 図ろうとするものである。この中でさらに、非線形動的解析による保有性能の照査を行い、積極 的に地震時挙動を把握することが規定されている。一般的な動的解析手法には、部材単位の復元 力特性を組み込んだ離散型骨組モデルや、塑性ヒンジ部を仮定するファイバーモデルなどがある。 これらのモデルは、曲げが卓越する RC 構造物の解析には高い適用性が認められている一方で、 塑性ヒンジ部の適切な予測が必要であり、さらに部材にせん断破壊が生じて耐力が急激に低下す る場合などでは、十分な精度の応答予測ができないという欠点も有している。

そこで本研究では,格子モデルによる解析を行った。格子モデルでは RC 部材を軸力のみを伝

えるトラス要素に離散化しているので,力の流れが特定でき,部材内部のせん断耐荷機構を把握 することによって,その解析結果の妥当性を確認することができる。

動的格子モデル解析を行う前に、静的格子モデル解析による一定軸力を受ける RC 橋脚の静的 正負交番載荷実験の検討を行った。静的格子モデル解析の結果と静的正負交番載荷実験の結果を 比較することで、繰返し水平力を受ける RC 橋脚の塑性変形挙動の予測が可能であることを示し た。さらに、RC 橋脚を対象とした振動台加振実験に対して動的格子モデル解析を行った。実験 結果と解析結果を比較し、本手法により RC 橋脚の動的変形特性を妥当な精度で評価できること を確認した。最後に、せん断補強鉄筋比を変えた RC 橋脚を対象として非線形動的格子モデル解 析を行った。その結果、RC 橋脚の履歴吸収エネルギーに着目することで、せん断補強鉄筋比が RC 橋脚の動的特性に与える影響を定量的に把握することができた。

鉄筋座屈を考慮した格子モデルによる RC 橋脚の静的正負交番解析

1995 年の兵庫県南部地震では、大きな地震力を受けた鉄筋コンクリート(RC)橋脚が、その 変形性能不足等の原因によって、数多くの致命的な被害を受けた。この経験を踏まえ、我が国の 基準類では、コンクリート構造物の耐震性能照査において、軸方向鉄筋のひずみが塑性ひずみを 大きく超えるような塑性変形領域を考慮する必要のあることが規定されるようになった。

RC 橋脚の軸方向鉄筋降伏後の大きな塑性変形の予測には,繰返し載荷を受ける鉄筋の挙動を 適切に把握する必要がある。わが国で建設されている一般的な RC 橋脚は,実断面が大きく,断 面寸法に比べ鉄筋量が比較的少ないので,軸方向鉄筋の座屈が最大耐力に影響することは少ない と考えられる。しかしながら,じん性や吸収エネルギーなど,RC 橋脚の非線形領域の挙動に対 しては,鉄筋座屈挙動はそれらに影響を与える重要な要因の1つである。

本研究では、静的格子モデルにより静的正負交番解析を行うことにした。このとき、従来の静 的格子モデル解析では、鉄筋の座屈を考慮していないために、最大耐力以降さらに変形が大きく なり、耐力が低下する領域の予測が十分ではなかった。そこで、弾性座屈理論より算出した座屈 長内の鉄筋の局所座屈挙動を、空間的に平均化した鉄筋モデルによって評価し、塑性変形挙動を 把握することを試みた。壁式 RC 橋脚を対象とした、水平一方向静的交番載荷実験の結果と、鉄 筋座屈モデルを組み込んだ静的格子モデル解析の結果を比較した結果、軸方向鉄筋の座屈挙動を 適切にモデル化することで、最大耐力以降の変形挙動が精度良く把握できることが明らかになっ た。

鉛直打継目を有するRCはりのせん断性状におけるプレストレスの導入効果

コンクリート構造物の施工には水平および鉛直の打継目を設ける場合が多いが,打継目部分に おいてせん断耐力が低下するなどの構造上の弱点ともなりやすい。打継目の補強には,経済性や施 工性の観点から鋼板や炭素繊維,アラミド繊維等の巻き立て工法が一般的であるが,打継目を有す る構造物において,プレストレスの導入が RC 部材の力学的性状に及ぼす効果については,ほとん ど研究がなされていないのが現状である。

そこで本課題では,プレストレスの導入による RC 部材のせん断性状の向上に着目して,鉛直打

継目を有する RC はりにプレストレスを導入した補強効果を,斜めひび割れ性状,せん断耐力およびスターラップのひずみ性状について実験的に検討した。

その結果、プレストレスを導入することにより、斜めひび割れの発生を遅らせることができ、スタ ーラップの分担せん断力を軽減することが可能となった。また、プレストレスを導入することによ り、スターラップのひずみを抑制することが可能であるが、斜めひび割れが発生すると急激にスタ ーラップのひずみは増加することがあることが明らかになった。そして、打継面の処理の良否がプ レストレスの導入効果に及ぼす影響は大きく、打継面の処理が粗悪であるとプレストレスの導入 効果は小さいこと、および高強度コンクリートを用いると、一般に打継目の悪影響が軽減されるが、 この場合でも打継目の処理が重要であることも明らかになった。

鉛直打継目を有する RC はりの鋼板被覆による補強効果

コンクリート構造物の施工においては、施工能力や温度ひび割れの防止等の理由から、コンク リートは時間をおいて区間ごとに打ち込まれる場合が多いために、コンクリート構造物には鉛直 および水平等の打継目が存在することになる.これらの打継目に関して、土木学会コンクリート 標準示方書 [施工編] 平成 11 年版では、定量的な規定はなされていないし,構造物の検査におい て、一体性が保たれていないと判定された場合の補強方法などの対策も示されていない.

本課題では、せん断スパン比(a/d)が 2.35、引張鉄筋比(pw)が 3.37%の小型 RC はりおよび a/d が 3.80、pw が 1.71%の大型 RC はりを作製し、せん断スパン内にそれぞれ鉛直打継目を設けた. そして,この打継目を鋼板被覆で補強して曲げ強度試験を行い、ひび割れ性状、曲げひび割れ発生 荷重、斜めひび割れ発生荷重、最大荷重、破壊形式、スターラップおよび鋼板のひずみをそれぞ れ測定した.

その結果,鋼板補強には、斜めひび割れ発生荷重の増加や鉛直打継目によって局所的にスターラ ップの分担せん断力が増加するのを、鋼板が分担して防止する効果があることを明らかにした. また、スターラップの配筋量やコンクリート強度が小さいほど、鋼板が負担するせん断力が大き くなることも明らかにした.

壁式橋脚の耐震補強用中間拘束筋の定着用膨張材(HEM)による定着法

壁式橋脚の耐震補強では、既設橋脚の基部に中間拘束筋を配置することによって、耐震性能を 格段に向上できることがわかっている。この場合、中間拘束筋による壁厚方向へのプレストレス の導入は、はらみ出し防止にさらに効果的であるとして、アラミド FRP ロッドの使用が推奨され ているが、プレテンション方式による定着が採用されている。一方、中間拘束筋として、異形鉄 筋を根巻きコンクリート内へフック定着した場合には、鉄筋の軸方向剛性が高いために、はらみ 出しをおさえる効果は大きいが、その効果が期待できるのは、確実に根巻きコンクリート内に定 着された場合である。

壁式橋脚では壁厚方向の長さが短いために、上記のようにアラミド FRP ロッドを用いたプレテンション方式の定着では付着長が問題となり、異形鉄筋の場合には、フック定着を確実にするための根巻きコンクリート厚さの確保が重要となる。いずれの場合にも、より確実で実用的な中間

拘束筋の定着法が望まれる。

本課題は、上記の問題点を解消するための実用的な定着法の開発とその性能について検討した ものである。ここでは中間拘束筋として、異形鉄筋(D16,D19,D25)を用いた場合の定着用膨張 材(HEM)による定着および継手法について検討した。本定着法は、鋼管スリーブに鉄筋を挿 入して、鉄筋とスリーブの隙間に HEM スラリーを充填するだけで、HEM は硬化とともに膨張 し、48 時間程度で 50MPa 以上の膨張圧が発現し、液圧的な伝播をするために、ソフトタッチで 確実な定着が行える。

検討の結果,50MPa 以上の膨張圧では,定着長が 4D 以上あれば,鉄筋の規格降伏荷重でも, 引き抜けは生じないことがわかった。また,土木学会鉄筋継手指針に従って,定着長 4D,6D お よび膨張圧 50MPa,100MPa の場合の鉄筋継手としての性能試験を実施したところ,静的耐力性 能,高応力度繰返し性能はそれぞれ,"A 級","S"と評価できた。以上より,HEM 鉄筋定着・ 継手は,コンパクトで実用的な工法となり得ることが明らかとなった。さらに,鉄筋の規格降伏 荷重の範囲内では,HEM は線形のせん断ばねとしての挙動を示し,弾性的な付着挙動を示すと の知見を得た。これより,定着部の設計が,より合理的に行えるものと思われる。

アルカリ骨材反応により劣化した部材の連続繊維シートによる補強

アルカリ骨材反応により劣化した鉄筋コンクリート構造物の耐荷特性については、適切に配置 された内部の鉄筋によって膨張が拘束された場合には、健全なものと比べてほとんど低下せず、 ケミカルプレストレスの導入によって耐荷力が向上する場合もあるとの報告がある。しかし、鉄 筋比の低い部材で膨張が過大となりケミカルプレストレス効果が発揮されない場合や地震時のよ うな大変形の繰返し荷重が作用する場合の耐荷性状についての検討は少なく、不明な点が多いの が現状である。

本課題は,耐震補強で用いられる連続繊維シートによって横拘束した一軸圧縮部材および曲げ 部材について,その膨張特性ならびに耐荷性状を検討したものである。

その結果,アルカリ骨材反応膨張抑制が期待できる帯筋および連続繊維シートの横拘束筋量を 提示するとともに,既存部材で十分な帯筋量が確保されていない場合の膨張抑制方法として連続 繊維シート巻立ては有効であることを示した。また,アルカリ骨材反応による劣化初期のものは, 初期剛性が低下して変形が大きくなるので,一軸圧縮力作用下では,連続繊維シートによる横拘 束効果により,変形能力向上の効果が得やすいことを明らかにした。さらに,過大な正負繰返し 荷重が作用する場合,アルカリ骨材反応により劣化した曲げ部材の変形能力が低下するが,これ に対する補強方法として,連続繊維シート巻立て補強は,変形性能向上の観点から有効であると の知見を得た。

塩害による鉄筋腐食を生じた曲げ部材の連続繊維シートによる補強

塩害に起因する鉄筋腐食により,部材の耐震性能を含む安全性能が低下する場合には,補強が 必要とされる。連続繊維シートを用いた補強は,材料の高耐久性あるいは環境遮断性への期待も あって,塩害劣化部材への適用も可能であると考えられる。しかし,塩害劣化部材への連続繊維 シート補強に関する研究は少なく,また,補強後の性能の経時的な挙動については明らかに知見 が不足しているのが現状である。

そこで本課題では、炭素繊維シートを用いて曲げ補強した部材の曲げ変形特性に与える鉄筋腐 食の影響を検討した。また、二次元有限要素解析において、鉄筋とコンクリートの付着劣化およ び腐食ひび割れを離散型の要素を用いて表現することにより、腐食鉄筋を有する炭素繊維シート 補強部材の力学的特性もあわせて検討した。次に、炭素繊維シートを用いて靱性補強した部材に ついて、炭素繊維シートの横拘束効果による曲げ圧縮部コンクリートの圧縮靱性の改善と腐食鉄 筋の機械的性質の低下が、補強部材の曲げ変形性状に与える影響を検討した。

検討結果から,鉄筋腐食にともなう腐食ひび割れは,連続繊維シート曲げ補強部材の耐荷特性 に影響を与えること,また,コンクリートの圧縮靱性の向上に対して引張主筋の十分な伸びが要 求される炭素繊維シート靱性補強部材では,鉄筋腐食量によっては靱性補強を適用するにあたっ て注意が必要であることが明らかとなった。

電気化学的補修工法の耐久性

近年、鉄筋コンクリートの塩害、中性化の補修工法として電気化学的工法が注目され,かつ実 用化されてきている。理由としては、原理的に鉄筋腐食を防止すること、および非破壊的に補修 できることなどであろう。

しかしながら、実用化や開発されてから日が浅いこともあって、耐久性に関する情報が不足している。ここでは、現在考えられている電気化学的補修工法、すなわち、電気防食工法(Cathodic Protection)、 再 ア ル カ リ 工 法 (Realkalisation)、 脱 塩 工 法 (Desalination)、 電 着 工 法 (Electro-deposition)につき、前3者については主として文献より、最後の電着工法については実験により、各々の耐久性を検討を行った。

【電気防食工法の耐久性】

これについては、鉄筋コンクリート適用以前にも、港湾鋼構造物における数十年の実績があり、 基本的には維持管理を適切に行えば、耐久性は保持できる。留意事項としては、主として採用さ れている外部電源方式では、直流電源装置の運転状況、電極装置の通電電流および配線路の絶縁 抵抗である。また、コーティング材の寿命は 5·15 年とされているので、これ以下の間隔でコーテ ィング材の塗り替えが必要となる。また、犠牲陽極を用いる場合には、陽極の観察および適切な 取替えが重要となる。

なお、土木学会電気化学的補修工法委員会が行ったアンケートにおいても補修後6年以上経過 したもの6件ともになんの問題も生じていないことが確認された。

【再アルカリエ法の耐久性】

原理的には、Na₂CO₃ 溶液によって一旦再アルカリ化を行うと、コンクリート内部に安定した アルカリ成分が形成され、中性化は極めて進行し難くなるとされる。

すなわち、CO2ガスがコンクリートに進入しても、

 $Na_2CO_3 + CO_2 + H_2O \rightarrow 2 NaHCO_3$

なる反応が起こるだけで、このため pH は 12 から 10.8 に低下するのみで中性化とはならな

いとされている。

しかしながら、実証例は少ない。このため、再アルカリ化を行った供試体の中性化速度を本研 究により測定したところ、施す以前のものより中性化速度係数はやや小さく、中性化に対する抵 抗性は向上したことが認められた。

また、土木学会の施工指針(案)においても、処理6年経過後も中性化深さが0mm であった ことが報告されている。

【脱塩工法の耐久性】

脱塩工法では、施工後のコンクリートでの塩化物イオン拡散係数は、施工前と大差ないと判断 するが確認されていない。このため、鉄筋位置の塩化物イオン濃度を点検時に測定・予測し閾値 に達する以前に再度脱塩工法を施すという考え方で供用年数を確保するもの、および、脱塩後表 面被覆を行い2つの相互作用で供用年数を確保するという考え方が可能である。

【電着工法の耐久性】

電着工法は、これを施工することによって、ひび割れを修復するとともに、副作用として、脱 塩、再アルカリ化および表面の緻密化を行える工法である。しかしながら、これを長期的に確認 したものはなく、本科研費を用い添付に示す論文「電着補修した後の鉄筋コンクリート部材の耐 人性に関する検討」を作成した。

この論文においては、鉄筋コンクリートの供試体および実構造物に電着を施工し、2年間自然 環境に暴露(放置)し、暴露前後の耐久性を評価したものである。その結果、2年という限定し た期間ではあるが、次の結論をえた。

- ① 電着補修後2年間暴露した後でも、電着効果は保たれることが確認された。この確認の内容 は次のようである。
- ② 暴露前後で、見掛けの透水係数はほぼ同程度である。すなわち、ひび割れ補修前に比較する と透水抵抗性は格段に向上している。また、ひび割れは閉塞されていた。
- ③ 中性化速度係数は、低下していることが確認された。これと関連して、鉄筋の腐食速度は工 学的にほぼ無視しうることも確認された。

以下に研究成果の詳細を示す。

論文 RC1層ラーメン橋脚梁部の耐震補強に関する研究

小泉 秀之*1 · 睦好 宏史*2 · 小西 由人*3 · 藤田 亮一*4

要旨:既設 RC ラーメン橋脚の中には,柱部材だけでなく梁部材のせん断耐力および変形性能 を向上させるために耐震補強を行う必要性が指摘されているものがある。本研究では RC1 層ラ ーメン橋脚の梁部に対して鋼板接着および炭素繊維シート接着によるせん断補強を施し,静的 正負交番載荷実験により補強工法の違いによるせん断補強効果および RC ラーメン橋脚の耐震 性状を明らかにした。その結果,梁部をせん断補強することにより,ラーメン橋脚の耐震性が 向上する事が明らかとなった。

キーワード: RC ラーメン橋脚,梁部せん断補強,鋼板補強,炭素繊維シート補強

1. はじめに

兵庫県南部地震によって多くの RC 構造物が多 大な被害を受け, RC ラーメン橋脚も多くのせん断 破壊が生じた。これを契機に道路・鉄道 RC 高架橋 および RC 橋脚に耐震補強が実施されてきた。この 中で高速道路用 RC1 層 2 柱式ラーメン橋脚の面内 方向に対して地震時保有水平耐力法
いに基づいた 耐震設計検討を行った結果、柱部は耐震補強が実 施されているため所要の耐震性能を有しているが. 梁部のせん断耐力が相対的に不足しているため, 大地震時において RC ラーメン橋脚梁部がせん断 破壊する可能性が指摘されている。そこで本研究 では既設高速道路用高架橋に用いられている RC1 **層ラーメン橋脚のモデル供試体を用いて、梁部を** せん断補強して, ラーメン構造物全体の耐震性を 向上させる事を目的とした。梁部材は上面に支承 等が設置されており、また本研究で対象としたラ ーメン橋脚の梁部には、落橋防止および桁連続化 のために鋼製ブラケットが既に取り付けられてい るため、せん断補強方法に制約が生じている。さ らに現場での作業量を簡易にする補強工法が望ま れている。このような事を考慮して本研究では、 鋼板を梁部側面に接着させアンカーボルトで留め

たもの,炭素繊維シートを梁側面および底面の3 面に巻き立てたものの2種類のせん断補強工法を 用いて梁部を補強し,静的正負交番載荷実験を行 ってラーメン橋脚の耐震性を実験的に検討した。

2. 実験概要

2.1 実験供試体

実験に用いた RC1 層ラーメン供試体の形状およ び寸法を図ー1に、実験要因を表-1に示す。実験 供試体は既設高速道路用高架橋に用いられている 1層2柱式 RC ラーメン橋脚を想定したもので寸法 を約 1/7に縮小したものである。3体とも同一寸

*1 東日本旅客鉄道(株) [元埼玉大学大学院 理工学研究科 建設工学専攻] (正会員)

- *2 埼玉大学 工学部 建設工学科 教授(正会員)
- *3 首都高速道路公団 東東京管理局(正会員)

*4 日本技術開発(株) 環境防災事業部 地震防災部

供試体名 実験要因		コンクリート 圧縮強度(MPa)
A-1	無補強 (Control)	35.2
A-2	梁部鋼板接着補強 (アンカーボルト120mmと゚ッチ2段)	36.1
A-3	梁部炭素繊維シート補強 (U-wrap, 1層1方向)	36.4

表一1 実験要因

表一2 材料諸元

種類	仕様	
鉄筋 D3	降伏強度	266.3MPa
鉄筋D10	降伏強度	415.6MPa
鉄筋D13	降伏強度	417.1MPa
鉄筋D16	降伏強度	413.2MPa
	鋼板厚さ	1.6mm
補強鋼板	降伏強度	326.OMPa
	弾性係数	202.5KN/mm^2
臣事雄继	シート厚さ	0.167mm
火米酸症 シート	引張強度	4160MPa
	<u> </u>	245KN/mm^2

法・同一配筋とし、柱は300×300nm,梁は300× 240nmの矩形断面とした。柱の主鉄筋にはD16,梁 の主鉄筋にはD13,柱の帯鉄筋にはD10,梁の帯鉄 筋にはD3を使用した。梁部の帯鉄筋比は0.05% である。これは実橋脚の中でも最も小さい鉄筋量 を想定している。実構造物の柱には既に鋼板巻き 立て補強が施されているので、鋼板を鉄筋量に換 算して柱断面に配筋した。事前に構造解析したと ころ無補強供試体では、梁部のせん断破壊先行型 となる。本実験に使用した材料の諸元を表-2 に 示す。

2.2 補強方法

梁部の補強方法を図-2 に示す。鋼板接着補強 では梁側面部全面に厚さ 1.6mm の鋼板を貼り付け

た。この際, アンカーボルト(φ6mm 鋼棒)はコン クリート打設前に軸方向に 120mm の間隔で設置し ておき、鋼板を梁側面に固定し、供試体と鋼板の 隙間約 2mm にはエポキシ樹脂を充填した。炭素44 維シート補強では梁側面および底面にU字に炭素 繊維シートを1層巻き立てた。この際、シートの 応力集中を低減させるために梁断面コーナー部に は半径 10mm の面取りを施してある。一般に梁およ び柱部材に炭素繊維シートを全周ではなく1面に 貼り付ける場合、シート端の定着方法が、せん断 補強効果に影響を及ぼすことが知られている 2)。 今回は施工の簡易化を図る目的で、シート端を梁 上面に折り返して定着せず、シートを梁側面の上 端で切り落としており,炭素繊維シートを巻いた 3 面の付着のみでせん断補強効果を検討する事と した。なお補強鋼板と炭素繊維シートによるせん 断補強効果はほぼ等しくなる³⁾⁴⁾と共に,梁部材の せん断耐力が曲げ耐力を上回るようにせん断補強 量を決定した。

2.3 載荷方法

供試体の載荷概要を図-3 に示す。水平載荷に は最大出力 500KN ジャッキを用いて,加力中心が 梁の中心軸に等しくなるように載荷した。押時に は張り出し部に取り付けた載荷板をジャッキによ り直接載荷,引時には載荷板を4本の PC 鋼棒を介 してジャッキで引張る方式で水平載荷をおこなっ た。この際ラーメン供試体梁部には PC 鋼棒のボル トの締め付けによる軸力がかからないように注意 した。水平載荷については柱基部回転角で 1/600, 2/600rad と載荷した後,柱基部の軸方向鉄筋に作 用している引張力の合力位置が降伏するときの計 算荷重を降伏荷重 P_vと定義して⁵, P_vに対応する

図ー3 実験セットアップ図

実験変位 る,まで載荷した。その後変位制御により ∂, の整数倍変位を漸増させ、各載荷変位毎に 3 サイクルの一定振幅載荷した。また鉛直載荷装置 を用いて梁部中央部には水平載荷中,一定の軸方 向圧縮力 105.8KN を幅 100nm 鋼製桁を介して載荷 した。これによるラーメン供試体柱部に作用する 軸方向圧縮応力は 0.6MPa である。

3. 実験結果

3.1 荷重一変位関係と損傷状況

図ー4 に各供試体の荷重 – 変位関係を示す。こ こで用いている変位は梁軸線上の載荷点における 変位を用いている。なお各部材の軸方向鉄筋に予 め貼り付けたひずみゲージから判断される降伏順 序も合わせて併記している。表一3 に各供試体の 破壊形式,図-5 に各供試体のひび割れ状況を合 わせて示す。なお A-2, A-3 供試体においては実験 後,梁部補強材をはがした後の状況である。A-1 供試体では柱基部の軸方向鉄筋降伏後、梁端部が 降伏し,引側において前ステップで経験した変位 を超えて、-11.4nmの時、右側梁部せん断スパン 内で斜めひび割れの急激な開口によりせん断破壊 が生じた。A-2 供試体では柱基部, 梁端部の鉄筋 降伏後,変位 16mm 付近から鋼板の剥離音が生じ, 変位-25.6mm・繰返し2波目で右側梁端部付近の 補強鋼板の剥離後せん断破壊が生じた。鋼板はア ンカーボルトによって固定されていたが、斜めひ び割れはアンカーボルトを避ける様に生じ、アン カーボルト間で鋼板の座屈も発生した。A-3 供試

体では柱基部,梁端部鉄筋降伏後,変位16mm付近 でシート端の剥離が生じはじめ,-16.3mmで右側

(c)A-3 供試体

図一4 荷重一変位関係

表一3 破壞形式

供試体	破壊形式				
A 1	柱基部・梁端部降伏後				
A-1	梁部せん断破壊				
	柱基部・梁端部降伏				
A-2	補強鋼板剥離後梁部せん断破壊				
1 2	柱基部・梁端部降伏				
A-3	補強シート剥離後梁部せん断破壊				

-17 -

梁端部のシート剥離後せん断破壊が生じた。なお 全ての供試体で梁にせん断破壊が生じた後に急激 な水平耐力の低下が生じたが、鉛直方向圧縮力は 保持していた。供試体全てに関して柱基部降伏, 梁端部降伏後せん断破壊を生じた。実験結果から 塑性ヒンジは柱基部と梁端部に形成されたと考え られる。A-2, A-3 供試体に関しては、塑性ヒンジ 位置」となる梁端部も補強したが、梁端部の降伏 変位に大きな差異は確認できなかった。今回の実 験に限って言えば、鋼板補強・炭素繊維シート補 強が梁端部の降伏変位に与える影響あるいは塑性 ヒンジ形成順序等に与える影響は小さいものと考 えられる。A-2, A-3 供試体とも実験後, 補強材を 取り外し、梁部のひび割れ状況を確認したが、せ ん断破壊に至った大きなせん断ひび割れ以外は顕 著なひび割れは確認できなかった。また A-1 供試 体と比較すると A-2, A-3 供試体とも隅角部での損

傷が進展しているのが確認できた。図一6 に各世 試体の荷重ー変位関係の包絡線を示す。各供試体 とも梁部せん断破壊後は、急激に耐力低下してい るが、包絡線に大きな差異はない。表一4 に実験 結果を示す。降伏変位は正負の平均値を用い、終 局変位にはせん断破壊までに経験した最大変位を 用いた。また最大荷重は正負両側を記載した。実 験結果より無補強供試体である A-1 供試体では、 他の2つの供試体と比較すると、はやい段階でせ ん断破壊が生じている事から数値が小さいが、傾 向としては荷重-変位包絡線に、ほとんど変化は 無いものと考えられる。変形性能については A-2. A-3 供試体ともそれぞれ 1.5 倍程度改善された事 が認められる。以上から今回用いた梁部せん断補 強工法は、ラーメン構造物の最大耐力にほとんど 影響を与えず、変形性能を改善する事ができると 考えられる。

図一6 荷重一変位包絡線比較

表一4 実験結果

供試体	降伏変位 る _v (mm)	終局変位 る _u (mm)	降伏荷重 P _v (KN)	最大荷重 P _{max} (KN)	靭性率 δ_/δγ	P _{max} /P _y
A-1	9.04	16.70	220	270.0 -200.7	1.85	1.23
A-2	9.33 [.]	26.22	220	286.9 -270.0	2.78	1.27
A-3	9.50	26.62	220	291.5 -265.7	2.80	1.27

3.2 補強効果

A-2 供試体の各サイクル引側最大耐力時におけ る補強鋼板に生じた鉛直方向ひずみ分布を図-7

-18 -

に、水平方向ひずみ分布を図-8 に示す。鉛直方 向ひずみ分布では塑性率の増加により梁端部で-2 δ、から-3δ、付近で、ひずみが急激に増加してい るのが分かる。A-1供試体が約23,でせん断破壊 した事を考慮すると、この付近から補強鋼材がせ ん断耐力を受け持つ割合が増加する事が考えられ る。また繰返し載荷により梁端部のひずみの増加 も確認できる。水平方向ひずみ分布では塑性率の 増加に伴い梁端部で大きな圧縮方向のひずみが発 生しているのが分かる。従ってアンカーボルトで 固定し、エポキシ樹脂で接着した補強鋼板に囲ま れた部分では鋼板の引張力、圧縮力双方がせん断 カに有効的にはたらく事が確認された。図-9に 各サイクル最大耐力時における補強シートに生じ た鉛直方向ひずみ分布を示す。梁中央付近では塑 性率の増加に伴い、ほとんどひずみが増加しない が,梁端部では20、あたりから急激にひずみが増 加しているのが確認できる。梁端部のひずみは最

大3300μに及んでいて,正負繰返しにおいても残 留ひずみとして残り,低下していない。A-3 供試 体では,梁側面および底面をU字に巻き立ててい

るため, 図-10 に示すようにせん断ひび割れが発 生してもひび割れが生じた箇所以外で引張力に抵 抗するため, U 字に貼り付けた炭素繊維シートは, せん断補強効果が大きいと考えられる。しかしな がら, A-2, A-3 供試体とも 3∂, 程度で鋼板および 炭素繊維シートの剥離が生じ,梁部せん断破壊が 生じている事から,特に梁端部の付着性能の更な る向上あるいは定着等を考える必要があると考え られる。

3.3 累積吸収エネルギー

図ー11 に A-2, A-3 供試体のサイクル毎の累積 吸収エネルギー関係を示す。ここでの累積吸収エ ネルギーは、各サイクルにおいて耐力0の位置か ら囲まれるループに対し、積分して求められる面 積を1サイクルの吸収エネルギーとして算出した。

図ー11 累積吸収エネルギー

なお今回の実験とは別に行った A-1 に対し梁部帯 鉄筋を増加させたケースの1サイクル目の累積エ ネルギー関係も合わせて示す。この供試体は、3.5 る,程度までは梁部せん断破壊が生じていない。こ れらの結果から梁部補強工法の違いによる吸収エ ネルギーの変化は確認できなかった。A-2、A-3 供 試体とも3る,付近でせん断破壊が生じた。一般に 1本RC柱ではせん断破壊後の累積吸収エネルギー は明らかに低下するが、今回の実験に限ってはそ の傾向がない。これはラーメン橋脚ではエネルギ 一吸収箇所は柱部・梁部であり、梁部がせん断破 壊した後も柱部のエネルギー吸収能は健在であり、 梁の軸方向鉄筋と骨材のかみ合わせによりある程 度力が伝達されると共に柱部でエネルギーが吸収 される事が考えられる。

4. まとめ

鉄筋コンクリートラーメン橋脚梁部に鋼板接着 補強,炭素繊維シート接着補強を施し,補強方法 の違いが補強効果,ラーメン構造物全体の耐震性 に及ぼす影響について実験的検討を行った。その 結果,以下の事項が結論付けられる。

- ①鉄筋コンクリートラーメン橋脚梁部に鋼板接着 あるいは炭素繊維シート巻き立てを施す事によ って、せん断耐力の向上が可能となり、ラーメ ン橋脚としての耐震性が向上した。
- ②鋼板補強,炭素繊維シート補強とも期待された 程の靭性率の向上はなく,梁端部の付着性能の 更なる向上あるいは定着法を考慮する必要であ ると考えられる。
- ③実験で用いた供試体は,塑性ヒンジの形成箇所 が柱基部,梁端部であったが,今回の実験に限 って言えば梁部の補強による塑性ヒンジ形成箇 所・順序等に大きな差異がない事が確認できた。 今後 RC ラーメン橋脚梁部の補強の影響も考慮し たせん断耐力算定方法の定量化が必要であると考 えられる。

豁辞

本研究を遂行するにあたり,埼玉大学材料研究 室 牧 剛史助手より貴重なご助言を頂いた。また 実験を行うにあたって山田 伝一郎君,杉田 清隆 君,沖津 充紀君(現埼玉大学大学院),山野井 毅 君(現大成建設(株))には多大な協力を得た。ここ に記して感謝する次第である。

参考文献

 日本道路協会:道路橋示方書・同解説 v. 耐震設計 編, 1996.12

 2) 鈴木 英之・西原 寛・松本 智夫・田畑 卓:炭素繊 維シートで補強された T 型断面の梁および柱のせん断 性状、コンクリート工学年次論文報告集、Vol.20, No.3、 pp.1183-1188、1998.6

3) 土木学会:コンクリート構造物の補強指針(案),コ ンクリートライブラリー95, pp.42-44, 1999.9

4) 土木学会:連続繊維シートを用いたコンクリート構
 造物の補修補強指針、コンクリートライブラリー101、
 pp23-29, 2000.7

5) 土木学会:阪神淡路大震災被害分析と靭性率評価式, コンクリート技術シリーズ No.12.

論文 Experimental and FEM Study for Shear Strengthening of Reinforced Concrete Beams using Different Techniques

Ha MINH^{*1}, Hiroshi MUTSUYOSHI^{*2}, Bimal Babu ADHIKARY^{*3} and Keiji WATANABE^{*4}

ABSTRACT: Experiments for shear strengthening of reinforced concrete (RC) beams using epoxy bonded steel plates, CFRP sheets and externally anchored stirrups were carried out to assess the actual shear strength increment with such methods. All the strengthening schemes were found to be effective for shear strengthening of RC beams. An average of 72% increase in shear strength was obtained for steel plate bonded beams and at least 117% increment was obtained for beam with externally anchored stirrups. Further, a numerical analysis using finite element method (FEM) was also conducted to simulate the behavior of these strengthened beams.

KEYWORDS: CFRP sheets, epoxy resins, FEM analysis, reinforced concrete beams, shear strengthening, steel plates.

1. INTRODUCTION

Repair and rehabilitation of existing concrete structures are now one of the major activities of the construction industry. Concrete structures deteriorate due to many reasons such as corrosion of internal reinforcement, chloride attack, freeze-thaw action, etc. Further, poor initial design and construction faults also render existing concrete structure deficient. However, the most important reason for strengthening concrete structures is due to continuous upgrading of design codes. In Japan, for example, the design vehicle load for highway bridges has recently been increased from 196 kN to 245 kN. In order to maintain efficient highway networks and to keep the bridges operational and safe, strengthening and retrofitting of existing structures would be desirable if speedy, reliable, economic and simple strengthening techniques were available. Though the RC beams are generally over-designed against shear type of failure, there are many cases when RC beams have been found to be deficient in shear. Therefore shear strengthening of RC beams becomes necessary and should be considered seriously.

In a past study, Adhikary et al. [1] found that the shear strength of RC beams could be increased and ductile flexural failure could be achieved using epoxy bonded steel plates, vertical strips and externally anchored stirrups. The objective of this paper is to present the results of an experimental study conducted to assess the actual shear strength increment of RC beams with different techniques such as epoxy bonded steel plates, CFRP sheets and externally anchored stirrups. A numerical analysis using finite element method was also performed to simulate the behavior of these strengthened beams. The effectiveness of using such techniques for shear strengthening of RC beams was confirmed through both numerical and experimental results.

^{*1} Department of Civil and Env, Engineering, Saitama University, Former Graduate Student, Member of JCI

^{*2} Department of Civil and Env. Engineering, Saitama University, Professor, Member of JCI

^{*3} Department of Civil and Env. Engineering, Saitama University, Research Assoc., Member of JCI

^{*4} Metropolitan Expressway Public Corporation, Tokyo, Japan

2. EXPERIMENTAL PROGRAM

Fig. 1 Details of test beams (mm)

Total six beams were tested in this study. The cross section of all beams was 300 x 300 mm, as shown in Fig. 1. The length of the beams was 3500 mm. All the beams were provided with 4-D22 bars (deformed bars with diameter of 22 mm) in compression zone and 4-D32 bars (deformed bars with diameter of 32 mm) in In beams, no tension zone. all shear reinforcements were provided in the desired shear failure zone. However, 2-legged D10 (deformed bars with diameter of 10mm) stirrups were provided for mounting the longitudinal reinforcement and outside the supports to The prevent anchorage failures. average compressive strength of concrete used for tested beams was 36 MPa. Fig. 2 shows the different shear strengthening schemes used in the experiments. Beam B-1 was kept as a control beam. The steel brackets were installed in beam B-2 to simulate the actual field structure, in RC rigid frames used in some elevated highways in Japan. The purpose of steel brackets in actual field structure is to provide additional support to the longitudinal steel girders in the event of large earthquakes. Beams B-3-1 and B-3-2 were strengthened with steel plates bonded on shear spans. In beam B-3-2, three M12 anchors bolts were used for additional anchorage of steel plates. In beam B-4, 10 mm diameter round bars were anchored at top and bottom using steel angles (L-50x50x8) so as to act as external stirrups. Beam B-5 was strengthened with Uwrapped-epoxy-bonded-single-layer CFRP sheet on shear spans. Table 1 shows the mechanical properties of reinforcements, steel plates and CFRP sheets used in the experiment. Mechanical properties of the epoxy adhesive used in the

bonding procedure are shown in **Table 2.** The shear span to effective depth ratio was constant 3.85 in all tests. All of the beams were tested under four-point loading over the span of 3000 mm. Load was applied monotonically to the test beams until failure. Crack initiation and propagation were monitored by visual inspection during testing.

Table 1. Properties of reinforcement, steel plates and CFRP sheets

Table 2. Properties of the epoxy resins

Reinforcement,	Yield	Elastic
Steel plates,	strength	modulus
CFRP sheets	(MPa)	(GPa)
Re-bar D22	391	186
Re-bar D32	398	206
Steel Plate ($t = 2.3 \text{ mm}$)	320	199
Steel Plate ($t = 6.0 \text{ mm}$)	347	207
D10 round bar	450	206
CFRP sheet (t =0.16 mm)	3400	230

Properties of epoxy resin	Value
Pot life (minutes)	60
Tensile strength (MPa)	49
Compressive strength (MPa)	72
Shear strength (MPa)	15.6
Elastic modulus (GPa)	2.13

3. RESULTS OF EXPERIMENTS AND DISCUSSION

Fig. 3 Load-displacement relationship

Fig. 3 and **Fig. 4** show the load versus mid span displacement relationships and load versus strain in longitudinal tensile reinforcement relationships for all tested beams. The control beam B-1 failed in shear due to a critical diagonal shear crack in one of the shear spans at the load of 233.6 kN. The other beams strengthened with different techniques (except beam B4) also failed in shear. The failure load of beam B-2 with steel brackets is a little lower than that of the control beam B-1. It means that the steel bracket has almost no effect in shear strengthening because most of the bracket location was out of the critical shear failure zone. Beams B-3-1 and B-3-2 with epoxy bonded steel plates failed at almost the same load level. It shows that there was no effect of additional anchors provided on beam B-3-2. However, if larger number of anchors is used, they might have significant effect on shear strengthening of RC beams. The shear strength increment was approximately 73% and 71% for beam B-3-1 and B-3-2 respectively compared with beam B-1. Beam B-4 with externally anchored stirrups failed in flexure and crushing of concrete occurred finally in the compression zone. This implies a higher or at least the same shear capacity of the beam B-4 as the observed flexural

failure load. With the reference to the control beam B-1, the increase in ultimate shear strength was at least 117 % for this beam. The beam B-5 with epoxy bonded CFRP sheet failed in shear and debonding of CFRP sheet from concrete surface was observed. The increase in shear strength was approximately 26% for beam B-5.

4. FINITE ELEMENT SIMULATION

To simulate the behavior of beams strengthened with epoxy bonded steel plates and CFRP sheets, a nonlinear finite element method was adopted. Due to the symmetry of geometry of the beams and loading pattern, only a half span of each beam was analyzed assuming appropriate boundary conditions along the line of symmetry. The reinforced concrete, steel plate and CFRP sheet elements were modeled using eight-node plane-stress elements. To model the epoxy interface between steel/CFRP and concrete, pseudo two-dimensional 16-node adhesive interface element was employed [2]. Two-node truss elements connected at top and bottom only were used for external stirrups. Finite element meshes for all beams are shown in **Fig. 5.** RC plate element model [3, 4] with the failure criteria following Shawky and Maekawa [5] was used for reinforced concrete. Epoxy bonded steel plates and truss elements were modeled as elasto-perfectly plastic element, whereas CFRP sheet was modeled as linearly elastic. Interface elements were also modeled as linearly elastic till failure, which is governed by the maximum-effective-strength criteria [2]. **Table 3** shows the comparison of the results between the test and the FEM analysis for all the tested beams.

Table 3. Results from experiment and analysis	
---	--

Beam	Strengthening scheme	Exp. failure load	Ana. failure	Ratio
No.		(kN) / mode	load (kN) /mode	Ana./Exp.
B-1	Control beam	233.6 / shear	234.6 / shear	1.0
B-2	Steel brackets	220.5 / shear	274.2 / shear	1.24
B-3-1	Steel plates (without anchors)	405.5 / shear	416.9 / shear	1.03
B-3-2	Steel plates (with anchors)	400.6 / shear	416.9 / shear	1.04
B-4	Externally anchored stirrups	507.6 / flexure	483.5 / shear	0.95
B-5	CFRP sheets	293.2 / shear	341.0 / shear	1.16

Numerical failure modes, ultimate failure loads and the load-displacement relationships obtained from the analysis were compared with the experimental results. In the FEM analysis, all the beams failed in shear and failure elements were located in the center of shear span as the same as observation in the experiment (except beam B4). In the test, beam B4 failed in flexure at a little higher load than that of analysis because some initial pre-stress forces were applied in the external stirrups. In the FEM analysis, however, the initial pre-stress was not considered. The results of ultimate failure load show good agreement between experiment and analysis for most of the beams, especially for the control beam as well as the beams with bonded steel plates and externally anchored stirrups (within the 5% range of test values). The comparison of the load-displacement relationships between experiment and analysis for some selected beams are shown in Fig. 6 (for the control beam B-1), Fig. 7 (for beam with epoxy bonded steel plates), Fig. 8 (for beam with externally anchored stirrups) and Fig. 9 (for beam with epoxy bonded CFRP sheets). These figures show good agreement between the numerical and experimental curves.

(Beam B-4)

5. CONCLUSIONS

Experimental and numerical studies were conducted for shear strengthening of RC beams with epoxy bonded steel plates, CFRP sheets and externally anchored stirrups. From the results of experiments and the FEM analysis, the following conclusions can be drawn.

- 1. It is confirmed that the steel plates and CFRP sheets epoxy bonded on beam's shear spans are effective for shear strength enhancement of RC beams. An average 72% increase in shear strength was obtained for the beam with epoxy bonded steel plates. However, only 26% increase in shear strength was obtained for the beam with U-wrapped-epoxy-bonded CFRP sheets, which might be due to the debonding of CFRP sheets from concrete surface.
- 2. The steel bracket has almost no effect for shear strengthening of RC beams because much of the bracket location was out of the critical shear failure zone.
- 3. In shear strengthening technique using steel plates bonded on shear span, if the bonding layer between steel plates and concrete is well prepared, the additional anchors have almost no effect. However, if large number of anchors is used, the effect can be substantial.
- 4. The maximum load capacity was obtained for beam B-4 with externally anchored stirrups. This particular beam failed at a load almost 117% of the failure load of control beam B-1. Thus, it is confirmed that this method is the most effective one for shear strengthening of RC beams among the methods studied in this research.
- 5. The FEM analysis presented herein was able to predict the ultimate shear strength as well as overall behavior of the RC beams strengthened with different techniques quite satisfactorily.

ACKNOWLEDGMENT

The authors would like to express their deep appreciation to Metropolitan Expressway Public Corporation, Japan for technical and material support in the experiment. Sincere thanks are also due to Mr. R. Keerthi, Mr. S. Sewage, Mr. T. Kuno and Mr. M. Ashraf students of Structural Material Lab, Saitama University for their help in carrying out the experiment.

