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はしがき
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口頭発表

当該研究期間にあ、いて研究代表者及び研究分担者が行った研究経過，研究成果などの

口頭によるおもな発表は以下のとおりである.
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研究成果

研究代表者及び研究分担者はそれぞれの研究分野での研究を行い， 研究課題にかかわる共

通のテーマに関して必要に応じて討論を重ねた。こでは，研究代表者が得た知見と新たな

経過について触れるとともに，学会誌等に発表した論文，及び論文として完成し出版準備

しているもの，または出版予定となっているものの主なものをうち掲載することにした。

研究代表者によるこの期間の研究経過の概要は以下のとおりである。

第一の研究期間では，ポアソン多様体におけるポアソン・コホモロジーに関してその幾何

学的な意味あいを問題にした。

O次元， 1次元コホモロジ- $ĤO， Ĥ l$の解釈は容易であるので 2次元コホモロジ-

$Ĥ2$が最初に問題となるが，特に 「ポアソン・テンソノレ自身が $Ĥ2$の元として消

えるものにどういうものがあるかJを具体的な問題としてとりあげた。 得られた成果の一

つは，コンパクトな 3次元多様体で上の条件を満たすものの中に，よく知られたリ一群の

商空間として得られるものと異なるものを構成したことである。このポアソン多様体のも

つシンプレクティック葉層は以前， Hir回 h葉層として知られていたものになっている。こ

の方向の研究にはいまだに位相幾何的あるいは幾何学的に興味深い問題が残されている。

第二の研究期間においてはまず，南部ヤコビ多様体がどのような多重ベクトノレ場によ

って特徴付けられるのかを調べ，さらに自然に対応する葉層構造についての結果を得た。

q次の南部ヤコビ多様体は 基本恒等式 {fundamentalidentity}と呼ばれる q個の関数に

対する括弧積を持つものとして定義され，通常のヤコビ多様体ある方向への拡張である。

関連してLeibnizalgebroidに関してはLeibnizAlgebras associated with foliations 

{KodむMath.Journal}にその研究成果を発表した。

第三の研究期間では，一般の 2・ベクトル場 πがあったとき，それの定義する接分布の完

全積分可能性について調べることからはじめた。これに関しては，スカウテン・プラケッ

ト[π，π] と1次微分形式のプラケットに関する基本的な関係式を得て、議論を進め、研

究成果を

Integr油 ilityof Plane Field Defi.ned by 2・vectorfields(International J. ofMath.) 

にまとめた。さらに、この結果を最近研究が盛んになった Dirac構造の枠組みでとらえ

almost Dirac構造に付随する Liealgebroid及び Dirac構造に関して興味ある結果が得ら

れた。これらの結果は収録論文として掲載しである。



収録論文

水谷忠良

1 Lie algebroids associated with deformed Schouten bracket of 

2'vector fields. (by K. Mikami and T. Mizutan.i) 

2 Lie Algebroid Associated with an Almost Dirac Structure. 

(by K. Mikami and T. Mizutanv 

3 A Lie algebroid and a Dirac structure associated to an almost 

Dirac structure. (by K. Mikami姐 dT. Mizutanv 

阪本邦夫

1 CR EINSTEIN.WEYL STRUCTURE (by T. Ohkubo and K. Sakamoto) 

長瀬正義

1 Twistor spaces and the general adiabatic expansions (by M. Nagase) 

2 On the trace and the infinitesimally deformed chiaral anomaly of Dirac operators 

on twistor spaces and the change of metrics on the base spaces (by M. Nagase) 

3 On the infinitesimally deformed super chiral anomaly of Dirac operators and the 

gauge transformation of twistor spaces (by M. Nagase) 

福井敏純

1 ISOLATED SINGULARITIES OF BIANRY DIFFERENTIAL EQUATIONS OF 

DEGREE n (by T. Fukui and N. Ballesteros) 
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                              Abstract

              .t  Given a 2-vector field and a closed 1-form on a manifold, we consider the set of
                                  'cotangent vectors which annihilate the deformed Schouten bracket of the 2-vector field

by the closed 1-form. We show that if the space of cotangent vectors forms a vector

bundle, it carries a structure of a Lie algebroid. We treat this theorem in the category of

Lie algebroids. As a special case, this result contains the well known fact that the 1-jet

bundle of functions of a contact manifold has a Lie aJgebroid structure.

1 Introduction

The Poisson bi-vector field on a Poisson manifold (M,T), defines a bundle morphism ft :

T'(M) - T(M) which is given by a H> T(a, •). The image of ft is called the characteristic

distribution of the Poisson structure T. k is integrable and gives a generalized foliation of

M consisting of leaves with symplectic structure. Moreover, T'(M) has a structure of a Lie

algebroid which leads to the Poisson cohomology. One can naturally ask the condition for a

genera} 2-vector field T (not necessarily a Poisson), under which the image of ft is integrable

and ask how speciaJ a Poisson bi-vector is. The condition for the integrability can well be

seen from the formula (see Section 3)

                                   1             [T(a),T(B)] = T({a,6}) + i[T,T](a,fi) for 1-forms ct and I3

                                      l



where {a,P} is the bracket on r(T'(M)), and T(a) means ft(a) in precise, but we often use

both notations interchangeably. The formula above says, if the SchouteR bracket [T,Tl is in

the image of ft, the Frobenius condition are satisfied and the distribution is integrable (while

in the case of Poisson structure a fortiori [7r, T] = O holds). In [5], the authors considered the

conditioR that [T, 7r] is a image of a closed 3-form under the induced map of ft and proved

T'(M) has a Lie algebroid structure which they call a twisted Poisson structure. Clearly, this

condition implies the integrability of the image of ft by the above formula.

   In our previous paper ([41), we considered the space of cotangent vectors .4 = {a l

[r, T](a, •, •) = O} and proved v4 has a natural Lie algebroid structure (provided v4 is a vector

bundle of constant rank). In this paper, we generalize the discussion to the case of deformed

Schouten bracket [T, T]ip and show that the same result is obtained in this case too (Theorem

3.4). Also, we introduce the definition of a Jacobi-Lie algebroid. It is nothing but a Lie

algebroid equipped with a specified 1-cocycle. However, this definition is sometimes prefer-

able when we treat such objects formally. For example, one can define the homomorphims

between two Jacobi-Lie algebroids. In the next section, we recal1 some basics on the Lie

algebroids and the Schouten-Jacobi bracket. In section 3, we prove our main theorem and

give a computational example of the theorem.

2 Lie algebroids and Jacobi-Lie algebroids

In this section, we review some basic ingredients of Lie algebroids for later use and introduce.

the notion of a Jacobi-Lie algebroid. AU manifolds and functions are assumed to be smooth

(Cco) throughout the paper.

Definition 2.1 A vector bundle L over a manifold M is a Lie algebroid if

 (a) the space of sections r(L) is endowed with a Lie aigebra bracket [•, •] over R

 (b) there is given a bundle map a : L - T(M) (called anchor) which induces a Lie algebra

    homomorphism a : r(L) - r(T(M)), satisfying the condition

                      '

             []ic',fY] = <a(X), df>Y +f[X, Y], X,Y E r(L), f E COO(M).

2



Thus a Lie algebroid is a triple (L, [•, •],a), however we often say L a Lie algebroid when the

bracket and the anchor are understood. The most popular and important example of a Lie

algebroid is the tangent bundle with usual Lie bracket of vector fields. The cotangent bundle

of a Poisson manifold is another example of a Lie algebroid. There are many other examples

of Lie algebroids which are useful in geometry (see [1]).

   Let L' be the dual vector bundle of L. We note that the anchor of L induces a dual

morphism a' : T'(M) - L'.

   The Lie algebra bracket on r(L) and the action of a(X) on COO(M) induces aai `exterior

differential' dL on r(A'L') defined by a well-known formula;

                         r
   (dLcJ)(Xo,Xi,••• , Xr) := 2(-1)`<d(cu(. .. , )Zi,... )),a(Xi)>

                        i=o
                           + 2('1)i'jw([Xi, Xe], • • • , l'?i, • • • , JXij, • • • ),

                             i<j

                                           cv Er(Ar"), xo,...,x. Er(L).

For example,

     <dLf, X> - <df, a(X)> = <a'(df), X>, f E r(AOL') - Coo(M), X E r(L) .

  (dLfi)(X, Y) = <d(13(Y)),a(X)> - <d(B(X)),a(Y)> - <6, [X,Y]>

            = La(x)(P(Y)) - La(y)(6(X)) - <fi, [X, Y]>, BE F(AiL'), X,Y E r(L) .

                                              '

With this differential dL, r(A'L') becomes a differential graded algebra and a' induces a

homomorphism of differential graded algebras r(A'T'(M)) - r(A'Åí').

   Conversely, the exterior differential dL on r(A'L') recovers the anchor and the Lie algebra

bracket on L, hence recovers the Lie algebroid structure of L by the formulas

     (a') <a(X),df> :== <X,dLf>,

     (bt) <[X, Y],6> :- <X, dL (6(Y))> - <Y, dL(6(X))> - (dLP)(X,Y), (P E I"(L*)).

                                                                          '   In [3], the authors introduced the deformed evterior differential and the Schouten-Jacobi

bracket on r(A'L) deformed by a 1-cocycle ip.

Definition 2.2 Let ip be a 1-cocycle in r(A',C') with respect to dL, i.e., ip E F(,C') and ip

3



satisfies

                    ip([X, Yl) = La(x)(ip(Y)) - La(y)(ip(X))

for X,Y E r(L). The deformed exterior differential is defined by

                     dÅëLa=dLa+ipAa, aEr(A'L'). (2.1)

The operator (fLP satisfies

         dipL odÅëL = O, depL(a A X3) = dÅëLaA f3 +(- 1)laE c! A dLP x3 - gb AaA x3,

where lal means the degree of a, narnely, a E r(AlalL'). On the other hand, ({P-deformed)

Schouten-Jacobi bracket [•, •]ip is defined by

          [P, (?] ip = [P, (?] +(-- 1)PP(di) A (q - 1) (? + (p - 1)PA (?(ip), (2.2)

                                         P E r(APL), (? E r(AqL) .

Here and hereafter, P(45) denotes the interior product LipP or ipJP of qS and P. We use these

notations interchangeably.

   This bracket on r(A'L) shares similar properties with the usual Schouten-Nijenhuis

bracket. In our sign convention, formulas of calculation for [•, •]ip are the following

   (1) [X,Y]ip = [X,Y] (Lie algebra bracket), for X,Y E I"(L)

   (2) [P, Q] ip = -(-1) (P-i)(q-i) [Q, ,P] ip

   (3) [P, [Q, R] ip1ip == [[P, Q] ip, R] ip + ( -- 1) lp-i)(q-') [(?, [P, R] ip]ip (super Jacobi identity)

   (4) [P, (2 A R]ip = [P, (?]ip AR+ (-1)lp-i)q(? A [P, Rlip + (-1)PP(ip) A (? AR

   (5) [f, P] ip = -P( d9, f), f E Cco (M)

where P E r(APL), <? E r(AqL),R E r(ArL).

   For ip = O, these axe just the formulas for the Nijenhuis-Schouten bracket. The only

difference is that the deformed one does not satisfy the Leibniz property for the wedge product

(see (4) above). Since deLf in (5) above is defined by dLf+fg5 = a'(df)+fip in Ir(L'), the

action ofX E r(L) on Cco(M) through [•, •]ip is given by X•f := [X, f]ip = <a(X), df>+f<X, ip>

where <a(X), df> is the usual action of Lie algebroid through the anchor map. Putting f = 1,

4



we see that the 1-cocycle ip is recovered from the bracket since ip(X) = [X, 1]ip = X • 1 holds.

   The difference of the action of X on Cco (M) from the usual derivation leads to the different

`exterior differential' and `Lie derivation'. The g6-Lie derivative operator Lip for `forms' and

`vectors' are defined by

                    L9ya =(d9L? ix +ix d9L)ct = Lxa+ gb(X) ct (2.3)

                    LkP -[X, P] ip = [.X', P] - (p - 1) ip(X)P (2.4)

respectively. Then we have the following list of formulas.

              Lk (aA5) =L.ip,aA I3 +aA Lk fi-Åë(X)aA rs (2.s)

              Lk(PAQ) =Lip.PAq+PALip.Q-ip(X)PAQ (2.6)
               L9. (P(a)) =(Lg? P)(a) +P(Lil? cv) +(lal - 1)ip(X)P(a) (2.7)

               L9. (a(P)) =a(Lk P) + (Lft a) (P) + (p - 1) ip(X)a(P) (2.s)

               Lipx [P, Q]ip =[L9y P, Q]to+[P, Lipx Q]ip (2•9)

                  L9.P=fLip.P-XAP(dLf) (2.10)

Note that (2.7) or (2.8) tells us that LZ does not commute with the contraction in general,

although Lx does.

Remark 2.1 Let ip be a usual closed 1-form on M. We can see a cue of defining of the

ip-deforrned Schouten-Jacobi bracket [•, •]ip in the following observation when L = T(M). Let

ip = df locally where f is a function on M. For a p-vector field P, we put P = e-lp-i)fP.

Note that this assignment P F> P is injective and it is the identity transformation on the

space of vector fields. If we compute [P,Q], we have e-@+q-2)f[p, (?]ip

   As we will see below, one of the advantage of introducing [•,•]ip is that we can treat a

Jacobi structure on M as if it were a Poisson structure on rvf with respect to [•, •]ip. It seems

natural here to generalize the Lie algebroid slightly, and introduce the notion of Jacobi-Lie

algebroid.

   Let T*M denote the bundle of 1-jets of functions on M. T"M has a natural projection

onto the bundle of O-jets which is a trivial line bundle e !! M Å~ R The kernel of the projection

5



is the cotangent bundle T'(M) and '1'M ! T'(M)Oe by o'.if -> (dfx,f(x)). Let TM denote

the dual bundle and cail it the extended tangent bundle of M. The sections of TM form the

set of differential operators on COO(M) of order S l. GeometricaJly, TM can be identified

with the tangent bundle T(M Å~ R) restricted to M Å~ {O} (or to any level M Å~ {t}). Then a

section X of TM is expressed as

                                         a
                               X=X+A-                                        aT

where x is a vector field on M 1ifted to M Å~ R and ;illtT = (lili)o is the tangent vector of R

at o. From this view point, we may write 1-jet ]'if as df +fd7, where dr is the dual of zi3t7.

   X acts on Coo(M) as a first order differential operator by

                         x • f = <x, 1'if> = L.f + Af.

                                aoThe commutator bracket ofX = X+Ab;tT and Y = Y+#b;tT in r(7'M) as operators, is

                         oa                                                             a
           {X,Y] = IX + Abi.7,Y + tLb7.] = [X, Yl + (<X, dlL> - <Y, dX>)s. •

With this bracket on r(TM) and the natural projection pri : TM - T(M) as the anchor,

('IM, ff•, •],pti) is a Lie algebroid, and the action of X on f E Coo(M) here, is through the

vector fieid X. The difference between the two actions of X is the multiplication by A. The

map ipo : X e A = X • 1 can be considered as a 1-cocycle of the Lie algebroid 7'M. indeed

                  (dipo)(X,Y) = Lxpt - LyA - ipo((X,Yg) = O .

We call this cocycle ipo of TM the canonical 1-coc,ycle.

   Let (L, [•, •],a) be a Lie algebroid and ip any Lie algebroid-1-cocycle of L. Then we have a

                                               a
bundle map a : L - 7'M defined by a(X) = a(X) + ip(X) b7. E T(M) OE = 7M. Using this

map, we formulate a Lie algebroid with specified 1-cocycle as follows.

Definition 2.3 A Jacobi-Lie algebroid over a manifold M is a triplet (L, [•, •],a) of a vector

bundle L, a Lie algebra structure [•,•1 on r(L), and a bundle map a of L into 7'M (called

also anchor), satisfying
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     (1) (L, [•, •],pri o a) is a Lie algebroid over M,

and

     (2) d induces a Lie algebra homomorphism from r(L) into r(TM).

Note that ip = a'(ipo) is a 1-cocycle of L. Conversely, ifa Lie algebroid (L,[•,•l,a) has a

                                              0
1-cocycle ip, then the map a : X e a(X) = a(X) + ip(X)b;.T is verified to be an anchor of

Jacobi-Lie algebroid. Indeed, for X, Y E F(L), we have

                                    0
          a([X, Y]) == a([X, Y]) + ip([X, Y]) bT.

                                                           0                  == [a(X),a(Y)] + (<a(X),d(ip(Y))> ' <a(Y),d(ip(X))>) b7.

                               oa                  = ga(X) + ip(X)ziT. ,a(y) + ip(y)b ] - [a(x),a(y)],

   and

           [X, fY] = f[X, Y] + <a(X), df>Y.

                                                          '                                               'Since 7'M Y T(M) eE, we have an isomorphism AP7'M 2 APT(M) e AP-iT(M). Thus an

element P E r(AP(7'M) is expressed also as a pair (P, P') of p-vector field and (p - 1)-vector

field. The correspondence is given by P = P+ ziltT 4 P' e (P, P'). Similarly, an element

a = a+ dT A a' E F(APT'M) is given as a pair (a,a') consisting of p-form and (p - 1)-form.

Especially, the canonical 1-cocycle ipo is a pair (O, 1) where O denotes the zero 1-form and 1

is a constant function. We sometimes adopt these notations.

Example 2.1 (Jacobi structure on M) Let T = (T,4) be an element in r(A2TM). With the

above notations, we have

           [7r, 7rlÅëO = [(T, 6), (T,6)]`bo = [(7r,C), (T,6)] +2(idi, (r,C)) A (T,C)

                 = ([7r,Tl,2[C,T]) + (2C AT,O) = ([7r,T] + 2C AT,2[C, 7r]) .

Thus [7r,T]gbO = O is equivalent to that (T,4) is a Jacobi structure. The difi;erential dipOf is

(df,f) and `HamiltoniaR vector field' 7r(dipOf) of f is a pair (T(df) + f4,-<6,(df)>). 'The
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bracket of functions f and g is given by

        {f,g} = 7r(dipOf, dipOg) = L9Q(ddi,f) g = L(.(df)+fc,.<c,df>) g + dio(7r(dipOf))g

             == T(df, dg) + f<4, dg> - .g<6, df> •

In the case of contact structure, T"AC is nowhere zero and the map f e T(df)+f6 is injective

from Cco(M) into F(T(M)) and this vector field is called a contact Hamiltonian vector field.

    {
3 Deformed bracket on 1-forms

Let Åí be a Lie algebroid over a manifold M whose anchor is a : L -> T(M) . We fix a 1-

cocycle ip and consider gb-deformed exterior differential depL and q5-deformed Schouten bracket

[•,•]ip. By an abuse of language, we cal1 P E r(APL) a p-vector field autd a E r(APL') a

p-form. In this section, we prove our main theorem. Namely, we show that ([T,T]di)O has a

Lie algebroid structure (Theorein 3.4). (PO denotes the space of annihilating elements of P

in L'.)

   First we prove

Lemma 3.1 Let P E r(APL),Q E r(AqL) be p-vector field and q-vector field, respectively.

For a 1-form a, the following equality holds;

    [P, Q]ip(a) = [P(a), e]ip + (-1)P-'[P, q(a)]ip

            + (-1)P(P A (?)(doj,a) + (-1)P-iP(dip,a) A (? + (-1)P-iP A (?(dq,or) (3.1)

                                                 '
where for p <- 1, we understand P(d9La) = O and similarly for q <- 1, (?(dÅëLa) = O.

This immediately shows the fo}lowing

Corollary 3.2 For a 2-vector field T and a 1-form a, we have

              [7r(a), 7r]ip = -S(7r A r)(al`.P cM) + S[7r, 7r]ip(af) + 7r(d',P a)T .

Proof of Lemma 3.1: In the case ip = O, the proof is seen in [4]. For genera} ip, we recall

the defining equation (2.1) deLa = dLa+ di Aa of dLP and the equation (2.2) of [•,•]ip. Using

                                                '
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these formulas, we can check that the terms containing ip are equal on both sides in (3.1).

Consequently, the equality is valid for general Schouten-Jacobi bracket. 0

   Given a 2-vector field T E r(A2L) and a 1-cocycle ip, we define a bracket on 1-forms as

follows.

            {cu,6}9 := L9(.)P- L9(B) a- d`Le(7r(a, 6)), a, f3 E r(L') . (3.2)

Since dipL(7r(cy,6)) = L9(.)fi - i.(.)cleLfi, we have another expression

                        {cy, 13}9 =iT(a) dopL6- L9(p)a• (3•3)

This braA ket is not a Lie algebra bracket in general. The following formula is usefUl in our

computatlons.

                                    '
Lemma 3.3 For a 2-vector field r, the following equality holds:

                   [T(a), 7r(P)]di = T({a, 6}9) +i[T, T] ip (a, 6) . (3.4)

Proof WZhen L = T(M) and ip = O, the above equation is akeady known in [4]. Since

{a,B}9 = i.(.)dipÅíf3 - L9(fl) a, we have

             T({Ct, f3}Tip) = T(ir(a) d9LP) - T(L9(fi) a)

                      = 7r(i.(.)de,6) + [7r(a), 7r(B)]ip + [7r(6), 7r]Åë(a) . (3.5)

Here, we used a general formula

              Lip.(P(a)) - (Ldi.P)(a) +P(Lipx a) + (Ial - 1)ip(X)P(a)

                        '
for X = T(B) and P = T. By Corollary 3.2, (3.5) is followed by

      7r(i.(.)dip.6) + [7r(or),T(I3)]di - ll[7r, 7r]di(a, B) - (7r(a) A 7r)(dÅë,6) + T(d9,6)7r(a)

                           = [T(a),T(B)]ip - S[T, T]ip(a, /[3) .
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Here we used the identity

                 7r(i.(.) de,6) - (7r(a) A 7r)(dq.6) + 7;(de,P)7r(a) = O

which can be verified by putting dipLfi = ei A e2 if necessary, where ei,e2 E r(L). a

Remark 3.1 Since [X,Y]ip = [X,Yj for each 1-vector fields, the Lemma above means, for a

2-vector field T, the following equality holds:

                   [T(a), 7r(fi)1 = T({a, 5}9) +i[T, T] ip (a, 6) . (3.6)

Theorem 3.4 Let (L,[•,•],a) be a Lie algebroid over a manifold M and ip be a 1-cocycle.

That is, L has a Jacobi-Lie algebroid structure with anchor a : L - 7'M, X ,-> a(X)+ip(X) Sl.T .

Let T be ai} arbitrary 2-field of L, that is T E r(A2L). Suppose that the rank of [T, 7r]ip is

constant. Then the sub-bundle ([T, T]ip)O is a Jacobi-Lie algebroid with respect to the bracket

                    {a, x3}9 = L$- (.) fi - L9- (fi)a - deL (T(a, 6))

and the anchor is given by the composition of a and it restricted to ([T,T]ip)O.

Corollary 3.5 CH = ao if(([T,7r]ip)O) is an integrable distribution.

Proof of Theorem3.4: First we show the space of sections of ([r, T]ip)O is closed under the

bracket { , }.ip. Let 1-forms a and P be sections of ([7r, 7rlip)O so that aJ[7r, T]ip = Pj[T,T]ip = O.

In order to prove {a,6}9J[T,r]ip = O, we use Corollary 3.2 again. It says

     S{a, ,B}9 J [T, 7r]ip = [ii'({a, B}9), 7r]ip + i(ne.{a, P}.Åë) J (T A 7r) - T(d`,P {a, P}9)T

in general. By the same formula, a and 5 satisfy

                 [if(a), 7r]ip + S(dipLa) " (- A 7r) - 7r(ne. Ct)7r = O

                      '  and
                  [ft(fi), T]di + i(ne.f3) J (7r A 7r) - 7r(d`.?P)7r = O .
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  Since ft({ct,S}9) = [ft(a), it(x3)]ip and {a, I3}9 = L,ip,-(.)5 - L:(fi)a - dÅëLT(a,6), we have

    i{a, 6}.Åë J [7r, T] di

   =[[if(a), if(fi)]ip, 7r]ip + S (L.di-(.)dojL6 - L9- (B)dipLa) J 7r2 -- 7r (L9- (.)de,B - L:(fi)cr,P a) 7r

   =[ft(a), [ft (f3), 7r]ip]ip + [[ft(a), T]ip , ft(13)]di

     + S (L9- (.) arL?B - L.ip- (fi)dL? a) -J T2 - 7r (L9- (.)neL6 - L.ip- (s)dLP a) T

   =L.di- (.) (-S(dipLfi) J7r2 + 7r(dÅëLfi)7r) - L9- (fi) (- ll(dL? a) J 7r2 + 7r(dÅë. cv)z)

     + S (L.di- (.) dÅëLfi - L.ip- (B) de2 cv) J 7r2 - 7r (L9- (.) dÅëL6 - L9- (B) d9,a) 7r

   = ' i (L9- (.) arLPB) JT2 - ideLBJL.ip- (.) 7r2 - Sip(if(a))dÅë.B- 7r2

    + (L9- (.) 7r)(dL? B)T + T(L9- (.)(d9.6))T + 7r(de.? fi)L9- (.) 7r

    + S (L9-(fi)neLa) JT2 + ine,cv JL9-(fi)T2 + Sip(ii(B))ne.aJT2

     ' (L.ip- (e) 7r)(neL a)T - T(L9- (fi)(dÅëL a))T - rt(dip. a)L9. (fi) 7r

    + i (L9- (.) dÅëL6 - L9-(fi)d9La) J 7r2 - 7r (L9- (.) depL6 - L9- (B) clq,a) 7r

      1   = - sarLPB J L9- (.) 7r2 + (L9- (.) T) (dipL6)T + 7r(neLB)L9- (.) 7r

    + gne.a J L9. (m r2 - (L9. (fi) 7r)(ne. a)T - 7r(d`LP a)L.di- (p) 7r

    - SqE,(ii-(a))ar,el ,(3 J 7r2 + iip(ii•(p))d`.er ct J 7r2 .

The sum of the 2nd and 5th term of the very right hand side'of the equations above is zero

as we see from the assumption

    (L9. (.) 7r)(de,B) 7r - (L9- (B)T)(neL a) 7r

   =(- ill ct`,eP J ne. af J 7r2 + 7r(d`,P a) 7r(d`.er fi))7r - (- ll d`.tl a J d`.el 13 -J 7r2 + 7r(ne, fi)7r(d`.tr a))7r

                                       '               '   =o

and aJso from the assim)ption the sum of 3rd term and 6th term becomes

                -iT(neL fi)neLaJ T2 + ST(neLa)avL5J T2 .
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Thus,

     {a, fi}9 J [T, T]ip

    = - d`.tl ,B J (2[ii'(a), 7r]di A T - di(ii'(a))7r2) + d`.elaJ (2[ii•(P), 7r]di A T - ip(ft(P))T2)

     - 7r(d`,lr 5) d`,tr aJ 7r2 + 7r(ne, a)d`,el fi J 7r2 -- ip(ii'(a))d`.tr ,B " 7r2 + gb(if(P))d`,tl ct J 7r2

    = d`Lgl f3 J ((tt`LlraJ 7r2) A 7r - 27r(d`Ler a)7r2) --E cl`LeraJ ((dipLPJ 7r2) A T - 27T(d<L!r 13)T2)

     ' T(neL P) neLa J 7r2 + T(ne. a)ue. fi J T2

    ==cl`LP6J ((d`,era" 7r2) A 7r) - 7r(d`Ltr a)(ct`.e fi J 7r2) -- dip.cv J ((d`.tlBJ 7i'2) A T)

     + 7r(d`.e P)(d`.Pa J 7r2) .

We claim that the above is identically zero. To prove this, it sufiices to verify in the case

when depLa = e! A e2 and neLP = ni A n2. By a direct and lengthy computation, we can verify

that the above actually vanishes.

Proof of the Jacobi identity: Let a,P,7 E ([7r, 7r]ip)O. Using the definition of the bracket,

we see that

  {a, {B, or}9}9 = ft (a) J neL {6, or}rO - L9- ({fi,,}g)a

           = L9-(.){p, or}9 - dipL(it(a) j{,(3,7}9) - L9-({B.}di.)a

  using Lemma 3.3
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and so we have

= L9- (.) (ii (fi) J d9L or - L9- (,) fi) - d9L ( if(cv) J ( it (fi) J neL '7 - L9' o) 7))

  'L9,(fi),ft(,)l,a

= LTip'(a) (L9'(mor - dLl)(X(X3)Jor)) - L9'(.)L9'(,)/3

  -dt,er (ii•(c,) J ii•(I3) J dLl)-y - ii•(a) JL9- (B)•y) - Le,(fi),.(,)]dia

= L9' (.) L9- (m ty ' L9' (.) deL) (T(X3, 7)) - L9- (.)L9- (,)B

  -d`,tl (ii'(a) -1 ffE(f3) "d`,ll")t - ii'(a) JL.ip-(B)")t) - LP,(p),.(,)],a

==
 L.di- (.) L9- (fi)7 - L.di- (a) LTip' (7)6 - Lef(fi),io)] ip a

  -dL? (L.ip- (.) (r(B, or)) + ft(a) J {t(fi) J de. or - ft(a) JL9. (fi)or)

= L9- (.) L9- (fi) or - L9- (.)L9- (,)6 ' Left(6),it(,))ea

  -d`,er (ii•(a) " d`.tr (7r(B, "y)) + ii•(a) J iiE(B) J ne, ry

     -ft(a) J ft(6) J 2av - ft(a) J dvL (ft(fi) J ty))

= L9' (a)LTip' (fi)7 - LTip' (a) L9' (or)B - LPft (B),it (7)]ip a

     .Sfii,,{a' {fi' or}9}9 = .,`tS,, ((L9' (a)L9'(fi)7 -' L9' (p)L9' (a)or) - LPit(p),ft(,)jip a) = o

using Lipx o Lipy - Lipy o L9y = LPx,y]di on r(A'L') for each vector fields X and Y, which is true

by virtue of the closedness of ip.

The anchor for Lie algebroid: Since

L9.(f6)

 L9xa

(Ldi.f)P + fL16 - <ip, X>fB

fLfta + (X Ja)dLf

we have

 {a, fB}9 =(L9- (.)f)fi + fL9- (.)6 - <ip, ft(a)>fP - (fL9- (B)a + (ft

         - (fdL(7r(a, P)) + 7r(a, B)dLf - f7r(a, P) ip)

       = f{a, P}.ip + Rest,

where

(P)) J a)dLf
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        Rest =(L9. (.)f)fi - <ip, ft(cv)>fP - (it(6) j a)dLf - (7r(a, B)dLf - fT(a, fi)ip)

            -<if(ct), dLf>X3 - <a(it(a)), df>13 .

Thus, we have

                     {a, fB}9 =f{a, I3}9 + <a(it(a)), df>6 •

This shows ao ft is the anchor for Lie algebroid (([T,T]di)O,{•,•}9).

Corresponding 1-cocycle: We wil1 verify ip o ft is a 1-cocycle on (([T,T]ip)e,{•,•}9,ao it).

Put here ipoft by q. We have to show

         p({cr, fi}9) = Lofa)(g(fi)) - Lb(p)(g(a)) for each a, X3 E ([T, 7r]di)O .

The right hand side is reduced as

             RHS =La(it(a))(4rif(fi)) - La(ft(fi))(ipft(a)) = di([ft(a), ft(fi)])

because of ip being closed. Cencerning to the left hand side, we have

               LHs =(ip o it){a, fi}9

                   =di([ft(a), ft(fi)] - i[7r, r]ip(a, P)) using (3.6)

                   -ip([ft(a), ft(B)]

because of (r, I3 E ([T, T]ip)O. Thus we haye checked the equality of the both sides, and a o ft

is the anchor for the Jacobi-Lie algebroid. O

Remark 3.2 In the proof above, we see that if ip is exact, then the corresponding 1-cocycle

is also exact. In fact, assume di = dLf for some f, i.e., <ip,X> = <dLf,X> == <df,a(X)> for

each X E r(L). Then, we have <g,a> = <ipft,a> = <ip,it(a)> == <df,a(it(a))>.
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3.1 Anexarnple

We show an example on the 5-dimensional Euclidean space R5 with the Cartesian coordinates

(xi,... ,x5), which tell us some difference between ordinary bracket and the deformed one.

Since the space is simply-connected, every closed 1-form is exact, and every closed 1-form ip
is of form ip = df = 25 oOi]. dxj = ]Sl fjdc J' for some function f, where fj = oOxf]••

               j'=1 o'=1
   Take the frame field {Zi,...,Zs} defined by

                  o x2a a xla             Zi =a.i -io.s ' Z2 = ox2 + -IF axs '

                  a x4o o x3o                                                    a
             Z3 =ox3 d -i- oxs, Z4 = ox4 +iaxs ' Z5 = oxs '

Then, Zs is a central element and the bracket relations are given by

                [Zi, Z2] = -[Z2, Zi] == [Z3, Z4] = -[Z4, Z3] = Z5

and all the other brackets vanish.

   Let us consider a 2-vector field T:

   T = ai2Zi A Z2 +ai3Zi A Z3 +ai5Zi A Zs + a23Z2 A Z3 + a25 Z2 A Zs +a35Z3 A Zs

where {aii' } are constant. The rank ofT is 4 if and only ifA := a!2a35 -ai3a25 +ai5a23 l o.

Hereafter, we assume that T is of rank 4. We have the following calculation:

     [T, T] =2ai2 (ai2Zi A Z2 +ai3Zi A Z3 + a23Z2 A Z3) A Zs

         =2ai2 (ai2 aOxi A oax2 +ai3 oaxi A oax3 +a23 aex2 A oOx3) A aaxs

  and
   S[T, T]ip =3[T, 7r] + fi(ip) A 7r

         =- fsAoe.i A oO.2 A oO.3 +(a'2ai2 + f3A) oO.i A aO.2 A oa.s

                         ooa                                                    aao           + (ai2ai3 - f2A) oxi A ox3 A exs + (ai2a23 + fi A) ax2 A ax3 A oxs '

These equations above imply that [T,T] =O if and only ifai2 =O, and [T,T]ip = [T,7r] if and
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only if ip = df with fi = f2 = f3 = fs = O for some function f, and [T, T]ip = O if and only if

           fi=-Å}ai2a23, f2=kai2ai3, f3=-kai2ai2, fs=o. (3.7)

Now, we consider the following special cases.

(Case 1) If ai2 = O and A 7E O, then [T,T] = O, and so [T,T]O is the whole cotangent bundle

of IFII5 and dimit([T,T]O) = 4, ft([T,T]O) = Imit. Choose ip = df with fi iE O and f2 = f3 = O.

Then ([T,T]ip)O is spanned by ip and dx4. ft(([T,T]di)O) is spanned by

       ft(df) =fs(i;t4ai3 - a'5) aa.i + fs(ili4La23 - a25)aa.2

                         X2i X22 '3 )oa.,-fi(iS`ai3-ai5)aO.,              + (fla13 + fs(-a23 - -a . a35)

and we see that this does never vtmish from the assumption A l O. Thus, it(([T,T]ip)O) is of

dimension 1.

(Case 2) Assume ai2 S O and A l O. For example, choose ai2 = a35 == 1,ai3 = a23 = o.

             000Then [T,T] =2axt A ox2 A axs and so [T,T]O is spanned by dx3 and dx4. Thus, i([T,T]O)

is spaimed by 3eslls. and dimft([7r,7r]O) = 1. According to the condition (3.7), if we choose

fi = f2 = O, f3 = 1 and fs =O then [r,T]ip =O and so ([T,T]ip)O is the whole cotangent

bundle and ft(([T, T]ip)e) = Imft is of dimension 4, which is spanned by Zi, Z2, Z3, Zs.

   If we choose A l ---ai2a23/A, (i.e., f l O right now), f2 = fs = O, and f3 = 1, then

           aao[T,T]di = 2fia.2 A ex3 A a.s 7e O• ([7r,T]ip)O is spanned by dxi and dx4. since ft(dxi) =

aax2 + (ai5 + {ZliL) oe.s and ft(dx4) = o, we see that ft(([T, T]di)e) is 1-dimensional.
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Lie Algebroid Associated with an Almost Dirac Structure

Kentaro Mikami and Tadayoshi Mizutani

                        Abstract
  We show that to an almost Dirac structure of a manifold, there asso-
ciates a Lie algebroid. In the case of a Poisson manifold, this Lie algebroid

coincides with the usual cotangent Lie algebroid with Lie algebra bracket
on the space of oneforins.

1 Introduction

Let T be an arbitrary 2-vector field on M, i.e. a smooth section of A2(TM). We

denote by 1, the bundle homomorphism T'M -> TM defined by ax e T(ax,•)
(x E M). By an abuse of notations, we denote by the same letter it, the homo-
morphism r(T'M) - r(TIL(i) between sections. For the Schouten bracket [T,T]
of T, which is a 3-vector field, we define ker[T, T] = {a E T'M I [T, T](a, •, •) == O}.

If ker[T,T] forms a bundle of constant rank, it was proved in [7] that ker[T,r]
becomes a Lie algebroid with respect to the bracket Lft(.)6 - Lft(6)a - d(-(a, 6))

and the anchor p(ct) = it(a). Clearly, it coincides with the usual Lie algebroid
structure of T'M of a Poisson manifold (M, it), where [T,T] == O. On the other
hand, the graph of it : T'M -> TM defines a sub-bundle of TM e T'M, which
is an almost Dirac structure (see Section 1), and ker[7r, 7r] can be identified with

a subset of this alrnost Dirac structure. The aim of this paper is, generalizing the

above result, to show that a certain sub-bundle Lo of an almost Dirac structure
is a Lie algebroid with respect to the bracket and the anchor, which are natu-
rally defined on the almost Dirac structure (Theorem 2.1). The sub-bundle Lo is
given as the kernel of the 3-tensor field T restricted to the almost Dirac structure,

introduced in [1] (see Definition 2.2).

   In Section 1, we review some basic facts on Dirac structures and prove that Åío

is a Lie algebroid. In Section 2, in order to clarify the conditions under which an

element belongs to kerT, we use the description of an almost Dirac structure by
means of a "2-vector field on a sub-bundle ofT'M". In Section 3, we give a `dual'

description of Dirac structures in which we use "2-forms" defined on a sub-buBdle

of TM. We a}so give simple examples.
   It is possible to generalize our result in the case of deformed bracket in (4] or
[3], and also seems highly possible in the case of the twisted Poisson structures
[8]. However, we restricted ourselves to the case of the ordinary Dirac structures



                      '                                   '                                                '       '                                       '
ill order to make the arguments and the computations clear. We hope interesting
examples will come about from the further generalizations.

                                             '                                        '              '                       '                              '                                              '                               '2 Dirac StructUtes ' '
                                         '                '           '                 'Let T(M) and T'(M) be the tangent and the cotangent bundle ofM, respectively.

Let <•,•>+ be the symmetric pairiRg on T(M) OT'(M) defined by '
                                               '               '  <(Xx, a.), (Y., 5.)>+ = a. (Y.) + fi. (Y.), 1 (X., or.), (Y., 6.) E T.M o T; M.

Definition 2.1 (T. Courant). A smooth sub-bundle L c T(M) e T'(M) is
an almost Dirac structure if L is maximally isotropic with respect to the paiTing
[ll il'.'t.ThLiS.MLea.".i,ighi,'S, aidS,".?/,bal"?yd.le Of rank ?(F dim M). and thg restriction of

                                '                                                      'Remark 2.1. In [1], an almost Dirac structure is called a Dirac structure, however

B2.raUtSesttrhuectWuOr8dinD[Zlrla.C Str2LCtUre tO mean the one which was called an.integrable

                                                    '                                                             '                                                       '
                                                                ..
.(?•

i02." ,iior",.),9.;,i`Y'el.W,?2ere,1.biiikl`S.ef."fd.bl,,.,(.,,---.6,.,,,)

                                        '                                 '              tt                                                 '                          '                                      '                     ttwhere [Xi, X2] is the usual Lie bracket ofvector fields and Lxa is the Lie derivative

of l-form a with respect to the vector field X. -
   The bracket [(Xi,ai),(X2,a2)l is skew-symmetric but does not satisfy the
Jacobi identity. Indeed, let (Ji,J2) denote the Jacobiator .• . - '

                             ..                  '            '           ' (Ji, J2) t EE(Xi , ai), (X2, a2)i, (X3, a3)] + c•p• •' '' '

           '                      t. . . ..Clearly Ji =O. As for J2, however, we have '

                     '                               '                                    'Proposition 2.1. The second component J2 of the above Jacobiator is given by

                                              '                               .. .         eJ2 = id (2ai([X2, X31) + Lx, (a2(X3) ' a3(X2))) + c•p• •

                                                  '                        '                                     '                                 '                                         '                               '
Especially, the restriction of J2 to an almost Dirac structure L is

                                 '            ... .                                       ..             ' gd(ai([X2, X3]) + Lx, (a2 (X3))) + c•p• •

                       '                                   '                  'Proof. This is shown directly from the definitions of <•, •>+ and ff•, •]. a

Definition 2.2. An almost Dirac structure L is ca[lled a(n) (integrable) Dirac
structure if r(L) is closed under the bracket [•, •g.
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   In [1], Courant introduced the R-tri-linear map on T(M) O T'(M) to R
defined by T((Xi,ori),(X2,or2),(X3,or3)) = <{(Xiiori);(X2)or2)])(X3,or3)>+ fOr
(Xi, ai) E T(11L4)eT*(M) (i = 1, 2, 3), and showed that an almost,Dirac structure
is integrable if and only if T restricted to L vanishes: TIL =- O. We note that the

restriction TIL has the tensor property. 'That is TIL is tri-linear over Coo(M).

Proposition 2.2. Let L be an almost Dirac structure. Then TlÅí, T restricted to
L, is co7nputed as

                                             '    TIL((Xi, ai), (X2, a2), (X3, dv3)) = (cMi([X2, X3]) + Lx, (cr2(X3))) + c•p•

                                          '     '                                    '                         . t.
                                            '                 '                                    '                                                      '                                                      '                                           '           '                                          '                              1   J2 IL((Xi, ai), (X2, op), (X3, a3)) = id (TIL((Ki, ori), (?(2, ev2), (X3, or3)))•

                                                      '                '                                        '     '                     'Proof. On Åí, we have

 <[(Xi, ori), (X2, cr2)], (X3, a3)>+

     '= (Lx, or2)(X3) - (Lx, ai)(Xk) - gLx, (a2(Xi) L ori(X2)) + a3([Xi, X2])

                  '                                         '      = Lx, (a2(X3)) - or2([Xi, X3]) - Lx,(ori(X3)) + ai([X2, X3I)

                                    '            -- ' ' - LL Lx,(or2(Xi))+a3([Xi,X2])•
                                    '                                                 '                                                  tt                                          '
  This together with Proposition 2.l shows Proposition 2.2. 0

  Let L be an almost Dirac structure. We consider the `sub-bundle' Åío ofL
consisting of the elements in kerTIL. More precisely, we put

           ,Co = {e = (Z, 7) E 1[ l T(ei, e2, e) = O, ei, e2 E JC}•

Since T restricted to L, is skew-symmetric with respect to all the arguments, Lo
can be considered as the kernel of the bundle map T : L - A2L', e F-> T(•, •, e).

Since the fiber dimension of Lo may change from point to point, to get a Lie
algebroid, we have to restrict Lo to a submanifold of M where Lo is of constant
rank. Hereafter, for simplicity, we assume that Lo is a bundle of constant rank on

whole M. The following proposition is obvious from Proposition 2.2.

                                                'Proposition 2.3.' If one ofei,e2,e3 in r(L) is an element in r(Lo), we have the

Jacobiidentity: . ,'. -. - -' .'-                       .t                          '                                         '                                '                                                   '                                                      '              [[eb e2L e3] + [[e2, e3], el] + [[e3, el], e2] = O.

                                  '  The following proposition is used to show that Lo is closed under the bracket
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Proposition 2.4. Fore = (Z,or) E r(2 o) and ei : (Y,rs) E T(L), 2ve have
ge, ei] E r(L).

Proof. Since T restricted to L is skew symmetric, we have <ge, ei], e2>+ =T(e, ei, e2)

==T(ei, e2, e) = O, for any ei, e2 E r(L). By the maximality of L, we can conclude

[e,ei] is in r(L). ' '' . - ', O
                                                         '                                                '             '          '                                                               '   By the above propositions, we obtain the followiRg theorem.

Theorem 2.1. Let L be an almost Dirac structure and Lo the kemel ofT, which
we assume a sub-bundle ofL. Then Le is a .Lie algeb'roid with respect to the bracket

[•,•] and the anchor pL,, which is the natural prol'ection p : T(A/I) (D ']]*(M) -->

T(M) restrictedto Åío. ' ''
.-

Proof Let ei,e2 be two elements of r(Åío). Then for any e3 and e4 in r(L), we

                                                               '
   -T([el, e2], e3, e4) = <[Eel) e2], e3], e4>+ = <[[eb e3], e2] + (eb [e2) e3]], e4>+

                 = T(Eei, e3], e2, e4) + T(ei, Ee2, e3i, e4) = O•

The second equality holds because of the Jacobi identity (Proposition 2.3) for
ei,e2,e3 and the last one is true because [ei,e3],[e2,e3] are both in r(L) by
Proposition 2.4. ']]his shows that r(Lo) is closed under the bracket. Since the
Jacobi identity is obvious for the elements in r(Lo)(Proposition 2.3), [•, •] is a Lie

algebra bracket on r(Lo). That pL, satisfies the condition of an anchor map is
also verified directly from the definition (2.1) of [•,•]. - - '' O

3 AnalternativedescriptionofaDiracstructure
In this section and the next, we give alternative descriptions of an almost Dirac
structure .and give more explicit conditions for an element in L to be in the kernel

   Let L be an almost Dirac structure on M and pc and p} denote the restriction
of the natural projections T(M) eT"(M) - T(M) and T(M) eT'(M) --> T'(M)
to L, respectively. We put E =: ImpL and v4 = Imp}. As was remarked before, the
fiber rank of S as well as .4, may not be constant. To justify our computations
we only treat the case when S and A are bunldes of constant rank.
   Take an element a G A. (the fiber over x E M ), then for some X E T(M),
(X, or) lies in L. That L is isotropic implies that the restriction XIA. of X con-•

sidered as an element in Aza (dual space) depends only on a and we obtain an
well-defined fiber maP T : .4 - .4" (see [ll). We may consider T as a `2-vecter
field' defined on (each fiber of) .4. It is.skew-symmetric since for or,5 E v4, we

                               '         7T(a,6) = X(fi) = -Y(a) = -T(P, cy), where (Y, 6) E L.'
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   From the sub-bundle .4 = Imp} and a skew-symmetric 2-field T on .4, we can

recoverÅíasabundle given by '
          Li ={(X, e) GT(M) oT'(M) 1 eE A, fi(e) =XIA}.

Indeed it is easy to see that L' is a vector bundle of rank n(= dimM). That L'
is isotropic with respect to <•, •>+ follows from the skewness of r. If (X', of) E L,

                                              '                                          '                '                                   '                                           '                    '                '                                      '    '       <(x', at), (x, e)>. = cyt(x) + e(x') = T(e, cu') + e(x') ,

                     = - T(of, e) + e(xt) = --x'(e) + e(x') = o

for (X, e) E L'. This together with the maximality of L implies L == Åí'.

   Now we are going to characterize the element of Lo in terms of T and A,
where Lo is the sub-bundle kerTIL of Åí. First, we observe that A" is a quotient
bundle of T(M) by the sub-bundle AO, where AO is'the bundle consisting of the
annihilators of A. T is an element A2A', however we choose and. fix a splitting

to the projection T(M) - A*, and consider A" as a direct summand of T(M),
obtaining a 2-vector field which extends T. This is possible since we are assuming
A is of constant rank. We denote this extended 2-vector field by the same letter
r, since we hope this will not cause any confusion. Then L is given by

(3.1) L = {(X, a) I dv E .4, fi (a) = XIA} = {(ff(a) + )lr, a) l a E A, .Xt c AO}.

For ei = (X,a),e2 ='(Y,6) and e3 = (Z,7) in L, we look for the condition on
e3 under which T(ei,e2,e3) == O holds for all ei,e2 E ,C. We can write ei ==
(-7nyr(q) Å}X,a),e2 == (ft(fi) + Y,6) and e3 = (ft(or) + Z,or), respectively, where

X, Y, Z E AO. With these notations, we have

                       '    g(x, or), (yl 6)1 - ([ft(a)lft(p)] + [fi((tz), 9] + [X, ft(s)] + [X, V],

             '                ..                      Lfi(.)6 + Lfi(fi)a'- d(T(a, 6)) + Lx/3 - LYa) .

                                        '                                               '                        '                                           '                                    'Writing {a, fi}. for Lft(.)6- Lfi(6)a- d(T(a, 6)) and making the pairing <•, •>+ of

                              -the above element and (Z, 7) = (fi (7) + Z, 7), we obt ain -. ' '' ' -

(3.2) [it(a), ff(fi)] (or) + [fi (a), 9] (7) + [X, ft(fi)] (7) + [X, Vi (7)

       + 7r(7, {a, ,(3}.) + Z({a, ,(3}.) + 7r(7, Lx,(3 --• Lvor) + Z(L ?,(3 - LvcM),

           '                  'which is nothing but T(ei,e2,e3)• ' ' - - ' i '
  If we choose .Xr == V =O, then (3.2) gives

                        '(3.3) ' [ft(a),it(6)l(7) +T(7, {or,6}T) +2({a, fi}r) = 07

                                          tt                               '                      .t tfor a,6E .4. We put ]{7 =O and a =O in (3.2), we obtain

(3.4) [X, fi (5)l (7) +T(7, Lx6) + Z(Lx 6) = O, X E AO,6 E A.



              'If we put a = 6 = O into (3.2), we get or([X, Y"]) = O (X,V E AO). It is easy to

see that this is equivalent to - -
                                      '                                                   '                                                 '                                          '                                '                                                          '(3•5) . -' ' L.xt7Ev4, .Xi'EAe. -' '. . .
                                       '                                                      'f39g)Ieig91X' S'kia(g.g)'S:,2fi ige.5) `.h.a.`,S'fi,2Zfa7,).,=,,E3,S7.) + 2• 7) satisfi.es conditions

(3.4i"iSh,eq.f2.5i.Oi:ih2g,'.W,ehgrue8illllg{y the conditions (3•3) and (3.4) First, we .ote

                                   t.                     t-               ...                                         '                                                --     (Lx7r)(fi} 7) + T(Lx6, 7) + 7r(7, Lx5) + Lx(2(6)) - [.Xr, Z] (5) = O.

           'Since 2(5) -- O, this means '  .1 .'- . . .. .'  .. .'  . -'

(3.6) '  ., ., .. . (LxT)(7)+Lx2=O, onA. .. / '
   To simplify the condition (3.3), we use the following . - ' -'

                                                   '                                      'Lemma 3.1. For2E.40 a ?d or,fiEv4, ye have ' '''

     .. [z, af](or, 5) '-   . .. . Z({ cv, ,(3}.).
                              '                  'Proof By the definition of {dv, X3}T, we have

          2({a, X3}.) =(Lft(.)/3)(2) - (Lfi(6)ce)(2) - L2(7r(cy, fi))

                  =Lit(a)(B(Z)) - 5(Lfi(a)Z) - Lft(6)(a(Z))

   (since a(2) l,, 6(b .. 6t) or(Lit(5)il)-L2(T(or,m) .. ..

                  = - cr(L2(fi(6))) - ft(or)(L26)
                  == - or([2, fil)(fi)) == [2, T](a', 6) .

                      . ..                                           '                             '                                                           '                                           '                              -]                                 '                     '                                     tt                                            '                                t ..    ttLemma 3.2. The condition (3.3) for (Z, or) = (ft(7) + 2, or) can be replaced by

the next.equality: '', . .•...                       '                        '
                                                '            'or ,g.i..l,.tly [b7-T: y(')`)'  ii( e)1] + fL2if)(5) - if({i" ./3}T)'= o,. .. ,6 g Tft,

 '- s[T,T](or).+Lpt =O                                   on A.
                '     '                  'Proof. By Lemma 3.1, (3.3) can be replaced by

(3.7) [fi(cy), ft (5)](or) + T(7, {cy, fi}.) -g [2, T] (cv, 6) = O a, I3 E .4.
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Using the general formula for a 2-vector field (see [7], [9])

(3.8) , [ft(cy), ft(5)] == ft({a, fi}.) +i[r, T](or, 5) ,

                                    '                 tt              '                                             '                                          'we thus rewrite (3.7) as - - .' . .'-'
                               '                                               '        '                              '                         t.       i[7r, 7r] (a, 6, or) + (L27)(or, 6) = O i.e., }[T, T] (or) + L2T = O .

                  '                                     '                               '                                                     '                       '                             '
                        '                           '
   From the above lemmas, we can summarize the coRditions on Lo as fo11ows.

Proposition 3.1. Let A and AO be as before and r a skew symmetric bilinear
form on A. Let

                                              '                                           '   Ji[ == '{ (X, cy) l cr E A, 7T'(cr) : XIA} = {(fi(or) + ,8', or) l a E A, X E v40}

be an atmost Dirac structure defined by T. We put

                                              '                                 '     ,Co =.{e =I (Z, or) == (ft(7) +2,7) E ,Åí l T(ei,e2,e) == O, ei,e2 E .C}.

                                            'Then (Z, or) = (ft(7) + 2, 7) E L belongs to ,Co if and only if the-follo2ving condi-

tions (Cl), (C2) and (C3) are satisfied:

           (Cl) Lr7Ev4, foraglXEAO,
           (C2) (LxT) (7) + Lx2 = O on v4, for all X E AO,

           (C3) 'S[T,7r](7) +[1, r] = O on.. '.4 .

                            '                         'Example 3.1. Let A be an arbitrary PfaMan system. We consider the case when

T=- O. 'Then -' .-, .• - .- ''                                       '           '                          tt            '' L= {(X, a) lac A,XE AO}.. .. . '
                                          '
(Cl) means Lx7 E v4 for any X E .40, and (C2) mean [X,Z] E .40 for any
X E .40. C}early, (C3) is vacuous in this case. Thus Åío = Char(v4) Å~ v4i, where
Char(.4) is the Cauchy characteristic of A and Ai is the first derived (Pfafian)

system of A, respectively. In particular, if A is completely integrable and hence
v4 is the tangent bundle of a foliation .1', Lo is just the product T.1' Å~ (TJr)O. The

bracket in Lo is given by .. .
                E(X, a), (Y,',B)} == ([X, Y], Lx,(3 -- Lycu).