REFERENCES

- 1. Adhikary, B.B., Mutsuyoshi H., Sakurai, J. and Mori, A., "Shear Strength Enhancement of Concrete Beams using Different Methods," Proceedings of the JCI, Vol. 22, No. 1, 2000, pp. 511-516.
- 2. Adhikary, B.B., "Strengthening of Reinforced Concrete Beams with Epoxy Bonded Steel Plates and CFRP Sheets," Ph.D. Dissertation submitted to the Graduate School of Science and Engineering of Saitama University, Japan, 2000, 190 pp.
- 3. Okamura, H. and Maekawa, K., "Nonlinear Analysis and Constitutive Models of Reinforced Concrete," Gihodo Press, Tokyo, 1991, 182 pp.
- 4. Xuehui, A., Maekawa, K and Okamura, H., "Numerical Simulation of Size Effect in Shear Strength of RC beams," Journal of Materials Concrete Structures and Pavements, JSCE, Vol. 35, No. 564, 1997, pp. 297-316.
- Shawky, A. and Maekawa, K., "Nonlinear Response of Underground RC Structures under Shear," Journal of Materials Concrete Structures and Pavements, JSCE, Vol. 31, No. 538, 1996, pp. 195-206.

論文 損傷域における炭素繊維シートの平均ひずみによる補強橋脚のじん 性能の評価

関谷圭介*1·上田多門*2

要旨:連続繊維シートによる既設 RC 橋脚への巻立て補強は今後の補修・補強工法として広く 実施されるものである。しかし,具体的なじん性率評価法についての研究は十分とは言えない のが現状である。本論文では,炭素繊維シート巻立て補強された RC 橋脚の終局に多く見られ るシート破断に着目して,損傷領域における炭素繊維シートの平均ひずみを実験から測定し, シートの平均ひずみとじん性能の関係について明らかにした。さらに,平均ひずみと設計せん 断耐力から,新たなじん性能評価法を提案した。

キーワード:じん性率、炭素繊維シート、平均ひずみ、せん断耐力

1. はじめに

既設 RC 橋脚の耐震性を向上させる方法とし て,RC 巻立て,鋼板巻立て,連続繊維シート 巻立て等による補強が数多く行なわれている。 なかでも連続繊維による補修・補強は施工・補 強効果の面を考えると今後広く採用される工法 である。連続繊維シートによる耐震性の向上は 各種機関の実験・研究結果から明らかになって いるが,連続繊維補強された RC 橋脚の破壊メ カニズムや補強量に対するじん性能などについ ては研究が十分とは言えない。

連続繊維シート補強された橋脚の破壊形式は 連続繊維シートの破断が大半を占めている。そ のため、連続繊維シートのひずみ性状を明らか にすることは終局状態を特定するのには不可欠 である。そこで本論文では連続繊維シートとし て炭素繊維シートを用い、補強 RC 橋脚の正負 交番載荷試験を行った。それぞれの供試体のせ ん断補強筋、炭素繊維シートにはひずみゲージ を添付し、ひずみを測定した。実験結果をもと にシートの平均ひずみとじん性能の関係を定式 化し、新たなじん性能評価法として提案するこ とを目的としている。

2. 実験概要

2.1 供試体概要

実験供試体は、標準的な RC 橋脚の 1/5 スケ ールモデルとした。補強を必要とする橋脚を想 定して、せん断補強筋比を小さくしている。 Fig.1 に供試体形状・配筋詳細図を示す。また、 炭素繊維シート補強概要およびシートのひずみ ゲージ位置は Fig.2 に示す。

Fig.2 CFS arrangement and gage location

*1 北海道大学大学院工学研究科修士課程 社会基盤工学専攻 学士 (工学) (正会員)*2 北海道大学大学院工学研究科助教授 社会基盤工学専攻 工博 (正会員)

パラメータにはシート補強量,終局曲げ耐力, シートを帯鉄筋換算した総せん断補強量をとり, 6 体の供試体を作成した。各供試体の供試体諸 元および使用した鋼材・炭素繊維シートの材料 特性についてはそれぞれ Table 1, Table 2, Table 3 に示す。

2.2 載荷方法·測定項目

載荷方法は片持ち式で正負交番の3回繰り返 し載荷を行った。降伏変位の定義は最外縁に位 置する軸方向鉄筋の降伏時の変位 ijとし,その ときの荷重を降伏荷重とする。1 ijで3回正負繰 返した後,2 ij,3 ij と測定荷重が降伏荷重を下 回り終局を迎えるまで載荷を行った。

測定項目として荷重,変位の他に軸方向鉄 筋・せん断補強筋・炭素繊維シートのひずみを ひずみゲージで測定した。

3. 実験結果

3.1 破壊形式および破断ひずみ

すべての供試体がシート破断による急激な荷 重低下により,終局を迎えた。また,破断時の 破断箇所におけるシートひずみは 12000~ 15000 μ と炭素繊維シートの公称破断ひずみに 近いひずみを示していた。よって,炭素繊維シ ートは材料としての破断伸度と部材としての破 断伸度にそれほど違いが無いことが分かる。ま た,すべての供試体において,破断領域は基部 から 250 mm以内,すなわち断面高さの1倍の範 囲内に見られた。

3.2 荷重変位曲線

Fig.3 に各パラメータ別の実験結果を示す。シ ート補強量をパラメータとした場合,荷重包絡 線に違いは見られないが,終局を迎える変形は 補強量に大きく影響している。軸方向鉄筋量を パラメータにした場合,つまり終局曲げ耐力を 変化させた場合にもじん性率に大きな違いがみ られた。しかし,せん断補強筋比の大きい供試 体 S4 は総せん断補強量を一緒にした供試体 S3 よりもじん性率は小さく,同じくシート1層で せん断補強筋比の小さい供試体 S2 と同じくら いのじん性率にとどまる結果となった。

3.3 じん性率実験結果

実験結果のじん性率をTable 4 に示す。また, 比較対象として,4章以降に述べる本評価法の 計算値および既往の研究で提案されているじん 性率評価式(土木学会¹⁾,鉄道総合研究所²⁾)か ら計算した設計じん性率を示す。提案されてい る評価式は一長一短で,広範囲のじん性率にお いて評価するのは難しいようである。

Specimen	S 1	S2	S 3	S4	S5	S6
<i>fc</i> '(N/mm ²)	32.1	29.4	29.1	30.3	30.0	33.4
A(%)	2.03	2.03	2.03	2.03	2.75	3.60
G (%)	0.21	0.21	0.21	0.57	0.21	0.21
$\mathcal{A}_{fs}(\%)$	0.044	0.088	0.176	0.088	0.176	0.176
V _c (kN)	81.2	78.9	78.6	79.6	87.8	99.4
V _s (kN)	36.8	36.8	36.8	99.1	36.8	36.8
$V_{cfs}(kN)$	78.9	149.7	299.5	149.7	299.5	299.5
V _{mu} (kN)	138.1	137.8	137.8	137.9	189.0	231.2
Tension reinforcement	D19	D19	D19	D19	D22	D25
Shear reinforcement	D6	D6	D6	D10	D6	D6
Sheet (number of plies)	0.5	1	2	1	2	2

Table 1 Details of Specimens

Table 2 Mechanical properties of reinforcement

Туре	Yield strength (N/mm ²)	Young's modulus (kN/mm ²)
D6	D6 353	
D10	355	188
D19	384	187
D22	392	178
D25	367	173

Table 3 Mechanical properties of sheet

Tensile strength (N/mm ²)	Young's modulus (kN/mm ²)	Thickness (mm)	Tensile strain
3480	230	0.11	0.015

(a) Parameter (A_{fs}, V_{cfs})

(b) Parameter (A, V_{mu})

(c) Parameter $(\sum A_v * A_{vy})^{\epsilon}$

Fig.4 Average strain of CFS- μ in S3

3. 4 シートの平均ひずみの挙動

各供試体の破断箇所は若干ずれているため, 破断箇所におけるシートひずみと載荷履歴との 関係を関連付けるのは難しい。しかし,破断・ 損傷領域はすべての供試体において基部から断 面高さの1倍の範囲にある。そこで損傷領域に おける,シートの平均ひずみと載荷履歴との関 係を関連付けることを考える。Fig.4 に供試体 S3 の平均ひずみと変形量の関係を示す。各供試 体がそれぞれひずみそのものの値は違うが同じ 増加の傾向を持っている。最大ひずみ箇所つま り破断箇所のひずみと平均ひずみには相関関係 があるため,この平均ひずみと変形量との関係 を定式化することが可能となれば、炭素繊維シ ート補強された RC 橋脚の終局変形を予測する ことができる。

4. じん性率評価法

本論文では平均ひずみとじん性能の関係を定 式化するにあたって、次のプロセスを提案する。

1) 荷重変形曲線の定式化

$$P = P(\delta) \tag{1}$$

Specimen	$\mu_{exp.}$	μ_{1cal}	$\mu_{2 cal}$	μ 3cal	$\mu_{\rm exp.}/\mu_{\rm 1cal}$	$\mu_{ m exp.}/\mu_{ m 2cal}$	$\mu_{ m exp.}/\mu_{ m 3cal}$
S 1	2.19	2.00	4.49	4.83	1.095	0.488	0.453
S2	4.16	4.00	4.74	5.39	1.040	0.878	0.772
S3	6.24	7.36	5.25	6.54	0.848	1.189	0.954
S4	4.11	6.64	5.69	5.87	0.619	0.722	0.700
S 5	4.77	4.75	4.66	5.73	1.004	1.024	0.832
S 6	3.13	2.00	4.43	5.35	1.565	0.707	0.585

Table 4 Experimental result of ductility

 μ_{1cal} :本評価法 μ_{2cal} :土木学会 μ_{3cal} :鉄道総合研究所

2) 載荷履歴とシートおよびせん断補強筋平 均ひずみの定式化

 $\varepsilon_{average} = \varepsilon_{average}(P) \tag{2}$

Eqs.(1),(2)をもとに平均ひずみと変形量
 との関係を定式化

$$\varepsilon_{average} = \varepsilon_{average} \left(\delta \right) \tag{3}$$

4) 最大ひずみと平均ひずみの相関関係の定 式化

$$\varepsilon_{max} = K \times \varepsilon_{average}$$
 K: K数 (4)

4.1 荷重変形曲線の定式化

荷重変形曲線を定式化するにあったて、本論 文では変位を曲げ変形、せん断変形、軸方向鉄 筋抜出しの3要素を考慮して考えた。曲げ解析 での算定には、Figs.5, 6³⁾に示すコンクリート・ 鋼材の応カーひずみ関係を使用した。せん断変 形は土木学会コンクリート標準示方書をもとに 算定した⁴⁾。しかし、実際の実験結果には予測 が難しい実験的誤差が含まれている。そこで、 実験的誤差の影響を少しでも小さくするために 各変形を降伏変形で除した $\mu = \delta/\delta y$ をとるこ とにより、荷重変形曲線を近似した。その結果 の1例として供試体 S3 について Figs.7, 8 に示 す。

4.2 載荷履歴と平均ひずみの定式化

載荷履歴に対するコンクリート, せん断補強 筋, 炭素繊維シートの分担せん断力(それぞれ V_c , V_s , V_{cfs} とする)はトラスモデル用いて与え ることができる。ただし, ここではシートのひ ずみとせん断補強筋のひずみは実験結果をもと に同値として考えている。トラスモデルを用い て載荷履歴とひずみの関係を求めると, その理 論値は実験値と大きくかけ離れている(Fig.9)。 曲げ変形後の差異は, 変形の増加に伴う V_c の劣 化・減少が原因であると考えられる。そこで V_c の減少量 ΔV_c を実験結果をもとに予測し, 新た に曲げ降伏する供試体の載荷履歴と平均ひずみ との関係を定めることを試みる。まず, V_c の減 少量 ΔV_c と $\mu = \delta / \delta y$ との関係を検討した (Fig.10)。ここに, *ΔV*_c とµの関係を Eq.(5)の ように線形化できた。

Fig.5 Concrete Stress-Strain model

Fig.6 Steel Stress-Strain model

Fig.7 Load-Displacement in S3 (analysis)

Fig.8 Load- μ in S3 (analysis)

Fig.11 Average strain- μ in S2

Eq.(5)のコンクリート劣化を考慮した載荷履歴 とせん断補強筋・シートの平均ひずみモデルを **Fig.9**に示す。*V*_cの劣化を仮定することにより, **Fig.9**中の実線から破線へと関係が移行する。

4.3 平均ひずみと変形の定式化 5

Fig.8 に示した荷重変形曲線と Fig.9 に示した 平均ひずみと載荷履歴の関係から,柱部材の変 形量に対するシートの平均ひずみの関係を導き 出すことができる。Fig.11 は供試体 S2 の計算値 と実験結果の比較を示す。1 サイクルにおける 平均ひずみと変形量の関係を近似することが可 能となった。しかし,実際の実験では同じ変位 における3回の正負繰返し載荷中にひずみ増加 が起こり,破断を起す現象が観測されている。 そこで繰返しの影響について考慮することは不 可欠である。実験結果から繰返しの影響は変形 レベルが小さいときにおいて影響が大きく,高 いときにおいては無視することが可能である。 そこで Fig.12 の実験結果から繰返しによるシー

Fig.12 Influence of cycle

トのひずみ増加を Eq.(6)とする。繰返しの影響 を考慮すると平均ひずみは Fig.11 中の実線が破 線へと移行したことになる。

$$\Delta \varepsilon_{cvcle} = (-0.75\mu + 3.5) \cdot \varepsilon_{1cvcle}$$
(6)

4.4 最大ひずみと平均ひずみの相関関係

4.3章までのモデルにより,柱部材の変形量 と炭素繊維シートの損傷領域における平均ひず みとの関係を与えることができた。実際の損傷 領域における各部のひずみは同様の増加傾向を 有していることが実験結果から得られている。 また,破断点における破断時のひずみは測定値 の中での最大値と考えてよく,その値は 12000 ~15000 μ と各供試体が炭素繊維シートの材料 特性値の 15000 μにほぼ一致している。破断点 におけるひずみ(もしくはひずみの最大値)と平 均ひずみとの関係を Fig.13 に示す。各供試体と も破断点のひずみは平均ひずみの 190%とほぼ 一致した。よって,平均ひずみと最大ひずみの 関係は Eq.(7)とすることができる。

$$\varepsilon_{max} = 1.90 \cdot \varepsilon_{average} \tag{7}$$

4.5 じん性率の算定

最大ひずみの生じている地点でのひずみが 15000 μ を超えた時に、シート破断が起こり、急 激な耐力低下生じて終局変形を迎えるとする。 **Eq.(7)**の関係を利用して最大ひずみの値が破断 ひずみに達した時点を終局変形と考えると、各 供試体のじん性率は Fig.14 のように算定できた。 ただし、繰返しにより破断に至った供試体では 破断直前の $\mu = \delta / \delta y$ の整数値をじん性率とし ている。また、供試体 S シリーズは本研究実験 結果、N シリーズは既往の研究⁵⁾の実験結果で ある。本評価法は比較的良くじん性率を評価で きている。

Fig.14 Result of analysis

5. まとめ

本論文では炭素繊維シート巻立て補強された RC 橋脚の終局変形評価法を確立することを目 的としてきた。本研究から得られた結果は以下 の通りである。 - ドレンジン・シート巻立て補強された RC 橋脚の 破壊形式に多く見られるシート破断による終局 では破断箇所でのシートひずみは材料特性値の 15000μに等しいひずみが生じている。よって、 シートのひずみと部材変形との関係を明らかに することにより、終局変形を導き出すことがで きる。

2) 載荷荷重に対するせん断補強筋およびシートの平均ひずみは、トラスモデルに曲げ降伏後のコンクリート損傷によるコンクリート負担分の低下量 *ΔV*_cを考慮することにより、算定することが可能である。

3)破断箇所のひずみは損傷領域における平均 ひずみの 190%とすることができる。しかし、 本じん性率評価法では低じん性においてはシー トひずみに対する載荷の繰り返しの影響を考慮 する必要がある。

今後は、本評価法で考慮されていないシート ひずみのばらつきの原因を解明するとともに、 炭素繊維シート以外の連続繊維シートへの本評 価法の適応性の検討を行い、連続繊維シート全 般に適応可能なじん性率評価法の確立が必要で ある。

参考文献

1)土木学会:コンクリート標準示方書 [耐震設計編],
 1996

2)町田篤彦ほか:炭素繊維シートによる鉄道高架橋柱 の耐震補強工法設計・施工指針,鉄道総合技術研究所, pp.21-39,1996.7

 3)前川宏一,福浦尚之:疑似直行2 方向ひび割れを有する平面RC要素の空間平均化構成モデルの再構築,土 木学会論文集,No.634/V-45,1999.11

4)土木学会:コンクリート標準示方書[構造性能照査編],2002

5)長井宏平ほか:炭素繊維シートにより補強された部 材のじん性率に与える帯筋の影響,耐震補強の評価に 関する研究委員会 報告書・論文集,pp481-488,2000.6

論文 軸引張力と曲げモーメントを受ける RC 部材のせん断耐力に関する 研究

高澤 英樹*1·飯塚 信太郎*2·関 博*3

要旨:軸引張力と曲げモーメントを受ける RC 部材のせん断耐力に関して検討を行った。帯鉄 筋なしの供試体 12 体と帯鉄筋ありの供試体 20 体についてせん断スパン比,軸引張力,帯鉄筋 比,主鉄筋強度をパラメータとして実験を行った。次に,有限要素法による解析を行い,得ら れた実験結果と照合しその妥当性を確認し,さらにせん断耐力に関するパラメータ解析を実施 してせん断耐力式を提案した。

キーワード:鉄筋コンクリート,せん断,軸引張力,有限要素法

1. はじめに

鉄筋コンクリート部材のせん断に関しては従 来から多くの研究がなされているが,軸引張力 を受ける RC 部材の研究例は少ない。直下型地 震で大きな鉛直加速度が作用する場合,ラーメ ン構造の柱部材に対して水平力による釣り合い モーメントの影響で軸方向に引張が作用する場 合など,柱部材において軸引張力と水平力を同 時に受ける場合が存在する。田村ら¹⁾は軸引張 力を受ける RC 梁部材について軸引張力,せん 断スパン比を変化させて系統的な実験を行い, 貴重なデータを提示している。しかし,軸引張 力を受ける RC 柱部材において軸引張力,曲げ モーメント,せん断力の組合せ断面力を受けた 部材の挙動は不明確な点が多く,設計法も整備 されているとは言い難い。

そこで本研究では RC 柱部材に対してせん断 スパン比,軸引張力,帯鉄筋比,主鉄筋強度を パラメータとして一方向載荷の基礎的なせん断 実験を行った。さらに有限要素法解析を行った 結果と実験結果を照合した。その結果を基にパ ラメータ解析を行い,解析結果を利用して RC 柱部材のせん断耐力式を提案することを試みた。

2. 実験概要

2.1 供試体

図-1 に供試体の断面形状および配筋を示した。基本寸法は、柱部材が 120×180×750mm であり、柱部材の有効高さは 160mm である。また、軸引張力を導入するため鉄筋を U 字型に取り付けた鉄板を打設時に柱上部のコンクリートの中に埋め込んだ。使用した鉄筋は主鉄筋として柱部材には異型棒鋼 D13 (SD345)を曲げ圧縮、引張各部に 3 本ずつ、帯鉄筋として丸鋼φ6

(SR235)を柱部材に 120mm 間隔で用いた。こ の値を基本として主鉄筋強度をパラメータとし たものは柱部材の主鉄筋の種類のみを SD295, SD390 に変え,帯鉄筋をパラメータとしたもの は帯鉄筋間隔のみを 80, 160mm に変えた。コ ンクリート強度,鉄筋降伏強度は表-1 にまと めて示した。

2.2 載荷方法

加力は図-2 に示す載荷装置を用いて最初に センターホールジャッキで所定の軸引張力を導 入した後,油圧ジャッキで水平力を破壊まで 徐々に加えた。なお,水平力が加えられ,柱が 傾いた場合でも常に軸引張力が鉛直に加力され るようにセンターホールジャッキと柱部材の間

*3 早稲田大学教授 理工学部 土木工学科 工博 (正会員)

^{*1} 北陸電力(株) (正会員)

^{*2} 早稲田大学大学院 理工学研究科 建設工学専攻

にピンを接合し,柱の変位にあわせて水平移動 棒により鉛直力を加力する位置を移動させた。

2.3 パラメータ

本実験の供試体のパラメータは以下の4種類 である。

①せん断スパン比 ②軸引張力

③鉄筋比 ④主鉄筋強度

①において、せん断スパン比はせん断破壊から 曲げ破壊への破壊モードの移行についても把握 することを目的として、2.0、2.5、3.0、3.5の4 種類で実験を行った。以下それぞれをA, B, C, Dの記号で表す。

②において、軸引張力は柱部材が引張破壊しないように 0, 1, 2N/mm²の 3 種類で実験を行った。これらの記号は A1 のように①の記号の後に数字で表した。

③において、帯鉄筋なしと帯鉄筋間隔 80mm、
 120mm、160mmの4種類で実験を行った。今回
 120mm が示方書で決められている最小補強鉄

筋量でありその前後で実験を行った。これらの 記号は帯鉄筋なしの場合は何も記さず,ありの 場合は t を①の記号の後に示し,基本である 120mm以外はBt2 - S160のように基本記号に説 明をつけた。

④において,主鉄筋種類 SD295, SD345, SD390
 の3種類で実験を行った。これらの記号は基本
 である SD345 以外は③と同様 Bt2 - SD390 のように基本記号に説明をつけた。

なお,帯鉄筋なしを除く③と④においては帯 鉄筋ありの B シリーズで軸引張力を 0 と 2N/mm²で変化させた。

3. 実験結果と考察

3.1 帯鉄筋なしの場合

荷重-変位関係において明確な最大点が見ら れたことから,最大を破壊荷重として表-1 に 示した。

破壊モードは,破壊時において主鉄筋が降伏 していないものをせん断破壊とした。今回すべ ての供試体について主鉄筋が降伏しなかったの

図-1 実験供試体図(基本供試体)

図-2 加力装置

ですべてせん断破壊であり,破壊時の最終ひび 割れ状況を見ると斜めひび割れが卓越していた。

3.2 帯鉄筋ありの場合

荷重-変位関係において明確な最大点が見ら れないものが多く,帯鉄筋降伏した後も荷重が 増加した。このことから土木学会コンクリート 標準示方書(以下,示方書)²⁾のように単純に

		材料	強度			実験値			算法	2値		
供試体名	f _c	f _t	f _{vl}	f _{vt}	P _{vi}	P _{vt}	Pexp	P _{ISCE}	P _{CSA}	Pwc	P _{cal}	
	(N/mm^2)	(N/mm^2)	(N/mm^2)	(N/mm^2)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
A0	26.0	2.4	364	/		/	34.0	31.6	23.7	34.4	37.0	
A1	26.5	2.2	373	/	1	/	34.0	25.7	23.2	32.8	31.7	
A2	26.5	2.2	373	1	/	/	31.2	18.8	22.4	31.8	28.9	
B 0	26.5	2.2	373	/		/	28.7	28.6	23.1	29.8	29.6	
<u>B1</u>	26.5	2.2	373	/	/	/	28.4	23.2	22.3	25.7	27.2	
<u>B2</u>	26.0	2.4	364	_ /	/	/	25.5	17.0	21.2	27.3	26.4	
<u>C0</u>	26.5	2.2	373	/			25.7	26.5	22.2	26.1	26.1	
<u>C1</u>	26.5	2.2	373	/		/	20.5	21.6	21.5	24.1	23.9	
$-\frac{C2}{D0}$	26.5	2.2	3/3		/		20.1	15.8	20.7	23.3	21.7	
<u>D0</u>	26.0	2.4	272	/		/	20.4	20.4	21.1	20.0	23.0	
<u>D1</u>	20.5	2.2	264			/	22.2	14.0	10.7	22.7	21.5	
<u>Δt</u> Ω	26.5	2.4	373	320	58.0	53.1	59.0	52.3	42.4	57.6	57.4	
At1	26.5	2.2	373	320	45.9	42.0	55.0	46.4	41.6	54.4	54.4	
At2	26.5	2.2	373	320	51.7	44.9	53.0	39.6	40.7	51.8	51.3	
Bt0	26.5	2.2	373	320	40.5	44.5	46.4	49.2	40.5	47.6	46.9	
Bt1	26.5	2.2	373	320	39.7	43.8	45.4	44.0	47.1	44.9	45.0	
Bt2	26.5	2.2	373	320	39.2	43.1	43.8	37.8	43.4	43.7	43.4	
Bt0-S80	26.0	2.4	364	320	40.2	49.7	48.7	49.6	49.6	47.6	45.7	
Bt2-S80	26.0	2.4	364	320	35.7	50.5	43.6	42.1	42.1	42.7	42.1	
Bt0-S160	26.0	2.4	364	320	39.8	34.2	39.7	44.1	35.7	46.4	43.5	
Bt2-S160	26.0	· 2.4	364	320	38.7	36.0	41.7	31.7	34.1	41.5	38.9	
Bt0-SD295	26.0	2.4	332	320	41.3	46.2	47.1	45.4	45.4	43.4	42.1	
Bt2-SD295	26.0	2.4	332	320	35.4	41.5	40.4	37.8	37.9	38.7	37.9	
Bt0-SD390	26.0	2.4	427	320	44.1	44.3	50.8	49.2	41.9	53.9	52.8	
Bt2-SD390	26.0	2.4	427	320	45.9	35.1	45.5	37.8	40.4	48.2	48.4	
<u>Ct0</u>	26.5	2.2	373	320	32.4	42.6	40.9	42.4	20.2	39.7	39.7	
	26.5	2.2	3/3	320	35.1	39.7	40.0	39.5	36.1	38.0	26.1	
<u>Dt0</u>	20.5	2.2	272	320	24.0	20.6	30.6	36.3	36.3	34.8	34.5	
Dt0	20.5	2.2	373	320	24.9	35.4	31.7	33.7	33.7	32.4	33.0	
Dt2	26.5	2.2	373	320	23.4	35.3	31.7	31.0	31.0	31.3	31.0	
	20.5		575		27.7	55.5	51.1	51.0			51.0	
1	1	実験锢	にとの比			破壊モード				表と式の)文字の意味	ŧ.
14-14-14-14-14		美颖[[にしていた	1			破壊モート	:		表と式の)文字の意味	え 新西藩
供試体名	P _{exp} /P _{JSCE}	実験1個 P _{exp} /P _{CSA}	区の比 P _{exp} /P _{wC}	P _{exp} /P _{cal}		示方書	破壊モート	S Pro una	Hogo - t	表と式の A ₁)文字の意味 : 引張主鉄館 - 帯鉄筋(数)	、 防断面積 同時
供試体名	P _{exp} /P _{JSCE}	実験1個 P _{exp} /P _{CSA}	P _{exp} /P _{wc}	P _{exp} /P _{cal}	実験	示方書 準用式	破壊モート CSA	e Pro-wc	提案式	表と式の A ₁ : A _t :)文字の意味 : 引張主鉄館 : 帯鉄筋断面 - サイ ギマノ	[、] あ断面積 面積
供試体名 	P _{exp} /P _{JSCE}	実験加 P _{exp} /P _{CSA} 1.43	Р _{ехр} /Р _{wC}	$\frac{P_{exp}/P_{cal}}{0.92}$	実験 _{-S}	示方書 準用式 S	破壊モート CSA S	e Pro-wc S	提案式 S	表と式の A ₁ A _t a/d)文字の意味 : 引張主鉄館 : 帯鉄筋断配 : せん断ス/	、 あ断面積 面積 ペン比
供試体名 <u>A0</u> <u>A1</u>	P _{exp} /P _{JSCE} 1.08 1.32	実験加 P _{exp} /P _{CSA} 1.43 1.46	との比 P _{exp} /P _{wC} 0.99 1.04	$\frac{P_{exp}/P_{cal}}{0.92}$	実験 ^{、S} S	示方書 準用式 S S	破壊モート CSA S S	Pro-wc S S	提案式 S S	表と式の A ₁ A _t a/d の _n)文字の意味 : 引張主鉄館 : 帯鉄筋断面 : せん断ス/ : 軸引張応ナ	^表 筋断面積 面積 ペン比 5度
供試体名 	P _{exp} /P _{JSCE} 1.08 1.32 1.66	美联 加 P _{exp} /P _{CSA} <u>1.43</u> <u>1.46</u> 1.39	P _{exp} /P _{wc} 0.99 1.04 0.98	$ P_{exp}/P_{cal} 0.92 1.07 1.08 $	実験 - <u>S</u> -S -S	示方書 準用式 S S S	破壊モート CSA S S	e Pro-wc S S S	提案式 S S S	表と式の A_1 A_t a/d σ_n b_w)文字の意味 : 引張主鉄館 : 帯鉄筋断面 : せん断ス/ : 軸引張応ナ : 幅	、 防断面積 面積 ペン比 力度
供試体名 A0 A1 A2 B0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00	実験加 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96	$\frac{P_{exp}/P_{cal}}{1.07}$ 1.08 0.97	実験 <u></u>	示方書 準用式 S S S S	破壊モート CSA S S S	Pro-wc S S S S	提案式 S S S S	表と式の A_1 A_t a/d σ_n b_w d)文字の意味 : 引張主鉄 : 帯鉄筋断 : せん断ス/ : 軸引張応ナ : 幅 : 有 効高	、 筋断面積 面積 ペン比 力度
供試体名 A0 A1 A2 B0 B1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22	美 較個 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05	実験 - - - - - - - - - - - - -	示方書 準用式 S S S S S	破壊モート CSA S S S S S	Pro-wc S S S S S	提案式 S S S S	表と式の A_1 A_t a/d σ_n b_w d f_c)文字の意 (、 新断面積 面積 ペン比 つ度 -ト圧縮強度
供試体名 A0 A1 A2 B0 B1 B2	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97	美 睽[P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97	実験	示方書 準用式 S S S S S S S	破壊モート CSA S S S S S S S S S	Pro-wc S S S S S S S	提案式 S S S S S S S S	表と式の A_1 A_t a/d σ_n b_w f_c f_t) 文字 張	、 新断面積 面積 ペン比 力度 - ト圧縮強度 - ト引張強度
供試体名 A0 A1 A2 B0 B1 B2 C0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.97	美睽[ii P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99	実験 	示方 書 式	破壊モート CSA S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S	提案式 S S S S S S S S S S S	表と式の A_i a/d σ_n b_w f_c f_y) 文字張 張 (宗 - - - - - - - - - - - - -	新断面積 面積 ペン比 つ度 - ト引張強度 - ト引張強度 - 防降伏強度
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27	美睽[ii P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86	実験	示方書 準用式 S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S	提案式 S S S S S S S S S S S S	表と式の A_i a/d σ_n b_w f_c f_t f_{yi} f_{yt})文張 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	新断面積 面積 で ン比 つ た 一 ト 引 張 強度 所 新 強度 所 新 強度 「 大 比 つ た 一 ト 引 張 強度 「 大 比 つ た 一 一 下 引 張 強度 一 下 引 張 強度 一 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 下 引 張 強度 「 一 一 一 一 引 張 強度 「 一 一 一 一 一 一 一 一 一 一 一 一 一
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C1 C2 D0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05	美睽[P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92	実験	示方 書 式	破壊モート CSA S S S S S S S S S S S S S S S S S S	Pro-wc S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S	表 A_1 A_t a/d σ_n d f_c f_t f_{y_1} f_{y_1} f_{y_1} f_{y_1} f_{y_1})文張鉄町の主い、 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	新断面積 面積 でン比 力度 一ト引張強度 新降伏 強度 軟降 大強度 新降伏 荷重 (実験)
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C1 C2 D0 D1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09	美睽锢 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03	実験	示方 書 式	破壞モート CSA S S S S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A1 A4 σ_n d f_c f_{y_i} f_{y_i} P_{y_i})文張鉄町の主い、 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	新断面積 面積 で ン た 一 ト 引 強 強 度 「 一 下 引 強 強 度 「 一 下 引 強 度 「 で し に う 度 一 下 引 強 度 「 、 に 、 う 度 一 下 引 強 強 度 「 、 い に う 度 一 下 引 強 度 気 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 C0 C1 C2 D0 D1 D1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50	美睽锢 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.98	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07	実験	示方 書 式	破壞モート CSA S S S S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A ₁ A ₄ σ_n d f_c f_{y_i} f_{y_i} P_{y_i} P_{y_i})文張鉄 せ 軸幅 オンン 張敏 に いっかい いっかい いっかい いっかい いっかい いっかい いっかい いっ	新断面積 面積 で か た た た の た に た の で た に い た で た に い た で た に い た の で た に い た の で た に い の で た に い の で の で た に 引 強 強 度 の で 、 た で の で で た の で の で の で の で の で の で の で の で の で の で の で の で の の の の の の の の の の の の の
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 C0 C1 C2 D0 D1 D2 At0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13	美睽锢 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.98 0.92 1.03	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03	実験	示方 書 式	破壞モート CSA S S S S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A ₁ A ₄ σ_n σ_n f_c f_{y_i} f_{y_i} P_{y_i} P_{y_i} P_{exp} P_{exp})文張鉄 せ 軸幅 オンン張鉄 は 一般 「「」、「「」、「」、「」、」、「」、「」、」、「」、「」、「」、「」、「」、「	 新町積 新町積 「 「 」 二 二<
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 C0 C1 C2 D0 D1 D2 At0 At1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19	美睽锢 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.98 0.98 0.92 1.03 1.01	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.01	実験	示方 書 式	破壞モート CSA S S S S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S S S S S M	提案式 S S S S S S S S S S S S S S S S S S S	表と式の A_i A_i a/d σ_n f_c f_v f_{v_i} P_{v_i} P_{v_i} P_{v_i} P_{isce})文引、林田和田子、「「「「「」」、「「」」、「「」」、「「」」、「」、「」、「」、「」、「」、「	 新町積 「「「」」 「」」 「」 「」
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 C0 C1 C2 D0 D1 D2 At0 At1 At2	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34	実験値 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30	$\begin{array}{c} P_{exp}/P_{WC} \\ \hline P_{exp}/P_{WC} \\ \hline 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.98 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.03 1.01 1.03	実験	示方 書 式	破壞モート CSA S S S S S S S S S S S S S S S S S S	ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表と式の A_1 A_t a/d σ_n f_c f_y f_y P_{yi} P_{yk} P_{sce})文:帯せ軸幅有:ニュー・デー・マークで、「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	新 新 積 加 積 ン た - ト 時 強 強 強 強 強 強 強 強 度 に 引 引 供 た 引 武 強 強 度 (実 方 方 古 本 、 、 、 示 古 本 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D1 D2 At0 At1 At1 At2 Bt0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94	美 睽[[P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99	実験 	示方書 準用式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S S S S S S S S S S S	Pro-wc S S S S S S S S S S S S S M S M	提案式 S S S S S S S S S S S S S S S S S M	表と式の A_i A_i a/d σ_n b_w d f_y f_y f_y f_y f_y P_{yt} P_{yt} P_{yt} P_{yt})文:帯せ軸幅有:ニュード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	新断面積 面積 一ト引 大度 一ト引 大度 正引 大 大 大 大 大 大 大 大 大 大 大 大 大
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03	実験値 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01	実験 	示方書式 学用式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S S S S S S S S S S S	Pro-wc S S S S S S S S S S S S S S S S M S S M S S	提案式 S S S S S S S S S S S S S S S S S M M	表と式の A ₁ A ₄ a/d σ_n b _w f _{y1} f_{y1} P_{yt} P_{yt}) 文引鉄鉄ん引 二 、 は 、 、 、 、 、 、 、 、 、 、 、 、 、	新断面積 面積 面積 に た に た 引 定 上 引 強 強 度 重 に 引 強 強 度 重 (実 験) (示 方 書 客 る 項 加 (実 験) (宗 方 書 書 、 (実 験) 二 大 方 書 書 、 (実 験) (宗 方 書 書 、 (、 方 書 書 、 (、 方 書 書 、 (、) (、) (、) (、) (、) (、) (、) (、) (、) (、) (、) (、) (、) (、) ()) () ()))) ()) ()) ()))) ()) ()))) ())) ()))) ()) ()))) ())) ()))) ()))) ()) ())) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ())) ()) ()))) ())) ()))) ())) ()))) ())))) ()))) ())))) ())))) ())))) ()))))) ()))))) ())))))))))) ()
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16	実験値 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96 1.01	$\begin{array}{c} P_{exp}/P_{WC} \\ \hline P_{exp}/P_{WC} \\ \hline 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.98 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.00 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01	実験 	示方書 準用式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S S S S S S	Pro-wc S S S S S S S S S S S S S S M S M M S M	提案式 S S S S S S S S S S S S S S S S M M M M p	表 A_1 A_t a/d σ_n σ_n f_{yt} f_{yt} P_{yt} P_{yt} P_{yt} P_{sce}	D文引鉄の山口、 う文引鉄鉄の町、 二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二	新断面積 面積 加積 や た に た 引 定 た 引 引 健 低 強 強 度 重 (実 験) (示 方 書 本 せ ん 断 強 度 重 (実 験) (宗 方 書 書 、 本 す 書 、 、 方 書 書 、 、 方 書 書 、 、 方 書 書 、 、 方 書 書 、 、 、 方 書 書 、 、 、 方 書 書 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98	実験値 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96 1.01 0.98	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.00 1.02	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.06	実験 -S M M M	示方書式 学用式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S	Pro-wc S S S S S S S S S S S S S M M S M M M M	提案式 S S S S S S S S S S S S S S S S S M M M M M M	表 A_1 A_t a/d σ_n b_w f_{x_t} f_{y_t} P_{y_t} P_{y_t} $P_{r_{y_t}}$ $P_{r_{y_t}}$	D文引鉄の山口、 う文引鉄鉄の引き、 なり、 引く 、 、 、 、 、 、 、 、 、 、 、 、 、	新断面積 面積 「方度 - ト引、 一 ト引、 一 上引、 強度度 重度 一 上引、 強度度 重度 (実 気 書 本 世 の で (実 気 書 本 せ ん 断 、 、 方 書 本 せ ん 断 、 、 方 書 本 せ ん 断 、 、 方 書 本 本 せ ん 断 、 、 方 書 本 本 し 、 、 方 書 本 本 し 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03	実験値 P _{exp} /P _{CSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline \\ 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.98 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.00 \\ 1.02 \\ 1.02 \\ 1.02 \\ 1.02 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.06 1.03	実験 -S M M M M	示方書式 学用式 S S S S S S S S S S S S S S S S S S S		Pro-wc S S S S S S S S S S S S S M M S M M M M M	提案式 S S S S S S S S S S S S S M M M M M M	表と式の A ₁ A ₄ a/d σ_n b _w f _c f _t f _t P _{yt} P _{sp} P _{ssp}	D文引鉄の山口、 う文引鉄の すい、 、 、 、 、 、 、 、 、 、 、 、 、 、	新断面積 面積 面積 に た 市 方 定 上 引 強 度 正 箱 強 強 度 重 (実 防 春 書 本 て (実 防 春 書 、 方 春 書 、 、 方 春 書 、 、 方 春 書 、 、 (実 防 春 書 、 、 方 春 書 、 、 (、 示 方 春 書 、 、 (、 、 方 春 書 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 S80 Bt1-S80 Bt0-S80 Bt0-S160	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90	₹₩ 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline P_{exp}/P_{wc} \\ \hline 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.00 \\ 1.02 \\ 1.02 \\ 0.86 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.03 0.91	実験 -S S S S S S S S S S S S S S S S S S M M M S	示方書式 学用式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S	Pro-wc S S S S S S S S S S S S M M S M M M M	提案式 S S S S S S S S S S S S S S S S S S S	表と式の A ₁ A ₄ a/d σ_n b _w f _c f _t f _t P _{yt} P _{sp} P _{ssc} P _{csa})文引茶せ軸幅有ココ引茶引茶破破せてれた。 字張鉄ん引 効ンン張鉄張鉄壊壊 断ンはれていていた。 の主筋断張 高クク主筋主筋荷耐 耐比引 耐耐耐 気が断れた さリリ鉄降筋障重力 かようの 力力 明第(1) パーク 一) の カカ	新断面積 面積 の 行 た 上 う 度 一 ト引、強度 に に 新構 強度 に 小 構 強度 に 引 強度 に 引 強度 に 引 強度 に 引 強度 (実 験) 二 大 青 書 本 て (実 験) 二 大 青 書 本 二 に 引 強度 (実 験) 二 大 青 書 本 二 に 引 強度 (実 験) 二 大 青 書 本 二 に う の 二 、 方 書 書 本 二 し の (、 、 方 書 書 本 二 し の (、 、) 本 本 土 し の (、 、) 本 本 土 し ん 断 (、 、 、 方 書 書 本 て (の 、) 本 本 土 し ん 断 う (、 、 方 書 本 る 項 (の 、 、 方 書 本 本 し ん 断 う (の 、 5 本 本 本 し ん 断 う (の 、 5 本 本 本 し ん 断 う (の 、 5 本 本 本 し ん 断 う (の 、 5 本 本 し ん 断 う の の (の 、 5 本 本 し ん 断 う の の (の 、) ん 断 う の の (の 、 5 、 の の の (の 、 5 の の の の 、 (の 、) の の の 、 の の の の の の の の の の の の の
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 St0 St2-St00 Bt2-St160	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32	₹₩ 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline \\ 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.00 \\ 1.02 \\ 1.02 \\ 0.86 \\ 1.01 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.01 1.03 0.91 1.01 1.03 0.99 1.01 1.01 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.01 1.01 1.01 1.03 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.03 0.99 1.01 1.01 1.01 1.03 0.99 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.03 1.01 1.01 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07	実験 -S S S S S S S S S S S S S S S S S S M M M S S S	示方書式 客 S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S	Pro-wc S S S S S S S S S S S S M M S M M M M	提案式 S S S S S S S S S S S S S S S S S S S	表と式の A_1 A_t a/d σ_n b_w f_c f_t f_{y_t} P_{y_t} $P_{r_{x_t}}$ $P_{r_{x_t}}$ $P_{r_{x_t}}$ $P_{r_{x_t}}$ $P_{r_{x_t}}$ $P_{r_{x_t}}$)::::::::::: ** 破破 せくくりょう ない いっかい しょう しょう いっかい しょう いっかい しょう いっかい いっかい いっかい いっかい いっかい いっかい いっかい いっか	新断面積 面積 「力度 一ト引、酸酸 一ト引、酸酸 一ト引、酸酸 一、小酸酸度 一、小酸酸度 一、小酸酸度 一、小酸酸度 一、小酸酸度 一、小酸酸 一、大香 書、、 、 、 、 、 大香 書、、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80 Bt2-S160 Bt0-SD295	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04	₹₩ 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11 1.22 1.04	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline \\ 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.00 \\ 1.02 \\ 1.02 \\ 0.86 \\ 1.01 \\ 1.09 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.07 1.03	実験 -S S S S S S S S S S S S S S S S M M M S S M M M M S S M	示方書式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S	Pro-wc S S S S S S S S S S S S S M M S M M M M M M M M S S M M	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 A_t a/d σ_n a/d f_c f_c f_t f_{r_t} P_{y_t} P_{csp} P_{csc} P_{ccs} P_{ccs} P_{ccs} P_{ccs})::::::::::: ** 破破 せくパゴ = ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	新断面積 面積 「力度 一ト引、酸酸 一ト引、酸酸 一ト引、酸酸 一ト引、酸酸 一、酸酸 酸度 一、酸酸 酸度 一、酸酸 酸度 一、酸酸 酸 、示方 素 書 本 電 (1) (1) (1) (1) (1) (1) (1) (1)
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At1 At2 Bt0 Bt1 Bt2 Bt0 S80 Bt1 Bt2 S80 Bt2-S80 Bt2-S160 Bt2-S1295	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07	₹₩ 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.13 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11 1.22 1.04	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline \\ 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.02 \\ 1.02 \\ 1.02 \\ 0.86 \\ 1.01 \\ 1.09 \\ 1.05 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.02 0.91 1.01 1.01 1.01 1.01 1.02 0.91 1.01 1.03 0.99 1.01 1.07 1.02 0.99 1.01 1.01 1.01 1.07 1.02 0.91 1.01 1.01 1.07 1.02 0.91 1.01 1.07 1.02 0.91 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.02 1.07	実験 -S S S S S S S S S S S S S S S S S M M M S M M M M M	示方書式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S	Pro-wc S S S S S S S S S S S S S S S S M M M M M M M M M M M	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 A_t a/d f_c f_c f_{t_c} f_{t_t} P_{y_t} P_{csp} P_{csp} P_{csc} P_{ccl} P_{ccl} f_{t_c}):::::::::::: # or せくパーパーで さい 破壊壊壊 (1) つう いい しょう いい	新断面積 面積 で か時面積 で か時面積 で か時面積 で か時 一 下 引 、 市 た 引 引 強 度 重 (実験) 本 本 本 せ ん 断 引 強 度 重 (実験) (実験) 本 本 本 せ ん 断 引 強 度 重 (実験) (実験) 本 本 本 本 本 七 引 引 強 度 重 (実験) (実) 本 本 本 本 本 本 し の 、 方 赤 す る 石 前 力 (0.75 よ 本 本 二 、) (0.75 本 本 本 本 し の 、 、 方 赤 す る 、 、 、 方 赤 す る 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80 Bt2-S160 Bt2-S160 Bt2-S160 Bt2-S1295 Bt0-SD390	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03	▼exp/P _{cSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11 1.22 1.04 1.07 1.21	$\begin{array}{c} P_{exp}/P_{wc} \\ \hline \\ 0.99 \\ 1.04 \\ 0.98 \\ 0.96 \\ 1.10 \\ 0.93 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.85 \\ 0.86 \\ 0.99 \\ 0.92 \\ 1.03 \\ 1.01 \\ 1.02 \\ 0.98 \\ 1.01 \\ 1.02 \\ 1.02 \\ 0.86 \\ 1.01 \\ 1.09 \\ 1.05 \\ 0.94 \\ \end{array}$	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.01 1.01 1.07 0.99 0.99 0.99 0.90 0.99 0.90 0.00 0.90 1.05 0.90 1.05 1.03 0.99 1.01 1.01 1.00 1.01 1.00 1.01 1.00 0.99 1.01 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.00 0.90 0.0	実験 	示方書式 S S S S S S S S S S S S S S S S S S S		ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 A_1 a/d f_c f_c f_r f_{y_1} P_{y_1} P_{c_2} P_{c_2} P_{w_2})::::::::::::::: # of # de t = t : t : t : t : t : t : t : t : t :	新 新 面積 加 積 少 比 力 度 - ト 時 強 強 度 た 引 引 強 強 度 た 引 引 強 強 度 大 引 引 強 強 度 (実 験) 準 本 七 引 引 供 強 度 度 (実 験) (実 方 方 す 書 本 項 前 () 準 本 本 し () 準 本 本 し () () 準) 本 本 本 し () () 準) 本 本 本 し (の ()) 本 本 本 本 (の) () 準) 本 本 本 (の) () 準) 本 本 本 本 し (の) () ()) 本 本 本 本 し (の) () ()) () ()) () () ()) () ()) () ()) () ()) () ()) () ()) () ()) () ()) () ()) () ()) () () ()) () () ()) () ()) () ()) () ()) () ()) () ()) () ()) () ()) () ()) () () ()) () () ()) () () ()) () () () ()) ()) () () () ()) () () () ()) () () ()) () ()) () () ()) () () ()) () ()) () () () ()) ()) () () () () ()) () () ()) () () ()) ()) () ()) ()) ()) () ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ()))) ())) ())) ())) ())) ()))) ()))) ()))) ()))) ())) ()))) ()))) ())))) ())))) ())))))
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80 Bt2-S160 Bt2-S160 Bt2-S10390 Bt2-SD390	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03 1.20	▼exp/P _{cSA} 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11 1.22 1.04 1.07 1.13	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.00 1.02 0.86 1.01 1.00 1.02 0.86 1.01 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.00 1.02 1.02 0.99 1.02 0.99 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 1.02 0.99 0.85 0.99 0.98 1.01 1.00 1.02 0.98 1.01 1.00 1.02 0.99 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.99 1.03 1.02 1.02 1.03 1.01 1.02 0.98 1.01 1.02 0.99 1.03 1.01 1.02 0.98 1.01 1.02 0.99 1.03 1.01 1.02 0.98 1.01 1.02 0.99 1.03 1.02 0.99 1.03 1.02 1.02 0.99 1.03 1.03 1.03 1.02 1.03 1.05 0.94 0.94 0.94	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.01 1.01 1.01 1.07 1.07 0.99 1.01 1.07 1.03 0.99 1.01 1.01 1.07 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.02 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.03 0.99 1.01 1.07 1.07 1.02 1.07 1.02 1.07 1.0	実験 	示方書式 S S S S S S S S S S S S S S S S S S S	破壞モート CSA S S S S S S S S S S S S S	Pro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 a/d a/d f_c f_r f_{y_1} P_{y_1} P_{csp} P_{csp} P_{csa} P_{cal} H =):::::::::::::: # of # we せくパープ値 ::: とをあった こうそう # we せくパープ値 ::: とをあった さりつき 新断張 高クク主筋主筋荷耐 耐比(の) 一一 耐耐耐 (の) 断部の(の) 一一 新 (の) 一 一 一 前 (の) 手が (の) 一 カ カ カ 2) (値) いぼ (の) パ (の)	新 新 面積 加 積 少 比 力 度 - ト 時 強 強 度 た 引 引 供 市 で 大 引 引 、 で ま 、 、 示 す す す 、 、 示 す す す 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 D1 D2 At0 At1 At1 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80 Bt2-S80 Bt2-S160 Bt	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03 1.20 0.97	₹₩ I.43 1.43 1.43 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.11 1.22 1.04 1.07 1.21 1.13 0.97	P _{exp} /P _{wc} 0.99 1.04 0.98 0.99 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.99 0.98 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.00 1.02 0.86 1.01 1.00 1.02 0.86 1.01 1.09 1.05 0.94 0.94 1.03	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.06 1.03 0.91 1.07 1.02 1.07 1.03 0.99 1.01 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.01 1.05 1.03 0.99 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.02 1.07 1.03 0.99 1.07 1.02 1.07 0.96 0.94 1.03 0.95 0.94 1.03 0.95 0.94 1.03 0.95 0.94 1.03 0.95 0.9	実験 -S S S S S S S S S S S S S S S S S M M M M M M M M M	示方書式 S S S S S S S S S S S S S S S S S S S		Pro-wc S S S S S S S S S S S S S S S S M	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 a_1 a_1 a_1 a_2 a_1 a_1 a_2 a_3 a_4 a_4 a_4 a_1 a_1 a_2 a_3 a_4 a_1 a_1 a_2 a_3 a_4 a_1 a_1 a_2 a_3 a_4 a_1 a_5 a_1 a_1 a_2 a_1 a_2 a_3 a_4 a_1 a_5 a_1 a_1 a_2 a_1 a_2 a_1 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_1 a_2 a_3 a_1 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_3 a_1 a_2 a_3 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_3 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_2 a_1 a_1 a_2):::::::::::: We せくいって しょい という しょう しょう いっかい しょう いっかい しょう いっかい しょう いっかい しょう いっかい しょう いっかい ひょう いっかい 小子 いっかい いっかい いっかい いっかい いっかい いっかい いっかい いっか	新 新 面積 加 積 上 力 度 - ト 時 強 度 市 市 子 時 度 市 市 引 伏 度 電 (実験) (実方 青 書 本 項 前 (に 引 引 供 強 強 度 (実 験) (実 気 方 赤 す す げ (の 、 示 す す ず (の 、 、 示 す す 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C1 C2 D0 D1 D2 At0 At1 At2 Bt0 Bt1 Bt2 Bt0 S80 Bt2-S80 Bt2-S160	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.30 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03 1.20 0.97 1.03 1.20 0.97	₹₩ Pexp/PcSA 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.03 1.03 1.03 1.03 1.07 1.21 1.03 0.97 1.03 0.97	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.99 0.98 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.99 0.95 0.99 0.92 1.03 1.01 1.00 1.02 0.98 1.01 1.02 0.99 0.85 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 1.01 1.00 1.02 0.99 0.85 0.86 1.01 1.00 1.02 0.99 0.99 0.98 1.01 1.00 1.02 0.99 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.02 0.99 0.99 0.98 0.92 0.98 1.01 1.02 0.98 1.01 1.02 0.99 0.99 0.92 0.98 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94 0.92 0.94	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.91 1.07 1.02 1.07 1.03 0.99 1.01 1.07 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.02 1.03 0.99 1.01 1.02 1.03 0.99 1.01 1.02 1.03 0.99 1.01 1.07 1.02 0.95	実験 	示方書式 字 S S S S S S S S S S S S S		ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 A_1 a/d a/d f_c f_r f_{r_f} f_{r_f} f_{r_f} P_{y_i} P_{cSA} P_{wc} $P_{$):::::::::::: まま せくパゴ疽 ::: 躍る ド::=中字張鉄ん引 効ンン張鉄張鉄壊壊 断ン/4/4論 壊壊壊式小 んぱぱの主筋断張 高クク主筋主筋荷耐 耐比(4/4)) 耐耐耐(の 断破破す意鉄断ス/応 さリリ鉄降筋障重力 小を))う カカカ 2)値 破壊博明第四/プ - 第10年間60年))う カカカ 2)値 破壊博明第二	新断面積 面積 「力度 - ト時強度 - ト時費度 一 上引 一 上引 一 上引 一 大子引 一 大子引 一 大子引 一 大子 一 大 一 大 一 大 一 大 一 大 一 大 一 大 一 大
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt2 Bt0 Bt2 St0 St0 Bt2 St0 Bt2 St0 St0 Bt2 St0 St0 Bt2 St0 Bt2 St0 Bt2 St0 St0 Bt2 St0 Bt2 St0 St0 Bt2 St0 St0 Bt2 St0 St0 Bt2 St0 St0 Ct0 Ct1 Ct2 St0 Ct1 Ct2 St0 St0 St0 St2 St0 St0 St2 St0 St2 St0 St2 St0 St2 St0 St2 St0 Ct1 Ct2 St2 St0 St0 St2 St0 St2 St0 St0 St0 St0 St0 St0 St0 St0 St0 St0 St0	P _{exp} /P _{ISCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03 1.20 0.97 1.03 0.99 1.20 0.97	₹₩ Pexp/PcSA 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.01 0.98 1.03 1.11 1.22 1.04 1.07 1.11 1.22 1.03 0.98 1.03 0.97 1.03 0.97	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.99 0.95 0.99 1.03 1.01 1.00 1.02 0.99 0.99 0.99 0.98 1.01 1.02 0.99 0.99 0.99 0.98 1.01 1.02 0.99 0.90	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.07 1.03 0.99 1.01 1.03 0.99 1.07 1.03 0.99 1.01 1.07 1.02 0.99 0.92 0.99 0.99 0.99 0.92 0.9	実験	示方書式 客 S S S S S S S S S S S S S S S S S S		ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 A_1 a/d a/d f_c f_r f_{y_1} P_{y_1} P_{y_1} P_{x_2} P_{x_2} P_{x_3} P_{w_2}):::::::::::: ませへいぜ ここでをあった。 ここでは、「「「」」」」」、「」」」、「」」、「」」、「」」、「」」、「」」、「」」、	新断面積 面積 で か 市 で か 市 で か た 引 代 度 た 引 代 度 市 下 引 代 度 市 た 引 代 度 市 赤 す 度 (ま い う 方 方 方 方 方 方 方 方 方 方 方 方 方
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 At2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt1 Bt1 Bt2 Bt0 Bt2 St0 Bt2-St0 B	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 0.90 1.32 1.04 1.07 1.03 1.20 0.97 1.03 0.90 1.32 1.04 1.07 1.03 1.20 0.97 1.03 0.99 0.84 0.94 0.94 0.95 0.97 1.05 0.97 1.05 0.98 0.99 0.98 0.90 0.95 0.90 0.98 0.90 0.90 0.98 0.90 0.90 0.98 0.90 0.90 0.98 0.90 0.90 0.90 0.90 0.98 0.90 0.90 0.90 0.90 0.90 0.90 0.98 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.99 0.98 0.99 0.99 0.99 0.99 0.84 0.99 0.84 0.99 0.84 0.95 0.55 0.	₹₩ Pexp/PcSA 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.39 1.32 1.30 1.14 0.96 1.03 1.03 1.01 0.98 1.01 1.22 1.04 1.07 1.11 1.22 1.04 1.07 1.21 1.03 0.97 1.03 0.97 1.03 0.99 0.84 0.24	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.00 1.02 1.02 0.86 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.98 1.01 1.02 0.99 0.85 0.98 0.99 0.98 0.92 1.03 1.01 1.02 1.02 0.98 0.99 0.85 0.98 0.99 0.98 0.01 1.02 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.01 1.02 0.99 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.88 0.99 0.99 0.88 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.90	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 0.99 1.01 1.03 1.07 1.03 0.99 1.07 1.03 0.99 1.07 1.03 0.99 1.07 1.03 0.99 1.07 1.07 0.99 0.9	実験	示方書式 写 S S S S S S S S S S S S S		ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表 A_1 a_1 a_1 a_1 a_2 a_3 a_4 a_4 a_4 a_4 a_4 a_4 a_1 b_w a_1 f_c f_c f_c f_c f_c f_c f_r f_{r_f} $P_{r_{st}}$ P_{csa} P_{csa} E_{cs)::::::::::: ませて、 I 元曹 : : とをある ト・: ニ まごう 子、 I 二 コ 引帯引帯引 能破 彼家康、 セニア マ 引帯 せい 相相有 コ コ 引帯引 帯引 壊壊 壊 断ン か 張 鉄 張 鉄 振 火 シン 張 鉄 張 鉄 張 火 (A)の 耐耐耐(の 断破破値)。 の 主筋断張 高クク主筋主筋荷耐 耐比(A)の 耐耐耐(の 断破破値)。 気 籔 切 の 立 カ カ カ 2)値 破壊壊 り く い 第 10000000000000000000000000000000000	新 新 面積 の 市 で た 引 定 た 引 代 定 た 引 代 度 市 市 子 下 子 に 引 代 度 市 赤 す 度 (ま う 方 方 す す で (し の) 準 半 、 項 前 引 、 、 示 す す ず 、 、 示 す す ず 、 、 、 、 、 、 、 、 、 、 、 、 、
供試体名 A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 At0 At1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1	P _{exp} /P _{JSCE} 1.08 1.32 1.66 1.00 1.22 1.50 0.97 0.95 1.27 1.05 1.09 1.50 1.13 1.19 1.34 0.94 1.03 1.16 0.98 1.03 1.03 1.09 1.32 1.04 1.07 1.03 1.20 0.97 1.03 1.20 0.97 1.03 1.20 0.97 1.03 1.20 0.97 1.05 1.27 1.05 1.27 1.05 1.13 1.19 1.34 0.94 1.03 1.10 1.03 1.20 0.90 1.32 1.04 1.03 1.20 0.97 1.05 1.03 1.04 1.03 1.20 0.97 1.05 1.05 1.05 1.09 1.32 1.04 1.03 1.04 1.03 1.20 0.97 1.05 1.05 1.05 1.05 1.09 1.32 1.04 1.03 1.05 1.07 1.03 1.20 0.90 1.32 1.04 1.03 1.20 0.97 1.05 1.05 1.05 1.05 1.05 1.05 1.09 1.32 1.04 1.05 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.03 1.05	₹₩ Pexp/PcSA 1.43 1.46 1.39 1.24 1.27 1.20 1.16 0.95 0.97 1.25 1.07 1.30 1.32 1.30 1.14 0.96 1.01 0.98 1.01 0.98 1.01 0.98 1.03 0.97 1.03 0.97 1.03 0.97 1.03 0.97 1.03 0.97 1.03 0.97 0.84 0.94	P _{exp} /P _{wc} 0.99 1.04 0.98 0.96 1.10 0.93 0.99 0.85 0.86 0.99 0.98 0.92 1.03 1.01 1.02 0.98 1.01 1.00 1.02 1.02 0.86 1.01 1.02 0.86 1.01 1.02 0.86 1.01 1.02 0.86 1.01 1.02 0.86 1.01 1.02 0.86 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 1.01 1.02 0.88 0.99 0.88 0.99 0.98 0.92 1.03 1.01 1.02 0.88 0.99 0.88 0.99 0.88 0.99 0.98 0.98 0.98 0.99 0.98 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.98 0.01 1.02 0.99 0.98 0.98	P _{exp} /P _{cal} 0.92 1.07 1.08 0.97 1.05 0.97 0.99 0.86 0.92 1.05 1.03 1.07 1.03 1.07 1.03 1.01 1.03 0.99 1.01 1.01 1.06 1.03 0.91 1.07 1.12 1.07 0.96 0.94 1.03 1.07 0.99 0.86 0.92 1.05 1.03 1.07 1.07 1.03 1.07 1.07 1.03 0.99 1.07 1.07 1.02 1.07 1.02 1.07 1.07 1.02 1.07 1.07 1.02 1.07 1.07 1.02 1.07 1.07 1.07 1.07 1.07 1.03 1.07 1.07 1.03 0.99 0.99 0.94 1.07 1.03 1.07 1.03 0.99 0.9	実験	示方書式 写 S S S S S S S S S S S S S		ro-wc S S S S S S S S S S S S S S S S S S S	提案式 S S S S S S S S S S S S S S S S S S S	表Ai A, a/d b d f c f f f y f c f f f y f c f f f y f c f f f y f c f f f y f c f f f y f f c f f f y f f c f f f y f f f f)::::::::::: ませくとが直 : ことをかった : ニ 実別 ・ マ引帯 は輪幅有 ココ引帯引帯引帯引帯引帯引帯 、 と、と、し、い、い、い、い、い、い、い、い、い、い、い、い、い、い、い かい いい	新 新 新 前 積 上 二 下 市 市 な た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た 市 た す た い た か た か た か た す た か っ の の う う の う の う の う の う の う の う の う の う の う の う の う の う の う の う の う の う う の う う う う う か う か う つ う う う う う う う う う う う う う

表--1 実験データおよび解析データ

帯鉄筋降伏を破壊荷重とすることはできないと 考えられる。そこで今回は,後述する"Pro-wc" による解析で破壊と判定された変位を破壊変位 とし,荷重-変位関係からその値に対応する荷 重を実験の破壊荷重とした。その結果を**表**-1 に示した。

実験でほとんどが最終的には斜めひび割れを 伴いながら圧壊していたが, せん断力により斜 めひび割れが広がり変形が大きくなることで圧 壊に至ったのか, 曲げの作用により圧壊に至っ たのかが明確にはわからず破壊モードの判断が 非常に難しい。そこでどちらの破壊が先行して 破壊したのかの判断材料として下記のように鉄 筋降伏に着目した。

①曲げ破壊

初めに主鉄筋の降伏が起こり終局に至る破壊 ②せん断破壊

初めに補強筋の降伏が起こり終局に至る破壊

上記の定義の妥当性について検討する。せん 断破壊と判定された At0, せん断の影響を大き く受けるが曲げ破壊と判定された Bt0, 曲げ破 壊と判定された Dt0 の 3 つの最終ひび割れ状況 を比べたのが図-3 である。斜めひび割れに注 目すると Bt0 と Dt0 は斜めひび割れが発生して いるもののあまりひび割れ幅が進展していない。 しかし, At0 は斜めひび割れ幅がほかの 2 つに 比べて大きく卓越していることがわかる。この ことから今回の実験の破壊定義はせん断破壊と 曲げ破壊を妥当に表していると考えられる。

3.3 既往の式との比較

実験値を示方書準用式(示方書式×(0.75+ 1.4/a/d))と修正圧縮場理論を基にしたカナダの 設計式(以下, CSA)³⁾と比較した結果を表-1 に示した。この2式は帯鉄筋降伏を破壊として いるので実験値の破壊荷重とは多少のずれが見 られる。その中で,軸引張力による耐力減少に ついて示方書準用式はかなり過大評価している が,CSAではその影響を少なく見積もっている。 また,せん断スパン比の影響はCSAでは実験値 と比べて小さめに予測していることがわかる。

一方,破壊モードについては CSA が示方書準 用式より正確に予測していることがわかる。

4 解析方法と解析結果

4.1 解析方法

実験を行ったすべての供試体について2種類 の2次元有限要素法汎用プログラム WCOMD("Pro-wc"と記す)およびDIANA("Pro -DA"と記す)を用いて解析を行った。軸引張 力は荷重制御で,水平力は変位制御で加力した。 実験供試体の要素分割図を図-4に示した。Pro -wcとPro-DAの解析結果の一例が図一5であ り,双方ともに実験値をよく表しているが,以 降の解析は破壊基準が明確であるPro-wcを用 いることとした。

4.2 解析結果

今回の解析結果を表-1 に示した。帯鉄筋な し供試体では実験による破壊定義と解析による 破壊定義が違うにもかかわらず破壊荷重,破壊 変位ともに実験と解析が良く一致していた。

実験値 P_{exp}と解析値 P_{wc}の破壊荷重の相違を 判断するために P_{exp}/P_{wc}を求めると,帯鉄筋な しでは平均 0.97,標準偏差 0.070,変動係数 7.24%,帯鉄筋ありでは平均 1.00,標準偏差 0.056,変動係数 5.66%となった。

破壊モードは,解析では何が原因で破壊に至ったかを明示してくれることから最終破壊状況から破壊モードを判断した。At1 と Bt1 のみ実
験と破壊モードが異なったが,それぞれに対し て軸引張力 1N/mm² 付近で改めて解析すると At1 はせん断, Bt1 は曲げになった。このことか らこれは解析誤差であると考えられる。

5 算定式の検討

5.1 破壊耐力式の算定方法

Pro-wc が良く実験値を評価していることか らパラメータを増やし,解析的に破壊耐力式を 算定することにする。なお,曲げとせん断では 破壊形式,パラメータが及ぼす影響の意味がま ったく異なることから1つの式では表すことが できないと考えられる。このため,破壊耐力式 算定の際に曲げとせん断の耐力式は別々に与え ることにする。

せん断破壊においては帯鉄筋ありとなしの場 合では、帯鉄筋の影響からそれぞれのパラメー タが耐力に及ぼす影響は異なると考えられる。 このため今回別々の式として与えることにする。

曲げ破壊においては一般的には純曲げ理論で 曲げ耐力を算定するが,せん断の影響が大きい 曲げ破壊ではこの純曲げ理論が適用できないと 考えられる。このためせん断の影響が比較的大 きいところでの曲げ耐力式と純曲げ理論の式を 別々に考えることにする。

すなわち,今回の解析において,帯鉄筋なし のせん断耐力式,帯鉄筋ありのせん断耐力式, せん断の影響が比較的大きい曲げ耐力式の3つ の式を提案し,純曲げ理論とそれぞれを比較し て最小のものをその時の破壊耐力,破壊モード であると定義する。なお,せん断耐力式の形と しては示方書に準じて積の形で表すことにする。

ただし,

V:破壊耐力 x, y, z:パラメータの種類 a, b, c, m:定数

これらの定数は1つのパラメータのみを変数とし、その他のパラメータは定数として解析を進めることで1つ1つのパラメータの影響度を考慮した。最後に実験値と解析値がほぼ同一のと

きの値を代入して m を算定した。 5.2 破壊耐力式の提案と考察 5.1 で示した方法で求めた式を下に示した。 ①せん断耐力式(帯鉄筋なし)

$$\begin{split} V_{s} &= 0.255 \cdot \beta_{l} \beta_{c} \beta_{n} a / d^{-0.7} b_{w} d \qquad (2) \\ & \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{L}, \\ \beta_{l} &= A_{l}^{0.15} f_{yl}^{0.1}, \quad \beta_{c} &= f_{c}^{l} c^{0.1} f_{l}^{0.8}, \quad \beta_{n} &= 1 - \sigma_{n} / 12 \\ & \mathbb{E} \exists \mathcal{L} \sigma \tilde{a} \exists \mathbf{n} \tilde{a} \boxplus \exists \mathbf{k} \sigma_{n} \leq f_{t}, \quad a / d \geq 1.0 \\ & \mathbf{k} d \geq 4.0 \\ & \mathbf{c} d \geq 4.0 \\ & \mathbf{c} d \geq d = 4.0 \\ & \mathbf{c} d \geq d \\ & \mathbf{c} d \in \mathbf{k} \\ & \mathbf{c} d \in$$

$$V_{s} = 0.134 \cdot \beta_{l} \beta_{c} \beta_{n} \beta_{t} a / d^{-0.6} b_{w} d \qquad (3)$$

$$\hbar \hbar U,$$

$$\begin{split} \beta_{1} &= (A_{1}f_{yl})^{0.3} , \quad \beta_{c} = f'_{c}^{0.2} f_{t}^{0.3} , \quad \beta_{n} = 1 - \sigma_{n} / 25 , \\ \beta_{t} &= (A_{t}f_{yt})^{0.15} s^{-0.5} \end{split}$$

上式の適用範囲は_{σ_n≤f_t, a/d≥1.0とする。 ③曲げ耐力式}

 $M = 2.22 \cdot 10^{-4} \cdot \hat{a}_{1} \hat{a}_{c} \hat{a}_{n} a / d^{-0.9} b_{w} d \qquad (4)$ $\hbar \hbar U,$

 $\beta_{l} = (A_{l}f_{yl})^{0.85}, \beta_{c} = f'_{c}^{0.2}, \beta_{n} = 1 - \sigma_{n} / 25$ 上式の適用範囲は $\sigma_{n} \le f_{t}$ とする。

なお、単位は上式すべて mm, Nを使用する。

上記3式と純曲げ理論から算定した破壊荷重 の最小値を表-1に示した。P_{exp}/P_{cal}の値は帯鉄 筋なしでは平均 1.00,標準偏差 0.072,変動係 数 7.25%,帯鉄筋ありでは平均 1.00,標準偏差 0.055,変動係数 5.50%となった。

次に破壊モードについて検討する。帯鉄筋あ りの場合の基本実験条件で軸引張力 0N/mm²と 2N/mm²について提案式で算定した結果を図-6, 図-7に示した。図-6と図-7を比較すると軸 引張力が大きいほど明らかに純曲げに近づいて いくと判断できる。田村ら1)の研究でも軸引張 力が大きいほどせん断から曲げにシフトすると 述べておりこれと一致している。また,表-1 で示した純曲げと判断された実験供試体はすべ て斜めひび割れが発生しており、見た目の破壊 状況からはせん断に近いように思える。しかし, これらの供試体に対して実験値と純曲げ理論か ら導かれる曲げ耐力を比べると良く一致してい る。さらに、せん断破壊とせん断の影響が比較 的大きい曲げ破壊との境目についても実験値の 破壊モードと良く一致している。これらよりこ

の式による破壊モードの算定は正しいと考えら れる。

以上のことから今回提案した式は破壊荷重だ けでなく,破壊モードも正確に判断できると考 えられる。

6 まとめ

軸引張力を受ける RC 柱部材の実験とそれに 対する有限要素法解析から明確になった事項を まとめると、以下の通りである。

- (1)帯鉄筋ありの供試体の破壊モードは主鉄筋, 帯鉄筋の降伏が先行した方を曲げ破壊,せん断破壊とすることで判断できた。
- (2)軸引張力の影響は示方書準用式では過大評 価され, CSA ではあまり考慮されていな かった。
- (3)破壊モードは CSA では比較的適切に予測 できた。
- (4) Pro-wc はせん断,曲げにかかわらず破壊 耐力,破壊モードの双方とも実験値と良く 一致していた。
- (5)解析をもとにした提案式においても今回の 供試体緒元では破壊耐力,破壊モードの双 方が実験値と良く一致していた。

なお,本研究は科学研究費補助金基礎研究 (A)(1)(代表者 埼玉大 町田篤彦教授)を もとに実施したことを附記する。

参考文献

- 田村隆弘,重松恒美,中野修治:軸方向引 張り力を受ける RC 梁のせん断耐力に関す る実験的研究,コンクリート工学論文集, Vol.2, No.2, pp.153-160, 1991
- 2) 土木学会:コンクリート標準示方書(設計 編),土木学会,pp.60-65,1996
- CSA Standards : A23.3-94 Design of Concrete Structures, Canadian Standards Association 178 Rexdale Boulevard Rexdale Ontario Canada M9W 1R3, pp.55-62, 1994

鉛直打継目を有する RC はりの

鋼板被覆による補強効果

辻 幸和¹・杉山 隆文²・山口 光俊³

¹フェロー会員 工博 群馬大学教授 工学部建設工学科 (〒376·8515 群馬県桐生市天神町1·5·1) ²正会員 Ph.D. 群馬大学助教授 工学部建設工学科 (〒376·8515 群馬県桐生市天神町1·5·1) ³正会員 修士 ㈱富士ピーエス 東京支店 (〒105·0004 東京都港区新橋 4·24·8)

せん断スパン比(a/d)が 2.35, 引張鉄筋比(pw)が 3.37%の小型 RC はりおよび a/d が 3.80, pw が 1.71%の大型 RC はりを作製し, せん断スパン内にそれぞれ鉛直打継目を設けた. この打継目を鋼板被覆で補強して曲げ 強度試験を行い, ひび割れ性状, 曲げひび割れ発生荷重, 斜めひび割れ発生荷重, 最大荷重, 破壊形式, スタ ーラップおよび鋼板のひずみをそれぞれ測定した. 鋼板補強には, 斜めひび割れ発生荷重の増加や鉛直打継目 によって局所的にスターラップの分担せん断力が増加するのを, 鋼板が分担して防止する効果があることを明 らかにした. また, スターラップの配筋量やコンクリート強度が小さいほど, 鋼板が負担するせん断力が大き くなることも明らかにした.

Key Words : reinforced concrete beam, vertical construction joint, reinforcement with steel plate, shear strength

1. はじめに

コンクリート構造物の施工においては、施工能力 や温度ひび割れの防止等の理由から、コンクリート は時間をおいて区間ごとに打ち込まれる場合が多い. そのために、コンクリート構造物には鉛直および水 平等の打継目が存在することになる.これらの打継 目に関して、土木学会コンクリート標準示方書[施 工編]平成11年版¹¹では、できるだけせん断力の小 さい位置に設け、打継面の入念な施工を行うように 規定されているだけで、定量的な規定はなされてい ない.さらに、構造物の検査において、一体性が保 たれていないと判定された場合の補強方法などの対 策も示されていない.

著者らは、既往の研究 2~4より、鉛直打継目がせん断スパン中央に位置する場合にせん断耐力が最も低下して、一体型の RC はりに比較して、20%程度小さくなることを報告した.また、その鉛直打継目を鋼板被覆で補強する工法を提案して、グラウト強度、鋼板幅や鋼板厚さなどの施工方法や補強材料の材質を適切に選択することによって、せん断耐力は一体型はりよりも増加することも報告した 3,5,6.しかし、打継目の鋼板被覆による補強のメカニズムや

せん断スパン内のスターラップの局所的なひずみの 増加などの考察は十分ではなかった.

本研究は、既往の研究(せん断スパン比:1.76~ 2.35, 引張鉄筋比: 1.56%) 2)~6)で得られた知見を構 造諸元が異なる RC はりでも確認すること、せん断 スパン内のスターラップの局所的なひずみ増加を調 べること、鋼板被覆による補強メカニズムを解明す ることを目的とした.そして、実験に際しては、既 往の研究と同じ断面形状寸法であるが、せん断スパ ン比および引張鉄筋比が異なる小型の RC はりおよ び全長3600mmの比較的大型のRCはりをそれぞれ 新たに作製して フレ,8), これらのせん断スパン内にある 鉛直打継目の鋼板被覆による補強効果を実験的に考 察した.実験では、ひび割れ発生状況、曲げひび割 れ発生荷重、斜めひび割れ発生荷重、最大荷重、破 壊形式をそれぞれ測定,観察するとともに,せん断 スパン内に設けた鉛直打継目が存在する側のスター ラップのひずみ増加およびコンクリート、スターラ ップおよび鋼板が分担するせん断力をそれぞれ求め た. さらに鋼板側面と上下面に貼付したひずみから 鋼板被覆による補強のメカニズムについても考察し た. 本論文では、これらの結果を報告する.

図-1 供試体の形状・寸法(上図:シリーズ1,下図:シリーズ2)

2. 実験概要

(1)供試体の形状寸法

実験に用いた供試体の形状寸法を、図-1に示す. 供試体はシリーズ1とシリーズ2の2種類とした.

シリーズ1の供試体は、高さが 200mm で、幅が 150mmの矩形断面で、打継ぎ後には長さが 1200mm となるようにした. 軸方向鉄筋は、引張鉄筋に D19 を3本、圧縮鉄筋に D10 を2本配置した. スターラ ップは D6 を 80mm 間隔で、せん断スパン内に4本 ずつ配置した. せん断スパン比(a/d)は 2.35 で、引張 鉄筋比(pw)は 3.37%である.

シリーズ2の供試体は、高さが 400mm で、幅が 250mmの矩形断面で、打継ぎ後には長さが 3600mm となるようにした. 軸方向鉄筋は、引張鉄筋に D25 を3本、圧縮鉄筋に D13 を2本配置した. なお、ス ターラップの配筋量を変えた Type A と Type B の2 種類とした. Type A のスターラップは D10 を、Type B は D6を、それぞれ 150mm 間隔で、せん断スパ ン内に 8 本ずつ配置した. せん断スパン比(a/d)は 3.80 で、引張鉄筋比(pw)は 1.71%である.

(2)供試体の種別

供試体の種別をシリーズ1およびシリーズ2につ いて表 1に示す. コンクリートの圧縮強度, 鉛直打 継目の位置,打継目の処理方法,鋼板被覆による補 強方法別に,合計 27 体の RC はりを試験した.

各シリーズの RC はりは,打継目の無い一体型の 供試体,打継目を鋼板被覆で補強しない無補強な供 試体もそれぞれ作製して比較した.なお,使用した 鉄筋および鋼板の種類を表-2に示す.

a)小型RCはり(シリーズ1)の詳細

シリーズ1の RC はりでは、せん断耐力が最も低下するとされるせん断スパン中央に鉛直打継目を片側に1ヶ所設けた.また、設計基準強度が 35N/mm² (通常強度)および 70N/mm²(高強度)の2つの配合で作製した.各コンクリートの配合を表-3に示す. なお、表-1に示した供試体の種別との対応で、通常強度の場合が N,高強度の場合が H と供試体名の先頭記号を表記した.

はりの設計においては、本研究の目的であるせん 断性状を明確にするためにせん断破壊を想定した. すなわち、せん断耐力時の作用荷重、 P_v と曲げ耐力 時の作用荷重、 P_M との比である破壊荷重比、 P_v/P_M が 1.0 以下に設定した.実際のコンクリート圧縮強 度を用いて計算した破壊荷重比も表-1に示した.は りの設計は、土木学会コンクリート標準示方書[設 計編]平成8年版⁹に基づいて行った.

シリーズ1のはりでは,鉛直打継目を粗骨材が見 える程度まで粗く削った場合と無処理の場合の2通 表-1 供試体の種別

	供試		コンク リート	打継目	*2	++++++++*3	P.,*4	
ĺ		体名	_ 強度*1 (N/mm²)	位置	 型	(相独力法 ⁾	P _M	
		N		無		一体型		
		NA	4		有	無補強		
		NA.	513(新)					
		S50	01.5(101)	1+1件	有	鋼板 50mm		
		NA-	47.3(旧)	マルタースパン	有		0.72	
		SI00		中央		鋼板100mm		
		S100			無			
	ン	NA-			有	銏板200mm		
	1	S200		ÁTT.		4-W		
	ズ 1				一			
	T	HB			無	無補強		
		HA-			右	鋼板 50mm		
		S50	79.3(新)	12) (kr.				
		HA- \$100	77.7(旧)	し、 し、 スパン 中央	有		0.73	
		HB-				鋼板100mm		
		S100			無			
		HA-)		有	鋼板200mm		
		S200		<u>ÁII</u> .		/+		
		A0	20.4 0.	悪い				
	9		36.1(新)	断面工	右	無補強		
	プ	A3	50.1(7)	断而Ⅲ	E H		1.45	
31	А	Al-cut	31.0 ~	like - T - T		無補強切断		
IJ		A1-SS	37.1(旧)	断面 1		鋼板200mm		
		B0		無		一体型		
2	Ь	B1		断面I				
1	グイ	B2	21.2~	断面Ⅱ		無補強		
	ープ	B3	34.4(新)	断面Ⅲ	有	for the total state	0.98	
	В	B1-cut	251			無補強切断		
		BI-SS	25.1 ~ 30.4(旧)	断面l		新校 200mm		
		B1-SL	<u> </u>			 鋼板 400mm		

*1:(新)新コンクリート,(旧)旧コンクリート *2:打継目処理有-ワイヤーブラシで粗く削る

*3:数字は鋼板幅,無補強切断-無補強で引張鉄筋を断面 III で切断

*4:破壊荷重比(せん断耐力時の作用荷重/曲げ耐力時の作用荷重)

りのはりを作製した.また,鋼板幅は,50,100,200mmと変化させた.

b) 大型RCはり(シリーズ2)の詳細

シリーズ2の RC はりでは,スターラップの配筋 量が異なる Type A およびBにおいて,鉛直打継目の 位置を図-1に示したように3通りに変化させた(断 面 I~III). せん断耐力が最も低下するせん断スパン 中央に鉛直打継目(断面 I)を設けたはり(1タイプ), 断面 I に打継目を設け鋼板により補強した1・Sタ イプ,断面 II, III にそれぞれ打継目を設けた2タイ プ,3タイプ,そして,断面 I に打継目を設け,そ れより 30mm 支点側の断面 III の位置で引張鉄筋を 切断したはり(1-cut タイプ)を,TypeA および B の RC はりでそれぞれ作製した.この引張鉄筋の切

表-2 使用鉄筋および鋼板の種類と適用

供試	体種別	压縮鉄筋	引服鉄筋	スター ラップ	鋼板*!
ジリーズ 1	通常触变 高度	SD295A D10@2	SD345 D19@3	SD295A D6	SS400 1mm*2
·/!7`9	Type A	SD295A	SD345	SD295A D10	S\$400
21J-7 Z	Туре В	D13@2	D25@3	SD295A D6	1-2mm °

*1 降伏強度:245N/mm², 引張強度:400~510 N/mm²,

*2:鋼板厚さ

*3 B1-SL: 鋼板厚さ 1mm, A1-SS, B1-SS: 鋼板厚さ 2mm

断は,打継目の近傍で途中引張定着した場合を想定 したものである.

(3)供試体の作製方法

a) コンクリートの配合および圧縮強度

普通ポルトランドセメントを結合材として使用した. コンクリートの配合を表-3に示す. 表-1には各配合の圧縮強度も示したが,新または旧コンクリートは,図-1に示したように打継目を境に分類した.

b) コンクリートの打込み方法および打継目処理

コンクリートの打込みは、図-1に示したように旧 コンクリートを鉛直打継目位置まで打ち込み、材齢 24時間後に脱型して、引き続きその打継面を処理し た.シリーズ1の供試体では、粗骨材が見える程度 まで、ワイヤブラシを用いて粗く削った.シリーズ 2では、予め旧コンクリートを打ち込む時に、打継 目面の硬化を遅らせる目的で、これと接する型枠面 に遅延剤を塗布した.そして、脱型後に水洗いしな がらワイヤブラシで粗骨材が見える程度まで削った.

新コンクリートは, 旧コンクリートの材齢 48 時間 後に打ち込み, その後, 材齢 28 日まで実験室内にて 湿布養生した.

(4) 鋼板被覆方法

鋼板被覆による補強は、材齢28日目に行った.鋼板は、はり断面を一周するように折り曲げ、その両端を突合せ溶接したものである.鋼板の設置は、既往の研究^{3),6),7}に準じて行っているが、先ず鋼板中心線が打継目に位置するように木製の設置板をシリコン樹脂系の接着剤を用いてコンクリート表面へ固定した.シリーズ1では、供試体との間隔が、グラウト注入が可能な最も狭い間隔である 5mm とした.シリーズ2の大型はりでは、鋼板と供試体面との間隔は 7mm とした.母体となる部材コンクリートと 鋼板の接着にグラウトを使用したのは、両材料の一体化を図るためである.

表-3 コンクリートの配合

供試体種別		粗骨材の 最大寸法	スランプ	空気	W/C	s/a		単化	立量(kg	/m³)		
		(mm)	(cm)	(%)	(%)	(%)	W	C	S	G	混和剤	
シリース 1	通常強度	15	15		4.0	60	49	185	309	911	982	1.85
	高強度	15	80	4.0	30	45	185	618	697	928	5.41	
シリース 2	Type A	20	8.0	2.0	57	50	137	240	1008	1039	3.36	
	Type B	25		4.5	55.5	44	154	278	817	1048	1.04	

表-4 グラウトの配合および諸性状

供試体種別		W/C		単位量(kg/m ³)					膨張	ブリ ーデ	圧縮
		(%)	W	C*1	混 和 剤 ^{* 2}	膨 張 材 ^{*3}	膨 張 剤 ^{*4}	$(\sec)^{*5}$	率 (%)	ィン グ率 (%)	強度 (N/mm ²)
21-7 1	通常強度	40	553	1396	14	-	0.112	13.5	3.2	0	41.8
29-X I	高強度	30	480	1601	8	32	-	6.7	2.1	0	59.6
シリース 2	Type A	40	559	1397	14	-	0.112	15.0	1.5	0.23	28.4
	Type B	44	582	1322	13	-	0.106	12.0	0.6	0.90	27.5
	19 . 1	101 15	1 (2 1	1	D 17 34474	A- 1 > 17	-* 0)	3 11 1	, ,		()) · ····

*1:普通ポルトランドセメント(シリーズ1の通常強度とシリーズ2),シリカフュームセメント(シリーズ1 の高強度)

*2:ノンブリーディングタイプの高性能セメントグラウト注入モルタル用混和剤(シリーズ1-通常強度) 高性能 AE 減水剤(シリーズ1-高強度),減水剤(シリーズ2)

*3:コンクリート用膨張材 *4:アルミニウム粉末

*5: IP 漏斗流下時間

本研究で使用したグラウトの配合およびフレッシ ュ性状, 圧縮強度を表-4に示す.シリーズ1は, コ ンクリート強度が2種類であるために, グラウト強 度も2種類用意した.また,シリーズ2においても, グラウト強度が部材コンクリートに近くなるように 配合した.