                                            '                                      'Example 3.2 ([7]). We consider the case when .4 = T'(M) and T : T'(M) -
T(M) is an arbitrary 2-tvector field. Since AO = {O}, the conditions (Cl) and
(C2) are trivial. (C3) implies [r,r](a,7,•) = O for any a E T"(M). Thus,
Lo = {(it(or),7) l 7 G ker[T,T]} and ker[r,T] is a Lie algebroid with respect to

{•,•}.. This is our previous result in [7]. . ' -•
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4 Description by 2-forms
In this section, we describe an almost Dirac structure by a `2-form' on 8 = pL (L) c

T(All) and find the conditions•which characterize Lo.. To justify the compution,

we assume S is of constaBt rank again.

   Let w : E -> 8* be a skew symmetric bundle homomorphisin as before. The
almost Dirac structure is given by

                             tt     L = {(X, a) E T(M) e T" (M) l ixw = dv ls, X E E, cr E T'(M)}•

                                                     '                                                      '                         '                  '                                               'The bracket on r(Åí) is given by ''
                   '      '                 '     I(Xi, ori), (X2, a2)] =([Xi, X2] , Lxi cr2 - Lx, cri + d (tu(Xi, X2))) .

Let ei = (X, cr),e2 = (Y, 6),e3 = (Z, 7) be'three elements in r(L). We look for
the conditions on e3 == (Z, 7), so that T(ei,e2,e3) = O holds for all ei,e2 E T(Z ).

We choose a section s of the natural projection i' : T'(M) - 8" and consider the

map sow : S --> T"(M). Extending sow to a map froin T(M) to T'(M), we
obtain a 2-forip di E A2(T'(M)) satisfying di(ei, e2) = w(ei, e2), for ei, e2 E S• We

write an element (X, or) in Åí as (X, ixdi + d), where a E 80 (= the annihilators

of S). We compute T(ei, e2, e3) using the formula in Proposition 2.2:

   T((X, a), (Y, fi), (Z, or))

  =a([Y, Z]) + fi([Z, X]) + 7([X, Y]) + Lx(fi(Z)) + Ly(or(X)) + Lz(or(Y))

  = - da(Y, Z) -- d6(Z, X) -- d7(X, Y) + Ly(a(Z)) + Lz(5(X)) + Lx(7(Y)).

Making use of

               da =dixdi + dbl = Lx(b - ixddi + dd,
          da(Y, Z) =(Lxdi)(Y, Z) -- (ddi)(X, Y, Z) + (dbl)(Y, Z),

         Ly(or(Z)) =Ly(di(X, Z) + dv(Z)) = Ly(di(X, Z)),

we see the above T(ei,e2,e3) is equal to

            dtl) (X, Y, Z) + bl([Y, Z]) + B([Z, X]) + 7([X, Y]).

From this, we obtain the following conditions (4.1) and (4.2) on e3 = (Z, 7) which
assure T((X, a), (Y, fi), (Z, 7)) = O for all (X, a), (Y, rs) E L.

                                         '(4.1) . dcl)(X,Y,Z)+7y([X,Y])=O for.X,YEE,
                                               '                        '            -(4.2) 6( [Z, X]) =O ' for XE S, BE EO.
Now, (4.1) is equivalent to that (ddi)(Z) - d7 = O on 8 and from 7 = izdi +7,
this is equivalent to Lzdi - d7 = O (on E). Similarly, (4.2) is equivalent to that

                                     'LzSc8. Thus Lo is given by the following: •'
  '          '                  '          JCo = {(Z, or) E ,C l LzS c S, Lz() - d7 =o on s}.
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             '                                                  '                                                    '             ..
We note that Lzw is well-defined since the right-hand side of

                     ix(Lzdi) = Lz(ixclb) - i[z,x]di

                                'is independent of the choice of di. The bracket (in L) is given by

                                          .t                                  '            if(Z, or), (W, 6)] - ([Z, W], Lz6 - Lw7 + d(7(VV))) .

                             tt tt                                       'Since L[z,w]S = Lz(LwS) - Lvv(LzS) c E and

                            '           '                                   '                             '                          '            L[z,vv]di =Lz(Lwdi) ' Lptr(Lztl)) == Lz(d6) - Lvv(dy)

                   '                                                 '                  ==d(Lz6 -T Lw7 + d(ty(W))), on 8,'

                                     '                         '                                     'that [(Z, 7),(W, i)] E Lo is verified. '

                    '                                        '                                       '                       'Example 4.1. Consider the case where E t T(M) and w is an arbitrary 2-form.

                                          '
                                                      '                                                  '                                                                  '              tt                                                 '                                            '     '                                                   '   Åí = {(X, af) E T(M) O T' (M) l ixw -- cr} = {(X, ixw) l X G T(M)}.

    '                                                             '                                                '                           .t    'It is easy to see ,tCo = {(Z, iztu) l ZE kerdcu}. In particular, ifw is closed, .Co is

aDirac structure given by the presymplectic structure on M. '' '

Example 4.2. Let 8 be a contact distribution with its contact 1-form e, and let
w == de. The only vector field in S satisfying Lz8 c S is the zero vector field.
Thus F(Lo) = {(O,fe) i f' E COO(M)} with trivial bracket. Similar situations
occur with distributions whose Cauchy characteristic is trivial, since the condition

Lz8 c S means that Z is contained in the Cauchy characteristic of E. With such
distributions, it is appropriate to consider the di-deformed bracket ([3],[41).
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                      Abstract

  We show that to an almost Dirac structure there associates aLie
algebroid. From this Lie algebroid, we obtain a Dirac structure. Thus,

to an almost Dirac structure, there associates a Dirac structure. We
apply these results in the case of a deformed bracket.

1 Introduction

The Lie algebroid structure of T'(M) of a Poisson manifold (M, 7r) is one of
the basic tools in Poisson geometry and it comes from the condition [T, T] = O.

If we use the Schouten-Jacobi bracket, this is generalized to the existence of
Lie algebroid structure of T'(M) = T'(M) Å~R ofa Jacobi manifold (M, n, 6).
For an arbitrary 2-vector field - on a manifold, we proved that ker[T, 7r] has a

natural(in a sense) Lie algebroid structure provided kerl7r, Tl is a sub-bundle

of T'(M) of constant rank ([7]). This result is generalized further to the case

1



of the deformed bracket by a 1-form ([8]). To prove these results in a unified

framework, it is relevant to utilize an almost Dirac structure of a Courant
algebroid. An almost Dirac structure is just a maximally isotropic sub-bundle
of a Courant algebroid ([9]). In this paper, we consider the Lie algebroid
associated to an almost Dirac structure including the case of twisted bracket.

In particular, from an arbitrary 2-vector field and a closed 3-form, we obtain
a certain 3-vector field whose kemel has a Lie algebroid structure (Theorem
s2t)fu)IYt2raelS(OTShheOoWefuhast) .tO an almost Dirac strugture} there associates a Dirac

   In section 2, we review soine basic notions related with Lie algebroids.
Here, we define a Courant a!gebroid-starting from a Lie algebroid. Then,
we introduce an almgst Dirac structure and a 3-tensor T on it and give a
proof of our fundamental result to the effect 'that the kemel of T forms a
Lie algebroid(Theorem 1). In section 3, we 'compute the tensor T in the
case where the almost-Dirac structure is given as a graph of a 2-vector field.

As a result, we obtain a description of our Lie algebroid in terms of the 2-
vector field and its Schouten bracket. In section 4, we discuss the process
to get a Dirac structure from the Lie algebroid which was ebtained from an

almost Dirac structure. In section 5, we take an opportunity to deal with
a Jacobi manifold in a framework of deformed Schouten bracket and give a
computational example foraresult in the previous section. '
   Throughout the paper, we work in the Coo category.

2 Courant algebroid ofa Lie algebroid
                                   '                   '                  tt t         'Let A be a Lie algebroid over a Coo manifold M with the anchor a : A -

T(M).Namely, --.. • ' -                                '                                              '                                                           '           '                            tt                                           '                           ' (a) A is a Cco vector bundle over M, whose space of sections r(A) has a

     Lie algebra bracket [•,•IA overR . , ' -
                   '                                                 '                                                        '                 . .. (b) a : A --ÅÄ T(M) is a bundle map which induces a Lie algebra homomor-
     phism a : r(A) -> r(T(M)), satisfying the condition

                             '            '      [Vi,fV2]A = <a(Vi), df>V2 +f[Vi, V2]A, Vi,v2 E r(A), f E COa(M).

                     ..              '                              'We will use the same letter a to denote both the bundle map and the induced

homomorphism of sections. The Lie algebra bracket on r(A) and the action

                       '                  '             '                          '                                                 '                   '
                                2



of a(v) on Coo(M) induce an `exterior differeRtial' dA on r(A' A') defined

by a well-known formula. For example,

 (dAe) (vl, v2) = L.(.,)(e(v2)) - L.(.2)(e(vl))-<e, [vl, v2]A>,

                                    eE r(AiA*), vi,v2 E r(A) .

We usually write L. in stead ofL.(.) which denotes the Lie derivative operator
with respect to the vector field a(v). From a Lie algebroid we get a Courant

algebroid in the following way. First, we recall the definition.

Definition 1 A Courant. algebroid ts a vector bundle E over a manifold M
equipped with

 (a) a (usually non-skew) bracket [•,•]E on r(E),

 (b) a non-degenerate symmetric bi-linear form <•, •>+ on E,

 (c) a bundle map p : E --> TM (also called anchor) which induces a homo-
    morphism p : r(E) - r(TM), satisfying the conditions

         (1) [eb [e2, e3]E]E = [[el, e21E, e3]E + [e2, [eb e3]E]E

         (2) p(e)<el,e2>+ = <e, [el,e2]E+ Ie2,el]E>+

         (3) p(e)<el,e2>+ = <[e,el]E, e2>+ + <el, [e,e2]E>+

It can be shown that [ei,fe2]E = f[ei,e2]E+ (Lp(e,)f)e2 aRd p([ei,e2]E) =
[p(ei),p(e2)] hold ([5]). Thus a Courant algebroid is a Leibniz a}gebroid with

additional conditions (b), (c2) and (c3).

From a Lie algebroid A, we construct a Courant algebroid as follows. Let
EA = A EI) A'. On EA, we define the symmetric bi-Iinear form <•, •>+ and the
bracket [•,•]E. by

          <(Vi, ei), (V2, e2)>+ =ei (V2)+ e2 (Vi) (1)
          [(VI, el), (V2, e2)]EA = ([Vl, V2]A, L., e2 - t., dAel), (2)

                              (vi, 0,) E r(E) (i = 1, 2),

where, L. denotes the interior product. The anchor p : EA -> T(M) is given

by p = ao pri, where pri is the projection to the first factor Ae A' -> A
and a : A --> T(M) is the anchor of A as a Lie algebroid.
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   Then, it is a standard calculation to verify EA is a Courant algebroid
with this bracket, the bi-linear form and p as the anchor. We abbreviate this
Courant algebroid (EA, p, [•, •]E., <•, •>+) to EA•

   Besides EA, we have another class of Courant brackets on Ae A*. They
are deformed brackets. To define a deformed bracket, we choose a closed l-
form (precisely, a Lie algebroid 1-cocycle) ofA, namely an element ip G r(A')

satisfying --- . . . .. - .. .. .- ..
                                                          '                 '                         '                          '                   '                                                          '
               '   - . . ip([vb v2]A) = L.1 (ip (v2)) - Lv2 (ip (vl))• 1 '-
                                     '            .t                               '                                         '                 '                                     'Then we have a ip-deformed exterior differential operator d% and ip-deformed

Lie differentiation operator L9 defined respectively by

                   '                                        '                                            '        d%or = dAce + ip A a,

       L.ip, V2=[Vi, V2]A, 1. . . (3)
        L.ipcr =i dAg? L.a+ L.,d%ce, , for v,vi,v2 E r(A),a E I"(A'4').

                            tt                                                      '                                     '                 '           .t               '         '                                                        '                                                           '   The operator L.ip. does not commute with contraction but it satisfies the

                      'formula- '-- '-. -' ''                      t tt                          '                        '                                                     '                    '                           tt     '                        '                                   '                         '                              '          L.ip(a(P)) ==a(L.ipP) + (L.dia)(P) + (p - 1)ip(v)or(P)

for a `p-vector field' P and a Cform' a.
                                      '   Fortunately, we have the following familiar formulas in this case, too.

                                             '                    '                                         '                             '        '                        '                                   '           '                                           '               '            d%oL9----Leod%,-'[L9,,I)9,].-Le.,,.,].• '- '' (4)
                                                 '                                     '            L9,etv2-tv2oL9i =t[vi,vS]A, . ' '' ' .-'(5)
                                                             '                                                       '                          '                                                            '          L.ip, (or(v2)) = (L.ip, or)(v2) + a(L.ip, v2), -( a: `1-form'). (6)

                               '                                                              '                                                           '                                   tt                                                          '                           tt               '                                                       '                                         '  '                                       tt                             '   Using dipA and L9, we wi11 define a new bracket I•, •]diE. ori r(EA), (EA =

AoA'), by simply rePlacing dA by d% and L. by L9; '
                           '                                         '                       '                               '             '            [(Vi, el), (V2, e2)]%. = ([Vi, V2]A, L9, e2 - t.,dipAei)•

               .. tSince we have the formulas (4), (5), (6), we can verify the ancioms for
(EA,p, [•, •]%.,<•,•>+) to be a Courant algebroid, where the anchor p is the

same as before. We denote this Courant algebroid by Efl. -
   Now, we define a(n) (almost) Dirac structure which we will concern.
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Definition 2 (Dirac structure) Let (E,p,[•,•]E,<•,•>+) be any Courant al-

gebroid. A smooth sub-bundle L c E is an almost Dirac str2tcture ifL is
maximally isotropz'c with respect to the symmetm'c pairing <•,•>+. If, more-
over, ,C is closed under the bracket [•, •]E, it is called a Dirac structure.

   To state our results, we alse need a map defined by

             T : F(E) Å~ r(E) Å~ r(E) . COO(M)

                        T(ei, e2, e3) = <[ei, e2]E, e3>+. (7)

T is not skew-symmetric in general. Note that however, on the bundle L, it
is skew symmetric aild COO(M) tri--linear, by (c2) and (c3) in the definition

of a Courant algebroid (Definition 1).

   Now, we have the following general result.

Theorem 1 ([91) For an almost Dntc structure L c E, we put

         Lo = {e E LIT(e, e2, e3) = O, Ve2, Ve3 E L} = ker T.

Assume that Lo is a COe sub-bundle of L of constant rank. Then Åío is
a Lie algebroid 2vith respect to the bracket {•,•IE and the natural proj'ection

PILo:Lo -> T(M) as anchor.

Proof. Since the bracket restricted to r(Lo) is skew symmetric, as we
remarked above, what we have to see is only that r(Lo) is closed under the

bracket. The Jacobi identity is automatic. We can see

 (1) If ei E r(Lo) and e2 E r(L) then O = T(ei, e2, e3) = <[ei, e2]E, e3>+ for

    any e3 E r(L). Thus the maximality of JC means [ei, e21E E F()C).

 (2) Let ei,e2 be two elements of r(Lo). Then for any e3 and e4 in r(Åí),

    we have

              T([el, e2]E, e3, e4) = <[[el, e2]E, e3]E, e4>+

               = <(el, Ie2,e3]E]E,e4>+ - <[e2, [eb e3]E]E,e4>+

               = T(ei, [e2, e3IE, e4) - T(e2, [ei, e3IE, e4) = O•

This shows [ei,e2]E is in r(Le) and r(Lo) is closed under bracket [•,•]E. O
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   A further example of a Courant bracket en EA is obtained by choosing a
`dip.-closed 3-form'tp in A3(A') ([10]). This bracket is given by the following

      [(v,, e,), (v2, e2)]$ = ([v,, v2]A, L9, e2 - L., d9Ae, + Åë(vi, v2, •)).

That this new bracket defines a CouraBt algebroid on EA is verified just in
the same way as iB ([101) since we have formulas (4),(5),(6) and so on, for

ip-deformed differentiations. In the next section, we will consider the Dirac
structure defined by a 2-vector field and examine the Lie algebroid Le in the
relationship with the 2-vector field.

3 Computation ofthe kernel ofT
In this section, we consider the almost Dirac structure given as a graph of `2-

vector field' T. Then we express the map T in terms of T and apply Theorem
1. We use the same notations as in the previous section.
   For elements ei = (vi,ei) (i = 1,2), e = (v,e) in r(EA) and the bracket
[•, •]$, we have

  T(ei, e2, e) = <[eb e2]ipÅë, e>+

    = e([v,, v,].) + (L.ip, e,)(v) - (i., dip.e,)(v) + Åë(v,, v,, v)

    = (L.ip, e,)(v) - (L.ip, e,)(v) + e([v,, v,].) + L.ip(e, (v,)) + Åë(v, v,, v,) (s)

   We consider the case where L is given as a graph of a `2-vector field'
T E F(A2 A),

                iC = {(ft(e),e) E A ED A' 1 e E A'} ,'

where, it is 7r considered as a map A' - A (We often use T to denote ft when
there is no danger of confusion). Then, (8) above is calculated to be

   (L9- (,,)02 - L.di- (,,)ei)(it(e))-L9- (,) (T(e,, e,))

                        +o([if (e,), ii(e2)]A) + Åë(it(e), if(e,), if(e,))

   = T(0, L9- (e,)e2 - L.di- (e,)ei)-L9- (e) (T(e,, e2)) + T({e,, e, }9, e)

                        +i[7r, TI%(e,, e,, e) + (it.Åë) (e, e, , e,)

   == (S[T, T] ipA + it, <b)(e, ei, e2).
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In the above, ft. denotes the map A3 A' - A3 A induced by ft aBd we used
the formula [ft(o,), it(e,)]ip. = T({e,, e,}9) + g[T, T]a(e,, e,) ([s] Lemma 3.3).

From this, we see (it(e), e) E Lo is equivalent to that [T, T]ip.(e) +2(it,<l>)(0) =

O. Applying Theorem 1, we obtain

Theorem 2 Let T be an arbitrary `2-vector.field'of a Lie algebreid A. Let ip
andÅë be a 1-coc?Jcle and a 3-cocycle ofA , respectively. ijker([7r, 7r]9+2it.Åë)

forms a sub-bundle of A' of constant rank, then it is a Lie algebroid with
respect to the bracket

           [ei, e2]$ = L.di- (e,)02 - ift(e2)neAei + Åë(it (ei), it(e2), ')

and the anchor is the composition of maps

                ker([T,T]di. +2it,fp) c-> A' -99'!}rt T(M).

An example is found in the last section.

   Similarly, we treat the case where Åí is given as a.graph of a `2-form' w;

               L= {(v,w(v)) E EA = A (D A'lv E A}.

We pute = (v,w(v)), e! = (vl,w(vl)), e2 = (v2,w(v2)) and computeT(e,el,e2)
After a short calculation, we obtain T(e, ei, e2) == (neAtu + Åë)(v, vi, v2). Thus

by Theorem 1, we have

Theorem 3 Let w be an arbitrary `2-form' of a Lie algebroid A, that is,
cv E r(A2 A') . Let ip andÅë be a 1-cocycle and a 3-cocycle ofA, respectively.

ij ker(dipAw + Åë) c A forms a vector sub-bundle of A of constant rank, then

it is a sub-Lie algebroid ofA.

Example 1 (dip-closedness ) Let A = T(M) be a tangent bundle with usual

bracket. We choose ip to be a c!osed 1-form on M and Åë =- O. Then the
condition dipw = O for a 2-form w meaBs that w is expressed locally as a

multiple of a closed 2-form by a positive function. Indeed, writing locally

ip = df,we have

       d(efw) = efclcv + efdf A cd = ef(dcv + df A cv) = efdipdi = O.

Thus, w is called a locally conformally presymplectic form on M.
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4 Presymplectic structure of Lo

The image of the anchor of a Dirac structure is an integrable distribution
of the base manifold. It is a generalized foliation each leaf of which has
a presymplectic structure (A presymplectic structure on a manifold is just
a closed 2-form on it). In this section, we prove that Lo defines a fiberwise

`presymplectic structure'p . This structure in turn gives a Dirac structure. In

this way, starting from an almost Dirac structure we obtain a Dirac structure.

   To fix the arguments, we discuss the case of Courant algebroid EA =
A (D A' with the bracket [•, •IE.. The arguments are also valid in the cases of
[', ']ipA and [•, •]$ with suitable modifications.

   Let (EA,p,[•,•]E.,<•,•>+) be our Courant algebroid over M. Let pri :
EA - A be the projection aBd K = pri(Lo). On each fibre K. over x E M,
there exists a `2-form' ft. defined by P.(v) = elK., where, (v,e) E iCo and
elK. denotes the restriction. The totality P of pt.,(x E M) gives rise to a
well-defined map K -> K' and it satisfies

        B(v,)(v,) = e,(v,) = -e2(v,) = -p(v,)(v,)

                                     (v,,ei),(v2,e2) E Åío.

This shows that p(vi,v2) = R(vi)(v2) is a skew-symmetric 2-form on fibers
of K. Now, we prove pt is dA-closed. Indeed, for vi,v2,v3 E F(K), we have

           (dALL)(vl,v2,v3) = (i.,dALL)(V2,V3)

                         = (Lv! LL - dA(ivi LL))(V2, V3)

                         = (i.2 L., tL)(v3) - (dAel)(v2, v3)•

That is,

             (dA)tL)(vi, v2, •) = Lvi iv2 )tL - ifvi ,v2]A JLe. - iv2 dAei

                         = L., e2 - i., dAel - LL([vl, v2]A). (9)

Since Lo is closed under the bracket [•, •]E. , ([vi, v2]A, Lv,e2 - iv2dAei) E Lo,

and the above should be O on K, hence pa is dA-closed. In this way, pa is
considered as a kind of presymplectic structure of M. In the case where
A = T(M), pa is actually a usual presymplectic structure of each leaf of a
foliation.

   In the case of a general Lie groupoid A, we discuss as follows. Put D =
ImpiL,, (p = aopri, a: anchor ofA ). As is well-known, D is an integrable
distribution and defines a generalized foliation.
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Proposition 4 Assume K is a smooth bundle and keralK c kerpt. Then
each leaf of D has a presiymplectic structure.

Proof. For aR element u E D, we choose any elemeRt v E K such that
u = a(v). The ambiguity of the choice of v is in keralK. Because of the
assumptioR keralK C kerl'z- , as elements in K', P(v) is deterihined by u. For

an element w in keratK, we have P(v)(iv) = -P(ill)(v) = O. If we look at the

exact sequence
                  O- D' -> K' - (keralK)' -O

this shows that pt(v) is in D'. Thus, we obtain a well-defined map P : D - D'

which is skew symmetric as easily seea and P may be regarded as a leafwise
2-form. To prove pt is leafwise closed, we note that the sections of ker alK form

a Lie ideal iit r(K) and that in our notation the Lie derivations L. and L.(.)

are the same. TheB, we can see from the usual formula of exterior differential,

(dJli)(zLi,u2,ze3) is equal to (dAJu)(vi,v2,v3), (a(vi) = iLi,i= 1,2,3) which is

   Now, we will show that we have a Dirac structure associated with Åío.
For this, we put

                Lo ={(v, e) EKÅ~ A' 1 P(v) = elK} (10)

where, K = pri(Lo) and pa is a 2-form on K.
   Since e + Ke (O denotes annihilator) defines a single elementeiK, we knew
that at each point of M, the fiber dimension of io is equal to the fiber

dimension of A.

Theorem 5 Assume that L" o is a smooth bundle, then it is a Dirac structure
with respect to the bracket [','IE.

Proof. For (vi,ei), (v2,e2) E ZEo, we have

             <(v,, e,), (v,, e,)>. = e,(v,) + e,(v,)

                            = pa(Vl, V2) + pa(V2,Vl) = O.

Since the fiber dimension is equal to that of A, as remarked above, we may
coRclude that Lo is maximally isotropic with respect to <•,•>+ . Next, we
show I" (Zio) is closed under the bracket [•, •IE.. Since

            [(Vl, el), (V2, e2)]E. = ([Vl, V2]A, Lv, e2 - iv2 dAel),
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what we have to show is pt([vi,v2]A) = (L.,e2 - t.,dAei)IK. From that A-
is closed under the bracket [•,•]A, we see that (Lvie2)IK = Lvi(02IK) and
(tv2dAei)u< = Lv,dA(0ilK). By this we have,

         (L.,02 - L.,dAel)IK = Lv,(J[Z(v2)) - Lv,dA(1[1(vl))

                        = tt([vi,v2]A), (see (9) above).

Thus, we have proved L" o isaDirac structure. o
  What we have shown above is that for an almost Dirac structure L in
(EA,p, [•, •IE., <•,•>+) there corresponds a Dirac structure i[io provided ,(io is

a smooth vector bundle.

5 Jacobi Structure and an example
In this section, we recall a formulation of Jacobi structure expressed in terms

of a deformed bracket and give a simple computational example of the pre-
ceding result.

   Let T(M) be the extended tangent bund!e of M. Namely, T(M) is the
tangent bundle of M Å~ R restricted over M Å~ {O}. A section of T(M) is
written as X+azil.7, where X is a vector field of M, a E Coo(M) and Sl is a

canonical vector field along M Å~ {O} in the direction of R. T(M) has a Lie

algebroid structure whose bracket is given by

                 00                                               0
           [X +ab7.,Y+bb;.T] == [X, Y] + (Lxb- Lya) EiT.• (ii)

and the anchor is p(X +azjl ) = X. Let ip = d7 be the dual to ?i} . Then di is

a Lie algebroid cocycle since we have

           dip(X, Y) = L,(x) ip(Y) - L,(y) ip(X) - ip([X, Y])

                   = Lxb- Lya - (Lxb- Lya) = O,

here, X and Y denote X +alil and Y+bzi}, respectively.
   A Jacobi structure on M is given by a 2-vector field T E r(A2TM)
which satisfies [7r, 7r]d' = O, where [•, •]d' is a Schouten-Jacobi bracket with

!-cocycle d7 (or a dT deformed bracket). Writing 7r = T+ Sl.7 AC, where
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T E F(A2T(!14)) and 6 E r(T(M)), by the fQrmulas of Schouten-Jacobi
bracket ([8]), we have

               [7r, 7rjd' = [T, T] + 2c A T + 251.7 A [C, 7r]•

Thus, the condition [7r, 7r]d' = O is equivalent to that

                [T,T] + 2C A 7r =O and [4, T] = O,

which is the condition often used as the definition of a Jacobi structure (T, C).

   A contact manifold is a special case of Jacobi manifold where T = T +
zil.7 AC is non-degenerate. The 1-form e determined uniquely by 0(C) = 1 and

T(e,•) = O is a contact 1-form with C as the Reeb vector field. Conversely,
from a contact 1-form one can obtain (T,C). On a Jacobi maitifold, clearly
7i'M = ker[T,xld' holds. Therefore, by our results in preceding sections,

7-'M which is the 1-jet bundle of functions on M, is a Lie algebroid with
respect to the bracket

                   {ei, e2}= L#l e,)e, - L,, ddT e,. (12)

   As an example, we take a contact forrn

                                n                        e= dy -2 zidx,

                                i= 1•

which is the canonical form on M = Ji(R",Ri) or just a contact form on
R2"+i. The Reeb vector field e is easily seen to be S}, . The corresponding

Jacobi structure (T,6) is

              T = l.llil]., zili.l;. A ( oa., + zi zS7), c = zll7•

                                               '
Thus, we obtain the exteRded 2-vector field

                       o
               7r =T+ bT. A6

                 = II.llli., zi;,;. " (sa., ' zi zil7) ' zll.l7 " zlil7•

                     '
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The almost Dirac structure we consider is the Dirac structure L which is the

graph of T : T'M - TM. It is spanned by

        ( - oOzi'dXi)' ' ( ' a2.,dXn) ,

   (oOxi + Zi Zi}t ' dZi)''''' (oOx. + Z" ziil7' dZ") ' (zii7, dT) i (- zllltT, dy) '

   We choose dT as a 1-cocycle and dTAdx!Adzi for 3-cecycle <P and compute
Åío with respect to the Courant bracket [•,•]$'. As we have seen, Lo is the
graph of the map T restricted to ker([r, T]d' + 2T.Åë) = ker 7r.Åë. We have
r*Åë = -b{.I; A S}, A S9,r and ker(7r,fp) is spanned by 1-forms

                   dX2,•••, d Vn, dZ2,•••, dZn, dT•

Therefore, Lo is spanned in 'T O T' by elements

  ( - oa.,,dx2), , ( - o2.Idxn) ,

              (oOx2 + Z2 Zll7,dZ2) ,•••, (oax. + Zn zj}, din) , (zil7, d7) •

From this, we have the `2-form' p defined on K, which is given by

                     n
                tL = 2 dxi A (dzi - zidT) + dy A dT.

                    ir-2

Finally, Dirac structure Lo is spanned by 2n + 2 elemeRts

 (O' dX')' (- o2,' dX2) ' ' (" o2.,dXn) ,

 (O' dii)' (o2., + Z2 ill7' di2) ' ' (oO.. + Z" il},dZn) , (O, dT), (zj},d') '
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CR EINSTEIN-WEYLSTRUCTURES

TAKAAKI OHKUBO AND KUNIO SAKA.MOTO

ABsTRAcT. An Einstein-Weyl structure is a natural generalization of an Einstein struc-
ture within the framework of conformal geometry. We are interested in considering an
Einstein-Weyl structure on a CR manifold. A CR manifold has a conformal structure
only on its hyperdistribution. In this paper, on a CR manifold we naturally define an
Einstein-Weyl structu;e closely related to the conformal structure on the hyperdistribu-

tion.

                            O. INTRODUCTION

  A conformal structure on a differentiable manifold is a conformal equivalence class of

Riemannian metrics (or pseudo-Riemannian metrics) on the manifold. On a conformal
manifold, the objects which are invariant for every Riemannian metric included in the
conformal class are 'important, or more strictly, the object except for them does .not
have significance. Weyl conformal curvature tensor is representative one of them. It is
interesting to consider whether the results obtained in coBformal geometry also hold in CR

geometry. In this paper, we study an analogy of Weyl structure in CR geometry. A CR
structure on an odd dimensional manifold is a pair (9, J) of a 1-codimensional subbundle

9 of the tangent bundle and a complex structure J on 9 with a certain integrability
condition. Assuming the nondegenerate property for 9, we have a confotmal class of
fiber metrics on 9. It is well-known that Bochner curvature tensor is one of the objects
which are invariant for this cbnformal class on CR manifolds.
  In this paper, we dlsc'uss a structure analogous to Einstein-Weyl structure on a confor-

mal manifold and especially consider whether we can comfortably define this structure
for a conformal class on 9. An Einstein-Weyl structure is a natural generalization of
an.Einstein structure within the framework of conformal geometry. Strictly speaking,
Einstein-Weyl structure is a pair of ([g], D) of a Riema[rmian metric class [g] and a linear

connection D, preservin' i [g], whose Ricci tensor satisfies an equation that the symmetric

part is proportional to g pointwise. On a CR manifold there are naturally almost contact
structures (ip,C,e) which determine a conformal class on 9. Therefore almost contact
structures (ip,C,e) associated with (9, J) correspond to Riemannian structures in c6n-
formal geometry. Furthermore, a connection corresponding to Levi-Civita connection is
defined by Tanaka [11], which is called Tanaka connection. We need to define a connec-
tion which preserves the conformal class on 9, Such connection corresponds to the Weyl
                                                                     '             'connectionD ''• -' •-
  ln Section 1, we recall the definition of Einstein-Weyl structure and relation between

a Weyl connection D and Levi-Civita connection V' of a Riemannian metirc included
in a given conformal structure (cÅí [7], [8]). This section will be useful to understand

the analogy mentioned above. In Section 2,'we reqall the definition of CR structure,
results obtained in [9i and certain cochain complex {CP,q(M),,d'} defined by Tanaka

  2000 Mathematics Subl'ect Classiflcation. Primary 53c25; Secondary 53c26.
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[111. In Section 3, we define CR Weyl connection and study the relation between CR
Weyl connection D and Tanaka connection V, Where Tanaka connection V is a unique
linear connection associated with almost contact structure (ip, C, e) introduced in Section

2. In Section 4, we see a CR Weyl connection from the standpoint of the frame bundle.
Section 5 is devoted to the study of curvature tensor of a CR Weyl connection. In Section
6 we study the telation between the curvature tensor of a CR Weyl connection and that
of a Tanaka connection. In fact, we obtain an equation including these two tensors, which
is similar to the equation appearing in [21. Using this equation, we define a CR Einstein-

Weyl structure in anatural fashion. In the Iast section, we introduce an example ofa
CR Einstein-Weyl manifold. In fact, we see that SO(3)-bundle over a quaternSon Kahler
manifold admits a CR Einstein-Weyl structure.

                      1. EINSTEIN-WEYLSTRUCTURES
  Let M be an n-dimensional manifold with a conformal class [g]. A XIeyl connection
on M is a torsion-free linear connection which satisfies the following condition: '

(1.1) '' ' . 'Dg=-2pXg             '                                                                 '                                    '                                        '                        'for some 1-form p. .If we ch6ose g' = e2Pg for a smooth function pa in the conformal cl'ass

[g], we have a 1-form p' =p- dpa instead ofp for the equation (1.1). From this we can
say that a Weyl coimection D preserves the conformal class [g]. Let ([g],D) be a pair
of a conformal class [g] and a Weyl connection preserving it. A pair ([g], D) is called a
Weyl structure on M and if M admits a Weyl structure, then (M, [g], D) is called a Weyl
manifold. We can•also say that a.Weyl connection is a torsion-free linear 6onnection
which is reducible to a connection in CO(M) corresponding to the conformal class [g],
where CO(M) is a subbundle in the frarne bundle F(M) with a structure group CO(n).
  Now let V be the Levi-Civita connection of g on a Weyl manifold M. We can write
D = V+H where H is a tensQr field of type (1,2). Then we have from (1.1)

(1.2) H(X, Y) == p(X)Y +p(Y)X - g(X, Y)P

for X, Y E ec(M), where P is the dual vector field ofp with respect to g. Conversely if we
define D with (1.2) for an arbitrary pair (p,g), D satisfies the equation (1.1). Therefore

we see that an arbitrary pair lp,g) determines a Weyl structure on M.
  Now let rD be the Ricci tensor of a Weyl connection D. Note that as D is not a
metric connection, rD is not necessarily symmetric. A Weyl structure ([gl,D) is cal!ed
an Einstein-Weyl structure if the symmetric part of rD is proportional to g pointwise.

Note that the proportional factor may be non-constant. If M admits an Einstein-Weyl
structure ([gl, D), then M is called an Einstein- Weyl manofold.
  Now if we let rV be the Ricci tensor of the connection V, then rD and TV are related
                                                     'by the following equatien (cf. [7], [8]): . '. ' '
                                          '                                   '
   '(1.3) rD(J\, Y) = (1 - n)(Vxp)(Y) + (Vyp)(X) + (n - 2)p(X)p(Y)
                                           '                       '                     + g(X, Y)(6p + (n - 2)g(P, P)) + r" (X, Y)
                                      '                              tt
for X,Y E ee(M), where 6p denotes the codifferential with respect to g.
  We have the following local characterization of Einstein-Weyl structures (cf. [7], [8]):
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Proposition 1.1. Let (p,g) be a VVeyl structure on M. Then (p,g) is an Einstein-Weyl
structure of and only if there exists a smooth junction A on M satisfying the equation

        2 5 "((vxp)(y) + (vyp)(x) - 2p(x)p(y)) + rV(x, y) -- Ag(x, y)

for every X, Y E ec(M).

                2. CR sTRucTuRE AND 'IIANAKA coNNEcTIoN

  Let M be a connected differentiable manifold of dimension 2n + 1 (n ) 1). An almost
contact structure on M is a triplet of a (1, 1) tensor field ip, a vector field C and a 1-form

e satisfying

                                       '                       '(2.1) -. - 'e(c)-1, ip2=-I+exc
                                                                    .t                                           '          '                                    '                     '                                       'which imply

                                    tt                              '(2.2) ipC =. O, eo ip ==O and rank ip == 2n,
                             '                                      '                                                 '                                             '                                                    '                            'where I denotes the identity transformation. An almost contact structure (Åë,C, e) natu-
rally corresponds to a reduced bundle in the frame bundle F(M) with structure group

                       {(6 `cO) cEGL(n,(c)}

  Now let 9 denote a 1-codimensional subbundle of the tangent bundle TM, which is
called a hyperdistribution. A cross section J of the bundle 9x S)' satisfying J2 = -I is

called a complex structure on 9, where 9' is the dual bundle of 9.
  If M admits a pair (9, J), there is always a local}y defined almost contact structure
(ip, C, e) satisfying that the 1-form e annihilates 9 and the restriction of Åë to 9 coincides

with J. In fact, since there always exists a.1-form e annihilating 9 in each coordinate
neighborhood U of M, we have a vector field C ori U in such a way that e(6) . : 1., Then

we can define, on U,a(1,1) tensor field ip by , . ' '• '- '
                                                       '                                                    '                                                           '                                        '                                                                 '   ' ' di(V)-J(V-e(V)e)
for V E ec(U) because V - e(V)C belongs to 9. We shall denote V - e(V)C by Vg, and
call 9-component of V with respect to C. Then a straightforward calculation shows that
(ip,C,e) is an almost contact structttre on U. An dlmost contact structre (ip,C,e) such

that the 1-form e annihilates 9 and the restriction of ip to 9 coincides with J ls said
that the almost contact structure (ip,4,e) belongs to the pair (9, J). In addition, if M

is orientable, there are globally defined almost contact structures (ip,g,e) belonging to
(9, J). A 1-form e annihilating 9 is determined up to a non-vanishing smooth function.
Moreover we have
                         d(fe)(X, Y)- fde(X, Y)
for every X,Y E r(9) and smooth function f, where r(9) denotes the set of cross
sections of the veetor bundle 9 on M. Therefore, in virtue of this fact, the following
definition is well-defined. If de is nondegenerate on 9, then (9, J) is said to be nonde-

                                       t.                                                              '
  A pair (!2), J) ls called a CR structure if the following two conditions hold:

(C.1) [JX, JY]-[X, Y]Er(9)
                 ''(C•2) . [eJX, tJY]-[X, Y]-u7'([X, JYI+[tJX, Yl) =O
                                 '
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for every X,Y E r(9). If M admits a CR structure (9, J), then M is called a CR
manifogd. In the sequel, (!P, J) will be a nondegenerate CR structure.
  Now let M be a connected orientable manifold furnished with a CR structure (9, J)
and (ip,C,0) an almost contact structure belonging to (9, J). Define w by

Then w satisfies

                                     '                                        '(2.4) . '- w(JX, JY) -'w(X, Y)
         '                               '                                                                        '                                                                  '                   'for every X,Y E P(9) because of the condition (C.1). Moreover define g : 9 Å~ 9 --> R
                                                         '                               ..t ..
(2.5) g(X, Y)-w(JX, Y),
                                  ,which satisfies the equations

(2.6) g(X, Y) =g(Y, X), g(JX, .TY) =g(X, Y)
for every X,Y E r(9). Therefore g is symmetric, Hermitian and nondegenerate, which

                                 ttis called Levi 7netric. -' -.- - - ' '                                                         '  From a given almost contact structure belonging to (9,J) we can always make an
almost contact structure which belongs to the same (9, J) and satisfies the following

                      '      '                                 '   '                                               '                                             '         '(*) ' [g,r(g)]cr(g) '
(cf. [9]). This condition (*) is equivalent to

(2.7) yce =e or w(c, x) =o
for X E 9, where Yc denotes the Lie differentiation with respect to C. Such an almost
contact structure is denoted by (ip,C,e)' and we call it a 9-preserving almost contact
structure. We shall restrict our attention to the family of !ii)-preserving almost contact
structures which belong to CR structure (9, J). The following result is proved in [9]:

Lemma 2.1. lf(ip,C,e)' and (ip',e',e')' belong to (9,J), then they are related by

(2.s) e' -- Ee2pe, e' = ee-2P (4 - 2([2'), ip' = ip - 2e x P'

                            '                                                                       'where e = Å}1, pa is a smooth functden, P' E r(9) is defined by g(P',X) F op(X) for

XEr(9)and(?'==JP'. '. '- ' ' •- ''
  Next we shall explain Tanaka connection associated with (ip,C,e)' and how the con-
nection changes under (2.8). We don't have to assume the condition (C.2) so far, but we
need to assume the condition (C.2) for the next Iemma (cf. [9], [12]). '
       '                          '                   'Lemma 2.2. Let (ip,6, e)* be a 9-preserving almost contact structure. Then there enists
uniguely a linear connection V such that VÅë = O,VC = O,Ve = e, V'Og = O, Tgc -- e
and T(C, X) == -1/2ip(Ycip)X, where VO denotes the induced connection on the hyper-
disinbution 9 and Te,(X, Y) the 9-cornponent of the torsion tensorT(X, Y) ofV with
respect to C for X, Y E Ir(9).

Remark. We put FV = T(C, V) for V E TM. Note that F is symmetric with respect to
g and anticommutes with J (cf. [9]).

  The linear connection stated in the above lemma is called Tanaka connection associated
with (ip,g,e)". We give the following (cf. [9]).
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Lemma 2.3. Let (ip,e, e)" and (ip',C', e')" be two 9-preserving almost contact structures
which belong to the CR structure (9, J). Let V and V' be Tanaka connections associated
with (di,C,e)' and (di',C',e')' respectively. Define the difference H between V and V7' by

                 H(V, W) = V'.W- VvW, V, VV of(M).

Then we have

(2.9) H(X, Y) - p"(X)Y+p'(Y.)X-g(X, Y)P'+q*(X)JY+q*(Y)JX-g(JX, Y)Q',

(2.10) H(C, X) -= VJxP' + VxQ" - 2q'(X)P' + 2p'(X)Q* + 2g(P', P")JX,

for every X,Y E r(9), where p* = du and q' = -p' o ip.

Remark. We have g(P*, X) == p'(X) and g((2', X) == q'(X) for every X E r(9).

  Next we shall introduce a cochain complex {CP'g, d" } of a CR manifold M with
complex coeficients, which corresponds to that in the case of a complex manifold (cf.
[111). We shall use the following fact in Section 6.

  Let (9, J) be a nondegenerate CR structure of a (2n + 1)-dimensional orientab}e man-

ifold M. Then the comp}exification CTM of the tangent bundle TM is decomposed as
CTM == C9 e .2' where C9 is the complexification of 9 and Y is a trivial line bundle'
isomorphic with CTM/Åë9. The complex structure J on 9 can be uniquely extended
to a complex linear endomorphism of C9 and the extended endomorphism will be also
denoted by J. Let 9i,O (resp. 90,i) be a subbundle of Åë9 composed of the eigenvectors
corresponding to i (resp. -i) of the endomorphism J. Note that 90,i == 9i,O, where'
the notation "bar" denotes the conjugate operator. It is clear that conditions (C.1) and

(C.2) are equivalent to .• . '. . .''
                                                            '                         '                            '(2.11) [v(gi•O), r(gi•O)]cv(gi•O).
  Now we put Aic(M) = r(Ah(CTM)) and denote by F"(Ak(CTM)) the subbundle of
Ale(CTM) consisting of all th E Ak(ÅëTM) which satisfy the equality:

                     '                  '                                                    '                 '                                   -- .(2.12) ip(Xi,..., Xp-i, Yi,•••, Yic-p+i) =O
                 tt                              'XOkr(aÅëllTXAit') rthh,X.p-.i, Eh.C.T, M a"d }. Gi ,' ' ' ' i \te-p+l.E 9i'O• Note tbat we define EO(Ale,(Åë7"M)) --

(2.13) FP+i(Ale(ÅëTM)) c FP(Ak(ÅëTM)), FP+i(AP(CTM)) == O.

Furthermore putting AP•q(M) = r(FP(AP+q(CTM))), we easily find that

(2.14) dAP•q(M)cAP•q+i(M),
because of (2.11). Moreover putting CP,q(M) = AP,q(M)/AP"i'g-i(M), then we have the
we!l-defined operator d' : CP,q(M) -ÅÄ CPiq+i(M) which is naturally induced from the .
operator d satisfying (2.14). And we obtain the cochain complex

(2.15) O -> stP - CP,O(M) - CP}i(M) -. CP•2<M) -, ... ,

where stP denotes the kernel of CP'O(M) - CP'i(M), whose element is called a holomor-

phic p-form in the mean of CR geometry. Since AP,q(M) = AP+i,q'i(M) e CP,q(M), we
have the decompositon:

                                  q                                    '                        AP}q(M) =: ({E) cp+q-iii(M).

                                         '                                 i=o
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Now for th E CPiq(M) we have dip E AP,q+i(M) or more precisely the following fact is

we}1-known (cf. [11]): '' '' . ' - .
                                           '(2.16) dth E CP+2, g-i(M) e cp+i• q(M) s cp• q+i(M). ''

                    'Consequent}y dcb can be written uniquely in the form:

                                          '                  '                                         n                          dip = Aip + d th + d th,

where Ath E CP"2•q-i(M) and dcb E C""'q(M). For any ip E C"'q(M), Ath, diÅë and d'ip

are described as follows:

(2.17) (Ath)(Xi, •••, Xp+2J IPTi,•••, PTq-i)

        r p + lq + 1 ;..(-1)""""th(T(XA; Xpa)i Xi, i ' l , rtA;

                                      '                                       .•., .Xlp, •••7 Xp+i, Vi, •-•, 9q-i)

(2.18) (dn)(Xi,

   1
p+q+1

•••
, Xp+i, Yi, •••, Yq)

2(-1)"'i(Vx. th)(Xi, •••, "J())L, •••, Xp+i, Vi7 •••, IPq7 ),

 A

(2.19) (d'th)(Xi, •••, Xp, 9i, •••, 9q+i)

         =p f-i )f l { \(- 1)""i (V pA th) (Xi7 , Xp, 9i, , k, , Y,+i ),

           + 2(-1)A+pa+izb(T(XA, 9.), X,, . . • , )CA,

             A,p .- ' ' . -
                                       '. .., Xp, IPTi,1••, 9p) •••, IZq+i))

for YA E 9i,O and XA E 9i,OeY, where V is a r]ranaka connection associated with some.
9-preserving almost contact structure (Åë,C,e)' and T is the torsion tensor of V: Note

that Y == CQspan{6}. '' . '-

                       3. CRWEyLSTRUCTURES
  Let (M, 9, J) be a connected orientable (2n + 1)-dimensional manifold furnished with
a nondegenerate CR structure (9, J). Under the notation of lemma 2.1, if g and g' are
the Levi-metrics made from e and e' respectivelY, we have

                   tt '                   '(3.1) '.1 ' . g' == Ee?"g ' '
                                 '                               'Therefore the family of 9-preserving almost contact structures which belong to the CR
structure (9, J) induces pseudo conformal geometry only on the hyperdistribution 9.
We shall naturally define a Certain Weyl strueture with respect to this pseudo conformal

geometry. The word " naturally " of the above sentence means that the relation between
a CR Weyl connection of the CR structure (9, J) and a ']ranaka connection of a 9-
preserving almost contact structure belonging to (9, J) is analogous to that between a
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Weyl connection of a conformal class and Levi-Civita connection of a Riemannian metric

in the conformal class.

Definition. Let (ip,C,e)" be an arbitrary 9-preserving almost contact structure be-
longing to (9,J). A linear connection D on M is a CR Weyl connection if, for every
V E ee(M), X,Y E r(9) and for some 1-form p on M, the following conditions are
satisfied:

(a)

(b)

(c)

(d)

(e)

(f)

     Dve= -2p(V)0
     DvC. = 2p(V)4.

        DVJ =O
     DVg - -2p(V)g
  T(X, Y) = -tu(X, Y)C,

           1
T(C,, X) = --l2.IÅëp(Y4,.dip)X7

 '
where DO denotes the induced connection on the hyperdistribution 9, T the torsion tensor
of D, e, == C - 2Q, ip. = Åë -- 2e X P, P the cross-section of 9 such that g(P, .X) = p(X)

for every X E T(9) and (? = JP.

Rem'ark. If D is a CR Weyl connection, we can show that

(3.2) Dvip, = O, (DvT)(X, Y) =- O

for every V E sc(M) and X,Y E r(9) by direct'calculation. In addition, we-note that
Egz;dCipt,i.e.) ii.)a.iSo an aimost contact pFructure beio.ngipg to (9,.J) Kyiitich may not satigfy

             '                                               '
  The family of almost contact structures belonging to (9, J) and satisfying (*) is smaller
than that of all almost contact structures belonging to (9,J). However, we can a}ways
obtain an almost contact structure satisfying (*) from almost contact structure belonging
to the same (9, J) if it is nondegenerate (cf. [91). Therefore we may deal with' only 9-

preserving almost contact structures. The following propositoin allows us to call D a CR
Weyl connection. By direct computation, we obtain

Proposition 3.1. The CR Weyi connection D is well defined: the equations from (a) to
(f) in above definition are invariant for the change (2.8).

Remark. If we replace (Åë,C,e)' by (ip',6',e')', then the

changes to p' == p - du.
1-form p in the above definition

L

  From this, we can say that a CR Weyl connection D preserves the CR structure (9, J).
Let ((9, J), D) be a pair of a CR structure (9,. J) and a CR Weyl connection preserving
it. The pair ((9, J), D) is called a. CR VVeyl structure on M.

  Next we closely observe the conditions of a CR Weyl connection. In fact, we don't
have to assume the condition (f) if we add a certain condition to the torsion tensor of
a linear connection satisfying from (a) to (e) for a 1-form p. To.see this, we need the
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Lemma 3.2. Let D be a linear connection satisfying fV7om (a) to (e) for a 1-form p and

Tthe' torsion tensor ofD. ThenTsatisfces /-.. ' ,•' -.
                                            '                                          . ...(3.3) e(T(g,, Y)) == O,
(3.4) ip,(T(6,, ip,V))+T(Cp, V) == 'ipp(Yc.ipp)(V)

for every V E ac(M).

Proof. It is suflicient to show that T(C,, V) belongs to r(9) for V = e, and V = X e
r(9). When V == C,, T(e,, e,) = O. When V -- X, we have

        T(C,, X) = Dc,X - DxC, - [C,, X] = Dg.X - 2p(X)e, - IC,, X]

                                           'because of (b). The condition (a) implies that Dvr(9) c r(EP). The 9-component

[6p, X]gc. with respect to Cp is given by - '. , . .'.
                                                      '                                              '                                         ..           [Cpi X] gc. = [Cpi X] -e([Cp, X])Cp '

                  == [c,, x] - e([c - 2Q, x])6,

                  - [c,, x] + 2e([Q, x])c,

                  = [e,, X] + 2w((?, X)C.
                  == [g,, X] + 2g(P, X)6, = [6,, Xl + 2p(X)e,.

Therefore we have

                                    '                        '           T(C., X) == Dc.X - 2p(X)Cp ' ([6p, X]gE. - 2P(X)Cp)

                    '                    '                 '                                            '                        '                  '                                   '                   '                '                           'which proves (33). Since ' , - . - . ' .
                               '                             '                                               '          '                                            '                                       '      O= (D4. Åëp)V == De. (ipp V) - ipp(Dc. V) ' '
       -- Ddi.vCp + [6p, ippV] +' T(Cp, ippV) - ipp(DvCp + [Cp, V] +T(Cp, V)),

we have
           T(e,, ip,v) - ip,(T(c,, v)) = -2p(ip,v)e, - (:2f7c.ip,)v

because of (b)• and the equation ip,C, = O. Thus if we apply ip, to the both hand sides of

the above equation, we obtain (3.4). . . .' -' - ' ' . . . ''-a
                                           ....                                        '                                           tt                  '                                     '                                       ...                        '               '          tt Now put F,V = T(C,, V) for V E ac(M). Then we have
                      '                              '           '

(3•6) dipoFpoÅëp+Fp =-ipp (Yc. ipp).
We demand for Fp the condition that Fp anticommutes with ipp. Then Fp must be
-!/2di,(Yc,ipp). Conversely we see that Fp anticommutes with ip, if F, = -1/2ip,(Ye,ip.).
Therefore if we add the condition that Fp anticommutes with Åëp to the conditions from
(a) to (e) for a 1-form p, D becomes a CR Weyl connection. Fgr Fp, we also have

                                                     ..                                .t.                                              .tLemma 3.3. Let D be a connection satisfying from (a) to (e) for a 1-fom p qnd T the

torsion tensor of D. Then Fp'satisfies . . - .' . ' . .
                                       '                                   '(3.7) g(F,Y, Z) +g(Y, F,Z) = --g(ip,(Yc.ip,)Y, Z) -4dp(JY, Z)
                '                                      '                                     '                '                                  t.                  .tfor eveTy Y,ZE I"(9). '- '
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Proof. Since F,Y = T(C,, Y), we have, from ' (b),

               Dc.Y == 2p(Y)C. + [e,, Y] + F,Y.

We substitute this equation into the right hand side of (D40.g)(Y, Z) = C,•w(di,Y, Z) -

w(Åë,Dc.Y, Z) -w(ip,Y, Dc.Z). Since iplg = Åëplg = J on 9, we consequently obtain

(3.8) g( F, Y, Z) + g( Y, F. Z)

    ==Cp 'w(ippY, Z) -w(ipp[6,, Y], Z) -w(ip,Y, 2p(Z)6, + [4,, Z]) - (DcO,g)(Y, Z).

On the other hand, we have

(3.g) -2(d .f2f7c.e)(ip,Y, Z) == (ip,Y) • 0([g,, Z]) - Z • e([6,, ip,Y]) + C, • w(ip,Y, Z)

                    - e([ip,Y, .S2?c.Z]) - 0([Yc.(ippY), Z])

by using Jacobi identity. Combining (3.9)- with (3.8), we obtain

 g(F,y, z) +g(y, F.z) - ---2(d yc.e)(Åë.y, z) - (ip.y) • e([6,, z]) +z• e([4,, ip,y])

               - e([ip,Y, 2p(Z)C,]) .+ e([(.2f74.ip,)Y, Z]) - (D8.g)(Y, Z).