グラウトは,設置板で使用したシリコン樹脂系接 着剤が硬化後に注入して,その後各供試体は,さら に28日間実験室内で気中養生した.

(5) 載荷試験方法および測定項目

載荷方法は、図-1に示したように、シリーズ1で は、等曲げモーメント区間が 200mm, スパンが 1000mm, シリーズ2ではそれぞれ 300mm, 3000mmとした2点集中載荷として、供試体が破壊 に至るまで静的漸増載荷した.

測定項目は、引張鉄筋、圧縮鉄筋、スターラップ の各ひずみ、供試体の圧縮縁および引張縁の各コン クリートのひずみ、供試体側面の引張鉄筋位置での ひび割れ幅、供試体たわみ、鋼板の上面、下面、側 面のひずみである. なお、本研究では、特に各ひず みの測定結果に基づいて考察した.

3. 鉛直打継目を有する RC はりのひび割れ性状

図-2および図-3は、シリーズ1、2の各RCはり

のひび割れ発生状況を模式的に示したものである. 図には,破線で鉛直打継目を,網掛けで鋼板の位置 もそれぞれ示した.また,図-4は,それぞれシリー ズ1および2における曲げひび割れ発生荷重と斜め ひび割れ発生荷重である.

曲げひび割れ発生荷重は、RC はりの引張縁に貼付 したひずみゲージと側面に設置したパイ型変位型に より計測した,それぞれのひずみとひび割れ幅が急 激に増加した時の荷重とした.目視で確認した曲げ ひび割れは,すべて先ず等曲げモーメント区間内に 発生した.斜めひび割れ発生荷重は,打継目を有す る側のせん断スパン内のスターラップが引張力を受 け始め,急激に増加した時の荷重とした.

(1) 小型 RC はりのひび割れ性状 (シリーズ1)

a) 一体型および無補強 RC はりのひび割れ性状

コンクリート強度に関わらず,鉛直打継目の処理 を施したRCはり,NAおよびHAは、一体型のはり, NおよびHとほぼ同様な斜めひび割れの進展が見ら れる.これに対し、無処理であるRCはり,NBおよ びHBでは、打継目位置で斜めひび割れが不連続に 発生し、打継面において新コンクリートと旧コンク リートとのずれが確認された.打継面で斜めひび割 れが不連続に生じることは、既往の研究 2~60やせん 断スパン比を1.76、引張鉄筋比を2.25%に小さくし て行った別の実験 つにおいても同様に認められてい る.しかし、今回の実験の場合には、目視による打

図-2 小型RCはりのひび割れ発生状況(破線は打継目位置,網掛けは鋼板被覆)

継面のずれ量は小さかった.

このように、打継面の強度が小さく平滑であると、 骨材のかみ合い作用によるせん断力の伝達がきわめ て小さくなるため、圧縮鉄筋および引張鉄筋近くに 応力が集中し、高さ方向にずれが生じる.つまり、 斜めひび割れの進展状況は、打継面の粗度の度合い により大きく変化する.本実験では打継面を良好に 粗くして強度を向上させた場合と、無処理の場合と の両極端な場合を想定したが、既往の研究 2~6と同 様に打継面の強度および粗度がある一定以下になる と、打継面でのずれが懸念されると考えられる.

斜めひび割れ発生荷重についても,打継目を処理 しなかった無処理の RC はりの場合,打継面でのず れのため一体型の RC はりおよび打継目を処理した はりよりも小さかった.この現象は,通常強度およ び高強度コンクリートを用いた RC はりのいずれに も認められた.

b) 鋼板被覆によるひび割れ性状の変化

鋼板被覆で補強した RC はりの斜めひび割れは, いずれの場合も鋼板よりも載荷点側において先ず発 生した.

通常強度コンクリートを用いた RC はりは, 鋼板 被覆の幅が増加するに従い, 斜めひび割れが支点側 に進展するのを抑制している (図-2). そして, 打継 目を処理した通常強度コンクリートを用いた RC は りの曲げひび割れ発生荷重および斜めひび割れ発生 荷重は, 一体型の RC はりと同等であった (図-4). しかし, 打継面を無処理とした RC はり (NB-S100) では, 鋼板被覆補強を施したにもかかわらず斜めひ び割れが不連続に生じていた.

高強度コンクリートを用いた RC はりでは, 鋼板 被覆の幅を増加させても斜めひび割れは支点まで到 達した.また, 打継面を無処理とした RC はり (HB-S100)は,通常強度コンクリートを用いた RC はりと同様に, 鋼板被覆した部分にも斜めひび割れ

大型RCはりのひび割れ発生状況(破線は打継目位置,網掛けは鋼板被覆)

が不連続に生じていた. さらに斜めひび割れ発生荷 重も無補強の RC はりとほぼ同じであった().

高強度コンクリートを用いた RC はりで, 斜めひ び割れの進展を効果的に抑制できなかった原因は, 鋼板と躯体との一体化に用いたグラウト強度が躯体 のコンクリート強度に比べ, 通常強度グラウトは 10N/mm 程度であるのに対して, 高強度グラウトは 20N/mm 程度それぞれ小さい強度であったことが 関係していると考えられる. つまり, 高強度コンク リートを用いた RC はりにおいては, グラウトとの 強度差が大きいことが, 斜めひび割れを抑制できな かった原因のひとつであると考えられる. グラウト の高強度化を図ることが重要であると考えられる.

(2) 大型 RC はりのひび割れ性状(シリーズ2)a) スターラップ配筋量の影響

には、スターラップの配置図も示した.スタ ーラップとしてD10を用いたType AのRCはりは、 鉛直打継目部分に生じたひび割れが、圧縮縁にまで 達することはなかった().これは打継面の処 理が良好であったことを示している.Type Aは、粗 骨材の最大寸法が20mmであるため、打継面の処理を 適切に施せば打継面がかみ合い、高さ方向のずれに 大きく抵抗すると思われる. Type Aにおいて鋼板補 強を施したRCはり(A1-SS)では, 鉛直打継目部分 にひび割れが発生するのを抑制していた.

スターラップとしてD6を用いたType BのRCはり は、鉛直打継目部分に生じたひび割れが圧縮縁まで 達している()、しかし、鋼板による補強を施 すことにより、打継目部分のひび割れが圧縮縁まで 達するのを抑制していた.

打継目を除くせん断スパン内のひび割れ性状においても、Type AとType Bによる差が顕著に表れた. すなわち、Type Aのせん断スパンに発生した曲げひ び割れは、ひび割れが進展するにつれて載荷点に向 かい軸方向に傾いていくが、Type Bに見られる支点 から載荷点を結ぶような斜めひび割れの進展は見ら れない.したがって、スターラップの配筋量を多く することは斜めひび割れの進展に対する抑制効果を 高めることが確かめられた.

b) 曲げひび割れ発生荷重と斜めひび割れ発生荷重

に示したように、曲げひび割れ発生荷重よ,鋼板被覆で補強したB1-SSにおいて若干高い値を示したが、Type A, Type Bともに、ほぼ等しい値を示した. 曲げモーメントー定区間の曲げひび割れ発生荷重においては、せん断スパンにおける鉛直打継目の存在

図-4 斜めひび割れ発生荷重および曲げひび割れ発生荷重

および鋼板被覆による補強が及ぼす影響は小さいこ とが分かる.

斜めひび割れの発生荷重は、鋼板被覆による補強 を施すことによって、約15%増加しており、せん断 性状に対して高い補強効果を有していることが分か る.これは、グラウトとコンクリートとの強度がほ ぼ同程度であり、鋼板との一体性が確保されていた ためと考えられる.また、打継面の処理を十分に行 ったために、鉛直打継目を有する無補強のRCはりに おいても、一体型のはりとほぼ同等の斜めひび割れ 発生荷重を示した.

一方,断面Ⅲで鉄筋を切断したRCはり(A1-cut) については,斜めひび割れ発生荷重が低下した.鉛 直打継目の付近において軸方向鉄筋を切断すること は,避けることが必要である.

4. 鋼板被覆による補強がスターラップのひず み減少に及ぼす効果

斜めひび割れ発生後においては、作用するせん断

カに対してスターラップのひずみの増加割合が顕著 になる.そこで、大型はりを用いたシリーズ2の試 験において、せん断スパン内に配置した各位置にお けるスターラップのひずみの測定結果を報告する.

は,各荷重レベルにおけるスターラップひず みの分布を示している.これは, に示したスタ ーラップの各番号に対応している.

スターラップとしてD10を用いたType AのRCは り一体型(A0)は、全体的にひずみが増大している が、スターラップ番号④と⑤の間の断面 I に鉛直打 継目を有するR C はりA1は、打継目の存在が斜めひ び割れ発生やその発達に影響を及ぼし、スターラッ プのひずみが局所的に集中している.本研究では、 配筋量が多いためにスターラップが降伏して破壊す ることはなかったが、鉛直打継目を有するRCはりで は、一体型と比較して、比較的大きな斜めひび割れ が発生し、その結果スターラップが降伏して破壊に 至る可能性があることを示唆している.

鋼板被覆により補強されているRCはり(A1-SS) は、断面Iに鉛直打継目を有するRCはり(A1)より もスターラップのひずみが低減されていることから、

荷重の増加によるスターラップのひずみの変化(シリーズ2 大型RCはり)

鋼板被覆の補強効果が認められる.また,断面Iに 鉛直打継目を有し,引張鉄筋をスターラップ番号② と③の間の断面Ⅲにおいて切断した供試体(A1-cut) のスターラップのひずみは,2箇所においてひずみ が増大している.これは,鉛直打継目の存在により ⑥番のスターラップが,また引張鉄筋が不連続のた めに③番のスターラップが,それぞれせん断力を多 く受け持ったためである.

スターラップとしてD6を用いたTypeBのRCは り一体型(B0)は、同じ一体型ではあるがスターラ ップ配筋量が大きいA0と同様に、全体的にひずみが 増大しているが、等しい荷重レベルにおいてひずみ が大きい.断面Iに鉛直打継目を有するRCはり(B 1)は、A1と同様に打継目の存在により、スターラ ップ⑥のひずみが局所的に集中している.

断面IIIに鉛直打継目を有するRCはりB3は,スタ ーラップ番号③から載荷点方向のスターラップのひ ずみが全体的に大きくなった.鉛直打継目の存在に よって,打継目近傍のスターラップ②,③よりもむ しろ載荷点側のスターラップが大きなせん断力を受 け持ったためと考えられる.引張鉄筋を断面IIIにお いて切断した供試体B1-cutのスターラップのひずみ もB3と同じ傾向を示した.引張鉄筋切断位置におい て,大きなせん断力をスターラップが分担したため である.

幅が200mmの鋼板により補強されている供試体

f	共試	体名	破壊形式	最大 荷重 (kN)	降伏 荷重 (kN)
		N		208	*I
		NA		200	
		NB		177	
		NA-		, <u></u>	
		S50		247	
		NA-	ナレノド	256	246
		S100	C NAM	256	240
		NB-		257	
シリーズ		S100		237	
		NA-		241	
		S200			
		Н	曲げ	310	286
1		HA		301	274
		HB	せん断	272	
		HA- 850		319	281
		HA- S100	曲げ 引張	314	306
		HB- \$100	• / • • •	308	274
		HA- S200	せん断	278	264
		A0		291	277
	A	Al		294	285
	1	A2		289	279
	プ	A3		287	279
~	A	A1-cut		296	289
シリーズ 2		A1-SS	Htt) - J	290	277
		B0	囲り	302	291
		B1	5150	302	291
	9	B2		308	284
	1	B3		294	285
		B1-cut		290	272
	B	B1-SS		300	283
		B1-SL		294	279

破壊形式および最大荷重

*1:引張鉄筋降伏前の破壊

(B1-SS)のスターラップのひずみは、幅が400mm の鋼板により補強されたB1-SLよりも荷重が小さい 段階から局所的に大きくなった.B1-SLのスターラ ップのひずみの増加分布は、B0とほぼ同様な傾向を 示しており、鋼板幅を増加させることで、スターラ ップの分担せん断力の分布が改善されている.

5. 鉛直打継目を有するRCはりの破壊

は、各 RC はりの破壊形式,最大荷重,引張 鉄筋降伏荷重を示している.引張鉄筋降伏荷重は, 引張鉄筋のひずみが 2000 μ を超えて急激に上昇し たときの荷重とした.

(1) 小型 RC はりの破壊(シリーズ 1)

シリーズ1の RC はりの破壊形式は、設計におい

てせん断破壊を想定したが,曲げ引張破壊を示すも のが見られた.また,引張鉄筋が降伏後にせん断破 壊に至るものが見られた.

通常強度コンクリートのはりでは、打継目が無い 一体型はり(N)および打継目を処理したはり(NA) であってもせん断破壊した.

一方,高強度コンクリートの RC はりでは,一体 型はり(H),および鉛直打継面を処理した RC はり (HA)は曲げ引張破壊であった.そして,打継面が 無処理のはり(HB)はせん断破壊であり,その結果, HB の最大荷重は,10%程度小さくなった.

鋼板被覆で補強した RC はりについては,通常強 度のはりは鋼板幅に関わらずせん断破壊であり,高 強度のはりでは,曲げ引張破壊する傾向であった. せん断破壊を生じた RC はりは,いずれも鋼板被覆 を施した側と反対側でせん断破壊に至った.そして, 通常強度コンクリートを用いた場合,被覆した鋼板 幅および打継面の処理の有無によらずほぼ同程度の 最大荷重を示した.高強度コンクリートでは,鋼板 被覆で補強した場合には,HA-S200ではせん断破壊 であったため最大荷重が若干低いが,他の RC はり についてはほぼ同程度であった.つまり,今回の実 験では,打継面が無処理であっても,鋼板被覆によ る補強効果で,最終的なせん断破壊荷重の低下を抑 制できることを示唆している.

(2) 大型 RC はりの破壊(シリーズ2)

すべての RC はりにおいて,引張鉄筋の降伏後に コンクリートの圧縮縁が圧壊する曲げ引張破壊であ った.鉛直打継目を有する RC はりは,鉛直打継目 の存在によるせん断耐力の低下に伴い,せん断破壊 を想定していたが,スターラップは降伏に至らず曲 げ引張破壊となった.その結果,スターラップの配 筋量が異なる Type A と Type B では,鋼板補強によ る影響は見られず,引張鉄筋降伏荷重および最大荷 重はほぼ同程度になった.

6. 鋼板被覆による打継目の補強メカニズム

(1) 鋼板に作用する応力度

a) 鋼板側面における主応力度

鋼板側面位置での各荷重時における最大主応力度 とその方向を に示す.これは、大型RCはりの 鉛直打継目を鋼板で補強したときの結果である.各 実験において鋼板の5箇所に貼付した三軸ひずみゲ ージより測定したひずみから、各位置における荷重 が225kNと275kN時の最大主応力度およびその方向

鋼板上面・下面の軸方向ひずみの変化

を算出したものである.各荷重は,それぞれ斜めひ び割れ発生荷重に近い荷重および最大荷重の約90% の荷重である.矢印の出発点は,鋼板側面に貼付し た各三軸ひずみゲージの位置であり,線の長さが最 大主応力度の大きさを,傾きが最大主応力度の方向 を示している.鋼板の最も重要な役割である供試体 の高さ方向に対してのずれの抑制を,鋼板側面に作 用する最大主応力度から検討する.

スターラップとして D10 を用いた Type A の鋼板 補強を施した供試体 A1-SS は、B1-SS と比較して、 鋼板に作用している応力度が小さい.これは、Type A のスターラップの配筋量が多かったことと対応して いる.一方、スターラップとして D6を用いた Type Bにおいて、幅 200mm、厚さ 2mm の鋼板により補 強した B1-SS の鋼板には大きな最大主応力度が生じ ている.特に、①番と⑤番の主応力度が大きい値を 示している.これは、斜めひび割れの発生により、 ひび割れが広がる力に抵抗しているためである.つ まり、斜めひび割れ発生後において鋼板がせん断力 の一部を負担したためであり、スターラップのひず みを低減する効果と対応している. 幅 400mm, 厚さ 1mm の鋼板で補強した供試体 B1-SL は, B1-SS と鋼板量は同じだが, ひずみを抑 制する効果はB1-SS より大きい. これは, 両はりとも に, グラウトとコンクリートとの強度はほぼ同等で ありグラウトによる影響は除外できることを考え合 わせると, 鋼板幅が大きい B1-SL では, スターラッ プを比較的多く被覆していることが一因と思われる つまり, 鋼板量が同じならば, 幅を大きく設定した ほうがせん断力を分担するには有効である.

b) 鋼板の軸方向のひずみ

スターラップとしてD6を用いた大型RCはりであるType Bについて,荷重と鋼板上面および下面のひずみの関係を に示す.鋼板上面および下面に貼付した軸方向の一軸ひずみゲージによる値である.

鋼板幅が 200mm の B1-SS は、載荷荷重が初期の 段階では、鋼板の下面には引張ひずみが生じている. しかし、斜めひび割れの発生以降は、圧縮ひずみが 生じている.なお、鋼板の上面、下面ともひずみは 小さく、軸方向の挙動に対しての拘束力は小さいと 思われる.

鋼板幅が 400mm の B1-SL では鋼板の上面,下面

Vc:コンクリートが分担したせん断力、Vs:スターラップが分担したせん断力、Vk:鋼板が分担したせん断力

大型 RC はりにおける荷重と分担せん断力との関係

とも軸方向ひずみの発生が著しくなっている. B1-SLの下面に早い段階から引張ひずみが発生して, その後転じて圧縮ひずみが生じているのは,曲げひ び割れが発生したことによる影響と思われる.

(2) 鋼板被覆による補強効果

作用しているせん断力のうち、それぞれの材料が 分担しているせん断力を把握し、鋼板の分担するせ ん断力から鋼板の補強効果を検討する.一体型の RC はりは、部材に生じるせん断力に対して、コンクリ ートとスターラップで抵抗する. 鋼板被覆補強を施 した RC はりでは、そこに鋼板が抵抗要素として加 わる.

a) コンクリート, スターラップ, 鋼板が分担する各 せん断力の考え方

RC はりのせん断力に対する断面内部における抵 抗機構として,作用するせん断力は,曲げひび割れ の発生や斜めひび割れの発生前後で,圧縮区間コン クリート,ひび割れに沿っての粗骨材のかみ合い, 引張鉄筋のダウエル作用,せん断補強鉄筋によって それぞれ分担される.

打継目の存在は、粗骨材のかみ合い作用の減少, 斜めひび割れが引張鉄筋付近に生じることによる鉄 筋のダウエル作用の低下などの原因となりうる.そ して、4. で述べたように、せん断補強鉄筋のスタ ーラップのひずみが局所的に増加することで、スタ ーラップの降伏から破壊に至る可能性が懸念される

本研究では、打継目を有する側のせん断スパン内 に配置した各スターラップの中で、中央高さの位置 に添付したひずみが最大値を示したスターラップの その最大ひずみを用いて、先ず、スターラップが分 担するせん断力、V を計算した.これは、スターラ ップの分担せん断力を過大に評価することになるが、 鉛直打継目を有する RC はりは、4. で述べたよう に、局所的なひずみの増大から破壊に至る可能性も あるからである.次に、鋼板側面の鉛直方向成分の

Vc:コンクリートが分担したせん断力、Vs:スターラップが分担したせん断力、Vk:鋼板が分担したせん断力

小型 RC はりにおける作用せん断力と分担せん断力との関係

ひずみの平均値から鋼板が分担するせん断力、 $V_k e$ 計算した.したがって、コンクリートが分担するせ ん断力、Vは、作用せん断力からVおよび $V_k e$ 減 じた値である.ただし、圧縮区間コンクリート、鉄 筋のダウエル作用、粗骨材によるかみ合い作用によ る分担せん断力を明確に評価することは困難なため に、これらの各機構で分担するせん断力をまとめて コンクリートの分担せん断力とした.

b) 鋼板が分担するせん断力

図-8は、大型のRCはりにおける荷重と各材料が分 担するせん断力との関係を示している.

荷重が小さい初期の段階においては, コンクリー トがせん断力のすべてを受け持っており, そこから 徐々にスターラップもせん断力を分担する様子がわ かる.そして, RCはりに作用しているせん断力とコ ンクリートの分担するせん断力はほぼ比例の関係の まま進み, 斜めひび割れが発生したと思われる時点 で, コンクリートの分担するせん断力が低下する分, 代わりにスターラップがせん断力を負担することに なる.

スターラップとしてD10を用いたType Aにおい て、一体型のRCはり(A0)よりも、せん断スパン中 央に鉛直打継目を有するA1には、せん断力が小さい 段階からスターラップが分担するせん断力が大きく なっている.鋼板被覆により補強を施したA1-SSは、 スターラップがせん断力に抵抗し始める段階は、比 較的大きな荷重からであり、A0と同等に斜めひび割 れの発生を抑制し、改善されている.しかし、鋼板 のひずみは、先述したように常に小さい値を示して いることから、A1-SSにとってこの鋼板量は多いと 考えられる.

スターラップとしてD6を用いたType BのRCはり において,幅400mm,厚さ1mmの鋼板で補強した供 試体,B1-SLは,幅200mm,厚さ2mmの鋼板で補強 したB1-SSよりも,斜めひび割れ発生荷重が若干大 きいためか,比較的小さい荷重段階からスターラッ プが分担するせん断力が大きくなっている.これは, B1-SL における鋼板側面でのひずみが小さく,B1SSよりもひずみを抑制する効果が大きいためである.

鋼板被覆によって補強したType AおよびType B のいずれのRCはりにおいても、コンクリートが分担 するせん断力は、一体型のRCはりとほぼ同等である. つまり、せん断スパン内に存在する鉛直打継目を鋼 板被覆により補強することで、一体型とほぼ同様に 改善されている.

A1・cutは, 3. で述べたように, 斜めひび割れの 発生荷重が小さく, ひび割れが発生してからコンク リートが分担できるせん断力が急激に低下している. 断面Ⅲにおいて引張鉄筋が切断されているため, 斜 めひび割れの発生後, せん断力に対する抵抗は, ス ターラップに大きく依存することになる. また, ズ ターラップの配筋量を増加させても, 引張鉄筋を切 断して引張定着をしたRCはりには効果が少なく, 他 の供試体よりも局所的なひずみの増加が著しい.

c)小型RCはりにおける鋼板が分担するせん断力

小型RCはりにおいても同様な検討を行い,図-9に, 各材料が分担するせん断力を求めた結果を示した. 横軸は作用せん断力を,縦軸は分担せん断力として コンクリート,スターラップ,鋼板がそれぞれ分担 するせん断力を表わしている.なお,スターラップ は降伏後において,それ以上のせん断力を分担しな いため,スターラップが降伏するまでを検討の主対 象とした.また,図中の計算値とは,コンクリート 標準示方書[設計編]⁹⁾を用いて計算したコンクリー トのせん断耐力を超えると斜めひび割れが発生し,

その後の作用せん断力の増加分はスターラップの分 担せん断力が比例的に増加すると仮定して,求めた ものである.

鋼板幅による差異はほとんど認められないが,通 常強度コンクリートを用いた RC はりは,比較的大 きいせん断力を鋼板が分担している.そのため,ス ターラップが分担するせん断力は小さくなり,いず れの RC はりにおいても,スターラップが分担する せん断力は計算値よりも小さく,鋼板被覆による補 強効果が顕著であると推察される.したがって,大 型 RC はりの実験と同様に,小型RCはりの実験に おいても鋼板被覆による補強効果が,鋼板が分担す るせん断力の増加によって確認できた.

高強度コンクリートを用いた RC はりにおいても, 鋼板被覆による補強効果の傾向は認められるが,通 常強度コンクリート RC はりに比べて,鋼板の分担 するせん断力は小さくなっている.

7. まとめ

せん断スパン比および引張鉄筋比が異なる小型 RCはりと大型RCはりのせん断スパン内に鉛直打継 目を設けて、この打継目を鋼板で被覆した場合の補 強効果について各種実験を行った結果を報告した. 本研究の範囲内では、以下の結論が得られた.

(1) せん断スパン内の鉛直打継目を無処理で作っ た場合, せん断スパン比および引張鉄筋比が本研究 と異なる既往の研究と同様に, 打継目において斜め ひび割れが不連続に発生して, 新旧コンクリートが 高さ方向にずれを生じることを確認した. しかし, 打継面を粗く処理することによって, 引張鉄筋降伏 荷重, 最大荷重および破壊形式は一体型の RC はり とほぼ同等に改善できることを, 大型RCはりを用 いた実験でも確認した.

(2)鉛直打継目がせん断スパン内に存在すること で,斜めひび割れ発生後においてスターラップのひ ずみが局所的に増加した.そして,鋼板被覆による 打継目の補強は,スターラップのひずみが局所的に 増加することを防止して,作用するせん断力を分担 して抵抗することを明らかにした.そして,鋼板が 分担するせん断力の大きさは,スターラップの配筋 量が小さい場合やコンクリート強度が小さい場合に 顕著であることを示した.また,グラウトによる鋼 板とコンクリートとの一体化によって,鋼板被覆に よる補強は,斜めひび割れ発生荷重も増加させる効 果があることを明かにした.

(3) スターラップの配筋量が大きいほど、鋼板に 作用する応力度が小さくなるが、その配筋量が小さ く鋼板幅も小さい場合では、鋼板は打継目で生じる 新旧コンクリートの高さ方向のずれに抵抗するよう に挙動していることを明らかにした.また、鋼板量 が同一であれば、鋼板幅を大きく設定したほうがせ ん断力を多く分担できることを示した.

(4) 鉛直打継目の近傍で引張鉄筋を切断した場合 では、斜めひび割れ発生荷重が小さいために、荷重 が小さい段階で、スターラップのひずみが局所的に 増加して、より大きなせん断力を負担する結果にな った.したがって、引張定着の位置は打継目の近傍 を避ける必要がある.

謝辞:本研究は,平成9年度~平成10年度科学研究 費補助金(基盤研究(C)(2),課題番号09650502, 代表者:辻 幸和)および平成11年度~平成13年 度科学研究費補助金(基盤研究(A)(1),課題番号 11355020,代表者:町田篤彦)の交付により行った ものである.

参考文献

- 1) 土木学会:コンクリート標準示方書 [施工編](平成 11 年度版).
- 2) 森脇貴志, 辻 幸和, 木暮 健, 松下 朗: せん断ス パン内に鉛直打継目を有する RC はりのせん断性状, コンクリート工学年次論文集, Vol. 15, No. 2, pp.323 ~328, 1993.6.
- 3) 辻 幸和, 杉山隆文, 橋本親典, 松浪康行: 鉛直打継 目を有するRCはりの鋼板補強に関する基礎研究, 土 木学会論文集, No.571/V·36, pp.169~183, 1997.8.
- 4) 辻 幸和, 杉山隆文, 橋本親典:高流動コンクリート を用いた鉄筋コンクリートはりの力学的性状に及ぼす 鉛直打継目の影響, 材料, Vol.49, No.10, pp.1127~ 1132, 2000.10.
- 5) 辻 幸和,松浪康行,橋本親典,杉山隆文:打継目の 鋼板補強におけるグラウトの品質,阪神・淡路大震災 に関する学術講演会論文集,pp.373~376,1996.1.

- 6)太田知則,横田隆雄,辻 幸和,杉山隆文:鉛直打継 目を有するコンクリート強度が異なるRCはりのせん 断性状,コンクリート工学年次論文報告集,Vol.20, No.1, pp.479~484, 1998.6.
- 1 山口光俊:鉛直打継目を有する PRC はりのせん断特
 性,修士論文,群馬大学,2000.2.
- 8)山口光俊,辻 幸和,杉山隆文,池田正志:鉛直打継 目を有する RC はりのスターラップの補強効果,コン クリート工学年次論文報告集, Vol.21, No.3, pp.469 ~474, 1999.7.
- 9) 土木学会:コンクリート標準示方書[設計編](平成 8年度版).

STRENGTHENING EFFECTS USING STEEL PLATE ON THE STRUCTURAL PERFORMANCE OF REINFORCED CONCRETE BEAM WITH VERTICAL CONSTRUCTION JOINT

Yukikazu TSUJI, Takafumi SUGIYAMA and Mitsutoshi YAMAGUCHI

The strengthening effect using steel plate on the structural performance of reinforced concrete beam with vertical construction joint was studied. Vertical joint was located within the shear span of the beam and steel plate was used to cover the joint so that the beam could perform structurally as normal beam without construction joint. The tensile strain of the stirrup increased noticeably at the position near the vertical joint. However, the steel plate could reduce local increase in the strain of the stirrup. In addition, it was found that the steel plate contributed to resist the part of the shear force on the beam with the stirrup resulting in the prevention from the stirrup failure.

辻 幸和、杉山隆文、池田正志

1. はじめに

コンクリート構造物を施工する際、コンクリートを連続して打ち込むことが理想である。 しかし、施工能力の限界、およびセメントの水和熱による温度応力や温度ひび割れの制御 等の理由から、コンクリートを連続して打ち込むことが困難な場合がある。そのため、コ ンクリート構造物の施工には水平および鉛直の打継目を設ける場合が多くなるが、打継目 部分においてせん断耐力が低下するなどの構造上の弱点となりやすい。

打継目の補強には、経済性や施工性の観点から鋼板や炭素繊維等の巻き立て工法が一般 的であり、これまで研究成果も多く報告されている。著者らも、鋼板による補強について 報告してきた^{1),2)}。しかし、打継目を有する構造物において、プレストレスの導入が RC 部 材のせん断性状に及ぼす効果については、ほとんど研究がなされていない³⁾。

本研究では、プレストレスの導入によるせん断性状の向上に着目して^{4),5)}、鉛直打継目 を有する RC はりにプレストレスを導入した補強効果を、斜めひび割れ性状、せん断耐力 およびスターラップのひずみ性状について実験的に検討した結果を報告する。

2. 実験概要

2.1 供試体の形状寸法

供試体断面の形状寸法等の選定は、土木学会コンクリート標準示方書⁶⁾に基づいて行った。すなわち、すべての供試体がせん断破壊を起こすように、せん断耐力と曲げ耐力の破壊荷重比 P_V/P_M が約 0.8 になるように設計を行った。断面は、高さが 200mm で幅が 150mmの矩形断面とした。また、長さを 1200mm、支点間を 1000mm、載荷点間を 400mm とした。その詳細を図-1に示す。スターラップは D6 を 60mm 間隔で、せん断スパン内に 4 本ずつ配置した。

プレストレスの導入にあたり、圧縮縁に引張力が作用しないように偏心距離 e を算定し、 30mm を選定した。プレストレス導入率は、PC 鋼棒の 0.2%永久伸びに対する引張力であ る 71.8kN の 80%, 60%, 40%の 3 種類とした。表 – 1 に供試体の一覧を示す。

図-1 供試体の断面形状寸法および配筋方法

表-1 供試体の一覧

供試体名	コンクリート 設計基準強度 (N/mm ²)	鉛直 打継目	打継面の 処理方法	プレストレ ス導入率 (%)	引張縁の圧縮 応力度 (N/mm ²)	破壊荷重比 (P _v /P _M)
45一無		無				0.789
45-有A,B						0.105
45-PC80A,B	45		処理/無処理	80	3.64	0.834
45-PC60A,B]	173		60	2.73	0.816
45-PC40A,B				40	1.82	0.800
70-無		無				0.811
70-有B					_	0.011
70-PC80B	70	+-	र्थमः २०१ न्यम	80	3.64	0.850
70-PC60B		有	一一	60	2.73	0.828
70-PC40B				40	1.82	0.810

2.2 供試体の作製および載荷方法

セメントは、JIS R 5210 に適合する T 社製普通ポルトランドセメントを使用した。密度 が 3.16 (g/cm³)、比表面積が 3320 (cm²/g) であった。細骨材は群馬県笠懸町陸砂(粗粒率 2.77、表乾密度 2.63kg/ℓ、吸水率 2.35%)、粗骨材は大間々小平砕石(粗粒率 6.55、表乾密 度 2.90kg/ℓ、吸水率 0.67%)を使用した。混和剤には、通常強度コンクリートに AE 減水 剤を、高強度コンクリートに高性能 AE 減水剤を使用した。練混ぜ水には、群馬県桐生市 における水道水を使用した。

鉄筋および PC 鋼棒の力学的性状を表-2に示す。引張鉄筋に SD345 の D19 を、圧縮鉄筋に SD295 の D10 を、スターラップに SD295 の D6 を使用した。補強に使用した PC 鋼棒は、C 種 1 号 SBPR 1080/1230 の呼び名 9.2mm を使用した。

通常強度コンクリートおよび高強度コンクリートの示方配合およびフレッシュコンク リートの諸性状ならびに圧縮強度(載荷試験時)を表-3に示す。

まず旧コンクリートを打ち込んだ後、材齢24時間に打継面の処理を行い、材齢48時間 には新コンクリートを打ち込んだ。材齢2日の脱型後は、新コンクリートの材齢28日まで 湿布養生を行った。打継面の処理方法は、打継面を粗骨材が見える程度まで表面を粗く削

った処理の他に、打継面の処理を まったくしない無処理のものを作 製した。これにより、打継面処理 の良否の影響が明確に現れると考 えた。なお、高強度コンクリート を用いた RC はり供試体について は無処理のもののみである。

表-2 鉄筋およびPC鋼棒の力学的性

	降伏点 (N/mm ²)	引張強さ (N/mm ²)	弹性係数 (N/mm ²)
SD 295 D6	374	541	1.87×10 ⁵
SD 295 D10	357	513	1.85×10^{5}
SD 345 D19	386	569	1.87×10^{5}
SBPR 1080/123	0 1248	1275	2.0×10 ⁵

表-3 コンクリートの示方配合および性状

	粗骨材の	W/C	s/a	月	自位量	(kg/m	3)	混和剤	スラ	空気量	圧縮強度	(N/mm²)
	最大寸法 (mm)	(%)	(%)	W	C	S	G	単位重 (g/m³)	(cm)	(%)	旧コンクリート	新コンクリー
通常強度	15	55	49	185	337	876	993	1264	7.0	3.8	55.2	54.1
高強度	15	30	45	185	618	697	928	5408	15.4	2.6	81.1	83.3

プレストレスの導入方法は、ポストテンション方式で、グラウトによる充填の無いアン ボンドはりとした。また、PC 鋼棒のリラクセーションやコンクリートのクリープおよび乾 燥収縮等によるプレストレスの減少などの影響をできるだけ排除するため、載荷試験直前 にプレストレスの導入を行った。PC 鋼棒の緊張には油圧式センターホールジャッキを使用 した。緊張量の制御は、PC 鋼棒にあらかじめ貼付しておいたワイヤストレインゲージによ るひずみ制御とした。

供試体の詳細を、表-1に示す。鉛直打継目を有しない一体型の供試体を「無」、有する供試体を「有」、打継面の処理を行った供試体を「A」、無処理の供試体を「B」とする。 また、プレストレス導入率が80%,60%,40%の順に、PC80, PC60, PC40と表記する。

載荷試験方法は、図-1に示したように、支点間が1000mm、載荷点間が400mmによる 2 点集中静的漸増載荷とした。測定したひずみは、圧縮鉄筋、引張鉄筋、スターラップ、 PC 鋼棒の各鋼材のひずみ、供試体中央部の圧縮縁と引張縁および鉛直打継面位置の引張縁 の各コンクリートのひずみである。さらに、曲げひび割れ発生荷重、斜めひび割れ発生荷 重およびひび割れの進展状況について、ひずみゲージおよび目視により観測を行った。

3. ひび割れ性状

3.1 曲げひび割れ発生荷重

図-2に、曲げひび割れおよび斜め ひび割れの発生荷重を示す。曲げひび 割れ発生荷重は、引張縁に貼付したひ ずみゲージが急激に変化したときの荷 重とした。また目視で確認した曲げひ び割れの発生位置は、すべて等曲げモ ーメント区間であった。

いずれの RC はりともに、プレスト レスの導入効果により曲げひび割れ発 生荷重は一体型と比較して大きい値を 示した。また、プレストレスの導入力 が大きいほど曲げひび割れ発生荷重も 大きいことが確かめられた。なお、鉛 直打継目を有した「45-有A」、「45-有B」および「70-有B」は、一体型 とほぼ同一荷重で曲げひび割れの発生 が確認された。

3.2 斜めひび割れ発生荷重

斜めひび割れ発生荷重は、目視によ り確認した時の荷重である。斜めひび 割れの発生荷重は、鉛直打継目の有無 および打継面の処理方法の差異による 影響が著しく認められた。

すなわち、「45-有A」の斜めひび割れ発生荷重は、一体型の「45-無」より若干低い値 であった。「45-有A」は、打継面の処理を行ったために斜めひび割れ発生荷重の極端な低 下は見られなかった。また、打継目を処理しない「45-有B」は、一体型に比べて約 50% 低い 57kN で斜めひび割れが生じた。「45-有B」では鉛直打継目による悪影響が顕著であ った。

プレストレスを導入したはりでは、打継面の処理の違いにより斜めひび割れ発生荷重が

大きく異なった。打継面の処理を行った場 合では、プレストレスの導入により一体型 の「45-無」より大幅に斜めひび割れの発 生が抑制されている。また、プレストレス 導入率が高いほど斜めひび割れの発生を抑 制する効果は大きい。しかし、打継面の処 理を行わない場合では、プレストレスを導 入した「45-PC60B」のみが、一体型とほ ぼ同程度の荷重で斜めひび割れを生じたが、 早期荷重の段階で斜めひび割れが発生する。 傾向が見られた。特に「45-PC40B」は、 「45-有B」とほぼ同程度の荷重であった。 つまり、斜めひび割れの発生には、打継面

高強度コンクリートを用いた RC はりに おいても、鉛直打継目を有する「70-有B」 は一体型の「70-無」に比べ約 26%低い 86kN で斜めひび割れが生じた。

の処理の影響を大きく受けると考えられる。

なお、打継面の処理を行っていない場合、 通常強度コンクリートはりではプレストレ スを導入しても早期荷重の段階で斜めひび 割れが発生する傾向が見られた。しかしな がら、高強度コンクリートを用いると、「70 -PC80B」と「70-PC60B」のプレストレ スを導入したはりは、一体型の「70-無」 より大きい荷重で斜めひび割れが生じた。

3.3 斜めひび割れ発生状況

通常強度コンクリートを用いた RC はり における破壊時のひび割れ発生状況を図-3に示す。一体型である「45-無」の斜め ひび割れは、支点と載荷点を結ぶように直 線的に生じた。

打継面の処理を行ったはりは、斜めひび 割れが打継面においてずれることがなく、

ー体型と同様に載荷点と支点とを直線で結 ぶように生じた。なお、「45-有A」では鉛 直打継目を有しない側から最初に斜めひび 割れが発生した。また、プレストレスを導 入した「45-PC80A」および「45-PC60 A」でも、鉛直打継目を有しない側からせ ん断破壊に至った。

しかし、打継目を処理しない「45-有B」 では、斜めひび割れが鉛直打継目で大きく ずれ、引張鉄筋と圧縮鉄筋付近に生じた。 これは、鉛直打継目に沿って曲げひび割れ が生じることで、打継面の圧縮領域のコン クリートの断面積が一体型の「45-無」に 比べて小さくなり、せん断耐力が大きく低 下し、高さ方向にずれたためである。打継 面の処理を行っていない場合、打継面は平 滑であり、ひび割れ面のかみ合いにより伝 達されるせん断力はきわめて小さいと考え られる。そのためプレストレスを導入した

「45-PC80B」、「45-PC60B」、「45-PC40B」においても、同様に鉛直打継目で

のずれが見られた。またこれらのプレストレスを導入したはりは、斜めひび割れがずれて 生じた後に PC 鋼材位置において斜めひび割れが発生し、支点と載荷点とを結ぶようにひ び割れが生じた。

図-4は、高強度コンクリートを用いたはりにおける破壊時のひび割れ発生状況を示す。

「70-無」の斜めひび割れは、「45-無」と同様に、支点 と載荷点を結ぶように直線的に生じた。打継目を処理し ない「70-有B」は、「45-有B」と同様に、鉛直打継目 で大きくずれたために、せん断耐力が大きく低下した。

プレストレスを導入した高強度コンクリートを用いて 打継目を処理しなかったはりにおいては、斜めひび割れ は、通常強度コンクリートを用いて打継目の処理を行っ たはりとほぼ同程度の荷重で、鉛直打継目がずれて生じ た。

4. 破壊形式および破壊荷重

破壊荷重を表-4に示す。せん断破壊を生じるように、 はりの形状寸法と鉄筋等を配置したため、すべてのはり はせん断圧縮破壊を生じた。

破壊荷重は「45-有B」が、一体型と比較して約 30%

表一4 破壊荷重

供試体名	破壊荷重 (kN)
45-無	300
45-有A	303
45-PC80A	342
45-PC60A	337
45-PC40A	315
45-有B	214
45-PC80B	316
45-PC60B	276
45-PC40B	326
70一無	345
70-有B	299
70-PC80B	311
70-PC60B	353
70-PC40B	345

低い値でせん断破壊に至った。鉛直打継目を処理しなかったため、せん断耐力の著しい低 下を生じた。プレストレスを導入したはりは、「45-PC60B」を除き、一体型の破壊荷重 より大きい値を示した。

高強度コンクリートを用いた RC はりでは、通常強度コンクリート RC はり同様、鉛直 打継目を有する「70-有B」が一体型のはりと比較し破壊荷重の低下が見られ、約 13%低 い 299kN でせん断破壊に至った。プレストレスを導入したはりは一体型と同等以上の最大 荷重であった。

打継面の処理を行ったはりは、プレストレスの導入量に対応して、せん断耐力も増加した。しかしながら、打継面の処理を行わない通常強度・高強度コンクリートを用いたはりは、プレストレスの導入効果が明確に現れないものも見られた。

5. 分担せん断力

スターラップを配置した RC はりは、作用せん断力に対し、斜めひび割れが生じるまで は主としてコンクリートで抵抗し、斜めひび割れが生じるとコンクリートとスターラップ で抵抗する。鉛直打継目を有する RC はりは、鉛直打継目の存在により、コンクリートが 分担するせん断力が低下し、低下した分をスターラップで補うことになる。

せん断力とコンクリートおよびスターラップの分担せん断力との関係を、図-5および 図-6に示す。なお、図中の○印は、斜めひび割れの発生を示す。それぞれの値の算出方 法を以下に示す。

スターラップが分担するせん断力 Vsの実測値は、スターラップのひずみの実測値より、 以下の式で求めた。なお、スターラップのひずみは、実測した最大値を用いた。

$V_{s}=A_{w}*\sigma *Z/S$

コンクリートが分担するせん断力 V_c の実測値は、作用せん断力 Vより V_s の実測値を差し引いて求めた。

コンクリートが分担するせん断力 V_cの計算値は、コンクリートのせん断耐力の計算値 V_{cd}が作用せん断力 V より大きい場合には、V とし、コンクリートのせん断耐力の計算値 V_{cd}が作用せん断力 V より小さい場合には、V_{cd} として求めた。

スターラップが分担するせん断力 V_s の計算値は、作用せん断力 Vより V_c の計算値を差し引いて求めた。

通常強度コンクリートを用いた「45-無」RC はりでは、斜めひび割れ発生後に、コンク リートの分担せん断力は一時的に減少するものの、その後、ひび割れ面のかみ合いによっ てせん断力が伝達されるため、コンクリートの分担せん断力は再び増加する。打継面の処 理を行ったはりも、「45-無」と同様な傾向が見られ、プレストレスを導入した「45-PC80 A」「45-PC60A」のコンクリートの分担せん断力は、「45-無」と比較して大きく、プレ ストレス導入の効果が現れている。

鉛直打継目の処理を行わなかった「45-有B」は、「45-無」よりも早期の荷重段階で斜 めひび割れが生じているため、コンクリートの分担せん断力は、早期の荷重段階から減少 をはじめ、スターラップの分担せん断力が増加しはじめている。また、コンクリートの分 担せん断力は荷重の増加とともに減少する一方である。これは、打継面の処理を行ってい ないため、鉛直打継目に沿って生じた曲げひび割れによって伝達されるせん断力はほとん

図-5 せん断カとコンクリート・スターラップの分担せん断カとの関係 (通常強度コンクリートはり)

図ー6 せん断カとコンクリート・スターラップの分担せん断カとの関係 (高強度コンクリートはり)

ど無いと考えられるからである。プレストレスを導入したはりのコンクリートの分担せん 断力は、「45-有B」に比べると、斜めひび割れの発生が遅れるため、大きい値となってい るが、斜めひび割れ発生後は急激に減少している。

高強度コンクリートを用いた「70-無」はりのコンクリートの分担せん断力は、斜めひ び割れ発生後若干の減少が見られるものの、せん断力の増加とともに増加している。鉛直 打継目を処理しなかった「70-有B」は、「45-有B」と同様な傾向が見られ、早期の荷重 段階からコンクリートの分担せん断力が低下し、その分のせん断力をスターラップが分担 している。プレストレスを導入したはりのコンクリートの分担せん断力は、斜めひび割れ が生じるまでは「70-無」より大きいが、斜めひび割れが生じた後は急激に減少し、「70 -無」より小さくなり、「70-有B」と同程度となっている。

図-7 各荷重レベルにおけるスターラップのひずみ分布(通常強度コンクリートはり)

6. スターラップの挙動

各荷重レベルにおけるスターラップのひず みを、図-7および図-8に示す。スターラ ップの番号は図-1に示した各番号に対応し ている。すなわち、鉛直打継目は番号⑥、⑦ 間に存在する。

通常強度コンクリートを用いた「45-無」 「45-有A」はりのスターラップのひずみは、 荷重の増加に伴い全体的に増加している。 「45-有A」は鉛直打継目を有しているにも かかわらず、打継面の処理を粗骨材が見える 程度まで行ったため、スターラップのひずみ からは鉛直打継目が弱点となっていない。プ レストレスを導入したはりも「45-無」と同 様な傾向が見られるが、同一荷重レベルにお いて「45-無」に比べ、スターラップのひず みは、プレストレス導入率が高いほど大幅に 抑制されており、プレストレスの導入による 補強効果が認められる。

「45-有B」は、打継面の処理を行ってい ないため鉛直打継目が弱点となり、スターラ ップのひずみは、小さい荷重レベルから鉛直 打継目より支点側の番号⑦に局所的に集中し、 最終的にスターラップは降伏に至っている。 これは、鉛直打継目に沿って曲げひび割れが 生じ、打継面で高さ方向にずれ、斜めひび割 れが大きく開いたためである。プレストレス を導入したはりは、「45-有B」と比較すると、 スターラップのひずみは若干抑制されている が、「45-無」のように全体的な増加を示して おらず、「45-有B」と同様に、スターラップ のひずみは番号⑦に局所的に集中し、最終的

荷重レベル (kN)

75

125

175

50

100

150

200

図──8 各荷重レベルにおけるスターラップのひずみ分布(高強度コンクリートはり)

にスターラップは降伏に至っている。

高強度コンクリートを用いた RC はりにおけるスターラップのひずみは、打継面の処理 を行っていない通常強度コンクリートを用いた RC はりとほぼ同様な傾向である。しかし、 プレストレスを導入したはりのスターラップのひずみは、斜めひび割れが生じるまでは、 「70-無」に比べ抑制されており、プレストレス導入による補強効果が認められる。しか し斜めひび割れが生じた後は、打継面で高さ方向にずれ、斜めひび割れが大きく開いてし まったため、スターラップのひずみが局所的に集中し、最終的にスターラップは降伏に至 っている。

鉛直打継目の打継面の処理方法が相違すると、コンクリートの強度にかかわらずスター ラップのひずみ分布に大幅な差が見られる。プレストレスを導入することで、斜めひび割 れの発生が遅れ、スターラップのひずみの増加を遅らせることが可能である。しかし斜め ひび割れが生じると、打継面で高さ方向にずれてしまうため、スターラップのひずみは、 局所的に集中し、最終的にスターラップは降伏に至ってしまうのである。

7. まとめ

本研究では、せん断スパン中央に鉛直打継目を有するRCはりにプレストレスを導入す る補強を施し、その斜めひび割れ性状およびせん断耐力についての導入効果を実験的に検 討した。本研究の範囲内で、以下のことが言える。

(1) プレストレスを導入することにより、斜めひび割れの発生を遅らせることができ、 スターラップの分担せん断力を軽減することが可能である。

(2) プレストレスを導入することにより、スターラップのひずみを抑制することが可能であるが、斜めひび割れが発生すると急激にスターラップのひずみは増加することがある。
 (3) 打継面の処理の良否が、プレストレスの導入効果に及ぼす影響は大きく、打継面の処理が粗悪であるとプレストレスの導入効果は小さい。

(4)高強度コンクリートを用いると、一般に打継目の悪影響が軽減されるが、この場合 でも打継目の処理が重要である。

参考文献

- 1) 辻 幸和,松浪康行,橋本親典,杉山隆文:打継目の鋼板補強におけるグラウトの品 質,阪神・淡路大震災に関する学術講演会論文集,pp.373~376,1996.1
- 2) 辻 幸和,杉山隆文,橋本親典,松浪康行:鉛直打継目を有する RC はりの鋼板補強 に関する基礎研究,土木学会論文集,No.571/V-36, pp.169~183, 1997.8
- 3) 示, 井上, 小林, 仁枝: プレストレスが PRC はり部材のせん断耐荷挙動に及ぼす影響, 土木学会第 53 回年次学術講演会講演概要集第 5 部, pp.1054~1055, 1998.10
- 4)太田知則,辻 幸和,杉山隆文,池田正志:鉛直打継目を有する RC はりのせん断性 状におけるプレストレス導入効果,土木学会第 53 回年次学術講演会講演概要集第 5 部,pp.1060~1061,1998.10
- 5)池田正志, 辻 幸和, 杉山隆文: 鉛直打継目を有する RC はりにおけるプレストレスの補強効果, 土木学会第56回年次学術講演会講演概要集第5部, pp.1204~1205, 2001.10
- 6) 土木学会:コンクリート標準示方書(平成8年度版)設計偏

〈籍慵〉

本研究は、科学研究費補助金基盤研究(A)(1)(課題番号 11355020、研究代表者 町田 篤彦 埼玉大学教授)により実施したものである。本研究を遂行するにあたり、群馬大学 大学院工学研究科博士前期課程建設工学専攻に当時在学中の山口光俊氏、金田和男氏、宮 前俊之氏、中田学氏、岡本朋憲氏をはじめ、社会基盤工学第一研究室の諸氏には、多方面 にわたり御援助頂き、深く感謝の意を表します。

電着補修した後の陸上鉄筋コンクリート部材の耐久性に関する検討

大即信明*,西田孝弘**,皆川浩***,Wanchai YODSUDJAI***

Investigation of Durability of Reinforced Concrete Member on Land Repaired by Electrodeposition Method

by

Nobuaki OTSUKI*, Takahiro NISHIDA**, Hiroshi MINAGAWA*** and Wanchai YODSUDJAI ***

The purpose of this study is to investigate the durability of reinforced concrete member on land repaired by electrodeposition. In this study, there are two series of tests. In the first series, the reinforced concrete specimen after electrodeposition has been exposed outdoor for 2 years. Then, the durability of specimen after electrodeposition is investigated by measurement of the ratio of crack closure and the apparent coefficient of water permeability. Also, in the second series, the existing reinforced concrete member after electrodeposition has been left there for 2 years. Then, the durability of existing member after electrodeposition is investigated by measurement of each closure, half-cell potential, polarization resistance, and carbonation depth. As a result, it can be derived that the repair effect of the electrodeposition method is maintained after the reinforced concrete repaired by electrodeposition has been exposed for 2 years.

Key Words: electrodeposition, durability, outdoor exposure, water permeability, carbonation depth

1 はじめに

今日,鉄筋コンクリート部材の維持管理がより重要とな り、様々な特長を有するひび割れ補修工法の研究、開発 が進んでいる¹⁾.例えば、断面修復工法やひび割れ注入 工法などが挙げられ、多数の研究、施工事例が報告され ている.これらの補修工法を鉄筋コンクリート部材に適 用する場合、部材が接する外部環境(陸上、地中、海中 など),ひび割れの状態(湿潤、乾燥など),ならびに 劣化(中性化、塩害など)の程度を考慮して施工を行う 必要がある.しかしながら、ひび割れから漏水している 場合や施工が困難な場合など、現在適用されている工法 では鉄筋コンクリート部材の補修が困難な状況が存在す る.特に、地下トンネルに散見されるひび割れからの漏 水は、現在適用されている工法では補修が困難である.

一方,鉄筋コンクリート部材のひび割れ補修工法のひ とつに,現在著者らが研究,開発を進めている電着工法 がある.電着工法の原理を以下に示す.まず,内部鉄筋 を陰極,外部電極を陽極に接続し,両電極間に電解質溶 液を介し直流電流を通ずる.これにより,電解質溶液中 に存在する陽イオンをひび割れへ移動させる.この結果, 析出する物質(以下電着物と記す)により鉄筋コンクリ ート部材のひび割れは補修される.電着工法の主な特長 としては,以下の項目が挙げられる.

- 湿潤状態のコンクリートに存在するひび割れを補修 できること
- ② 地中や海中など、補修施工が困難な場所に存在する鉄 筋コンクリート部材でも、電着物の析出に必要な陽イ オンを供給すれば補修できること
- ③微細なひび割れを補修できること
- ④複数のひび割れを同時に補修できること
- ⑤ ひび割れの補修と同時にコンクリートの再アルカリ 化および脱塩ができること

この電着工法は、Fig.1 に示すように、海中鉄筋コンク リート部材のひび割れ補修に対する適用事例がある²⁰. また、著者らは、陸上鉄筋コンクリート部材のひび割れ 補修に対する電着工法の適用可能性に関する検討を行っ ている^{3).4)}. その結果、陸上鉄筋コンクリート部材の乾 燥収縮ひび割れや漏水しているひび割れの補修に対する 電着工法の適用可能性が示された. さらに、地中鉄筋コ ンクリート部材のひび割れ補修に対する電着工法の適用 可能性を検討するため、地中鉄筋コンクリート部材を模 握した供試体を用いた実験的検討も行っている⁵⁾. これ らの既往の研究において、電着直後の補修効果は検討さ れてきた. しかしながら、電着補修した後の鉄筋コンク リート部材の耐久性に関する検討事例は未だない.

+ 原稿受理 平成 年 月 日 Received

^{*} 正会員 東京工業大学大学院理工学研究科 〒152-8552 東京都目黒区大岡山 2-12-1, Graduate school of Science and Eng., Tokyo Inst. of Tech., Meguro·ku Tokyo, 152-8552

^{**} 学生会員 東京工業大学大学院理工学研究科 〒152-8552 東京都目黒区大岡山 2-12-1, Graduate school of Science and Eng., Tokyo Inst. of Tech., Meguro-ku Tokyo, 152-8552

^{***}東京工業大学大学院理工学研究科 〒152-8552 東京都目黒区大岡山 2-12-1, Graduate school of Science and Eng., Tokyo Inst. of Tech.. Meguro ku Tokyo. 152-8552

Fig.1 Application of electrodeposition method to close cracks of reinforced concrete in marine environment²⁾

Fig.2 Configuration of specimen

そこで、本研究では、これまで未検討であった電着補 修した後の陸上鉄筋コンクリート部材の耐久性を検討す ることを目的とする.特に、本研究では、供試体を用い た検討および実部材を用いた検討を行う.供試体を用い た検討では、所定の条件で電着補修した後の鉄筋コンク リート供試体を2年間屋外暴露した後、ひび割れ閉塞率 および見掛けの透水係数の測定を行う.また、実部材を 用いた検討では、所定の条件で電着補修した後の鉄筋コ ンクリート部材を2年間屋外放置した後、ひび割れ閉塞 部の目視観察、自然電位、分極抵抗、および中性化深さ の測定を行う.

2 供試体を用いた検討

本章では、電着補修した後の鉄筋コンクリート部材の 耐久性に関して、電着補修後2年間屋外暴露した後の鉄 筋コンクリート供試体を用い検討を行った.

2·1 実験概要

(1) 供試体概要

Fig.2 に鉄筋コンクリート供試体の概要を示す. Table I に本章で使用したコンクリートの示方配合を示す. セ メントは普通ポルトランドセメント(比重 3.15),細骨 材は小櫃産川砂(表乾比重 2.59,粗粒率 2.51,吸水率 2.08%),粗骨材は青梅産砕石(表乾比重 2.61,粗粒率 6.85,吸水率 0.88%)を使用した.養生は 28 日間の水中 養生(20℃)とした.なお,養生期間 28 日終了後のコン クリートの圧縮強度は 34.0MPa であった.また,供試体 内部には長さ 18cm の鉄筋(ϕ 10mm, SR235)を配置 した.内部鉄筋のかぶりは 3cm とした.なお,打設前の 内部鉄筋をサンドペーパーにより研磨し,アセトンで拭

Bending Crack(Width 0.5mm) Titanium Mesh[+]

Fig.3 Application method of electrodeposition to specimen

Table 1	Mixture	proportions	of concrete
---------	---------	-------------	-------------

Gmax (mm)	Slump (cm)			Air (%)	W/C (%)	s/a (%)	
20	8.0=	0±1.0		4.0 ± 1.0	47	44	
(kg/m ³)					(g/m ³)		
W	С	S		G	Water Red	ucing Agent	
173	365	796		991	38.3		

Table II Electrodeposition conditions to specimen

1		*		
Solution	Current	Charging		
Concentration	Density*	Periods		
(mol/l)	(A/m ²)	(days)		
0.10	1.0	56		
	Solution Concentration (mol/l) 0.10	SolutionCurrentConcentrationDensity*(mol/l)(A/m2)0.101.0		

*per area of exposure surface

き取ることにより、内部鉄筋のさびや汚れを除去した. これは、電着補修する際、内部鉄筋に付着したさびや汚 れが電着補修の効果に影響を与えないようにするためで ある.所定の養生が終了した後、3 点曲げ載荷により残 留ひび割れ幅0.5mmの曲げひび割れを導入した.その後、 電着補修されるコンクリート表面(以下暴露面と記す) 以外をエポキシ樹脂により被覆した.これは、暴露面以 外の5 面が電着補修の効果の影響を受けないようにする ためである.

(2)電着方法

Fig.3 に供試体に対する電着方法を示す. 塩化ビニル製の容器に陽極となるチタンメッシュを敷き,底面から2cmの上部に暴露面を下向きに供試体を設置した.次に,内部鉄筋の高さまで所定の濃度の電解質溶液(以下外部溶液と記す)1.51を満たした.最後に,暴露面単位面積当り所定の電流密度となるように直流電流を供給した.(3)電着条件

Table II に供試体に対する電着条件を示す.外部溶液 種類は硫酸亜鉛【ZnSO4】水溶液,および硝酸マグネシ ウム【Mg(NO₃)2】水溶液とした.外部溶液濃度は 0.10 mol/1 とした.電流密度は暴露面単位面積当り 1.0A/m² とした.電着期間は 56 日間とした.

(4)屋外暴露試験方法

電着補修した後の鉄筋コンクリート供試体を目黒区大 岡山の屋外に2年間暴露した.この際,高さ10cmの木 製台を設置し,暴露面を上向きにして供試体を暴露した.

Fig.4 Outline of water permeability test, modified from JIS A 6909

(5)検討項目

本章では電着補修した後の陸上鉄筋コンクリート供試 体の耐久性を検討するため、以下に示す試験を行った. なお、この検討は、電着補修後2年間屋外暴露した後の 鉄筋コンクリート供試体に対する電着補修の効果を測定 することで行った.

a)ひび割れの閉塞状況および暴露面の被覆状況

電着物によるひび割れの閉塞状況,ならびに暴露面の 被覆状況を検討するため,供試体の暴露面の目視観察を 行った.さらに,ひび割れの閉塞状況に関しては,ひび 割れ閉塞率を定義し測定した.ここで,ひび割れ閉塞率 とは,ひび割れの全長に対する電着物により閉塞された ひび割れ長さの百分率を示す.電着物により閉塞された ひび割れ長さの測定に際してはノギスを使用した.また, 暴露面の被覆状況に関しては,暴露面被覆率を定義し測 定した.ここで,暴露面被覆率とは,全暴露面積に対す る電着物により被覆された面積の百分率を示す.電着物 により被覆された面積の測定に際しては,電着物により 被覆された面積の測定に際しては,電着物により 被覆された面積の測定に際しては,電着物により

b)見掛けの透水係数

電着補修による透水抵抗性を検討するため、変水位透 水試験を行った. Fig.4 に本章で行った変水位透水試験の 概要を示す. これは、JIS A 6909「建築用仕上材:透水 試験 B 法」⁶⁾,および宮川らの研究⁷⁾を参考にした.まず、 暴露面を上向きにし、20×10cm の面を有するアクリル 製の試験装置をシリコーンシーリング材によって取り付 けた.次に、暴露面以外の面を被覆したエポキシ樹脂を 暴露面と反対側の面だけ除去し、供試体内部において水 が暴露面から下面へ一軸方向に移動するようにした.さ らに、蒸留水を注入した状態で、算出される透水係数が 定常になるまで(約5日間)保持した.その後、24時間 に生じる水頭差を比較し見掛けの透水係数を算出した. 算出に際しては式(1)を用いた.なお、試験中にピペット 内の水が大気中に蒸発することを防ぐため、ピペット内 に流動パラフィン(比重:0.875)を注入した.

Fig.6 Relationship between ratio of exposure surface coating and charging periods [ZS:ZnSO4aq, MN:Mg(NO₃)₂aq]

$$k = \frac{aL}{A(t_2 - t_1)} \ln \frac{h_1}{h_2}$$
(1)

where, k: Apparent coefficient of water permeability (cm/sec) a: Sectional area of pipette (cm²)

- L: Height of specimen (cm)
- A: Exposure surface area of specimen (cm^2)
- h_i : Water head in time of t_i (cm)

2・2 屋外暴露する前の電着補修の効果

(1)ひび割れの閉塞状況および暴露面の被覆状況

Fig.5 にひび割れ閉塞率と電着期間の関係を示す. これ より、電着期間の増加に伴いひび割れ閉塞率が 100%に 近づく、すなわちひび割れが電着物により閉塞されるこ とが確認される. また、Fig.6 に暴露面被覆率と電着期間 の関係を示す. これより、電着期間の増加に伴い暴露面 被覆率が上昇する、すなわち暴露面が電着物により被覆 されることが確認される.

(2)透水抵抗性

Fig.7 に見掛けの透水係数と電着期間の関係を示す. こ れより,電着期間の増加に伴い見掛けの透水係数が低下 する,すなわち透水抵抗性が向上することが確認される. 特にこの傾向は電着期間28日までに顕著に現れ,その後 は徐々に進行することが確認される.この結果は,既往 の研究の結果と一致しており,電着による物質透過抑制 効果は電着初期に著しく向上すると考えられる.

Fig.7 Relationship between apparent coefficient of water permeability and charging periods [ZS:ZnSO4aq, MN:Mg(NO3)2aq]

Fig.8 Closed crack after exposed for 2 years [ZS:ZnSO4ag]

2・3 屋外暴露した後の電着補修の効果

(1)ひび割れの閉塞状況および暴露面の被覆状況

Fig.8に電着補修後2年間屋外暴露した後のひび割れの 様子を示す.これより、電着補修後2年間屋外暴露した 後でもひび割れが閉塞された状態であることが確認され る.また、暴露面の被覆状況に関しても、電着補修後2 年間屋外暴露した後でも電着物により被覆された状態で あることが確認される.これは、析出した電着物が化学 的に安定な物質であるためと考えられる.Table IIIに外 部溶液の種類、析出する電着物の種類および電着物の溶 解度⁸⁾を示す.これより、硫酸亜鉛【ZnSO4】水溶液、 および硝酸マグネシウム【Mg(NO3)2】水溶液を外部溶液 とした際に析出する酸化亜鉛【ZnO】、および水酸化マ グネシウム【Mg(OH)2】は何れも水に溶けにくい物質、 すなわち難水溶性の物質であることが確認される.この ため、電着補修後2年間屋外暴露した後でも電着物は析 出した状態で保たれると考えられる.

(2)透水抵抗性

Fig.9 に屋外暴露前後の見掛けの透水係数を示す.これ より,電着補修後2年間屋外暴露した後でも,電着補修 する前の見掛けの透水係数の約1/100000以下であるこ とが確認される.これは,屋外暴露した後でもひび割れ

Table III Kind of external solution, kind of electrodeposits and solubility of electrodeposits⁸⁾

Kind of external solution	Kind of electrodeposits	Solubility of electrodeposits (mol/l)
ZnSO ₄ aq	ZnO	$4.23 imes 10^{-6}$
Mg(NO ₃) ₂ aq	$Mg(OH)_2$	$1.54 imes10^{\cdot4}$

Fig.9 Apparent coefficient of water permeability before and after exposed

が閉塞された状態であるためと考えられる、したがって、 電着補修することで、ひび割れを有する鉄筋コンクリー ト部材の透水抵抗性は向上し、その後2年間屋外暴露さ れてもその透水抵抗性は保たれることが確認された。

3 実部材を用いた検討

本章では、電着補修した後の鉄筋コンクリート部材の 耐久性に関して、電着補修後2年間屋外放置した後の鉄 筋コンクリート部材を用い検討を行った。

3.1 実験概要

(1) 実部材の概要

Fig.10 に実部材の全景を示す.実部材は東京都目黒区 の地上約 20m に存在する屋上欄干部で、竣工後 35 年が 経過したものである.コンクリートの推定圧縮強度は 24.5MPa,部材断面積は 450cm²,かぶりは 3cm,鉄筋 は D22,平均ひび割れ幅は約 0.3mm である.また、電 着する前のフェノールフタレイン法により測定した中性 化深さは 35.0mm である.

(2)電着条件ならびに電着方法

Table IVに実部材に対する電着条件を示す.また, Fig.11 に実部材に対する電着方法を示す.本章では、電 着補修する際,実部材に 20×100cm のパネルを貼り付け 実部材とパネルの間に外部溶液を供給した.

(3)検討項目

本章では電着補修した後の陸上鉄筋コンクリート部材 の耐久性を検討するため、以下に示す試験を行った. a)ひび割れの閉塞状況

電着補修した後の実部材のひび割れ閉塞状況を目視観 察した.

b)中性化抑制効果

電着補修による再アルカリ化効果を評価するため、フ ェノールフタレイン法により中性化深さを測定した.ま

Fig.10 Existing reinforced concrete member

Fig.11 Application method of electrodeposition to existing reinforced concrete member

た、電着前後の中性化抑制効果を評価するため、電着補 修によりコンクリートが再アルカリ化された後も \sqrt{t} 則 が成立すると仮定し、中性化速度係数 9 を算出した.な お、中性化速度係数の算出に際しては式(2)を用いた.さ らに、得られた中性化速度係数を用い、電着補修直後か ら再び内部鉄筋(かぶり 30mm)の位置まで中性化が進 行するまでの期間を算出した.

$$A = \frac{C}{\sqrt{t}}$$
(2)

where, A: Carbonation velocity coefficient (mm/year^{1/2}) C: Carbonation depth(mm)

t :Exposed periods at outside(year)

c)腐食抑制効果

電着補修した後の実部材中鉄筋の腐食抑制効果を内部 鉄筋の自然電位および分極抵抗を測定することで確認し た.内部鉄筋の自然電位の測定に際しては,照合電極に 飽和硫酸銅電極を使用し測定した.なお,腐食程度の判 定に際しては,ASTM C876 に準じて行った.また,内 部鉄筋の分極抵抗の測定に際しては,FRA (Frequency Response Analyzer)を使用した交流インピーダンス法 により測定した.なお,内部鉄筋の分極抵抗の測定は, 5000Hz~0.05Hz の範囲において,振幅 50mV の電圧を 与え測定した.そして,水流らの研究¹⁰⁾を参考とし,得 られた分極抵抗を基に式(3)よりミクロセル腐食電流密度 よりミクロセル腐食速度を算出した.なお,ミクロセル 腐食電流密度が 100 μ A/m² の時,ミクロセル腐食速度は 1.16mm/year とした.

Table	IV	Electrodeposition	conditions	to	existing
re	infor	rced concrete membe	r		

Kind of	Solution	Current	Charging	
external solution	concentration (mol/l)	density* (A/m ²)	period (days)	
ZnSQ.aq	0.10	1.0	28	i
Linooquq	0120	110		

*per area of exposure surface

Fig.12 Closed crack after exposed for 2 years [ZnSO4aq]

$$i_{cor} \cong k/Rp$$
 (3)

where, i_{cor} : Microcell corrosion current density (μ A/m²) k : Coefficient (=0.0209)

Rp: Polarization resistance(k Ω)

3・2 屋外放置した後の電着補修の効果

(1)ひび割れの閉塞状況

Fig.12 に電着補修後2年間屋外放置した実部材のひび 割れの様子を示す.これより、実部材のひび割れは、供 試体のひび割れと同様に、電着補修後2年間屋外放置し た後でも閉塞された状態であることが確認される. (2)中性化抑制効果

Table Vにフェノールフタレイン法による電着補修前 後の中性化深さを示す. これより, 中性化された実部材 に対し電着補修した場合、コンクリートは再アルカリ化 され、電着補修後2年間屋外暴露した後でもその効果は 保たれることが確認される. また, Table VIに電着補修 によりコンクリートが再アルカリ化された後も√t 則が 成立すると仮定した場合の電着補修前後の√t 則による 中性化速度係数と電着補修直後から再び内部鉄筋の位置 まで中性化が進行するまでの期間を示す. これより, 電 着補修した後の中性化速度係数は、電着補修する前のそ れと比較して、7分の1となっており、電着補修による 実部材の中性化抑制効果の向上が確認される. さらに, 式(2)により電着補修した後の実部材が電着補修直後から 再び内部鉄筋の位置まで中性化が進行するまでの期間を 算出したところ 248 年間となった. 同様に, 式(2)により 電着補修する前の実部材が竣工後から内部鉄筋の位置ま で中性化が進行するまでの期間を算出したところ 26 年 間となった. これらからも、電着補修による実部材の中 性化抑制効果の向上が確認される.ただし、これらの結 果は電着補修によりコンクリートが再アルカリ化された

Table V Carbonation depth after and before electrodeposition measured by phenolphthalein method _____

	Carbonation Depth (mm)
Before electrodeposition	35.0
1month later after electrodeposition	15.5
24month later after electrodeposition	16.7

Table VI Carbonation velocity coefficient and Periods in which the carbonation progresses to the position of the inside steel bar again under the condition that re-alkalized concrete is followed root t rule for carbonation

	Carbonation velocity coefficient* (mm/year ^{1/2})	Periods in which the carbonation progresses to the position of the inside steel bar again (year)
Before electrodeposition	5.92	
After electrodeposition	0.85	248

*calculated by root t rule

Exposed Periods after electrodeposition (Months)

Fig.13 Relationship between half-cell potential and exposed periods after electrodeposition with ASTM C876 [ZnSO4aq]

	Polarization resistance($k \Omega$)	Microcell corrosion velocity (mm/year)
Before electrodeposition	0.4	6.06×10 ⁻⁴
1month later after electrodeposition	1.5	$1.62 imes 10^{-4}$
24month later after electrodeposition	1.3	1.89×10 ⁻⁴

後も√t 則が成立するという仮定が必要であり,今後,再 アルカリ化したコンクリートの中性化進行過程を詳細に 検討する必要があると考えられる.

(3)腐食抑制効果

Fig.13 に自然電位と放置期間の関係, Table 知に電着 補修前後の分極抵抗ならびにミクロセル腐食速度の関係 を示す.これらより,電着補修後2年間屋外放置した後 でも,自然電位は貴な状態であり,ミクロセル腐食速度 は低いことが確認される.したがって,電着補修後2年 間屋外放置した後でも電着補修による腐食抑制効果は保 たれることが確認される.これは, Table Vに示したよ うに,中性化したコンクリートが電着補修により再アル カリ化されたためと考えられる. 本研究により得られた結論を以下に示す.

- 1 本研究では、これまで未検討であった電着補修した 後の陸上鉄筋コンクリート部材の耐久性に関して検 討を行った。その結果、電着補修後2年間屋外暴露 した後でも電着補修の効果は保たれることが確認さ れた。
- 2 電着補修後2年間屋外暴露した後でも見掛けの透水 係数は屋外暴露する前のそれとほぼ同程度であるこ とが確認された.これより、電着補修することで、 ひび割れを有する鉄筋コンクリート部材の透水抵抗 性は向上し、電着補修後2年間屋外暴露した後でも その透水抵抗性は保たれることが確認された.
- 3 電着補修後2年間屋外暴露した後でもひび割れは電 着物により閉塞された状態であることが確認された.
- 4 中性化された実部材に対し電着補修した場合、コン クリートは再アルカリ化され、電着補修後2年間屋 外暴露した後でもその効果は保たれることが確認さ れた.さらに、電着補修による実部材の中性化抑制 効果の向上が確認された.
- 5 電着補修後 2 年間屋外暴露した後でも部材中鉄筋の 腐食抑制効果は保たれることが確認された.

謝辞 本研究は著者の一人(大即)に与えられた平成13 年度科学研究費補助金(基盤研究(A)(1):課題番号 11355020,研究代表:町田)により行われたものである. 参考文献

- Perter H. Emmons, "Concrete Repair and main - tenance Illustrated", (1994), R.S. MEANS COMPANY, INC
- 2) 横田優,浮田和明,熊田誠,土木学会第42回年次学 術講演会概要集,5, p.504(1987)
- 大即信明, 宮里心一, 柳在碩, 西田孝弘, 久田真, 材料, 49-2, p.215(1999)
- 4) 西田孝弘,大即信明,宮里心一,田中徹,第1回コンクリート構造物の補修、補強、アップグレードシンポジウム論文報告集,p.115(2001)
- C.Bouavieng, N.Otsuki, S.Miyazato, T.Nishida, A.Ishibashi, Proceeding of "Third International Summer Symposium", p.265(2001)
- 6) JIS ハンドブック 2001, 8, 建築 I, 材料, p.764(2001), 日本規格協会
- 7) 宮川豊章, 久田真, 井上晋, 藤井学, コンクリート 工学論文集, 2-1, p.135(1991)
- 8) 大木道則,大沢利昭,田中元治,千原秀昭,"化学 辞典",p.1469(1994),東京化学同人
- 9) 日本コンクリート工学協会編, "コンクリート便覧 [第二版]", p.283(1996), 技報堂出版
- 10) 水流徹, 前田龍, 春山志郎, 防食技術, 28, p.638(1979)

動的格子モデル解析による 鉄筋コンクリート橋脚の耐震性能の評価

三木 朋広¹・二羽 淳一郎²・Manakan LERTSAMATTIYAKUL³

 ¹正会員 工修 東京工業大学大学院 理工学研究科土木工学専攻 (〒152-8552 東京都目黒区大岡山二丁目 12-1)
 ²フェロー 工博 東京工業大学大学院教授 理工学研究科土木工学専攻
 ³正会員 東京工業大学大学院 理工学研究科土木工学専攻

地震時の鉄筋コンクリート(RC) 橋脚の耐震性能を把握するために,RC部材のせん断耐荷機構を適切,かつ簡便に評価することのできる格子モデルを用いた非線形動的解析プログラムを開発した.まず,静的格子モデル解析の結果とRC 橋脚を対象とした静的正負交番載荷実験の結果を比較することで,繰り返し水平力を受けるRC橋脚の変形挙動の予測が可能であることを示した.さらに,RC橋脚を対象とした振動台加振実験に対して動的格子モデル解析を行った.実験結 果と解析結果を比較した結果,本手法によりRC橋脚の動的変形特性を妥当な精度で評価できることを確認した.最後に, せん断補強鉄筋比を変えたRC橋脚を対象として非線形動的解析を行った.その結果,RC橋脚の履歴吸収エネルギーに 着目することで,せん断補強鉄筋比がRC橋脚の動的特性に与える影響を定量的に把握することができた. *Key Words:reinforced concrete bridge piers, seismic performance, non-linear dynamic analysis, lattice model*

1. はじめに

兵庫県南部地震を契機に、大規模にコンクリート構造物 の耐震設計に関する基準類の改訂が行われた. その基本的 な考え方は、非常に大きな地震力を受けた場合、構造物に 弾性的な挙動を期待するのではなく, 主鉄筋降伏後の大き な塑性変形を許容し、それによってエネルギー吸収を図ろ うとするものである.この一連の改訂に伴って、道路橋の 鉄筋コンクリート(以下, RC と略記する)橋脚の設計に 構造物の変形性能を考慮した地震時保有水平耐力法が用 いられるようになり、さらには、部材の非線形性を考慮し た動的解析による照査を行い、地震時挙動を積極的に把握 することが規定されるようになった.動的解析を行う場合, 一般に、部材単位の復元力特性を組み込んだ離散型骨組モ デルや, 仮定した塑性ヒンジ部の断面をコンクリート, 及 び鉄筋に離散化し、各構成要素にそれぞれの応力-ひずみ 関係を組み込んだファイバーモデルなどが多く用いられ ている¹⁾. これらのモデルは曲げが卓越する RC 構造物の 解析には高い適用性が認められている一方で、塑性ヒンジ となる場所の適切な予測が必要であり、また部材にせん断 破壊が生じて耐力が急激に低下する場合などでは、十分な 精度の応答予測ができないという欠点も有している.

そこで、本研究では格子モデル³に着目した.格子モデ ルを用いることで、静的なせん断耐荷力の予測を適切に行 うことができることは、ファイバーモデルにない特徴であ る. さらに、格子モデルでは RC 部材を軸力のみを伝える トラス要素に離散化しているので、力の流れが特定でき、 部材内部のせん断耐荷機構を把握することによって、その 解析結果の妥当性を確認することもできる.

本研究の目的は動的格子モデル解析手法の開発である. まず、動的格子モデル解析を行う前に、静的格子モデル解 析による一定軸力を受ける RC 橋脚の静的正負交番載荷実 験の検討を行う.これによって、繰り返し水平力を受ける RC 橋脚に対する静的格子モデル解析の妥当性を確認する さらに、同一寸法、同一配筋の大型 RC 橋脚の供試体 3 体 を対象として、入力地震動の最大加速度を 3 種類に変化さ せた振動台加振実験の解析を行う.実験結果と解析結果を 比較することで、動的格子モデル解析の結果の妥当性を明 確にし、繰り返し水平方向地震力を受けた RC 橋脚の耐震 性能を検討する.最後に、せん断補強鉄筋比を変化させた RC 橋脚のシミュレーション解析を行い、せん断補強鉄筋 比が RC 橋脚の耐震性能に及ぼす影響を動的解析によって 定量的に評価していく.

2. 解析モデル

(1) 格子モデルの概要

格子モデル³では、図-1 に示すように、コンクリート は曲げ圧縮部材、曲げ引張部材、斜め圧縮部材、斜め引張

部材,端部垂直部材,アーチ部材に離散化される.また, 補強筋は水平部材(軸方向鉄筋),垂直部材(スターラップ) にモデル化される.

トラス的耐荷機構のモデル化には、コンクリートの斜め 圧縮部材と斜め引張部材を、軸方向鉄筋に対して 45 度と 135 度方向に規則的に配置している.そのため、一見トラ ス部材の角度を固定したモデルに見えるが、トラス部材に 加え、アーチ的耐荷機構として、端部節点以外で変位が独 立な細長い部材であるアーチ部材を組み込むことにより、 斜めひび割れ発生後、マクロ的な圧縮力の方向の変化に対 応させることができる.ただし、RC 部材のせん断耐荷機 構を適切に評価するためには、部材全体の耐荷機構を適切 に把握した上でアーチ部材の配置を定めていく必要がある.

(2) 各要素のモデル化

図-2は、格子モデルにおける RC はり断面の区分の概 念図である. ウェブコンクリート部分を, 図-2 に示すよ うに、トラス部分とアーチ部分に区分する、それぞれの要 素の幅は、アーチ部分はbt、トラス部分はb(1-t) (0<t<1)と なる. このとき, t 値は, はりの初期状態における微小な 強制変位に対する、部材全体のポテンシャルエネルギーが 最小となるように定める. 本研究では, t 値を 0.05 から 0.95 まで 0.05 刻みで変化させた事前解析を行っている. 柱頭部 の水平力載荷点位置においてせん断スパンの 1/1000 の非 常に微小な強制変位を与え、この時に生じている各部材の 応力, ひずみからひずみエネルギーを計算した. このひず みエネルギーと外力のなす仕事から定義されるポテンシャ ルエネルギーが最小となるときのt値を求め、以後の格子 モデル解析に用いた.ただし、部材の変形に伴い材料非線 形性が見られるようになると, t 値は載荷レベルによって 異なると考えられるが、本研究では、近似的に大変形時に おいても同一の値を用いることとした.

また、コンクリートの水平部材の断面積は、以下のよう に決めている。コンクリート中に鉄筋を含む部材を考えた 場合、コンクリートと鉄筋の付着作用によって、コンクリ ートにひび割れが発生した後でも、ひび割れ間のコンクリ ートによって引張力の一部を受け持つことができる。この

効果は鉄筋を囲むコンクリートの一部の領域においてのみ 期待できる.本研究では、簡単なモデル化のため、その領 域をコンクリートの曲げ引張部材ならびに曲げ圧縮部材と 一致させた.さらに、その領域の高さは、軸方向鉄筋の中 心位置から断面の最外縁までの距離の2倍であると仮定し た.また、コンクリートの曲げ引張部材、曲げ圧縮部材の 断面積はその領域高さに部材幅bを乗じたものとした.

(3) 材料モデル

a) コンクリートの圧縮部材

適切な量の横方向補強鉄筋によってせん断補強されていれば、コアコンクリート部分には拘束効果が期待できる. 本研究では、せん断補強鉄筋による拘束効果を考慮するために、圧縮応力*σ*^c⁻一圧縮ひずみε^c[']関係を式(1)から式(8)の提案式で表される Mander らの提案³に基づき、図-3のようにモデル化し、コンクリートの斜め圧縮部材、アーチ部材に適用した.ちなみに、本モデルはコンクリートの一軸圧縮強度を普通強度レベル(25~28 MPa)とした実験に基づいており、断面形状、及びせん断補強鉄筋量に依存しないという特徴を有している.

$$\sigma_c = \frac{f_{cc} \cdot x \cdot r}{r - 1 + x^r} \tag{1}$$

ここで,

$$f_{cc}' = f_c' \left(2.254 \sqrt{1 + 7.94 f_l' / f_c'} - 2f_l' / f_c' - 1.254 \right)$$
(SI 単位) (2)

$$x = \varepsilon_c / \varepsilon_{cc}$$
(3)

$$\varepsilon_{cc}^{'} = 0.002 \left\{ 1 + 5(f_{cc}^{'} / f_{c}^{'} - 1) \right\}$$
(4)

$$r = E_c / (E_c - E_{\text{sec}})$$
⁽⁵⁾

$$E_c = 5000 \sqrt{f_c'}$$
 (MPa) (6)

$$E_{\rm sec} = f_{cc} / \varepsilon_{cc}$$
(7)

$$f_l = 0.75 \cdot r_w f_{wv} \tag{8}$$

上式中に示す f_c 'はコンクリートの一軸圧縮強度(MPa) である. また, r_w (= A_w /(b_w s))はせん断補強鉄筋比であり, f_w , はせん断補強鉄筋の降伏強度(MPa)である.

さらに、コンクリートの斜め圧縮部材、アーチ部材に以下のモデルを考慮している. Collins らの実験的な研究 ⁴ によると、ひび割れたコンクリートでは、引張ひずみを、の 増加に伴い、その直交方向の圧縮強度が低下することが知られている. その軟化の程度をシンプルなモデルである式 (9)で評価している. その概要を図-4 に示す.

 $\eta = 1.0 / \{ 0.8 - 0.34(\varepsilon_t / \varepsilon_0) \} \le 1.0$ (9) $\Xi \Xi \overline{C}, \ \varepsilon_0' = -0.002.$

軟化係数の決定に用いる引張ひずみ₆は、斜め圧縮部材 では、それと直交する斜め引張部材の引張ひずみを、アー チ部材では、アーチ部材における圧縮強度の軟化の程度が 最も大きくなるように、最も大きな引張ひずみが生じてい ると考えられる支点付近のコンクリート斜め引張部材の引 張ひずみを使用した.

また,コンクリートの曲げ圧縮部材の材料モデルには, 式(10)の Collins らの提案する応力-ひずみ関係⁵⁷を用いた. その概形を図-3 中に無拘束コンクリートとして示す.

 $\sigma_{c}^{'} = -\eta \cdot f_{c}^{'} \left\{ 2(\varepsilon_{c}^{'} / \varepsilon_{0}^{'}) - (\varepsilon_{c}^{'} / \varepsilon_{0}^{'})^{2} \right\}$ (10) 除荷剛性, 再載荷剛性には, それぞれのモデルの初期剛 性を用い, 直線的に応力が低下, もしくは回復するものと した. ただし, 繰り返し載荷に伴う剛性の低下は考慮して いない.

b) コンクリートの引張部材

コンクリートは、ひび割れ前は弾性的に挙動する.しか し、一旦ひび割れると引張軟化挙動を示すと仮定する.本 研究では、ひび割れ発生後のコンクリート挙動を表現する ために、普通コンクリートの引張軟化曲線として高い精度 で実験結果と整合している 1/4 モデル(図-5)を採用し、 コンクリートの斜め引張部材に適用した.この時、コンク リートの破壊エネルギーG_Fは標準的な値である 0.1 N/mm とした.ただし、図-5 中に示すL は部材長さ(mm)である. コンクリートの曲げ引張部材は、鉄筋を含んだ領域に位

置しているため、コンクリートと鉄筋の付着作用によって、 ひび割れ後も引張力を伝達することができる。そこで、コ ンクリート曲げ引張部材は、ひび割れ前は斜め引張部材と 同様に弾性体と仮定し、ひび割れ発生後には、コンクリー トと鉄筋の付着を考慮して、以上の状況を十分な精度で満 たす岡村・前川のテンションスティフニングモデル(図-6) を用いた。ひび割れ開始ひずみ ϵ_{α} は0.0001 とし、ひび割れ 発生後の応力 σ_{τ} -ひずみ ϵ_{ι} 関係には式(11)を用いた。

$$\sigma_t = f_t (\varepsilon_{cr} / \varepsilon_t)^{0.4} \tag{11}$$

ここで, f₁: コンクリートの引張強度.