Furthermore by (2.7) and (d), the above equation becomes

(3.10) g(F,Y, Z)+g(Y, F,Z)
       -4(d YQe)(ipY, Z) + 2(ipY) • w((?, Z) - 2Z • w(C2, ipY)

         - e([Åëy, 2p(z)c,]) + e([(ye.Åë,)(y), z]) + 2p(c,)w(Åëy, z).

Next we shall calculate 4(d YQe)(ipY, Z). If we use (c), we have

(3.11) 2(D&g)(Y, Z) = 2([? •w(ipY, Z) - 2w(DQ(ipY), Z) - 2w(ipY, DQZ).

We obtain p(Q) = O since g ls Hermitian, so that the left hand side of (3.11) vanishes by
(d). Applying this fact and (e) to (3.11), we have

(3.12) O == 2(? •w(ipY, Z) - 2w(Ddiy(?, Z) - 2e([YQ(ipY) - w(([?, ipY)C,, Z])

                 - 2w(ipy, Dz([2) - 2e([ipy, yQz - cu(c?, z)c,]).

On the other hand, a straightforward computation showS

    4(d yQe)(ipy, z) - -2(ipy) •w((?, z) + 2z • w(c?, ipy) - 2(? •w(ipy, z)

               + 2e([YQ(qSY), Zl) + 2e([q5Y, YQZ]).

Combining this equation with (3.12), we obtain

(3.13) 4(d YQe)(gbY, Z)
      == - 2(ipY) • w((2, Z) + 2Z •w(Q, ÅëY) - 2w(Dipy(?, Z) - 2w(ÅëY, DzQ)

         + 2e(tw(([?, diy)c,, z]) + 2e([ipy, w((?, z)c,]).

Moreover, we directly calculate 4dp(ipY, Z). Then we obtain

(3.14) 4dp(ÅëY, Z) =2(ÅëY) • p(Z) - 2Z • p(diY) - 2p([ipY, Z])

      -2g(DipyQ, ipZ) + 2g(Q, Dipy(ipZ)) - 4p(ipY)g(Q, ipZ)

        - 2g(DzQ, ip2Y) - 2g(Q, Dz(ip2Y)) + 4p(Z)g(q, ip2Y)

        - 2p(DdiyZ - Dz(ÅëY) + w(ÅëY, Z)C,)

      = 2w(Dipy(?, Z) + 2w(ipY, Dz(?) -- 2p(C,)w(ipY, Z).
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Substitute (3.13) into (3.10) and use (3.14). Then we have

(3.15)' g(F,Y, Z)+g(Y, E,Z)
          = -- 4dp(ipy, z) + 2e([w(([?, ipy)g,, z]) + e([(:2f?g.ip.)y, z]).

Finally since the 9-component of (.f2f7E.ip.)Y with respect to C, is given by

                ((Yc.ipp)Y)g,. = (:2e4.ipp)Y+ 2w(([?, ipY)C,,

                                                  'substituting which into (3.15), we obtain (3.7). ' ' ' - '- - O
        '                           '                      '  By Lemma 3.3, we have - ' '--             t..Lemma 3.4. Let D be a CR Weyl connectton andp the correspending 1-form. Thenp
satisfies

(3.16) dp(JX, JY)+dp(X, Y) -O
for every X,Y E r(9).

Proof. Applying the assumption (f) or the condition that F. anticommutes with J to the

equation(3.7),wehave ' . '- . .. '
                                               '                          '                      '                                                             '                        '                                             '(3•17) ' 9(FpX,Y)'9(X7FpY)=4dP(JX,Y)•
Thus by anticommutativity of Fp with J, we obtain (3.16). O
 Now as we deal with 9-preserving almost contact structures (ip,C,e)' belonging to
a CR structure (9, J), we have a unique .linear connection called Tanaka connection
associated with (ip,g,e)'. Therefore we have to compute the difference between a 'CR

Weyl connection D and Tanaka connection with respect to a fixed 9-preserving almost
contact structure (ip, 6, e)*.

Proposition 3.5. Let (ip,4, e)' be a 9-prese7wing almost contact structure, D a CR Weyl
connection and V Tanaka connection associated with (ip,4,e)'. Define the difference H
between D and V' by

                               tt                                '               H(V, W) == DvW-VvW, - ' V, VV E ac(M)
                                    '                                       '                                        '                  '                   'Then'-we have ' ' ' '
                   '                                      '                       '                              '                            '(3.18) H(X, Y) = p(X)Y + p(Y)X - g(X, Y)P + q(X) JY + q(Y) JX - g(JX, Y)Q,
                   '                                      '                 '(3.19) H(e, X) = VJxP+VxQ- 2q(X)P+ 2p(X)Q+ 2g(P, P)JX,
for every X,Y E r(9), 2uherep is the 1-form ofD corresponding to (Åë,C, e)", P (E r(9))
defined by g(P, X) =p(X) forX E r(9), (? = JP andq a 1-form defined by q = -po ip.

Proof. First we denote the torsion.tensor of rl]anaka coRnection by TV and note that

(3.20) TV(Y, Z)=-tu(Y, Z)6
for Y, Z E r(S)) since T.", == O and e(T"(Y, Z))6 = -w(Y, Z)e by Lemma 2.2.

 Computing H(Y, Z) - H(Z, Y) directly, we have

         H(Y, Z) - H(Z, Y) = DyZ - VyZ - DzY + VzY
                       -T(Y, Z) + [Y, Z] - (TV(Y, Z) + [IY, Z])

                       -T(Y, Z) -TV(Y, Z)
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for Y, Z E Ir(9). Using (e) and (3.20), we obtain

(3,21) H(Y, Z)-H(Z, Y)-2w(Y, Z)e.
On the other hand, since (D&g)(Y, Z) = --2p(X)g(Y, Z) and (V&g)(Y, Z) = O for
X, Y, Z E r(9), we have

(3,22) g(H(X, Y), Z)+g(Y, H(X, Z))-2p(X)g(Y, Z).
In the equation (3.22) we permute X,Y and Z cyclically and subtract one from the sum
of the other two. Applying (3.21) to the resulting equation, we have the equation (3.18).

Next we compute H(6, X) for X E P(9). Since F,X = Dg.X - 2p(X)e, - [C., X] and
FX = VcX - [g, X], we have

   H(e., x) = Dc,X - Ve.Y = F,X + [C,, X] + 2p(X)g, - V6X + 2VQX
         = E,X + [C - 2(?, X] + 2p(X)C, - (FX + [e, X]) + 2VQX
         =: .F,X - FX - 2[(?, X] + 2VQX + 2p(X)6,.

Furthermore, applying (3.20) to this equation and noting that w((?, X) = p(X), we have

(3.23) H(C,, X) =F,X-FX+2VxQ-4p(X)Q.
Now computing F,X - FX directly by the equation F, = -1/2ip,(.S2f7c,ip,) and F =
-1/2ip(Ycdi), we have

(3.24)          1FpX - FX = -' li{ipp([Cp, JX] - ipp[Cp, X]) - J([C, JX] - J[C, X])}

      = -'ll-{ipp([C, JX] -2[Q, JX] - J[C, X] +2Åë,[Q, X])

        - J([6, JX] - J[C, X])}
      - (ip - 2e x P)[(?, JX] - (ip - 2e x P)2[Q, X]

      = ip(VQJX - Vjx(? +w((?, JX)C)
        - 2e(VQJX - VJx(? +w(([2, JX)e)P
        - (Åë - 2e Q P){ip(VQX - Vx([? +w((?, X)6)

        - 2e(VQX - Vx(? +w((?, X)C)P}
      == V)xP - VxQ + 2q(X)P + 2p(X)(?.

Therefore we have

(3.25) H(C,, X) = VJxP+VxQ+ 2q(X)P- 2p (X)Q.
In the equation H(C,, X) = H(6, X) - 2H(Q, X), we use (3.18) for H(Q, X) and (3;25)

for H(6,, X). Then we obtain the equat•ion (3.19). . O
Remark. We can compute H(X, e) and fl(C, C) by ttie same way as the equation (3.19).

They are.given by

(3.26) H(X, C) - 2VxQ -- 4p(X)Q - 4q(X)P + 2g(P, P) JX + 2p(X)C,
(3.27) H(6, C) - 2(V'c(? - K7pP + VQQ - 4g(P, P)P - 2p(g)(?) + 2p(C)6.

 Conversely, one may ask whether given Tanaka connection V and p define a CR Weyl
connection. We have the following answer to this question.
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Proposition 3.6. Let (ip,C,e)' be a 9-preser"ving almost contact structure belo.nging to
CR strzLcture (9, J) and V Tanaka connection associated with (ip,g,e)'. ifD is defined
by DvW = VvlV+H(V, W) for a givenp satisfying (3.16), where H is defined by (3.18),
(3.19), (3.26) and (3.27), then it becomes a CR Weyl connection.

  By Propositon 3.6 we see that an arbitrary pair (p, (ip,C,e)') of a 1-form p satisfy-
ing (3.16) and a 9-preserving almost contact structure (ip,C,e)' determines a CR Weyl

structure.

                    4. -THE VIEW FROM G-STRUCTURE

  Let M be an oriented (2n+1)-dimensional manifold and - : F+(M) . M the principal
bundle of positively oriented frames over M. Assume that a pair (9, J) of a hyperdistri-

bution 9 and a complex structure J on 9 is given on M. In addition, we assume that
(9, J) is a nondegenerate CR structure. Now we define the subspace 9o in R2"+i, the

matrix Jo E GL(2n + 1;R) and the matrix Jo E GL(2n;R) by

(4 1) go ={ ( :O )E R2"+i xO =O }, J'Vo = (8 `JOo ) and Jo =( IO. -of" )

                                             '                                '                                               'respectively, where I. is n Å~ n unit matrix-{}ind the boldface denotes a column vector of

degree 2n. We haveaprincipal subbundle as of F+(M):'- ' ' '
                                                tv'                Slii = { uE F(M) l uEPo c 9, Julg, == uJolgo }
               '                '                                      'whose structure group is

              a={(g tcO) a>o, bER2n, cJo == Joc},

where the linear frame u is considered as a linear map from R2"+i to T.(.)M(cf. [4D.
Futhermore we define eo E (R2"+i)' and Co E R2n+i by '

(42) eo=(i to) and co=(6)
                                                                     '                       - --respectively. By using a local cross section tt of EP, we define a 1-form etr and vector.field

                     'Ca on an open set Ua by ''
(4.3) ea=eotr-t and 6d=sco
respectively. Then we obtain

                                            '                   '                                       --(4.4) e9g == o, ea(ca) ==1
      '                 'because of their definitions. Note that the definitions of ecr and 6a are dependent of the
local section 6. Later on, we shall study between ea (resp. 66) and e' (resp, C') defined

by another local section 7'  wh-ose domain has non empty intersection with Ud.

  Next, we definea2-form wa by - • -

Then since we assume that (9, J) is a nondegenerate CR structure, we see that we is a
nondegenerate and Hermitian 2-form when it is restricted to 9:

(4.6) wa(JX, JY)=wa(X, Y)
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for X, Y E r(Ua, 9), where r(Ua, 9)-denotes the set of cross sections on Ua of the vector

bundle 9. By using cvtr, we define BaEr(Ua, 2)) by . - .,

(4.7) wa(Ba, x)=--wa(ca, x)
                                '50erfiZVee5YioXtafbi•11.nUettsir9fo)imThgi..S8SnUgniqbUyelydefinedsincewaisnondegenerate.Moreover,

(4.8) . .- gO(X, Y)=wa(JX, Y),
                          '  '        '                              '                                        'which satisfies the equations '
(4.9) ga(X, Y)= gtr(Y, X), ga(JX, JY)=ga(X, Y)
for X, Y E r(Ud, 9). Thus it becomes a fiber pseudo-metric of 9 defined on Utr. When
we take two local cross sections a and 7 of !# defined on Ua and Uf respectively, we

suppose t4at-they ALre related by T- = 0h on Ua', where UcrT denotes the intersection of

Ua and U',hisaG-valued function of the form , .- •
                              '                '                '(4io) '  n..(g '.O)=(e',2" `.o),

and pa a function on Uaf. Then we obtain

                                '(4.n) ' .' ei =e2pea
                '                                     '                                  '                                   'on U6i. Thus we haye . ''
                                   tt                 '                  . ..                                      .t                             -t                   '(4.12) -. . - . cJi=e2pwa-4duAei .
because of (4.5). Furthermore we have

(4.13) ' '' wf lg = e2ptwa lg, .. gf lg = e2Pga le.
                                      '                                     'Therefore we have the conforrnal structure [gtr] over 9. Let a(p,b) be the dimension of
the maximal subspace in 9p where gS' is neg4tive definite for each point p E M and local

section 0 defined on a neighborhood of p. These numbers are necessary even. and we see
from the equation (4.13) that a(p, 0) depends only on p. So we put ry(p) = a(p, a). Since
ry is a lower semicontinuous functioB on M and M is conriected, we easi!y see that it is

                                                                   '                                                                  '                                            '  Now we defineasubbundle SI3 of l\} by - - ' '. '
                                                             '                                '        sp = { uE !\g g.a- (.) (u ( ;l ) ,u( 9 )) =t xEh-.'y, a(T (u)) =u}

whose structure group is

(4.14) G={( gl `cO ) :'.a>6,•bER2", CJo = JoC, tCE'V.C=.aEA", },

                                                'where
                E-V7 = ( Eo7 EO. )} E7 = ( -ol7 I.O-, )

   'We remai k that' C E CU. = GL(n, Åë) n CO(2or, 2n - 27). A Iocal cross $ection a of El3

--ls wltten as ' - '                                                            '                                            '                                      '                                                                '                                    '(4.15) a=<Ca, Xi, ..., X., JXi, ..., JX. >,
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tW.h ;rae.{AX.'d'W','6.X."sig.X,ikpi6g,J(X4."i}s)iS,.aifO.iCia.1.0,f.thO"Orrpalframeieldof9wl.threspect

                   '                                                                   '                                     N                                                               '(4.16) Xi'= aei, JXi =aJoei (i= 1, ..., n)
where ei ==`(OIO ••• 1 ••• OIO ''• O)• ... .. . . -.
  Let g and cu., 'denote the Lie aigebra of G and CU, respectively. Let 0 ; ( 9 `aO ) be

a connection form of a linear connection D reducible to El3, where ip is R-valued 1-form,.
n R2"-valued 1-form and a cuor-valued 1-form on a3. The connection form 0 satisfies

(4.17) e(A*)=A, Rne=-Ad(h-i)0, -                          '                 'where A" denotes the fundamental vector field corresponding to A E g and h an element

' R:(%O)-Ad(h-i5(9 UO)..(g bo)-i(ip, zo)(g '.o) '

                = (-(i/i./)ac-ib 69i)(,.Åë+".b aOc)==(9 cjiO.c)

where * = C'i(-Åëb + an + ab), we have

(4. 18) Rn ip = Åë, Rnop = C-i(- ipb+any + crb), RZa = Ad(C-i)a.

  Now let a and T be local cross sections of El3 defined on Ua and U' respectively. Suppose

that they are related by T = ah on Ua', where h is a G-valued function of the form as
(4.10) with C E CU7. Then, for the differential maps of a and T, we have

               '(4.19) - 'dT(V)-dRh(da(V))+(h-i(dh•)(V))", ' -
for V E fE(Ua') (cf. [4]). Applying the connection form e to (4.19), we obtain, from

                                                  '                                                     '                                  t.                 .t      '(4.20) • .T'e = Ad(h-i)a'e + h'idh.
                             'On the other hand, we have '-' -' ' .
         ''(4.21) -1' h-idh == ( -(1/1./)ac-,b cO., ) ( [l6. Eg ) ,. ( a-,',da c-t,Odc )

where ** = C-i(-q-ibda + db). In particular, we have

(4.22) '' . , a-ida=-2dpt .
             'by (4.10), and hence from (4.20) we obtain

(4.23) T'ip =a*ip -• 2d,t.`.
  'gYteta?.nUl 2Pa = cr'g6 and 2p' == T"Åë for local cross section a and T respectively Thus we

(4..24) . pr=pa-dpa                             '                        'We regard local cross sections ofES as those of SP. Then we also have ea, Ca, tua and ga
on Ua. We define PO, (?a E r(Ua, S)) by

(4.25) ga(Pa, X) =pa(X), Qa == JPa
for every X E r(Ucr, 9). Then we have
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Lemma 4.1. Let a andT be two local cross sections of El3 such that7= ah on Ua'. PVe
put Cp. = 6cr +Ba -2(?a, where Ba is defined by (4.7). Then Cpa and C,r are related by

(4.26) g,r= e-2"e,a.
it foIZows that we have a transversai line bundle Y == span{C,a} associated with the

connection D.

Proof. Since O == cvr(CT + B', X) == wa(CO + Ba, X) because of (4.7), by using (4.12) we

have.
       O = cJT(Cr + BT, X) == e2Pc,7a(Cr + BT, X) - 4(dlL A er)(6r + BT, X)

        '         =e2pcva(cr+BT, x)-cva(ea+Ba, x)+2op(x). '
Define (drf)a E r(Uar, 9) by

(4.27) ga((er)cr, X) == du(X)
for every X E T(Ua', 9). We have

           e2pwu(6r + Br, x) = wa(ca + Ba, x) - 2ga((drf)g, x)

                          = wa(6a + Ba, x) -- 2wa(J(dali)a, x).

Therefore, since wa is nondegenerate, we obtain
                                           '(4.28) - cr+Br=e-2p(cg+Ba-2J(dytt)a).
We have, from (4.24),

              g'((?', X) - g'(,JP', X) = -g'(P', ,JX)

                                 ., -p'(,JX)
                                 = -(pa . dpa)(JX)
                                 ,., -pO(JX) + du(JX)
                                  = ga(Qa -- J(drf)a, X).

It follows that

(4.29) QT=e-2p((?a -- J(drf)a).
Combining (4.28) with (4.29), we obtain (4.26). Z
  Next we investigate the covariant derivative D of TM determined by 0. We take a
fixed local frame field (4.15) ef TM. Note that, for a fixed VV E ac(Ua), the local frame
field a induces a map a-iMZ : x E Ua N a(x)'iW(x) E R2n+i. The covariant derivative
of W E ;E(Ua) in the direction V E TUa is given by

(4•30) DvW-a(d(o-iVV)(V)+(a'0(V))(a-'VV)).
                '   'Futhermore, since a-iX E R2"-for X E P(I7a,9), we obtain

(4.31) DvX=a(d(a-iX)(V)+(o'a(V))(a-iX)).
Note that the product of the second term of the right hand side in the equations above
is the Matrix multiplication. From -(4.31){ it is clear that

(4.32) Dv r(9) cV(9).
                   'It follows that D induces the covariant differentiation of the vector bundle 9, which is
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Lemma 4.2. Let D be the covariant derivative of TM determined by " and DO the
covantant derivative on ?0 determined by a. Then D and DO satisfy

(4.33) Dvoa = -2pa (v)eu, DovJ =o and Do.ga = -2pa (v)gu
for V E TUa.

Proof. Since

          (Dvea)(x) = v • ea(x) - ou(Dvx) = -ea(Do.x) = o

for every X E F(Ua, 9), we have (Dvea)(X) = -2ptr(iV)ea(X). Futhermore, we have

 (Dvoa)(ca) == v • (eaca) - oa(Dv4,.) = -oa(a( (dov)(a-i6a)) ) == -dip(v)ea(4a).

Thus we obtain (Dvea)(IfV) = -2pa(V)0a(VV) for every ItV E SE(Ua). Next we have

               J(DvYA) =J{ a((o"a(V))cr"YA) }

                    =a{ lo(da(V))u-iYA }
                    =a{ (da(V))a-i(a Joa-' YA) }

                    =a{ (da(V))(u-iJYA) }
                    =Dv(JYA)
for A = 1,••• ,2n, where we have put Yi = Xi, Y.+i = JXi (i == 1,••• ,n). Therefore,
since (DOvJ)(YA) = Dv(JYA) - J(DvYA), we obtain DVJ = O. At Iast we show that
DO.gC = -2pU(V)gG. Since
                    taEAV,+EA-,a=ipE-V,,

we have

        ga(DVYA, Y.) =t{(da(V))a-'Y" E,(a-iY.)

                =t(cT-iYA)`(u'(t(V))E.(a-iY,)

                =t(a" YA){ -E, (a'a(V)) + dip(V) E. }(a-' Y.)

                = - ga(YA, DO. Y.) + 2pa(V)ga(YA, Y.).

Therefore, for local frame {YA} of 9, we have

(4.34) (DO.gU)(Yx, Y,) = -2pa(V)ga(YA, Y.)

from which we obtain DOvga=-2pa(V)ga. o
 Now assume that the torsion tensor T of D satisfies

(4•35) T(X, Y)E-f2f',
(4.36) T(L, X)E9, T(L, JX) -= -JT(L, X),
(4.37) (DuT)(X, Y) -O
for U E TM, X, Y E 9 and L E .S2f'. Then we have

             ea(T(x, y)) = -wa(x, y), ea(6,a) = 1
because of (4.32) and (4.35). Therefore we obtain

(4.38) T(X, Y) =-wa(X, Y)C,a
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for X,Y E 9. We define (1,1) tensor ipa by ipaea = O and q5aX = .TX forX E 9, and

moreover ippa by

(4.3g) Åë,. == ipa-2e <s) (pa+-S-JBa)

It is easy to show that

(4.40) ippaX= JX, ippa = ippr, 0a o ippa = O, ippa 4,a = O.
Since 0a(DvC'pt - 2pa(V)C,a) = O, we have

      .ga(Dv4,a - 2pa(V)6,a, Y) = wa(J(Dv4,a - 2pa(V)C,a), Y)

                      = wa(ippa(Dv4pa) - 2pU(V)ippa4pa, Y)
                      == wa(ippu(DvCpa), Y)
                      = wa(-(Dvippa)epa, Y)
                      = ga(J(Dvip.a)6,a, Y)•
Therefore we obtaiR

(4.41) Dv C,d - 2pa(V) 4,a = J(Dv ip,d )C,a
for V E SE(Ua). From (4.37) and (4.33), we have

       O-Dv(T(X, Y)) - T(DvX, Y) - T(X, DvY)
        == - Dv(wa(X, Y)4,a) +wa(DvX, Y)C,a +wa(X, DvY)C,a
        =2pC(V)wa(X, Y)C.a -wa(X, Y)Dv4,e.
Combining this equation with (4.41), we obtain

(4.42) Dv6,a =2pa(V)C,a, Dvip,a =: O.
In particular, Dc,. ippa = O and hence

            O = Dc.a(ippoX) -' ipp"(DE.aX)
             = FpaÅëpaX + Ddi,.xCpa + [Cpa, ÅëpaX]

               - ip,o (F,aX + DxCf + [Cpa , Xl)

             = [Fpa , J]X + (Ye,. Åëf)X + 2pa(JX)6,a,

where we have put F,aX = T(C,a, X). Equation (4.36) implies that

                        1(4.43) T(Cpc, X) =- 'I:; ipp" (Yc.a ippa)X•

Finally, if a satisfies cua(X, CU) = O, then we obtain, from Lemma 3.4,

(4.44) dpa(JX, .TY)+dpa(X, Y) =O
for X YE 9.
   ,
Proposition 4.3. Let SP(M, G) be the subbundle determined by the CR structure and D
a linear connection reducible to as(M,G). Then there is a 1-dimensional distribution Y
on M transversal to 9. For a local cross section a of SI3(M, G), D satisfies

        Dvea = -2pa(v)oa, Dw = o, Do.ga- = -2pa (v)ga
for V E ac(M). Moreover, if the torsion tensor T of D sattsfies

  T(X, Y) E Y, T(L, X) E 9, T(L, JX) = -JT(L, X), (DvT)(X, Y) =O
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for X,YE S) andLE Y, then D satisj6es

                                          -1       T(X, IY) :-wa(X, Y)C,a, '. T(Cpo, X) == '.'Eiippa(Ye.a ippa)X,

                                                   '                               '                                 '                 DvC,a=2pa(V)6,a, ' Dvip,a =O .' .'
                                                   'and of cvcr(X, 6a) = O holds forX E 9, then pa satisLfies

                     dp6(JX, JY) + dpa(X, Y)= O.
Remark. We assume that M is orientable. Then we have a nonvanishing globally defined

vector field C transversal to 9. Then, for the local cross section a and T of the form
(4.15), h reduces to a matrix that

                            (g e,),

where tCE'V,C = Er., It follows from (4.11), (4.13) and (4.24) that e, Åë, w, g and p are

globally defined on M, and ep is a global section of .S2?. Moreover, if we take C such that

cv(X, 4) =Ofor every XE 9, thenpsatisfies (3.16)..' ' '

               5. CuRvATuRE oF CR WEyL coNNEcTIonyg

 In this section, we investigate the property of the curvature of a CR Weyl connection.
Let D be a CR Weyl connection of the CR structure (9, J). Let R be the curvature

tensor field ofDdefined by .• •' ' ' . .
                   '                    '   ' R(U, V) liV = DuDvW-DvDuW-D[u, v] VV
for U, V, VV E ec(M). We fix a 9-preserving almost contact structure (ip,e,e)' and let p
be the 1-form of D corresponding to (ip,C, e)'. Since DC. = 2p X C., we see easily that

(5.1) R(U, V)C,=4dp(U, V)g,, U,VGTM.
The property DuT(9) c r(9) implies that

(5.2) R(U,V)9c9, •'U,VETM.
                           'Since Dipp = O, we have - • i '- ' ' '
(5•3) R(U, V)Åëp =dipR(U, V), U,VE TM•
                                               '                                                               'If we put R(U, V, X, Y) == g(R(U, V)X, Y) for U, V E TM and X,Y E 9, then we have

                                                   '                         '                     '(5.4) R(U, V, X, Y) == -R(U, V, Y, X)+4dp(U, V)g(X, Y).
 The first Bianchi identity is the formula (cf, [4]):

            <E5{R(U, V)W} - <S{T(T(U, V), W) + (DuT)(V, VV)},

where U, V, W E TM and 6 denotes the cyclic sum with respect to U, V and W. Replac-
ing U, V, W with X, Y, Z E 9 respectively in the first Bianchi identity above, we hatve,

                tt                  (S{R(X, Y)Z} -= S{T(T(X, IY), Z)}. '
                                                           'Moreover, applying the condition (e) in the definition of a- CR Weyl connection to the

above equation, we obtain ' '
(5,5) G{R(X, Y)Z}=-<S{w(X, Y)F,Z}
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for every X, Y,Z E 9. Putting U= C, and replacing V, ItV with Y,ZE 9 in the first
Bianchi identity, we have

 R(4,, Y)Z + R(Y, Z)C, + R(Z, C,)Y

 = T(T(6,, Y), Z) + T(T(Y, Z), C,) + T(T(Z, C,), Y)

  + (Dc,T)(Y, Z) + (DyT)(Z, 4p) + (DzT)(4,, Y)

 - T(F,Y, Z) +T(-w(Y, Z)e,, C,) -T(T(4,, Z), Y) - (DyT)(4,, Z) + (DzT)(6,, Y)

 = -w(F,Y, Z)4, +w(.F],Z, Y)6, - Dy(T(4,, Z)) + T(DyC,, Z) + T(C,, DyZ)

  + Dz(T(g,, Y)) ' T(Dz6,, Y) - T(Cp, DzY)

 = -w(F,Y, Z)C, +w(F,Z, Y)4, - (DyF,)Z + 2p(Y)F,Z+ (DzF,)Y - 2p(Z)F,Y,

where we have used (3.2) and (b), (e) in the definition of a CR Weyl connection. IR
addition, when we rewrite (3.17) with w, we have

(5.6) w(F,X, Y)+w(X, F,Y)=-4dp(X, Y).
Substituting (5.1) and (5.6) into the first Bianchi identity including C, above, we obtain

(5.7) R(C,, Y)Z - R(4,, Z)Y = -{.(DyF,)Z - 2p(Y)F,Z} + {(DzF,)Y - 2p(Z)E,Y}

for Y, Z E 9. Since the second Bianchi identity is the formula:

            G{(DuR)(V, W)} = -(S{R(T(U, V), V•V)}

for U, V, W E TM, we have immediately

(s.8) (S{(DxR)(Y, Z)}=S{w(X, Y)R(6,, Z)}
for X,Y,ZE 9. Furthermore, if we put U= C, and replace V, I,V with Y,ZE 9
respectively in the second Bianchi identity, then

(5•9) (Dc, R)(Y, Z) - (Dy R)(C,, Z) + (Dz R) (C,, Y) = -R( .E, Y, Z) + R( F, Z, Y).

 We shal1 prove the following formula:

(5.10)

where X, Y, Z, ltV E 9.

    R(X, Y, Z, W)'= R(X, Y, Z, W) + R(Y, Z, X, liV)+R(Z, X, Y, W),

then we have

     R(X, Y, Z, W)-R(Y, Z, ;tV, X)-R(Z, I7V, X, Y)+R(W, X, Y, Z)
    -2{R(Y, Z, X, ltV) - R(W, X, Z, Y)}

     +4dp(X, Y)g(Z, W) - 4dp(Y, Z)g(X, W) +4dp(Z, X)g(Y, W)
     -4dp(Z, W)g(Y, X) +4dp(Y, W)g(Z, X) +4dp(W, X)g(Y, Z)

 R(X, Y, Z, W)-2g(JX, Y)dp(IZ, W)+2g(X, Y)dp(Z, Mi)
-R(Z, W, X, Y) + 2g(JZ, W)dp(JX, Y) - 2g(Z, W)dp(X, Y)

- - g(JX, Z)g(F,Y, W) + 2g(JX, Z)dp(JY, W) + 2g(X, Z)dp(Y, W)

 +g(JY, Z)g(F,X, W)-2g(JY, Z)dp(JX, W)-2g(Y, Z)dp(X, ;2V)
 - g(.IY, W)g(F,X, Z) + 2g(JY, W)dp(JX, Z) + 2g(Y, W)dp(X, Z)

 +g(JX, W)g(F,Y, Z) - 2g(JX, IxV)dp(JY, Z) - 2g(X, W)dp(Y, Z),

      If we put
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because of (5.4). The equation (5.5) shows

R(X, Y, Z, W) = -{w(X, Y)g(F,Z, W) +w(Y, Z)g(F,X, "i) +w(Z, X)g(F,Y, W)}.

Combining the two equations above, applying (3.16) and (3.17) to the obtained equation
and changing Y for X, Z for Y and X for Z, we have (5.10). From (5.7) we have

   R(C,, Y, Z, ;tV) - R(C,, Z, Y, VtV) = - g((DyF,)Z, W) + 2p(Y)g(.F7,Z, L'V)

                      +g((DzF,)Y, W) - 2p(Z)g(F,Y, W),
in which we permute the letters Y, Z and W cyclically and subtract one from the sum of
the other two. Then we have

(5.11)

because of (5.4).

(5.12) g((DvF,)X, Y) =g(X, (DvF,)Y) +4(Dvdp)(JX, Y) + 8p(V)dp(JX, Y)

for V E TM and X,Y E 9, which is obtained from (3.17). Moreover note that (3.16)
shows that

(5.13) (Dvdp)(JX, JY)--(Dvdp)(X, Y)
for V E TM and X,Y E 9. Applying (5.12) and (5.13) to (5.11), we obtain

(5.14) R(C,, Y, Z, W)
      = g(Y, (DzF,)W - (DwF,)Z) +g(Y, 2p(VV)F,Z - 2p(Z)F,W)
      - 2(Dwdp)(,JY, Z) + 2(Dydp)(JIxV, Z) + 2(Dzdp)(JY, W)
      - 2dp(4,, lxV)g(Y, Z) + 2dp(4,, Y)g(Z, W) + 2dp(C,, Z)g(Y, W)

for every Y, Z,WE 9.
 Next we get the following formula for the difference of R(JX, JY) and R(X, Y):

(5.15) R(JX, JY)'Z-R(X, Y)Z
       =g(JX, Z) F,Y - g(JY, Z) F,X + g(X, Z) F, JY - g(Y, Z) F, JX

         + f,(X, Z)JY - f,(Y, Z)JX + f,(JX, Z)Y - f,(JY, Z)X

         - 4dp(X, Y)Z + 4dp(JX, Y)JZ,

where X, Y, Z E 9 and we have defined f, by

             fp(X,Y)=9(FpX,Y), X,YE9.

 2R(4,, Z, IxV, Y)

  + 4dp(C,, Y)g(Z, W) - 4dp(4,, Z)g(IV, Y) - 4dp(C,, W)g(Z, Y)

== - g((DyF,)Z, W) + 2p(Y)g(F,Z, W)

 +g((DzF,)Y, W) - 2p(Z)g(F,Y, IxV)

 +g((DwF,)Y, Z) - 2p(YV)g(F,Y, Z)

 - g((DyF,)Hxr, Z) + 2p(Y)g(F,W, Z)

 - g((DzF,)VV, Y) + 2p(Z)g(F,W, Y)

 +g((DwF.)Z, Y) - 2p(W)g(F,Z, Y)

  Note that DvFp satisfies the following equation
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This formula can be proved by using equations (3.16), (5.3) and (5,10). In fact we see

that

    R(JX, JY, Z, W) - 2g(J2X, JY)dp(JZ, VV) + 2g(JX, JY)dp(Z, W)

   =R(Z, W, JX, JY) - 2g(JZ, W)dp(J2X, JY) + 2g(Z, W)dp<JX, JY)

    -g(J2X, Z)g(F,JY, W)+2g(J2X, Z)dp(J2Y, W)+2g(JX, Z)dp(JY, W)

    +g(J2Y, Z)g(F,IX, W) - 2g(12Y, Z)dp(J2X, W) - 2g(JY, Z)dp(JX, W)

    - g(J2Y, W)g(F,JX, Z) + 2g(J2Y, W)dp(J2X, Z) + 2g(JY, W)dp(JX, Z)

    +g(J2X, W)g(F,,JY, Z) - 2g(J2X, VV)dp(J2Y, Z) - 2g(JX, VV)dp(JY, Z)

   =-{R(Z, W, X, Y) - 2g(JZ, W)dp(JX, Y) + 2g(Z, W)dp(X, Y)}

     + 4g(JZ, W)dp(JX, Y) - 4g(Z, W)dp(X, Y)
    +g(X, Z)g(F,JY, W)+2g(X, Z)dp(Y, "/)+2g(JX, Z)dp(JY, Xi)
    -g(Y, Z)g(F,JX, W) - 2g(Y, Z)dp(X, W) - 2g(JY, Z)dp(JX, 12V)

    + g(Y, IxV)g(F,JX, Z) + 2g(Y, W)dp(X, Z) + 2g(JY, W)dp(JX, Z)

    -g(X, Mi)g(F,JY, Z) -2g(X, W)dp(Y, Z) -2g(JX, W)dp(JY, Z)

   -{R(X, Y, Z, W)-2g(JX, Y)dp(JZ, W)+2g(X, Y)dp(Z, W)
    +g(JX, Z)g(F,Y, VV)-2g(JX, Z)dp(JY, W)-2g(X, Z)dp(Y, Ui)
    - g(JY, Z)g(F,X, W) + 2g(JY, Z)dp(JX, W) + 2g(Y, Z)dp(X, W)

    +g(JY, Mi)g(F,X, Z) -2g(JY, W)dp(JX, Z) -2g(Y, W)dp(X, Z)
    - g(JX, W)g(F,Y, Z) + 2g(JX, W)dp(JY, Z) + 2g(X, W)dp(Y, Z)}

     + 4g(JZ, lxV)dp(JX, Y) - 4g(Z, W)dp(X, Y)

    +g(X, Z)g(F,JY, W) + 2g(X, Z)dp(Y, W) + 2g(JX, Z)dp(JY, W)

    -g(Y, Z)g(F,JX, W)-2g(Y, Z)dp(X, W)-2g(JY, Z)dp(JX, W)
    +g(Y, "/)g(F,JX, Z) + 2g(Y, IxV)dp(X, Z) + 2g(JY, Mi)dp(JX, Z)

    -g(X, W)g(F,JY, Z) - 2g(X, "i)dp(Y, Z) - 2g(JX, W)dp(JY, Z).

 We turn to the study of the Ricci tensor field of a CR Weyl connection. We shall define
two kinds of Ricci tensors. In general, Ricci tensor field s is defined by

(5.l6) s(V, W) == trace of (U-R(U, V)W)
for V, ixV E TM. We define another Ricci tensor field k by

                     1(5.17) k(V, W)= E2-trace(di,R(V, ip,VV))
for V, VV E TM. Restricting s to 9, we obtain the following equation

(5.18) s' (X, Y)-s(Y, X)=-4(n+1)dp(X, Y)
for every X,Y E 9. The proof of (5.18) is as follows: Noting that R satisfies (5.2), we
may consider the contraction in only 9. Since

(5. 19) traceg (R( V, W)) = 4ndp(V, I2V), V, VV E TM,
where we have used (5.4) and traceg denotes the traÅíe in only 9, we have

      s(X, Y) - s(Y, X) == traceg (Z . 6{R(Z, X)Y}) - 4ndp(X, Y).

21



Therefore, from (5.5), (3.17) and the fact that tracegF, = O,

 s(X, Y) - s(Y, X) = - traceg (Z -. <S{ev(Z, X) F,Y}) - 4ndp(X, Y)

           =g(F,X, JY) - g(F,JY, X) - w(X, Y)traceg F, - 4ndp(X, Y)

           = - 4(n + 1)dp(X, Y).
 Next we obtain the relation between s and k":

(5.20) k(X, Y) = s(X, Y) - (n - 1) f,(.XX, Y) -- 2ndp(X, Y), X, YE 9.

The equation (5.20) can be shown as follows:

      s(X, Y) ==traceg (Z . -JR(Z, X)J-Y)

          =traÅíeg (Z - JR(X, JY)Z + JR(JY, Z)X
            +w(X, JY)JF,Z+w(JY, Z)JF,X+w(Z, X)F,Y)
          =2k(X, Y) + traceg (Z - JR(IY, Z)X)
            - tu(X, JY) traÅíeg (F,J) + g(JF,X, Y) + g(F,Y, JX)

          ==2k(X, Y) + traceg (Z . JR(JY, Z)X) + 4dp(X, Y),
where we have used (5.5), (3.17) and the fact that F, anticommutes with J, and using
(5.15) and (3.17) again, we have

  traceg (Z - JR(JY, Z)X)
 =traceg (JZ - JR(JY, JZ)X)
 =traceg (Z - R(JY, JZ)X)
 =traceg (Z - R(Y, Z)X +g(JY, X)F,Z- g(JZ, X)F,Y+g(Y, X)F,JZ
  - g(Z, X)F,JY + f,(Y, X)JZ - f,(Z, X)JY + f,(.TY, X)Z - f,(JZ, X)Y

  - 4dp(Y, Z)X + 4dp(JY, Z)JX)
 = - s(Y, X) + g(JY, X) traceg E, + g(F,Y, JX) + g(Y, X) traceg (F,J)

  - .g(F,JY, X) + f,(Y, X) traceg J - g(F,JY, X) + 2ng(F,JY, X) - g(F,.IY, X)

  - 4dp(Y, X) + 4dp(X, Y)
 = - s(Y, X) + 2(n - 1)f,(JX, Y) + 8ndp(X, Y),

which shows (5.20). From equations (5.18) and (5.20) we obtain

(5.21) K"(X, Y)-k(Y, X)--4(n+2)dp(X, Y)
for every X, Y E 2). The defining equation (5.17) of k shows the following property

(5.22) k(JX, JY)-k(X, Y)-4(n+2)dp(X, Y)
for every X,Y E 9. It follows that

(523) s(JX, JY) -- s(X, Y) - -2(n - 1)f,(JX, Y) + 8dp(X, Y)

for every X, Y E 9. It is easy to show

(5.24) s(X, 4,)=-4dp(X, 4,), XE9.
Furthermore, by making use of (5.7) and (5.19) we obtain

(5.25) s(e,, X) == traceg (Z - (DzF,)X) - 2p(F,X) - 4ndp(C,, X)

            = traceg (Z - (DzT)(6,, X)) - 4ndp(C,, X), X E 9.
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 We introduce two notations for Iater uLge. Define S E F(9' op 9) by

(5.26) g(SX, Y) == s(X, Y), X, YE9
and p by

(5.27) p= traceidiS
which is a smooth function on M and will be called scalar curvature.
 Flnally we state the following lemma and conclude thls section.

Proposition 5.1. The Ricci tensor field s satisfies

                 2n(5,28) . Ee-i(D,,s)(X, ei)=t(dp-2pp)(X)

                i=1
for X E 9, where {ei} denotes an orthonormal frame of 9 with respect to the pseudo
metric g and Ei = g(ei, ei) = Å}1.

Proof. From the second Bianchi identity (5.8) we have

             (S{(DxR)(Y, Z)W} - G{w(X, Y)R(C,, Z)VV}

for ltV E 9. Therefore, if, in the above equation, we replace Y with ei and take the inner

product with ei, we have

                     2n
(5.29) (Dxs)(Z, VV)+2E,g((D,,R)(Z, X)VV, e,)-(Dzs)(X, liV)

                     i=1 •,
         - - g(JX, R(C,, Z)W) - g(JR(6,, X)VV, Z) + g(JZ, X)s(e,, W),

where we have used the following equation

                       2n
(5.30) Dxe, =-Åíe,g(Dx ei, ei)e) +2p(X)e.
                      j'--1
Moreover, replace both Z altd IV with eJ and sum with respect to i Then we have

(5.31)

   2e,•(Dxs)(ei•, e,) + 2 Ei eig((D.,R)(ei, X)eJ•, e,) -2Ej(D,,s)(X, ei•)

 = - E6Jg(JX, R(Cp, eJ)eo) - 2Eag(JR(Cp, X)eJ, eo•) + 2Ejg(Jej•, X)s(4p, e,).

We calculate the each term of the equation (5.31). Applying (5.30) to the first term of
the left hand side of (5.31), we have

               l 2n
(5.32) EE,•(Dxs)(e,, e,•)= (dp-2pp)(X).
                J'=1
Applying (5.4) and (5.30) to the second term of the left hand side of (5.31), we have

      2n
(5•33) E ei E,g((D,,R)(eo, X)ej, e,) = -2E,(D,,s)(X, ei) +42<D,,dp)(e,, X).
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For the first term of the right hand side of (5.31), we have, from (5.4),

            2n
(5.34) -Ee,g(JX, R(C,, e,)e,) = -s(4,, JX) -4dp(C,, JX).

            J'--1
To compute the second term of the right hand side of (5.31), we prepare the following

equation

     Z E,g((Dx Fp)e, , Jei) = 2 e{g((Dx F, J) ei, ei) = traceg Dx ( F, J) = O.

By using (5.3), (5.7) and the equation traceg(F,J) = O, we have

      2n
(5.35) -2E,g(JR(C,, X)e,, e,) = traceg (Z - (DzF,)JX) - 2p(l7,JX)+s(C,, JX).

      i=1
For the third term of the right hand side of (5.31), we have

                2n(5.36) 2E,g(.le,, X)s(4,, e,)=-s(z;,, JX).
                0'=1
We see from (5.34), (5.35), (5.36) and (5.25) that the right hand side of (5.31) becomes
4(n - 1)dp(C,, JX). Substituting (5.32) and (5.33) into (5.31), we have

(5.37) -22Ei(D.,s) (X, e,) +4Ze,(D,, dp)(e,, X) + (dp - 2p p)(X)

             ii          == 4(n - 1)dp(6,, JX).

If we prove

(5.38) 22ei(D.,dp)(JX, ei)=2(n-1)dp(C,, X),
                i
then we conclude (5.28). The proof of (5.38) is as follows. We calculate the exterior
derivative of dp.

         3d(dp)(Y, Z, W) = G{(Dydp)(Z, W) -w(Y, Z)dp(C,, VV)}

for Y, Z, W E 9, where we have used (e) in the definition of the torsion tensor of CR
Weyl connection. Replacing Y with ei, Z with Jei and l/V with X in the above equation,
and summing with respect to i, we have

(5.39) 2e,(D,,dp)(Je,, X)+2ei(DJ,,dp)(X, e,)

               ii              = -(2n - 1)dp(C,, X).
For the first term of the Ieft hand side of (5.39), we have

(5•40) - Z) E,(D,,dp)(Je,, X) = 2]) Ei(De,dp)(JX, e,)•

               i'iFor the second term of the left hand side of (5.39), we also have

(5•41) -2e,(DJ,,dp)(X, ei) = 2) f{(DJ,,dp)(JX, JeD

               ii                            = 26i(De,dp)(JX, e{),

                              i
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where we have used (3.16). Substituting (5.40) and (5.41) into (5.39), we obtain (5.38),

                                                o
              6. CREINsTEIN-WEYLSTRUCTURES
 Let D be a CR Weyl connection on a CR manifold (M, 9, J). Fixing a 9-preserving
almost contact structure (ip,6,e)' belonging to the CR structure (9,J), we know that
there exists uniquely a Tanaka connection V associated with the almost coRtact structure
(di,C,e)' (cf. (9], [12]). Then the difference tensor H between D and V is given in
Proposition 3.5. Thus we may calculate the difference R(X, Y)Z - RV(X, Y)Z for
X, Y, Z E 9, where RV denotes the curvature tensor of V. We intr6duce suitable 2-forms

and rewrite the resuiting long equation comfortably. Next we shall calculate k" - kV and
p - pV. In this way, the curvature tensor R will be expressed as the equation including

Bochner curvature tensor. Making use of this equation, we can define a CR Einstein-Weyl
structure on a CR manifold.
 To begin with, we calculate the difference R - RV. Since

      DxDyZ=Dx(V.Z+H(Y, Z))
           =VxVyZ+ H(X, VyZ) + (VxH)(Y, Z) + H(VxY, Z)
             + H(Y, VxZ) + H(X, H(Y, Z)),
      [X, Y] = VxY - VyX - TV(X, Y) = VxY - VyX +w(X, Y)C

for X, Y, Z E r(9), where we have used the equation TV(X, Y) == -w(X, Y)C, we have

(6.1) R(X, Y)Z-RV(X, Y)Z
         = (VxH)(Y, Z) - (VyH)(X, Z)
         +H(X, H(Y, Z)) - H(Y, H(X, Z)) -w(X, Y)H(C, Z).
We substitute (3.18) and (3.19) into (6.1). The calculation is long but routine and hence
we omit the proof. The result is as follows (cf. [9]):

(6.2)  R(X, Y)Z - RV(X, Y)Z
== - {(Vyp)(Z) - p(Y)p(Z) + q(Y)q(Z) + p(P)g(Y, Z)}X

 + {(Vxp)(Z) - p(X)p(Z) + q(X)q(Z) + p(P)g(X, Z)}Y

 - {(Vyq)(Z) - q(Y)p(Z) -p(Y)q(Z) + p(P)g(JY, Z)}JX

 + {(Vxq)(Z) - q(X)p(Z) - p(X)q(Z) + p(P)g(JX, Z)}JY

 - g(Y, Z){Vx.P - p(X)P + q(X)Q} + g(X, Z){VyP - p(Y)P + q(Y)Q}

 - g(JY, Z){VxQ - q(X)P - p(X)Q} + g(JX, Z){VTyQ - q(Y)P - p(Y)Q}

 + {(Vxp)(Y) - (Vyp)(X)}Z + {(Vxq)(Y) - (Vyq)(X)}JZ

 + g(JX, Y){VJzP + VzQ + 2p(P)JZ}.

Now we define a E F(9 X 9') by

                                      '(6.3) a(Y, Z) = (Vyp)(Z) -p(Y)p(Z) +q(Y)q(Z) + Sp(P)g(Y, Z) + }p(4)g(JY, Z)

and "r E I" (9' X 9') by

(6.4) ry(Y, Z) == (Vyg)(Z) - q(Y)p(Z) - p(Y)q(Z) + tp(P)g(JY, Z) - tp(6)g(Y, Z).
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Then they are related as

(6.s) a(Y, Z)- or(Y, JZ).
Rewriting the exterior differentiation dp and dq of the 1--form p and q in terms of the
Tanaka connection respectively, we obtain

(6.6) 2dp(Y, Z)-(Vyp)(Z)-(Vzp)(Y)-p(4)w(Y, Z),
(6.7) 2dq(Y, Z)=(Vyq)(Z)-(Vzq)(Y)
for Y, Z E 9, where we have used q(4) = O. From (6.3) and (6.6), we have

(6.8) a(Y, Z)-a(Z, Y)-2dp(Y, Z).
We also have, from (6.4) and (6.7),

(6.9) or(Y, Z)-7(Z, Y)- 2dq(Y, Z)+p(P)g(JY, Z).
Furthermore, define A, C E F(9' X 9) by

(6.10)

(6.11)

rrhen we have

(6.12)

and from (6.5)

(6.13)

                   11Ay - vyp - p(Y)P+ q(Y)(? + E2-p(P)Y + Eiip(C)urY,

                   1lCY - VyQ - q(Y)P - p(Y)(? + -l;p(P) JY - -i-p(C)Y

g(AY, Z) = a(Y, Z), g(CY, Z) = 7(Y, Z),

JA = C.

 Substituting (6.3), (6.4), (6.10) and (6.!1) into (6.2), we easily obtain the following
equation and we omit the proof (cf. [IO]).

Lemma 6.1. R- RV is given by

(6.14)  R(X, Y)Z - RV(X, Y)Z

= - a(Y, Z)X+a(X, Z)Y-7(Y, Z)JX + ty(X, Z)JY
 - g(Y, Z)AX + g(X, Z)AY - g(JY, Z)CX + g(JX, Z)CY
 + {a(X, Y) - a(Y, X)}Z + {7(X, Y) - or(Y, X)}JZ

 + g(JX, Y)(AJZ + CZ).

Remarh We can represent the equation (6.14) in the form similar to [10]:

        R(X, Y)Z - RV(X, Y)Z
       = - a(Y, Z)X + a(X, Z)Y - 7(Y, Z)JX +7(X, Z)JY
        -g(Y, Z)AX +g(X, Z)AY -g(JY, Z)CX +g(JX, Z)CY
        + {or(X, Y) - ty(Y, X)}JZ + g(JX, Y){Cz - `cz}

        + 2dp(X, Y)Z + 2g(JX, Y)dpn(JZ),

where tC denotes the transpose of the linear transformation C of 9 with respect to g
and dpti is the linear transformation of 9 defined by g(dpUX, Y) = dp(X, Y).
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 Next we shall compute k(Y, Z) - kV(Y, Z) for Y, Z E 9, where kV is the Ricci tensor
of the fixed Tanaka connection V. Before contracting the equation (6.14), we consider
the symmetric part of ty. For f,(Y, Z) - f(Y, Z), we obtain

(6.15) or(Y, Z) + or(Z, Y) - -f,( Y, Z) + f( Y, Z) + 2dp(.XY, Z),

where f(Y, Z) = g(FY, Z). In fact, since

    f,(Y, Z) - f(Y, Z) =: (VJyp)(Z) - (Vyq)(Z) + 2p(Y)q(Z) + 2q(Y)p(Z)

because of (3.24), the bilinear form a satisfies

(6.16) a(JY, Z)+a(Y, JZ)-f,(Y, Z)-f(Y, Z),
which implies (6.15).
 Well we compute s(Y, Z) -sV(Y, Z), where sV is the Ricci tensor of V. Contracting
(6.14), we see that

       s(y, z) - sV(y, z)
      = - 2na(Y, Z) + a(Y, Z) - 7(Y, Z) traceg J + 7(JY, Z)

        - g(Y, Z) traceg A + a(Y, Z) - g(JY, Z) traceg C - 7(Y, JZ)

        + {a(Z, Y) -a(Y, Z)} - {or(JZ, Y) - ty(Y, JZ)}

        - g(AJZ, JY) - g(CZ, JY).

Since traÅíeg Fp = tracegF = O, we obtain tracegC = O by virtue of the equation
(6.15). Making use of (6.5), (6.8), (6.15) and (6.16), we have

(6.17) s( Y, Z) - s" (Y, Z) =- 2(n + 2)a( Y, Z) - 3f,(JY, Z)

                    + f(JY, Z) - g( Y, Z) traceg A - 4dp(Y, Z).

Therefore, by the equation (5.20), we get

Lemma 6.2. The difference k'(Y, Z) - kV(Y, Z) is given by

(6.18) k(Y, Z)-k"(Y, Z)--(n+2){a(Y, Z)+a(JY, JZ)}
                    - g(Y, Z) traceg A -- 2(n + 2)dp(Y, Z)

for eveTy Y, Z E 9.

 Using the equation (6.17), we have

(6.19) S- S" = -2(n + 2)A -- 3F,J+ 3FJ -(traceg A) Ig - 4dpti,

where SV denotes the linear transforrnation of 9 defined by g(SVY, Z) == sV(Y, Z) and

Ig denotes the identity transformation of 9. We obtain, from (6.19),

Lemma 6.3. The difference p- pV is given by

(620) p- pV=-4(n+1) traceg A,
where pV denotes the scalar curvature of V.

 Let us define l and m by

                  11(6.21) l(Y, Z)--                     k(Y, Z)+                                    pg(Y, Z)                2(n + 2)                           8(n + 1)(n + 2)
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and

                 11                    k(JY, Z) +                                    pg(.IY, Z)(6.22) m(Y, Z) ==-                           8(n + 1)(n + 2)               2(n + 2)
respectively, where Y, Z E 9. From the equation (5.21) and (5.22) we obtain

(6.23) l(Y, Z)-l(Z, Y) == 2dp(Y, Z),
(6.24) t(,JY, JZ)-l(Y, Z)=-2dp(Y, Z).
Also we similarly obtain

(6.25) m(Y, Z) --m(Z, Y),
(6.26) m(JY, JZ)-m(Y, Z)=-2dp(JY, Z).
The forms l and m are related as

(6.27) m(Y, Z)=l(JY, Z).
We define L E r(9' X 9) and M E r(9 x S)) by

(6.28) g(LY, Z)=l(Y, Z),
(6.29) g(MY, Z)-m(Y, Z)
for every Y, Z E 9 respectively.