除荷,再載荷時の応力-ひずみ関係は原点指向型とし, 直線的に応力が低下,もしくは回復するものとした.

c) 鉄筋

鉄筋の応力-ひずみ関係は、バイリニアモデルとし、降 伏後の勾配は、初期勾配 E の1%とした。繰り返し載荷を 受ける鉄筋のモデルには、応力が正負反転する際に現れる バウシンガー効果を考慮する必要があり、加藤モデルは、 繰り返し履歴を精度良く得ることのできる有用な履歴モデ ルである。しかしながら、履歴変数としてすべての応力反 転位置の応力、ひずみを記録しておく必要があり、数値プ ログラムとして用いる場合困難を有する。そこで、加藤モ デルと同等の精度を有し、かつ数値計算に適した福浦らの 数値モデル⁹を用いた(図-7).

(4) 動的解析手法

非線形動的解析のため、動的格子モデルに基づいて非線

-125 -

<u> </u>	· · · · · · · · · · · · · · · · · · ·	1TII
コンクリートE	E縮強度fc'(MPa)	35.7
鉄筋降伏強度f _v	SD295 D13	363
(MPa)	SD295 D6	368

形解析プログラムを作成した.動的格子モデルでは,RC 橋脚自体の質量を各節点へ離散化し,さらに上部構造物の 質量を橋脚頭部の3節点に分配している.

まず、モデルの全体系に対して運動方程式を定式化する. このとき、振動モードを用いることで、格子モデルの節点 変位を基準座標系の変位に変換する. このとき用いる振動 モードは、減衰を無視した運動方程式を解くことで得られ るが、これは固有値問題を解くことに等しい、本手法では、 固有値解をサブスペース法によって得ている. また, 剛性 マトリックスは、材料非線形性をコンクリート、及び鉄筋 の応力-ひずみ関係より与え、部材系における接線剛性を 全体系に組み直している. 減衰マトリックスは, Ravliegh 減衰により与えている.以上のように,運動方程式を基準 座標系で表すことによって、n 次連立方程式はn 個の独立 の一次方程式に変換され、これらそれぞれの一次方程式を、 直接時間積分法を用いて解いていく. 直接時間積分には Newmark の β 法 ($\beta = 1/4$) を用いた. このようにして得ら れた基準座標系における変位、速度及び加速度を再び振動 モードを用いて元の格子モデルの座標系に戻すことで対象 RC 橋脚の挙動を予測する. 大きな地震力を受けると RC 橋脚は非線形挙動を示すようになるため、収束計算が必要 となってくる. このときの収束計算には修正 Newton -Raphson 法を用いた. 収束の判定には力とエネルギーの釣 合いを考慮した. つまり時刻 t+Δt において, 慣性力, 粘性 力及び復元力の総和と外力の差で表される不釣合い力、及 びその不釣合い力と時刻 t+Δt での増分変位の積が、それぞ れ1回目の繰り返し計算時の値に対して、収束許容値0.001、 かつ 0.01 以下となるまで繰り返し計算を行った.

3. 単柱式 RC 橋脚の静的正負交番載荷解析

(1) 実験概要

解析対象として,武村らによる単柱式 RC 橋脚を用いて 行われた正負交番載荷実験^{6,7}を選定した.供試体の寸法, 及び配筋を図-8 に示す.供試体は,400mm×400mmの正 方形断面であり,橋脚基部から載荷点位置までの距離は 1245mmである.用いた材料の特性を表-1 に示す.

実験における水平方向力の載荷方法は、初降伏変位 $\delta_y = 6 \text{ mm} を基準とし、変位振幅を<math>\delta_y$ の整数倍に順次増加さ せていく一定振幅変位漸増方式である.ここで、初降伏変 位とは最外縁鉄筋が降伏するときの載荷点水平変位である. この時、同一変位振幅の荷重繰り返し回数は1回である. その載荷履歴を図-9 に示す.本解析では実験と同様な載 荷ステップの変位制御で増分計算を行った.

さらに、実験では、水平方向の交番載荷を行っている間、 常に橋脚基部における軸応力が0.98 MPa となるように、一 定軸力(156.7kN)を作用させている.

また,以下本文中では、水平力を与える際に、図-10の 左から押す側を正載荷(水平力,水平変位は正の値で示す)、 この反対側を負載荷(水平力,水平変位は負の値で示す) と呼ぶことにする.

(2) 供試体のモデル化

図-8 に示す供試体を解析するため、図-10 に示すよう な繰り返し応力場に拡張された格子モデル⁸を用いた.拡 張された格子モデルでは、解析対象の供試体は繰り返し水 平力を受けるため、曲げ圧縮部材と曲げ引張部材の断面積

表-2 正負交番載荷実験,及び静的格子モデル解析に よって得られた耐力,変位

	実験結果	解析結果
降伏水平耐力(kN)	84.2	116.3
降伏変位(mm)	6.0	5.0
最大水平耐力(kN)	148.0	155.6
終局変位(mm)	42.0	48.0

を等しくしている. さらに、単柱式 RC 橋脚の解析を行う 際、アーチ部材として載荷点位置と橋脚基部を結ぶ細長い 要素を用いるが、水平力が反転すると圧縮力の流れも反転 するので、2本のアーチ部材をクロスさせて配置している. このとき、アーチ部材が橋脚の断面幅に占める割合を示す t値は、事前解析よりt=0.20となっている.本解析におい ては、図-10に示すように、一定軸力156.7kNを格子モデ ルにおける橋脚頭部の3節点に等分配している.

(3) RC 橋脚の履歴特性

図-11は一定軸力が作用するRC橋脚の水平力載荷位置における水平力と水平変位の履歴曲線であり、実験結果と格子モデルによる解析結果を示している.図-11(a)に示す実験結果では、まず、載荷点変位の増大に伴って曲げ引張側の主鉄筋が降伏した.その後、載荷方向は反転し、交番載荷によって徐々に大きな水平変位を受けると、大きく塑性化が進行した主鉄筋は曲げ圧縮力を受けて面外の方向へ座屈した.それに伴ってかぶりコンクリートが剥落し、抵抗断面が減少した結果、耐力が減少していった.一方、図-11(b)に示す格子モデル解析の結果では、実験によって

得られた,主鉄筋降伏後,最大耐力を経験し,耐力が低下 し始める段階までの履歴特性を,妥当な精度で予測できて いることがわかる.しかし,それ以降さらに耐力が大きく 低下していく挙動については十分には予測できていない.

表-2 に、降伏水平耐力、降伏変位、最大水平耐力及び 終局変位を示す.このとき実験における降伏水平耐力及び 降伏変位は、橋脚基部の最外縁鉄筋のひずみが降伏ひずみ 2000µに達したときの荷重及び変位である.静的格子モデ ル解析においても、実験と同様に橋脚基部の軸方向鉄筋が 2000µに達したときの荷重及び変位とした.また、格子モ デル解析における終局変位は、実験と同様に水平力がピー ク値を示した後、耐力が低下し再び降伏水平耐力に達した ときの変位とした.解析ではこの後、軸方向鉄筋の降伏が 進み、橋脚基部のコンクリートの斜めひび割れが増大し、 それに伴ってコンクリートの斜め日縮部材の耐荷力が低下 することで終局状態に至っている.表-2より、格子モデ ル解析による結果は、終局変位に達するまでの実験結果を 妥当な精度で予測していることが分かる.

図-12 では、図-11 の履歴曲線を包絡線で表し、実験結 果と解析結果を比較している。格子モデル解析の結果は終 局変位に至るまでは実験結果を精度よく予測しているが、 前述の通り終局変位以降、実験結果とやや異なる傾向がう かがえる。実験では終局変位に到達後さらに変位を受ける と、軸方向鉄筋の座屈、かぶりコンクリートの剥離、剥落 が観察されている。したがって、終局変位以降の大きな変 形を受けた RC 橋脚の変形挙動は、軸方向鉄筋の座屈等の

詳細な検討を行わなければ精度よく把握することができないものと考えられる.一方で、曲げ破壊が卓越するようなRC 橋脚に対する変形挙動は、静的格子モデル解析によって終局変位に達するまで妥当な精度で予測が可能であること示された.

(4) RC 橋脚の破壊モードと耐荷機構に対する評価

格子モデル構成要素の応力ーひずみ関係を用いて、RC 橋脚内部の耐荷機構の評価を試みた. 図-13 は、格子モデ ル解析によって得られた、橋脚基部のコンクリート斜め部 材の応力--ひずみ関係の一例である. このとき注目してい る部材は、図-10中に太線で示しているコンクリート部材 である.格子モデル解析では、引張を受けるコンクリート の圧縮強度の軟化現象を Collins らが提案したモデルを用 いて表現している. つまり, 直交して配置された一組のコ ンクリートの斜め圧縮部材と斜め引張部材において、斜め 引張部材の引張ひずみの増大に伴ってそれと直交する斜め 圧縮部材の強度は低下していくと考えている. 図-13 中に 点線で示されている応力ーひずみ関係は、ひび割れの生じ ていないコンクリートのそれであるが、軸方向鉄筋の降伏 以後、斜めひひ割れ幅が大きくなるにつれて、圧縮強度が 大きく低下している. 橋脚基部コンクリートの斜め部材の 圧縮強度が低下し、この部材に生じるひずみが増大するこ とによって、橋脚の耐荷力が低下していくことが予測され ている. このことが解析における最終的な橋脚の破壊の要 因となっている.

図-16 動的格子モデル

4. 単柱式 RC 橋脚の非線形動的解析

(1) 解析対象橋脚について

今回解析対象とした, RC 橋脚を用いた振動台実験⁹の概要を以下に示す.

振動台実験では、RC 橋脚の上部に重量 393.2kN の単純 桁を有する構造系を用いている. このとき, 桁に作用する 慣性力が RC 橋脚に作用する水平方向力となる. 実験に用 いられた供試体は、単柱式の矩形断面 RC 橋脚であり、そ の供試体寸法及び配筋図を図-14に示す. 振動台に入力さ れた地震動は、1983年の日本海中部地震において秋田県大 潟村の八郎潟干拓堤防上で観測された EW 成分記録(最大 加速度 144gal) である. その波形を図-15 に示す. 実験で は、橋脚の降伏剛性を仮定した場合の固有周期と地震動の 卓越周期を近づけるために、時間軸を1/2に縮小している. この地震波の特長として,主要動の継続時間が非常に長く, さらに観測開始から20秒と50秒に大きな加速度のピーク がある点などが挙げられる. RC 橋脚に対する継続時間の 長い地震動を用いた耐震性の検討は, 1995 年の兵庫県南部 地震に見られるような, 主要動の継続時間が短く, 数秒間 に非常に大きな地震動を受ける場合の検討とは異なる視点 からの評価を行うことができると考える.

振動台実験では、図-14 に示す同一寸法の3 体の供試体 に対して最大加速度を 275gal、360gal、402gal と変化させ た地震動を入力する 3 ケース(以下,それぞれ Case-A, Case-B 及び Case-C と呼ぶ)の実験が行われた.全ての供 試体において、コンクリートの圧縮強度は 27.6MPa、軸方 向鉄筋及びせん断補強鉄筋の降伏強度は 420MPa であった.

(2) 解析モデル

本解析では, RC 橋脚を図-16 に示す動的格子モデルに 離散化している. 既往の動的格子モデル¹⁰と本解析の異な る点は,静的格子モデルと同様に,コンクリートの斜め圧

図-17 振動台加振実験,動的格子モデル解析によって得られた履歴曲線

縮部材,アーチ部材にせん断補強鉄筋による拘束効果を考慮したManderらによる提案式³⁾を用い,また鉄筋要素には,応力が正負反転する際に現れるバウシンガー効果を考慮した福浦らが提案したモデル⁵⁾を採用している点である.この解析では,アーチ部材が橋脚の断面幅に占める割合を示すt値は、事前解析の結果,t=0.10となっている.

RC 橋脚の動的解析を行うに際して,解析対象は集中質 量系にモデル化してある.各節点に橋脚の質量を集中質点 として離散的に作用させ,上部構造物の質量を橋脚頭部の 3 節点に等配分した.減衰に関しては,Rayliegh減衰を仮 定し,減衰定数は2.0%とした.

(3) 単柱式 RC 橋脚の非線形動的解析

本研究では、格子モデルを用いた非線形動的解析の結果 と振動台加振実験による結果を比較することで、本解析結 果の妥当性を検証することを目指している.同時に、動的 格子モデル解析より RC 橋脚の地震時挙動の把握を試みる、

図-17はCase-A, Case-B及びCase-Cに対して,振動台 加振実験によって得られた RC 橋脚の履歴曲線と動的格子 モデルによる解析結果を比較したものである.また図-18 は、それぞれのケースに対して,振動台実験及び動的格子 モデル解析によって得られた,桁の相対応答変位の時刻歴 である.実験では、RC 橋脚の履歴曲線は、桁に生じた加 速度に桁の重量 393.2kN を乗じて算出した慣性力と桁の相 対応答変位の関係で表される.一方解析では、橋脚頭部の 3 節点における、復元力と粘性力の総和と橋脚頭部の応答 変位の関係を用いている.また、これらの実験及び解析に よって得られた応答値を表-3にまとめる.表-3には、振 動台加振実験、及び動的格子モデル解析によって得られた RC 橋脚の降伏水平耐力、降伏変位、最大水平耐力及び最 大応答変位を示している.このとき、降伏水平耐力、及び

降伏変位とは、実験では橋脚基部の主鉄筋のひずみが降伏 ひずみ 2010µに達したときの水平力及び変位であり、解析 においても同様な判定を行っている.

表-3 振動台加振実験,及び動的格子モデル解析によって得られた応答値

	Case-A		Cas	æ-B	Case-C	
	実験	解析	実験	解析	実験	解析
降伏水平耐力(kN)	72.7	90.4	76.1	93.4	79.2	98.5
降伏変位(mm)	14.1	14.8	15.5	15.5	13.5	15.9
最大水平耐力(kN)	91.6	99.4	104.3	104.1	110.2	128.8
最大応答変位(mm)	44.4	34.8	113.6	118.4	163.1	192.6

表-4 試計算の対象とした RC 橋脚で用いたコンクリート,鉄筋の 材料特性,及びせん断補強鉄筋比

コンクリー	38.0						
鉄筋降伏強度	軸方向鉄筋 D19			317			
f_y (MPa)	fy(MPa) せん断補強鉄筋 D6			3	50		
せん断補強鉄筋比 rw(%)		0.00	0.04	0.08	0.12	0.20	0.40

実験では、図-17 の履歴曲線に示すように、Case-A、 Case-B 及び Case-C のすべての場合に対して、載荷が進む につれてまず主鉄筋が降伏している. さらに、入力最大加 速度の大きい Case-B と Case-C に関しては、主鉄筋の降伏 後、大きな塑性変形が生じている. これらについては解析 によっても同様な挙動が予測されている. つまり、表-3 に示すように、それぞれのケースの履歴特性値に関してほ ぼ妥当な精度の予測が行われていることが分かる.

しかしながら,最大応答変位を記録した後は,実験結果 及び解析結果の履歴曲線に違いが見られるようになった. Case-Bに関して,実験では最大応答変位以降の載荷で,初 期剛性より小さな剛性で,かつ小さな変位振幅で振動して いる.一方,解析では実験結果よりも初期剛性に近い剛性 で振動している.また,そのときの変位振幅も実験で得ら れるものより大きい.

Case-C に関して、実験では最大応答変位以降の載荷によ って、初期剛性と比較して非常に小さな剛性で振動し、履 歴曲線は図-17(c)に示すように逆 S 字型となっている. これに対して解析では、実験で見られるような剛性の低下 は見られず、安定した紡錘型の挙動が予測されている.特 に、図-18(c)において、30 秒以降の応答変位振幅が実験 結果よりも小さくなっていることがわかる. この様に実験 結果と解析結果の RC 橋脚の剛性に違いが見られる理由と して、実験で観察された曲げ圧縮側の軸方向鉄筋の座屈を 解析において考慮していないために、軸方向鉄筋が大きな 圧縮力を保持しつづけていること、及び圧縮応力下のコン クリートの除荷、再載荷時の剛性に初期剛性を用いている ために、大きな変形を受けた場合、実際より高い剛性で評 価していること等が考えられる.しかしながら、本研究の ように、この様な現象を考慮していない場合であっても、 軸方向鉄筋の降伏から最大応答変位に達するまでの挙動は 十分に予測可能であると判断される.

5. RC 橋脚の動的特性に与えるせん断補強鉄筋比の 影響の評価

(1) 解析概要

RC 橋脚に対するせん断補強鉄筋比の効果を検討することを目的として、せん断補強鉄筋比の異なる6体のRC橋脚を対象とした動的格子モデル解析を行った.解析対象は、単柱式矩形断面のRC橋脚であり、橋脚基部から橋脚頭部までの距離は2574mmである.その断面形状を図-19に示す.また、材料特性を表-4に示す.表-4には、6体のRC橋脚に対して、0.00%から0.40%まで変化させたせん断補強鉄筋比rwを示している.また、上部構造物をモデル化するために、橋脚頭部において重量2000kNを作用させている.入力地震動は、4.で用いた地震波波形と同様の1983年日本海中部地震において八郎潟で観測された地震波のEW成分の最大加速度を450galに調整したものを用いた.

格子モデルへの離散化は、図-20に示すように4.と同様 な方法で行う.このときt値は、事前解析より、6体のRC 橋脚に対してそれぞれ0.10から0.15となったが、せん断補 強鉄筋比が大きくなるにつれて、t値が小さくなる傾向が 見られた.このことは、曲げ変形が卓越する場合、t値が 小さくなる傾向があるという見解⁸と一致している.

(2) せん断補強鉄筋比を変化させた場合の RC 橋脚の動的 特性

図-21 は、動的格子モデル解析によって得られた、せん 断補強鉄筋比 r_wを 0.00%から 0.40%まで変化させた 6 体の RC 橋脚の履歴曲線を示している.また、表-5 には、図-21 中に示すそれぞれのケースの RC 橋脚について求めた最 大水平耐力、最大応答変位である.同表中には、せん断補 強されていないケース (r_w=0.00%)を基準とし、それぞれ

(動的格子モデル解析結果)

表-5	異なるせん断補強鉄筋比を有する RC 橋脚の最大水平耐力,
	最大広 広 な 亦 位 (動 的 枚 子 チ デ 川 解 析 結 里)

		114	/ / / / .	11/11/12/14		
せん断補強鉄 筋比 <i>r</i> w	0.00%	0.04%	0.08%	0.12%	0.20%	0.40%
最大水平耐力	366.2	398.5	417.4	419.0	461.7	477.4
(kN)	(1.00)	(1.09)	(1.14)	(1.14)	(1.26)	(1.30)
最大応答変位	142.8	150.9	180.3	162.0	165.3	162.0
(mm)	(1.00)	(1.06)	(1.26)	(1.13)	(1.16)	(1.13)

()内の数字は0.00%の場合を基準値としたとき、基準値に対する それぞれの応答値の比

のケースの応答値をせん断補強されていないケースの応答 値で除した値も示している. **表**-5 により、本研究で試計 算の対象とした RC 橋脚の場合、せん断補強鉄筋比の増大 に伴い最大水平耐力は増大する (r_w =0.40%のときの最大水 平耐力は、 r_w =0.00%の1.3 倍) 一方で、最大応答変位に関 する明確な傾向は見られないことがわかる.

しかしながら,図-21 に示す履歴曲線では,せん断補補 強筋比が大きくなるほど水平力を受けた際の挙動が安定し ていく傾向が見られる.そこで,せん断補強鉄筋比の異な る6体のRC橋脚に対して,加振中にRC橋脚が吸収する エネルギーの変化について考察する.

(3) 履歴吸収エネルギーについて

図-22 は、せん断補強鉄筋比の異なる6体のRC橋脚の 累積吸収エネルギーが、加振中にどのように変化するかを 表した図である.このとき、累積吸収エネルギーとは、供 試体が吸収する履歴エネルギーである.履歴吸収エネルギ ーは、各節点についてそれぞれ履歴吸収エネルギーを求め、 それぞれの履歴曲線において、荷重ゼロの点から載荷、除 荷を経て荷重ゼロの軸を横切り、再び荷重ゼロの軸を横切 るまでのループで囲まれる面積で表される.図-22 より、 せん断補強鉄筋比が大きくなるにつれて履歴吸収エネルギ

図ー23 RC 橋脚の累積吸収エネルギーに対する 構成要素の累積消費エネルギーの割合

ーが大きくなることが、動的格子モデル解析によって予測 できている.また、図-22より、十分にせん断補強された RC 橋脚 (r_w =0.40%、0.20%)では載荷の進行に伴って累積 吸収エネルギーが大きくなり、さらにエネルギー吸収が期 待できることがわかる.一方、せん断補強されていない、 もしくはあまりせん断補強されていない RC 橋脚 (r_w =0.00%、0.04%、及び 0.08%)では、吸収エネルギー値に 上限があり、これ以上のエネルギー吸収が期待できないこ とも予測されている.

さらに、格子モデル構成要素の消費するエネルギーに着 目し、橋脚内部における消費エネルギーの分布状態につい て調べてみる. このとき,構成要素内の応力,ひずみはそ れぞれ平均応力、平均ひずみであると仮定した上で、応力 ーひずみ履歴曲線に囲まれる面積が単位体積あたりの構成 要素に消費されるエネルギーとし、これに体積を乗じたも のを各構成要素の消費エネルギーとして計算した. 図-23 は、RC 橋脚の累積吸収エネルギーに対する、構成要素に おける累積消費エネルギーの総和の割合を示す.このとき、 構成要素における消費エネルギーは、図-20に示すように、 橋脚基部から2層目までに含まれる要素とした. これは格 子モデルの幅、つまり有効高さd=572mmと等しい区間に 着目していることとなる. 図-23 に示す値が 1.0 に近づく ことは、着目している部分での消費エネルギーの割合が大 きいことを示している. 図-23 より、十分にせん断補強さ れた RC 橋脚 (r_w =0.40%, 0.20%) では, 橋脚全体で吸収 するエネルギーの 40%程度が橋脚基部で消費されており、 せん断補強鉄筋比r =0.12%の橋脚では60%程度、せん断 補強されていない、もしくはあまりせん断補強されていな いRC橋脚 (r_w=0.00%, 0.04%, 及び0.08%)では、おおよ そすべてのエネルギーを橋脚基部において消費しているこ とがわかる. さらに, せん断補強鉄筋量が多くなるに伴い, 橋脚基部以外でのエネルギー消費は橋脚基部から比較的広 い範囲において見られ、つまり、損傷領域の拡大が認めら れた. 以上のことより、構成要素の消費エネルギーに着目 することによって、水平力を受ける RC 橋脚における消費 エネルギーの分布を把握することができることがわかる. さらに、 載荷によって消費するエネルギーの分布を把握す ることで、地震時に損傷を受ける領域を定量的に予測でき る可能性が示唆された.

6. まとめ

本研究では,RC 橋脚を用いた静的正負交番載荷実験を 対象とした静的格子モデル解析を行った.さらに,RC 橋 脚を用いた振動台加振実験を対象とした動的格子モデル解 析を行った.最後に,せん断補強鉄筋比を変えた6体のRC 橋脚を対象とした非線形動的解析を行った.以上より,得 られた結論を以下にまとめる.

(1) RC橋脚の静的正負交番載荷実験を対象とした静的格子モデル解析の結果、本研究で採用した材料の応カーひずみ関係を用いることで、主鉄筋降伏後、最大耐力を経験し、終局変位に達する段階までの履歴特性を妥当な精度で予測できることがわかった.

(2) RC橋脚を用いた振動台実験を対象とした動的格子モデル解析によって, RC 橋脚の降伏水平耐力,降伏変位,最大水平耐力,及び最大応答変位を精度よく予測できるこ

とがわかった.

(3) 静的,及び動的格子モデル解析による結果,最大応答変位以降の大きな変形領域では RC 橋脚の変形挙動の予測が十分ではなかった.実験結果との比較により,軸方向鉄筋の座屈等の詳細なモデル化を行わない限り,この領域における解析の精度を向上させることはできないことが示唆された.

(4) せん断補強鉄筋比の異なる RC 橋脚を対象とした動的格子モデル解析の結果,今回のパラメータの範囲では, せん断補強鉄筋比の増大に伴い最大水平耐力は増大するが, 最大応答変位に対する明確な影響は見られないことがわかった.しかし,履歴吸収エネルギーに着目することで,せん断補強鉄筋比の違いによる RC 橋脚のエネルギー吸収能の変化を定量的に把握できた.さらに,格子モデル構成要素の消費するエネルギーに着目することにより,橋脚内部での吸収エネルギーの分布を把握することができた.その結果,地震時に損傷を受ける領域を定量的に予測できる可能性が示唆された.

謝辞:本研究を行うにあたり,独立行政法人土木研究所耐 震技術研究センター耐震研究室の運上茂樹室長をはじめ, 同耐震研究室の方々には,貴重な実験データを提供して頂 きました.また,東北工業大学工学部土木工学科の浅田秋 江先生,鹿島技術研究所土木技術研究部の竹田哲夫博士に は、1983年の日本海中部地震において秋田県大潟村の八郎 潟干拓堤防上で観測された強震記録を提供して頂きました. ご協力いただいた以上の皆様に深甚の謝意を表します.ま た本研究の一部は、平成13年度科学研究費補助金・基盤研 究A1「鉄筋コンクリート構造物の耐震補強工法に関する研 究」(研究代表者:町田篤彦、課題番号:11355020)を受け て行いました.ご協力頂きましたことに深く感謝致します.

参考文献

- 右近八朗・幸左賢二・井上晋・吉澤義夫: RC 標準橋脚のフ ァイバーモデルによる正負交番載荷実験シミュレーション 解析、コンクリート工学年次講演会論文集、Vol.17, No.2, pp.463-468, 1995年.
- 二羽淳一郎・崔 益暢・田邊忠顕:鉄筋コンクリートはりの せん断耐荷機構に関する解析的研究,土木学会論文集, No.508/V-26, pp.79-88, 1995年2月.
- Mander, J. B., Priestley, M. J. N. and Park, R.: Theoretical Stress-Strain Model For Confined Concrete, *Journal of Structural Engineering*, Vol. 114, No.8, pp. 1804-1826, Aug., 1988.
- Vecchio, F. J. and Collins, M. P.: The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear, *ACI Journal*, Vol.83, No.2, pp.219-231, Mar./Apr., 1986.

- 5) 福浦尚之・前川宏一: RC 非線形解析に用いる鉄筋の繰り返 し履歴モデル,土木学会論文集,No.564/V-35, pp.291-295, 1997 年 5 月.
- 武村浩志・川島一彦:載荷履歴特性が鉄筋コンクリート橋脚の変形性能に及ぼす影響,構造工学論文集, Vol.43A, pp.849-858, 1997年3月.
- Ductility Design Subcommittee, Earthquake Engineering Committee: Cyclic Loading Test Data of Reinforced Concrete Bridge Piers, JSCE, pp.12-22, Mar., 2001.
- 8) 伊藤 睦・二羽淳一郎・田辺忠顕:格子モデルによる繰り返

し荷重を受ける鉄筋コンクリート柱の終局変位の評価,土木 学会論文集, No.641/V-46, pp.253-262, 2000 年 2 月.

- 9) 川島一彦・長谷川金二:鉄筋コンクリート橋脚の非線形地震 応答特性及びエネルギーー定則の適用性に関する実験的研 究,土木学会論文集,No.483/I-26, pp.137-146, 1994 年1月.
- 10) 伊藤 · 睦・二羽淳一郎・田辺忠顕:格子モデルに基づく RC 橋脚の非線形動的解析,土木学会論文集,No.676/V-51, pp.27-39,2001 年 5 月.

(2001. ?. ?. 受付)

NUMERICAL EVALUATION FOR SEISMIC PERFORMANCE OF REINFORCED COCNRETE BRIDGE PIERS USING DYNAMIC LATTICE MODEL

Tomohiro MIKI, Junichiro NIWA and Manakan LERTSAMATTIYAKUL

In order to clarify the seismic performance of reinforced concrete (RC) bridge piers under seismic loading, the computing program using the lattice model, which is an analytical model for determining the change in the shear resisting mechanism, has been developed. By the comparison between the experimental and analytical results, it has been confirmed that the static lattice model analysis can predict the load-carrying capacity and the ductility of RC bridge piers subjected to cyclic loadings. In addition, by the comparison between the results obtained by the shaking table tests and the dynamic lattice model analysis, it is found that the dynamic behavior of RC bridge piers subjected to ground motion can be appropriately evaluated. Finally, it has been proved that the influence of the transverse reinforcement on the seismic performance can be properly estimated in terms of the energy absorption of RC bridge piers.

ASR がコンクリート曲げ部材の耐荷性状に与える影響

久 保 善 司* 山 本 晋** 服 部 篤 史*** 宮 川 豊 章***

Influence of Alkali-Silica Reaction on Loading Carrying Behavior of Flexural Concrete Member

by

Yoshimori Киво^{*}, Shin Yaмaмото^{**}, Atsushi Hattori^{***} and Toyoaki Mryagawa^{***}

A number of cases of deterioration of concrete structures caused by Alkali-silica reaction (ASR) have been reported. In previous study, loading carrying behavior of reinforced concrete members were not changed by damage of ASR. However, concrete structures severely deteriorated due to ASR have been reported. Strengthening have been applied for concrete pier damaged by ASR in order to improve ductility and to reduce expansion.

In this study, the effect of transverse confinement on reducing alkali-silica expansion was investigated. The effect of ASR on the loading carrying behavior (strength and ductility) of concrete member and multiple damage due to ASR and steel corrosion was discussed. Transverse confinement with FRP sheet was useful for reducing expansion of concrete structures damaged by ASR. Ductility of concrete member damaged by ASR may be reduced. Furthermore, ductility of concrete member damaged multiply by ASR and steel corrosion was reduced largely.

Key words: Alkali-silica reaction, Loading carrying behavior, Strengthening, Repair, Reducing of alkalisilica expansion

1はじめに

コンクリート構造物は、従来、適切に設計、施工され た場合には半永久的であると考えられてきたが、近年、 多くの劣化損傷例が報告されるている¹⁾アルカリシリカ 反応(以下ASRと略す)および鉄筋腐食は劣化原因の代 表的なのものとして挙げられる.ASRにより劣化した鉄 筋コンクリート構造物については、内部の鉄筋が適切に 配置されている場合には、その静的耐荷特性に大きな低 下はないものとされており^{2)~5)}補修後の膨張の進行を抑 制することが主な目的であったため、補強された例はき わめて少ない^{6)、7}

しかし、近年では、ASR により著しく損傷したコンク リート構造物も報告されており、劣化した橋脚の補強お よび補強後の膨張の抑制を目的とした試みがなされた例 もある.^{8),9)}また、内部に配置された鉄筋量が不足してい ると、過大な膨張が生じ、部材の耐久性および耐荷性に 影響を与えるものと予想される.¹⁰⁾また、地震時のような 過大な正負繰返し荷重が作用する場合の耐荷性状につい ては十分な検討は行われていないのが現状である.¹¹⁾⁻¹³⁾

そこで、耐震性能の向上に用いられる横拘束による ASR 膨張抑制効果を検討するとともに、ASR 膨張が耐荷 性状に与える影響を検討することとした、また、鉄筋腐 食との複合劣化の影響についてもあわせて検討すること とした.

2 実 験 概 要

2・1 使用材料および配合

2・1・1 使用材料 細骨材として滋賀県野洲川産の 非反応性骨材を用いた. 粗骨材には, 土山産の非反応性 骨材(比重: 2.68, 吸水率: 1.20%, 最大寸法: 20mm) と反応性骨材として養老産チャート(比重: 2.53, 吸水 率: 1.27, 最大寸法: 10mm)を用いた. チャートの化 学法およびモルタルバー法による結果をTable Iに示す. セメントとして普通ポルトランドセメントを用いた.

軸方向筋として市販の D10 の異形棒鋼を用いた. その 機械的性質を Table Ⅱに示す. せん断補強筋および横拘 束筋として市販の普通棒鋼の φ6 端部 135° フック型を用 いた. その機械的性質を Table Ⅱに示す. 軸方向の鉄筋

Fable I .	Properties	of Aggregate.
-----------	------------	---------------

Chen	Chemical method Mortar bar method			D		
Sc	Rc	Sc/Rc	Exp	ansion (<i>(</i> 2)	(US A 5808)
(mmol/ℓ)	(mmol/ l)	00/100	2weeks	4weeks	8weeks	(210 11 2000)
479	59	8.1	110	330	1450	Potentially deleterious

 <sup>↑
 *</sup> 正 会 員 金沢大学工学部土木建設工学科 〒920-8667 金沢市小立野、Dept. of Civil Eng., Kanazawa Univ., Kodatsuno, Kanazawa, 920-8667
 * * 京都大学大学院工学研究科土木工学専攻 〒606-8501 京都市左京区吉田本町、Dept. of Civil Eng., Kyoto Univ., Sakyo-ku, Kyoto, 606-8501
 * * 正 会 員 京都大学大学院工学研究科土木工学専攻 〒606-8501 京都市左京区吉田本町、Dept. of Civil Eng., Kyoto Univ., Sakyo-ku, Kyoto, 606-8501

Table II. Mechanical properties of steel bar.

Steel bar	Diameter (mm)	Area (mm ²)	Yield strength (N/mm ²)	Tensile strength (N/mm ²)
D10	9.53	71.33	353	505
<i>φ</i> 6	6.0	28.26	563	596

腐食の影響を検討するため,NaCl 添加の供試体につい ては横拘束筋に防錆塗料を横拘束筋1本あたり5mlを目 安に用いた。

連続繊維シートとして東燃㈱製炭素繊維シート FTS-C11-20 を使用した. その機械的性質を Table Ⅲに示す. プライマー,パテ材,および含浸樹脂はそれぞれ東燃㈱ 製 FP-WE7W, E-B,および FR-E3PW (エポキシ樹脂) を用いた.

2・1・2 コンクリートの配合 水セメント比が大き い場合,ASRにより生じたゲルがコンクリート中の空隙 に吸収され,膨張圧が緩和されることがあるため,ある 程度水セメント比を小さくし,Table Ⅳに示す配合を用 いた.反応性コンクリートについては,反応性骨材の粗 骨材全量に対する割合をペシマムとなる 80% となるよう に混合した.短期間で大きな膨張を得ることを期待して, 等価アルカリ量は 12.0kg/m³ に設定した.

2·2 横拘束量

横拘束量が ASR 膨張および耐荷性状に与える影響を検 討するため、横拘束筋比は 0.8%, 1.6% および 2.4% の 3 種類(配置間隔: 12.2cm, 6.1cm, 4.0cm)とした.平 成 8 年度制定コンクリート標準示方書(耐震基準編)¹⁴⁾ によると、横拘束筋間隔は軸方向筋の直径の 12 倍以下 で、かつ部材断面の最小寸法の 1/2 以下と規定されてい る.また、既往の研究から十分な曲げじん性が得られる 比率が 1.25% 程度という結果¹⁵⁾が得られており、この値 に近い 1.6% を基準として比率の下がる 0.8%、上がる 2.4% の 3 種類を用意した.連続繊維シートによる ASR 膨張抑 制効果を検討するため、炭素繊維シートを配置する供試 体を用意した.これらについては、横拘束筋比を 0.8% で

Table III. Mechanical properties of FRP sneet

Fiber area weight (a/m^2)	Design thickness	Tensile strength (N/mm ²)	Young's modulus (N/mm ²)
200	0.111	3400	230000

Fable Ⅳ.	Mix	Proportions.
----------	-----	--------------

	W/C	s/a (%)	Unit(kg/m³)					Alkaline (kg/m ³)		W.R.A. *	
	(%)		W	С	S	G*1	G* <u>?</u>	NaNO	NaCl	(ml/m ³)	
Non-reactive NaCl			168	305	863	950	-	-	18.78	762.5	
Reactive NaCl	55	-49	168	305	863	181	725	-	18.78	762.5	
Reactive- NaNO ₂			168	305	860	181	725	22.18	-	762.5	

*) Non-reactive aggregate, *2Reactive aggregate, *3 Water reducing agent

統一し, ASR 膨張を進行させるために全面巻きとはせず, シート中心間隔として横拘束筋間隔と同様の 12.2cm お よび 6.1cm の 2 種類を用意した.

なお、横拘束筋比は以下の式 (1)により定義した. 1本または1周の横拘束筋の体積

横拘束筋比 = 1 (4 ≤ Λ (4) (10) (2 (3 (4) Λ (10) - 11)) 横拘束筋配置間隔 s 間のコアコンクリートの体積 (1)

2・3 添加アルカリの種類

添加アルカリ種類の違いが、ASR 膨張および鉄筋の腐 食に与える影響を検討するために以下のように設定した、 アルカリとして鉄筋腐食との複合劣化を検討するための 塩化ナトリウム (NaCl), NaCl とは逆に防錆効果のある 亜硝酸ナトリウム (NaNO₂)の2種類を添加アルカリと して使用した。

2.4 環境条件

促進環境: ASR によるコンクリート膨張および劣化を 短期間でおこさせるため,温度 40℃,相対湿度 100% に 設定した.

なお,耐荷性状の初期値を確認するために暴露を行わ ないものも用意した(室内環境).

2・5 供試体の作製

供試体は異形鉄筋を断面内に対称複筋配置(引張鉄筋 比 0.8%) した幅×高さ×全長 = 10×20×160cm の矩形 断面 RC はり供試体 (コンクリート配合強度 f' = 30N/mm²)とし、かぶりは主筋で 1.6cm とした. 横拘束区間 は70cm としてその区間に上記の配置間隔で横拘束筋を 配置し、せん断補強区間はせん断破壊が卓越しないよう にするため、10cm 間隔(せん断補強筋比 0.6%)でせん 断補強筋を配置した、供試体の形状および寸法を Fig. 1 に示す。供試体は打設1日後、脱型を行い、2週間湿布 養生を行った、各要因ごとに2本の供試体を作製し、そ のうちの1体に膨張ひずみ測定用として軸方向および横 拘束筋にひずみゲージを貼付けた。以上の要因により供 試体を作製した、供試体一覧を Table V に示す、無拘束 下のコンクリートの膨張挙動を把握するため、同一要因 に2体のひずみ測定用プラグを埋設した角柱供試体 (10 ×10×40cm)を用意した.

2・6 炭素繊維シート貼付け

散水湿布養生終了後,1週間乾燥させた後,ディスク サンダーにより表面の凹凸をなくし,隅角部はr = 1cm

程度の円弧処理を行った. エポキシ樹脂とコンクリート 表面との付着性をよくするため,塗布量 0.25kg/m²を目 安としてプライマーを塗布した. プライマー乾燥後にコ ンクリート表面に多数存在する微小な穴を標準使用量 1.5kg/m²としてパテ処理した. パテが十分乾燥した後に シートを貼り付ける部分に塗布量 400 ~ 500kg/m²を目 安として樹脂を塗布した. 含浸ローラーで樹脂とシート を密着させながらシートを巻き付け,シートを巻き終え た後,シートに再び含浸量 100 ~ 200g/m² を目安として 樹脂を含浸させた. その後,恒温室内(室温 20℃)にお いて約1週間養生を行った. なお,プライマー塗布,パ テ処理および含浸樹脂の塗布はシートを貼り付ける部分 にのみ行った.

2.7 測定項目

ひずみ:反応性骨材を用いた供試体にのみ供試体両側 面中央部にそれぞれ4個のプラグを埋設し,供試体1体 につき片面4点,計8点のひずみを測定した.

鉄筋ひずみ:4本の主筋のスパン中央外側に各1点, およびスパン中央に配置されている横拘束筋の上下左右 それぞれの中央部外側に各1点,供試体1体につき計8 点にひずみゲージ(2mm)を貼り付け,ひずみを測定し た.ひずみゲージは防水対策のため鉄筋に貼り付けた後 ワックスを塗布し,その上からVMテープを貼り,自己 融着テープを巻き付けた.また,一部の供試体には溶接 ゲージを代わりに用いた(Table V参照).

軸方向鉄筋の自然電位:供試体の 4本の軸方向鉄筋 からそれぞれ7点、1つの供試体につき計28点について、 飽和塩化銀電極 (Ag/AgCl) を照合電極に用い、デジタ ルエレクトロメータにより、自然電位を測定した、測定 方法をFig.2に示す、

2·8 載荷試験

2・8・1 載荷方法 いずれもスパン 140cm (全長 160cm) に対し、曲げスパン 30cm, せん断スパン 55cm とし、(2n-1)δy において 1回ずつの正負交番繰返し載荷 を、原則として荷重が最大荷重の 50% 程度に低下するか、

Concrete	Confinement ratio (%)	Volumetric ratio of FRPsheet (%)	Condition	
	0.8 (p sl)	-		
Non-reactive NaCI	0.8 (<i>p</i> sl) 0.14		Indoor	
Reactive NaCl	0.8 (p sl)	-		
Reactive NaNO ₂	0.8 (psl)	-		
	0.8 (p sl)	-		
	1.6 (ρ s2)	-		
Reactive NaNO ₂ *	2.4(ρ s3)	-		
	0.8 (p sl)	0.14	Accelerated	
	0.8 (p s1)	0.27		
	0.8 (_i o s1)	_		
Reactive NaCl	0.8 (p sl)	0.14		

Table V. Specimens.

Pitch of transverse bar or sheet; ps1:12.2cm, ps2:6.1cm, ps3:4.0cm *weided gauge

あるいは軸筋が座屈または破断するまで行った.

2・8・2 測定項目荷重:ロードセル(容量 25tf) により測定した。

スパン中央たわみ:いずれの梁においてもスパン中央 と両支点に1個づつ変位計をセットし、スパン中央たわ みを測定した。

3 ASR 膨張および鉄筋腐食

3 · 1 ASR 膨張挙動

促進環境下における角柱供試体のひずみの経時変化を Fig. 3 に示す. 添加アルカリの違いによる影響は顕著で なく、ほぼ同程度の膨張量であり、膨張速度にも大きな 違いは認められなかった.

促進環境下における梁供試体のひずみの経時変化を Fig.4に示す.軸方向のひずみは500~1000µ程度であ り,軸直角方向に比べて顕著な膨張を示していない.鉄 筋拘束に関する既往の研究¹⁶⁾によれば拘束筋量が大きい ものほど膨張量は小さくなるが、0.7%程度の拘束筋量に おいても膨張が大幅に抑制されるとしている.本研究に おいては、軸方向の拘束筋量は1.6%程度であり、軸方向 の膨張は無拘束の角柱供試体に比べて小さく、軸筋によ って大幅に膨張が抑制されている.

シートを配置したものに若干大きなひずみが生じたの は、シートを配置することで、シート下のコンクリート は遮水系の表面処理がされたものと同様に水が滞留する 状態となり、膨張性が高められた可能性が高いものと考 えられる、塩化ナトリウムを使用したものはシート配置 の影響は顕著ではなく、同程度の軸方向ひずみとなった.

軸直角方向ひずみについては、横拘束の影響はきわめ て顕著であった. 亜硝酸ナトリウムを使用したものでは、 横拘束筋比が大きいものほど、ひずみは小さくなった. シートを配置したものでも、シート配置間隔の小さいも

のの方がひずみは小さくなった.

炭素繊維シートのヤング係数を考慮し、シートの横拘 束量を横拘束筋比に換算した。横拘束筋比が収束時の軸 直角方向のひずみに与える影響を Fig. 5 に示す。横拘束 筋比が最も小さい 0.8% のものはきわめて大きな膨張を示 し、約 5500µ 程度に達した。横拘束筋比が 1.6% および 2.4% の場合には、それぞれ 2500µ および 2200µ 程度まで に抑制されている、シートを配置したものにも同様の抑 制効果が認められる。

促進環境下における鉄筋ひずみについては、コンクリ

Fig. 5. Influence of transverse reinforcement on alkalisilica expansion.

ート中の含水状態が高く、さらに ASR 膨張の影響を受け、暴露 100 日後程度で鉄筋ひずみの測定が困難となった。膨張初期の暴露 100 日後においては、軸筋および横 拘束筋ひずみは、横拘束筋比およびシートの配置の有無 によらず同程度であった。この段階においては横拘束 量が鉄筋ひずみに与える影響は顕著でないものと考えられる。

しかし、膨張が最大を示して以後において横拘束が軸 直角方向の膨張に与える影響は顕著となった.この段階 における影響を検討するため、コンクリートひずみと鉄 筋ひずみの関係を Fig. 6 に示す.コンクリートひずみが 大きくなるほど、鉄筋ひずみは大きくなり、ほぼ直線的 に増加している.コンクリートと鉄筋ひずみの関係に示 されたコンクリートひずみは最大 3000µ 程度であり、さ らに大きな膨張量におけるコンクリートと鉄筋ひずみの 関係については今後の検討が必要であるが、この関係が さらに大きな膨張量においてある程度成立するものとす ると、最も横拘束筋比の小さい 0.8% のものでは、軸直角 方向のひずみは約 3000µ に達しており、横拘束筋が降伏 している可能性が高いものと考えられる.内部の鉄筋が 膨張によって降伏している場合には、部材の耐荷性への 影響が懸念される.

今回の範囲においては、ASR 膨張抑制を期待できる横 拘束量として、内部の横拘束筋が降伏していないものと 考えられ、十分なじん性が期待できる程度の横拘束筋比 である 1.6% 程度が補強の目安として考えられる.また、 シートを配置した場合にも横拘束による膨張抑制が可能 であるため、既存構造物において十分な横拘束筋量が確

保されていない場合のASR 膨張抑制手段として炭素繊維 シート巻き立ては有効であると考えられる。

3·2 鉄筋腐食挙動

暴露開始時の各供試体の自然電位を Fig. 7 示す. 亜 硝酸ナトリウムを使用したものは塩化ナトリウムを使用 したものより電位が貴であり, 亜硝酸ナトリウムの防錆 効果が認められる. これに対して,塩化ナトリウムを使 用したものは暴露開始時から自然電位が腐食領域にある ことから,内部の鉄筋は腐食を生じているものと考えら れる.

角柱供試体においては、添加アルカリの違いは顕著で なく、促進環境下においては添加アルカリの違いがコン クリートの膨張性に与える影響は顕著ではなかった.し かし、塩化ナトリウムを使用した梁供試体においては、 軸直角方向のコンクリートひずみは亜硝酸ナトリウム使 用のものにくらべて小さくなった、塩化ナトリウムを使

Fig. 7. Half-cell potential.

Fig. 8. Profile of expansion.

用した梁供試体には、軸筋に沿ってひび割れが生じてお り、軸筋の腐食が梁の軸直角方向の膨張挙動に影響を与 えた可能性が高いものと考えられる.軸筋腐食の影響と しては、腐食によるひび割れによって ASR 膨張の分布に 変化が生じたものと推察されるが、それらのメカニズム については今後の検討によって明らかにする必要がある (膨張の分布の変化の模式図を Fig.8 に示す).

4 耐荷性状

4·1 載荷試験結果

試験結果を計算結果とともに Table Mに示す.

(1) 最大荷重とたわみ

最大荷重および対応するたわみの実験値は載荷によっ て得られた荷重~たわみ曲線から求めた.諸荷重の計算 値は,同一環境下に暴露された同一配合のコンクリート 強度試験結果(圧縮強度,静弾性係数,割裂強度)を用 いて算出した.

(2) 荷重~たわみ曲線

Concrete	Confinement ratio (%)	Volumetric ratio of FRPsheet (%)	Condition	Maxim (k Cal.*1	Ex.*2	-Energy dissipation (kN mm)	Failure type	
Non-reactive	0.8	-		46.2	31.1	11000	shear-compression	
NaCl 0	0.8.	0.14		50.6	31.1	21800	flexural	
Non-reactive NaNO ₂	eactive NC ₂ 0.8 -		Indoor	49.6	30.9	14400	shear-compression	
Reactive NaCl	0.8	-		41.3	31.1	10500	shear-compression	
	0.8	-		41.6	-	7440	flexural	
Deservice	1.6	-		39.3	1 -	13500	flexural	
NaNO [*]	2.4	-		413	_	>13300	flexural*3	
	0.8	0.14				>15500		
		0.07	Accelerated	40.2	-	16500	flexural	
	0.8	0.27		44.2	-	>22800	flexural*3	
Reactive NaCl	0.8	2.8 -		38.2	-	1330	flexural	
Reactive NaCl	0.8	0.14		31.5	-	4100	flexural	

Table VI. Results of loading test.

*1 Calculated value, *2 Experimental value, *3 Loading test was stopped due to large deformation.

各供試体の荷重~たわみ曲線を Fig.8 に示す.

(3) 破壞形式

各供試体の破壊形式をTable VIに示す.

(4) 消散エネルギー

部材が消散したエネルギーは、各供試体の荷重~変位 履歴ループの囲む面積で与えられる、最大荷重以降、荷 重が最大荷重の80%程度に低下する時を破壊時と定義 し、破壊時までの消散エネルギーをTable Mに示す。

4 · 2 ASR 膨張の影響

初期の耐荷性状については,骨材およびアルカリ種類 の影響は顕著でなく,同一の横拘束筋量であれば同程度 の最大荷重および消散エネルギーが得られた.炭素繊維 シートの配置によって消散エネルギーが大きくなり,じ ん性の向上が認められた.

ASR 膨張が耐震性状に与える影響を Fig. 9 に示す. 最大荷重については,横拘束筋による影響は顕著でなく, 耐力の増大は認められない.また,同一要因の供試体に ついては,劣化促進後の最大荷重は初期値より小さく, 地震時のような過大な正負繰返し荷重が作用する場合に は,耐荷力が若干低下するものと考えられる.

消散エネルギーについては、膨張量が小さいものほど 大きくなった.膨張抑制効果については、シートによる 顕著な効果は認められなかったが、消散エネルギーには 効果が認められた. ASR により劣化したコンクリートに おいては、膨張によって生じたひび割れによるかぶり部 のはく離とともに、大きな強度低下が生じる.そのため、 かぶりを覆う形で配置されるシート貼付けのものの方が 内部に配置した横拘束筋よりも,高い効果が得られたと 考えられる。しかし、シートの有無にかかわらず、同一 要因の供試体の促進劣化後の消散エネルギーは初期値の ものに比べて小さくなった. 膨張によって生じたひび割 れによるかぶり部のはく離によって部材のじん性が低下 したものと考えられる. ASR により劣化した部材におい ては、横拘束によるじん性の向上は期待できるものの、劣 化していない健全な梁に対して行われた既往の研究^{15),17)} に比べてその効果は小さい.したがって、ASR により損 傷した部材は十分なじん性が確保されない場合もあると 考えられる、このような場合の補強手段として、シート による補強が考えられるが、その場合の定量的な補強効 果については今後の検討が必要であろう.

Fig. 10. Influence of alkali-silica expansion on maximum load and energy dissipation.

4・3 複合劣化の影響

複合劣化が耐荷性状に与える影響をFig. 10 に示す. 最大荷重については, 亜硝酸ナトリウムを使用したもの に比べて顕著な違いは認められない. なお, シートを配 置した塩化ナトリウムを使用したものの劣化後の最大荷 重は他のものより小さかった.

消散エネルギーについては、亜硝酸ナトリウム使用の ものに比べて塩化ナトリウムを使用したものの方が小さ く、また、初期値に比べて顕著に低下した。ASR による コンクリートの劣化に加えて、鉄筋腐食により軸筋に沿 うひび割れが生じ、かぶり部の拘束効果が低下したこと と、鉄筋とコンクリートとの付着が低下したことが原因 であると考えられる。

また、シートを配置したもの(シート間隔 ps1)は、 アルカリの種類にかかわらず軸筋の破断が生じたが、亜 硝酸ナトリウムを使用したものに比べて半分以下の変位 で軸筋の破断を生じた、シートを配置した塩化ナトリウ ムを使用したのものは劣化後の最大荷重はシートを配置 していないものより小さくなったものの、消散エネルギ ーではシートを配置していないものより大きく、シート による横拘束効果が認められた。

供試体の軸直角方向のひずみは塩化ナトリウムを使用

Fig. 11. Influence of deterioration due to alkali-silica reaction and chloride induced corrosion of steel bar.

したものの方が小さく、ASR 膨張そのものは亜硝酸ナト リウム使用のものの方が大きい。しかし、塩化ナトリウ ム使用のものでは、鉄筋の腐食による軸筋に沿ったひび 割れによって、かぶりの一体性および鉄筋との付着の低 下が生じるとともに、孔食による鉄筋の伸び能力が低下 が生じるために、部材のじん性への影響はきわめて大き いものとなった。

ASR 補修において鉄筋腐食との複合劣化が予測される 場合には、膨張抑制とともに鉄筋腐食に対する配慮が必 要である.

結論

以下に本研究の範囲内で得られた結論を述べる.

5

(1) 軸直角方向ひずみについては横拘束による影響が きわめて顕著であった. 横拘束が大きいものほどひずみ は小さくなった.

(2) 今回用いた梁断面においては ASR 膨張抑制が期 待できる横拘束量として、十分な靭性が期待できる程度 の横拘束筋比である 1.6% 程度が補強の目安として考えら れる.また、炭素繊維シートを配置した場合にも横拘束 による膨張抑制が可能であるため、既存構造物において 十分な鉄筋量が確保されていない場合の ASR 膨張抑制手 段として、炭素繊維シート巻き立ては有効であると考え られる.

(3) 無拘束コンクリートの膨張性にはアルカリ種類の

影響は認められなかった.しかし, 梁供試体の軸方向お よび軸直角方向のいずれにおいても、塩化ナトリウムを 使用したものの膨張は横拘束にかかわらず亜硝酸ナトリ ウムのものより小さくなった.塩化ナトリウムを使用し たものには軸筋に沿ったひび割れが認められ,それによ って膨張の分布に変化が生じ,軸直角方向の膨張挙動に 影響を与えた可能性が高いものと考えられる.それらの メカニズムについては今後の検討が必要であろう.

(4) ASRにより劣化した部材の耐荷性状に関する検 討結果から,地震時のような過大な正負繰返し荷重が作 用する場合,ASRにより劣化損傷した部材のじん性は低 下する傾向がある.炭素繊維シートによる横拘束効果は, 内部に配置する横拘束筋に比べて大きいものの,補強手 段として用いる場合の定量的な補強効果については今後 の検討が必要であろう.

(5) 鉄筋腐食による複合劣化を想定し、塩化ナトリウムを使用した部材のじん性の低下はきわめて顕著であった. ASR 補修において鉄筋腐食との複合劣化が予測される場合には、ASR 膨張抑制とともに鉄筋腐食に対する配慮が必要である.

参考文献

- 日本コンクリート工学協会、コンクリート構造物の劣化および補修事例集、1 (1996).
- 日本材料学会、アルカリ骨材反応に関するシンポジウムテキスト、113 (1987).
- 3) 小林和夫, コンクリート工学, Vol.24, No.11, 70 (1986).
- 小柳 治, 六郷恵哲, 内田裕市, 長瀬道雄, コンクリート 工学年次論文報告集, Vol.15, No.1, 947 (1993).

- K. Takemura, M. Ichitubo, E. Tazawa and A. Yonekura, Proceedings of the 10th international conference on alkali aggregate reaction in concrete, 410 (1996).
- 石井浩司,奥田由法,森 拓也,鳥居和之,コンクリート 工学年次論文報告集, Vol.19, No.1, 931 (1997).
- 2) 奥田由法,石井浩司,鳥居和之,松田康孝,コンクリート 工学年次論文報告集,Vol.20, No.1, 371 (1998).
- 8) 奥田由法、鈴木義昇,森 拓也、久保欣也、コンクリート 工学, Vol.35, No.8,9 (1997).
- 9) 奥田由法,松本一昭、小村辰彦,湊 俊彦、コンクリート 工学,Vol.36,No.9,22 (1998).
- 10) 小柳 洽、内田裕市,岩永武士,浅野幸男,セメント・コ ンクリート論文集, No.52, 786 (1998).
- 11) 栗栖 開, 浦野 剛, 井上 晋, 小林和夫, 仁枝 保, 土木学会第54回年次学術講演会概要集第5部, 130 (1999).
- 12) 日本コンクリート工学協会,兵庫県南部地震に関する耐震 技術特別委員会報告書,28 (1997).
- 鳥居和之,奥田由法,石井浩司,佐藤健一,コンクリート 工学年次論文報告集,Vol.21, No.2, 1051 (1999).
- 14) 土木学会、コンクリート標準示方書 [平成2年版] 耐震設計編,18 (1996).
- 15) 服部篤史,井上 晋,宮川豊章,藤井 学,小林和夫, 土木学会第44回年次学術講演会概要集第5部,504 (1989).
- 16) 矢村 潔, 西林新蔵, 田中修三, コンクリート工学年次論 文報告集, Vol.11, No.1, 135 (1989).
- 17) 山本貴士,服部篤史,宮川豊章,藤井 学,土木学会第51 回年次学術講演会概要集第5部,924 (1996).

炭素繊維シート補強部材の耐荷特性に与える鉄筋腐食の影響

山本貴士*服部篤史**宮川豊

Load Carrying Behavior of RC Member Strengthened with CFRP Sheet Subjected to Reinforcing Steel Corrosion

by

Takashi YAMAMOTO*, Atsushi HATTORI** and Toyoaki MIYAGAWA**

Strengthening technique using CFRP sheet has recently spread widely and strengthening of the existing RC structures deteriorated due to reinforcing steel corrosion is becoming important. Furthermore, it is also important to understand load carrying performance of strengthened RC member during its whole life under corrosive environment. In this study, corrosion of reinforcing steel in RC beams strengthened with CFRP sheet was simulated by the electrolytic corrosion using an external current source. Tension test of corroded reinforcing steel, observation of cracks due to reinforcing steel corrosion in cross section and static flexural test were carried out in order to investigate the influences of reinforcing steel corrosion on load carrying behavior of RC member strengthened with CFRP sheet. Additionally, finite element analysis was carried out using discrete joint elements for the bond between concrete and reinforcing steel, the bond between concrete and CFRP sheet and longitudinal crack due to reinforcing steel corrosion. Reinforcing steel corrosion hardly affected static load carrying behavior of RC member strengthened with CFRP sheet until yield. However, longitudinal distribution of strain in CFRP sheet was changed to be uniform by longitudinal crack due to reinforcing steel corrosion, which was successfully simulated by the finite element analysis.

Key words: RC member, Strengthening using CFRP sheet, Reinforcing steel corrosion, Crack due to reinforcing steel corrosion, Load carrying behavior, Electrolytic corrosion, Finite element analysis

1 緒

蟗

近年,施工時の使用材料の品質,供用期間中の様々な 環境作用,荷重作用に起因するコンクリート構造物の劣 化・損傷事例が数多く報告され,このような構造物に対 する補強が注目されている.中でも,連続繊維シートを 用いた補強工法は,施工性の良さや材料の高耐久性への 期待などから,広範囲にわたる適用の検討が行われてき ている^り.

補強を行う構造物に対しては、その種類、使用目的、 重要度に応じて、補強以降の残存設計耐用期間において も保有すべき性能が規定されるため、安全性、使用性、 第三者影響度に関する性能などの各種性能の経時的な抵 抗性、すなわち耐久性を考慮する必要がある²⁾.

このような補強部材の一つに、塩害を受ける連続繊維 シート補強部材が考えられる.これには、すでに塩害に より鉄筋腐食が生じた部材に対して補強を行う場合と、 海砂の使用あるいは飛来塩分の蓄積により多量の塩化物 が含まれている部材において、補強後に鉄筋腐食が進行 する場合が考えられる.後者については、連続繊維シー ト補強層の環境遮断性により新たな塩化物の浸透抑制に きわめて大きな効果が期待できるものの、内部に存在す る塩化物の拡散によって鉄筋腐食が生じる可能性がある と指摘されている³⁾.これらのような、鉄筋腐食部材の 補強あるいは補強後に鉄筋腐食が生じる部材について、 その耐荷特性を把握することは、補強部材の耐久性能を 評価する上で重要である.しかし、腐食にともなう鉄筋 の機械的性質の低下および腐食ひび割れが耐荷特性に与 える影響など、明らかにすべき点が多い.

音**

そこで本研究では、炭素繊維シート補強部材中の鉄筋 腐食を電食法によりモデル化し、静的曲げ試験をもとに 鉄筋腐食および腐食ひび割れが補強部材の耐荷特性に与 える影響を検討した.また、二次元有限要素解析におい て、鉄筋とコンクリートの付着劣化および腐食ひび割れ を離散型の要素を用いて表現することにより、腐食鉄筋 を有する炭素繊維シート補強部材の耐荷特性を解析的に 検討した.

2 実 験 概 要

2・1 曲げ試験

曲げ試験供試体は、幅×高さ×全長(スパン長)=100× 100×400(300)mmで、引張主鉄筋に 1-D10(SD295A)をか ぶり 20mmで配した.また、せん断補強筋にはD6(SD295A) フープ筋を間隔 40mm で配置した.補強供試体には、炭 素繊維シート(目付量 200g/m²,シート厚さ 0.111mm,引 張強度 3500N/mm²,ヤング係数 2.3×10⁵N/mm²)を、支点 外側を含めた底面軸方向に 1 層張り付けた.なお、引張 主鉄筋の腐食の影響を検討することから、主鉄筋定着部 およびせん断補強筋はエポキシ系樹脂により防錆処理を 行った.コンクリートの目標配合強度は f_{cr} =27N/mm²と

↑ 原稿受理 平成 年 月 日 Received

* 学生会員 京都大学大学院大学院工学研究科土木工学専攻 〒606-8501 京都市左京区吉田本町, Dept. of Civil Eng., Kyoto Univ., Sakyo-ku, Kyoto, 606-8501 ** 正 会 員 京都大学大学院大学院工学研究科土木工学専攻 〒606-8501 京都市左京区吉田本町, Dept. of Civil Eng., Kyoto Univ., Sakyo-ku, Kyoto, 606-8501 し、腐食促進のため練混ぜ水として NaCl 3%水溶液を用いた.

載荷は、スパン 300mm の中央一点静的漸増載荷曲げ 試験(せん断スパン有効高さ比 1.99)とし、荷重、スパン 中央変位、両支点変位およびスパン中央から 0, 25, 50, 100mm位置の合計4点の炭素繊維シートひずみを測定し た.供試体の形状・寸法ならびに炭素繊維シートひずみ の測定位置を Fig.1 に示す.

2.2 鉄筋腐食方法

腐食鉄筋のモデル化は、定電流電源により鉄筋を強制 的にアノード溶解させる電食法を用いて行った. 電食の 状況を Fig. 2 に示す. 炭素繊維シート補強面から 50mm の位置までが気中にある状態で NaCl 3%電解液に浸し、 銅板をカソードとして、鉄筋表面積に対する電流密度を 1.0mA/cm²に設定した. 腐食段階 1 として 200 時間, 腐 食段階 2 として 480 時間の通電を行った. これらの腐食 段階は、本検討に先立って行った予備通電実験の結果か ら決定した. すなわち, 腐食段階 1 は無補強供試体の底 面に腐食ひび割れが目視確認できる段階の腐食であり, 腐食段階 2 は厳しい腐食状況を想定して質量減少率 10% 程度になるように通電を行ったものである.

腐食量は、曲げ試験終了後の供試体からはつり出した 鉄筋を、60℃10%クエン酸水素二アンモニウム水溶液に 浸漬した後、腐食生成物除去後の鉄筋質量を測定し、健 全な鉄筋質量との差から質量減少率として算出した⁴⁾.

2・3 腐食鉄筋の引張試験

曲げ試験供試体と同様の形状・寸法(せん断補強筋は有 していない)の供試体中の鉄筋に対して,腐食段階1およ び2に相当する通電を行い,はつり出した鉄筋について 引張試験を行った.また,曲げ試験供試体と同様,引張 試験終了後の試験片を用いて鉄筋の腐食量を測定した.

2・4 断面内の腐食ひび割れ状況

炭素繊維シート補強供試体において、腐食段階1および2の通電終了後、スパン中央およびスパン中央から 80mm 位置の合計3個所を軸直角方向に切断し、クラッ クゲージを用いた目視観察により断面内の腐食ひび割れ を調査した.

各種試験項目および要因を,質量減少率の測定結果, 試験時のコンクリート強度f。とともにまとめた供試体一 覧を Table I に示す.

結果および考察

3・1 腐食鉄筋の引張試験

鉄筋の機械的性質と質量減少率の関係を,試験結果の 線形回帰直線とともにFig.3に示す.なお,降伏点およ び引張強度の算出には,一様腐食を仮定し,質量減少率 を断面欠損率とすることにより推定した残存断面積を用 いた.降伏点および引張強度は,質量減少率によらずほ ぼ一定であったが,伸びは質量減少率の増加とともに顕 著に低下した.鉄筋の目視観察により,孔食が確認でき たが,鉄筋が延性材料であることから,強度よりも伸び において孔食の影響が顕著に現れたものと考えられる.

Anti-corrosion coating was applied

Fig. 1. Specimens and measurement. (unit : mm)

Fig. 2. Electrolytic corrosion setup. (unit : mm)

Table I. Test parameters.

Snaaiman	Tast	CFRP	Corrosion	$f_{\rm c}$	
specimen	1651	sheet	mass loss (%)	(N/mm^2)	
N0			0.0	35.1	
NI			2.2	37.3	
N2			8.2	35.3	
CF0	Loading test	0	0.0	35.1	
CF1		0	2.1	37.3	
CF2		0	8.6	35.3	
N0(T)			0.0	35.1	
N1(T)			2.3	37.3	
N2(T)	Tensile test of		13.8	35.3	
CF0(T)	rebar	0	0.0	35.1	
CF1(T)		0	2.6	37.3	
CF2(T)		0	13.2	35.3	
CF1(C)	Observation of	0	2.2	37.3	
CF2(C)	section	0	8.4	35.3	

Fig. 3. Mechanical properties of corroded reinforcing steel.

通常,電食では一様腐食に近い状態となるが,塩化物を 含む供試体中での電食であり,局所的な断面欠損が生じ たものと考えられる.

3・2 断面内の腐食ひび割れ状況

炭素繊維シート補強部材の腐食段階1および2におけ る断面内の腐食ひび割れ状況をFig.4に示す.なお,無 補強供試体の腐食ひび割れは,かぶり方向(底面方向)へ

Values were not entered when crack width was less than 0.04mm. Fig. 4. Crack due to reinforcing steel corrosion in cross section. (unit : mm)

Fig. 5. F.E.M. mesh.

のものが卓越しており,底面でのひび割れ幅は1.0mm程度で,鉄筋に沿って発生していた.

一方、炭素繊維シート補強供試体では、供試体側面方 向への腐食ひび割れが卓越していた.また、せん断補強 筋の拘束がないスパン中央でかぶり方向への微細な腐食 ひび割れが見られたものの、FRP層にひび割れを生じさ せるには至っていなかった.電食であるため炭素繊維シ ートの有無によって電流経路が変化したものと考えられ る.また、繊維方向は鉄筋に対して平行であり、炭素繊 維シートによる鉄筋直角方向の拘束力は小さいが、FRP 層によりコンクリートの表面強度が若干大きくなったこ とも一因として考えられる.しかし、腐食段階2では、 かぶり方向への微細な腐食ひび割れが経路となったと思 われる腐食生成物がFRP層とコンクリートの間に蓄積し、 一部 FRP層が膨らみ剥離する現象も見られた.

3・3 離散型要素を用いた二次元有限要素解析

炭素繊維シート補強部材の耐荷特性に与える鉄筋腐食 の影響を検討するために、鉄筋とコンクリートの付着、 腐食ひび割れおよび炭素繊維シートとコンクリートの接 着を考慮できる離散型の要素を用いた二次元有限要素解 析⁵⁾を行った。

3・3・1 解析モデルおよび境界条件 本解析では,実験に用いた供試体の対称性を考慮して左側半分についての解析を行った.要素分割図を Fig. 5 に示す.解析は,以下の 2 ケースについて行った.

(1) Case I

無補強および炭素繊維シート補強供試体において、そ れぞれ健全なものと、腐食段階2の腐食が生じたものに ついて、鉄筋の断面減少および鉄筋とコンクリートの付 着劣化を考慮して解析を行った.腐食段階2の質量減少率は、N2供試体で8.2%、CF2供試体で8.6%であるが、 解析上は質量減少率を8%とした.付着劣化を生じた付 着要素の特性は3·3·2で述べる.

(2) Case II

炭素繊維シート補強供試体の腐食段階2のCF2供試体 について、鉄筋の断面減少および鉄筋とコンクリートの 付着劣化を考慮するとともに、供試体側面の腐食ひび割 れに対し、ひび割れ要素を適用して行った. 質量減少率 は Case I と同様、8%とした. なお、腐食ひび割れ要素 を挟む上下のコンクリートと鉄筋の付着を考える必要が あるため、本ケースでは、鉄筋周長の半分ずつが上下コ ンクリートと付着しているとしてモデル化している.

境界条件は,支点の鉛直方向を固定,スパン中央の水 平方向を固定とし,スパン中央上縁に鉛直下向きに増分 変位を与えた.

3·3·2 要素特性 各要素には、中間節点を有する 2 次要素を用いた. コンクリートには 2 次元四辺形要素, 鉄筋には 1 次元はり要素,炭素繊維シートには 1 次元線 要素,鉄筋とコンクリートの付着,炭素繊維シートとコ ンクリートの付着,腐食ひび割れおよび曲げひび割れに は、各要素の界面において節点を共有する 1 次元線要素 を用いた.

コンクリートには文献 6)の要素特性を使用し、引張応 カに対する軟化域は考慮していない.このことにより、 コンクリートに過大な引張応力が生じることを避けるた めに、供試体端部から 150、175、200mm の位置に曲げ ひび割れを模したひび割れ要素をあらかじめ導入した⁶⁾. なお、コンクリート強度 $f_c=27$ N/mm²、ヤング係数 $E_c=2.65$ ×10⁴N/mm²、ポアソン比v=0.1667 とした.鉄筋にも同様 に文献 6)の要素特性を使用し、降伏点および引張強度は $f_y=350$ N/mm²、 $f_u=500$ N/mm²で一定とした.ただし、腐食 段階 2 では、一様腐食を仮定し、質量減少率を断面減少 率として公称断面積 A₅および公称周長 u₅を低減した. 炭素繊維シートは、引張強度 $f_u=3500$ N/mm²、ヤング係数 2.3×10⁵N/mm²の線形弾性体とし、破断ひずみを 1.5%と した.

鉄筋とコンクリートの付着要素の応力-変位関係は,要 素法線方向の応力および相対変位をそれぞれ σ_n , δ_n ,接 線方向の応力および相対変位をそれぞれ τ_t , δ_t とすると 次式で表される.

$$\sigma = \begin{cases} \sigma \mathbf{n} \\ \tau \mathbf{t} \end{cases} = \begin{bmatrix} B_{nn} & B_{nt} \\ B_{tn} & B_{tt} \end{bmatrix} \begin{bmatrix} \delta \mathbf{n} \\ \delta \mathbf{t} \end{bmatrix} = B \cdot \delta \tag{1}$$

本解析では、要素接線方向のみ非線形性を考慮し、応力 -変位マトリックスの係数 B_{tt} に Fig. 6 に示す要素特性⁶⁾ を導入し、 $B_{nn}=1.0\times10^{4}$ N/mm³、 $B_{nt}=B_{tn}=0.0$ N/mm³で一定 とした.また、腐食による付着劣化は、式(2)に示す付着 強度低下式⁷⁾により付着強度 τ_{hoort} を算出し用いた.

$$\frac{\tau_{bcorr.}}{\tau_{b0}} = e^{-0.0607 \times (\text{Corrosion mass loss (\%)})}$$
(2)

炭素繊維シートとコンクリートの付着要素も式(1)の応力 -変位関係で表し、 B_{tt} には付着応力-すべり関係⁸⁾を用いた.ただし、付着劣化は考慮しないこととした.

腐食ひび割れおよび曲げひび割れ要素の応力-変位関係 も付着要素と同様に次式で表される.

$$\sigma = \begin{cases} \sigma \mathbf{n} \\ \tau \mathbf{t} \end{cases} = \begin{bmatrix} C \mathbf{n} \mathbf{n} & C \mathbf{a} \mathbf{t} \\ C \mathbf{n} & C \mathbf{t} \end{bmatrix} \begin{cases} \delta \mathbf{n} \\ \delta \mathbf{t} \end{cases} = C \cdot \delta$$
(3)

ここで、腐食ひび割れの応力-ひび割れ幅およびずり変位 関係に関しては不明な点が多いため、今回は要素法線方 向および接線方向に $C_{nn}=C_{tt}=1.0\times10^{3}$ N/mm³の線形関係 を適用し、また $C_{nt}=C_{tn}=0.0$ N/mm³とした⁹. なお、腐食 ひび割れは鉄筋高さの位置の軸方向全長に生じていると 仮定し、奥行きは供試体の幅と同一の 100mm とした.

解析結果については、以下の曲げ試験結果とあわせて 考察を行う.

3-4 曲げ試験

3・4・1 ひび割れおよび破壊性状 曲げ試験終了後の ひび割れ状況および荷重低下原因となった現象を,載荷 前に観察した腐食ひび割れとともに Fig. 7 に示す.

載荷前の腐食ひび割れの観察では、CF2供試体のみに、 供試体側面の主筋に沿う腐食ひび割れが観察されたが、 断面内腐食ひび割れの観察からもわかるように、CF1供 試体においても、側面には到達していないものの、断面 高さ方向を横切る腐食ひび割れが存在している.

無補強供試体では、せん断ひび割れよりも曲げひび割 れの方が卓越する傾向にあるが、炭素繊維シート補強供 試体では、補強による曲げ耐力の向上によりせん断ひび 割れの拡幅が顕著となった.また、荷重低下は、支点付 近のせん断ひび割れと炭素繊維シートが交差する部分で、

Fig. 7. Crack pattern. (Dotted line: Crack due to rebar corrosion before loading)

鉛直方向のずれが生じ炭素繊維シートが破断したことに より生じた.

腐食段階1および2では、一部の電流がせん断補強筋 にも流れたと考えられ、せん断補強筋に沿った腐食ひび 割れが観察された.曲げ試験終了後、内部のせん断補強 筋を調査したところ、防錆塗料が剥がれ腐食しているこ とが確認できた.せん断補強筋とコンクリートの付着劣 化が、せん断ひび割れ幅の拡幅が生じる一因となったも のと考えられる.今回の電食による腐食のモデル化に限 らず、せん断補強筋の腐食は、特にせん断余裕度が小さ い曲げ補強部材の耐荷性状を考える上で、留意すべき項 目であるものと考えられる.また、CF2供試体では、主 筋に沿う腐食ひび割れが、載荷初期段階において側面の 軸方向に進展した.

3・4・2 荷重-変位曲線 各供試体の荷重-変位曲線を,

Fig. 8. Load-displacement curve.

解析結果とともに Fig.8 に示す.

無補強供試体の実験結果から、今回の電食による腐食 が降伏荷重、最大荷重および変形挙動に与える影響は、 小さいことがわかる.

炭素繊維シート補強供試体の実験結果から,降伏荷重 (約 40kN)は,腐食段階によらずほぼ同じであり,炭素繊 維シートで曲げ補強した部材では,補強効果に与える鉄 筋腐食の影響は小さい.しかし,せん断補強筋の腐食に ともなうせん断補強筋とコンクリートの付着劣化により, せん断ひび割れ幅が拡幅し,骨材のかみ合わせ作用が低 下したと思われる荷重低下が生じたため,最大荷重につ いては鉄筋腐食の影響は評価できなかった.

今回のような電食による腐食のモデル化に対し、塩水 散水環境下で主筋が腐食した曲げ部材に対して載荷実験 を行った結果¹⁰⁾では、2本の引張側主筋のうち大きい方 の腐食量を質量減少率としているものの、質量減少率4% 程度でも最大荷重が低下し、また靱性が顕著に低下して いる.電食よりも塩化物存在下での腐食の方が、局所的 な鉄筋断面欠損および鉄筋とコンクリートの付着劣化が 大きくなったことで、曲げ変形性能の低下が生じたもの と考えられる.したがって、実際の塩害環境下での鉄筋 腐食が炭素繊維シート補強部材の曲げ変形性能に与える 影響を評価するためには、さらなる検討が必要である.

一方,解析結果の降伏荷重および最大荷重は,無補強, 炭素繊維シート補強供試体ともに,実験結果を良く捉え ている.また,腐食を考慮したものは,鉄筋の断面欠損 によって最大荷重が若干小さくなっている.

3・4・3 初期剛性 次に,鉄筋腐食が初期剛性に与え る影響を検討するために、荷重-変位曲線の変位 1.5mm までの部分を取り出したものを Fig.9 に示す.

実験結果では、無補強供試体、炭素繊維シート補強供

Fig. 9. Load-displacement curve in the early stage.

試体ともに、30kN 付近までの初期剛性に与える腐食の 影響はほとんど見られない.しかし、炭素繊維シート補 強供試体では、腐食したものの方が、30kN から 45kN 付 近の剛性が大きくなっている.ひび割れの状況からもわ かるように、曲げひび割れが少なく、せん断ひび割れが 支配的になったことが影響していると考えられる.ただ し、曲げモーメントー定区間の無い中央ー点載荷であっ たため、ひび割れ性状にばらつきが生じ、剛性が異なっ た可能性もある.

解析結果は、無補強供試体、炭素繊維シート補強供試体ともに、実験結果より曲げひび割れ発生時(15kN付近)までの剛性が小さいが、曲げひび割れを模した仮想のひび割れ要素をあらかじめ導入しているためである。しかし、曲げひび割れ発生後の剛性はよく捉えている.また、Case Iの鉄筋とコンクリートの付着劣化を考慮したものと Case IIの腐食ひび割れ要素を導入したものでは、Case Iの健全なものよりも若干剛性が小さい.一方、Case I の使全なものよりも若干剛性が小さい.一方、Case I の付着特性を低減したものよりも Case IIの方が、35kN付近の剛性が小さくなっている.腐食ひび割れによりアンボンド化傾向が強くなり、これより下のひび割れが生じていないコンクリートの引張力負担が減少しているためである.ただし、鉄筋降伏後の炭素繊維シートへの引張力の分担が大きくなる領域での剛性は、ほぼ同じとなった.

3・4・4 炭素繊維シートひずみの軸方向分布 スパン 中央と中央から 100mm 位置での炭素繊維シートひずみ を Fig. 10 に示す. なお, せん断ひび割れ発生(約 40kN) 後は, せん断ひび割れがせん断スパン内シートのひずみ に与える影響が大きくなるため, 荷重 40kN までの領域 を記した.

実験結果では、炭素繊維シートのひずみは、同一荷重

において,腐食が大きなものほどスパン中央では小さく, 逆に 100mm 位置では大きくなっており,腐食ひび割れ よりも下の部分でアンボンド化傾向が強くなり,軸方向 に均一化した応力が作用していると考えられる.

解析結果は、Case I の健全と付着劣化を考慮したもの では、100mm 位置のシートひずみに差は見られず、スパ ン中央ではむしろ付着劣化を考慮したもののほうが大き くなっている.これは、付着劣化を導入したことにより、 中央のひび割れ幅が健全よりも大きくなったためである と考えられる.これに対し、Case II では、スパン中央の シートひずみが小さく、100mm 位置のシートひずみが大 きくなるという傾向を捉えている.鉄筋とコンクリート の付着劣化を考慮するとともに、腐食ひび割れ要素を導 入することによって、腐食ひび割れによるアンボンド化 を表現できたものと考えられる.

以上のような離散型の要素は、一様な腐食、付着劣化 および腐食ひび割れの分布だけでなく、局所的な腐食に 適用することで、より詳細なシミュレーションが期待で きるものと思われる.

4 結

論

電食により鉄筋腐食をモデル化した炭素繊維シート補 強供試体に対し静的曲げ試験を行うとともに,離散型要 素を用いた二次元有限要素解析を行い,炭素繊維シート 補強部材の耐荷特性に与える鉄筋腐食の影響を検討した. 本研究の範囲内で得られた主な結果をまとめて結論とす る.

(1) 腐食鉄筋の引張試験より,降伏強度および引張強 度に低下は見られなかったものの,伸びが顕著に低下し た.鉄筋が延性材料であることから,強度よりも伸びに おいて孔食の影響を大きく受けるものと考えられる.

(2) 電食による鉄筋腐食のモデル化では、炭素繊維シート補強の有無によって電流経路が異なるため、断面内の腐食ひび割れの発生方向が変化した.

(3) 電食により鉄筋腐食をモデル化した炭素繊維シート補強部材に対する静的曲げ試験において、部材降伏までの曲げ補強効果に与える鉄筋腐食の影響は認められなかった.ただし、炭素繊維シートによる曲げ補強では、曲げ耐力が増加するため、せん断補強筋の腐食に対して留意する必要がある.

(4) 電食により鉄筋腐食をモデル化した炭素繊維シート補強部材では、腐食ひび割れの存在により、炭素繊維シートのひずみが軸方向に均一化する傾向が見られた.

(5) 二次元有限要素解析において離散型の要素を用い, 鉄筋腐食による鉄筋とコンクリートの付着劣化とともに, 腐食ひび割れを考慮することにより,腐食ひび割れの存 在による炭素繊維シートひずみの軸方向分布の変化を捉 えることができた.

最後に、本論文の作成にあたり貴重なご助言、ご指導 をいただいた児島孝之教授(立命館大学)ならびに日比野 憲太氏(立命館大学大学院博士後期課程)、実験に際して

Fig. 10. Strain of CFRP sheet.

ご協力いただいた卒業研究生の真邊剛典氏(現日本道路 公団)に深く謝意を表します.

参考文 献

- 例えば、服部篤史、山本貴士、嘉指成詞、宮川豊章、土木 学会論文集、599/V-40、59 (1998)
- 2) 宮川豊章, コンクリート工学, 36-7, 4 (1998)
- 3) 堀口賢一, 字治公隆, 第 54 回セメント技術大会講演要旨, 388 (2000)
- 4) 日本コンクリート工学協会, "コンクリート構造物の腐食・
 防食に関する試験方法ならびに規準(案)", p.1 (1987)
- 5) 日比野憲太,中越貴宣,児島孝之,高木宣章,土木学会第 54回年次学術講演会講演概要集,5,574 (1999)
- .6) 日本コンクリート工学協会近畿支部、"土木コンクリート 構造物の震災対策に関する研究委員会報告書", p.322 (1999)
- 7) 日本コンクリート工学協会、"コンクリート構造物のリハ ビリテーション研究委員会報告書", p.48 (1998)
- 8) 劉玉擎, 彦坂熙, 亀山好秀, 原田拓也, コンクリート工学 年次論文報告集, 20-3, 1 (1998)
- 9) 松尾真紀,児島孝之,高木宣章,土木学会第 52 回年次学 術講演会講演概要集,5,508 (1997)
- 10) 尾崎健,服部篤史,宮川豊章,土木学会関西支部年次学術 講演概要,V-28 (2000)

軸方向プレストレスを有する コンクリート巻立て補強に関する研究

山本 貴士!・服部 篤史2・宮川 豊章3

¹学生会員 工修 京都大学大学院 土木工学専攻(〒606-8501京都市左京区吉田本町) ²正会員 博士(工学) 京都大学大学院助教授 土木工学専攻(〒606-8501京都市左京区吉田本町) ³フェロー会員 工博 京都大学大学院教授 土木工学専攻(〒606-8501京都市左京区吉田本町)

耐震補強工法の一つであるRC巻立て工法において、補強部軸方向にプレストレスを導入することにより、ひび割れの制御、せん断耐力の向上あるいは復元力の向上が期待できる.この場合、橋脚へのプレストレスの適用が、補強部材の曲げ変形性状に与える影響を把握しておくことが重要である.本研究では、軸方向プレストレス、緊張材の機械的性質および補強部横拘束筋量が、補強部材の曲げ変形挙動に与える影響を正負交番繰返し載荷曲げ試験をもとに検討した.その結果、軸方向プレストレスの導入によるひび割れの制御、弾性域の大きな緊張材を用いることによる補強部材の復元特性の向上が可能であり、また補強部材の靱性が、塑性変形領域における復元特性に関係していることが判明した.

Key Words : strengthening, reinforced concrete jacketing, longitudinal prestress, elastic restoration, ductility, mechanical properties of tendons, confinement ratio

1. はじめに

兵庫県南部地震では、段落し部の曲げ耐力、せん 断耐力、靱性の不足により、多くのコンクリート橋 脚が被害を受けた.一方で、比較的損傷が軽微であ るにもかかわらず、大きな残留変位のために地震後 の供用が困難となり、撤去・再構築を余儀なくされ た事例が数多く報告¹⁾されている.これに対し、一 般的な耐震補強の目的である曲げ耐力、せん断耐力、 靱性の向上に加えて、地震後の迅速な復旧・供用性 の回復を考慮した場合に、代表的な耐震補強工法の 一つである鉄筋コンクリート巻立て(以下、RC巻立 て)工法の巻立て補強部軸方向にプレストレスを導 入することによって、ひび割れの制御、せん断耐力 あるいは復元力の向上が期待できる.

しかし、耐震設計あるいは耐震補強設計において エネルギー吸収型の靱性設計が主流となっている現 在において、このような構造を地震時に大きな慣性 力を負担する橋脚に適用した場合、圧縮縁コンクリ ートの終局ひずみへの早期到達、あるいはPC鋼材 の破断という脆性的な破壊性状となり、補強部材の 塑性変形能が低下する可能性がある.

本研究では、このような軸方向プレストレスを導入した補強部材に対し、正負交番載荷曲げ試験を実施し、その曲げ変形性状、特に靱性および復元特性 に与える影響を、無補強供試体、炭素繊維シート巻 立て補強供試体(以下, CS供試体),通常のRC巻立 て補強供試体との比較の上で検討した.要因として, 補強部コンクリートに導入される軸方向プレストレ スの量,補強部緊張材の機械的性質および曲げ圧縮 部の補強部横拘束筋量を採りあげた.