 We express a, 7, A and C by the above notations:

Lemma 6.4. The bilinear form a on 9 is given by

(6.3o) a(y, z) =i(y, .z) -i"(y, z) - -ll-{f,(Jy, z) - f(Jy, z)}- dp(y, z),

so that we have

(6.31) A=L-L"--ll(F,J-FJ)-dpU,
and the bilinear form or is given by

(6.32) 7(Y, Z) =m(Y, Z) -mV(Y, Z) - -ll-{f,(Y, Z) -f(Y, Z)}- dp(JY, Z),

so that we have

(6.33) C=M-MV--ll-(F,-F)-dpNJ,
where tV, mV, LV and MV denote the tensors sirnilarly defined by (6.21), (6.22), (6.28)
and (6.29) with respect to V respectively.

Remark. In [10], the following equations are easily verified:

          IV(Y, Z)=IV(Z, Y), mV(Y, Z)=-mV(Z, Y)
          tV(JY, JZ)=l(Y, Z), mV(JY, IZ) =mV(Y, Z)

for Y, Z E 9. These are derived from the fact that icV is symmetric on 9 and satisfies
kV(JY, JZ) == k(Y, Z) for Y, Z E 9.
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Proof. It suflices to prove the equation (6.30) from which the others are trivially derived

from the above remark. From the defining equation (6.21), we have

           l(y, z) - tV(y, z) -- 2(. 1+ 2) {fo(y, z) --- kV(y, z)}

                                  1                           + 8(n + 1)(n + 2) (P " P")g(Y, Z).

We substitute the equation (6.18) and (6.20) into the above equation. Then we have

          l(Y, Z) - IV(Y, Z) = -ll-{a(Y, Z) +a(.THY, JZ)} + dp(Y, Z),

and hence, we obtain (6.30) from (6.16). O
  Next we shall rewrite the equation (6.14) by making use of Lemma 6.4. Before we do
so, we need to state the Bochner curvature tensor which is invariant under the change
(2.8).

  Sakamoto and Takemura (cf. [10]) state the Bochner curvature tensor in the following
form.

Lemma 6.5. Let Bo, Bi E r(9'3X9) be defined by

(6.34) Bo(X, Y)Z
       =RV(X, Y)Z+IV(Y, Z)X-IV(X, Z)Y+mV(Y, Z)JX -mV(X, Z)JY
         +g(Y, Z)LVX -g(X, Z)LVY +g(JY, Z)MVX - g(JX, Z)MVY
         - 2{mV(X, Y)JZ + g(JX, Y)MVZ},

                         1              Bi(X, Y)Z- -iF{RV(JX, JY)Z- .RV(X, y)z}.(6.35)

Then B = Bo + Bi is invariant under the change (2.8). (The tensor field B on 9 is
called Bochner curwature tensor. )

 The right hand side of the definition of Bi is given by

(6.36) RV(JX, .IY)Z-RV(X, Y)Z
         ==g(JX, Z)FY -g(JY, Z)FX +g(X, Z)FJY - g(Y, Z)FJX
           +f(X, Z)JY - f(Y, Z)JX +f(JX, Z)Y- f(JY, Z)X
for X, Y, Z E 9 (cf. [10]).

 We introduce the important notations for a CR Einstein-Weyl structure by which we
rewrite the equation (6.14). We define ricD by

(6.37) ricD(Y, Z)=l(Y, Z)-dp(Y, Z)
for Y, Z E 9. From the equation (6.23) we see that the tensor ricD is symmetric and
hence ricD is the symmetric part of l. We obtain, from (6.27),

(6.38) ricD(JY, Z)=m(Y, Z)-dp(JY, Z).
Furthermore we define RicD E r(9' (2b 9) by

(6.39) g(RicDY, Z) =TicD(Y, Z)
for Y, Z E 9. It follows that

(6.40) RicD =L- dp", RicDJ=M- dpti J.
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 We obtain, from Lemma 6.1,

Theorem 6.6. Let (S),J) be a nodegenerate CR strzLcture on M2n" and (Åë,g,0)' a 9-
preserving almost contact structure belonging to (9, ,J). Let D be a CR ItVe?yl connection.

Then the curvature tensor R of D satisfies

       1       -liF{R(JX, JY)Z + R(X, Y)z}(6.41)

      = - ricD(Y, Z)X + rzcD(X, Z)Y - ricD(JrY, Z).XX + ricD(.IX, Z)JY

       -g(Y, Z)RicDX+g(X, Z)RicDY- g(JY, Z)RicDJX +g(JX, Z)RicDJY
       + 2{ricD(JX, Y)JZ + g(JX, Y)RicDJZ}

       + B(X, Y)Z
for every X, Y, Z E !7

Proof. Substitute the equations from (6.30) to (6.40) into (6.14). Then we obtain (6.41).

                                                               o
Remark. For X,Y E 9 we define the transformation XAY on 9 by

(6.42) (XAY)Z =- g(Y, Z)X-g(X, Z)Y
for Z E 9. Furthermore, for RicD, Ig E r(9' X 9) we define RicD A Ig by

(6,43) (RicD A Ig)x,yZ = RicDYA IgX- RicD X' A IgY

for X, Y, Z E 9. Using such notations as (6.42) and (6.43) and rewriting the equation
(6.41) and (5.15), we obtain

(6.44)

(6.45)

 We find that the equations (6.44)
describes the
forrnal curvatrue tensor
symmetric part of hD
that we define a

Definition.
D is CR Einstein-Weyl
is the Levi
to (EIi), J).

a CR Einstein- Weyl

Remark.
ricD. Therefore
independent of the ch

1
-liF{R(JX, JY)Z+ R(X, Y)Z} = {RicD A lg + RicDJA J}.,.z

                       + 2{ricD(JX, Y)JZ + g(JX, Y)RicDJZ}

                       + B(X, Y)Z,

   -liF{R(JX, JY)Z - R(X, Y)Z} = -lii-{F, A J+ F,JA I.}.,.Z

                          - 2{dp(X, Y)Z- dp(JX, Y)JZ}.

                    and (6.45) are similar to the equation in [2] which
   relation between the curvature R of a Weyl connection and the Weyl con-
           W. The definition of an Einstein-Weyl connection is that the
         in [2] is proportional to g pointwise. Therefore it wil! be appropriate

     CR Einstein-Weyl connection as follows:

  A pair of a nondegenerate CR structure (9, J) and a CR Weyl connection
           lf the bilinear form ricD is proportional to g pointwise, where g

' metric of arbitrary 9-preserving almost contact structure (ip,C,e)' belonging
 And a CR manifold M furnished with a CR Einstein-Weyl structure is called
        manifold.

The bilinear forrn pg does not depend on the choice of (ip,C,e)' and so does
      the definition that the CR Weyl connection is CR Einstein-Wey! is
         oice of (ip,4, e)"•
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  By the following proposition, we may state that a certain pair of a 1-form p and 9-
preserving almost contact structure (ip,C,e)* determines a CR Einstein-Weyl structure

as iB the case of Einstein-Weyl structure.

Proposition 6.7. The CR structure (9, J) admits a CR Einstein-Weyl connection D of
and only if D is determined by a pair of a 1-fromp satiefying (3.16) and a 9-preser"ving
almost contact structure (Åë,6, e)* which satisfy

                                      '(6.46) k"(Y, Z) - (n +2){(Vyp)(Z) - (VJyq)(Z) +p(C)g(J\, Z)} - Ag(Y, Z)

                                '                                           'for every Y, Z E 9.

Proof. First we assume that ricD(Y, Z) is proportional to g(Y, Z) pointwise. Then by
the definition of ricD and (6.30), we have

                    ..                           '                         '(6.47) ricD(y, 2) -= iV(y, z) +d(y, z) + -ll'L{f,(Jy, l) -f(Jy, z).}..

                                            '              '                   'Moreover, applying (3.24) to (6.47), we have

                        '(6.48) ricD' (Y, Z) - l"(?{, Z) + -ll-{(Vyp)(Z) T-. (VTJyq)(Z) +p(C)g(JY, Z).}

                                              '                      1                   + iP(P)g(Y, z).

                        '                                    '                             'Substituting the definition of IV into (6.48), we have

                                            '(6.49)

   rzcD(Y, Z) -= -- 2(.1+ 2) k"(Y, Z) + -ll{(Vyp)(Z) - (VJyq)(Z) +p(C)g(JY, Z)}

              + s(n + ll(. +'2) {P" +4(n+ 1)(.n +. 2)p(p)}b(y, 'z),

                                          '                  '                                                       '                                      '                          tt                  'Wh6C.h.tl[ ,ggiieyS, Q664glik'.., th.t th,,, exigt b'and'(Åë,c, e)' which satisfy (6•46)• By propo-

sition 3.6, we have a CR Weyl connection D. Then we define the tensor ricD of the CR
Weyl connection D. Substituting (6.46) into (6.49), we see that ricD is-proportiona[l to

                            '
  Next we state the main theorem in terms of a holomorphic 1-form. If (ip,e,e)' is
a 9-preserving almost contaet structure such that the Ricci tensor kV of the Tanaka
connection V associated with (ip,C, e)' is proportional to g pointwise, that is,

(6.so) kV(y, z) =-cg(y, z)
for Y, Z E 9, where c i$ a smooth function on M and g is the'  Levi metric of (Åë,C, e)',

then (ip,C,e)' is said to be pseudo-Einstein (cf. [6]).

Theorem 6.8. Let (9, J) be a nondegenerate CR structure on a (2n + 1)-dimensional
manifold M. Assume that there 'exists a 9-preserving pseudo-Einstein almost contact
structure (ip,C,e)' belonging to (9, J). If there exists a holomoTphic 1-form p + vi=i[q,

where p is a real 1-form and q = -po ip, then the CR Weyl connection D determined by
p and V' (Tanaka connection associated with (ip,C, e)') is CR Einstein-MZeyl.
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Proof. First we put u :p+ V=Tq. We see from (2.19) that d'u = O if and only if u

satisfies the following equations:

(6.51) (V....T,.u)(Y - V=TJY) - u(TV(Y - V=E[JY, Z + V:TJz)) = o

(6•52) (Vz. v=rJzu) (6) -u(T" (4, Z+ vTTJz)) =o

for Y, Z E 9. We have, from (6.51),

(6.53) (Vzp)(Y)-(VJzg)(Y)+p(C)g(JZ, Y) .
                                                    '              + vCT{(VJzp)(Y) + (Vzq)(Y) - p(C)g(Z, Y)} == O.
                                                     '                                               '                    '                                   '              '                   'Combining (6.53) with the assumption that (ip,C,e)' is pseudo-Einstein, we see that

(6.46) is satisfied. Since ' - ' ' -• i
  '    2{dp(X, Y) + dp(JX, JY)} =(Vxp)(Y) - (Vyp)(X) +p(T(X, Y))

                           + (VJxp)(JY) - (VJyp)(JX) +p(T(JX, JY))
                         -(Vxp)(Y) - (VJxq)(Y) +p(C)g(JX, Y)
                           - {(Vyp)(X) - (VJyq)(X) +p(6)g(JY, X)}

for X, Y E 9, we also obtain (3.16). Therefore, by Theorem 6.7, the CR Weyl connection

Ddetermined bypandVis CR Einstein-WeyL I
             7. ExAMpLE OF CR EINSTEIN-WEYL MANIFOLDs

  We shall explain an example of a CR Einstein-Weyl manifold. We shall show that
the total space of SO(3)-principal bundle over a quaternion Kahler manifold has a.CR

Einstein-Weylstructure. . . .
  Let M be a Riemannian manifold of dimension 4m (m ) 2). The manifold M'is
a quaternion Kahler manifold if the holonomy group of the Levi-Civita connection is
contained in Sp(m) • Sp(1), where Sp(m) acts on HM on the left and Sp(1) acts on IHIM
as 4H> 4• a on the right for q-' E ueM. Thus Sp(m) • Sp(1) is a subgroup of SO(4m), which
is isomorphic to Sp(m) Å~ Sp(1)/{Å}1} (cf. [1]').
  A Riemannian manifold (M, g) is a qdaternion Kihler manifold if and only if there are
an open covering {U} of M and (1,1) tensor fields Ji, J2, J3 (defined on U) satisfying

                   J12=-I, J22 =--I, J32 == -I
         JI J2 == -- J2 Jl = J3 , J2 J3 =-J3 J2 = Jl , J3 Jl =-JI J3 == J2,

                  g(JiX, JiY) == g(X, Y) (i == 1, 2, 3)

and

              f Vk J, = ' ' 2e, (X) J, -20,(X) J3
(7.1) . <V9.J2 == -2e3(X)J, +2e,(X)J3
  •-.-''-• -''-1 Vg.'J, = 2e,(X)J, -2e,(X)J, -•
                                       'for X,Y E TU, where Vg is the Levi-Civita connection of g. The tensors J!, J2 and J3
form a !ocal basis of a vectqr bundle V(M) over M. For another local basis fi, f2 and
Jg on U', we have, on Un U',

(7.2) (J{, J5, J15) - (J,, J,, J,) s. .t, s. ., E SO(3),

where the product of the right hand side is the matrix inultiplication.
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  Let 9b be the princlpal SO(3)-bund!e associated with V(M), that is, 2E3) is the principal

bundie consisting of frames of V(M). The dimension of the total space of pa is equal to
4m+3. We shall show that the total space ,9Z admits a CR Einstein-Weyl structure. We
take a basis of the Lie algebra so(3) of SO(3) as follows:

(73) ,, = ( gt i -Oo2 ) , ,, = ( -Ot, o8 gt ) , ,, .. ( g, -oo2 g )

Then the basis satisfies

(7.4) [ei, e2] =2e3, [e2, e3]=2ei, [e3, eil == 2e2•
By using 1-forms ei, e2 and e3 appearing ln (7.1), we define tuu by

(7.5) Wu=eiei+e2e2+e3e3
on the each U. Hence wu is a so(3)-valued 1-form. We have, from (7.1) and (7.2),

(7.6) wu, =suu,-i dsuu, +suut-ic.ousuu,
on UA U'. Therefore the family so(3)-valued 1-forrn {tuu} determines a connection w in
the principai bundle ,9b. If we consider a = {,Ji, .12, .13} as a cross section of ,9b oR U,

then a'w = elel + e2e2 + e3e3. We put

(7.7) w= cvlel+w2e2+w3e3,
where wi, w2 and w3 are 1-forms on S3b. The curvature form S) ofw is given by

         S'lll = clcvl + cv2 A cv3 , S)2 = du2 +w3 A cvl , S-23 == de3 +wl A cu2 ,

where st = Sltiei + st2e2 + 93e3. Let <i be the fundamental vector field corresponding to
ei (i = 1,2,3). Then we have from (7.4)

(7.8) [<,, <2j == 2<3, [C2, <;31 =2<i, [<3, <i]=2<2
and

(7.9) wi (Cj)= 6ij•
The Ricci identity for Ji and (7.1) imply that

      f [R9(X, Y), J,l == 4d st3(X, Y) J2 -4a' st2(X, Y) J3
(7.10) < [Rg(X, Y), J2] = -4dst3(X, Y)Ji +4a'9i(X, Y)J3
      t [Rg(X,Y), J3] = 4dS)2(X,Y)J, -4dst,(X,Y)J2
for X,Y E TU. If m ) 2, then it can be shown that (M,g) is Einstein. For the proof
of this fact, [p.403, 2] or [3] where (7.10) is used as a key equation. Let XH denote the

horizontal lift of X E TM. Then we have

(7.11) S2i(?<1.", Y"). ==-';'g(JiX, Y) (i=1,2,3),

wherec= pg/{8m(m +:2)} and pg is the scalar curvature of (M,g). In the sequel, we
assume that the constant pg does not vanish. We put e = -wi/c and 4 = -c<i. Let
9 be the hyperdistribution spanned by the horizontal distribution rw of tu, <2 and <3 at
each point of pt. Then we have e(C) = 1 aRd e(9) = O. Moreover

(7•12) -2dO(XH, Y")a = 2'{S)i(X", Y") - 2(cv2 A cv3)(X", YH)}a

                           c
                         = -g(J,X, Y)
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for X,YETU. We define J. : 9. . 9. at u={Ji,J2,J3}E pt by

(7.13) J.V=(J,X)H-cv3(V3)<2+cv2(V2)C3
for V = XH + V2 + V3 e M. espan{<2}espan{<3}. It is easily verified that J<2 = <3,
JC3 = -<2 and hence .J is a complex structure on 9. We also define cvL and gL by
cvL = -2de and gL(•, •) = cvL(J•, •), respectively. Then

(7.14) cvL(X", Y"). == -g(JiX, Y), cvL(X", C2)=cvL(XH, C3)=O,

                                      2                          wL(<2, C3) = ' -E; ,

                        '             'since [<2, C3] = 2<i and [XH, Ci] = O. Putting ej = moeCj (j' = 2, 3), we have

                     tt(7.ls) gL(XH, YH) == g(X, Y), gL(X", Cj)=O, gL(Cj, Cj) ==E

for 1' -- 2, 3, where 6 is the signature of c. It follows that gL is nondegenerate and positive

definite (resp. pseudemetric with 7 = 2) if the scalar curvature pg is positive (resp.
negative). It is easy to show that gL is Hermitian, that is, gL(JV, JW) = gL(V, iP7V) for
V, W E 9. Thus we see that the nondegenerate pair'(9, J) satisfies (C.1) in Section 1.

To prove (C.2), we first show ' -. . '- ./ •
                                                  '                          '(7.16) - [JX", Jy"] - [x", y"] - J([x", Jy"] + [Jx", y"]) =. o

for X,Y E ec(U). For an arbitrarily fixed u E pt, we can take a cross section a ==
{Ji, J2, J3} on U such that a(x) == u and da(T.M) = rw., where 7r(u)-= x, T being the
projection :3) . M. Then thg Ieft hand side of the above equation is equal to

(7•17) [(JiX)",.(JiY)H] r [X"fl. , Y"] - J([X", (JiY)H] + [(JiX)", Y"])

    '                                   '     'at tt, since JXH = (JiX)H along a. The horizontal component of (7.17) is the horizontal

          '                                          '                                                     '(7.18) [J,X, JiY]-[X, Y]-Ji([X, JiY]+[J,X, Y]).
Since ei == O at x (i = 1,2,3), we see from (7.1) that (7.18) vanishes at x. The vertical
component of (7.17) also vanishes at u since

                cvj([(JiX)", (J,y)"] -- [xH, yH])

                 == 2{-Sr)j((J,X)H, (J,Y)H) + sH2j(xH, yH)}

                 = --2cg(JjX, Y)

and
      cvj(1[X", (JiY)"] + J[(J,X)", Y"])

       = cvj((Ji [X, JiYl)" - cv3([X", (JiY)"])<2 + Lu2([X", (JiY)"l)<3)

          + cvj((Ji(JiX, Y])" - cv3([(JiX)H, Y"])<2 + cv2([(J,X)", Y"])<3)

       = -2cg(JjX, Y)

at u for j' = 2,3. Secondly we show, for o' = 2,3,

(7. 19) [JXH, JCj] - [XH, C,] - J(tXH, JCj] + [JXH, <j]) - O.

Note that (XH, <,•l = [XH, J<j] = O. Thus it suffices to show that

(7.20) [JxH, .I<jl-J[Jx", <j]-o
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at u. Since

                                            '                                        '            iJX", <jlu = lilill}ll l{(d9t ('JXH))u - (?'XH)u}

                        '                               '                 ' ' l=IL/{l'l'{(ii('t)`'i)X}.H

                                          '                                          '                     = -((uej)iX)ij (pt=Rexp(tej)),
where (Ji (t), J2(t), J3(t)) == (Ji, J2, J3) exp(tej) and ((ue2•)i, (ue,•)2, (uei•)3) = (Ji, J2, J3)e,•,

If o' = 2, then [JXH, <2]. == 2(J3X)." and hence J[JX", <2]. -- 2(Ji J3X)." = -2(J2X)5.

Since [JXH, <3]. == -2(J2X)ij, we see that ' '
                       '      '                        [JXH, JC,] - J[JXH, C,] = O

                                            'at u. We have (7.20) for 7' --3in the siMilar way. Thirdly it is easy to show
           ..                                                          '                                   '                [JC,, J<3] - [<2, <3] - J([<2, JC3] + [J<2, <3]) == O.

             '                          '                                '                                      'We have proved that the condition (C.2) is satisfied. The pair (9, J) is anondegenerate

CR structure on pa.' '. -. '                                         'b,f.e.`,l.8e,.de(fi.",e,d)PY,.Åë,C,==.O.aed,,ip,lg.-'il,l',T,h(e.')Sip",g•,e.).iganaimostcg4.actstrucyyre

                                           '                                               '                         '               [fX" + g<2 + h<3, C] =- 2cg<3 - 2ch<2 ( mod 9).

                                        .. .Therefore (ip, C, e) is a 9--preserving almost contact structure.

  Next we compute the curvature tensor of the Tanaka connection V associated with
(ip,C,e). Since F == -1/2ip(.S2f7cip) on 9, we easi!y have FCj = O (j' = 2,3). Moyeover,
Åë(Ycip)XH = J[C, JXH] and hence FXH == O by the same method as the proof of (7.20).

Thus we have F = O. It follows that

(7.21) VgC2=-2cC3, V'gC3 == 2cC2•

               -CdL(62, 43)C =-T(C2, e3) == V4,e3 - Ve3C2 - [C2, C3]

                                   = vE, c3 - vc, e2 + 6c

and cvL(62, C3) = -E, we see that Ve,g3 == Vc,62. Note that

                                   '                                   '                     vc,e3 == vc,(ipc2) = ipvE,c2 ,

                      '                                   '                     Vc3C3 == ipVc342 == ÅëV42C3 = ip2Vg,e2•

                                   t.To prove

(7.22) Vc,4k =O (1',k == 2, 3),
we have only to show Vc,42 = O. Since VegL = O and Tgc = O on 9, we have

     2gL(Y7c,C2, W) =C2 • gL(C2, W) + 62 ' gL(C2, W) ' W ' gL(C2i (;2)

                   - gL((i2, [62, W]gc) - 9L((;2, I42, VVIge) + 9L(W, [62, (52]gc)

for liV E r(9). If W = tgj (2" = 2, 3), then the right hand side vanishes. If W = XH, then
the right hand side also vanishes because of the equation IC2, XH] = O. By the equation
V'cX" == FXH+ [C, X"], we obtain
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for every X E ec(U). Note that

2gL(Vc, X", W) =Cj • gL(XH, VV) + XH • gL(gj, VV) - W• gL(Cj, X")

    - gL (Cj , [XH, W] g, ) - gL (X", [Cj , VV] g, ) + gL (VV, [6j , X"] g, ).

If W = Ch (ic == 2,3), then the right hand side vanishes and if YV = YH, then

  2gL(Vc,X", Y") = - gL(Cj, [X", Y"]g,)
     ' =- gL(Cj, cv2([X", Y"])<2 + cv3([X", Y"])<,)

      ,=-iwj.([XH, yH]) ' .
      ...2.stj(xH, y,Er),

wherea = KAE[712-. We define Kj (]' = 2,3) by (Kj).X" = (JjX).H and KjC2 = Kj63 = O
at u = {Ji, J2, J3} E pt. Then Kj is a linear transformation of 9 such that

(7•24) . . ' 1'. .stj(V, VV) - - gt gL(KiV, W) . - - ' ' ' .

for every V,WE 9. With this notation, we have '

(7.25) Vc,X"=-eaKjXff.
Since [X", 6j] =O and cvL(XH, Cj) == O,.we obtain

(7.26) ' . VxHCj=-6aKjX". '
We also use

2gL(VxHYH, Z") =X" • gL(Y", Z") +Y" • gL(XH, ZH) - Z" • g.(x", y")

    - gL(X", [Y", ZH]M) - gL(Y", [x", z"]rw) + g.(z", [xH, yH].)

    =X•g(Y, Z) +Y•g(X, Z) -Z•g(X, Y)
    -g(X, [Y, Z])-g(Y, [X, Z])+g(Z, [X, Y])
    ==2g(V7gcY, Z) = 2gL((vil,y)", zH),

.fromwhich '- . '-'
(7.27) VxHY" = a{gL(K2XH, YH)C2 + gL(K3X", Y")C3} + (V9.Y)".

To calculate the curvature tensor easily, we assume that VgX = VgY = VgZ = O at x
and a == {Ji, J2, J3} is a cross section of ptlu such that a(x) = u and da(T.M) = J)t?. for

an arbitrarily fixed u E 9)lu. So the calculation is always evaluated at u. Using (7.27),

we have

(7.2s) RV (x", YH)Z" =a(X" • gL(K2 Y", Z"))62 + agL(K2Y", Z")VxHC2

      + a(XH • gL(K3YH, Z"))63 + agL(K3Y", ZH)VxHC3
      - a(YH • gL(K2X", Z"))C2 - agL(K2X", Z")VyHC2
      - a(YH • gL(K3X", ZH))C3 - agL(K3X", Z")VyHC3
      + (Rg(X, Y)z)H
      - 2S'2,(XH, YH)K,ZH - 2S'2,(XH, YH)K,zH,
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from which and (7.26),

(7.29)

  g,(RV(x", Y")Z", X") = - -;-c{g(X, J2Z)g(.J2Y, X) +g(X, J3Z)g(J3Y, X)}

                       +g(Rg(X, Y)Z, X).
Similarly we have

         EgL(RV(gj, YH)ZH, 6j) = a2eCj • gL(Kjy", zH) + gg(y, z)

for 1' = 2,3. Since

              <j ' 9L(KJYH, ZH) =E:t7gL(KJYH, ZH)uexpte, lt-o

                             d                           ` 2iTtg(lj (t)Y, z) lt=,

                           =g((uej)jY, Z)
                           ==o,
                                            'where the notation J,•(t) and (ue,•)o• are defined in the proof of (7.20), we have

(7.30) .Egb(RV(E,, YH)ZH, 6,•) == gg(Y, Z).

It follows from (7.29) and (7.30) that

                             m+1(7.31) sV(Y", Z")= 4.(,.+2) pggL(Y", Z")• .

The calculation of gL(R"(X", 4j)4j, X") and EgL(R"(Ck, C,•)4j, Ck) (ik = 2,3, o' iL k)

is easy. The results are

(7.32) gL(RV(X", Cj)Cj, X")= {l- cEg(X, X)

and

(7.33) EgL(R"(4k, 4i)Ci•, Ck) =2cE•
It follows from (7.32) and (7.33) that

                             m+1(7.34) sV(cj, cj)= 4.(.+2) pggL(Co•, CJ•)

for 1' = 2,3. The equation (7.28) implies that gL(RV(XH, YH)Cj, XH) = O. We have,
frorn RV(Ck, C,•)6,- = 2cE6j,

(7.3s) g,(RV(C,, YH)4,•, C,) --gL(RV(Cj, Ch)Ck, Y")

                              =o,
where we note that the';first equality is derived from .F" = O. Therefore we obtain

(7.36) sV(YH, cj)=o.
Similarly we have

           g,(RV(XH, 4,)C,, XH) == O, gL(RV(6,•, C2)43, C,) = O

and hence

(7.37) s"(42, C3) =O•

37



The two Ricci tensors sV and kV coincide when F = O (cf. [101). Therefore we conclude
that (ip, C, e) is pseudo-Einstein.

  Fina}ly we show that p = ac:v2+rscv3 (a,fi : constant) satisfies (3.16) and (Vvp)(IxV)-
(VJvq)(W) +p(g)gL(.IV, TiV) = O for V, lxV E 9. It is easy to show that p satisfies (3.16)

by virtue of the structure equation of the connection w. Since

                (Vvp)(W) - (VJvq)(VV)

                 = V • p(W) - p(VvW) + JV • p(JW) - p(JVJvW),

we easily see that (V'vp)(lxV) - (VJvq)(IiV) == O in the cases where (V == XH, I7V = Y"),

(V = X", IV = cj), (V == 6,,W = X") and (V = Cj, V/lx' == ek). Noting that p(4) = O, we

obtain the assertion.
  In this way, we have shown that the total space of the SO(3)-bundle associated with a
quaternion Kahler manifold of dimension 4m (m ) 2) with non vanishing scalar curvature

admits a CR Einstein-Weyl structure.
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  Abstract. We investigate the behavior of the derivatives of the 'fundainental solution of the

parabolic equation for the square of the Dirac operator on a twistor space when the metric is

blown up in the base space direction. Such a blowing up operation is expected to be an effective

method for extracting some intrinsic values from va.rious geometric invaxiants, most of whose

cores consist of the derivatives of the fundarnental solutiQn.

                           gO. INTRODUCTIOYt

  Let M == (M,gM) be an n-dirnensional compact oriented Riemannian manifold equipped

with a Spinq structure introduced in [17]

(O•1) :'q : Psping(n)(M) = Pspin(n)(M) Xz2 Psp(i) - Pso(n)(M) X Pso(3)

where Pso(.)(M) is the SO(n)-bundle cor}sisting of SO(n)-frames of TM, Pso(3) is a given

SO(3)-bundle and the bundle map :'9 is equivariant to the Lie group homomorphism :'q :

Spinq(n) =- Spin(n) xz, Sp(!) . SO(n) Å~ SO(3), :-9([ip,h]) = (:-(ip),Ad(h)) with Ad(h) =

(!mH ) p H Ad(h)p = hph-i E im H) E SO(3). Given a set of local trivializations {fub =

[foub, f!ub]} of the (globally defined) principal Spin9(n)-bundle Ps,i.q(.)(M), the sets {feub},

{fiub} define locally defined principal bundles Pspin(.)(IVI), Psp(i) respectively, whose transition

functions fo,ubvb etc. may not satisfy the cocycle condition in the sense fo,ubvblp)fo,vbwb(p) =

fo,ubvvb(p) or -fo,ubvvb(p) on UbnVbnVVb (D p), etc. Now, using the canonical action ofSping(n)

or Sp(1) on Spinq(n)/Spin`(n) = Sp(1)/U(1) and the identification Sp(1)/U(1) = CPi through
the representation rH : Sp(1) - GLf (H) = GLc((C2) with TH(a +j'B) = (S '-..B                                                                  ), we get a

CPi-fibration

(O•2) T:Z= Psping(n)(M) Xcan CP!= Psp(1) Xcan CPI -M•

                                     1



 Let us then take an Sp(1)-connection A of Psp(i), so that the twistor space Z possesses a

 canonical Spin structure ([181, [19)). Namely, the connection induces a splitting of TZ into

 horizontal and vertical components, TZ = Gtt S V, with natural orientation and the metric

 gZ = T'gM + gV (rr'gM = gZl7t) where gV is the Riemannian metric on V induced from the

 Fubini-Study one dsCP ofCPi. Further we have the locally defined spinor bundle $gM associated

 to Pspin(.)(M) and a locally defined herrnitian vector bundle e = Psp(i) xr. H, which together

 produce the globally defined vector bundle T'$gMXT'if =- T'gSgMX;Sgv ! $gz on Z, whose rank

 is certainly equal to 2[diMZ12]. Then, the locaily defined Clifford action pgM of Cl(T'M,gM)

on SgM, together with the action pgv of Cl(V',gV) on $gv induced from the fiberwise global

canonical Spin structure, gives the globaJly defined action pgz of Cl(TZ,gZ) on $gz, i,e.,

                                                                            'p,z(T'4b) = T'p,M(6b) X 1 (4b E T'M) and p,z(4f) = T'p,.v(r,M) X p,v(Cf) (ef E V') where

TgM is the complex volume element of (M,gM). Thus (Z, gZ) has acanonical Spin structure,

which gives the Dirac operator Åëgz : r($gz) - r($gz). Now, consider the semi-group with
COO-kernel e'-tip;Z associated to the parabolic equation with the initial condition

                  '(o.3) , (o-at+o;.) kb=o, th ,=,=ipoEL2r($,z).

The purpose of the paper is to study, replacing gZ by g.Z -'- e'!T'gAd +gV = T'g.M +gV with

e > O, the behavior of e-tpteZ and its derivatives when E - O.

  Such an operation of blowing up the metric in the base space direction (or shrinking each

fiber into one point), calJed the adiabatic operation, is expected to be an effective method for

extracting some intrinsic values from various geometric invariants of Z. For e: ample, Witten

([21]) found that the adiabatic limit of a certain n-invaJiant is closely related to the so-cal!ed

global gravitational a.nomaly which may impose some restriction on our universe, and his result

was further extended mathematically by Cheeger([8j, [91), Bismut-Freed ([6j), Bismut-Cheeger

([5]), Dai([12]), etc. Getz}er ([13I) also essentially used the operation to give a new and arnaz-

ingly short proof of the Atiyah-Singer index theorern for Dirac operators. It seems, however,

that the argurnents used in [61, [51, etc. are too specialized to be applicable for the study of

other vaxious invariants (refer to Remark on Proposition 2.2). In the paper, to settle their

studies upon a sound basis, we intend to show the fundamental properties of the behavior of
e-te;'eZ itself which is an essentiaJ component of various ones. That is, we will show for example

that e-tl;cZ(pO, pO) has a series expansion at ei12 = O using eM12 (O S m < oo), which we wm

calI an adiabatic expansion, and study the basic propecties of the coethcients and describe

the constant term explicitly. Its derivatives are aiso studied and consequently, with no ad-hoc
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argument, the formula for the index ofDirac operator is canonically derived, and, moreover, the

study of several invariants can be reduced commonly to further investigations of some deriva-

tives of the above coeflicients. Last, the author would like to mention that only the situation

(O.2) in which he has been interested is treated here, but it wiII be obviously easy to extend our

results into general fibrations.

                       Sl. THE MAINi '[IrHEoREMs

                                                           '  Let us take a coordinate neighborhood (U = Upo = Ub Å~ Uf,x = (xb,xf)) around PO E Z

in the following way. First, at pO = T(PO), take a gM-normal coorclinate neighborhood (Ub =

upb,,xb,p" ) and set xb(P) = xb,PO(T(P)). Then we fix a trivialization fiub of Psp(i)IUb given by

a cross-sectlon

(1•1) h with VaAla.,h=O (rb is the clistance function from pO in (M,gM)),

which induces an identMcation

(1.2) . ' LPAO,P=tPAO:zp =- 7r-1(p) !-)t zp,=(cpl.

                                  '                                                      '          '
ki other word, this is the A-paral!el displacement along the gM-geodesic from p to pO and,

together with a gV-normal coordinate neighborhood (Uf = USo,xf,PO) at PO E Zpo, gives

the coordinates xf with xf(P) = xf,PO(tPAO(P)). Fur'ther, let us take a local SO(n)-frame

eb = (eb,,•••,eg) of (TM,gM) which is paraJlel along the geodesics from pO and is equal to

(0/0xb),o E (O/0x9,•••,0/0xg),o at pO, and similarly a local SO(2)-frame ef = (e{,e2f) of

(Y,gV)IZpo with ef(Pe) = (a/Oxf)po. Note that, referring to [1, Appendix II], we have, for

example,

(1.3) e9. (xb) = ]E)(o/ox3)., • v,b•i(xb) , v,b•i(xb) = 6ji + g )I[. x,b•,xg•,Rg•j,jh(o) + o(lxb13)

                                             1!J2

where we put Rg•,",,,j (p) = gM(F(Vg">(a/Ox9• ,a/ax,b•)O/Ox?, ,O/Ox9,)(p). Moreover, let eb(A) be

the A-horizontal lift of eb and let us spread ef out on U by using (1.2) and denote it by the same

symbol. They give a Iocal SO(n + 2)-fra.me e.(A) = (eb(A),ef) of (TZ,gZ), a Iocal SO(n + 2)-

frame ef(A) = (ebe(A), ef) = (Ei12eb(A), ef) of (TZ, g.Z) (ebe(A) is the A-herizontal lift of ebC =

ei/2eb), and the dual frames e'(A) = (eb,ef(A)), e:(A) = (ebe,ef(A)) = (E'i12eb,ef(A)). The
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 frame eE(A) then gives local SU(2[("+2)/2])-frames s(eE(A)) = (s(e:(A))i,•••) = T's(ei/2eb)<Eb

 s(ef), s(e:(A))' = (s(e:(A))i,-••) of Sy,z, Sg'.z. Now, on the neighborhood iet us express the

 Dirac operator as ag.z = Åípg.z(ee(/1))V.$fg(i) where V$geZ is a spinor connection associated to

 the Levi-Civita one Vgei, and express the kernel as

 (1.4) e-"0;cZ(P, P') =- Es(e2(A))i(P) xs(e-;(A))i'(P') • (e'tdi;eZ.)i"'(P, P').

Differentiate it by 0a = (0/0x)a = (a/0xa,)(0/0xa2)'''(0/0xai.P = (0/0xk)(0/0xgg)'''

 (a/0Xgr.,i)(O/0X:t)(0/0X:,f) ' ' '(a/0X:r.,i) = aabOa' with respect to P and by oa' = (o/o.)a'

= aa'badf with respect to P', namely, set

(1.5) 0aOa'e-tO;eZ(P, P') =- 2s(ef(A))i(P) x s(e:(A)))'(.p') • 0aaa' (e-tof.Z)i"'(p, p').

                                             '
Precisely the purpose of the paper is to investigate mainiy its behavior at (P, P') = (Pe, PO)

when E - O. To clarify what should be studied, let us consider the canonical inclutsion

(1'6) $g,z,po X $6.z ,po 9 ATp'oMX $gv,po X $;v,pe

                    ebi.(pO) : n is even (in the case, this is isomorphic)
          PgcZ(e'be) " i{,,i, + (A)(n+!)12(..1)Vl('1+') *,,M ek}(pO) : n is odd

                                                         'and regard (1.5) with (P, P') = (Pe, PO) as an element of its right hand side, that is,

                                      '(i.7) aaoa'e-`ip;eZ(pO, pO) = Zeg(pO)Qs(ef)k(pO)xs(ef)t(po) • oaaa' (e'tl;,z)iki2(po, po)

where the multi-index i is always lined up in increasing order, i•e•, I = (ii < i2 < ••• < ilil)•

In contrast to the expression (1.5), the terms eg(pO)Xs(ef)k(PO)Xs(ef)t(PO) above do not
depend on E and we have oniy to investigate the coefficients oaoa' (e-ta;tZ);ki2(po, po) for our

purpose. Because of the advantage, hereafter we will use not (1.5) but the expression (1.7),

Further (1.7) can be interpreted canonicaUy as fol!ow: Let AT'MXrt $gv X Sgv be the pull-back

of AT'MX $,v X $;v by the map x'i(Ub) Å~ T-'(Ub) . M Å~ Z Å~ Z, (P, P') e (T(P), P, P')

and let us extend the inc!usion map (1.6) to

(1•8) t2;[,,z lT"i(Ub) X tfiS1 .z lT-i(Ub) g AT'Ub X. S',vlT-i(Ub) x gl;';vlT-i(Ub)

                         'by the chain ofmaPS t21g,z,pXSg:z,p' -N- Sg,z,,p.O(p)XtS;.z,,p.O(p,) 9 ATp'OMX5gv,tp.O(p)XS;v,tp.O(p,) or'

AT;(p)MX $,v,pX $}v,pt where the first isomorphism is given by s(eS(A))i(P) xs(ee.(A))J(P')

e s(ei(A))i(tP.O(P))Xs(e:(A))j(LP.O(P')), the second is by (1.6) and the third is by eg(pO)x
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 s(ef)k(LP.O(P)) op s(ef)e(LP.O(P')) e e,'(7r(P)) X s(ef)k(P) X s(ef)e(P'). Now, regard (1.4) which

 is a cross-section of the left hand side of (l.8) as one of its right hand side, i.e.,

 (1.g) e-tif;eZ(p, p') :-= 2 eg(T(p))xs(ef)k(p)xs(ef)e(p') • (e-tpteZ)ik.'2(p, p'),

                                       tt and differentiate it into ' '
                                                              '                                     '(i.io) oaade-top;eZ(p, p') E IZ) eg(T(p))Qs(ef)k(p)xs(ef)t(p') • oaoa' (e-te;,z)gk.'2(p, pt).

                                                             '
Then its value at (P, P') = (PO, PO) is obviously equal to (1.7). Next, let us define the pointwise

norm of (L9), etc. with respect to the metric gZ by '

                                           '(1•11) ' e-tipZeZ(P, P') ,. ={Z (e-tpteZ);ki2(p, p') 2}i12,

etc., and, using various metrics, various pointwise norms of cross-sections of the right hand

side of (1.8) are simi1arly defined. Note that the so-caJled pointwise operator norm of (1.4) is

                       "equivalent to the norm e'tegeZ(P, P') g.. with respect to g.Z uniformiy for al1 e with O < e S eo:

      e'd`eteZ(P, P') = ]Z)(edi!2eb)'(T(p))xs(ef)k(p)&s(ef)t(p')•el'Y2 (e-tip:eZ) ik.X2(p, p'),.

(1•12) e-tSZ);eZ(P, P') ,,.= {Z EIil12 (e-t4);.Z)gki2(p, p') 2}i12

In the paper we will ai7gue mainly on the right hand side of (1.8) using the norm of (1.11) type.

Its merit lies in the fact that (the inclusion map changes, but) the bund!e of the side does not

depend on the parameter e (refer also to the comment fol!owing (1.7)), so that it makes sense to
ask whether or not its elements which depend on e, such as e-tO;eZ(PO, PO) etc., can be expanded

into series with respect to the variable E. Anyway, to expand them, they need to inhabit some

bundle not depending on E. In [6] etc., a certain bundle isometry $g.z N= Sgz (see Remark

to Lemma 5.1, and see [7] for its further generalization) was adopted, by which they inhabit

$gz X $gz not depending on e. This scheme is of course equivalent to ours. But, comparing

these,, ours will be m' ui ch simply introduced and the results in our scheme will describe more

clearly how (1.5) etc. depend on the paJrameter e.

  Now the first result is

  Theorem 1.1. Given a, a' and r- > O, there e:ist constants Ci > O, C2 > O and an integer

N > O satisfptng

(1.13) 0aOde-tO;eZ(P, PO) ,,.
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       S E(Eabtgia'bi)i2 (t(n+2+iaiF+iatiy2 + i) ( ,i-(.,.. ((pW,}lt:3 -n.-g2iCcO,",dZt :.".ll , p,) . ..,

 (1.14) oaoa'e-tl;cZ(p, pO)l,.

       SI e(laebtlZtia'bl)/2 (t(n+2+lall+la,E)12 +tiV) ( jl.(r,.z((piU,IZIillli.niO)21CcO.ltdZtjl .n.)(p, po) > .-

         (o < vEi12 -< e612, o < vt < oo, VPO E Z, VP E 7r-i(UR(po)))

where rg,z(P, PO) is the distance from P to PO with respect to the metric g.Z. Further, given a,

a' , r'  > O and To > O, there exists a constant C > O sattsLfLting

(i.is) oaaa'e-'t,etcz(p, po) ,. -< .(i.,i.1.,:F/i'g,t' t((;2P2e.)iilli.,E)z2'

               (o< vei12 se612, o< Vt S To, VPO E Z, VP E Upo )•

                                                 '
  Next, in the case P = PO, we haye

  Theorem 1.2. For any integer mo >- O, the7'e evist COC'-sections K(.12)(t, PO, P, P') (m =

O, 1, ' ' ' , Mo?, Kc(.. +i )12,.:12> (t, PO , P, P') of the rt'ght hand side of (1. 8?, which are also Coo

wz' th respect to the variable PO (and ei!27, satisfying the folloan'ng two conditions.

  (1) Define the differentiations of K(.!2)(t, PO, P, P') etc. at (P, P') = (PO, PO) in the same

way czs at (1.10?. Then, at ei12 = O, (1.7? has a series eepansion called an adiabatic expan-

sion
                          '(1.l6) aaaa'e'tip;,Z(pO,pO) = 2Me e-'(Iabl+ldbi)12+m/2 oaaa'K(,.12)(t, pO,pO, pe)

                        m=O
         +e-(labl+la'bl)12+(mo+1)12 0aaa'K((m,+1)12,.t12) (t, PO, PO, PO)•

  (2) Given a, a', there exist constanbs A > O, C > O and an integer N > O satisfZting

         l oaoa'K(.12)(t,PO, PO, PO)l,z S Ce-t)` t(i'60M)!2(t(.+2+l.ll+t.tl)12 + 1),

(1.17)
         1 OaOa'.K((.,+1)12,.i/2)(t, PO, PO, PO)lgz S Ctl12(t(.+2+l.ll+I.tt)/2 + tN)

                 (o< vei12 <- E612, o< Vt < oe, VPO E Z)

where 6o,,, = 1 ifm=O and 6o. =O ifmlO.

  Moreover, the first term K(o)(t, PO, P, P') can be described concretely. After some prepara-

tions, we will introduce it. First, let us define the functiens uk(A(e9•)) on U by

(!•18) e9•(A)=e9-22uk(A(e9•))el., heRce, e>(A)=e;+2]Z)uk(A(e9•))eg.
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 Considering various connections A, the map A(e,b)(T(P)) e u(A(e,b))U(P) =- Åí uk(A(e,b))(p)

 e((P) gives a linear map sp(1) ) a E, u(a)ts(P) E Vp. Hence we obtain cross-sections u(i)ta,

 u(J')U, u(k)U, which are independent of the choice of A, and using which we have the expression

 u(A(e9))h = u(i)UA(e9•)(i) + u(3')hA(e?•)(a') + u(k)trA(e9•)(k) for A(e9•) = iA(e?•)(i) + j'A(e9)(]') +

 kA(e,b)(k). Further, for its curvature 2-form .F'A = iFff) +j'FAI) +kFAle) E S"22(sp(1)p,,(,)) etc.,

                         '
 (1.lg) u( FA )U = u(i) lt Q FAi) + u(J')lt x FAi') + u(k)h x FAle) = 2 e( x uk(.FA),

etc. Then, let us consider the elhptic operator acting on r(ATp'MQ $gvIZp)

(1•20) v4;o = v4So,p = IXip;v - 2uk(FA)po A'IXV.t$,fgV + i(Åí uk(FA)po A•pgz'(e;(A)))2

     with uk(FA),o(P) = i >i) uk(.F'A(0/0x,b,a/0x,b•))(eP.O(P)) (eLi A e2,'2)(p)

where V$gV is the spinor coimection for $gvlZp associated to the Levi-Civita one VgV on Zp,

which coincides with VgZ restricted to Zp because each fiber is totally geodesic, and ipgv is the

associated fiberwise Dirac operator. (Note that V.S,gV has no meaning now.) Clearly (1.20)

                                  igives a (CO) semi-group with Coo-kernel exp(-tA;o), which is a cross-section of ATp'M x

$,vIZ, X $gv1Z, C End(AT,'M) X $,vIZp X $;v[Z, expressed as

                                   '(1•21) exp(-tA;o)(P, ,F") = 2e,i lp)xs(ef)k(p)xs(ef)e(p') • exp (-t.4;,)gk.'2(p, p').

We take then a cross-section of the right hand side of (1.8) defined by

(1•22) exp(-tv4;o)(P, P')

        = 2 eb'(7r(P))xs(ef)k(P)xs(ef)t(p') • exp(-t.4;,)iki2(p, Llil(P)'T(P')(p')).

                                                '
  Next, on the coorclinate neighborhood (Ub, xb) at pO = r(pO), let us set Rgj"(pO) = Rg"(po,p)

= iZ) R,g•,\•,i,•(pO)(etb" A eg2)(p), which be!ongs to r(AT'MIUb), and denote by Rg"(pO) =

Rg"(pO,p) the anti-symmetric matrix whose (i,J')-entries are equal to R,gJM(pO). And, putting

xb = xb (p), x'b = xb(P'), we set

(!•23) KM(t, PO, P, p') = (4.ti )#1, deti12 (,ihill?tgR",(P.O(p/ /,2)/2))

     Å~ e.p(- zit7<(xb - x,b) i tRgili(PO) coth tRgll(PO) 1 (xb - x,b)> + i<xb E RgM(po) l xtb>),

          'which is a cross-section of the right hand side of (1.8). in particular, KM(t, PO, P, PO) (that

is, x'b = O) was originally introduced by Getzler([13], [3, Theorem 4.20]) as a formal solution
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of a certain paiabolic equation (see (5.25)). Note that j(tRg"(pO)) =- det (sinh(tRg"(pO)/2)/

(tRg" (pO)/2)) is a polynomial with respect to t and 2'(ORg"(pO)) = 1, so that 7'di12(tRg"(pO)) ..-,

deti/2 ((tRg"(pO)/2)/(sinh(tRg"(pO)/2))) is well-defined as an analy"tic function oft. Hence, by

considering the degrees of differential forrns Rg]"• (pO), we find it also a polynomial with respect

tO t and so is (1.23) devided by the Gaussian kernel (4Tt)'"/2e-lxb'x'b1214t.

  Now, under these preparations and referring to (1.3), we have

  Theorem 1.3. We may set

(1•24) K(o) (t, PO, P, P') = KM(t, PO, P, P') exp(-t.4;o)(P, P') • det vb(P').

    '
                                    '
IVote that det vb(P') = det(gM(0/0x,b• , 0/ax,b•)(x'b))'i12 = 1 + O(lx'bl2).

      g2. Two PRoposmoNs AND THE PRooF oF THEoREM 1.2

  Let us introduce two propositions, using which we will prove Theorem 1.2. The proofs of the

propositions will be postponed to the following two sections.

  As in [13], [51, etc., iet us start our discussion with showing that the proof of Theorem 1.2

can be reduced to a study of parabolic equation (O.3) for tZ);.z localized at each point pO E IV/f

in the following way. First, since the injectivity radius i(g.M) does not decrease when e - O,

there exists a constant To > O with i(gl,Yf) }ir 3ro (O < E S Eo). Fix pO E M and !et us identify its

normal coordinate neighborhood (Ub,xb = xb'PO) with an open bal1 B2., in M(pe) E (R",xb)

centered at the origin and with radius 2ro. We take a metric gMlve) on M(pO) so that its

restriction to B2., is equal to gM through the identification, outside B3.o it is trivial, and,

moreover, xb are its normal coordinates at the origin all over M(pO). Further, let us spread the

frames eb, eb on Ub = B2., all over M(pO) by the paralle! displacement along the geodesics from

the origin. Consequently we have a trivial Spinq structure

                                                '(2.1) :'q(pO) : Ps,i.g(.) (MipO)) = Ps,i.(n) (MlpO)) Xz2 Ps,a)(MlpO))

                                 - Pso(.)(M(pO)) Å~ Pso(3)(M(pO))

which coincides with (O.1) on Ub = B2.,, NQte that the bundles above aie all global!y defined

and canonical!y trivial, so that MlpO) has a Spin structure Pspi.(.)(M@O)) - Pso(.)(rvflpO)),

                                                          '                                                                         '
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 from which the Spinq structure is induced. Accordingly, (2.1) gives a trivial CPi-fibration

                                                                         '
 (2•2) T(pO) : Z(pO) ! Pspi.q(.)(fut(pO)) xc.. ÅëPi = rvf(pO) x Zpo -> Mlpe)

 with a fiberwise metric gVlpO) which coincides with gV on B2r, = Ub and is independent of xb

 outside B3.,. Moreoyer, we will take a connection A(pO) of Psp(i)(M(pO)) which coincides with

 the original A on B2., = Ub and satisfies A(pO)(e,b•) = O for a!1 i outside B3.,.

                                                                 '
   Now, under the setting such localized at pO, certainly there exists a canonical Spin structure

 on Z(pO), a spinor bundle $g,z(,o) and the Dirac operator ag.z(.o), etc. as in gl, all of which

 coincide with the original ones on B2., = Ub. And, on the coordinate neighborhood (U =

 M(pO) Å~ uf,x = (xb,xf)) (taken as in gl) and using the frame eb Xs(ef), if we write a;.z(,o)

        00                           a
 aS -Åí o.i CLij(X) o.,. + Z) ai(x)o.i +c(x) (aij = aji), then the coeflEicients aij(x), ai(x), c(x)

can be expressed canonically using the derivatives of the coethcients of geZ(eO) a.nd A(pO). Since

g.Z(PO) is independent of xb outside B3., and also A(pO) is flat outside B3r,, and, moreover, the

principal symbol of ag2 ..(,o) at (x,g) E TxZ(pO) is equal to geZlpO)(4,6) • id$ .c,,)p, vve know that

                        , ge
          the finite-tirpes derivat!ves of aij(x), q(x) and c(x) axe al1 bounded on U,
(2.3)

          and the principal symbol is hermitiaii and uniformly elliptic.

                                        'Hence, the Yosida's theorem ([22, Chapter IXI) says that the parabolic equation (O.3) for a2.(,o)

                                                                       gewith the canonical domain has a (CO) semi.group with coo.kernel e-toj,ZlvO). 4

  The first proposition is then as follows. Refer to (12, Lemma 3.3] which gives the similar

estlmates.

  Proposition 2.1 (the Duhamel's principle?. Given ct and a', there exist constants Ci > O

and C2 > O such that, for each pO E M, we have

(2.4) oaoa'e'tet,Z(}p, p') - oaoa'e-`ag2eZ(PO}(P, P') g. -< e.+(l.,gtlÅí,1-i)!2 e'C21et

                 ,                 i       (9,$,Vzilaoll2;,2asc.oo.',,S(,P;,P.",,E,,;J,ig-U;bz'1,Å~g.-2`.VÅío2,ys',t3-sc,Ygng)

where we regard oaoa'e'tipg2
eZ(PO)(p, p') atso as a cross-section of the right hand side' of (i.s?

with Z replaced by Z(pO).

  Hence, the difference e-tojez(p, p') - e-tipg2eZ('O)(p, p') (p, p' E u c z) may be counted in

                                           'the remainder term K((m,+!)l2,,ii2)(t,PO,P, P') at Theorem 1.2 and the study of (1.7) is now
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                  -tgi)2z(po)
                    ge . Abbreviating Z@O), M(pO), etc. to Z, M, etc. to simplify the•reduced to that of e

                                             ' description, we will investigate it in the follosving.