また,RC巻立て工法においては一般的に存在す る既存部と補強部コンクリートの打継面を考慮した 2次元有限要素解析により,RC巻立て補強部軸方向 プレストレスの分布状態および導入量について検討 を行うとともに,打継面の付着特性がRC巻立て補 強部材の曲げ変形挙動に与える影響を検討した.

実験概要

- (1) 実験要因
- a) 軸方向プレストレス

軸方向プレストレスを導入する補強供試体において、補強部緊張材一本あたりに与える緊張力としては、平成8年制定コンクリート標準示方書設計編²¹に定められている緊張作業直後の引張応力度の制限値である0.7*fpuk*(0.85*fpuk*)を参考に、PC鋼棒(B種1号、 \$\overline\$11mm)を用いた場合のプレストレス導入率Pr(緊張応力/引張強度)=60%に相当する緊張力53.0kNを適用した.加えて、導入されるプレストレス量の影響を 検討する目的で、非現実的ではあるが比較用に

1重米百		降伏強度	引張強度	弾性係数	伸び
	个里天只	(N/mm^2)	(N/mm^2)	(N/mm^2)	(%)
	D13	356	517	210000	26.8
	CFシート ²⁾		3479	230300	1.51)
	PC鋼棒 II	1347	1410	199900	9.0
-	CFRPø11		2100	156800	1.3 ¹⁾
	AFRPø11		1493	68600	2.2^{1}

補強部軸方向筋の機械的性質 表-1

1)伸び=引張強度/弾性係数 2)シート幅250mm, 目付量200g/m²

Pr=0%の0.0kN, これらの中間の値としてPr=30%の 26.5kNを設定した.

また、同一の緊張力およびプレストレス導入量に おいて、緊張材の機械的性質が補強部材の変形挙動 に与える影響を検討する目的で, 連続繊維補強材の 緊張力には、PC鋼棒を用いた場合のPr=30,60%に 相当する26.5kN, 53.0kNを適用した. この場合, CFRP(ϕ 11mm) ではそれぞれ P_r =15, 30%, AFRP(011mm)ではそれぞれP=21, 42%となる.

なお、本研究では、スパン中央部のはり高さ中央 (150mm)位置の補強部コンクリート応力を軸方向プ レストレスとしている.

b) 補強部軸方向筋(緊張材)種類

補強部軸方向筋(緊張材)には, 異形鉄筋(SD295A, D13), PC鋼棒(B種1号, ollmm), CFRP(ollmm)お よびAFRP(\$11mm)を用いた. なお,比較用のCS供 試体には軸方向にも曲げ補強用として炭素繊維シー トを張付けた.これらの機械的性質を表-1に示す.

c) 横拘束筋体積比

RC巻立て補強部材の曲げ区間への横拘束筋配筋 量は、平成8年制定コンクリート標準示方書設計編²⁾ に定められている配筋間隔以下で、かつ曲げ圧縮部 の靱性改善に有効と考えられる値として、既存部を 含めたコアコンクリートに対して(既存部横補強筋 は含まない)横拘束筋体積比ので0.92, 0.69, 0.46% の3種類を設定した.これらは、配筋間隔としては s=44, 59, 88mmとなる.

(2) 供試体

a) 無補強(既存部)供試体(Control供試体)

無補強供試体は図-1に示すように、幅×高さ×ス パン長=200×200×1800mmで, 主筋として異形鉄筋 (SD295A,D16)を8本配筋した. 横補強筋には阪神大 震災以前の基準である平成3年版コンクリート標準 示方書設計編³⁾の最小配筋量に相当する間隔200mm で異形フープ筋(SD295A,D6,135°フック付き)を配筋 した. この場合,曲げせん断耐力比(V_i·a/M_i)は1.15 となる.また,柱部材を想定し,断面中心に配置し たアンボンドPC鋼棒(B種1号, 417mm)を用いて圧縮

軸力を軸力比(σ。/f。)=10%を目標に導入した. なお, 既存部のコンクリート目標強度f_{cr}は27N/mm²とした.

b) RC巻立て補強供試体

RC巻立て補強供試体は図-2に示すように、幅×高 さ×スパン長=300×300×1800mmで補強厚50mmとし た. 通常のRC巻立て補強においては、200×200mm の既存部断面に対して補強厚30mm程度となるが, 本研究では補強部にプレストレスを導入することか ら幾分大き目の補強厚を適用した. また, 補強部せ ん断区間のせん断補強筋配筋間隔は100mmで、せん 断補強筋比は既存部を含めたbwに対して,既存部横 補強筋も含めて、異形フープ筋(SD295A,D6,135°フ ック付き)を用いたもので0.21%, CFRPおよびAFRP スパイラル筋(\offerm)を用いたもので0.14%である. なお,既存部と補強部コンクリートの打継面(以下, 新旧コンクリート打継面)は、通常RC巻立て補強を 行う場合チッピング等による目荒らしが行われるが, 本研究ではこれを模擬するために既存部表面への凝 結遅延剤使用による骨材洗出し処理を行った.

軸方向プレストレスを導入するものは、所定の緊 張力を4本の緊張材に適用し、口型の定着板を用い て補強部断面のみに与えているが、既存部と補強部 コンクリートに付着があるため、プレストレスは既 存部材にも伝達された.また緊張作業後,直ちにシ ース内にグラウトを注入し、ボンドタイプとした. アンボンドタイプの方が、曲げ変形時の緊張材の破 断に対して安全であると考えられるが、緊張材を断 面の最外縁に配置するため、PC鋼材の腐食を勘案 しボンドタイプとした.軸方向プレストレスを有す るRC巻立て補強供試体作製の流れを以下に示す.

供試体	載荷時	既存部	補強部 (横拘束筋体積比は曲げ区間の値)					軸方向プレストレス	
名	軸力比 (%)	f'c N/mm ²	軸方向	横方向	横拘束筋体積比 ρ _v (%)	f_{c} N/mm ²	緊張力 (kN)	フ [°] レストレス (N/mm ²)	
Control	12.6	45.9							
CS	12.1	44.8	CFシート	CFシート	0.28	—			
RC1-0	9.7	40.3	異形鉄筋(SD295A,D13)	異形フープ筋(SD295A.D6)	0.92	50.0			
RC3-0	9.3	40.3	異形鉄筋(SD295A,D13)	異形フープ筋(SD295A,D6)	0.46	50.0			
PC1-0	10.5	33.1	PC鋼棒(B種1号 / 11)	異形7-7°筋(SD295A,D6)	0.92	45.9	0.0	0.00	
PC1-1	10.7	33.1	PC鋼棒(B種1号\$11)	異形7-7°筋(SD295A,D6)	0.92	45.9	26.5	1.03	
PC1-2	11.5	45.1	PC鋼棒(B種1号♦11)	異形フープ筋(SD295A,D6)	0.92	45.4	53.0	2.60	
PC2-2	11.6	45.1	PC鋼棒(B種1号♦11)	異形7-7°筋(SD295A,D6)	0.69	45.4	53.0	1.36	
PC3-2	10.6	40.2	PC鋼棒(B種1号 \$11)	異形フーブ筋(SD295A,D6)	0.46	40.2	53.0	2.29	
CFPC1-1	10.5	35.5	CFRP(\(\phi 11))	CFRPスパイラル筋(¢6)	0.92	46.9	26.5	1.22	
CFPC1-2	11.1	38.3	CFRP(\$11)	CFRPスパイラル筋(\of)	0.92	45.5	53.0	2.83	
AFPC1-1	10.9	35.5	AFRP(\u00f611)	AFRPスパイラル筋(ф6)	0.92	46.9	26.5	0.94	
AFPC1-2	11.3	38.3	AFRP(\operation 11)	AFRPスパイラル筋(¢6)	0.92	45.5	53.0	3.03	

表-2 供試体一覧

① 既存部供試体打設·脱型·養生

- ② 軸力比10%を目標に軸力を導入
- ③ 補強部鉄筋かご作成
- ④ 補強部コンクリート打設・脱型・養生
- ⑤ 軸方向プレストレス導入,軸力の再調整,グラ ウト注入
- c) 炭素繊維シート巻立て補強供試体(CS供試体)

炭素繊維シート巻立て補強供試体は、Control供試 体の上・下縁面軸方向に、軸方向補強量がCFRPを用 いたRC巻立て補強供試体の引張側補強繊維断面積 (*p_i=A_f*(*b*·*d_t*) *A_f*:炭素繊維シート断面積 *b*:はり幅 *d_i*·引 張側補強繊維の有効高さ)と同一の2.5層を張付けた. 実際には、200,100mm幅のシートをそれぞれ2層と1 層張付け2.5層とした.また、横方向には同じく CFRPを用いたRC巻立て補強部材のせん断区間のせ ん断補強筋比と等しくなる配筋量(シート中心線間 隔197mm)で全長にわたりスパイラル状に巻付けた.

2. (1)の要因をもとに, Control供試体, CS供試体 を含めて計13体の供試体を作成した. 供試体一覧を 表-2に示す.

(3) 載荷方法

載荷は図-1、図-2に示すように、スパン1800mm に対し、曲げスパン400mm、せん断スパン700mm の対称2点漸増繰返し型曲げ載荷試験とした. 耐震 性状を検討する場合、同一変位10回繰返し載荷を行 うことが多いが、同一変位繰返しによる荷重低下は、 4回目以降緩やかになるとの報告⁴⁾があることから、 本研究では、同一変位3回繰返しを採用した.本実 験は柱部材を想定したものであるが、曲げと軸力の みが作用する純曲げ区間に着目し、基本的な曲げ変 形性状を検討した. なお、降伏荷重時変位δ₅は各種 補強部軸方向筋ごとに1体目の載荷時荷重-変位曲線 の屈曲点を求めることにより決定した. その結果, Control, CS供試体で δ_y =7.11mm,補強部軸方向筋に D13, PC鋼棒, CFRP, AFRPを用いたものでそれぞ れ δ_y =6.17mm, 7.06mm, 8.09mm, 7.52mmとなった. また,終局は最大荷重以降の荷重低下領域で荷重が 降伏荷重を下回った点として定義した.

(4) 測定項目

スパン中央および支点位置に変位計(容量100mm) を設置し変位を測定した.また,既存部軸方向筋 D16,軸力用PC鋼棒φ17mm,補強部緊張材のスパン 中央部にひずみゲージ(それぞれ検長3mm, 5mm, 5mm)を貼付けひずみを測定した.さらに、スパン 中央部の上縁と下縁コンクリート表面にひずみゲー ジ(検長60mm)をそれぞれ2つずつ貼付け,軸方向プ レストレス導入時および載荷時のひずみを測定した. 表-2に示す軸方向プレストレス量は、この4つのひ ずみの平均値から算出した.緊張力は油圧ジャッキ に設置したロードセル(容量200kN)で測定し、表-2 に示す緊張力になるように緊張作業を行った.

実験結果および考察

(1) 軸方向プレストレス

補強部コンクリートのみに与えられた緊張力は, 新旧コンクリートの打継面を介して既存部コンクリ ートにも伝達される.そこで,打継面の完全付着を 仮定して軸方向プレストレス量を求めるとともに, 打継面の付着特性を考慮した界面要素を用いた2次 元有限要素解析⁵⁾⁶⁾により,軸方向プレストレスの導 入量ならびに新旧コンクリート,打継部の応力状態 についても検討を行った.

まず,完全付着を仮定した軸方向プレストレスは, 供試体端部の口型定着板により補強部断面のみに与 えられた緊張力が,完全付着を仮定した打継面を介 して既存部に伝達されるとして,次式により求めた.

$$\sigma_{\rm ps} = E_{\rm cj} \cdot \varepsilon_{\rm cj} = E_{\rm cj} \cdot P / (A_{\rm cj} \cdot E_{\rm cj} + A_{\rm ce} \cdot E_{\rm ce} + A_{\rm s} \cdot E_{\rm s})$$
(1)

ここに、σ_{ps}:軸方向プレストレス、ε_{cj}:補強部コン クリートひずみ、E_{cj}, E_{ce}, E_s:それぞれ補強部コン クリート、既存部コンクリートおよび既存部軸方向 筋(D16)の弾性係数, A_{cj}, A_{ce}, A_s:それぞれ補強部コ ンクリート純断面積,既存部コンクリート純断面積 および既存部軸方向筋断面積,である.

一方,有限要素解析では,既存部および補強部コ ンクリートには、2次のアイソパラメトリック四辺 形要素,既存部軸方向筋には,2次のアイソパラメ トリック線要素,既存部軸方向鉄筋と既存部コンク リートの付着および既存部コンクリート上・下縁と 補強部コンクリートの打継面には、それぞれの界面 6接点からなる2次のアイソパラメトリック線要素5) を用いた.上・下縁の補強部コンクリート要素の幅 は300mm, 付着線要素の幅は200mmである. また, 既存部コンクリート側面と補強部コンクリートの打 継面には、それぞれの界面16接点からなる2次のア イソパラメトリック四辺形要素⁶を用いた。側面の 補強部コンクリート要素の幅は100mm(50mm×2)で ある、なお、緊張材緊張力は、口型定着板を介して はり端部から軸方向に分布荷重として作用すると考 え、補強部緊張材要素は考慮していない.

既存部コンクリート上・下縁と補強部コンクリート打継面付着要素の応力-変位関係は,軸直角方向の相対変形を&,軸方向の相対変形を&とすると次式で表される.

$$\sigma = \begin{cases} \sigma_{n} \\ \tau_{t} \end{cases} = \begin{bmatrix} B_{nn} & B_{nt} \\ B_{tn} & B_{tt} \end{bmatrix} \begin{cases} \delta_{n} \\ \delta_{t} \end{cases} = B \cdot \delta$$
(2)

ここで、軸方向の変形に関する係数 B_{tt} は、本来新 旧コンクリート打継面に関する要素実験をもとに決 定すべき値ではあるが、今回は文献7)の付着応力-すべり関係の実験結果を参考に B_{tt} =3.0N/mm³という 値を用いた.また本解析では軸方向の変形のみを考 慮し、 B_{nn} =1.0×10⁴N/mm³、 B_{nt} = B_{m} =0N/mm³とした.

一方,既存部コンクリート側面と補強部コンクリートの打継面付着要素の応力-変位関係は,水平方向のせん断応力と変形をそれぞれτ_x,δ_x,鉛直方向のせん断応力と変形をそれぞれτ_y,δ_y,また面法線

方向の変形を無視すると、次式で表される.

$$\sigma = \begin{cases} \tau_{x} \\ \tau_{y} \end{cases} = \begin{bmatrix} G_{xx} & 0 \\ 0 & G_{yy} \end{bmatrix} \begin{cases} \delta_{x} \\ \delta_{y} \end{cases} = G \cdot \delta$$
(3)

ここで、応力-変位マトリックスの係数 G_{xx} , G_{yy} は 付着線要素と同様に $G_{xx}=G_{yy}=3.0$ N/mm³とし、他は 0N/mm³とした.また、打継面の付着要素の厚さ*t*は、 文献8)に示されている処理深さの3.0mmを仮定した.

既存部および補強部コンクリートの圧縮強度,弾 性係数は、それぞれ $f_c=27$ N/mm², $E_c=2.65\times10^4$ N/mm², $f_c=45$ N/mm², $E_c=3.2\times10^4$ N/mm², sc.=7ソン比はv=0.1667とし,既存部軸方向筋の弾性係数 は $E_s=2.1\times10^5$ N/mm²とした.なお,既存部コンクリ ート強度の実験値は仮定値よりも大きいが、本解析 では、既存部コンクリートに配合強度を用いて、本 研究で想定する低強度の既存部にこれよりも強度の 大きい補強部コンクリートを巻き立てる場合のプレ ストレス導入状態を検討した.また、本解析は、 図-3に示すメッシュ分割において、はり端部の補強 部コンクリート要素節点に軸方向強制微小増分変位 を与えることによる弾性解析である.

総緊張力212kN(=53.0kN×4)が作用した時点の, 補強部コンクリート,新旧コンクリート打継面付着 面要素および既存部コンクリートのはり高さ150mm

位置での軸方向応力状態を図-4に示す.補強部コン クリート端部の支圧部は高応力状態であるが、スパ ン中央に近づくにつれ応力が減少しており、等曲げ 区間ではほぼ一定のプレストレスが導入されている. はり端部からの距離が等しい位置での補強部と既存 部コンクリートに導入されたプレストレスの和は, 部材軸方向でほぼ一定となっているが、補強部コン クリートのみに着目すると、曲げスパンに比べせん 断スパンに大きなプレストレスが導入されている. このことは、補強部コンクリートに生じるせん断ひ び割れの抑制に有効であると考えられる.また、本 解析では打継面の付着特性を線形としているため、 はり軸方向の付着応力が線形的に減少している. さ らに、既存部コンクリートに伝達される軸方向プレ ストレスは、本解析で用いた付着特性の場合、はり 中央付近において補強部コンクリートに導入される 軸方向プレストレスの約1/10程度となっている.

次に、緊張材緊張力と補強部コンクリートスパン 中央での軸方向プレストレス導入量の関係を図-5に 示す.実験値は、PC2-2供試体の軸方向プレストレ ス導入量が小さい他は、緊張材の種類によらず、ほ ぼ緊張力に比例して導入量が増加しており、軸方向 プレストレスの導入量は弾性解析により算定可能で あると言える. また, 打継面の完全付着を仮定した 計算値と比較的良い一致が得られている.しかし, 有限要素解析結果では,同一の緊張力において解析 値のほうが実験値より大きなプレストレス導入量と なっている.本実験で用いた供試体の打継面の処理 深さが仮定した値よりも大きく,これにともなって 粗骨材の噛合せ作用が大きくなり、付着応力-すべ り関係の係数 B_{rr} , G_{xx} , G_{yy} が仮定値よりも大きくな っているものと考えられる.したがって、打継面処 理が十分に行われている場合には、打継面完全付着 の仮定により軸方向プレストレスの算定が可能であ るといえる.

(2) 破壊形式およびひび割れ性状

a) 載荷時のひび割れ, 損傷状況および破壊形式

曲げせん断耐力比1.15のControl供試体は,曲げ降 伏後せん断スパン内に多くのせん断あるいは曲げせ ん断ひび割れが発生したものの、38_yの繰返し載荷 中にかぶりが剥落するとともに、横補強筋による拘 束効果が小さいことから曲げ圧縮部コンクリートの 圧かいが進行し、曲げ破壊による終局に至った.正 負交番荷重作用下ではコンクリートのせん断抵抗が 低下することから、せん断破壊を生じる可能性があ ったが、アンボンドPC鋼棒により軸力として導入 したプレストレスにより、せん断ひび割れ面での骨 材噛合せによるせん断力の伝達が向上し、せん断耐 力が増加したものと考えられる.

CS供試体は、3δ_yの繰返し載荷中にまず軸方向の シートが破断、その後同一変位繰返し中に曲げ圧縮 部隅角部において横方向のシートが破断し、荷重が 低下したものの降伏荷重は下回らず、最終的には曲 げ圧縮部コンクリートの圧かいにより終局に至った.

RC1-0, RC3-0供試体は, 5δ_yの繰返し載荷中に補 強部軸方向筋の座屈と既存部軸方向筋の座屈にとも なう補強部コアコンクリートの損傷が顕著になり, 補強部横拘束筋のフック部分が破損し, コアコンク リートに対する拘束力を失い,終局に至った.した がって, RC巻立て補強を行う場合には,軸方向筋 の座屈を防ぐことが重要となる.

PC1-0, PC1-1供試体は, 78,の繰返し載荷中に曲 げ圧縮部コンクリートの圧かいが進行し, 終局に至 った.これに対し, プレストレス導入率60%のPC1-2供試体は, 78,の繰返し載荷中に引張側補強部緊張 材が破断し終局に至った.しかし, 既存部軸方向筋 が存在するため, すべての耐力を失うことはなかっ た.また, PC2-2, PC3-2供試体は, PC1-2供試体と プレストレス導入率は同じであるが, 横拘束筋体積 比が小さいために, 78,の繰返し載荷中に曲げ圧縮 部コンクリートの圧かいが進行し, 終局に至った.

CFPC1-1供試体は、降伏後38,繰返し載荷中に一方 のせん断スパン片側の曲げせん断ひび割れが顕著と なり、その後せん断圧縮破壊を生じた.せん断ひび 割れが進展したスパンのウェブ領域では、既存部に 比べて補強部の損傷が大きくなっており、打継面を 介して既存部と補強部でせん断力の伝達が上手く行 われず、補強部のみに負担が集中していた可能性が ある⁹⁾. このスパンの打継面は補強部打設時(水平打 設)に底面側となった領域であり、打設時の打継面 の湿布が困難で乾燥したために局所的に既存部と補 強部コンクリートの付着が劣悪になったことが考え られる.また、このスパンはせん断補強筋として CFRPスパイラル筋を用いているため, 主引張応力 に対して不利な角度となっている領域でもあった. 一方, CFPC1-2供試体は, 58,の繰返し載荷中に引 張側補強部緊張材の破断が生じ終局に至ったが, 緊 張材としてPC鋼棒を用いた供試体と同様, すべて の耐力を失うことはなかった.

AFPC1-1供試体は、78_yの繰返し載荷中に曲げ圧 縮部コンクリートの圧かいが進行し、終局に至った. また、AFPC1-2供試体は、CFPC1-2供試体と同様、 58_yの繰返し載荷中に引張側補強部緊張材が破断し、 終局に至ったが、上記の供試体と同様、すべての耐 力を失うことはなかった.

b) 載荷終了後のひび割れ状況

500 400

— ● ● ● 100

-200

<u>Control</u>

載荷終了後のひび割れ状況を図-6に示す.無補強 供試体は、せん断スパン内に多数のせん断あるいは 曲げせん断ひび割れが見られた.RC1-0供試体は、 ひび割れの分散性は良く、広範囲にわたって曲げひ び割れが発生している.一方、PC1-2供試体は、せ ん断スパン内に発生するひび割れが少なく、曲げス

図-6 載荷終了後のひび割れ状況

パン付近に限定されている.このことは、地震など の外力を受け損傷した場合の補修が簡便で済むこと を示していると考えられる.また、PC1-0、PC1-1、 PC1-2供試体のひび割れ状況を比べると、軸方向プ レストレス量が大きいものほど、せん断スパンの微 細なひび割れが若干減少しているようである.軸方 向プレストレスによりひび割れの復元性が大きいこ とも載荷中に目視で判断できた.なお、曲げせん断 ひび割れの供試体高さ中央付近の斜めひび割れの角 度に与える軸方向プレストレスの影響については、 それほど顕著な傾向は見られない.以上のようなプ レストレスによるひび割れの制御は、劣化要因とな る物質あるいは元素等の侵入抑制、さらには美観・ 安心感に対して有効であると思われる.

(3) 荷重-変位曲線

各供試体の荷重-変位曲線を,平面保持を仮定し た断面分割法による一方向載荷の曲げモーメント-曲率解析により得られた荷重-変位曲線とともに図-7に示す. なお、コンクリートの応力-ひずみモデル は、CS供試体には、CFシートによる拘束効果を考 慮した文献10)のモデルを、D6横拘束筋を配筋した 供試体には、鋼横拘束筋による拘束効果を考慮した 文献11)のモデルを,また,CFRPあるいはAFRPス パイラル筋を横拘束筋とした供試体には、文献12) のモデルを用いた.既存部コンクリートは補強部横 拘束コンクリートのコアコンクリートとして取扱っ ているが、既存部横補強筋の横拘束効果は考慮して いない、鉄筋およびPC鋼棒には平成8年制定コンク リート標準示方書設計編¹³⁾の応力-ひずみモデルを, 軸方向のFRPには文献14)の引張力-ひずみモデルを 用いた. なお, 各材料の強度および弾性係数は強度 試験値を用い、また既存部と補強部コンクリートの 打継面は考慮せず、コンクリートの強度および弾性 係数のみを変化させた一体化部材として取扱った.

荷重-変位曲線の実験値から、軸方向プレストレ スを導入したRC巻立て補強部材においても、既存 部にRC構造が存在するため、顕著な原点指向型の 履歴曲線形状にはなっていないことがわかる.また、 PC1-2、CFPC1-2、AFPC1-2供試体は、緊張材破断 により終局に至ったが、既存部軸方向筋が存在する ため、すべての耐力を失ってはいない.

一方,計算においてRC巻立て補強部材を一体化 部材として取扱うことによっても、降伏荷重 P_y およ び最大荷重 P_m は比較的精度良く算定することがで きており、今回適用した程度の打継面処理を行った 場合には、一体化部材として取扱うことにより設計 可能であるものと考えられる.また、PC1-2、PC2-

2、 PC3-2供試体のうち, コンクリートの終局ひずみ が最も大きくなる PC1-2供試体(pv=0.92%)が緊張材 破断型の破壊形式となっており,実験結果と一致す るものであった.なお,実験結果では横拘束筋体積 比0.92%で緊張力53.0kNを適用した補強部材のみが 緊張材破断型の破壊形式になったのに対し,計算結 果では,緊張力0kN,26.5kNの供試体においても補 強部緊張材が破断して終局に至る結果となった.一 方向単調載荷をモデル化した計算よりも,同一変位 3回繰返しを行った実験の方が,曲げ圧縮部コンク リートの圧かいの進行しやすく,緊張力が小さいも のでは緊張材の破断ひずみに達しなかったものと考 えられる.

次に,3.(1)と同様に,新旧コンクリート打継面 の付着特性を考慮した界面要素を用いた2次元有限 要素解析により,RC巻立て補強部材の曲げ変形挙 動に与える打継面の影響を検討した.

本解析には、3.(1)で用いた要素に加え、既存部 軸方向筋として、鉄筋の曲げ剛性EIを考慮した2次 のアイソパラメトリックはり要素を用い、補強部軸 方向筋として、2次のアイソパラメトリック線要素、 補強部せん断補強筋として付着を考慮しない1次の 線要素を用いた.

既存部および補強部コンクリートの応力-ひずみ 関係を図-8に示す.本解析では軸方向のみに非線形 性を導入し,軸直角方向には一定値(初期値)を用い た異方性材料として取り扱った.また,本解析では, コンクリートの引張応力に対する軟化域を設けてい ない.そこで,コンクリートに過大な引張応力が生 じることを避けるために,はり端部から600,800, 1000mm位置の既存部および補強部コンクリート要 素間に,上記の付着線要素と同様の考え方で,コン クリート要素間に接触する2面の界面要素を曲げひ び割れを模擬し導入した¹⁵⁾. なお,この要素は要素 法線方向の応力のみを伝達するものとした.

既存部および補強部軸方向筋には、図-9に示す応 カ-ひずみ関係を適用した. なお、計算の安定のた め、ひずみ硬化域から破断までを一つの曲線で表し ているが、実際の解析で生じた鉄筋ひずみはひずみ 硬化領域までで、応力の降下域の影響は出ていない. さらに、打継面の各付着要素には、3.(1)で用いた 応力-変位関係の他に、打継面の完全付着を仮定し、 既存部コンクリート要素の接点と補強部コンクリー ト要素の接点を剛接した(既存部と補強部コンクリ ート要素のそれぞれの接点間の相対変位が生じない ようにした)ものと、打継面の完全付着無を仮定し て係数 $B_{tt}=G_{xx}=G_{yy}=1.0\times10^{-10}N/mm^{3}$ としたものを適用 した.なお、これらの付着要素特性は、線形とした.

解析は、図-10に示すメッシュ分割図において、 はり端部から800mm位置の鉛直方向に強制増分変位 を与えることによる非線形解析とした.

補強部軸方向鉄筋として4-D13を用いたRC1-0供 試体について行なった荷重-変位曲線の解析結果と 実験値を図-11に示す.完全付着の計算値は,最も 傾きが大きく,実験値に近い挙動となっており,本 研究で適用した打継面処理はほぼ完全付着であるも のと推定できる.ただし, $B_{tt}=G_{xx}=G_{yy}=3.0$ N/mm³の 場合も傾きに大きな差は見られず,また,打継面付 着要素特性を線形としているため,付着要素の特性 に関しては,さらなる検討が必要である.

(4) ひび割れ発生荷重

軸方向プレストレスがひび割れ発生荷重に与える 影響を計算値とともに図~12に示す.なお,計算値 は3.(3)の断面分割法により求めたものである.実 験値,計算値ともに軸方向プレストレスの増加にほ ぼ比例してひび割れ発生荷重が増加しており,軸方 向プレストレスの導入により補強部材のひび割れ発 生を制御することができるものと考えられる.さら に,3.(2)に示したひび割れ性状とあわせて,補強 部材が外力を受けた場合の補修性向上が期待できる.

(5) 最大荷重

補強部軸方向筋の種類が最大荷重に与える影響を 断面分割法により求めた計算値とともに図-13に示 す、すべての補強供試体において最大荷重の増加が 得られたと同時に,補強供試体の最大荷重は補強部 軸方向筋の引張強度fuとその断面積Aの積にほぼ比 例して増加していることがわかる.また,計算値は 実験値に対して比較的良い一致が得られた.さらに,

図-13 補強部軸方向筋の種類が最大荷重に与える影響

CFPC1-1, CFPC1-2供試体の方が,同一の引張側補 強繊維断面積比でCFシートを適用したCS供試体に 比べ,巻立て補強コンクリートを有する分,圧縮領 域コンクリート断面積が増加するため最大荷重の増 加が大きくなっている.

図-14 吸収・消散・弾性エネルギーおよび残留変位率の定義

(6) 靱性

本研究では, 靱性を表す指標として変位靱性率 ($\mu=\delta_u/\delta_y$), 吸収エネルギーおよび消散エネルギー¹⁶) を用いた. 吸収エネルギーおよび消散エネルギーの 定義を, 3. (7) で用いる残留変位率および弾性エネ ルギーとともに図-14に示す. このように, 弾性エ ネルギーは吸収エネルギーと消散エネルギーの差で 表される. なお, 荷重-変位履歴ループの包絡線の 下の面積で表される吸収エネルギーと履歴ループの 囲む面積で表される消散エネルギーは, 部材のエネ ルギー容量, すなわちエネルギーは, 部材のエネ ルギー容量, すなわちエネルギー)によってこれら 各種エネルギーの構成割合に違いが見られる可能性 があるため, 本研究では吸収エネルギーと消散エネ ルギーを分けて検討した.

a) 軸方向プレストレスが靱性に与える影響

軸方向プレストレスが変位靱性率,終局時までの 吸収エネルギーおよび消散エネルギーの累積挙動に 与える影響を図-15に示す.

補強供試体の変位靱性率,吸収エネルギーは Control供試体より大きく,補強効果が得られた.た だし,変位靱性率よりも吸収あるいは消散エネルギ ーを指標とした方が,Control供試体に対する補強効 果が現れる結果となった.これは,RC巻立て補強 を行ったことにより,降伏荷重も増加したため変位 靱性率としての増加はそれほど得られなかったもの の,補強部軸方向筋として高引張強度材料を用いる ことにより荷重が増加し,より多くのエネルギーを 吸収あるいは消散できるようになったためである. したがって,今回適用した工法による補強は,曲げ 耐力の向上に有効な補強工法であると同時に,これ らの耐力増加によりエネルギー靱性の向上も可能で あると考えられる.

せん断圧縮破壊を生じたCFPC1-1供試体以外は, 軸方向プレストレスの増加にともない,曲げ圧縮部 の圧かい進行にともなう荷重低下が大きくなるとと もに,破壊形式が緊張材破断型になるため変位靱性 率,吸収エネルギーが低下する傾向にある.また, 消散エネルギーでは,変位靱性率,吸収エネルギー

に比べると軸方向プレストレスによる影響が小さい すなわち,曲げ圧縮部圧かい進行にともなう荷重低 下が軸方向プレストレスの増加にともない大きくな るため,弾性エネルギーが低下し,吸収エネルギー は低下するが、履歴ループの囲む面積は軸方向プレ ストレスの影響を受けていないことを示している.

b) 補強部軸方向筋の種類が靱性に与える影響

補強部軸方向筋の伸び能力が変位靱性率,吸収エ ネルギーおよび消散エネルギーの累積挙動に与える 影響を図-16に示す.

補強部横拘束筋のフックが破損し変位靱性率の顕 著な増加が得られなかったRC1-0供試体以外は、そ の破壊形式によらず、補強部軸方向筋としてFRPを 用いたものよりもPC鋼棒を用いたものの方が、変 位靱性率,吸収エネルギーが大きくなった,FRPは PC鋼棒に比べて伸び能力が小さく、早期に終局ひ ずみに達するとともに, 塑性変形が生じないために, 特に弾性係数の大きなCFRPでは部材降伏後も曲げ 圧縮部コンクリートの圧縮応力が増大し続け、圧か いの進行にともなう荷重低下が大きくなることが原 因として考えられる.また、補強部軸方向筋の引張 強度の大きいPC供試体の方が、最大荷重が大きい ことで吸収エネルギーが大きくなったが、累積消散 エネルギー値はRC供試体の方が他より大きくなっ ている. RC供試体の方が弾性エネルギーが小さく、 紡錘形の履歴ループ形状を呈しているためである. さらに、弾性材料であるFRP,特に弾性領域の大き なCFRPを用いたものが、圧縮縁コンクリートへの 負担が大きくなるため、3δ,以降の累積消散エネル ギーの増加率が小さくなっている.

c) 横拘束筋体積比が靱性に与える影響

補強部横拘束筋体積比が変位靱性率,吸収エネル ギーおよび消散エネルギーの累積挙動に与える影響 を図-17に示す.

PC供試体は,横拘束筋体積比0.92%で緊張材破断 による終局となったため,横拘束筋体積比の増加に ともなう変位靱性率,吸収エネルギー,同一変位に おける消散エネルギーの累積値に顕著な差は見られ なかった.RC供試体は,5δ,繰返し載荷中に補強部 軸方向筋の座屈による横拘束筋フックの破損および 既存部軸方向筋の座屈によるコアコンクリートの損 傷が生じたため,横拘束筋体積比の影響が現れず, PC供試体に対する変位靱性率の優位性は認められ なかった.また,変位靱性率の優位性は認められ なかった.また,変位靱性率よりも吸収エネルギー の方がRC供試体とPC供試体の差が大きくなってい る.補強部軸方向筋として高引張強度のPC鋼棒を 用いたPC供試体の方が,最大荷重が大きく,吸収 エネルギーが大きくなるためである.

(7) 復元特性

本研究では、復元特性指標として図-14に示す残 留変位率および弾性エネルギーの(2n-1)δ_v1サイクル

図-18 軸方向フレストレスが残留変位率 弾性エネルギーに与える影響

正方向載荷時の値を用いた.

a) 軸方向プレストレスが復元特性に与える影響

軸方向プレストレスが残留変位率-変位,弾性エ ネルギー-変位関係に与える影響を図-18に示す. PC 供試体の方がControl供試体に比べ,同一変位での残 留変位率が小さく,弾性エネルギーが大きい.また 軸方向プレストレスが最も大きいPC1-2供試体は, 緊張材破断の生じた78,において残留変位率の増加 および弾性エネルギーの低下が顕著である.したが って,緊張材破断による荷重低下が補強部材の復元 特性に極めて大きな影響を与えていると言える.

b) 補強部軸方向筋の種類が復元特性に与える影響

補強部軸方向筋の種類が残留変位率-変位,弾性 エネルギー-変位関係に与える影響を図-19に示す. 降伏後38,付近では,補強部軸方向筋としてCFRPを 用いたもので,58,以降ではPC鋼棒を用いたもので, 残留変位率が小さく,弾性エネルギーが大きくなっ ている.このことから,弾性領域の大きな材料を用 いることによって大きな復元特性を得ることができ るが,大変形領域においては曲げ圧縮部コンクリー トへの負担増大あるいは緊張材破断による荷重低下 により復元特性が低下するため,塑性変形を生じる 材料を用い,最大荷重以降の荷重低下を小さく抑え ることによって復元特性の塑性変形領域における持 続が可能であると考えられる.

c) 横拘束筋体積比が復元特性に与える影響

横拘束筋体積比が残留変位率-変位,弾性エネル ギー-変位関係に与える影響を図-20に示す. 横拘束 筋のフックが破損したRC供試体では、終局時の残 留変位率、弾性エネルギーはほぼ同じであり、横拘 束筋体積比の影響は小さい.一方, PC供試体では, 緊張材破断の生じたPC1-2供試体よりも曲げ圧縮破 壊を生じたPC2-2, PC3-2供試体の方が, 終局時の 残留変位率が小さく,また弾性エネルギーが大きく なっている.横拘束筋体積比を大きくした場合,曲 げ圧縮部コンクリートの終局ひずみが増大し, 圧か いによる荷重低下が小さく抑えられ、曲げ圧縮部コ ンクリートの負担力は持続する.しかし、通常の鉄 筋よりも伸びが小さい緊張材を用いてプレストレス を導入する本工法では、横拘束筋体積比が大きい場 合,終局に至る荷重低下の原因が曲げ圧縮部の圧か いではなく、緊張材破断となる可能性がある. した がって,大変形領域での復元特性を維持するために は、補強部材が曲げ圧縮破壊となるように横拘束筋 配筋量を決定する必要があると考えられる.

4. 結論

本研究では、軸方向プレストレスを導入したRC 巻立て補強部材に対して、正負交番載荷曲げ試験を 行い、その曲げ変形挙動について検討した.補強の 方針として、曲げ耐力の増加およびエネルギー靱性 の確保に加えて、復元特性の改善を得ることにより、 外力作用後の補修の容易さ、耐久性および美観・安 心感を向上させることを考慮した.

本研究の範囲内で得られた主な結果をまとめて本 論文の結論とする.

(1) 軸方向プレストレスの導入量は新旧コンクリ

図-19 補強部軸方向筋の種類が残留変位率, 弾性エネルギーに与える影響

ート打継面を完全付着と仮定することにより算定可 能である:また,打継面に付着要素を適用した2次 元有限要素弾性解析によって,軸方向プレストレス の分布を把握することができる.

(2) RC巻立て補強部への軸方向プレストレスの導入量が大きいほど、ひび割れ発生荷重が増加し、せん断スパンのひび割れが減少する.したがって、補修性が向上するとともに、ひび割れの復元性が向上し、耐久性および美観・安心感に対して有効である.
(3) 軸方向プレストレスを有するRC巻立て補強部材は、補強部軸方向筋として高引張強度材料を使用しているため、同程度の補強筋比を適用した通常のRC巻立て補強部材よりも降伏耐力、最大耐力が増加する.また、これらの降伏耐力、最大耐力は、新旧コンクリート打継面の完全付着および平面保持を仮定することにより算定可能である.

(4) 軸方向プレストレスを有するRC巻立て補強部

材は,曲げ耐力の向上によりエネルギーを吸収する ことによって靱性を確保する構造形式となる.また, 連続繊維補強材よりもPC鋼棒を緊張材として使用 した方が,大きな靱性を得ることができる.

(5) 軸方向プレストレスを有するRC巻立て補強部 材において、補強部緊張材として弾性領域の大きい 材料を用いることによって、補強部材の復元特性が 向上する.また、緊張材としてPC鋼棒を用いると ともに、補強部緊張材の量に応じた補強部横拘束筋 量の適切な上限値を設定することで、緊張材の破断 が生じにくくなり、大変形領域での復元特性が維持 できる.

謝辞:本論文の作成にあたり,立命館大学教授児島 孝之先生,ならびに立命館大学大学院博士後期課程 日比野憲太氏に貴重なご助言,ご指導を賜わりまし た.ここに厚く御礼申し上げます.

参考文献

- 例えば、日本コンクリート工学協会近畿支部: 土木コンクリート構造物の震災対策に関する研究委員会報告書、1999.5.
- 2) 土木学会:平成8年制定コンクリート標準示方書,設計 編,1996.3.
- 3) 土木学会:平成3年版コンクリート標準示方書,設計編, pp.165-166, 1991.9.
- 4)町田 篤彦:鉄筋コンクリート構造物の耐震設計法に
 関する研究の現状,土木学会論文集,No.366/V-4,
 pp.1-11, 1986.2.
- 5) 児島 孝之,高木 宣章,松尾 真紀,山田 崇雄: コンクリートと連続繊維棒材との付着特性に関する有 限要素解析,土木学会関西支部年次学術講演概要,V-2-1~2,1998.5.
- 6)日比野 憲太,中越 貴宣,児島 孝之,高木 宣章:耐震補強されたRC橋脚の力学的挙動解析,第54回年次学術講演会講演概要集,V-287,pp.574-575,

1999.9.

- 7) 槇谷 貴光,香取 慶一,林 静雄:コンクリート打 継ぎ面における表面粗さの評価とせん断力伝達能力に 関する実験的研究,コンクリート工学年次論文報告集, Vol.17, No.2, pp.171-176, 1995.7.
- 8)日本ジッコウ:技術資料(コンクリート打継面レイタン ス処理剤)
- 9) 山本 貴士,服部 篤史,宮川 豊章: PC巻立て補強
 への連続繊維補強材の適用に関する研究,第53回年次
 学術講演会講演概要集,V-438, pp.876-877, 1998.9.
- 10)細谷 学,川島 一彦,星隈 順一:炭素繊維シート で横拘束したコンクリート柱の応力度-ひずみ関係の定 式化,土木学会論文集,No.592/V-39, pp.37-52, 1998.5.
- 11)藤井 学,小林 和夫,宮川 豊章,井上 晋,松本 利彦:横拘東コンクリートの応力-ひずみ関係の適用に 関する検討,セメント技術年報第42巻,pp.311-314, 1988.
- 12)睦好 宏史,谷口 裕史,喜多 達夫,町田 篤彦:
 連続繊維補強材を用いたPC部材の曲げ靱性改善に関する研究,土木学会論文集,No.460/V-18, pp.103-111, 1993.2.
- 13)土木学会:平成8年制定コンクリート標準示方書,設 計編, pp.36-37, 1996.3.
- 14)土木学会:連続繊維補強材を用いたコンクリート構造物の設計・施工指針(案),コンクリートライブラリー88, pp.10,1996.9.
- 15)日本コンクリート工学協会近畿支部:土木コンクリート構造物の震災対策に関する研究委員会報告書, pp.322-330, 1999.5.
- 16)Young Soo Chung, Christian Meyer and Masanobu Shinozuka : Modeling of Concrete Damage, *ACI Structural journal*, Vol.86, No.3, 1989.5-6.

A STUDY ON RC MEMBER STRENGTHENED WITH LONGITUDINAL PRESTRESSED CONCRETE JACKET

Takashi YAMAMOTO, Atsushi HATTORI and Toyoaki MIYAGAWA

In the seismic strengthening technique that uses reinforced concrete jacketing, application of longitudinal prestress for jacketing concrete is effective for the control of crack propagation and improvement of elastic restoration behavior. In this study, the influences of longitudinal prestress, mechanical properties of tendons and confinement ratio on crack propagation, failure mode, ductility and elastic restoration behavior were investigated under load reversal. The results indicate that longitudinal prestress is capable of the crack propagation control and elastic restoration behavior is improved by the use of high strength and elastic modulus tendons. Furthermore, the results revealed elastic restoration behavior to be related with ductility of strengthened member in the post peak region.