   To do so, let us consider, not Åëg,z(= ipg.z(,o)), but eg.z X id$;..,., aCting On the cross--sections

 of the right hand side of

 (2'5) $g,Z X$;.M ,pO 9AT'M XT $gV'
 In the same way as in (1.8), the incluSiOn MaP iS giVen aS $g.Z,p (29$;.",pO Y $g.z,,p.O(p)XS;.",pO =

 ($g," ,pO Q $;." ,pO) op $gv,,p.O (p) 9 ATp'oMX $gv,,p.o(p) = AT;(p)MX $gv,p• Its action, origtnally

on the left hand side, can be obviousiy extended to the action on the right hand side by regarding

pg,z(e-i12eg) as (e-i12e`i)A-(e-i12e`i)v where v is the inner product. 'Thus we obtain an elliptic

operator

                                         '                                     '(2•6) eg.z (= 0g,z X id$;.. ,,,) : r(AT'M QT $gv) -)' r(AT' IL( XT Sgv)

and, ' observing (2.3) around, its square aiz(= (ipg.z)2 X id$;..,.,) with the canonical domain

certainly gives a (CO) semi-group with Cco-kernel e-tip;eZ , which is a cross-section of the bundle

(2.7) (AT'MX(AT'M)') XT ($,vX$;v)•
                     'Note that, if we express (1.9) for g.Z --- g.Z(PO) as

                 '(2.s) ,'`a,2 .z(po)

         = 2ebi(P)X (e--tiiP;eZ('O>)g.,l(P, P')'= 2(E-i12eb)l(P)x (e-tgi);eZ(PO))i(P, p')

          '
with abbreviating eg(T(P)) to ebi(P), then the above kernel can be written as

(2.9) e-`a;.Z

     = 2((Ed'12eb) A -(e-!12eb)v)I(e-i!2eb)J(P)x((e"12eb)J)'(P') x (e'tgiP;eZ('O))l(p, p')

     E Z(e'i/2eb)J(P) (Eg ((e'i!2eb)')'(P') x (e"Q;eZ )(i,J)(P, P'),

                                             '

(2.lo) aaaa' (e'`oj.Z('O>)g.,l = E-lll12 aaaa' (edtS2P;tZ(PO))I = e-lll12 aaaa' (e-tf2);,Z )u,e).

  Thus the study of (1,7) or (2.8) was reduced to that of (2.9). Next, let us replace the metric

g.Z = TA g,M + gV which diverges when E - O by a non-divergent metric. That is, consider a

(global) diffeomorphism of Z = Z(pO) given by

(2•11) L.:Z or' Z, x== (xb, xf) ,--> (el/2xb, xf)
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 and set

 (2.12) g(Z.) = L;g,Z = 7r:;Ag(".) +gV with g(".) = L:gE`d =Eeg(e)xeg(e).

 This change ofmetric is the generalization ofthe change in [91 (from (1.15) to (1.16) in it). Since

 lim..og(M.) = Zdx,b• X dx9 -= g(Mt) and lim.-o(t.'A)((0/Ox,b)(x)) = O, certainly (2.12) converges

 to the product metric g(Mt) +E e7 x e> = g(Mt) +gV E g(Zo) on Z = M Å~ Zpo. Let us then consider

 (2.6) with g,Z replaced by g(Z.). Its square ag2(z,) with the canonical domain (see (2.3)) also gives

 a (CO) semi-group with COO-kernel e-tip;(Zi) and obviously we have

(2.13) e-tl;(Ze)(x,x') = c: oe-tl;eZ(t,(x),t.(x'))o(b!)'i with

      L.' : AT'MopT$,v - AT'MQ.S,v, ((e-i12eb)IXs(ef)k)(L.(x)) e (ebl(e)xs(ef)k)(x).

Hence, if we express it similarly to (2.9) as

(2.14) e'ti!);(Ze)(x, x') = 2 e,i (E)(x) x e,' (e)'(x') • (e-tl2);(Z`))(,,,) (x, x'),

then we have

                                                   '(2.ls) o.a og' (e-tpteZ)u,,) (x, x') = o.a o.a,' (e-ta;(Ze))u,,)(L.'i(x),t.-i(xt))

              = Ed(lab l+la'b l)12 a,a.- , (.) a,a.t, (d) (ed`Q;'ie) ) (i,J) (L.' i (x) , L.-i (x'))•

That is, referring to (2.10), finally we have

                                               '(2.16) aaoa' (e-tip;,Z('O))g.,l(pO, pe) = e-(labl+Idbl)12-1412 0aOa' (e'tip;<Ze))(I,ei(o, o).

  Thus, the study of (1.7) or (2.8) was further reduced to that of (2.14). The }imit metric g(Zo)

is of product type as was exp!ained and (2.6) etc. associated to it are certainly as follows:

(2•17) Q,,z,> =(d+6,,M,,)+ipgv, a;,2,, == (d+6,,M,,)2+ip3v

  '                                     '
where d is the exterior derivatiye and 6g(M,) is its formal adjoint. Hence, obviously we have

            '
                                                       '(2.ls) ertipg2 (Z

o) (x, x') =- K(t,'
o, x, x') E Kg(M,) (t, o, xb, x'b)•Kgv (t, O, xf,x'f)

             E 2(dxb)i(x) x ((dxb)i)'(x') e'iZb.-tiib;,i`t . ,-ta;v(lef, .,f).
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 Referring to (2.14) and (1.3), now put

 (2.lg) e'tipiZe)(x, x') =- K(t, e, x, x') = 2(dxb)T(x) x ((dxb)J)'(x') • K(t,e,x, T')(i,J) '

        = 2(dxb)i(x) x ((dxb)')'(x') x s(ef)k x s(ef)e • K(t, e, x, x')[f;,e)) ,

(2.2o) hence, (e'tag2(Zc})(i,J)(x, x') == 2K(t,e, x, x')(it,J,) vib,i(ei12xb) vbJ'J(ei/2ib)

       with (dxb)"(xb) = Åív,b,i(xb)•eg(xb), ((dxb)J')'(x'b) : Ev,"J(x'b)• (e,')'(x'b),

                ttthen we can state the second proposition.

  Proposition 2.2. The kernel K(t,e,x,x'), i.e., each K(t,e,x,x')(i,J), ds COO with respect

to (ei12,t,x, x') E [o,e6121 Å~ (o, oo) Å~ Z Å~ Z. Consider then the Taylor erpansion

(2.21) K(t,e,x, x') = Åí eM12K(t,m/2 : x, x') + e(MO+i)12K(t, (rno + 1)/2 : ei12,x, x').

                 m=O
                           ,Let us here dej6ne the differential 0aO`' K(t,E,x, x') etc. by the diffeTentials of the coeLt7icients
K(t,e,x,x')[f;S)) etc. (not of the coefi[icients (e-tpt(Ze>):IS)) etc.?, set rOaadK(t,e,x,x')lg(z,) =

{Åílaaea'K(t,E,x,x')Eik:S))l2}i12 (compare with (1.11??, andput T,cz,)(x) = r,(z,)(x,O)• Then we

                         '
                                                             '
  (1) Given a, ct' andi> O, theTe entst constants Ao > O, Ci > O, C2 > O and an integer

                                  '

(2.22) l 0aaa'K(t, m/2 : x, x')l,(z,) S C! (1 + r,cz,)(x'))M

        ' e't"o (t(..2.i.!i.s.,i)i, + i) t(i-6o•n)i2 I iirS/r,,(?,.?)2fg20inc`,il't(O.n,l.g, •(., .,) . i

                               '                     '      l OaOa'K(t, (mo + 1)/2 : Ei12,x, x')[g(z,} S Ci (1 + rg(z,)(x'))MO+!(2.23)

        ' (t(n+2+ii+Eati)i2 + tiV) el22 ( jliT(,,lil}((teh,xll/O-f[i'9inc[I{t(.O.n,),.,>(., .,) > i

                 '                         '            (o < vei12 .E{ e612, O < Vt < oQ, V(x, v') E Z Å~ Z]•

                                   '                   '  (2) (the detaited estimate fort > O smalty Given a, d, r- > O and To > O, there etdsts a

constant C > O such that, for every m with O S m S mo + 1, we have

(2'24) lOaOdK(t, m/2 : • • •)lg(z,).s C(1+rg(z,)(x'))m t"(n+2+lal+la'l)12+(i-6om)12 e"g(Z,)(X'X')215t

              (o < vei/2 s e6/2, O< vt s To, V(x, x') E Z Å~ Z)•
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   (3) For eversxm with OSmSmo+1, Zet us set

 (2.25) K(t, m/2 : •• •) = Z)(dxb)i(x) x ((dxb)J)'(x') • K(t, m/2 : •• •)(u)

 as at (2.19?. Then we have K(t,m/2 : •••)(u) = O if 1(J,J)i =- IJI -IJI > m. Further, for

 (I, J) utth 1(I, J)l =m, ifK(t,m/2 : •••)u,J) # O, then m is even.

                                                  '   Remark. In the study of the adiabatic limit of the op-invariant n(ag.z) in [61, [51, it was an

important point to show that that it has no term which diverges when E - O. To show it they

introduced an auxiliaxy Grassmann variable and used a certain transformation by Bismut-Freed

(see [5, (4.58)]). It wiIl be, however, unfortunately diffLcult to apply their method to study the

adiabatic hehavior of other various invariants, or, to investigate their divergent terms as a first

step. In contrast to it, Proposition 2.2 (3) certifies not only that n(eg.z) has no such a divergent

term, but, more strgngly, that 0aOa' (e-tpteZ) which forms the core of vapious invariants has no

such one. That is, it is (3) that plays an important role in proving the fact that the expansion

at (1.16) starts from the term with m == O.

  Now, using the fact in Proposition 2.2(3), let us rewTite Proposition 2.2(1)(2) into ari

assertion which naturally implies Theorem 1.2. First, it is easily found out by referring to (3),
(2.20) and (1.3) that the term E'lil12 Oaad(e-ta;(Ze))u,o)(O,O) appearing in•(2.16) is Coo with

respect to the variable ei12 up to ei12 = O. Since the theorem is concerned with.the estimates

of the coethcients of its Taylor expansion, we warit to rewrite (1), (2) into the assertion for

E-I(i,J)1!2
(e-tl:(Ze>)u,J)(x, r'). Thereupon, let us consider the bundle isomorphism over the

identity map 1 :Z-Z '

                                                   '                                                               '(2•26) le : AT'MQr$,v = AT'MXT$,v, ebl(x)Xh(x) " (ei12eb(e))i(x)xh(x).

Observing (2.14) and (2.19), we have then

(2.27) 1.- io e'tip;(Ze) (x, x') o 1. = Åí eg (x) x (e,J)'(x') • e-1(I•J) 1/2 (e-ta;(Zt} ) u,J) (x, x')

                 '       E Z ebi (x) Q (ebJ)'(x') • K(e) (t, x, x')(t,J) E K(e) (t, x, x') '

       = 2 ebi (x) x (ebJ)'(x') • Ze-l(i"J')l12K(t,E, x, x')(tt,J,) v9,i(Ei12xb) v,J'J(e'12x'b).

Hence, we will rewrite them into the assertion for this. Proposition 2.2(3) and the expansion

at (1,3), etc. say that there exists a Taylor expa.nsion

       K(e)(t,x,x')(i,J)= 2 e(M-I(i"J')D122K(t,mi/2:x,x')(r,Jt)O(lxblM21x'blM3)

                   M=M!+M2+M3>-O
       = Z EM12ZK(t,(mi+1(Jt,Jt)D/2:x,x')(l,,J,)O(IxblM2IxtblM3)

     M=Ml+M2+M3)O '
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 and now, using Proposition 2.2 (1)(2), certainly we have

  Corollary 2.3. The kernel K(e)(t,x,x'), ie., each K(e)(t,x,x')(r,J), is Coo with respect to

 (ei/2,t,x, x') E [o,e612] Å~ (o, oo) Å~ Z Å~ Z and has the Taylor eepansion

                    ng (2.28) K(E)(t, x, x') = 2 eM12K(M12`)(t,x, x') + e(mo+1)12K((Tno+1)12:ei12)(t, x, xt)

                    m==O
(2.29) an'th K(O:)(t, x, x') = Åí ebi(x) x (eb')'(x') • K(t, l(I, J)l/2 : x, x')u,J).

Further we have:

                                                      '                                                                  '  (1) Civen a, a' and T' > O, there exist constants Ao > O, Ci > O, C2 > O and an integer'

                                                                '                                                 '

(2.30) 10aea'K(M12:)(t,x,x')Igz S Ci (1+rgz(x))M(1+rgz(x'))n+M

         ' e-t"o (t(..,.t.ll.I.,Dl, + 1) t(!'60m)12 ( ,li.SI:ll.th,.tille.-)C201ncd,,itlO,n.,); (., .,) . ,-.,

                                  '(2.31) laaOdK((Mo+1)12:ei12)(t,x,x')Igz -< C! (1+rg.(x))Mo+1 (1+rg.(x'))n+Mo+1

         ' (t(n+2+(a'i+icr•t)!2 " tiV) `ii2 ( i-1.Sli':(IIh,.illl9,-)[Pillll (tit: O.",), (., .,) l. ,

                                               .                                                     '            ' (o < vei12 -<. e612, o< vt < oo, V(x, x') EZx Z?•

                                                        '  (2) (the detaited estimote fort > O s7nalij Given a, a', r- > O and To > O, there eststs a

                                                     'constant C > O such that, for every Tn utth O S m S rno + 1, we have

(2.32) loa oa' K(m12:') (t, x, xt) lgz

         S C (1+rgz(x))M(1+rgz (x'))"+M t'-("+2+lal+la'D12+(1-6om)12 e'r,z(x,x')21st

                                                         -               (o<vei12 sE612, o<vt f{ To, v(x, x')EZÅ~ Z). '

  Assume that Propositions 2.1, 2.2, and, hence, also Corollary 2.3 hold. Then, Theorem 1.2

will be akeady obvious. That is, we have

  Proof of Theorem i.2. 0bserving (2.16), (2.27) and Corollary 2.3, it is cleai that we

haye only to set

             K(m12:i)(t,x, x') == 2 ebl(x) op (ebJ)'(x') • K(M!2:')(t, x, x')(I,J),

(2.33)
             K(.12)(t, PO, P, P') == 2ebi(P) x K(M12:)(t, x(p),x(p'))(,,Åë).

By using K((me+i)/2•ei/2)(t,x, x') + (e-tO;eZ(x, x') - e'tipg2tZ('O)<x,x')) (see p'
roposition 2.1), the

remainder term K((.o+i)/2,,i!2)(t, PO, P, P') is giyen similarly,
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                    g3. PRooF oF PRoposmoN 2.1

  Let us stait with investigating the connection VgeZ and the distance function rg.z .

   We wil! first collect what will be needed for their investigations. For the point Pe E Zpo =

 ÅëPi, select wisely its representative .PO E H = (C2 (= H) with l.POI = 1 (hence, .PO E Sp(1)) so

 that the local coordinate w = wi + V=Tw2 around PO defined by Uf ) P = rH(IEK))[wip)] E

CPi satisfies

(3.1) ef(PO)=(i (0/0wi)o,i (0/0w2)o)•

Then, on Uf (c Zpo), clearly we have

                                         '                                        '(3.2) e,f =i+ IWI2 oll,, e; =i+l.t, dwk

and the connection form of the hermitian covaiiant derivative VdsCP for T(i,O)CPi may be

expressed, with respect to the U(1)-frame (1/2)(1 + lwl2) a/0w = (1/2)(e{ - Ael), as

                                                vvA w2e} -wie?) =- wCP E v`=rwlCP, so that we have Vgfe{ = -wlCP(e()el, vlzOeg =    (

wzCP(ei) el. Further, the form uk(F) (for general .l7) given at (1.19) may be interpreted now as

follows: The (locally defined) bundle $gv = T'if can be splitted into the locaJly defined universal

bundle (or the tautological bundle) $g+v = {([v], ev) E T'.4if} and its orthogonai complement

$,'v (2 ($,'v)'). Accordingly, Iet us take an SU(2)-frame (pt',p') of $,vlU = T'elU = U Å~ H

                            '                                '

(3.3) p'(P)=(P,p'(w(P)))EUxH with
              (P' (W), P' (W)) = rH(PO) (1 + 1Å}l2) ,12 ( di -1th ) E He H,

                              'using which the pul1-back T'Fmay be expressed as (uV."((FF) -yU.M(iill)) Then we have u.(F) =

ui (F) + vC'iru2(F). in addition, u.(F) = vX=ru.T(F) is purely imaginary aad, moreover,

obviously we have the formulas .

           e{(yi(F)) = -wSP(el) v2(F), el(ui(F)) = u.t(F) - wxCP(el) u2(F),

           e{(v2(F)) = -v.T(F) + wfCP(e{) ui(F), el(u2(F)) = wTCP(el) u'(F),

           u.t(F2) A u2(Fi) - u2(F2)A v.r(Fi) = S u'([F2 A Fil),

                                   15



 (3 '4) ...( F,)A ui (F,)- ui(F2)A u,, t( Fi) = -S u2([F2 A Fi ]),

            e{(u.i(F))=v2(F), el(u.x(F)) =-ui(F),

            u2(F2) A ui(Fi) - ui(F2) A u2(Fi) = i uttx([F2 A Fi])•

                                                    '                                                            'Next, let us take a connection VgV =- PVoVgZ of V where PV : TZ = 7t eV - V is the
     'projection. Hence, for v,V E r(V) and u E r(GLt), we have VZVY = PV([u, Vl) and vgVlp)v .

Vga)V. Note that the latter is the fiberwise one and has already appeared (see (1.20) around).

The Levi-Civita one Vg" on (M,gAd), together with the above VgV, defines a new connection

vgZ$ = T'vg" e vgV of TZ = 7t $ V, which certainly induces the concept of VgZ$-geodesic,

etc. as usual.

  Lemma 3.1. The connection VgZ$ ts compatible with the metric gZ and its torsion is equal

to 2u(FA)U. .l7urther, the coortlinates x = (xb,xf) at PO are the VgZ$-normal cooTdinates utth

(0/Ox) = e.(A) at PO and the SO(n+2)-frume e.(A) is VgZ$-parallel along the VgZ$-geodesics

from pO.

  Proof. The compatibility will be obvious. Let us compute its torsion T(X,Y) =- V9xZ$Y-

V9Z$X - [X, IY']. First clearly we have T(ei(A),e,b•(A)) = -PV([e,b• (A),e,b(A)]), T(ei,e(.) = O,

T(e(,e,b•(A)) == O. And since the formu!as (3.4) yield

(3.5) [e?• (A), eg•(A)l - [ee•,eg•](A) -2u( FA (e?•,eS•))U

where [e,b•,e,b•j(A) is the A-horizontal Hft of [e?•,e,b•], we havg T = iZT(e,b•(/1),e,b•(A))eg A e,' =

Z) u(FA(e,b•, e,b•))lteg A el, = 2v(FA)U. Next, we will show that the curve c(s) = (cb(s),cf(s)) = sx

(O -< s S 1) is a VgZ$-geodesic, i.e., (Vg•Z$ e)(c(s)) E O, which implies that the coordinates x

are VgZ$-normal coordinates. Set rb(xb) = lxbl, rf(xf) = lxfl. (1.1) implies

(3.6) (0/0rb)(A)(x) =(0/eTb)(x), hence, v(A(0/arb))U(x) =O

where (0/erb)(A)(x) is the A-horizontal lift of (O/0rb)(x). Hence, we have

     6 = 2 x9• •(o/ox9•),(,) + 2 x;, •(o/ax,f• ).(.) = rb(xb)•(b2orb).(,) + rf(xf)•(o/arf),(,)

     = rb(xb) •(O/Orb)(A).(.) + rf(xf)•(a/Orf).(.) E 6'` + 6V (== pH(e) + pV(6)),

     (vg• Z$ e)(c(s)) = (T'vg")ex 6H + (fvg")e.eH + vg.X eV + vg..V c'V

     = T' (vzs" 6b) + vz,X6V + vg. .ViV = a(vg. ," c'b) + pV [67{, 6VJ + vz. .V c'V

     = T.(vg,,," eb) + pV [6b, ,}fl + vg. ,V (}J' = o (vzs" 6b = o, vg,V c'f = o, [6b, 6f] = o).
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Also, we have vg• Ze e9• (A) = T' (vgtM e9) = O, VgZ$ei = PV (eb , ei] + Vg, fV e( = O, which me an

that e.(A) is A-parallel.

  Now, as for VgeZ and rg,z, we have

      '
  Lemma 3.2. We have

    '                                              '(3.7) e,be(A) = e,be -ei/22Euk(A(e,b•)) e(, ef.(A) = ef +ei1222uk(A(e,b•)) e'i.

and, putting Vg?"e,b = Z) C(Vg")(e,b),. e,b, and cdSP(u(A(e,b•))U) = Zw.CP(e() uk(A(e,b)), we have

     Vg/i.(.)e9•e(A) = Ei12 Åí C(Vg")(el )i,j e9•f(A) - eZ vk(FA(ee• , e//)) e,f,

     vg/eZ..(.)e{ = 6i12{-2 u.x(A(e,b)) + 2wSP(u(A(e,b))U)} e6 + e 2) ui(FA(e,b, e,b)) e,be(A),

(3'8) vgi.(.)ef,=ei12{2u.x(A(e9))-2cvSP(u(/1(e9•))U)}e{+E2u2(.l7A(e?,eS))e,be(A),

     vgi,Z ele(/l) == EE uk(FA(e?• , e9•)) e,be• (A), Vg;,Ze{ - -bliCP(e,') el, VgzZeS - tuTCP(e() ef.

                      '                                      'Further, the square rg.z(x,x')2 can be e:panded as

                                 '
(3•9) rg.z (x,.x')2 = e-irgM(xb, x'b)2 + (rgv(xf, x'f)2 + O(Ixb- x'b12Ixf- x'fD)

           rnc         + 2I) eM r(2),gz(m/2 : x, x') +EMO+i r(2),gz((mo + 1)/2 : e, x, x'),

          rn=1
        r(2),,z(m/2 : ',x, x') = O(lxb' x'bllxf- x'fllx - x'I) (1 S m S mo + 1).

                                                 '                                                      '                                          'Thds is termwiLse differentiable w2'th respect to the variables x, x', and the difference rg.z(x,x')2-

e-irgM(xb, x'b)2 is analytic an'th respect to e near e = O.

  Proof. (1.18) iiriplies (3.7). As for (3.8): We waat to prove them with e == 1 and clearly it

suff}ces to show

                                '                                     '           vg?Z, (e..) eg. (A) == 2 c(vgM)(e?• )i,j e9•,(A),

           Vg?Z. ($.)e{ = {-2 u.x(A(e,b• )) + 2w.CP(u(A(e,b. ))h)} e{,

           VgeZ. (e.)e{ = {2 v.x(A(e9)) - 2wiÅëP(y(A(e9))h)} e{,

(3'10)
 vg,,Ze,,b. (A) = o, vg(Z$e{ = -cvSP(e() e{, Vg,,Z$el = wiCP(e() e{,

           vg?Z. (.) = vgeZ. (e.) +2 vk(FA(ee• , e9•)){e9• (A) x e?(A) - e( x el,'},

           vg(Z = vg(Z$ + 2 uk(FA(e9• , e9•)) e9• (A) x eg'•
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The formula for VgeZ ($A)ekf. = PV([e,b(A),e(1) coi[nes from (3.4) and the others for VgZ$ will be

a!L obvious. And, if we set S =- VgZ - VgZe, then we have

        gZ(S(e9(A))e(, e9•(A)) = -gZ(S(e9(A))e9• (A), ei) = gZ(S(e(.)e9(A), e9(A))

(3'11) = -5 gz(T(,g.(A),,,b(A)),eb = uk(.FA(ee•,e,b•)), gZ(S(•)•,•) ==O(otherwise)

where T is the torsion of VgZ$ as before (see [4, Chapter 9I). Therefore, we have

             S(e9(A)) = 2 vk(FA(e?, eS•)) (e9• (A) x e;(A) - e( x el),

             s(eb = 2 uk(FA(e?, e9•)) ee (A) x ei ,

which imply the remained formulas. As for (3.9): It suffices to prove the case x' = O, i.e.,

                                     '                                       '                                                     '(3.12) r,.z (x, PO)2 = e-ilxbl2 + (lxf l2 + e(lxbl2IxfD)

          + E eM r(2).,g.z (m/2 : x, PO) + eMO+i r(2),g.z((mo + 1)/2 : e,x, PO),

           m=1
          r,.z,(2)(m/2 : ',x, PO) = O(lxbllxfUxl) (1 S m -< 7no + 1).

                                            '                                   '
To prove it, let us show that the g.Z-geodesic ce(s,x) (O S s S 1) from O to x is analytic with

respect to e at e = O and its expansion ce(s, x) == Åít>o EM c(M)(s, x) satisfies

               c(O)(s, x) = sx, c(M)(s, x) = O(slxbllxfl) (m > O),
            '
               ce(s, (xb, o)) = s(xb, o), ce(s, (o, xf)) = s(o, xf).

If these are true, then the g,Z-normal coordinates ue = (xbe,xfe) with a/0xf = ef•(A) at Ocaa

be written as

                 oo oo(3.i4) xe = (c-ii2xb + 2 Em-i!2 (acb(m)/as)(o,x), xf + Åí eTn (ocf(m)/os)(o, x))

                 m=1 m=1
where we put c(M) = (cb(M),cf(M)), which obviously implies (3.12). Now let us investigate the

g,Z-geodesic. For4 == Åí4,1 e9•(A) +ÅíC,V e( E6'`+4V andv= Åín,1 e9• (A)+En,V e( =-= n'`+nV,

(3.10) and (3.8) imply

(3.i5) VZ`Z n - VZ<n'` + VZ<"V + VZ`.Z n" + VZvZ nV

    = {veg.Z$"'` - 2 uk(FA (C", n")) e,f} + {Vcg.Z$nV + e 2 uk(FA (C", e,b)) nkVe,b(A) }

     + {vg.Zen'` +e2 uk(FA(n", e,b)) 4kV. e,b(A)} + VegvZenV

    - {vlZen - 2 uk(FA(e?, eg)) e'{ n,'` e(} + elE) uk(FA(e?, e9)) {gkV n," + C,'`nkV}e9- (A).
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 And, setting O/0T,b = 2v?bie,b and 0/OxP = Åívfk'kei (see (1.3) and (2.20)), we have, for a

 curve c(s),

        6(s) = 2 q(s) 0/0xi = 2 6,• (s) v,;'i e,b + 2 c}.+kt(s) vYk ei

        = E V,i c, (s) e,b (A) + 2{Åí vf'k oj+k, (s) + 2 Z V,'`uk(A(e9)) 6j (s)}e(

                             kt i,J'                         k
        = Åí e,"(s) e9(A) + 2 6kV(s) e( E 6"(s) + 6V(s) (= p'`(6(s)) + pV(e(s))),

       6i(s) -Zv,b, 6,'•`(s) (i -< n), 6.+k(s) =2v,f,,{eM,(s) -22uk'(A(e,b))6,'•`(s)}.

                                                      i
 Hence, the curve c(s) is g.Z-geodesic, i.e., Vg•eZc' = O, if and on!y if

 (3.16) vg.Ze6+ 2E2 uk(FA(e,b,e,b•)) 6,'•`e,Ye,b-(A) = O (and c(O) = O, x(1) = x),

which implies that ce(s,x) is certainly analytic with respect to e and satisfies (3.13). For

example, as for ct(s,(xb,O)) = s(xb,O): c(s) = s(xb,O) satisfies Vg•Z$6 = O and 6M(s) = o

because (3.6) yields Åí,.• vS/`uk(A(e9•)) 6,(s) = uk(A(Ex,b•0/ax,b•)) = O. 'That is, c(s) E s(xb,O)

satisfies (3.16), which rnea,ns di(s,(xb,O)) = s(xb,O). Moreover, as for c(M)(s,x) = O(sixbllxfl)

(m > O): Certainly we have c(M)(s,x) = O(slxblMblxflMf). And, observing the second line of

(3.13), we have mb ) 1, mf ) 1.

  Next, let us introduce an important formula for the proof of Proposition 2.1 (and also for the

proof of Proposition 2.2). Consider a comp!ete Spin manifold (N,gN). The square Åë;N of its

Dirac operator acting on compactly supported smooth cross-sections of the spinor bundle $gN

is non-positive and essentially self-adjoint. The square root of its closure e;N : L2I"($gN) -

L2r($gN) can be defined by the spectral theorem, i v!Gi?i = foC]9AdEx. Thus we obtain a

bounded and self-adjoint operator acting on L2I"(g3gN)

(3.17) e-tSi);"=foC")e't"2dEA (t>o), ' '
               '
which has a COe-kernel. Note that this is just a definition and whether this defines a (CO) semi-

group or not is an another story. Now, applying to it the same argument as in [IO, Example

2.1 and Theorem 4.lj which deals with the Laplacian acting on fu-nctions, we obtain

                        '
  Lemma 3.3. Given constants R > --oo, i > O and integers m > O, k,k' ) O, there exz'sts

a constant C > O such that, for every m-dirnensional co7nplete Spin manifold (IV,gN) utth

                                                   'Ric(gN) ) R at every point, we have

(3.18) eP:!v li)b'l e-tet"(P, P') ,.
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           f{ c (,,,..,i.,•,>, + ,,,,i,,,,, ) ( l-,.j.(,lgi,ige, -n.-O,,g,o,n,dz3;o.n()., .,) . ,

                  (O < Vt < oo , V(P, Pt) E IV' Å~ IV)

where ipgkNs2P:i edtpt"(P, P') is the derivative of the kernel by ifgkN, i":ly with respect to P, p',

and the left hand side is the pointwtse operator norm (see (1.12??.

                       '  Remark. Refer to [10, Sl] and set ft(A) =- e'tA2. Then we have ft(u) =- f-O.O.ft(A) e-V=Tt"X dA

= v[lli e'"2i4t and ft(A) = 61.+ f-O.O.f't(u) ev'=T"A du = f.O.O. (ei"t2 )i i4i 6os uA du, which implies

(3.ig) , e-`(2);" =ft(vl]S37)=f-O.O.(e4-illll,"i`, cosuvlb2;du.

Here, cosuvGii2 7 is the wave kernel and the wave equation (o6u22 + o;N)3b = o with cbl..o ==

zbo E r($gN) and li]/ll.=o = o has a unique solution, denoted cosuv/Eill17tho. lmportantly the

kerne! has the finite propagation speed property, i.e.,

                                                '
(3.20) ' supp cosuav/liilli c {(P, P')Ir,N(P, P') sl lul}.

                          'Note that the property and the formula (3.19) yield the existence of the term e-('gN(P,P')-')218t

                                                 'at (3.18).

                                               '
  For example, for our compaÅít (Z, g.Z), there exists a constant R > -oo satisfying

(3•21) Ric(g.Z)(P))R (o<vei12se612, vpEz).

Actually, (3.8) implies

              g,Z(F(Vg`Z)(e,be• (A),e,be• (A))eY(A),e9•e(A))

              = eg"(F'(vg")(e,b, e,b•)e9• , e,b•) + 3e2 Åí uk(FA(e?, e,b•))2,

(3.22)
              g.Z (F(VgeZ)(e(, ef)e(, el) = gV(F(VgV)(e(, e,f)e(, e{),

                   '              g.Z (F(VgeZ )(ee•e(A), e,f)e?•`(A), el.) = -E2 2 uk(.FA(e?, e9• ))2.

                           '
(More strongly, the curvature coethcients are certainly all bounded.) Hence, applying Lemma

3.3 to it, for given r- > O, k, k', there exists a constant C > O satisfying

                   "(3•23) ip,k.z ipgk.l e'`ipgeZ(P, P') ,.z

          s c (,(..,.l.' ',",i, + ,[,,.i,•)i,j ) ( l.(.J'3 ((t/il;5?-e-92,C,O,edi:l.O(n.), .,) . ,

                (o < vei12 f{ e612, o < Vt < cx), V(P, P') E Z Å~ Z).
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                                               lxbl2                                                       lxf12
 (3.9) says that rg.z(x,PO) = ro is almoSt eqUiValent tO (ei12To)2 + rb2 = 1 and We MaY

apparently know by obserying the term e-('geZ(P'P')-i)218t how the norm is deformed when e, t,

P, P' move, and how powerfu1 the property (3.20) which produces the term is. It will be clear

that, in our case where Z is compact, (3.17) with if;N replaced by ip;,z coincides with the (CO)

semi-group generated by OZ.z, and, further the estimate (3•23) implies that, for given a, a' and

r-  > O, there exists a constant C > O satisfying

                  o(3.24) oaOde-ta;eZ(P, P') ,..

               C / 1 N(1 :(with no condition)
         '< eaabl+ta'bD72 <t(n+2+lal+la'l)12 + 11 `i. e-('g.z(P'P')-'-)218t : Tg..(p, p') > i

             (o < ve'/2 -< e6!2, o < vt < oo, V(P, .F") E 7r-i(Ub) Å~ 7r-i(Ub) ).

                              '                                                        'Note that, for cross-sections th of $g,z, the two kinds of pointwise norms Z]k<tIagk.zcb(P)lg,z,

Åíl.lstelabl12IDa3L,(P)lg,z over 7r-i(Ub) are equiyalent independently of the choice-
s of P e (7 and

o < ei/2 f{ e612. The equivalence will be clear from the facts that l,.z = 2 pg.z(eg(A))V,$f?'AZ) =

Åí pg.z ((e-i12dxb, dxf)i)V($.kZ,aldr,lala.f), is elhptic, the no.rm l•l,.z is invariant under the Clifford.

actions pg.z (el(A)), and the expressions of V,$,f`Z,ola.e. , Va$
lgill;( wi'th respect to the frame s(eE. (A))

are e!/2{0/0x,b + O(e,x)}, O/0x( + O(e,x), where O(E,x) is a square matrix any differentials

of whose entries are al1 bounded on [o,E612] Å~ u.

  Let us now prove Proposition 2.1.

                                                          '  Proof of Proposition 2.1. First note that, though Z(pe) is non-compact, the kernel
e-tÅëg2

.Z(PO) coincides with the one abstrEictly given using the spectral theorem (see (3•17))• As-

                                                                        'sume that P, P' belong to T'i(Ub) from now on. Take a cut-off function p on [O, oe) (D 6) with

                                                       'g(6) = 1 if 6 S ro2/4 and with g(6) = O if 6 > ro2. Then, if y iE xb(P), y' =- xb(P') E B,,12, we

have
                   '                  '   e-tiZ);eZ (P, P') (p(ly - y'l2) - e-te);eZ<PO)(P, P') (,o(ly - y'l2)

                                      "   = - f,tde zlilt7fdg.Z(ptt) e-'(t-e)0;tZ(p, ptt) e-ea;.Z(pO)(p,; p,) g(ly - yttl2)q(ly" . y,l2)

    = - f,tdefdg.Z(p"){(l;,z,.,, e-(`-e)e;.Z(p, p")) e-eag2.Z(PO'(p'; p')gdy - yttl2)'g(lyn - yt12)

    - e-(t'e)Si};eZ(P, P") (s2);,.(,o),p,, e-e{i);eZ(PO)(P'l P'))(p(Iy - 3t"l2)(p(lst" - y'12)}

   = - f,tdefdg.Z(P"){ (ip;.z,p. e-(t-e)ip;'eZ(P, P")) e-eipg?eZ(PO)(.P'; P') g(ly - y"l2)g(ly" .- y'l2)
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                          o    - e-(t'e)Sl)ZcZ(p, p") gz} ..(.o),p,, (e'eSiPJeZ("O)(p'( p') (p({y --- y"12)<,o(1y" - y'I2))

           7    + ,-(t-e)tZ)g,Z(p, p") 2ei12e,b,,. ({p(ly - 3t"l2) {p(ly" - y'l2)) (Pg,z (eLe(A)) SP,.z(pO),p"

                                    o                  + lg.z(po),p. pg.z (etb.(A))) e-eag".z(pO)(pt; pt)

    + ed(t-e)4P;eZ(p, p") 2 ee9,,,t e,b,,t, ((,o(ly -• y"l2) (p(l3t" - y'l2))

                  Å~ pg,z(etl (A))p,.z(e;S (A))e'eOg2.Z(pO)(pt; pt)}

   =- f, `defdg.Z(P")•e'(t'e)0;cZ(P, p") .
    •' {e'12 IE) e9 (q(ly - y"i2) p(ly" -- y'l2)) (p,.z (eibe' (A)) ip,,z(po) + l,.zlpe) Pg.z (ege(A)))

    +e Åí e,b e,b (g(ly -- y"l2) p(Iy" - y'l2)) p,.z (ek (A)) p,.. (e,'.(A))} e'eag2.Z(pO'(pt; pt).

                '                                        'Hence, further if Iy - y'l S ro/3, then we have

(3.2s) oaoa'e-taj'.z(p, pt) - oaoa',-tip,2
.z(po) (p, pt)

     - - f,t de f.g%6,il)Y'I -,", li.-`,'O dg.z(p") • a(a.le-"-e)etez(p, p")

                               tt      . 0(ai ,) {Ei12 Z e,b• (g(ly'y"I2)) g(ly"'y'l2) (pg.z (e`be' (A))O,.z(pO) + op,.z(pO)Pg.Z (e`b'c(A) ))

                                                  fi      +eZ e,b (e,b (p(1?y - y"12))g(ly" - y'l2)) p,,z (e`be' (A)) p,.z (d,'.(A))} e-eipg'tZ(PO)(p'l p')

      - f,` de f.[,Og.lil)YL' -,", ,'i.`,'O dg.z(p") • o,ct.,e-(t-e)pt,z(p, ptt)

      . o(a.' ,) {ei/2 Åí g(ly-y"l2)e,b (p(Iy"-y'I2)) (p,.z (eN (A))a,,z(po) + ip,.z(po) Pg,z (eN(A) ))

      +e Åí e,b (p(ly - y"l2)e,b (g(ly" - y'I2))) p,.z (e`. (A)) p,.z (e.(A))} e-eipg2,Z(pO'(pt; pt).

In the above we used the estirnate (3.24) (with i --- ro) for g,Z and geZlpO). Remark that the

latter metric also has the property (3.21) so that (Z(pO),geZ(PO)) has the same estimation as

(3.24). That is, we have

    en+(zabl+la'bl)/2 loaoct'e-tpt,z(p, p') - oaaa'e-tipg2.Z(pO)(p, p')Ig.

    s{ E(n+labl+la'bl)12 ioaoa'e'teZP;.Z(p, p') - o`rO`"e-`elP;eZ(PO)(P, P')lg.i (see (1.11), (1.12))

    S CEi12fotde ((t . e)(.1+2+I.})12 + 1) e-'31(39)2(t-e)e(e(.+311.,t)12 + 1) e-'o21(39)2ee

    s c'e!12fotde (c(n+2+laD12 + 1) e-ro21(40)2(t-e)e (e(n+3+la'l)12 + 1) e-r,21(4o)2ee

                      '    fE{ c"ei12fotdee-rgl(40)2(t-e)e-rgl(40)2ee s{ c"Ei12fotdee-re21(40)2te = ct,tei12 e-r,21(4o)2ts.

Thus we obtained the estimate (2.4).

                             22



                  g4. PRooF oF PRoposmoN 2.2

  Let us start with investigating ip;(z.) acting on r(AT'MXT$gv). Referring to (1.18) and (3,7)

 take the local SO(n + 2)-frames for (Z, g(Z,))

                 e.(E, L,'A) =- `:e:(A) = (eb(e, L;A), ef),

                               --                 e'(E,L;A) E L;e;(A) nj (eb(e),ef(e, e;A)),
 (4.1)
                 ee(e, bgA) = e9• (e) - ei12 22 uk(A(e,b))(c.(x)) e(,

                 e;(6, egA) = e; + ei12 2 2 uk(A(e?•))(e, (x)) eg(e),

then we have the Lichnerowicz formula (see (3.8))

(4'2) eZ';g.,='2("e17e/Ll.'AiVe7i•lie/l2,'A)'V.'fili/Lii,.,.,,.,,,.,)'Kg4'Ze' with

      $z     V.i(.`,),.• A) = ei(e, L;A) + t 2 C(Vgg`))(ei(E, t:A))i,i, p,(z.)(e{i (e, t:A)> p,(z.)(ei2 (e, L;A)),

     p,,z.,(eg(e, cgA)) = eg(e) A - eg(e) V, p,,z,,(ef(E, b;A)) = p,z(e7(A)),

(4.3) eb(e)(x) = (dxb).•vb(L,(x)), C(Vg(Z`))(ei(e,e:A))i,i,(x) =C(Vg`Z)(ef(A))i,i,(L.(x)),

     "g(Z,) (X) = rcg(M., (X) + 2 ' 2 uk("Et.•A(e,b' (e), e,b• (e)))2(x)

     = EK,M (Le(x)) + 2 - e2 2 uk(FA(e,b, e,b• ))2(L. (x)).

                               will be obvious fro n (3.22). And, correspondingThe last formula for the scalar curvature rc z
                            g(.)
to lim..o g(Z.) = g(Zo) (see (2.12)), clearly we have lim.-o ag(z.> = ip3(z,> (see (2.17)).

  Next, let us regard (2.14)=(2.19) which was origiiiaJly a cross-section of (2.7) as a cross-

section of

(4.4) (AT'MXAT'M) X. ($,vX$ev),
that is, we set

(4.s) '  e-t{2);(Zt)(x, x') = Zeg(e)(x) x e,' (E)(x') • (e-`Si);(Z`))u,,>(x, x')

            =- E(t, e, x, x') E Åí(dxb)i(x) Q (dxb)J(x') • E(t, e, x, x')u,J).

Then the coefficients appearing in (2.19) and (2.27) can be expressed as

(4•6) K(t, 6, x, x')<i,J) = 2 E(t, e, x, x')(i,J,) v9,J,t (ei12x'b) vSJ. (Ei12x'b),
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 (4.7) K(e) (t, x, x')(i,J) = 2 c'"dl(i"J'>1/2E(t, e, x, x')(i,,J,) vfb,r(Ei/2xb) vY,J(Ei/2x'b),

 (4.8) with v9J(E'/2xb), vbiJ(ei12xb) = iv + 2 eM/2o(lxbrm)

                                      m)2
 and the action of (2.14)=(2.19) on th(x') = Åí eb(e)J(x') • ipJ(eb(e) :x') E r(AT'M X.$,v) may

 (4.9) (E(t,e)ip)(x) = f. 2eg(e)(x) • (e-`ip;//))(,,,)(x, x')(VJ(eb(e):x')) dg(Z.)(x')

         iE fz <E(t,e,X, X'), ip(X')>g(z.) d9(Ze)(X') =' fz <E(t,E,X, X') *gy.) th(X')>$,.dgV(x')

         = fz Z(dXb)f(X) ' <E(t, e, X, x')(l,J) (al vb)J(x') ,e,(M,) ip(x')> $,. dgV(x')

where *g(M.) denotes the star operator associated to g".). Note that we have hence

(4.10) (E(t,O)th)(x) == f.<E(t,O,x,x'),3b(x')>,,z,, dg(Zo)(x')

                  = fz <'g{".) ,x' )?i(ig) ,d E(t, O, X, X'), th(X')>gg.) dg(Z.)(x').

                                    '
  The purpose of the section is to prove Proposition 2.2 a.nd, observing (4.6) and (4.8), ob-

viously it suffices to prove it with K(t,E,x,x') replaÅíed by E(t,E,x,x'). Hereupon, paying

attention to the formula

(4'1 1) E(t, O, X, X') =' Eg (M,) (t, O, Xb, X'b) ' Kgv (t, O, xf, x'f)

       !iE 2(dxb)i(x) x (dxb)i(x') e-iX4b.-tX)'.bl221`t . e-ta;v(xf,x'f) (compare with (2.ls)),

                            '
let us prove (1) and (2) separated into two cases, the case where t > e is large and the case

wheret> O is sma}1. (3) wil! be shown in the former case. The smoothness of E(t,e,x,x')

will be obvious from either discussion in both cases• We put )k(e) = Sg(\), <,>(e) = <,>g(z,),

l ' l(e) = l ' lg(z.), r(e) = rg(z.), T = r(o) to simplify the description in the following.

  Proof of Proposition 2.2 for E(t,E) witht large. On the model of the argument by

Cheeger [9, g3, g4], let us prove first (2.22), (2.23) with t > To. Rema.rk that (4.27), (4.28)

which we intend to show as a first step will hold with'no restEiction on t. The restriction

becomes necessary on and after (4.42) at which the proofs of (2.22), (2.23) with t > To will

start substantially. Now, we starY our aJrgument with three preparations.

  First, the metric g(Z.) has the property (3.21) (see (4.3) and (3.22)) so that we have the

estimate similar to (3.23) for g(Z,). Further the two pointwise norms Z)ksellgk
(z
,}th(x)1(.) and
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 E[.lseIOath(x)l(.) are equivalent to each other and also l•l(.), r(.) are equivalent to l•1(o),

 r(o) = r, respectively. Thus, for given ct, a' and r- > O, there exists a constant C > O satisfying

(4.i2) lOaOa'E(t,E,x,x')l(o) f{I C(,(..,.i.il.l.D/, + 1) (l-('.[tt.!)h..n.,9/g,On,Cli.`(i.Ol;,) . ,-

             (o ff{ vei12 f{ E612, o < vt < oo, v(x, x') E Z Å~ Z).

Let us take then a cut-off function ipa on R depending on the parameter a ) r-(> O) and

satisfying: O :i{ ip. f{ 1, suppip. c {u Hul f{ f+a}, supp(1-Åëa) c {u l lul }l a} and

1(d/du)iip.(u)l S Ci. (The constants Ci > O are independent of a 2 i) And, set

                                            '(4.13) e7tOiZe) == f.O.O. (e4-."t2 )1,`i (ipa(u)cosu eZ,z., +(1-ipa(u))cosu ip3,z.,)du

          . (e-ta;kZe)). + (e-tl;(Z`)).,..

                                                 '                    'and d6note the kernels of (e-tip;(Z`))., (e'tet(Z`)).,.. by Ea(t,E), Ea(t,e), respectively. Then

the estimate (4.12) and the finite propagation property (see (3.20)) which cos t e;(z.) has imply

the following: For given a, a' and T-' > O, there exists a constant C > O such that, for Va 2 r-,

o < vei12 s{ e612, o < vt < oo and V(x, x') E Z Å~ Z, we have

                      '
(4•!4) ll E(t, e) ll ep S l, II Ea (t, e) II. S 1, ll E. (t, e) Il. s Ce-a218t,

                                1 + t'(dlmZ+lal+la'l)12 : r(x, x') s r',
(4.15) 10a Oa' E. (t, e, x, x')l(o) S C e"(x,x')218t : i -< r(x, x') s r' + a,

                                O :i+a -< r(x, x'),
(4.i6) loaoa' E. (t, e, x, x')l(,) s c( g::2g,8.t,,,,,, l ;.(f'.X'l f(Z,'.,g'

where ll • ll.p is the global operator norm of an operator acting on L2r(AT'MX. $gv, g(Zo)), and,

setting L.(t, e) ! (0/0t + aZ,z.))Ea(t,c) = -(O/0t + a;(z.))E.(t,e),, we have

                                 '                Tl
(4•17) UL.(t, e) II. sCe'a218t,
                                          '                +-(4.is) . 'Io6oa'L.(tre,x, x')I(o) s c( 8-"2/8t i .r.(LiE'.X'l ;(ri ,+.,gr

  Second, the Duhamel's principle says

(4.lg) aa Od E(t, e, x, x') = aa Oa' E. (t, e, x, x') + {i)`' 0d E. (t, e, x, x')

              mo+r N(4•20) = ,l;.ll-, Oaaa'*(e),x, )?Uol,., Ea(,O) tt(--ip;(z.)Ea(,O))M (see (4.lo))
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 (4.21) +oaoa'E.(,o)tt(-t/?]t:,E.(,o))mo"i#(-t/53'Z,z,Ea(,e))

              mo+1 N (4•22) + .2=, 0aOa' Ea(, O)#(-ip;,z., Ea(, O))Mtt La(,,e)

              mo+1 ... -v (4•23) "' ,l;.ll-, 0aad Ea(, O) #(-aj,z.) E7a(, O))M-'itt (- ip3,z,,La(, O))nEa(, e)

 (4.24) +0a ea E. (t, e, x, x')
                                                    'where we set (' EO nE!)(t,x, x') =fotdtifzdg(Zo)(Qi) <Ee(t - ti,x, C?i),Ei(ti,ei,d)>(o)i etc., and

a;,z., E 0;,z., - ip;,z,,, Ea(, O)) tt (-op3,z.,Ea(, O))O i Ea(rO) == Ea(t,O, x, x'), (-ab2,z.,Ea(, O))i(t, x, x')

='
 ((-ip;,z.,Ea(,O))U(-ip;,z.,Ea(,O))i")(t,X,X'), Ea(,O)#(-aj,z.,Ea(,O))'i#(--'a;,z.,La(,O)) Å} La

                      '(,O), etc. .Since we perform the convolution operation tt repeated!y, strict description will

be rather hard to read, so that, for example, we denote (EO ttEi)(t,x,x') above by EOnEi,
EO(t - ti) rt Ei (ti), EO(t - t!,x, (?i) gEi(ti, (?i, x') or fo tdtiEO(F - ti,x, Qi) # Ei(t!, (?i, x'), etc.

according to the situations. Judging from the circumstances it wi11 be easy to understand such

expressions correct!y. To prove the formula (4.19), first note that

                               '    Ea(t, ei x, x') - ,?(e),.t *('ol,d Ea(t, O, x, x') =' f<E(O, O, x, ei), E.(t, e, ei, x')>(o) dg(Zo)

        '           - f< 'k(e),qi '(-ol,Qi Ea (t, O, x, (?i), E(O, e, (?i, x')>(.) dg(Z.) '

                              '    = f<E(O, O, x, Qi), Ea(t,E, Qi, x')>(o) dg(Zo) - f<Ea(t, O, x, Qi), E(O, e, C?i, x')>(o) dg(Z,)

    = f<E. (O, O, x, qi), E. (t, e, Qi, x')>(o) dg(Zo) - f<E. (t, O, x, Qi), E.(O, e, Qi, x')>(o) dg(Z,)

    = f,tdti zilr f< Ea(t - ti, O, x, Qi), Ea(ti,e, Qi, x')>(o) dg(Z,)

    == E.(t : ti,o, x, Qi) tt OblE,a (ti,e, Qi,x') - OoEt,a (t -- ti,o, x,(?i)# E.(ti,e, Qi, x')

    = -Ea(t - ti, O, x, (?i) tt ip;(z,)Ea(t!i E, Qi, x') + ip3(z,)Ea (t - ti, O, x, Qi) tt Ea(ti,e, Qi, x')

     + Ea(t - ti,O, x, (?i) tt La(ti,E, C?1, x') ' La(t - ti,O, x, C?i) tt Ea(ti,E, Qi, x')

    = -Ea (t - ti, O, x, Qi) # t/itliiz,) Ea (ti, e, Qi) x')

     + Ea (t - ti, O, x, (?i) tt La(ti, E, Qi, x') - La(t - ti, O, x, Qi) U Ea(ti,e, (?i, x').

Then, replace E.(ti,e,(?i,x') in the second line from below by vt(e),d *(-olF, Ea(ti,O,Qi,x') -

Ea(ti -t2,O, (?i,Q2) tt t/iitil(z) Ea(t2,e, Q2, x')+• • • which was found out to be equal to it. Repeating

such a replaÅíement again and again, we obtain (4.19).

  Third, observing (4.2), (4.3) and (3.8), obviously we have the series expaAsion

                                                    '(4'25) a12'iiz.) =-:- a;(z.,- a;(z,} =--=,s.Z...zM12(l;(z,})(M/2)(xb) +e(mo"i)12(a;(z,))((mo+i)12)(ey2,.b),
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       (a;,z,,)(M12)(••) = 2(dxbA)io(dxbv)1.'l.2pls9GxblM)(0/Oxb)a(ef)P (lxbl . oo), .

      max{pl v appears in the above expression of (o;(z,))(mi2)(••)} s ( Z [.M :t Zs.3)'

 . Now, for each v' E Z in (4.19), we assume that the parameter a we use belongs to the

interval [r(x'), oo). Then, since E.(t,e,x, x') = O if r- +a :E{ r(x, x') (see (4.15)) for any e f{ Eo,

all of the domains of integral appearing in (4.19) can be restricted to the bounded domain

Npo = nvp, '3 = yXJJte?,",.3 -= {q 1 r(Q) S (mo +3)(T- +a)}. And, (4.25) says that, for giyen a,

mo and i > O, there exists a corrsta.nt C > O satisfying

(4.26) laa(each coeMcient of (l;(z,))(M12)(••)) at ql SCaM (2 .<- m -< mo +1)

       '                                              '                        (V(? E "t ,',.3, Va ) r-)

where " each coefficient of • • • " means each term denoted by e(lxblM) at (4.25). Now, by inves-

tigating (4.20)--(4.24) using the above estiinates, we intend to show that there exist constants

Ao > O, Ci > O and (sufliciently la.rge) integers IV, N' satisfying

(4,27) aaoa'E(t,E,x,xt)

        mo+1      = E eM12{O((1 + r(x', PO))Me-tN)(t-("+2+N')12 + 1)) + o(e't Xee-a219t)}

      +emo+2 o(an+2+rrto+2 (t-(n+2+N')12 + tlV)) + o(e'-"219t tlV) : (with no condition),

                            '(4.2s) oaoa'E(t,e,x,xt)

        mo+1      = 2 eM12{O((1+r(ipO))Me-tXoe-('(x,x')-F)21Cit)+o(e-t)Loe'a219t)}

        m=O
       +Emo+? o(an+2+mo+2 tNe-(r(x,x')-r-)21Cit) + o(e-a21gt tlV) : if r(x, xi) > r--

      (o <v6!12 E{ e612, o <Vt < oo, r' -< Va < oo, VPO E (compact Z), V(x, x') E ZÅ~Z)

where the terms O((1 + r(x', PO))Me-t)LO (t'("+2+N')12 + 1)), etc., that is, the first terms of the

coefficients of 6M12 (O s m s mo), do not depend on ei12. in the following we will show this by

investigating (4.24), (4.23), (4.22), (4.21), (4.20) in the order Ramed.

  First, let us show ari estimate commonly available to the cases "with no condition" and

"r(x, xt) > r-", that is,

(4•;DJ9) (4.24) + (4.23) + (4.22) = o(e-a219t tN).

Clearly (4.16) implies that the term (4.24) has such an estimate. (4.23) and (4.22) vanish if

x Åë YVp7go, +3, so that we assume x E vVp7 eoO+3 = JVpr o. The estimate of (4.23): Consider (4,25),
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(4.26) with m, = -1 and set <ag(,.:)',P121'la'l'i> =- 1+eg((z",,',.2,)/21'Ia'l'i, ip,(z.) E Jt(o)*(-.le,(z.)*(,))tu,l.

Further, let If(x,x')1(o),L2(.t) denote the pointwise norm with respect to the yariabie x and the

L2-norm with respect to x'. interpreting the other notations of norms similarly and using the

e!liptic estimates appropriately, we haye

                  N ---.   I - a.a a.at' E.(, O) tt (-0;,z.,Ea(, O))'in(-0;,z,,La(, O)) tt Ea(, C)l(o)

   s Cfdtiio.a L.(t - ti , o, x, (?i) tt <0e((.". ,',3)/21'ldl'i> E. (ti, e, (?', x")l(o),L2(,,,,)

   = cfdtilo.a L.(t - ti, o, x, (?i) tt <ipg((.:)',S),i2]"ia'i"i>E.(ti,E, (?i, x")l(o) ,L,(.,,)

   = cfdt,Kip ((.".)",S),121'la'l"i>o.aL.(t - ti,o,x, (?i) tt E.(ti,e, (?i, x")l(o),L2(dt)

   f{ cfdt,i<eel.:)',S),i2i'ia'i"i>o.aL.(t-ti,o,x,(?i)l(o),L2(Qi) (by (4.i4))

   = cfdt, .t <eg((.: )',S),! 21 'ia'i'i>o.et L.(t - ti, o, x, (?i)l(o),L2(Qi e/v;/;],o +4)

   s Cle'a218ta("+2)12 t s c2 e-a219t t(n+2)!4+1,

                  ...v N   l - O.aag' E.(, O) tt (";,z., Ea(, O))Ott (-ipZ,z.,La(, O)) # Ea(,e)l(o)

   s Cfdtidt 3.!l.y< ipg(,.",,',;)/21+lal+i>E. (t " t,, o, xtt, Qi)

         tt ip3(z.) La(ti - t2, O, (?i,(?2) # ag' E.(t2,e, ([?2, x')lL2(ft),(o)

                            '                                     '   •= cfdtidt21F.(t - t,, o, xn, (?i) tt <eg(,.",,+,a),i2i +iai+i>t/i'lll,.,L. (t, - t2, o, (?i, (?2)

      , tt ag E.(t2,e, (?2,x')IL2(x"),(o) • ' •
                                                        '   s cfdtidt2l<ag((.n,)+,, a),i2i +iai+i> t/aj'l5(.)L.(ti -t2, o, (? i, <?2) tt a.a,' E. (t2, E, (?2, x')IL2(Qi),(o)

   = cfdt,dt21<ae((.",)+,a),!2i'iai+i>t/5?'il(,)L.(ti-t2,o, (?i, c?2) tt o.a,' E.(t2,e, (?2, x')L2(QiEN.,),(e)

   s ci fdti dt2l <eb(,.",,',6),i2]'iai'i> t/2'iilsz, L.(ti -t2 , o, (? i, c?2)

                ti <lg((.". )+, 3)/21 +la l+i> E. (t2 , e, (?2, x")IL2<Qi EAr.o ),L2( :")

   = cifdtidt2l<ipe(,.".,",S),i2i'idi'i><ipb(,.n,,',6),i2i"iai"i>t/3'Ii,z,L.(ti--t2,o,(?i, (?2)

                      ti E.(t2,e, (?2, X")lL2(Q:EJvp7 o),L2(x")

   f{ c, fdt,dt2l<ipS((.".)+,8),i2]+ia'i'i><ee((.",)+,8)!2i"iai">t/itilg:) L.(ti -t2,o, (?i, (?2)IL2(QreAt.,),L2@2)

      " l<eL((.".)',S),12]'ldl'i><ee((.",)',3),121'iai'i>t/i2'll(z)L.(ti---t2,O,Qi,(?2)IL2(Qiev.To),L2(Q2EJv.To)

                                       '  -< C2 e'"218t an+2 t2 s c3 e'a219t t(n+2)12+2
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 and, in the case m ) 2, similarly we have

                         NN           1 - 0.aO.a Ea(,O) tt (-a;,z.,Ea(, O))M-'itt (-eZ,z.,La(, O)) tt Ea(,6)[(o)

           E{ Cfdt i • •dt.+i l <{2}S(,.", ,', 6)mt 21 "lai '2m'i> < ipb(,.". ,", 3)ml 2.l ,+ la' l+i>

                       L.(t,. - tm+1, O, (?M, (?M+1)lL2(qmEvvpo),L2(qm+ieArpe)

          s ci e-"218t an+2 tm+1 s c2 e-a219t t(n+2)12+rn+1.

                                     '  '
Thus we have such an estimate of (4.23) as in (4.29). The estirnate of (4.22): Using (4.25),

                                                          '(4.26) with mo=-1, we have • '
                                   '
                     N        la.a 0.ctt' Ea(, O) tt (-0,2,z., Ea(, O))Mtt La(, E)l(o)

        sl c fdt, • •dt..i l<o5((.",)',6)K2.l ,"lal+2M+i> 0.at' L.(t.+i, e, ( ?M+i, x')IL2(qrn+i EN.T ,),(o)

        -< cl e'a218t a(n+2)12 tm+1 s c2 e-a219t t(n+2)/4+m+1.

                          'Thus we have obtained the estimate (4.29).

  Next, let us show

       '                 mo+1(4•30) (4.21) + (4.20) == Z eM!2{O((1 +r(x', PO))Me't"o(t-(n+2+N')12 +1))

     +o(e-tAoe-a219t)}+erno+2o(an+2+2(mo+2)(t-("+2+IV')/2+ tN)) : (with no condition)

                                                               'with x E vVp7?20e +3 = .Alpr o. The estimate of (4.2!) with "ne condition" : Here we use (4.25), (4.26)

with mo = 1. Set

         o.ao.a,'E.(,o)u(-tel',z,E.(,o))"te"tt(--t/l'ii,z,E.(,e))

         = fotdt,fotidt2 •• fotMO"bt.,+2 o.a E. (t - ti, O) U (-t/l'i]I(z) Ea (ti '- t2, O))

                    ---. N             # ' ' ' tt ('a;,z,)Ea(tme+i -`' tmo+2,O)) tt (-ip;(z.)0.at' Ea(tmo+2,e))

                (O =' tme+3 < t,no+2 < tmo+1 <''' < t2 < tl < tO =' t)
         -'1)li,2fi.i,,f,g,feti••fi.IEII,{iil,.{.g,li,-!f,;;'fto{'ii+;f2-'"at,f,tut,.,••f,`mork,.,.,(...)

                ' (ts-i-ti)t/(mo+3))
          " f•L!n!Q :.t, i,gd,ty'fg` )8d,`mo+i ./,lt,MmO,'.i,dtrno+2 ('' ',) =- "illlili.,3f(`Zt, ..dt.,., (.. .).

                (tmo+2 ) t/(mo + 3) )

                '
Then we have

     (1)   if      dti ''dtmo+2 (''')l(o)
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    s f('Lti ••dtm,+2 lo.a E.(t - ti,o, x, Q!) tt t/3'1,z, Ea (ti - t2, O) # ' ' '

         a-L-.. 'V       # a;(z.) Ea(tmo+1 - tmo+2, O) tt Q;(z.) 0S;' Ea(tm,+2,E, (?MO+2, x')I(o)

    s cof(ibti •dtm,+2 IO.a E.(t -ti,O, x, Qi) tt tel'(z,Ea(ti - t2,O) tt '''

      it alltlllz.) Ea (trno +i - tmo +2 , o) " t/ltiiicz ) <aS((z".)+, 12,)i21+ia' l+!> Ea (tmo +2 , e, (?mo+2 , x") l(o),L?(.tt)

    sCof(iLti ''dt,n,+2 10.a Ea (t-ti,O, x, Qi) tt t/3']{(z,Ea(ti-t2,O) tt 't' ' '

                     N     # <ae((z". )+,8)mt ,2 1.+21 ct'l+i>ek(.) ,Qm,+2 t/2tS(z ) Ea (trn,+i - tmo+2 , O, (?MO +! , C?MO+2) l(o),L2 @mo+2 E.N.T o)

    s ci (ea2)f(ibti ••dt..+2 to.a E. (t d ti, o, x, (?i) tt t/i'lli(z) Ea(ti - t2, O) ti ' ' '

     tt ipri'iii..) <Åë((.". )', 6),.fgi.',ia'i '3> E. ( t.,+i - tm, +2 , o, Qrno+i , c?rne+2) l(o) ,L, (Q.,.2)

                 '
    f{ c..+2 (ea2)mo+2f(iitt, ••dt,.,+2 {<ee((z:}",8),i2j+ia'i'i+2(MO+2)>o.a E. (t-ti, o, x, (?i)I(o),L2(Qi)

    =cm,+2(ea2)mo'2ffibti••dtm.+2 ' '
             1 <gi)e(<.". j, 6),/ 2I 'Ild['i'2(MO '2)> O.a Ea (t -ti , O, x, (? i) I(o),L2(Q! eA/.: ,zp '`)

   s cerrto+2 a(p+2)12+2(Trto+2)(1 + t'(n+2+((n+2)121+Ial+la'1+1+2(mo+2))12) tmo+2;

   I f(2Lti ''dtrno+2 (' ' ')I(o)

   sf(2Lti •dtm.+2 ta.aE.(t - ti,o, x,(?i) tt t/l'l5(z)Ea(ti - t2,o) tt ' ''

       " t/ilitii{z,) Ea(trno+i - tmo+2, O) tt tlSitll(z) 0;' Ea(tm,+2, e, Qme+2, x')[(o)

   S Cmo+2(Ea2)MO+2f(2titl ''dtrno+2

          l<e;[.1?,+Q2? /21+lai+ldl+i+2(MO +2)>E. (ti -t2 , O, (?i, (?2)lL2(Q: ev.T o),L?(Q2 Evv.T o)

   E{ CEMo+2 an+2+2(mo+2)(1 + t-(n+2+2[(n+2)!21+lal+lae'l+2(rno+3))12) tmo+2,

etc• Thus, the term (4.21) with "no condition" appears as the term eMo+2e(a"+2+2(mo+2)

(t-("+2+N')12 + tN)) in (4.30). The estimate of (4.20) with "no condition" : We want to show

that it produces the first term in the right hand side of (4.30). Note that t(.),.,t('-o' l,af appearing

at (4.20) has a series expansion

(4•31) )t(e),xt*(-ol,,,, = Z EM12.(.12,),d *(-ol,.t : id + 2 eM!20(lx'blM),

                      m>O m>2 '
which produces (1 +r(xCPO))M at (4.30), Hence, it suffices to show the following estimates

(4•33), (4.34) of (4.20) with Å}(.),.,,erol,., deleted. (If r(x', PO) S a, then we have (1 +r(xC .PO))M
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e-Aete-a2/9t s (1 + a)me-)Lote-"219t s Ce-)Lot12e'"2/iOt. Hence, at (4.30), we haye no need to

add (1 + r(x', PO))M to the part O(e'Aote-"219t).) That is, we have

      mo+1 ..v 7ne+1(4.32) ,.2., axaOxa" Ea(,O) tt (-ip;,z.,Ea(,O))M = .2=, o.aa.at' E.(, o)

        tt (,-.2,.,:`/2 (-(ipZ(z,,)(`f2))Ea(,O) + efp12 (-(O;,z,,)(iol?))(eEi12)E.(

= 2 ern122 o.ao.a,' E.(,O)

  m=e M=`i+"+ip tt(-(ip;(.,))(ii12))E.(,O) tt ••• tt(-(l;(z,))<tP/2))Ea(,O)

+ emo +2 o(an+2+2(mo+2) (1 + t-(n+2+2((n+2)!21+Ial+la'l+2(mo+3))!2) trno+2)

E ,2..., eM .1=2,,Åí.....0,t..0g'  Ea(, .O) n ((-e;,.,,)E.(, o))(ii12)•"'•(ip12)

+ emo +2 o(an+2+2(mo+2) (1 + t-(n+2+2((n+2)121 +Ial+la'l+2(rne +3))12 ) tmo +2)

 mo+1= ,iil.ll-, eM,.i=2,,2.....0,t.,ag' Ei(,o) u ((-aZ(z,))E,(,o))(i'/2)""•(ipi2)

+' m"20.',,'
em/2f,ada(a/o.a2,,z.....a.,a,o.a,'E.(,o)tt((-o3,.,,)E.(,o))(i!i2)"1"(tii2)

+emo+2 e(an+2+2(Tno+2)(1 + t-(n+2+2[(n+2)12]+Ial+la'1+2(rno+3))/2) trno+2).

, O))m

(The above estimate of the remainder term can be obtained in the same way as that of (4.21)

with "no condition" .) Then we intend to show that there exists a constant Ao > O satisfying

(4•33) o.a og' E,(, o) tt ((.e;,.,,)E,(, o)) (`i12)• "•(tp12)

              = o(e-tAo (t-(n+2+2[(n+2)121+lal+la'1+2)12 + 1)),

(4•34) f,a da (O/Oa)o.a o.a,' E.(, o) tt ((-ip;,.,,)E.(, o))(Zi!2)'"''(`p12)

              = O(e-tAO e-119t) + c)(e-tXo e-a219t).

As fQr (4.33): Since the Dirac operator Åëgv acting on r($gviZpo) (see E(t,O) given at (4.11)) is

invertible ([!9, (5.15)I), there exisbs a constant pto > O with Spec(ip3v) 2 Lto > O. Hence, more

               .lstrongly than the estimate (4.12) with e = O, there exist constants Ao > O, C > O satisfying

(4.3s) laaaa'E(t, o, x, xt)1(e)

           s ce't'Lo (,(..,.ik.E.t,,,, + i) ( li.[trY,h-/59,gPn, di.t(tO,n.),) . ,

                  (O < Vt < oo, V(x, X') E ZÅ~ Z),
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which implies further the estimate stronger than (4.15) with E = O

(4.36) loaoa'E.(t,o,x,x')[(o)sce-t'xo
(i-t(47xld)ililS:'rLi.!lllj1.i',ii.'i.'lfl/iil:iillgi`fi'

                            'Using it, now let us show (4.33). Set

           0.aO.at'Ei (, O) # (a;,z,,)(ii12)Ei(, o) tt • • • ti (",2,z,,)(ip12)E,(, o)

           = f,tdt!f,tidt2 •• f,t"'bt, a.aEi(t - ti,o) tt (ip;cz,,)(ii12)Ei(ti - t2,o)

              n •• • n(a;(z,))(`p-ii2)E!(t,.i - t,, o) tt (ip3g,,)(ipi2)og'Ei(t,,o)

                 (O =- tp+1 < tp < tp-1 < •••< t2 < ti < tO Et)
           =te.,f..,-t..,flti••!.1/kSii,d,t-,iif,;itPii'g;dg`"Et,f,`qd,,.,..f,`p-in,(...)

                             (tq-1 - tg ) t/(P + 1) )
            + f.,,-t.,gti •• fgtr.:dit,-i I;',::pt, (• • •) i ili,i f(q2t, ..dt, (. . .).

         , (tp l}l t/(p+1))

Then we have

      (1)    if       dti ''dtp (''')[(o)

   , s f('Lti ••dt, lo.aEi(t - ti,o, x, Qi) tt (a3,z,,)<`ri2)Ei(ti - t2, o) tt •• •

       tt (0,2(z,))('p-"i12)Ei(tp-i - S, O) tt (l,2(z,))(`P/2) 0g' Ei (tp, O, QP, x')i(o)

    E{ co f(ibti ••dt, lo.aEi(t - ti,o, x, (?i) ti (e;,.,))(iLi2)E!(ti - t2,o) # •• •

     tt (ip;(.,) )(g-i12) E, (t,-, - t, , o) tt (ip;(.,> )(lj12) <e;((.n,,+.2?/ 2] +la'1+i> Ei (t, , o, ( ?p , xtt) ko),L, (d,)

                                 '    Sf,o,2,,,.:,lk,i,i,l;9e,L9xT9i[.l,7,l,i2,O.rf,&.],i,(2i`Z,o]l)`X'(2,IE,:,(1',;,12181'Sgil'6p)i,,,,.,,,,,

    -< ci f(iZti ••dt, Io.aEi(t -- t!,o, x, ei) tt (ip;(.,))(i!12)Ei (ti - t2, o) n • • •

     " (a;(.,) )(ip-!i2) <IL((.n, )+, 6).i2] +ia'i+3>Ei (t,-i - t, , o, c?p- i, (?p)I(o),L2 @,)

                               '    s-•
    -< c, f(i>t, ..dt, lo.a<ipSl.:)',S)/2I'la'I+i'2P>Ei(t - ti, o, x, C?i)1(o),L2(qi)

    = c, f('Lt, ..dt, la.a<Åë}((.",)',3),i21+ia'i+i+2P>Ei(t - ti,o,x, (?i)l(o),L2@iEvv.o)

    s Ce-t)`o (1 + t-(n+2+[(n+2)!2]+Ial+la'1+2p+1)12) tp

    s cte-tAo12(t-(n+2+2[(n+2)121+lal+la'1+i)12 + 1),
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 etc. That is, we have obtained (4.33). As for (4.34): in the same way as we have shown (4.16)

 using (4.12), first we can show, using (4.35), '
           0E"o(i'O) =f-O.O. (eii2i`/t, 0oip."(u) cosu ip;(z,, du, supp 0aip.a c[a,f+al,

 (4.37)
           loaoa'eEa(tisO., X,X')l(,) s c,-tAo ( s-"218t i. ;-(2,.X'l ;(;,+.,g:

 Let us set now

               zlll.II o.ao.a,' E.(, o) ti ((-a;,.,,)E.(, o))(iii2)""•(ipi2)

               = 0.aO.a; OESS' O) tt ((-ip3,.,,)E.(,o))(`i12)""•(ip12)

                 P               +i 0.a a.a•' E. (, 9) tt (-(l;,z,, )(izi2))E. (, o,) tt • • • .

                     # (-(oZ,z,,)(ig/2))0EsÅí' O) tt • • • # (-(e;,z,,)(ipi2))E.(, o).

                               '
Then, in the same way as the estimation of (4.23), using (4.37) we have, if 1 S q S p - 1,

        lO.a 6.at' Ea (, O) #(-(ip;,z,, )(`i12>)E. (, O) U ••• ' •

               #(-(a;,.,,)(igi2))eEsÅí' O) tt ••• tt (-(if3,z,,)(ipi2))E.(,o)l(o)

        -< C aii • • • aSf dti • • • dt, l<ee(,.",,',a),121'lal'2g"><ag(,.:,+,a),1.21+lct'l+2lp-q)+i>

                          ' 0Ea (tq - tq+i, O, Qq, Qq'!)
                                      oa IL2(QgE]Vp: o),L2(Qg+!ENpl o)

        S CI ai! • • . aifedtN) a"+2tPe'"218t s c2 e't)`o t("+2+Åíijdl)12+p+1 e'a219t(a/t)

        f{ C3 e'tAO!2 e-a219t(a/t).

The remained cases are similarly shown. Gathering those estimates, finally we obtain

        (0/aa)0.a og' E.(, o) tt ((-a3c.,))E.(, o))(ii12)"'"(e12) = o(,-txo12 ,--a2/gt (./t)),

                                                           '                                    'which implies the estiinate (4.34). And, we have thus finished the proof of (4.30). Remark the

                                                  '                                    t.comment preceding (4L32). ' '
                                                                         '                                           '
  Let us then show

                 '                     mo+1(4•38) (4.21) + (4.20) == 2 EMI2{e((1+r(x', pO)))me-tAoe'(r(x,x')-i)21Cit)

                     m=O •
        + o(e-tAoe-a219t)} + Efno+2 (p(an+2+2(rno+2) tlV e'(r(x,x')-f)21Cit) : r(x, x,) > i

                                      '
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with x E vVp7]2,O+3 = vVpr o, hence, with r- < T(x, x') < (mo +2)(r' +a). The estimate of (4.21) with

"r(x, x') > f": Here we use (4.25), (4.26) with mo = 1. We set

       a.ao.a,'E.(,o)tt(-ar?'liz.,E.(,o))mo'i#(-t/5i'li,z,Ea(,e))

       = fdti''dtrrto+2 0xa Ea(, O, x, Qi) tt ('t/i'lilz., Ea(, O, Qi, (?2)) tt ' ' '

                  '
          tt (-a;,z., Ea (, O, QMO'i , QMO'2)) tt 0g' ( -- ip3,z., E7. (, e, ( ?MO '2 , x'))

         moÅÄ3                                                mo+3       = ,l=, fdt'''dtmo'2 Yl,.,.,,g,9,sZo.l.(9.,lin.' g9(Z)(`?MO'2) i i, fd`i''d`-o+2 f,,,

                                      '
Then, similarly to the estimation of (4.21) with "no condition", we have

    l fdti''dtrno+2 f(i) i(O)

   . -< c(ea2)rno+2fdti••dt.,+2 f(o t<agl.:)+,S),i2i'ia'i'i'2(MO+2)>o.aE.(,o,x,Qi)t(o>,L2(Qi)

    = c (ea2)MO+2fdtl''dtmo+2

      l<Qg((.",)+,6),12]+lal+la'l+i+2(MO+2)>E.(,O,x,Qi)l(o),L2(.(x,x,)1(mo+3)+azr(x,Qi))r(x,x')!(mo+3))

    S CI (Ea`2)Me+2 tMO+2a(n+2)!2e'(r(x,x')1(me+3))2fst

    :sl Cl EMO+2a("+2)!2+2(mc+2) tmo+2e-(r(x,r')-f)21(mo+3)2st,

    l fdt!••dtm,+2 f<2)1(o) S Cm,+2(ea2)Mo+2 fdtl••dt.,+2 f(2)l<ipg((.n,>+,a),!2]+lal+la'l+1+2(mo+2)>.

          ' ' Ea(, O, C?1, (?2)IL2@iENp,),L2(r(x,x')1(mo+3)+a)r(Qi,Q2))r(x,x')1(mo+3))

    S C (ea2)Mo+2tMo+2an+2e'(r(x,t')!(mo+3))2/st

    = ceTno+2an+2+2(me+2) trno+2e-(r(x,x')-")21(mo+3)2st,

etc• Thus, the term (4.21) with "T(x, r') > i" appears as the term eme+2 O(an+2+2(mo+2) trv

e-(r(=,x')-")21Cit). in (4.38). The estimate of (4.20) with "r(x,x') > r'": We want to show that

it produces the first term in the right hand side of (4.38). To do so, according to the comment

preceding (4.32), it suthces -also to show the foilowing estimates (4.40), (4.4!). That is, we have

      mo+1 ' ..v rno+1 •(4•39) .Åí.-,0.aO.at'Ea(,O)#.(-a;,z.,Ea(,O))M=.2=,a.aO.a•'E.(,O) '

               U ( Ze`12 ('(O;(z,,)(`/2))E.(, O) + efo12 (-(ip;,z,,)(ia!2))(eei12)E.(, o))M

                2:!{i<io
        rno+1
      = .2=, eM.i=2,ill.il....O,t,,0g' Ea(, O) tt ('(a3,z,,)(iii2))Ea(, o) tt •• • tt (-(ip3,z,,)(ipi2))E.(, o?

       +emo+2 o(an+2+2(mo+2) trne+2e-(r(=,d)-r-)21(mo+3)2st)
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         mo+1       =' 2 eM12 2 o.aog' E.(,o) tt ((-l;,.,,)E.(,o))(`!/2)""'(`p12)

         M=O M=il+'''+ip
        + eMo +2 o(an+2+2(mo+2) tmo+2e'(r(x,f)-r-)21(mo +3)28t)

         mo+1       = .IZ.)-, eMmi=2,,E.....a,t.,og' Ed(,o) tt ((--ip;,.,))E,(,o))(ii/2),'"•(`pi2) (d = .(., di,) - i)

                           '         rno+1        + .2=, EM/2f,ada (O/am..2.,.,Z..".stt,,o.at' E.(,o) tt ((--a;,.,,)E.(,o))(`ii2)•'"•(;p/2)

       + EMo+2 o(an2+2(rno+2) tmo+2e-(r(x,=')-r-)21(mo+3)2st).

'Then we want to show that there exists a constant Ao > O sadsfying

(4•40) 0.a og' Ed(, o)#((-a;(.,,)E,(, o)) ('i/2)•-'•(ipi2)

               .. c)(e-tAo e-(r(x,x')-i)2/(p+1)28t) (d = r(x, x') - i),

(4•4i) f,a da (a/aa)a.a a.g,' E.(, o) tt ((.o;,.,,)E.(, o))(ii12)""'(ipi2)

               = O(e'tAo e-(r(x,x')-fi)219t) + (p(e-t)to e-a2!9t).

Using (4.36), let us show (4.40) first. Set

                  '          o.a o.a,' Ed(, o) tt (aji,,)(ii12) Ed(, o) tt • • • # (aZ,.,, )(ip12) Ed(, o)

          = fdt, ••dt, a.a Ed(, O, x, Qi) tt (0;,.,,)(ii12) Ed(, o, Qi, Q2) tt . . .

             u (ip3,.,,)(tp-ii2)Ed(, o, (?p-i, Qp) tt (a;,.,,)(tpi2) o.a,' Ed(, o, (?p, x')

                         tt          -Pt:.i7dtidsy([.C1ue,1.'l`e/;(1)ij[(lldl'lsli)i"q'Z"gg,)((?p)Er/i}i,fdtidt,f,,,

Then, siinilarly to the estimation of (4.33), we have

                    ' ' ./4 ,f(o la.a <ag((.n,)+, 5),i 2i+ia'i+i+2p> Ed(, o, x, (?i)I(o),L2(Qi)    f   l dti''dtpfo)l(o) SCdtr""+tp dti••dt

   f{ Cld("+2)/2+Me-AottMo+2e-(r(x,x')1(p+1))218t s{ c2edAot12e-(r(x,x')-r-)21(p+1)29t,

               ,-r
etc. That is, we obtai.ned the estimate (4.40). Also the estimate (4.41) can be shown similar!y

to that of (4.34). And'thus we obtained the esttmate (4.38).

  We have thus obtained the expansions (4,27), (4.28). That is, (4.29), (4.30) imp!y (4.27), and

(4.29), (4.38) imply (4.28). Using the expansions, we can now show (2.22), (2.23) for E with

t ) To in the following way. As for the case "with no condition": We will take the parameter a

with

(4•42) a2 = (mo +2)(9/2) tl logEl (> r(x,x')2), hence, e-a21st = e(mo+2)12.
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 Then (4.27) gives the expansion

 (4.43) oaoa'E(t,e,x,xt)

       mo+1 '      = Åí eM/2{O((1 +r(i PO))Me-tAo(t-("+2+IV')12 + 1)) +e(Mo+2)12o(e'tAo)}

        m=O
      +emo+21 1ogEI(n+2+rne+2)12o(ttV+(n+2+mo+2)12) + e(mo+2)12e(1)

       mO     = E eM/2 O((1 + r(x', pO))Me-t)Lo (t'("+2+N')12+ 1)) + e(Tno+1)12 o(tN+(n+2+rno+2)12)

       m=e                      (To S t < oo, a.nd "with no condition").

Referring to the comment following (4.28), note that the coeMcients of eM/2 (O S m S mo) in

the last line do not depend on ei12. Thus we obtained the estimates (2.22), (2.23) for E with

t ) To and "with no condition". As for the case "r(x, x') > i": We will take the parameter a

with

(4.44) a2 = (r(x, x') - i)2(9/Ci) + (mo + 2)(9/2) tl logel (S 2(mo + 2)(9/2) tl logel),

        hence, e-a21gt = e(mo+2)12 e-(r(x,x')2-i)21cit

where Ci > O is the constant appearing at (4.28). (Here we take eo > O and To > O such that, if

(ei12,t) E (o,E612] Å~ [To, cx)), then we have (r(x, x') - i)2(9/Ci) S (mo +2)(9/2) tl logel.) Then

.(4.28) gives the expansion

                        mo+1
(4.45)

Note that the coefficients of eM12

Thus we obtained the estimates (2.22)

  We have thus fi

  As announced let us here prove (3) by referring to (2.21)

for E(t, (mo + 1)/2

aaOa E(t,e,x, x') = 2 eM12{o((1 +r(x', pO))me-tAoe'(r(x,= )-i) ICit)

               m=O
+ e(MO+2)12 o(e'tAo e-(r(xtx' )2 'i)21Cit) }

+ eMo+2 l logel("+2+rno+2)12 o(tN+(n+2+rno+2)12 e-(r(x,x')-i)2!cit)

+e(Mo+2)12 o(tN e-(r(x,x')2-r')21Cit)

 mo+1= 2 eM12e'-('(X,X')-i)2!Cito((1+r(x',pO))Me'tAo)

  m--O
+ e(mo+1)12. e-(r(x,x' )2 'i)21Cit o(tN+(n+2+mo +2)12 e't)Lo )

          (To St < oo, and "r(x, x') > i").

               (O S m S mo) in the last line aiso do not depend oR ei12.

                                               '                  , (2•23) for E with t) To and with "r(x, x') > r'".

                                      '
   nished the proofs of the estimates (2.22), (2.23) for E with t ) To.

                                  and (4.27). Assume mo ) n. (3)

     : •••) holds becamse there is no (I,J) satisfying l(l,J)l 2 mo +1(> n).
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 Then consider E(t, rn/2 : •••) with rn S mo. Obserying (4.32) and its preceding comment, its

 top degree as a differential form in the M-direction, i.e., max{I(l, J)l l E(t,m/2 : •• •)(u) X O},

 is certainly equal to such a top degree of

                                                            ' (4'46) ...ill, l+m, .,=i t...:,g.m212:),x' *(-ol,d Eq(, O) Ea(, o) n ((-e;g,))E.(, o))(iii2)""'(ip!2),

so that let us inquire into the latter top degree. Referring to (4.11) and (4.13), the degree of

E.(,O) is clearly zero. This fact a.nd (4.25) imply that, denoting by m;• the number of what are

equal to 1' (2 2) among ii,i2,•••,ip (2 2 inevitably), and by k the top degree of (4.46), we have

             '                                   '
          kS 2(m2 +m3)+4(m4 +ms +•••) S 2m2 + 3m3 + 4m4 + 5ms •••= m.

Moreover, if k = m, then we have k = 2(m2 + m3) + 4(m4 + ms + • • •) = m, which is certainly

even. Thus, when rno ) n, (3) holds. And clearly this implies that (3) holds even if mQ < n.

  Proof of Proposition 2.2 for E(t,E) with t small. We have only to show the estimate

(2.24), which implies (2.22), (2.23) with t small. Hereafter we assume O < t S To and intend

to show the estimate (2.24) by constructing the kernel concretely using the well-known Leyi

method. In constructing it, keep in mind the facts that the manifold Z = Z(pO) is non-compact

and the operator ip;(z.) has the extra parameter e.

  Now, consider the parabolic equation (O.3) for l;(z.) with 3bo E L2r(AT"tL(tX. $gv with g(Z.))

                                                          .and its formal solution at each point x'  E Z, E(t,E,x, x') = qg(z.)(t,x, x') Z)f•2=o t'Ei(E,x,x') with

                                                                      'qg(z.)(t, X, x') = (4Tt) -("+2)/2e-'(e)(=,x')214t and •

                   Cg(Z,) (X, X')'!14 `g cZ.) (X, X') (i = O)

(4'47) Ei (e, x, x') = - Gg(z.) (x, x')-114tg(z.) (x, x') fo lds s{-1 Lg(z.) (s x(e, x, x'), x')-1

                                '(G;iz.`,IZ(z.)Ei-!(e))(sx(e,x,x'),x') (i > o) ,

       !ii 2e,'(e)(x)'x eb'(E)(x') • Ei(eb(e) : e, x, x')u,J)

       !i! 2(dxb)i(x) x (dxb)J(x') • Ei(E, x, x')(i,J)

         mo       = 2 eM12Ei(m/2 : x, x') + e(Me+i)12Ei(mo + 1)/2 : ei12, x, x'),

        m=O
(4.48) Ei(m/2 : •,x, x') = 2(dxb)i(x) x (dxb)J(x') • Ei(m/2 : •,x, x')(i,J)

                                                                'where x(E) = x(e,•,x') is the g(Z,)-normal coordinates at x' with (a/0x(e)D., = e,b•(e,b:A)xt,

Lg(z

.)(x, x') is the V$g(Ze)-parallel transport Erom x' to x and we set Gg(z.)(x, if) =- det(g(Z.)(a/0x(E)i,
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 0/0x(e)i•))(x). As above (4.47) has certainly a series expansion. Further, for given a, a' and

 integers mo, N, there exists a constant C > O satisfying

 (4.49) 10aOa' Ei(m/2 : •, x, x')l(o) sC(1+r(x, x'))M(1+r(x'))M

                   (O S Vm S mo +1, Vi S IV-, V(x, x') EZÅ~ Z).

Actually, consider the parabolic equation (O.3) for a;.z with abo E L2r(AT'MQ. $gv with

g.Z), its formal solution at each point x' E Z, 8(t,e,x, x') = qg.z(t,x,x')ÅíiP.6ti8i(e,x, c') with

8t(e,x, ar') ! Åíeg.(x) X ebJ.(x') • Et(eb. : e,x,a')(i,J) and the expression similar to (4.47). Ob-

serving (3.8>, the derivatives of 8i(eb. : 6,x,x')u,J) with respect to ei12, x, x' are all bounded

on [o,f612] Å~ z Å~ z() (eif2,x, x')), and, sirnilarly to (4.3), we have

                           '      '                                  '
(4.50) Ei(eb(E) : e, x, x')(l,J) = `Ei(ebe :e, Le(X),Le(X'))(T,Jr)•

These facts, together with expansion of eb(e) (see (4.3) and (2.3)), certainly imply (4.49).

Meanwhile, the Gaussian kernel part of the formal selution E(t, e, x, x') can be expanded as

(4.51) qg(z.)(t,x,x') = ;ill.ll.oeM!2qg(zmi,St,x,x') +e(MO+!)12qg(z/m,.,)/,,.,/,gt,x,x'),

(4 52) qg(zmi, )(t,x,x')= qg(z,>(t6Ex{z, ;xl),i,tabialiiilli '+-2tX')a: (X-tX')aa (xtb)i3b q,a(E.r.3b/, >(.f, .,f),

                                       (a 2 1 if.m) 1)

because we have the series expansion

                                           oo(4.53) r(,)(x, x')2 = rg.z (te (x), te(x'))2 = r(o) (x, x')2 + .2=2 eM12 r(2) ,g(z,> (m/2 : x, x')

                            3Slal
        with r,(2),g(Z,) (M/2 : X,i')."+lltii,l/.x.'.-2x')a(x'b)Pb ' r7ifi) ,;(z,) (m/2 : xf, x'f)

which comes from (3.9) by the same aJrgument as in (4.3).

  Now, let us take a parametrix of O/(}t + ip;t,') as usual. That is, let g be the cut-off function

taken in the proof of Proposition 2.1 and set .,

                                      N-(4•54) E(N) (t, E, X, X') =' 9(r(e) (Xr X')2) 9g(z.)(t, Xi X') ,2.=o ti Ei(e, X, X')

      = 2 em12E(N)(t, m/2 : x, x') + e('no+i)12 1E7(N) (t, (mo + 1)/2 : Ei12, x, x')

       mSrno
(4.55) with .E(N) (t, m/2 : •, x, x') i Åí(dxb)i(x) x (dxb)J(x') • E(N) (t, m/2 : •, x, x')u,J)
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 where IV > O is sufficiently large. Then, for given a, or', there exists a constant C > O satisfying

 (4.56) leaOa'jll](N)(t, m/2 : •)l(o) s C(1+r(x'))mt-(n+2+lal+la'l)/2+(i-6o,.)/2 e-r(x,x')2!st

           (o s vei/2 s e612 , o< vt s To , os Vm s rno +1, V(x, x') EZÅ~ Z).

 Moreover, if N > (n +2)/2, then (a/bl + e;(z.))E(N)(t,e,x, x') can be extended continuously to

 [O, Tol Å~ ZÅ~ Z () (t, x, x')) and there exists a constant C > O satisfying

 (4.57) fz<E(N)(t,E,x, x'), zb(x')>(e)dg(Z.)(x') - tip(x) (,) :S Cti12.s,u,pzlg(r(e)(x, x')2)3b(x')i(o)

             (o :E{ veii2 s E612,o< vt -< To , v(x, x') EZÅ~Z).

(4.56) comes from (4.49), (4.52) (t(i-60m)12 appears in (4.56) because of the conditions "a ) !

if m }) 1" and 3 -< lail), and the expansion go(r(.)(x,x')2) = (p(T(o)(x, x')2) + Z)t>-2EM12r(2),g(z,)

(m/2 : x,x')p(M)(r(o)(x,x')2) +e(Mo+i)12g((rno + 1)/2 : ei12,x, V) (see (4.53)). (4.57) comes

from the usual argument by referring to (4.49) with rno = --1 (that is, (4.47) is bounded on

z Å~ z).

  Here, taking care of the management of (1+r( v'))M appearing in (4.56), let us repeat the

operation of convolution again and again as usual. We obtain then a fundamental solution.

That is, we set

         (L(N)(, •))i(t,e, x, x') = (0/Ot + aj(z.))E(N) (t, e, x, x'),

         (L(iv)(, •))q(t, e, x, x') !!i (L(iv)(, •)U(.)(L(N) (, •))q-i)(t,e,x, xt)

         i!i f,' dtif. dg(Z.)((?') <L(N) (t - ti,E, x, Qi), (L(iv)(, •))q-i(ti,e, (?i, x')>(.),

                      oo         L(iv)(t,e, x, x') =- 2(-1)q(L(N) (, •))q(t,e, x, x'),

                                            '             , q=1
(4.s8) (e-'pt(Ze))(N) (x, x') =- E(N) (t,E, x, x') + (E(iv)(, ')tt(.)L(N)(, '))(t,e, x, x')

         = E(N)(t,,e, x, x') + 2 EM12(E(N)(, •) tt(.)L(N)(, •))(t, m/2 : x, x')

                 -: mSmo
          + e(Mo'i)/.2(E(N)(, •) ttoL(N) (, •))(t, (mo + 1)/2 : E'12, x, x')

         = .ÅíM=eo eM/2 (e'`0;(Z,r12:) ) (lv) + E(Mo+1)12 (e-`ip;(Z/ rno+i)12:ti12) ) (N) .

We find out that, if N > (n + 2)/2 + No, then (E(N)(, •)"(.)L(N)(, •))(t, rn/2 :) can be extended

smoothly of cla,ss (Ca,Clal, Cla'1) ((lal + ldl)/2 +a -< iVlo) to [O,To] Å~ Z Å~ Z() (t,x, af)) and

there exists a consta.nt C > O sadsfying

(4,sg) l(0/0t)aaaOa'(E(N)(, •)#oL(N) (, •))(t, m/2 : •)I(o)
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           S C (1+r(x'))M tN'("+2+[ai+ldl)/2-a e-r(x,x')2/st

           (os vei!2 -< E6/2,o< vt s To ,os vm -< mo +i, V(x, x') EzÅ~ z).

Using the standard argument, (4.57) and (4.59) yield that, if IV > (n +2)/2+ 2, then we have
e-`0;(Ze) == (e-`ip;(Ze))(N). That is, (4.59) is certainly equal to the CC'O-kernel of e-tip;(Ze) and,

                                        'now, (4.56) and (4.59) imply (2.24).

                  g5. PRooFs oF THEoREMs 1.1, 1.3

  First let us prove Theorem 1.1.

  Proof of Theorem 1.1. Clearly (3.24) implies (1.13). As for (1.14): (2.!5), (2.33) and

(2.28), (2.31) with me == -1 imply

            '    aaoa'e-'tij)EeZ(PO)(x,O) g.(.,> S e(t.,l+Cl.,bD12 10aaa'K(o12;ey2)(t,Le-i(x),O)lgz(po)

    S ,aabl+CliaibD12 (t(n+2+lall+latD12 +tN) ( ,1--(r,(.Wlviot)h(t?'?(xC)Oo")d-iri)i2elnc),t .,.(.,)(,.-,(.),o) > ,-

and we have rgz(.o)(c.-i(x),O) = rg.z(,o)(P, PO). Hence, observing (2.4), we obtain (1.14). As for

(1.15): Here, using (2.32) with mo=-1, similarly we have - ,
                              -.                oaoa'e'tojez(pe)(x, o) ,.(,,) s .a.lili .ei-.',:iZ/iP201[;;i('.)i.Oiil2Ii)i2 '

Hence, again considering (2.4), we obtain (1.15).

  Hereafter the purpose is to prove Theorem 1.3. Let us start with investigating l(e) i

                                                       '1.'iodig(z.)ole, etc. where le is the bundle isomorphism given at (2.26).

  Lemma 5.1.

  (1) Referring to (4.1?-(4.3?, we have

     le"op,cz,)(eg(e, t."A))6 1, = e-!12(et A -eegv) =- E'i12p(e)(e`i),

     Ie-ie p,(z.)(e;(e, t;A)) o le = p,z(e?(A)) i p(`) (ef(A)), ,

                      $gZ '
(5'2) VEf. ?. ,,; ,tt)(.) =' !e- io Ve e. (E2? A) (x) o le

     = e,b• (e, L: A) (x) + E-4ii2 Z c(vg")(e9• )i,{, (L, (x)) p(e) (etii)p(e) (e;"2)
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      +Ei12{u.(A(e?)) - cuCP(u(A(e9• ))lt)}(L.(x)) p(e)(7,v(A)) + Ei2/2p(e) (v(egvFA))(t,(x)),

 (s.3) v.(f:)(.) =- 1.-iov,tfi,liZ.`jo le = e((x) + g cvCP(eb(xf) p(e)(T,v(A)) + ip(e)(uk(FA))(t.(x)),

 (s 4) (s2)(e))2 = -E( V,(,e!e,L;A)VÅíe()e,L;A) - Vee.gl(f..) ,;.),,(.,,...> ) + rcg4/Ze'

 where we set Tgv(A) = vCTe}(/1) A e3(A) (the complex volume element?, p(e)(u(F'A))(t.(x)) =
 S Åí uk(FA(e9• , e9•))(t.(x)) p(e)(e>(A)) p(e) (eg) p(e)(e;,'), etc.

   (2) V2f.l,,,..A)(.), (l(e))2, etc. are aU COQ with respect to eif2 nearei12 =O and, referring to

(1.20? and (1.232, we have '
                       ,a.,. + i2 x9• Rg•,"• (pO) = vS9',.?. ,

(5 5) .li.me Vie()e,t;A)(x) = ,i(`
x) +;cvCP(eb(xf)p,z(T,v(A))+iuk(FA)po =' V20f,)(.),

                                        (i =n+ k)
(s•6) (ip(O')2 = .li-I,}6 (l`C' )2 = - Åí(VS9'o.: )2 - Åí (VÅí9,' Vilf' - VeO;y .{) ' i

                                                   ek       = -2(VS9'a,,e. )2 + v4;o E (ipSOM' )2 + v4;o.

                                '                          '  Remark. importantly 0(e) = 1.-leipg(z.)ele = 1.-loL;oipg.ze(b:)'lole coincides with the

Getzler transformation ([l3], [5]) of opg.z. Our study up to now wi11 assert that, to study the
kernel e-tip;'eZ , our interpretation of the transformation is more appropriate than the originai

                      '
one which we review below:, We have the global rescaling Pso(.+2)(Z,gZ) 2 Pso(.+2)(Z,g.Z),

                'e.(A) - ee.(A), and it gives a pointwise isometry b. : Sgz Y $g.z to which we referred at the

                                     '                                                                 'comment following (1.12). Then lg,z is transformed into

        b.-io l,.z o b. = ei12 2 p,z(e'i )V/i. Zft9 + Z p,z(ef(A))V,$f,gZe - g p,z(u(FA))

                                                            '    'acting on r(ATo'M mp.$gv)(== r(AT'M x. S,v), (dxb)i x h(xb,xf) e eg(xb) x h(xb,xf)),
(see [s, (4.26)], [12, (ii.3)1) where v$gZe is the spinor connection associated to vgZ$ and we

regard pgz(et) as dx,b A -dx?• V. Further let 7T. be the transformation of ATo'MX.$gv given by

(dxb)lxh(xb, xf) e e-IIIf2(dxb)1 xh(el12xb,xf). Then it is 7.r o (b.-io ipg.z e b.) o 7.7'i that is the

original definition of the Getzler transforrnation of eg.z or b.'ioeg.z o be. The difference between

the original one and ours thus lies in which we choose, the isometry b, or the inclusion (1.8).

  Proof. As for (1): For th = egXh which belongs to the right hand side of (2.5), we have

         1.-io e'i (e) A o 1. 3L,(x) = 1.-'o eti (e) A (Ei12eb(e))l x h(x) = e-'12et,' A th(x),
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 (5.7)
           1.-'o eg(e)vo 1. ip(x) = 1.die eg(e)v (ei12eb(e))i Q h(x) = e'12egv th(x).

 Thus we get the formula in the first line of (5.1). Its second line is obvious. (4.2), (4.3) and

 (3.8) imply (5.2) and (5.3), which, together with (4.2), yield (5•4). As for (2): By an easy

 computation (see the expansion at (1.3)), we have

 (s.s) c(vg")(e,b•)i,i,(x) = g"(g,b•,,vgel e,b•,)(x) = }Åí x,b• R,g•,\•,ii(O) + O(Ixi2),

                   '
which, with referring to (4.3), implies (2).

   Now, let us regard (2.29) and the right hand side of (!.24) denoted K(o)(t,x,x') = Åíeg(x) •

K(o)(t,x, x')i = Z) eg(x) • detvb(x') • KMv(t,x,x')i as cross:sections of (4.4) canonically:

                                     '(s.g) E(O) (t, x, x') E 2 eg (x) Q ebJ (x')• K(t, I(l, J) l/2 : x, x')(i,J) with

      (E(O)(t)th)(X) = fz <E(O)(t,Xr X'), th(x')>,z dgZ(x'),

(5.10) E(o)(t,x, x') i det vb(x') • EMv(t,x, x') =- 2ebi(x) A ebJ(x)X ebJ(x') • K(o)(t,x, x')t

      E Åí ebi (x) x eb' (x') • K(o) (t, x, x')(i,J)

      =- det vb(x') 2e,i(x)<g> ebJ(x') • Kav(t,x, x')(i,J) with

      (E(o) (t) cb)(x) = fz<E(o) (t, x, x'), ab(x')>,z dgZ(x') = fz< EMv(t, x, x'), Åë(x')>,z dg(Z,)(x').

Then what Theorem 1.3 asserts is their coincidence. We wish to show it by the standard method,

that is, by proving that each of them defines a (CO) semi-group of the parabolic equation (O.3)

for (ip(O))2 and such a (CO) semi-group exists uniquely. But, there is a serious obstruction to

such a method. If e > O, then, with no obstruction, certainly the parabolic equation (O.3) for

(ip(e))2 with ipG E L2r(AT'Mx.$gv with gZ) has a unique (CO) semi-group with COO-kernel

e-t(ip(e))2 = E(e)(t,x,x') ! 2ebi(x)xebJ(x') • E(e)(t,x,x')(i,J) which is (2.27) regarded as a

cross-section of (4.4), i.e.,

(s•n) (IIIIt7 + (a(e))2) E(e)(t,x, x') = o, . E(e) (t)ip . cb in L2 (t . o).

                              '
This comes from the property of aZ(z.) through the transformation le (see (2.27) around) , or more

straightforwardly, from the fact that the coefficients ofthe expression of (ip(e))2 with e > O (using

the frame eb x s(ef)) satisfy the condition (2.3). Now, unfortunately the ceeficients of such a

expression of (O(O))2 do not satisfy it (observe the existence of xib• at (5.5)). Or, more clearly, by

observing (1.23) etc., (5.10) which is expected to be a (CO) semi-group of the parabolic equation

(O.3) for (ip(O))2 may not transform L2r(AT'Mxtr $gv with gZ) to itself, or what is worse, for
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sorrte element th of it, the integral in the definition of E(o)(t)th may diverge. To overcome such

a serious obstruction, it is the idea of using (not L2-space but) the space of rapidiy decreasing

cross-sections that attracted the notice of the author.

  That is, let us consider the Fr6chet space

(5.12) S =- {ip Er(AT'MX. $,v) l.(JP..!s(1+r(P))eOaip(P)l(o) =O(Ve,Va)}

          with semi-norms pe,.(zb) !iii suppEzl(1+r(P))tOa3b(P)1(o), <S =- {pe,.}

where we put r(P) i r(o)(P, PO), and the parabolic equation with the initial condition

(s.i3) (8t +(ep(O))2) zb = o, cbl,=o = zbo E ts•

Then, fi.rst, we want to show that (5.9) defines its (CO) semi-group with COO-kernel.

  As a preliminary we have

  Lemma 's.2. Let (s(O) = {pE92} be anotheTfamily ofsemi-no7mis ofS consisting ofpSP2(3b) iE

suppEzl(1 +r(P))e(a(O))2kab(P)l(o). Then the two kt'nals offamilies G and (S(O) are equivalent

to each other.

  Proof. It sufices to show that, for given e, k and a, there exist et,k,at (1 SiS N) and

'a constant C > O satisfying '

                     N IV(5•i4) ' pS92(iP) fi{ C,l.Z,.),pt,,a{(th)• pt,a(zb) S{Ci=,PE?•)k,(zb) (V3bE`S)•

The first inequaJity will be obvieus. As for the second inequality: Set Rji = Rjg.l (pO), ip =

                                  'ÅíebtXabi and note that we have ' .
(s.is) (a(O))2th = 2e,'x (- 2(o/ox,b•)2 + a;v)thi + (-i ]Z) R,•iebix x,b•(a/ax,b•)Åëi

                     i iil      - lill,], uk(FA)l,br(Eb vigVipi) +\(-Elli \. (;. R,•,•x,b•)2 + ip(o)cu(F.))2)e,iQ th,

      = (- 2(a/ox,b)2 + a;.)cbÅë + 2 e,'x (- Åí(o/ox9)2 + aZ.)th

          i HIH=1 •i      +{-l;.j Rjixx,b(0/0x,b.')cbÅë-:ll uk(FA)xV.$fiVthe ,

      + 2 egx (- 2(o/ax9• )2 + ip;v) cbi} + {-i 2 Rjiegx x9• (o/ox9• )cbi

        lllll =2 { i,i HIII =1                                '      '1;,ln,tl .\k(FA)egX V,$i,gV thi tv211=, egx (- \. (a/ox,b)2 + a;.) th,}
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       + {-ilti 2(Z RJix,b•)2x V'e + tp(O)(u(FA))2x ipe - i 2 R,iebix x,b(0/ax9)thi

             i l' iJ',lllll=2       lll,rill=",k(FA)egX VigVzbi + H,ÅíEl=, leb'x (- \. (o/ax,b•)2 + e);.)3b,} + . ..

      i 2 ebix Do tht +2 Åí egx { 2D(I, J), in + Do cbi}

        ll iEll =O,i p)2 1UH=p IIJII =p-2

where we denote ipi with III = O by abÅë. Then it suffices to prove that, fo'r gi'ven a and P, there

exists a constant C > O satisfying

                               lfil •(s.16) lxa(0/0x)Bthi(x)l(o) .<. C2p5COill.l,k(3b) (VzbE(S)•

                               k=O
(Note that the first inequality at (5.14) implies pXOII.1,k(ip) < oo•) Assuming that aJl of cbt are

compactly supported on Uf () xf), let us prove it by the induction with respect to UI. First,

as for (5.16) with lll = O or 1, the standard elliptic estimates for the ehiptic operator Do imply

it, i.e.,

              Ixa(0/ax)fithil(o) s C{pX'LE.i,o(ipi) +pN')+Lat,o(D6fith)}

              S C{pSe'L{al,o(a)b) " pXOLIaL,lfil(Zb)}'

As for. (5.16) with III = 2: Expand (ip(O))kcb as in (5.15). Then the coefficient of eg (III = 2)

is equal to 2 k,+k,=k.i DoktD(I,Åë)oDek2cbe + Dok thi and we can apply (5.16) with IIi = O to the

Part Åíki+k2=k-i Dok!D(I, Åë)oDok2thÅë. Hence, we have

           l xa (o/ax) fi ipi l(o) s Ci {pXOIt.i ,o (tht) + pX' )+1.i ,o (D6fii thi) }

           -` Ci {PXOIIal,o(thi) +pXOIt.l,o( E Dok'D(l, e)oDok2ipe + D6Pl th)

                            ki+k2 =IBI-1
           +pXOLt.i,o( 2 D5iDu,Åë)oD52ipÅë)}

                 ki+k2=IPI-1
                           - lfi1           fi{ Ci {p'i(Oil.la{,o(zb) -:F Pi(Ol\Iaf,pl (3b) ' 2 Pil'lj+lat,k(Zb)}'

                                 k=O
Thus we have proved (5.16) with III = 2. ln this way (5.16) is shown inductively.

  Then, as is desired, we have

 Lemma 5.3. {E(O)(t)}o<t<. defines a (CO) semi-group utth CCX)-kernel assoct'ated to the

parabolic equation (5.13?. That is, we have

(5.i7) (ill+(ip(O))2)E(O)(t,x, x') .= o,
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and E(O)(t) gives a continuous linear map from S to itself, and, for given To > O,

there evz'st C > O, eo > O, X3i,•••,PN satisfying
                                       !
(5.18) pe,.(E(O)(t)'ip - ip) S Ct!12 Z) pe+e,,fi,(th) (O < Vt S To, Vth E S),

and, moreover, we have

(5.19) E(O)(ti)E(O)(t2)=E(O)(ti+t2) (OSVti,Vt2).

Further, the semi-group ts equicontinuous, that is, for given e ) O and a, there

eo > O, Pi,•••,Biv satisfying

(5.20) pe,. (E(O) (t) th) S CZpe+t, p, (th) (O < Vt < oo, Vip E S).

                            '
  Proof. Take aP E `S. (2.30) implies

(5.21)

e)O and a,

etntst C > O,

That is, certainly E(O)(t)cb belongs to S and the map E(O)(t)

                      'Taylor expansions of the first equality at

      'constant terms yield

have

(5.22) (ip(O))2(E(O)(t)th)(x) = (E(O)(t) (ip(O))2ip)(x).

                    '
Actually, if ei12 > O, then we have

                   '           @(e))2(E(E) (t)3b)(x) = fz <(ip(e))2E(e) (t, x, x'), th(xt)>,z dgZ(xt)

           = le-ifz<(Åëg(z.))2E(t,E,x, x'), le3b(x')>(e)dg(Z,)(x') '

           = led ifz<E(t, e, x, x'), (l,(z.) )21eth(x')>(e) dg(Z,)(x')

                                 '           == 1.-ifz<E(t,e,x, x'), 1.(e(e))2cb(x')>(.)dg(Z.)(x') = (E(e)(t) (ip(e))2th)(.).
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l f. <(!+r(x))`0.aE(O) (t, x, x'), ip(x')>,z dgZ(x')l(,)

S Ci f. <(1+r(x))tlO.aE(O) (t, x, x')1(o) lip(x')l(,) .dgZ(x')

s C2(t-(n+2+lal)12 + 1) e-tAO{f.(.,.)-.,(..1 + r(x))t(1 + r(x'))"1cb(x')1(o)dg(Zo)(x')

+ f.(.,Sl) ..+,,r(x))t(1 + r(x'))"e-('(r•X')-")21CtlÅë(.,)I(o) dg(zo)(.t)}

                                                   '                       '-< C3 (t'("'2'lal)12 + 1) e-t'`O{f.(.,,,,js{,T.(x, x')e(1 + r(x'))e'"l3b(x')l(o)dg(Z,)(x')

+ f.(.,S:') )+2,1 + r(x'))e+"(r(x, x') - r')ted('(X,x')-f)21Ctlth(xt)I(o) dg(zo)(x,)}

s{ c4 (t'("+2+lal)12 + 1) e-tAo{(2r')t+"+2pt+.,o(ab) + te12pe+.,o(zb)}.

                                       is continuous. Consider then the

                        (5.11) and of E(E)(ti)E(e)(t2) == E(e)(ti + t2). Their

        (5.17) and (5.19). Let us show the remained assertions below. First, we



 Hence, by taking the limit, we have (5.22). Next, we want to show that, for givgne) O, therf

 exists an integer N > O satisfying

 (s.23) l(1 + r(x))e((E(e)(t)3b)(x) - zb(x))I(o) -< Ct!!2 pEO.),,,,(3L,) (Vip E ,S).

 As for the case e = O: Referring to (2.22), (2.18), (4.57) and (4.59), we have

    l(E(e) (t) ab)(x) - th (x)1(o) = ; 1 :fz<E(e) (t, E, x, x')u,J) , cbJ(x')> $,.dgZ(x') - abi (x)1(6)

    rS{ 2 l(ilPf.<K(t, l(I, J)l/2 X, X')(i,J), 3bJ(x')>,$,.dgZ(x') - Lbi(x))l(o) + C!ei12ti12pfv,o(th)

    S 2 1(f.<K(t, O/2 : x, x')(r,i) , thJ(x')> $,. dgZ(x') -- thi(x)) l(o)

    + C2 ti12p.,+!,o(ip) + Ci ei12 ti/2p..+i,o(ip)

   S C3 ti/2l3bl(o) + C2 ti!2pN,o(ip) + Ci e'!2 ti12pN,o(th) s Cti12pN,o(th).

(This is an estimate stronger than the second part of (5.11).) Hence, again talcing the limit, we

obtain (5.23) with e = O. As for the case e > O: we have

      [(1+r(x))e((E(O)(t)ip)(x) -- ip(x))l(o) S l(E(O)(t)(1+r(•))tth)(x) -- (1+r(x))tip(x)I(o)

      + l(1+r(x))t(E(O)(t)th)(x) - (.E(O)(t)(1+r(•))tth)(x)l(o)

     .<. Cti12pEO.).,,(zb) + l(1+r(x))`(E(O)(t)i)b)(x) - (E(O)(t)(1+r(•))tip)(x)l(o)

                                                    '
and, referring to (2.32), we have

        l(1+r(x))t(E(O)(t)ip)(x) - (E(O)(t)(1+r(•))tth)(x)I(o)

        = lf. <((1+r(x))t-(1+r(x'))t)E(O) (t, x, x'), ip(x')>(,) l(,)

            tl >O        S C,i, .2,,=, f. I(r(X) -r(x.'))ti (1+r(x'))e2E(O) (t, x, x')l(,) lcb(x')l(,)dg(Z,)<.,)

        S Ci 2fz lr(x, x')ei (1+r(x'))t2 E(O) (t, x, x')l(o)Ith(x')1(o) dg(Z,)(x')

                                '        fs{ c2 2fz T(x, x')ei(i+r(x'))t2+"t'(n+2)i2 e-r(x•x')2(,91i3b(x')l(o)dg(Zo)(x')

                                      ., . ,.-..-. -        s C3 ÅípS94.,,(ip)fzt-("'2)12'ei12 .e'r(X'X')216tdg(Z,)(x') s c, ti12pSO.).,,(th).

                   '
Thus we obtained (5.23). Then (5.22), (5.23) imply the inequality pi92((E(O)(t)th) - th) S

Cti12pEO+).,k(ip), and, using Lemma 5.2, we obtain (5.18). Last, as for the equicontinuity, in the

casetsmall (5.18) implies it, arid in the caset1arge (5.21) implies it.

  Now let us prove Theorem 1.3.
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  Proof of Theorem 1.3. We intend to prove that E(O)(t) coincides with E(o)(t). First

Iet us show that E(o)(t,x,x') also satisfies the conditions from (5.17) to (5.18). We regard

KM(t, xb, x'b) as a cross-section of AT'IL(I X A T'M (see (4.4)) canonically

(5.24) EM (t, xb, x'b) = llil) ebi (xb) A ebJ (xb) x ebJ (x'b) •KM (t, xb, x'b)i

              = Z ebi (xb)x ebJ (x'b) •KM (t, xb, x'b)(i,J).

And, set 8M = {g E r(AT'M) i liml.bl.. I(1+lxbl)tO.abg(xb)I(o) == O (Ve,Va)} with semi-norrns

qe,a(g) iii! sup.bEMI(1+ITbl)tO.abp(xb)l(o). Since the operators (ipgO.) )2 and .4;, are commutative,

it suflices to proye the following: First we have

(5•25) (iilt7 +(ogO.) )2) EM (t, xb, x'b)=o,

and, if we see, for g = Z) ebJ(x'b) • gJ(x'b) E SM,

(5•26) (EM(t)p)(xb) = f.<EM(t,xb, x'b), g(x'b)>,M dg(",)(x'b)

                                      '           = 2ebi(xb) •fz KM(t,xb, x'b)(i,J) gJ(x'b) dgYt)(x'b) (se6 (s.lo)),

                                             'then EM(t) defines a continuous linear map from 8M to itself, and, last, for given e 2 O, a and

To > O, there exist C > O, eo > O, Bi , • • • , 6N sads fying

(5.27) qe,.(EM (t)g - g) S Cti!2 2 qe+t, ,I3, (g) (O < Vt S To, Vp E SM)•

Let us show these with setting y = xb, etc. As for (5.25): As was mentioned in the comment

following (1.23), it is Getzler ([13i, (3, g4.2]) who showed (5.24) with y' = x'b = O satisfies (5.25).

Set R = RgM(pO) and Y = y - sf', then, using his result, we have

        '     (agOM) )2 == -2 (zil;7, + i2yj Rji)2 - -Åí{(ziil.l, + i2 ys•R,•i) + izy, R,,}2,

     ed<ylRiy')14e(aSO.) )2oe<"IRI"'>14 = -• 2(5Itl]. + i E YjRi'i)2',

     (Iiil, + (ipgO.) )2) E.(,,,, ,t)

     = e<ylRl"'>1` (illJl - 2(5Itli;, + i ]E]) ly,T R,i)2) eny<"IRI"'>14EiLtr(t,y, y')

     = e<yiRiY>i4(lillt - E(slltl;. + i2 yjRji)2) EM(t, y, o) = o.

That is, certainly (5.25) for general Y = xb holds. The continuity of the operator EM(t) can

be shown similarly to that of E(O)(t). As for (5.27): First we have

(s.2s) (o/ay)a(Efut(t)p)(y) - (EM(t)(o/oy')ag)(y)

          fi>o         =..2.p,v, fzfi,2(.,)<(Y-Y')fi'(iR)P'fi E"(t, Y, Y'), (a/0y')trg(y')>gM dg(M,)(y')
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Actually, since we have (0/ayi)EM(t,y,y') = (-(0/0?J;•) + tÅí(y)' -- y;)Rji)EM(t,y,y'), we

obtain (5.28) referring to the definition (5.26) of EM(t)g. Then, since there is a term (y-y')6'

([B'l > O) in its right hand side, the above can be estimated as

                                                 '(5.29) I(0/ay)a(EM(t)g)(y) -(EM(t)(0/0y')ag)(y)l(o) SCti12 2 g.,.(q).

                                                  I'71<lal

On the other hand, similarly to (5.23), we have

(5.30) l(1+lyDt(EM(t)p)(y) -p(y))1(o) .< Cti!2 qe+N,o(g).

Hence we have obtained (5.27).

  We have thus showed that E(o)(t,x,x') also sadsfies the conditions from (5.17) to (5.18).

We do not ask here whether (5.19) for E(o)(t,x,x') holds or not. (Note that once the proof is

finished, consequently we know it holds.) However it is obviously continuous with respect to t,

that is, there exists a constant C > O and an integer eo > O satisfying

(5.31) po,Åë(E(o) (t)th - E(o) (t + s)ip) S s(t-2 + t")Cpe, ,o (cb)

                     (O < Vt < oo, O SI Vs < t/2, Vzb E 8).

This weak estirnate is enough for our purpose. Now let us show E(O)(t,x,x') == E(o)(t,x,x').

First, for given O < ti < t2 < t and zb E S, we have

(5'32) fz fz <E(O) (t2, X, X'), <E(o) (t ' t2, X', X"), th(X")>gz ,af,>,z,x, dgZ(x') dgZ(x")

        = fz fz <E(O) (ti, X, X'), <E(o) (t - ti, x', x"), ip(x")>gz ,,,">gz,.t dgZ(x') dgZ(x").

Actuaily, by referring to (5.17) for E(O) and E(o) and moreover (5.22), we find out that the

difference between the right and left hand sides is equal to

    f,,`2 dt' zilt7, fz<E(O)(t',x, x'), <E(o)(t - t', x', x"), th(x")>gz,.">gz,d dgZ(T') dgZ(x") .

    = f,,t2dt'{-fz<(ip(O))2E(O)(t',x, x'), <E(o)(t -' t', x', x"), th(x")>gz,.">gz,af dgZ(x') dgZ(x")

    + fz <E(O) (t', x, x'), <(ip(O))2E(o)(t - t', x', x"), cb(x")>gz,d,>gz ,., dgZ(x') dgZ(x")}

                                                           '    = f, ,t2dt'{-fz <E(O) (t', x, x'), <(ip(O))2E(o) (t ' t', x', x"), ip(x")>gz,.">gz,,,, dgZ(x') dgZ(x")

    + fz <E(O)(t', x, x'), <(ip(O) )2E(o)(t - t', x', x"), th(x")>,z,dt>gz ,d dgZ(x') dgZ(x")} = O.
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And we have

                                                    '     l fz fz <E(O) (t2, X, x'), <E(o) (t ' t2, x', x"), th(x")>gz,.">gz,., dgZ(x') dgZ(x")

                                          '          , ' fz <E(O) (t, x, x'), th(x')>,z,.t dgZ(x')I(o) '

     S l(E(O)(t2)(E(o)(t-t2)ip - ip))(x)1(o) + i(E(O)(t2)(E(O)(t-t2)th - cb))(x)l(o) (by (5.19))

    g C 2{pt,,fi,(E(o)(t - t2)th - cb) +pt,p,(E(O)(t - t2)ip - th)} (by (5.18) for E(O))

    -< C(t -t2)i122pg,,,,(th) .O (t2 . t) (by (5.18) for E(O) and E(o)),

    l fz fz <E(O)(ti, x, x'), <E(o) (t - ti, x', x"), th(x")>gz,i">gz,., dgZ(x') dgZ(x")

                 - fz<E(o) (t, X: X'), ip(x')>,z,., dgZ(x')l(o) .

    S 1(E(O)(ti)E(o)(t - ti)ip - E(o)(t - ti)ip)(x)1(o) + I(E(O)(t - ti)th - E(o)(t)ip)(x)l(o)

    s C2tl12pe,,fi, (E(o)(t - ti)ip) + ti(t-2 + t")Cpe,,e(ip) (by (5.!8), (5.31)) '

    s c IZ) tl12pr,,,, (th) + ti(t'2 + t") Cpt,,e(cb) - O (ti . O)

Hence, for any zb E S,O<t< oo and xE Z, we have

                            '(5•33) fz<E(O) (t, X, X'), th(x')>,z dgZ(x') = fz <E(o) (t, x, x'),Åë(x')>,z dgZ(x').

Thus we have proved E(O)(t,x, ti) = E(o)(t,x, a7').
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  )Abstract. We show that the trace ofaquotient of two Dirac operators and the

infinitesimally deformed chiral .anomaly of a Dirac operator on a twistor space have

adiabatic series expansions. Further their top terms can be explicitly described.

O Introduction

  Let M = (M,gM) be an even dmensional compact oriented Riemannian manifold

equipped with a Spinq structure introduced in [81

                    '                                                           '              '(O•1) :'9 : Psping(n) (M) = Pspin(n)(M) Xz2 Pspa) - Pso(n)(M) X Pso(3)

where Pso(.)(M) (n = dimM) is the reduced structure btLndle consisting of SO(n)-

frames of TM and Pso(3), Pspi.q(.)(M) are some principal bundles with structure groups

SO(3), Spinq(n) =- Spin(n) xz,Sp(1), respectively. Remark that Pspi.(.)(M), Psp(i) are

locally defined bundles and the bundle map :'g is assumed to be equivariant to the

canonical Lie group homomorphism :'g = (:',Ad) : Spinq(n) - SO(n) Å~ SO(3). Then,

using the canonical action of Spinq(n) or Sp(1) on Spinq(n)/SpinC(n) = Sp(1)/U(1)

and the identification Sp(1)/U(1) = ÅëPi through the representation TH : Sp(1) -
CLc(H) = GLc(Åë2) with rH(a +o'6) = ( pa -aB ), we get a Cpi-fibration

(O•2) T:Z == Psping(n) (M) Xcan CPI = Psp(1) Xcan CPI - M•
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Let us now take an Sp(1)-connection A of Psp(i), so that the twistor space Z possesses

a canonical Spin structure ([9], [10]). Namely, the connection induces a splitting of TZ

into horizontal and vertical components, TZ = 7t O V, with natural orientation and

with the metric gZ = T"gM + gV (r'gM = gZIGPt) where gV is the Riemannian metric

                 'on V induced from the Fubini-Study one of .CPi. Further we have the locally defined

                                                                '                               'spinor bundle $gM associated to Pspi.(.)(M) and a locally defined hermitian vector

bundle ,4if = Psp(i) xr. H, which together produce the globally defined vector bundle

r' $gM XT'H iE 7r"$gM X$gv is Sgz on Z, whose rank is certainly equal to 2"12+i. Then,

the locally defined Clifford action pgM ofÅël(T'M, gM) on SgM, together with the action

pgv of Cl(V',gV) on $gv induced from the fiberwise globally defined canonical Spin

structure, gives the globally defined action pgz of Cl(T'Z, gZ) on Sgz, i.e., pgz(T"gb) =

T' p,M(eb) X 1 (4b E T'M) and p,z(gf) = r'p,M(T,M)X p,v(Cf) (6f E V") where r,M is

the complex volume element of (M,gM). Thus (Z,gZ) has a canonical Spin structure,

which gives the Dirac operator eg;) : r($g(zÅ})) - r($g(;z)). Notg t.hat the canonical

splittings $,M i= $,+M e"ljTM, 4Ygv = T"4T = $,+v e$g'v = {([v], cv). E T'pt}O($,+v)Å} wbere

($g+v)Å} is the orthogonal complement induce the splitting Sgz F. $g+z e $iz canonically.

                                                     .t  'Now, let us take another metric hij. on M and an associated Spinq structure With

                                         'the same Pso(3) as in (O.1), whose twistor space is hence equal to the one given at (O.2).

We have thus another Spin structure for Z with metric hZ == T"hM +gV, which induces

another Dirac operator ifÅíÅ}.) :T($Åí;)) -ÅÄ r($E!)). Let us consider'then the invariants

                                 '                     'called the traces ofthe quotient ahz/agz, ., , .
'(bi3) ' ' TrÅ}(ophz' /th,F)= E:,T ..,r(1,) f,PO.tS [trÅ}(agz 0hz e.-`ip;Z) dt, .

            '                  t.          with the equalities [I rÅ} (ipgz ahz e-tip;Z) iL 'IrT (ahz agz e-`Åë;Z) .

                              '  '(The equalities at the second line wi11 be shown at (2.1.).) Remark that e-`if;Z is a

cross-section of the vector bundle $6zÅ}) X S;zÅ})* over Z Å~.Z, on which the operator ehz

cannot act in a naive sense. In the papgr we will !et ahz act.on it .(see (1.6)) by using

                                          'the rnethod introduced by' Bourguighon and Gauduchon ([4],. [5]), the explanatiori for

which will be offered at the beginning of the next section. The first purpose is then

                                                  '                        'to study the adiabatic series expansions of (O`3) 'and the difference STr(ahz/Åëbz) == '

II]r+(ehz/a,z) -- [lt-(ahz/Åë,z). Namely, by replacing the metrics gZ etc. by g.Z =

6-lr' gM + gV = T"g.M + gV (E > O) etc., we obtain '!lrÅ}(iph.zlopg.z) etc., and we want

to investigate their asymptotic expansions when e - O. Incidentally to express the

                                                  'right hand side of (O.3) by TrÅ}(iphz/0gz) will be appropriate in the following sense:

                                  '                                               '                       '                                                       '                                          '                        '.2 -



Using the series of eigenvalues (O <)Af S A2Å} <. ••• -> oo (see Lemma 2.1) and the

corresponding series of orthonormal eigen-cross-sections of the operator 0;z acting on
I7(tfiY;.), let us set e-`4);Z = Åíe-`AJ'ipJÅ}• X ipJÅ}• ' and put JLL?•: = <e2),zahzq5g•:,Åëi >L2-where

<','>L2 = <','>L,r(;y;.) is the global inner product which r($gÅ}z) has. Then, formally

the right hand side of (O.3) is equal to '
           2igÅ} -dd, .=, r(1,) f,OOt`e'`";' dt = 2 igÅ} f,OOe-t"J' dt = 2 13tl'

   Second, let us consider some infinitesimal deformation ofthe scFcalled chiral anomaly.

That is, let us take a symmetric bilinear form X on TM and set g(M.) = gM + uX

(O S u S ue). The metric induces the DiraÅí operator ipg(z.) acting on r($gz) as above

and we have the infinitesimal deformation of ipgz

                                  '(o.4) 6xagz =' Ef.l7 .=eag(z.)•

We are then interested in the associated invariants called the infinitesimally de

formed chiral anomalies of ipgz

(O•5) Iog det (6xa,z)Å} = Eil,7 ,=o r(1,) foOe tS TrÅ}(ip,z 6x ip,z e-`ptz) dt,

        with the equalities 'IlrÅ}(lgz 6xegz e-ta;Z) = TrT(6xagz agz e-tptZ)

and we want to investigate the asymptotic expansions of log det (6x.ag,z )Å} and also their

clifference when e - O. If the operators Qgzeg(z.) acting on r($gÅ}z) happen to have the

spectra consisting of eigenvalues {A)•(u) = AiÅ}• (u)} all of which lie in a positive cone about

the positive real axis in C and have the corresponding orthonormal eigen-cross-sections

{ipi•(u) = ipiÅ}• (u)} which are al1 smooth with respect to the parameter u at u = O, then

we have

        AS'(O) E Eil.7 ..,,<agzipg(z.)ipj(u),ipJ'(u)>L2

        = <g2},z 6x s2),z q5j (O), ipj (O)>L2 + <iZ);z ipS' (O), (75j (O)>L2 + <Åë)Zz gbJ (O), q6S' (O)> L2

                                     0
        = <g2),z6xe,zipJ'(O), (15j(O)>L2 + A]'(O) zsi.7 .=,<ipj(U), q5j(ZL)>L2

        = <l2),z6xg!),zdij(O),ipj(O)>L2 (hence, Aj(O) > O if ){3•(O) 7i! O)

                  '                   /      'and the right hand side ef (O.5) is formally equal to

  '     ,31i,il),,,A;(o) il,7 ,=, rl,) f,OOtse-tAJ(O)dt =,,ii,il).,<i[gi = tiI.7 .=, log,,I,il[).,A2(u)

     = Eilt7 .=o (- 1;lt ,=o 2 e-S iOg X' (")) = zSl .=o iog det (agz Qg (z.) )Å}.

                     (Aj(O)>O)
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Thus, formally (O.5) are the infinitesimal deformations (into the clirection X) of the

chiral anomalies logdet(0gzag(z.))Å} which were mathematically introduced by I.M.

Singer [12, Appendixl. (Note that in general all but a finite number of eigenvalues

Ai(ap), •••, Ak(u) Iie in a positive cone about the positive real axis and, moreover, the

eigen-cross-sections ip)•(u) are generalized ones. And strictly Singer said to define the

anomalies as log det (Åëgzag(z.))Å} = -Ai(u) • •• Ak(u)(0/0s)l,=o Åíi.k e-S!OgAi(").)

  Our investigation in the paper is an attempt to embody the idea ([31) that such an

operation as replacing gZ etc. by g.Z etc. and taking the parametere up to O, that is,

blowing up the metric gZ in the base space direction, will extract some intrinsic values

from yarious geometric invariants of Z. And we want to emphasize here that it is mainly
the general adiabatic expansion theory concerning the kernel edtip;Z ([11] and Lemma

2.3) that induces our main assertions, i.e., Theorem 1.2 and Corollary 1.3.

1 The operator ahz acting on r($gz) and the Main Asser-

    tions

  According to the Bourguignon and Gauduchon's method ([4I, [5]), first we wi11 make

ehz act on r($gz). The projection from the set F+(TpM) of positively oriented frames

on TpM to the set J(TpM) of inner products on TpM, given by e e " the inner prod-

uct <•,•>, which has e as an orthonormal frame", has a structure of principal SO(n)-

bundle, which is trivial since the base space J(TpM) is contractible. And the tan-

gent space T.F+(TpM) Z st(n), (dlda)la=o(e • Ba) e (d/da)l.,.oB., has a subspace

GPt.(F+(TpM)) ! {B E gt(n) l B = `B} which is projected onto T<.,.>.I(TpM) isomor-

phically. Clearly the distribution e ,-)h rH.(F+(TpM)) gives then a connection for the

bundle, which induces the parallel displacement nM : Pso(.)(M)p 2 Pso(.)(M,hM)p

along the segment from gpM to hpM. Gathering such displacements now we get the bundle

isomorphism

                                      '                                   '                             '(1•1) nM:Pso(.)(M) or' Pso(.)(M,hM)

             with nM :T(')M!(T(')M,hM), "M([eb,v)) = [nM(eb),v] .

where we use the canonical expression TM = Pso(.)(M) xcan R" (D [eb,v]), etc. More

explicitly, for a gM-SO(n)-frame eb = (e9,•:•,ek), set nb = (n,b•,•) E (hM(e,b•,e,b•))"!2,

which is positive and symmetric. Then we have

(1.2) n" (eb)=eb• nb, n" (e,b•)= nM(eb)i =2e,b• •n,b•i.
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These come from the faÅít that, if we take the segment te gpM(t) = (1-t)gpM +thpM and

for each g6Lf(t) we put n,M(eb) = eb • (g,"(t)(e9•, e,b•))-i12, then n,"(eb) is a g,"(t)-so(n).

frame and (0/0t)ntM(eb) is horizontal. Next let us assume to use the common Psp(i)

for the two metrics (see (O.1)), which consequently determines (locally defined) Spin

structureS :' : Pspin(n)(M) - Pso(n)(M), :'hM : Pspin(n)(M,hM) - Pso(n)(M,hM).

Since the above connection for the (trivial) bund!e F+(TpM) - I(TpM) inducbs a

connection for the associated (trivial) Spin(n)-bundle F'(T.M) - l(T,M), similarly

to the above we obtain a bundle isomorphism vM : Pspi.(.)(M) or' Pspi.(.)(M, hM) and,

further, we have the bundle isometry

(1•3) n":$,M or- $hM, nyM([th,sl)= [nM(th),s]

              with n" e p,M (C) = phM (n" (6)) o nM (6 E T' M).

Thus we get the identifications

(L4) n = nMe id : TZ = ILt $VZ (TZ, hZ) =.(7t, T' h")ev
            given by e,b• (A) =- T'e,b•, e( e T'nM(e,b•), e(,

(1.5) ny=nMXid:$gz=T'$gMX$gV !X $hZ :T'$hMX$gV
            with no p,z (6) = phz (n(4)) on (C E T' Z)

where ef = (e{,el) is a gV-SO(2)-frame of V. Set e.(A) = (ei(A),•••) = (eb(A),ef),

which is a gZ-SO(n+2)-frame, and denote its dual by e'(A) = (e'(A), • • •) = (eb, ef(A)),

Then we have the 6xpressions a,z = Åíp,z(ei(A))V.fi,iZA) = 2p,z(ei(A)){ei(A) +

i E gZ (Vg/, (A) ei, (A) , ei, (A) ) p,z (e`i (A) ) p,z (e`2 (A) )} etc. where VgZ is the Levi-Civi ta

connection associated to the metric gZ, and now

(1.6) ' ahz i! n- 'e ahz en = 2 p,z (e` (A)) V,$(g.Z, ('Ah ?) : r( $,z) - r( $,z) with

• v.$gZ 'h3= v Å} t 2gZ((n-io v.h Zo n) e. (A), ei, (A)) p,z (eii (A))p,z(ei2 (A))

      = v + t Åí hZ(V.h Zn(ei,(A)), n(ei,(A))) p,z(eir (A))p,z(e`2 (A))

                                          '
is the desired one at' (O.3). By putting e:(A) = (ebe(A),ef) = (ei12eb(A),ef) and

e:(A) = (eb,, ef(A)) = (e-i12eb,ef(A)), their adiabatic versions are then expressed as

(i•7) eg.z =2pg.z(ei(A))V/i.g(i), Åëh.z =2p,,z(el(A))v,$(gi4,(h.`i).

Remark that the map n for g.Z etc. coincides with (1.4) for gZ etc.
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  Let us next consider the identity

,(1•8) TrÅ} (a,.z iph.z e'tO;'eZ) = Tr; (0;.z,pi ah,z ,p e-tip;eZ (P, P'))

where we put a;.z,pt lh.z,p qi(P) Xg2(P') =- ah.z,pgi(P) X ip,.z,pt g2(P'). Conveniently

the right hand side contaims only derivatives up to the first order for each yariables P,
P'. First we intend to state the behavior of a;.zlh.ze-tojeZ (P, P) = a;,z,p,lh.z,pe-tpttZ (P,

P')lp=p, (when e - O) regarded as an element of the third side of the identification

(1•9) r($g.z X $g.z) = r($g.z X $;.z) = P(AT'ZXC))

        s(e:(A)) x s(e:(A)) e s(e:(A)) X s(ei(A))', p,.z (e.i(A)) e et(A)

where s(e:(A)) is the SU(2"!2'i)-frame of $,.z i duced from ef(A), and I = (Ib,If)

is a multi-index with Ib = (i9 < ••• < iitbl) and If = (i{ < ••• < ilifl), and we put

eldg = egY. A•••Aege.ibi, eY(IA) = e}l(A) A•••Ae;{i'i(A) and e.I(A) = ehb Ael(A). Let us

take now a (globally defined) tensor field

(i.iO) TA - i2{[e,b•,e,b•](A) - [ee• (A), e,b•(A)]}x eg A el,' -- 2e( x Tft'

where [e,b•,ejb](A) is the GLt-horizontal lift (E 7t) of the bracket [e?,eJb•1 and the difference

[e?, e,b](A) - [e,b• (A), e,b•(A)] is vertical (E V). And consider an elliptic operator acting on

r(AT,'MX $,vlZ,) (Z, = T'i(p))

(1'11) "42 == ip3v 'SZTA A' IXV.$fiV + il6 (2 Tfi A' pgz(e;(A)))2

                'where we put egv = Åípgz(ef(A))V,$iiV, pgz(e;(A)) = (-1)t'X p,v(ef) for e-forms in

the M-direction and TA(P) = (!/2) Z)(egAe,)(p) •T2,,,•(P). This generates a (CO)-semi-

group with Coo-kernel which belongs to r(AT;MX($,vlZpX$;vIZp)). Its value at (P, P)

can be canonically regarded as an element of A(T'T'M)p XAV'(A)pXC = ATPZXC
(see (1.9)), which we denote by exp(-t.42)(P). Then we have

 Proposition 1.1. W7}en e - O, there eststs a formal series earpansion

(1.12) ip;,z ah,z e-tip;eZ (P, P) = :ll) eM/2 D(.12) (t, P: ahz/a,z) ut th

                  ' m=-2 ,                                                '(1•13) D(.212)(t,P: lhz/l,z) = -e" it <eb nb tR29"{coth tR2g" -1} eb>(p)

                 Å~ (4.i)ni2 deti/2 (,ifiili?tgR",/M2/2) )(p) exp(--t.`t2)(p)
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 where we setp = 7r(P), e"w = (-1)i'w for1'-form w, and Rg"(p) is an anti-symmetric

 matrix whose (i,1')-entm'es are equal to R,g•,"• (p) = (1/2)EgM(.F(Vg")(e,b•,e,b•)e,b•,,e,b•,)(p)

 (eg' A eg2)(p). (See Lemma 2.4 for .ftLrther informations for the coefiicienbs.? '

   Now let us state the main assertions.

  Theorem 1.2. In the definitions of 'TrÅ}(iph.z/ipg.z) (see (0.3??, the functions to be
differentiated by s, that is, r(l s) foOO tS TrÅ}(lg.z lh,z e-tojeZ) dt, are absolutely integrable

if Re(s) > n/2 + 2 and have the meromorphic extensions to C(D s) which are analytic

at s = O. VVhen e - O, then there exist the aspmptotic empansions

(1.14) 'I\Å}(ah.z/lg.Z)

      =.S.l-2em/2 (71II2i)".ii .i il,7 ,=o r(i,) foOOdt • tsfz D(.!2)(t,p: iphz/a,z)

      .+--lil(l]..e,Il;i2 2ni2 Ei4, ...o r(i,) f,OOdt ' tSfzD((m+n)12)(t, p: ahz/Q,z) A dgZ(p),

(1.15) S[I]r(eh,z/ip,.z) =' Tr+(iph,z/ag.z) - [[Y-(ah,z/ag.Z)

      = -.S.-2emi2 (J31iil)2.'i+i E:,7 .=o r(i,)foOOdt •tsfz D(.i2)(t,p: iphz/agz)

where the .functions differentiated by s are also all absolutel?J integrable ifRe(s) > n/2+2

and have the rneromorphic estensions to C which are analytic at s = O. In particular,

as for (1.15?, the coefficients ofEM12 un'th m < O are all pure imaginary.

  As for the infinitesimally deformed chiral anomalies, we have

  Corollary 1.3. In the definitions oflogdet(6x.ipg.z)Å} (see (0.5)?, the.functions to be

differentiated by s are absolutely integ7rable ifRe(s) > n/2+2 and have the meromorphic

extensions to C which are analytic at s = O. And set

(i•i6) CH(m12)(t,P:6xipgz) == il.7 .=,b(m12)(t,P:a,(z.)/a,z), hence

(i•i7) cH(-2i2)(t, p:6xa,z) == eAzlit <eb xtR2g" {cothtR2g"'- i} eb>(p)

                     Å~ (4:ti).i2 detii2 (,i.gitgR"i.2/2))(p) exp(-t.42)(.p).

Then we have the asymptotic earpansions when E --> O

(1.18) logdet(6x.ag,z)Å}
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     =.ll.ll.2emi2 (v71t2)"./i+i EI; ,=o r(is) foOOdt ' tsfz cH(./2)(t,p: 6xagz)

     .+-- }I(l]..E2Ti2 2"i2 E4, ,..o r(i,) foeOdt ' tSfzCH((m+n)i2)(t, p: 6x a,z) A dgZ(p),

(1.19) S-logdet(6x.e,.z) =' logdet(6x.ag.z)' - 10g det(6x.Qg.z)-

     = -ml;.ll.2E'ni2 (fllii)2ii2+i i4, ,=o r(i,) foOOdt ' tsfz cH(rni2)(t,P: 6xa,z)•

So as in Theorem 1.2 are the ftLnctions differentiated by s and the coefiicients of eM12

with m < O at (1.19?.

2 Proofs of Theorem 1.2 and Corollary 1.3

  First let us show

  Lemma 2.1. There eststs a constant Ao > O satisjuing Spec(ip;.z) ) Ao for any e

urith O<eS eo. And we have

                               '(2.1) 'I}!rÅ} (s2),.z iph.z e-`S2};eZ ) == 'IlrT (e)h,z t!P,.z e'`gZ);eZ )

      = TrT (a,,z ah.z e-`ptcZ ) + 'rr; (2 ei!2n(de/It) n(Set nb) p,.z (ei.) a,,z e'`ip;.z )

                            t
and further there eststs a constant C > O satisfipt'ng.

                       '(2•2) TrÅ}(a;.z,p, ah.z,pe-tip;eZ(P, P')) sCe-t"o13 Tr.(e-(`16)pt.Z)

                 (O< Ve S Eo andO< Vt < oo ).

                    '  Proof. The assertion concerning the spectrum of ip;,z comes from the invertibility

of agv ([10, (5.15)]) and [3, ProPosition 4.411. Namely, first consider a connection

vgV = pVovgZ ofv where PV : TZ =: ?te.V -> V is the projection. This together with

the Levi-Civita one VgeM gives a new connection vgeZ$ =- T'vge" $vgV of Tz = rltev,

which is compatible with g.Z and whose torsion is equal to TA given at (1.10) ([11, Lemma

3.1]). Denote by V'$geZe the associated connection on $g.z and set TA = Z) e;(A)QTA =

i Z) TA,ij A el A ebl'. Then we have

(2•3) ip,,z = fi12 Zp,,z (etb.){V/ig(i)ee+ eis12 p,,z(Z) TR,i,A e;b'.)} + ip,v =- ei12e,+ e,v, ,

   iZ);,z = Ee,2 + e);v +Ei12{ip. oa,v + gi),v o ipe} = ee)Z + iD;v
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     +6i12{2 p,.z (eg. A ei(A)) vg,it( .e),.k - eis/2 p,.z (2 TA,,, A eg. A e9,'.) o O,v

                                            '     - a,. . eis/2 p,,z (E Tza,id A ege A eb'e)}'

Let 11 • llp,i be now the Sobolev Hi-norm of elements of r($g.z) restricted to Zp with

metric g,ZIZp. Then there exist constants C > O, C' > O such that for any p E M,

3b E r(gS,.z) we have

                '       f.ii{li)EQIZ)gv +4)gvoipe}ip,Zb>,$,,.dgeZIZp Sl C1lÅëlip,i, C'lll2)gv3bl1p,i }il 1l3bllp,i

                                                   '
where <•, •>$,,. denotes the pointwise inner product which r($g.z) has. The first estimate

comes from the fact that ipe o ipgv + ipgv o ip, is a first order differential operator on Zp

and the second comes from the fact that ipgv is invertible. Since further a. is self-adjoint

   -2    . is nonnegative, finally we haveand a

            iie;,z >- eiZv +e'12{ae oii),v + Si),v osi)e} ) (1 -Ei12CC')iZ)3v.

We have thus shown the assertion concerning the spectrum. As for the equalities (2.1):
To simplify the description, let us assume e = 1. Set e-tO;Z = Åí e-tA; ipi Xdi; E r($g+. X

$g+z') as usuaJ (refer to the argument foHowing (O.3)). Because of ip;zlgzipYVN] =

Aj • ip,zipj/v/XI; E I"(tfigg;z) and <ii),zdi,'/i,/]Xl;, O,zipi/VX X; >L2 = 6ji, we have

    Tr- (ip,zehz e-tptZ) = 2 e'`"jf<a,zg"hz0,z gbj /vl5(7, , e),z q5j /vl51I7> $,. dgZ(P)

    == Åí e-`"l )t;• 'f < (i)hz {2Pgz ipj , ii);z ipJ' > $, . dg Z ( P)

      '    == 2 e'`Aj'f<Qhzil},z ipJ' , ip)'>,$,. dgZ(P) = Tr+ (iphz g",z e'te);Z) .

Thus the first equality at (2.1) was proved. Next let us prove the second one. We have

              '(2•4) ipi:z = det nbeehz edet(nb)-i = a,z -Z n(e2b
d'

 )itd81 nyb) p,.(eg)

because (1.6) implies

       f<iphz 3b, ip> $,. d9Z = f<Z Pgz (ei (A))V,$(g.Z, ('Ah g) 3b, det("b)-i ' ip> $,. dhZ

       = f<2 phz (n(et(A)))V,$(h.Z, (,))n(3b), det (nb)-' •n( ip)> $,. dhZ

       = f<n(3b), 2 phz (n(ei (A)))V,$(h.Z, (.)) det(nb)-i •n( ip)> s.. dhZ

       = f<zb, det nb 2 p,z(e`(A))V,$(g.Z, ('A?) det(nb)'i ' ip> $,. dgZ•
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 Hence, using the above expression of 'Ilr+(iphzagz e-tO;Z), we have

         Tr. (Åë},z {2),z e'teP;'Z) = 2 edt"2 f<i2),z q5j (P) , g2Phz q5j (P)> s,. dgZ(P)

                    '          - 2 e-t"J f<ep,z ipj (p), 2 '](e9d' ),(tdiil '7b) p,z(eg)ipj (p)> $,. ctgZ(p)

         -2e-`"'f ],,i                    <0hzip'(P) a zip'(P)>$,.dgZ(P)

          + Åí ,-tAj f<2 '7(ezbd' )itd,e],t ']b) p,z(eg) ip,z ip,' (P), ipj' (P)>,$,. dgZ(P)•

Thus we have proved the second equality. Last, as for the estimate (2.2): Assume E = 1

and remember the above expression ofe-'tl' ;Z. Then we have ' '
        rlt+(s";zS2),ze-tip;Z) s{Ze-t"' f<li)hz45j(P),Åë),zgbj(P)>s,.dgZ(P)

        S{ 2e-`"' lls2Phzdii ilL2 llO,zipjllL2 S 2e-`A: (Ci )L;•/2 + co)A,i.12

        f{I C2 Ze'tAJ12 :E{ C2 e'tAO13 2e-tX,16 = c2 e-t)'o13 'll+(e'(t16)ip;z).

Thus (2.2) with e = 1 was proved. And, remembering the estimate Spec(a;.z) >. Ao

for ariy E with O < E SI eo, obviously we know that the above estimation holds aJso for

general e.

  Before we give the proofs of the three assertions stated in the previous section, we

wi1! make some preparatory arguments. Take a point PO E Z. Though we have taken

a gZ-SO(n + 2)-frarne e.(A) around PO with no specific condition, now it is convenient

for the proofs to take such a frame in the foHowing specific way. First fix e.(A)(PO) =

(eb(A)(PO),ef(PO)). Then let e.(A) = (eb(A),ef).be VgZe-parallel along the VgZ$-

geodesics from PO and be equal to the fixed one at PO, and, further, let e'(A) =

(eb,ef(A)) be its dual. RemaJk that VgZ$ (= Vg:Z$) is compatible with the metric gZ

so that e.(A) is cert•ainly a gZ-SO(n + 2)-frame. Note also that eb(A) coincides with

the 3Y-horizontal lift of the gM-SO(n)-frame eb on a neighborhood Ub(c M) which

is Vg"-parallel along the Vg"-geodesics from pO = T(PO) and is equal to the given

eb(pO) at pO. Also take such a gV-SO(2)-frame on Uf(C Zpo) which coincides with

the given ef(PO) at Pe and then spread it on a neighborhood U(C Z) by the the H-

parallel displacement along the Vg"-geodesics from pO, The frame on U thus obtained

is certainly equal to the above ef. Further, let us take the VgZ$-normal coordinate

neighborhood (U == Ub Å~ Uf,x = (xb,xf)) with (0/Ox)po = e.(A)(PO). Similarly to the

above, xb(P) are Vg"-normal coordinates ofT(P) and xf(P) are VV-normal coordinates
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of the image (E Zpo) of the point P by the IH-parallel displaÅíement. Hence we have

         e9(xb) = 2(0/0x,b).b • v,bi(xb), v,bi(xb) = 6,•i + O(lxb12),

(2'5) c(vg"),,,,(e,b)Eg"(vg,"e,b•,,e,b•,)= O(Ixbl), A(e,b•) == O<'
lxbl),

                         i
etc. Hereafter we wi11 use the coorclinates and the frames thus given and of course

the g.Z-SO(n + 2)-frame e;(A) = (ebe(A),ef) == (ei/2eb(A),ef) and its dual e;(A) =

(eb,,ef(A)) = (e-i/2eb,ef(A)) (see (1.7)) are assumed to be defined by using such

frames. Now first let us show

  Lemma 2.2. 0n the coordinate neighborhood(U, x), we have

(2•6) 0,,z = 2a/ex( • p,.z(e;(A)) +2Ei12a/0x,b • p,.z(eg.)

      - 2 E2/2 gTA,,,,, (O) • p,.z (ef(A))p,.z (etk)pg.z (eZt' ) + O(lxl),

(2•7) iph.z = 2 0/axf. ' p,,z (ef (A)) + Z ei!2n,b•i(O) 0/Ox9• • p,.z (eg.)

      - 2 e2/2 n,b•,i,(O) n,b•,i, (O) gTA ,•,j, (O) • p,.z (e; (A))p,,z (e`ii)p,.z (eh' ) + O(Ixl)•

  proof. Remark that vge" = vg" and vhe" = vh". Referring to (2.3) we have

       a,,z = 2 p,,z (eS.)e'12 {e,b(A) + i Z C(V9")i2ii (etb) pg,z (eh' )pg,z (et2.)

       + i 2 C(VV)k2ki (e9(A)) p,.z (e?i (A))p,.z (e?i (A)) }

       + 2 Pg,z (ef(A)) {e( + i Z C(VV)k2ki (e() pg.z (e?i (u4))p,,z (e?' (A))}

       - g Åí TA,i,,, p,.z (e;(A))p,,z (ebe' )p,,z (eg2.)•

            'Hence using (2.5) we obtain (2.6). Next, put C(Vh")i,i,(n(e,b•)) = hM(V,h(Xb,)n(e,b•,),

n(e,b,))• Then we have

                                 '     lh.z = Åí p,,z (eb.)e'12{n(e9(A)) + i 2 C(Vh")i,i, (n(e,b• )) p,,z (ek' )p,.z (eti2)

     + 2 2 C(VY)k2ki (n(e9(A))) pg.z (e?t (A))pg,z (e;i (A))}

     + 2 p,.z (e;(IA)){el. + i 2 C(VV)k2ki ('efk ) pg.z (e?' (A))p,.z (e;i (A))}

     - g 2 TA (n(e9, ), n(e9, )) pg.z (e;(A))pg,z (ek' )pg.z (eit' )•

Hence using (1.2) and (2.5) we obtain (2.7).

  Next let us consider the identification

(2'8) r($g.zlUX$,' .zlU)=COe(UxU,AT,'oZ)
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given by s(e:(A))(x) X s(e:(A))'(x') • ip(x,x') e ('(x,x'), s(eE(A))(O) X s(e:(A))'(O) •

ip(X,X')) E U Å~ U Å~ $g.zlpo `29 $izlpo D ((X,X'),Pg.z(eel(A)) e ((x,x'),e.'(A)(PO)). The

Clifford action pg.z(eg(A)) acting on the left hand side can be expressed on the right

hand side as

(2.9) p,.z (ek (A))=e} (A) A- et (A)V

and the operator Q;,z,pt given at (1.8) can be expressed on the right hand side as

                                        ' '
(2•iO) Q;.z=]E)p;.z(et(A))'ef'(A)(P')

                                     '        +i2p;,z(et2(A))p;,z(eli(A))p;,z(eg(A))' C(Vg`Z)(ef(A))i,i,(P') with

       p;.z (ek(;`l)) = e"(et(A) A + et(A)v)

Let us then regard the kernel e-ta;eZ as an element of the right hand side of (2.8) and set

e-ta;'.Z(x,x') ! Åíef(A)(PO) • (e-teteZ(x,x'))l, and moreover define its differentiations

as

(2.n) o.a a.g,' e-tip;eZ(x, x') E 2 ei(A)(PO) • a.a a.EIJ (e-tpttZ(x, x')),

(2•!2) with 0.aO.a,'e-tip;'eZ(x,x() ,. E{2 a.ao.a,'(e-tip;.z(x,x')),2}i/2

                                              '
where a = (ab,af) = (a9,•••,ak,a{,al) is a multi-index and we put 6.a = (0/ax)a =

(a/oxb)ab(o/exf)a' = (a/ox9)a9 •••(o/oxZ)aX(a/ox{)a{(O/0x6)a2', etc. Then we have

  Lemma 2.3 (The general adiabatic expansion theorem as to e'tptZ : lll, Theorems

1.2, 1.3 and the proof of Proposition 2.2 for E(t,e) an'th t smalll?.

  (1? For any integer mo ) O, there entst COO-functions K(.12)(t,PO,x,x') (m =

O, 1,''',Mo?, K((,.,+i)12,.i!2)(t,PO,x,x') belonging to the right hand side of (2.8?, which

are also COe utth respect to the variable PO (and Ei12?, and satisfZIing the fotlowing

condition: For any a and a', (2.11? with (x,x') = (Q,O) has the sern'es earpansion

(2.13) a.aa.a,',-te;.z(pO,pO) ., Sl) e-(labl+la'bl)!2+m12 o.ao.a,'K(.1,}(t, pO)

                   . m=O -•
          + E-aabl+la'bi)12+(mo+i)12 o.a a.9[,' K((.o+!)12Fi!2) (t, PO )

where we put Iabl = Åía,b etc. and 0.aa.a,'K(,.12)(t, PO) etc. mean O.aa.a,'K(.12)(t,PO,x,

x' )1.=.,=o etc. Further, there extst constants A > O, C > O and an integer IV > O

                                                 '
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sattsLlving

         0.aO.at'K(.12)(t? PO) ,. ( Ce-tA t(ld60M)12(t(.+2+]all+latl)!2 + 1)'

(2.14)
         0xaOxat'K((rn,+ly2,ei12)(t, PO) ,. S Ctl12(t(n+2+fall+Ea,1)12 + tN)

                                   '              (o< vei12 f{ e612, o< Vt < oo, VPO EZ).

And, if lal + ia'l S 2, then, given Te > O, we have the seTies erpansion

                             ic(2•ls) 0.aO.a,'K(./2,.)(t, PO) = (4,,t)i.,)1, {,=;6,mti a.ao.a,'K(.12,.)(i : pO) + o(tto+i)}

     (Vie ) O, Os Vm s mo + 1, o< vei12 s e612, o< vt s To, vpO Ez).

  (2? The top term K(o)(t,PO,x,x') can be am'tten as

(2•16) K(o)(t, PO, x, x') = KM(t, PO, xb, x'b) exp(-tA2)(xf, x'f) • det vb(x'b)

                                     '
2vhere we set

(2 17) KM (t, PO, xb, x'b) = (4.tl
).12 deti12 (,.fi?tgRM,(P.O(p) /o2)/2) )

    . exp(-21i<(xb- xtb) tR9;(PO) coth tRg;(PO) (xb- x,b)>+i<xb RgM(po) xtb>)

and exp(-tA2), see (1.11? around, ts here regarded as an element of the right hand side

of r(AT,'oM Qb (S,vIUf X $;vIUf)) = Coo(Uf Å~ Uf, ATi:K) Z), and we have det vb(x'b) =

det(g"(0/0xg,a/0x,b•)(x'b))-i12 = 1+O(lx'bl2) (see (2.s??.

  Here let us prove Proposition 1.1.

  Proof of Proposition 1.1. (2.10), (2.13) and Lemma 2.2 imply the formal series

expanslen

(2•18) e)},zs2)h.ze-te);eZ.SPO, PO) iii lZ);.z,pteh.z,pe-tip;eZ(P, P')Ip=pt..po

     = 2 EM12 E p;.z (eX )p,.z (elt) ny,b•i(O) (a/ax;•9)(0/ax9• )K(.12)(t, PO)

     + 2 eM12 2 pg,z (e5' (A))p,.z (e{.) nS-i(O) (0/0xl, )(0/0x9• )K(m12) (t, Pe)

     + 2 eM/2 2 p;.z (eK )p,.z (ef(A))(a/Oxi9)(0/0x()K(.12) (t, PO)

     + 2 eM12 2 p;,z (ef' (A))p,.z (e; (A)) (0/0xl, ) (a/ax()K(.12) (t, PO )

     + 2 e212'M12 Z pg.z (eg2)p,,z (e; (A))p,,z (e'i' )p,.z (e`be'2 )

                • "jb,i,(O) n,b,i, (O) (-iyk(FAdn,)) (O) (0/0x;9)K(.12)(t, pO)
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                            't 't      + IIIil) E2f2'M/2 Z) (p,,z (ef' (A))Pg.z (e;.i )Pg,z (et2e ))' Pg,Z (eZe )

                 • n,b,(O) (-i uk'(FA,,1,6)) (O) (O/Ox9)K(./2)(t, pO)

      + E e212'M/2 E p;.z (ef' (A))p,.z (e? (A))pg,z (eZii )Pg.z (eg'i)

                 • n,b,,,(O) n,b,,, (O) (- tuk(FA"v, )) (O)(a/0x'kf, )K(./2) (t, pO)

                            't 't     + E e212'M12 2(p,,z (ef (A))p,.z (eg})p,.z (eg2.))'pg,z (e?(A))

                 • (-i uk'(FA,,1,s )) (O) (O/0x() K(m12) (t, PO)

                            't 'l '     + 2 e`12'Ml2 2(p,.z (ef' (A) )p,.z (e;} )p,.z (eg2. ))'p,.z (e7 (A) )p,,z (eL} )pg,z (ege' )

        ' nib,t,(O) nib,t, (O) (-' i uk' (FA,t', ts )) (O) (-iuk( FA ,j v2 )) (O) K(,.12) (t, PO )•

Hence, observing (2.10), we know that (2.18) can be expanded as in (1.12). And (2.16)

implies further

(2•19) D( -.212)(t, PO : ehz/ip,z) = -e" Åíeg' A ei A n,b•i(O) (0/0x;9)(0/Ox,b•)K(,)(t, pO)

    =: -eA ili <eb nb tR2g" {coth t42g" - i} eb>(po) K(o)(t, po).

Thus we have obtained the formula (1.13).

  Further, as for the coeficients in (1.12), Lemmata 2.2 and 2.3 say

 Lemma 2.4. For any integer mo ) O, put D((..+i)12,.i12)(t,PO : iphz/agz) E
ip;.z iph.z e-tip;eZ ( PO , PO ) - Z)# 9. .2 eM12 D(.12) (t, PO : iphz /ip,z ) . Then there estst con-

stants A > O, C > O and an integer N > O satisfptng

(2'20' iB[r(121(frii2i)2?ptia'19;/;,9)t.t";(3t6:2'(2,S.`;,l,l'ec"l) (M`MO"

          (o < vEii2 s e6i2, o < vt < oo, vpe E z).

Further, for given To > O, we have the serz'es ecpansion

(2.21) D(.!2,.) (t, PO : ahz/e,z)

                  iE<)      = (4Tt)i+2)12 {i=26,,.ti D(M12,')(i : PO : lhz/agz) + O(t'o+i)}

      (vio ) o, os vm s rno + 1, o< vei!2 s e612, o< vt s To, vpO Ez).

 As our last preparation let us investigate the pointwise trace tiÅ}(pgz(ei(A))).
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  Lemma2.5. Wehave
                                                  2n/2         trÅ}(p,z(eÅë(A))) = 2"12, trÅ}(pgz(e(i,''',"+2)(A))) = Å}
                                               (A)n12+i'(2.22)
         trÅ}(p,z(ei(A))) = O (otheT"tvise),

(2.23) st'(e, P) i 2 ei(A)(P) • e-("rlibl)/2 trÅ}(p,z(e'(,tl)))

         = e-n/2 2n12 Å} • 2n12
                             dgZ(P).
                    (vC:il)n!2+i

  Proof. The first two equaJities at (2.22) and the equality trÅ}(pgz(ei(A))) == O (III

is odd), and moreover tr+(p,z(ei(A))) = tr-(p,z(ei(A))) = (1/2) tr(p,z(ei(A))) (III is

even and III < 2n) are all obvious. Hence we have only to prove

(2,24) tr(p,z (ei (A) )) =O (O < lll = 2m <n+ 2).

Take the standard frame (ei,•••,e2') = (ei,Jei,•••,e.,Jer) of R2' where J is the

standard complex structure, and let us prove (2.24) for the standard Clifford action

p : cl(R2') - End(A'C'), i.e., p(e2e-i) = eeA-eev, p(e2e) = v`=r(eeA+eeV) and hence

p(e2t'ioe2e) = vE-il(ee A etv - eeV eeA). Assume J = ((2ii - 1, 2ii), ' ' ' , (2im - 1, 2irn))

(I i (ii < ••• < i.), O <m < r) and set (1, 2, •••,r) = llUJ with J= (1'i < ••• < ]'...).

Then we have

                    m        p(ei) == (V=ir)M n(ei, A ei,V - ei,V eitA),

                    t=1
        ff ) K = (ki < ••• < klKI), p(ei) eK A eJ = (A)M(-1)M-iKl eK A eJ,

        tr(p(e')) == (A)MZ(-1)M-IKI =o.

                       K
Thus (2.24) for such a type of I was proved. And it will obviously holds ifl is not of

such a type.

  Now let us prove Theorem 1.2.

  Proof of Theoretn 1.2. Let us set D(.12)(t,PO) = D(m12)(t,PO : Åëhz/ipgz), etc•

to simplify the descriPtion, a,nd put D(.12)(t, PO) = Åíei(A)(PO) • D(.12)(t,PO)l as in

(2.11). Then we have'I

(2.25) Tr{eZ(D(.12)(t)) =- f. t"t'Z(D(.12)(t, PO)) dg.Z(PO)

        = f. ]E) trÅ}(p,,z (e,'(A))) ' el'bl!2 (D(.12) (t, PO)), eg(A) A ,r,.ze.i(A)

        = fz D(m12) (t, PO) A *,zstÅ}(e, PO)
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where trEllZ (D(.12)(t, PO)) mean the pointwise traces of D(.12)(t, PO) regarded as an

element of $g.z,po Q S;.z,po and *g.z is the star operator associated to the metric g,Z.

Hence, setting S"2Å}(E, PO) = 21)-..e.o ee12 S'2Å}(e/2: PO) (see (2.23)), (1.!2) and the above

give the formal series expansion
                                               '                                    '(2•26) TrÅ}(a;.zdih.zed`ip;eZ) = Sl]) eM12Tr'lslZ(D(.12)(t))

                               m=-2
                 oo             =.=;(.+e2M) /2 fz ...llil,Il+.?(mi12)(t, PO) A ,tgzgÅ}(m2/2 : po)

                 oo-             E.=E(.+e,M) !2 fz D(m/2 : t, po).

Thus, observing (2.23), we find out that TrÅ}(iph.z/lg.z) can be expanded into (1.14)

(still not asymptotically but) formally. Further the first estimate at (1.17) and the

series expansion (1.18) imply that, for given no > O, if m S ne, then the function (to be

differentiated by s)

,) f, OOdt•ts f.D(m/2:t, pO)

is absolutely integrable if Re(s) > n/2 + 1 and has a meromorphic extension to C (D s)

which is analytic at s = O. Hence, to finish the proof of the assertions concerning

TrÅ}(Åëh,z/ag.z), we have only to show that so is (2.27) with D(m/2:t, PO) replaÅíed by

the remainder term D((no +1)/2,ei12 : t, PO) = tFÅ}eZ (ipg.zeh.z e'tojeZ (PO, PO)) dg,Z(PO) -,

Åí#9=-(.+2) eM12D(m/2:t, PO). To prove it let us now investigate the remainder term

fortlarge. That is, fix To >O and assumet) To. Then there exists aconstant

C == C(To) > O such that, for any t() To), we have

(2•28) ' 'IlrÅ}(0;,za,,ze-tÅë;eZ) sCe-"12e-t"o14.

                                   '
Actually (2.14) with a = a' = Åë implies

          TrÅ}(e-`eteZ ) = fz e'tip;eZ (PO, PO) A *,z S)Å}(e, PO) f{ C' e-"12 tl",

which, combined with (2.2), gives the estimate (2.28). Next let mo > O be the integer

appearing in (2.20). Then (2.28) and the first estimate at (2.20) imply

E(MO+i)/2 fzD((mo + 1)/2,ei12 : t, pO)

  TrÅ} (a;.z ah.z e-`Åë;tZ ) .-=S(l]..e,T12 f. D(rn/2 : t, PO)
S CI e-(n+2)/2 e-tAe14,
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 which, combined with the second estimate at (2.20), yields

                                    ' (2.29) e(MO'i)/2 fzD((mo + 1)/2, ei/2 : t, PO)

           :f{ C2 e-("+2)/4 e-tAOI8E(MO+1)/4 tN12 f{ c3 e(mo-n-1)/4 e-tXo19.

 Hence we may take mo >Oso large that we have

 (2•30) fzD((no+1)/2,ei/2 :t, PO) s C4 e-tAo19.

Actually, since we have

        fzD((no + 1)/2,ei12 : t, PO) = fz {.tl i+f(m'"o'i)12D(m/2 t, pO)

              +e(rno-no)12D((mo + 1)/2,El12 : t, pO)}

and (2.29) yields

        e("iod"o)12 fzD((mo + 1)/2, el12 : t, pO) s{ c3 e(rno'2no-n'3)!4 e-tAo19,

     '
we have only to take mo satisfying mo - 2no - n - 3 ) O. The estimate (2.30) with t

large and the series expansion (2.21) with m = mo + 1 (and here mo = no) now imply

the desired assertion about (2.27) for the remainder term.

  Let us show the remained assertions concerning the clifference (1.15). (1.15) is obvi-

ous. And (1.1) says '
(2.31) Re(S[[Er(Qh.z/ipg.Z))

     = i (Tr+(ah.z/lg,z) - [I]r-(bh.z/Og.z)) - ;(Tr-(lh.z/0g.z) - TY+(iph.z/eg,z))

     = - El,7 ,=, 2i(,) f,OO ts sTr(2 eii2n(de/ft)op(Setn9) p,.z (et.' ) l,.. e'tip;.z) dt

                         i
and (2.6) implies

         2ei/2n(de/lt) n(Set nyb) p,,z (e`be' )e,,z e-tpteZ .

                '         .. eo/2 S''l(e9i )itdÅíi nb)(o) et A {2 el, A (o/ax,b)K(ii2)(t, pO)

         + Åí p,z(ei(A))(a/0x()K(o12)(t, PO)

         + '2 (-g TA,, .,)(O) p,z(e7(A)) el,'i A e;,2 A K(o12) (t, PO)} + • • • .

Thus the series expansion of (2.31) has no term with eM12 (m < o).
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  Last, let us prove Corollary 1.3.

  Proof of Corollary 1.3. We have ne.) ! (g(M.)(e9• , eib•))'i12 = (E + uX)-i/2 where

E is the unit matrix (compare with (2.1)), which implies

                            d b 1(2•32) T. .=oop(u)=-iX'
Hence, referring to (2.7) with hZ replaced by g(Z.) = 7r'g(ig) + gV, we have

(2'33) 6xtipg,z = zil.l7 .=,ipg,z.,. = -ei122iXi'i(O)0/Oxib''pg.z(eg.)

      + e2!2 2{Xiai, 6J2i2 + 6hii Xj2i2 }(O) ilt6 TA,i' w',( O) ' pg.z (e?(A))pg.z (etii)p,.z (eg2,)

      +o(lxD•

Thus obviously Theorem 1.2 implies the corollary.
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  Abstract. We investigate the acliabatic expansion of the super.chiral anomaly,as-

sociated to the Bourguignon and Gauduchon sense infinitesimal deformation of Dirac

operator in the direction of a cross-section of the adjoint bundle. Further its top term

is explicitly described.

1 Introduction

  Let us assume that ar} even dimensional compact oriented Riemannian manifold

M = (M, gM) is equipped with a Sping structure introduced in [111

                              '(1•1) :'q : Psping(n)(M) = Pspin(n)(M) Xz2 Pspa) - Pso(n)(M) X Pso(3)

where Pso(.)(M) (n = dimM) is the reduced structure bundle consisting of SO(n)-

frames ofTM and Psd(3), Pspinq(.)(M) are some principal bundles with structure groups

SO(3), Spin9(n) i SPin(n) xz, Sp(1), respectively• Remark that Pspi.(n)(M), Psp(i)

aJe locally defined btmdles. Then, using the canonical aÅítion of Spinq(n) or Sp(1) on

Spinq(n)/SpinC(n) = Sp(1)/U(1) and the identification Sp(1)/U(1) = CPi through the
representation rH : Sp(1) -> GLc(H5 = aLc(C2) with rH(a + J'fi) = ( Ba -dB ), we

get a CPi-fibration

(1•2) T:Z= Psping(n) (M) Å~can CPI = Psp<1) Xcan CPI -> M.
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Let us now take an Sp(1)-connection A of Psp(i), so that the twistor space Z possesses

a canonical Spin structure ([12], [13], [14]). Namely, the connection induces a splitting

of TZ into horizontal and vertical components, TZ = 7t e V, with natural orientation

and with the metric gZ = T'gM +gV (r'gM = gZI7t) where gV is a Riemannian metric

on Y induced from the Fubini-Study one of CPi. Further we have the locally defined

spinor bundle $gM associated to Pspi.(.)(M) and a locally defined hermitian vector

bundle e = Psp(i) xr. H, which together produce the globally defined vector bundle

T' $gM XT'gl !E T'$gM X"lgv !i! $gz on Z, whose rank is certainly equal to 2diMZ. IIrhen,

the locally defined Clifford action pgM of Åël(T'M, gM) on $gM, together With the action

                                                           '                                      'pgv of Cl(V',gV) on Sgy induced from the fiberwise globally defined canonical Spin

            'structure,'  gives the globally defined actiop. pgz of Cl(T'Z, gZ) on l9gF, i•e•, pgz(7r"eb) =

T' p,M(eb)Q1 (6b-E T'M) and p,z(ef) = T"pgM(TgM)Qp,v(6f) (gf E V') where T,M is
                                                'the complex volume element of (M, gM). Thus (2,gZ) has a canonical Spin structure,

which gives the Dirac operator' ipge) :r($;zÅ})) - r($;z;)). Note that the canonical

                                         t ttsplittin' gs gY,M == 416tM e$iM, $,v = r'e = 49;v O$iv == {([v], cv) E 7rW}e($,+v, )Å} whe;e

                             tt                      '     '($g+v)Å} is the orthogonal'complement induce. the'canonical one .Sgz. = $g+z e $iz'. '

                                                '                              .t                  tt  Concisely to state, the purpose of the paper is to investigate the adiabatic behav-

ior of the super chiral anomaly associated to the Bourguignon and Gaudu-

chon sense infinitesimal deformation 6xifgz of 0gz in the direction of a cross-

                                 tt                                    'section X of the (globally defined) adjoint bundle sP(Psp(!)) = Psp(i) xAd sP(1)

                       .. .                                '       '(i•3) . s-iogdet(6xÅë,zj = Sl,7 .=,'-f'(i,) f,OO tss'n (a,z.6xÅëbgg-ta;z) dt ' ''

       '                   '  '                                                      '        with the equality S[[lir(egz 6xipgz e-taZZ) F,-STXr(6xagz ipgz e-'tip;Z)

                  '                 .t .gS,e;.e,8,e5,e;ÅíT5,(L•El,tfrg,({,h'lE.7i-,S.b'.alllS,[Fg,k'Åíi,),,ar.e,`?,e,Iig,bs.itr,::gs;,i,`ge.

obvious by describing e'tip;Z with the eigenvalues anq the gorresponding eigen-cross-

                          'sections of Q;z.) First of all it will be proper to gxplai4 here the operator 6xlgz exactly.

             tt                       t t. . ..t  . ..To do so, lep, gs take the curve a e h. = exp(aX) (r(Sp(Psp(o)) = r(PsPli) KAd Sp(1))

bence with X = (d/da)I..,oha. Each h. gives a gq.uge.S!. .qu;sggrmation of the twistor

space Z (over the identity map on M), P le> h.(P) = h.([ip,Pl) = [h.(ip),P]. We

                                                'have hence the pull-back metric h:gZ, which defines a Dirac operator iph:gz acting on

Ir("Yh:gz). In a naive sense the operator 6xgZ}gz is its differentiation by a at a = Q. But

such a differentiation is obviously impossible because the spinor bundle changes with the

parameter a. Here by applying the Bourguignon and Gauduchon's method ([4], [51) Iet
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 us make iphagz act on r($gz) so as to be possible. Consider the projection from the set

 F+(TpZ) of positively oriented fraaies on TpZ to the set I(TpZ) of inner products on

TpZ, given by e - " the inner product <•, •>e which has e as an orthonormal frame", has

astructure of (trivial) principal SO(n+2)-bundle. And the tangent space T,.l7+(TpZ) 2

gl(n + 2), (d/da)l.=o(e • B.) e (d/da)l.=oB., has a subspace 7t.(F'(TpZ)) 2 {B E

g[(n + 2) 1 B = `B} which is projected onto T<.,.>.I(TpZ) isomorphically. Clearly the

distribution e e 7t.(F+(TpZ)) gives then a connection for the bundle, whlch induces

a parallel displacement n.Z : Pso(.+2)(Z)p or' Pso(.+2)(Z,hEgZ)p along the segment

from gg to (h8gZ)p. Gathering such displacements we get the bundle isomorphism

n.Z : Pso(n+2)(Z) or' Pso(n+2)(Z, h;gZ), which induces the vector bundle isomorphism

(1.4) op.Z:TZ or- (TZ, hEgZ), v.Z([e,vl) == [n.Z(e),vl.

Now we take a locaJ gZ-SO(n + 2)-frame e= (ei,•••, e.+2) and its duaJ (ei,•••,e"+2),

denote by VhEgZ the Levi-Civita connection associated to the metric hagZ and set

(1•5) 0(hagz) =2p,z(ei)V,$.eftlh.)a :r($,z) -r($,z) with

          v.$gZ'ha= v + i 2(h;gZ)(v.ha'gZn.Z (ei,), n.Z (ei,)) p,z(ei')p,z(e`2)•

This is the desired one called the Bourguignon and Gauduchon sense deformation of egz

and

                                   d(1•6) 6xagz=T. .=oip(h:gZ)
is the infinitesimaily deformed one appearing at (1.3).

  The concept of (super) chiral anomaly was of course introduced physicaUy and in

[151 we formulated its mathematical definition according to its interpretation offered by

I.M. Singer ([16, Appendix]). Our investigation in the paper is an attempt to extract

some intrinsic values from the anomaly by such an operation as replacing gZ by g.Z =
                 -i
e'iT' gM +gV and taking the parameter e up to O, that is, adiabatically blowing up the

metric in the base space direction (refer to [3i, [17], [15]). For the latter metric we can

take caaonicaJly a Spinq structure with the sarne Pso(3) as in (1.1) and whose twistor

space is equal to the one given at (1.2), and precisely we want to investigate the series

expansion of S-log det (6xlg,z) when e - O using the general adiabatic expansion theory

concerning the kernel e-`eteZ ([14]).
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2 The Main Theorems

   First we want to state

  Theorem 2.1. In the definition (1.3?, the .function to be differentiated by s, that is,
r(l s)foootSsTr(agz6xagz e-tO;Z) dt, is absolutely integrable (i.e. r(1,) foOO tss'll (egz

6xegz e-tip;Z) dt < oo? if Re(s) > (n + 2)/2 and has a meromorphic extension to C'

which is analytic at s = O. V;lhen ei!2 - O we have then a Taylor eopansion

                               co(2•1) S-log det (6xip,.z)= 2I) eM12 S-logdet (m/2 : 6xa,z).

                              m=O

  Subsequently to some preparations we will describe the top term S-logdet(O/2 :

6xipgz) explicitiy.

  We fix a point pO of M arbitrarily and take a local trivialization of Psp(i) over a.n open

neighborhood Ub of pO by using a local cross-section di with Vgle.bdi = O where rb is the

distance function from pO, which gives a local trivialization 7r'i(Ub) = UbÅ~ Zpo of Z with

Zpo !ii T-i(pO). Let us take a local coordinate neighborhood (U = Ub Å~ Uf,x = (xb,xf))

at PO E Zpo as fol!ows: (Ub,xb) is a gM-normal coordinate neighborhood at pO on

M with (O/Oxb)(pO) = (0/0xb,,•••,6/0xX)(pO) E Pso(.)(M),o and (Uf,xf) is a gV-

normal coordinate one at PO on Zpo with (O/0xf)(PO) E Pso(2)(Zpo)po. Further let

ef = (ef, e2f) be a local gV-SO(2)-frame of VIZpo which is gV-parallel along the geodesics

from PO and is equal to (0/0xf) at PO, and, for each generator i, i k ofthe Lie algebra

sp(1), let u(i)U = 2) uk(i) e( etc. be the uniquely determined cross-sections of VIZpo

defined as follows: For any connection B = i X B(i) + j' X B(J') + k x B(k) of Psp(i)

and for any v E TpoM, the B-horizontal lift of v to a point P E Zpo near PO can be

given by v(B)(P) == v - 2{B(i)(v) u(i)U(P) + Bti)(v) u(J')h(P) + B(k)(v) u(k)li(P)} E

v - 2y(B(v))b ii v - 2Åí uk(B(v)) e( E ILtB. Using these, for general sp(Psp(i))-valued

differential form F = ixF(i) +j' xF(1') +kxF(k) we put uk(F(pO)) = vk(i)F(i)(pO)+

uk (j')Fti)(pO) + yk(k)F(k)(pO). in particular, we often use uk(.l7A), uk(dAX), v(FA)U =

Åíe( x uk(.l7A), etc., where FA is the curvature 2-form of A and dAX is the covariant

exterior derivative of X by A.

  Now let us set Z(pO) = M@O) Å~ ZN with M(pO) = (R", xb) () (U6,xb), canonically)

and consider the bundle AT'MivO) on M@O) and the standard spinor bundle $gv,po =

$gvlZpo on (Zpo,gZpO = gViZpo). We .denote by AT'M(pO) Q. $gv the tensor product
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 of their pull-baÅíks to Z(pO), consider the bundle

 (2.2) (AT'M(pO) <Eb. $,v)X(AT'M(pO) X. $;v)

 over z(pO) Å~ Z(pO) () (P, P') = ((xb,Pf),(x'b,P'f))) and take its cross-section

 (2•3) E(t,pO, P, P') = EM(t,pO,xb, x'b) exp(-tv4;o)(P, P')

as fonows: Let Rg•,\,,,• (pO) = gM(F(vg")(0/ax?,a/0x,b•)0/ax,b•,,a/ox9,)(pe) be the cur.

vature coethcients of Vg" at pO, and let us denote by Rg" (pO) = RgM(pO)(xb) the

skew-symmetric matrix whose (i,1')-entries are equal to Rg,i". (pO) = Rg.j (pO)(xb) =

iZR,g,\,.(pO)dx,b,(xb) A dx,b.-(xb) and set <xb Rg"(pO) x'b> = Åíx9.t;bR,g.,i cpO), etc.,

and now put

(2.4) KM(t,pO,xb,x'b) == (4.ti ).i,detii
?(,i.titgR"iP.e(p//,2)/2))

       . exp(-21it <xb-x,b tR9;(pO) coth tRgg(pO) xb-xcb>;i<xb RgM(po) x,b>)

     =-= 2(dxb)i(xb)•KM(t,pO,xb,x'b)b ' •
(2.5) EM(t,pO,xb,x'b)=2(dxb)i(xb)A(dxb)J(xb)x(deb)J(x'b)•KM(t,pO,xb,x'b)i

     E ]Z)(dxb)i(xb) x (dxb)i'(x'b) • EM(t,pO, xb, x'b)",

where the multi-index I is lined up in increasing order, i.e., l = (ii < i2 < ••• < im)

and (dxb)i denotes dx,b-, A•••Adx,bi,i. Next let ef = (e},e;) be the dual of ef and let us

take the Dirac operator ipgv = pgv(e7)V.$f,gV acting on r($gv,po) and consider an elliptic

(2•6) A;o = 1 {Eb Q;y -2 uk(FA (pO)) A '1 X V.`$f,gV - i2 yk(FA (pO))2A

                                              '
acting on the cross-sgctions of ATp'oM(pO) X $gv, which generates a (CO) semi-group

with COO-kernel Åí(dfb)i(pO) • exp(-tv4;o)(Pf, P'f)i. Then we set

               '(2.7) exp(-tv4;o)(P, P') =2(dxb)i(P) (dÅëb)'(P)x(dxb)'(P')•exp(-tA;,)(pf, p'f)i

    = 2(dxb)i(P) x (dxb) "( P') • exp(--t.4;o)(Pf, P'f)llt.

(Strictly speaking we should distinguish (clxb)i(xb) and (dvb)i(P) = (T'(clxb)i)(p) but,

to simplify the description, we wi11 use them without distinction.)
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  For two elements Ei(P, Q) = Z)(dxb)l(P) X (dxb)J(Q) • Ei(P, Q)iJ, E2@, P') =

Åí(dxb)J(Q) Q (dxb)f'(P') • E2(Q, P')Ji, of (2.2), let us set

(2.8) <Ei(P, Q),E2(Q, P')>g<pO)(Q)

          E 2(dxb)'(P) X (dxb)"( P') ' <Ei(P, (?)iJ, E2((?, P')Ji'>$,v,.'

                            '                                     'which is an element of (2.2) at (P, P')• Here <Ei(P, Q)v,E2(Q,P')u'>$,.,Q iS the

pairing of the $ev,Q-component of Ei(P, (?)iJ and the $gv,Q-component of E2((?, P')ut

and g(PO) is the metric given by

(2.9) g(PO)(Q) = 2 dx,b(yb) x dx,b(yb) + Z e;(Qf) x ef(c?f) =- glpo)(yb) + gV(c?f).

Then the second assertion is as follows.

  Theorem2.2. Weset
(2.10) s-logdet(6xO,z)(t, PO) = f,tdTf.lp,gg6PO)((?) <chi(6xa,z)E(t-r,pO, PO, C?),

      ,hi(a;.){<.b RgM4(PO)(1+,.th TRg;(PO)) d.b>((?)E(T, pe, (?, pO)}>g(,,>(Q)

     = 2(dxb)i(pO) x (dxb)"(PO) x (d:f)J(PO) • s-log det (6x a,z)(t, PO)(u,),J

        E "(2.2? at (PO,PO)" = (A Il;,M(pO) X AT,',M(pO)) XATP.Z,o XC,

where the operators chi(6xagz), etc. (acting at P = (xb, Pf)7 are given as foltows:

(2.11) chi(6xip,z) = 2 uk((dAX)(pO)) A (e,f + Svk(FA(pO))A),

                       M(2.12) chi(a;.) = -g 2 x,b., x,b•, ORag//'iq;`i'i (pO) dx,b•,A dr,b•,A { Sl.llJb + t 2 x,bR,g,"(pO)A}

            - Åí x,b• uk( 0oF.?t (pO)) A {1 x V,$,, gV + iyk(-FA (pO))A}•

The value (2.10? does not depend on the choice of the coordinates x at PO, the double

integral is absolutely integ7zzble and we have the formula

                         '(2•13) S-logdet (o/2 : 6xe,.) .. (k)("'2)12

         Å~ El,7 ..., r(1,) f,OOdttSfzdgZ(PO) s-log det (6xa,z)(t, PO)((i,...,.),Åë),(i,2).

Here the above .function to be differentiated by s is atso absolutely integrable if Re(s) >

(n+ 2)/2 and h(us a meromorphic extension to C() s) which is analytic at s = O.
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3 The generaJ adiabatic expansion of e'tajZ

   We put g = glpO), <•,•> = <•,•>g (see (2.8)), l•1 = l•lg (the pointwise norm),

r(P, P') = rg(P, P') (the distance between P and P' with respect to the metric g) and

r(P) = r(P, PO) to simplify the description. Let us start our argument with reviewing

the general adiabatic expansion theory ([14]) concerning the semi-group with COO-kernel

e-te;z. .
  Let us consider a connection VgV = PVoVgZ of V where PV : TZ = 'H oV-V

is the projection. This together with the Levi-Civita one V9" gives a new connection

vgZ$ =. T'vg" eVgV of TZ = 7iCeV, which is compatible with gZ and whose torsion is

equal to 2u(FA)b ([14, Lemma 3.1]). Note that the coordinates x are the VgZdi-normal

ones. Let us take then a Iocal gZ-SO(n + 2)-frame e.(A) = (eb(A),ef) which is vgZe.

parallel along the VgZdi-geodesics from PO and is equal to (0/Ox) = ((a/Oxb), (a/0xf))

at PO and let us denote its dual by e'(A) = (eb,ef(A)). Take a local gM-SO(n)-frame

eb which is Vg"-paral!el along the Vg"-geodesics from pO and is equal to (O/axb) at pO,

hence with
    '

(3.1) e,b(xb) =2(O/ax,b).b •v,b,(xb), v,bi(xb) == 6,i+o(lxbl2),

then its A-horizontal lift clea.rly coincides with eb(A), that is, we have e,b•(A) = e,b. -

2Åíuk(A(e,b)) e( = e?• - 2u(A(e9•))U. We set v(FA) = Åíef(A) A uk(FA) and denote by

V$gZ$ the spinor connection associated to VgZ ee. Then we have

                                                 '(3.2) V/i.g(ZA) = V/i.g(ZA)$ + S p,z(v(egv.F'A)) , V.41f,gZ = V.t$f,gZ$ + i p,z(uk(FA)),

(3.3) a,z = 2 p,z(eg) Vi(Z.)e + Zp,z(e;(A)) V.$f,gZ$ '-" i p,z(u(a}7A))

                                        '
where v denotes the interior product, hence, we have etiVFA = Åí FA(e,b•, e2b•) • e9b.

  Now Iet us take the g.Z-SO(n + 2)-frames e:(A) = (ebe(A),ef) = (e'12eb(A),ef),

e:(A) = (eb.,ef(A)) = (e-i12eb,ef(A)) and consider the inclusion

(3•4) r(t$g,z lT'i(Ub) X iSY;,z llT'i(Ub)) C r((AT'Ub XT $,v) X (AT'Ub xrt $;v)).

That is, denoting by s(ee.(A)) the local frame of $g.z associated to ei(A), we have

s(e:(A))(P)Xs(ei(A))'(P')•ip e s(e:(A))(pO, Pf)Xs(e:(A))'(pO, P'f)•ip = s(ebe(A))(pO)

xs(ebe (A))' (pO)•s(ef)(Pf)Xs(ef)'(P'f) 'ip E Coo (7r-'(Ub) XT-'(Ub), (g3g.M ,poX$g".M ,po)XT

($,v,,oX$,'v,,o)) ) p,,M(eb'.)'s(ef)(Pf)Xs(ef)*(P'f)•ip e eh(pO)•s(ef)(Pf)Xs(ef)'(P'f)•
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ip = (dxb)'(O) • .s(ef)(Pf) X s(ef)'(P'f) • e-l'l/2 ip e (dxb)'(xb) • s(ef)(Pf) X s(ef)'(p'f) •

e-l'I12ip (E COO (Ub, r((AT' Ub x. ;Y,v) X $;v,,o))) e Åí(dxb)i(xb) A (dxb)'(xb) x (dxb)J

(x'b) • s(ef)(pf) X s(ef)'(P'f) •e-Iil12ip. Regarding e-tip;eZ as an element of the right

hand side of (3.4), i.e., e-`ajeZ(P, P') =- Åí(dxb)i(xb) Q (dxb)J'(x'b) • (e-tip;.Z(p, pt)) ll,

(compare with (2.5)), we set

(3.s) o.ao.a,'e'tl;tZ(p, p') =- 2(dxb)i(xb) x (dxb)i'(x'b) • o.ao.aJ (ed'`0;.Z(p, p')) .,

    =' 2((dxb)'x s(ef)k)(p) x ((dxb)i' x s(ef)z. )(p') • o.a o.a,' (e-`eg2.z(p, pt)) lk/,k')

(3.6) with o.aa.a/e-tajez(p,p') =-=(lz) o.ao.a,'(e-tptez(p,p'))., ],.)i!2

         E (2 o.aa.a,' (e-tl;,z(p, pt))lk,;k') 2)i/2

where we put o.a -= (o/ox)a(x) = (o/oxb)ab(x) (o/oxf)a'(x) = (o/ax9)at ...(o/axg)aX

(0/0x{)a{(0/0x2f)a2f, etc. Then we have ''

  Proposition 3.1 (ju4, Theorem 1.21?. For any integer mo ) O, there etist Coo-

cross-sections E(M12)(t,PO, P, P') (m = o,1,•••,mo? and E((mo+!)12,eif2)(t, pO,p, p')

belonging to the right hand side of (3.4?, which are also COO with respect to the variable

PO (and ei12?, and sattsf3ti'ng the followz'ng condition: For any a and a', when ei/2 --> O,

(3.5? with (P, P') = (PO,PO) has the series eopansion

(3.7) o.aa.a,'e'tip;.z(po,po) ,. ]llll) e-aabl+sa'bl)12+mi2 o.ao.a,'E(m12)(t, po)

                       m=O
         + E-(labl+la'bD12+(mo+1)12 o.a o.a,' E((rno+!)12,ci/2) (t, pO)

where we put labl == 2 a?• etc. and 0.aO.g,'E(M!2)(t,PO) etc. mean 0.aO.a,'E(m12)(t,pO,p,

P')ip..pt.o etc. .l7TurtheT, there etist con.stants A > O, C > O and an integer N > O

satisLiving

               ttt         o.aa.a,'E(m12)(t, pO) f{ ce'tA t(i'60m)12 (t(.t2tt.ll.J.,I)12 + 1) ,

(3'8) o.ao.a,'E((mo+i)12,er!2)(t, pO) s Cti12(t(.+6+la!l+la'D12 + tN)

          (os vm g mo, o< vei/2 s e6/2, o< vt < oo, vpO E z).

  Next let us examine the terms E(M12)(t, PO, P, P') closely. We take a metric gMlpO) on

M(pO) (D Ub) so that its restriction te Ub is equal to gM, outside some open set 0b O
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0b) it is trivial, and, moreover, the coordinates xb are the gM(PO)-normal ones all over

M(pO). Also we wi11 take a connection A of 11Ltf(pO) Å~ Sp(1) O Ub Å~ Sp(1) = Ps,o)iUb)

which coincides with the given one on Ub and vanishes outside 0b. Consequently we

have the trivial Spinq structure and the trivial CPi-fibration

        :'q(pO) : Ps,inq(.)(M(pe)) = Ps,i.(.)(M(pO)) xz, Ps,(i)(M@O))

(3•9) . Pso(.) (MlpO), gMlpO)) x Pso(3) (M(pO)),

        T@O) : ZipO) = Psping(n)(M(PO)) Xcan CP! = M(pO) Å~ Zpo - M(pO)

which coincide with (1.1), (1.2) on Ub. Take then another metric gZ(PO) = T(pO)'gMlpO)+

gV on Z(pO) (compare with (2.9)) and let us use the same symbols as for Z, i.e., denote

by e.(A) = (eb(A), ef), etc. " a local gZlpO)-SO(n + 2)-frame over M(pO) Å~ Uf which is'

vgZ(PO)e.parallel along the VgZ(Pe)$-geodesics from PO and is equal to (O/0x) at PO,"

etc. We consider further the transformation of Z(pO)

(3.10)

and set

(3.11)

tE : Z(pO) or' Z(pO), P = (xb,Pf) " L.(P) = (ei!2xb,Pf)

which is a local SO(n+2)-frame with respect to the metric b;ge

Z) eL(E) x eg(

differential operator acting on the cross-sections of AT'M(p ) opT $

(3.12) (o(e))2

    e.(e, L;A) = L;e:(A) = (ei(e, L:A),• • •) = (eb(e, t;A), ef),

    hence, with e,b•(e,e:A)(P) = (e:e,be• (A))(P)

    - 2(O/Ox,b• )p • v,b•i(e.(P)) - Ei12 2 2 uk(A(e9• ))(e. (P)) e((p),

                                     Z(PO) = 7r:;At:g.M(Pe)+gV =-

   e) + e;(e,L:A) X e;(e,L:A). We have now the (globally defined) elliptic

                                     o                                          gV
     = - 2( vg,f(),,,; A) VEfi()e,`; J`t) - Vel);.f. tZ.if,O.' , e,(e,t: A) )

   +i{eK,M(,o)+2'E22uk(FA(e,b,e,b•))2}(L,(•)) with

p(e)(eg) = dx,b• A -Edx9•v, p(e)(e7(A)) = p,z(.o)(e;(A)),

V.( l ?,,,:.) = e9' (E, b.' A) + E- i12 2 C(vg"(PO))(e,b• )i,i, (L.(.)) p(e)(egi )p(e)(,:2)

+ei12 (e{ + C(vgV)(e{)i2) u2(A(e,b))(t.(•)) p(e)(e}(A) A e3(A))

+ei212 p(e)(.(,gv.Fi.))(L.(.)) (vgi (PO)e,b., = 2) c(vg"(PO))(e9•)i,i,eg•,, etc.),

V.(,,e) = e( - i C(VgV)(e()i2 p(e)(e}(A) A e;(A)) + S p(e)(uk(.l7A))(L,(.))
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where KgM(.o) is the sca!a.r curvature of gM(PO) and we put p(e)(v(egvFA))(t,(•)) =

Åíuk(FA(e,b, e,b•))(L,(•))p(e)(e;(A) A e'b), etc. Note that this is the pull-back of the

square of the Dirac operator a,:g.z(,o) by the bundle isomorphism AT'M(pO) @.Sgv 1-!)t

AT'M(pO) x. $,v, (dxb)i(x)Qh(x) e (ei12eb(e))i(x)op h(x) (see (3.2), (3.3) and [14,

                               00(2.26)]). Hence, if we write (3.12) as -Z) at.. aij(e,x) sE.E;. +Åíai(e,X)sll.};. + C(e,X)

(qJ• = aJ•i) and fix the parameter e > O, then the finite-times derivatives of the coef-

ficients ai)•(E,x), ai(6,x), c(e,x) are all bounded on Z(pO). The Yosida's theorem ([18,

Chapter IX]) says now that the parabolic equation with the initial condition

(3•13) (i8It + (l(e))2)ip = o, iplt=o = tho E L2r(AT'M(pO) x.$,v, g)

has a (CO) semi-group with Coo-kernel E(e)(t,pO, P, P'), which is a cress-section of (2.2).

  Proposition 3.2 (!i4, Theorem i.3, Corollary 2.3 and the proof of Proposition 22

for E(t,e) with t smalll?. W7ten ei12 - O, the kernel has a Taylor evpansion

                            oo(3.14) E(e)(t, pO, p, p') = Z em12 E(m!2:)(t, pO, p, pt)

                           m=O
(3.15) with E(O12:)(t,pO,p, p')=E(t,pO,p, pt)

and, as for E(M12) in Proposition 3.1, we may take

(3.16) E(m12) (t, pO, p, p') = E(m12:) (t,pO, p, pt) det vb(p')

where we set det vb(P') = det vb(x'b) = det(gM(a/Ox,b• , a/ax2b)(x'b))-'12 = 1 + o(lx'bl2)

(see (3.1??. For given integer mo ) O, E(M12:)(t,pO,P, P') (O S m S mo? and the

remainder term E((MO+1)!2;e'/2)(t,pO, P, P') == e-(Mo+1)12{E(e)(t,pO, p, p') - Z):o=eem12

E(m12:)(t,pO, P, P')} have the aspmptotic erpansions, when t - O,

(3.i7) E(m/2:')(t,po,p, pt) = f4'.Ti;i.P.'),2)!it llll(IIII,i)iillE(mi2:')(i : po,p, pt) utth

     E(m12 )(, po, p, pt) s c., (1 +r(p) )m(1+r(pt))n+m ( ;( pl p>-, )O,i,l , < o,

     o.a o.a,' E<m/2:') (t, pO, p, p')

    S C.o (1+r(P))M(1+r(P'))"+Mt-'("+2+lal+la'1)12+(1-6cltn)12 e-r(p,p')21st

      (o s vm s mo + 1, o < vei!2 s e612 , o < vt s To , vp,vp' E z(pO))

where we set E(M12'') =- E(M!2') (m s mo? and E((me+i)12:') E E((mo+i)12:ei12).

                            10



  Here let us investigate E(i12:)(t,pO, P, P') closely.

  Lemma 3.3. (3.i2? has the Taylor eopansion

                     '(3.18) (a(e))2= ]Z) em12 (Q2)(m12:)
                    • m>O
with

(3.ig) (a2)(Oi2) =-2{5I.lgb +i2x,bR,g,"(pO)A}2'+ .`t;,,

                              'M(3.2o) (a2)(i12:) = 2{g2.,b,,.,b., 0Ragii2tiiij'i (pO) dx,b•,A dx,b•,A

                              12
           -p(O)(u(egvFA))(to(•))}{5I.lgij +i2x,b•R,g,"• (pO)A}

                '           -2xjb' uk(0aF.?/ (pO)) A {1X V.fgV + iuk(FA (pO))A}'

                 '
  proof. Set Rig,M = Rjg,"(pO), etc. and refer to (3.12). We have

(3.2i) vie().,,;.) = 2 emi2vE.Mi2:), v5.Mi2:)E vgTI,ii2:) (i s n), vam.i,2:) =- vS??,i2:) with

           m)O
    vÅí9,12:) = 6I.l?b +i2x9• R,g•,"• A, vS9,12:) = 1xV.i$,,gV +Suk(.l'A)A,

                                '                     M    vg}/2:) = -ilti ]Z) x,b•,x,b•, ORa`9.'t,'Lii'i dve•,A dx,b•,A +ll p(O)(u(etvf7A))(Lo(•))

                     )2    = - -ilti 2 x,b•, x,b•,6Rag////.lij'2 dx,b•, A.dx//, A +ll p(O) (u(eLvFA))(te o), '

    V9k!2')-i2x,b•vk(OaF.?/)A '

and

     V.`b:'. (g,i(;PAO )) e,b• (E ,,L.' A) = 2 C(V`; g`"(PO )) (e,b (e, L:A) ),•ie,b (e, t: A)

     = Åí,i12c( V-g"(PO))(e9),,(t, (•)) e,b (e, L: A),

     v.`fig`Z(PO)e( = t, ,g(Ve[ = 2C(VgV)(e()k,k egki,,

(3'22) Veei.F.?z,Ep,;ol,).e.(,,,;A)=2eii2C(Vg"(PO))(ee•)j'i(t.(•))vÅí:l.,,:A)=o(e2i2),

(3•23) veei,3.,,oa=2c(vgV)(e()k,kviS,l

        ek
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and

(3•24) i{erc,M(.o) +2 - e2 2 uk(FA (e,b, e,b))2}(L,(•)) = -5 + o(e2/2).

Hence, certainly we have the Tay!or expansion (3.18) and the formula (3.19). (3.21)

implies

                    '     (a2)(y2:) = - 2)(v,('!2:)v5P!2:) + viOi2')viii2:)) + Zc(vgV)(e,f)k,kv;lk2')

     = -22v[,i!2:)v[.Oi2:) - g 2x,b e(uk(aaF.,i ) A +2 c(vg")(e(,)kktv9<2:)

     = -2 Z v5, i12:)v[.o12:),

which yields (3.20).

  Let us consider then the Fr6chet space consisting of rapidly decreasing cross-sections

(3•25) S E {th E r(AT"MX.$,v) l.(lj)m..!s(1+r(P))eOacb(P)l = O (Ve,Va)}

        withsemi-normspt,k(ab)E sup l(1+r(P))taC'th(P)l
                         PEZ(pO),lals{2k
and the parabolic equation with the mitial condition

                               '(3.26) (8t +(l2)(Oi2')) zb =o, zblt=o =tho E {s.

  Proposition 3.4 (!14, Lernmata 5.2, 5.31?.

  (1? . Set pS91(th) !ii! sup l(1+r(P))e((a2)(O12:))k'th(P)l. Then the two kt'nds of

               PEZ(pO),)VfElk
families of semi-norms {pE02} and {pt,k} are equivalent to each other.

                  '
  (2? {E(t,pO)}o<t<.. defines an equicontinuous (CO) serni-group with COO-kernel

associated to the parabolic eguation (3.26?. Hence, in pa7'ticular, we have

(3•27) (illt7 +(ip2)(Oi2:))E(t, pe,p, p,) ., o,

and, for any To > O and any semi-norm pe,k, there etisbs a constant C > O and a

semi-norm pt,,kt satisjuing

(3.28) pe,k(E(t, pO)ip - th) SCti12pet,kt (V) (O < Vt S To, Vth E S).

      '          '                  '
  Now we have

 Proposition3.5. Wehave

(3.29) E(i12:)(t, pO, p, pt)

         = - f, tdrf.lp,gg@) <E(t-r,pO, P, l?), (l2)(i12:)E(T, pO, Q, p')>.

Here the double integral on the right hand side is absolutely integrable.
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   Remark. Simi!arly to the following proof, we can show that generally we have

      E(rn12:)(t, pO, p, pt)

      = - f, `d7f.lpgg((2) <E(t-r, pO, P, (?k,,M.Ii:;1 l=(.ip2)(mi/2:)E(m212:)(., po, (?, pi)>.

But the double integral on the right hand side rnay not be absolutely integrable.

  Proof. We abbreviate E(t,pO, P, P') to E(t, P, P'). The right hand side denoted

8(t, P, P') is absolutely integrable and there exists a constant C > O satisfying

(3.30) IS(t,P, P')l s f,`dTf.(,,gg((?) <E(t-T, p, (?),(a2)(i12:)E(T, (?,?i)>

        f{ ct-(n+2)12+i12e'r(P,P')217t (o < vt -< To, VP,VP' E Z(pO)).

'Actually, observing (3.17) and (3.20), we have

(3.31)

and

(3.32)

f.(,,gg@)         <E(t - T, P, (?), (l2)(i12:)E(., (?, pt)>

                      '                'g f.(,,gg((?). E(t - T, P, C?) • (a2)(i12:)E(., (?, pt)

S Ci (1 + r(P')N)(t - r)"(n+2)12.-(n+2)12-i12

          ' fz(p,gg({?) (1 + r((?)N)e-'(P,Q)215(t-r),-r(Q,p')21s.

S C2 (1 + r(P')2N)(t - r)-(n+2)12.'(n+2)12-i12

          ' fzlp,gg((?) (1 + r((?, P)IV)e-'(P•q)215(t-r),-r(Q,pi)2!s.

S C3 (1 + r(P')21V)(t - r)-(n+2)!2.-(n+2)12-i12

          ' fz(p,gg((?) (1 + TN12)e-'(P,Q)215(t-r)e-r(Q,p')216.

S C4 (1 + r(P')2N)(t - T)-(n+2)12T-(n+2)!2-i12

          ' fz(p,gg(Q) e-r(P,(?)216(t-T)-r((?,p')216.

fe`a27(t-T)-(n+2)12T-(n+2)12'i/2fz(p,gg(c?)e-r(P,Q)216(t-T)-r(9,P')216T

lf{{ c! t-(n+2)!2e-r(P,P')217t
fotl&T i--(n+3)12

             ' fz(p,4)g((?) e-'(P,C?)2!7(t-T)-T((?,pt)217.

f{ ci t-(n+2)12e-r(P,P')217tfot13Tr-(n+3)12fz(p,gg((?)e-r(Q,p')217r

S C2 t-(n+2)12+i12e-r(p,p')217t,
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(3.33) f,/t2dT(t-r)'("+2)127-("+2)12'i!2fz(p,gg((?)e-r(P,Q)2/6(t-r)-r(q,p')2/6r

        = f, `12dr T-("'2)12.(jt{/ (.7,'dlg'i",?')211-2.-(i.1,2Q),1,.-r(c?,p')216(t-')

        s{ ci t'<n+2)12'-i12e-r(P,R')217t fot12d. r-(n+2)12fz(p,?g((?) e-r(P,Q)217r

        S C2 t-(n+2)12+i12e-r(p,pt)217t.

It will now suffice for the proof of the proposition to show that, for any g E `S, we have

(3.34) f.lp,gg(P) <E(i12:)(t, P, P),g(F")> = f.lp,gg(I') <8(t, P, P),p(P)>.

(Remamk that the both hand sides are absolutely integrable because of (3.30) and (3.17)

with m = 1, a = a' == e.) To show it, we want to prove the following assertion: The
le' ft hand side (E(r12:)(t)p)(P) and the right hand side (E(t)p)(P) are both of class COO

with respect to P, (at least) of class Ci with re$pect to t and satisfy

           (zjlt + (ip2)(O12 ))(E(i12:)(t)p)(P) + (ip2)(i12:)(E(t)q)(p) = o,

(3.35)
           (illt7 + (a2)(Oi2))(s(t)g)(p) + (a2)(ii2:)(E(t)g)(p) .. o,

and, for any To > O and any semi-norm pe,k (at (3.25)), there exists a constant C > O

and a semi-norm pet,k, satisfying

(3.36) pe,k(E(i12:)(t)g) StCpe,,kt(g), pe,k(8(t)g) -< tCpet,k,(q)

                          (O < Vt Sl To, Vp E ,S).

Assume that this holds and take g E S. Then ab = (E(i!2:)(t) -S(t))p E S is a solution

of (3.26) with tho = O. Hence we have th = O because of Proposition 3.4(2). That is,

we obtain the formula (3.34). Accordingly let us prove the above assertion. First, as

for the assertion for (S(t)p)(P): Since <E(t-T, P, Q),<(02)('12:)E(z (?, P'),g(P')>> is

integrable on (O,t] Å~ Z(pO) Å~ Z(pO) (D (T, (?, P')) (see (3.30), etc.), one may reverse the

order of the integrals of (8(t)v)(P). Hence we may put

      l(T, (?) E ((ip2)(i12:)E(T)p)((?) = f.(,,gg(p') <(a2)(i12:)E(T, Q, p'),g(F")>,

      gb(t, r, P) =- (lt(t-r)sb(r))(P), (8(t)so)(P) == - f,`d7' q5(t, T, P).
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Ciearly ip(T) and ip(t,T) belong to {S and (3.20), (3.28) imply

(3.37) pe,k(ip(t,T)) E{ Ci pe,,k,(cP(T)) S C2 Pe2,k2(E(T)(P) E{ C3 Pe3,k3({F7)•

Hence we obtain the second inequality in (3.36). Further (3.37) implies

(3.38) (a2)(O/2 )(s(t)g)(p) = - f,` dr (a2)(O/2:)ip(t, r, p),

(3.3g) 1(0/0t)(P(t,7, P)l = (02)(O/2:)q5(t,7, P) S{ C4pe,,k,((p) (O < VT < t)•

Set ip(t,t,P) == {P(t,P). Then the function ip(t,T, P) of7 is continuous on [6, t] (6 > O)

and has the estimate (3.39). Hence we have

(3.4o) (o/at)(E(t)go)(p) = (a/at){- f, kr ip(t, T, p) - f, 6dT ip(t, T, p)}

         - {-Åë(t, t, P) - f, ZT (a/0t)ip(t, r, p) } - f, 6dT (o/at)ip(t, T, p)

         = -qs(t, t, p) - f, hT (o/at)ip(t, T, p),

which shows that (8(t)g)(P) is of class Ci with respect to t and, combined with (3.27)

and (3.38), implies the second equality in (3.35). Second, as for the assertion for

(E(i12:)(t)p)(P): The first equality in (3.35) will be obvious. Let us show the first

inequality in (3.36) in the following. By observing (3.17), the inequality with e = k = O

holds obviously. As for the inequality with k = O, we have

          (1+r(p))e(E(i12:)(t)q)(p) s (E(i12:)(t)(1+r(•))tg)(P)

          + (1 + r(p))t(E(i12:)(t)g)(P) - (E('12:)(t)(1 + r(•))eg)(P)

and the second term on the right hand side can be estimated as

    f dg(P') <((1+r(P))e - (1+r(P'))t)E(i12:) (t, P, P'), ip(P')>

      tl >O   S Ci.E,,=/dg(P') (r(P)-r(P'))e;(1+T(p'))e2E(i12:)(t,p, pt) Ig(pt)l

                                     '   s C2 2fdg(p') r(p, p')ei(1+r(p'))e2E(i12:)(t, p, p') lg(p')I

   f{ C3 2f dg(P)'r(P, P')ti(!+T(p))(1+r(p'))e2+n+i

                     .t-(n+2)!2+i12,-r(P•P')2!5tlg(P')l (by (3.17))

       tt>o   S 9,4+ll,ll]=t.,fdg(P') r(P, P')ti(i+r(p'))e2+n+i t-(n+2)i2+ii2,-r(p,p')2/st lg(pt)l

   g t Cs PN,Åë(9)•
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Thus the inequality with k = O hoids. Last, consider the series expansion of (l(e))2E(e) =

 E(e)(ip(e'))2 with respect to ei/2. We have

        (o2)(O/2:)E(t) .. E(t)(ip2)(O/2:),

        (o2)(O12:)E(i12:)(t) = E(i12:)(t)(l2)(O12:) + E(t)(a2)(i12:) - (ip2)(i12:)E(t)

        = E(i/2:)(t)(o2)(O!2:) - [(a2)(i/2:),E(t) - 1]

and inductively we have

(3.4i) ((a2)(O12:))kE(i/2:)(t) . E(i!2:) (t)((a2)(O!2;))k + po (E(t) - i) Qo

where Po and Qo are some polynomials consisting of (a2)(M/2:) (m = o,1). Hence

Proposition 3.4 (1), (3.36) with k = O and (3.28) imply the general inequality.

4 The local expression of the operator adia(ag'.z6xOg,z)

  If we denote by {pj} and {gi-} the spectrum consisting of eigenvalues and the corre-

sponding orthonormal eigen-cross-sections of aj.z aÅíting on r($gf.)), we have

(4.1) STr (a,.z 6x ip,.z e-ta;eZ ) = 2 e't"' STr(ip,.z 6x e,,z gi' (P) X pi'(P'))

       = - 2 e-t"' STr (6x ip,,z gj (P) X ip,.z gj (P')) E -STr (a;.z 6x l,.z e-teteZ )

where, as an operator acting on the }eft hand side of (3.4), ip;.z is given as

(4•2) ip;.z = 2 p;,z (et (A)) ' ef• (A) (P')

       + i 2 pe.z (ei2 (A))p;.z (eii (A))p;.z (et (A)) • C(Vg`Z )(ef• (A))i,i, (P') with

       p;.z (e}(A)) (s(e:)(P) X s(e:)'(P')) s s(e:)(P) X s(e:)'(P') (-p,.z (e}(A))).

We will investigate (4.1) by examining STr(a;,z6xlg.z e-tO;eZ) in the following because

the latter has the merit that for each parameter only a first order differential at the most

appears. Since we want to expand it into a series (see (5.1) and (5.2)) by using the series

expansion (3.7), in the section we will explicitly write down the operator adia(ip;.z 6xeg,z )

which is defined as follows: Express the operator a;.z 6xipg,z acting on the right hand side

of (3.4) by using the coordinates x on U at PO, replace the differentials 0/0x,b, O/ax(

at P by E-i120/ax,b, 0/axl (at P) and replace the differentials a/0x?•, a/0x( at P' by

E-i12o/oxC,b, a/Ox',f (at P').

  Let our argument sta,rt with studying the operator 6xagz acting on r($gz) (compare

with (3.3)).
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  Lemma 4.1. YVe denote by nya = (na,ii•) the matrit eepression of (1.4? with respect

to the bZ-SO(n + 2)-frame e.(A), i.e., n.Z(e.(A)) = e.(A) • n.. Then we have n. =
((hEgZ)(ei(A),e,•(A)))-i12 and, if we set D = (Oii') = zil.7 .=ona, then zve have

(4•3) "td = "n+k,n+y = O, "n+kJ' = bj,n+k -- -uk(V.A ,bX) (1 S i, j' -< n)

where VA = d + [A, •] ts the covariant derivative for the bundle sp(Psp(!)).

  Proof. Let us consider a segrnent t H g.Z,p(t) = (1 --- t)gg + t(hEgZ)p in I(TpZ)

and a curve t e n.Z(t)(e.(A)) = e.(A) • (g.Z,p(t)(ei(A), e,•(i`l)))-i12 in F'(TpZ). Then

n.Z(t)(e.(A)) is a g.Z,p(t)-SO(n + 2)-frame and, moreover, 0n.Z(t)(e.(A))/0t belongs to

1"tn.z(t)(e.(A))(F'(TpZ)) ([4], [5])• Hence we have n. = ((h3gZ)(ei(A),e,•(A)))-i12. In

general a gauge transformation (r(Sp(Psp(i))) D) h : Z ;-t Z gives a bundle isomorphism

(4.4) h,:TZ= IPtA.$V or- TZ=7th.A$}2
               e9• (A)(P), e((P) e e9• (h.A)(h(P)), e((h(P))

and we have e9• (h.A) = e,b(A) - 22 uk((h.A - A)(e,b• )) ei at h(P). Therefore we have

        (h'gZ)(e9(A), e9• (A)) = gZ(ee• (h,A), e9• (h.A))

        == 6,ti + 42 vk((h.A - A) (e,b• ))uk((h.A - A)(e,b)),

        (h'gZ)(e9•(A), ei,) = gZ(e9• (h.A), e() = -2 Z uk((h.A - A)(e9•)),

        (h"gZ)(et.,el.) = gZ(el,e(,) = 6k"

and certainly we have (O/Oa)Ia=o(ha.A - A)T(h.(p)) = (a/Oa)la=o(ha*A - A)T(p) =

-dAX E S2i(sp(Psp(i))). The lemma was thus' proved.

  Denoting by AA the covariant Laplacian, i•e•, AAX = -Åí(V,A,bV/1 ' VCg.?)X, we

                                                 eiknow

 Lemma 4.2. We have
              '(4.5) 6x eiP,z = --- ]E) p,z(u(V/b, .X)) V/i9(ZA)e '- 2 p,z(uk(dAX)) V,$f,gZ ee

      + S p,z (u(AAX) - Z uk(dAX) A uk(.l7A) - Z u(V/b, X) A u(etVFA)) .

  ProoÅí We refer to [4], [5]. Set itZ(ei(A)) i! (O/Oa)la-o n.Z(ei(u`1)) = Z) eo'(A)•Oo'i•

Then (1.5) and (1.6) imply

                   '(4•6) 6xe,z = zll.7 .go 2pgz(ei(A)){V,`fil.z9Z(,,(A)) + (V'fr9gZ'ha "- Vt$gZ),..(,,(A))}
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     = 2 pgz(et(A))Vn'Sz!g(Z.,(A)) + zilt7 .=o 2pgz(eZ(A)) naJ't (VtfilgZ'h" - V$gZ) .j(A)

     = IIIi )pgz(ei(A))V,$•zgZ(,,(A)) +2pgz(ei(A)) zlll.7 .=,V.$,iZAih"

 And (3.2), (4.3) imply

                                                 ' (4.7) 2 p,z(ei(A)) Vohfizl9(Z.,(.)) = - Z) uk(Vtl X){p,z(e;(A)) V.tfil,bg(Z.)+ p,z(eg) V.t2,l,gZ}

    = - 2 pgz(u(V/b,, X)) V.;l?IZA) ' 2 pgz(uk(dAX)) Vi"Z

    = - Åí Pgz(u(Vllij X)) V.'$,b"(Z.)$ - 2 p,z(uk(dAX)) V.tS,l,gZ $

     - S 2 p,z(v(Vti. X)) p,z(u(egVFA)) - i 2 p,z(ult(dAX)) p,z(uk(.FA))

    = - 2 pgz(u(V/i. X)) V.'fileg(ZA)$ '- 2 pgz(yk(dAX)) V.t$iZ $

     -S p,z(2 uk(dAX) A uk(FA) + 2u(V/i X) A u(eSVFA)

     - 2 2 uk(vtl x) uk(egvFA)) .

Further, !et us regard OZ E T(End(TZ)) as a symmetric 2-tensor, i.e.,

(4 8) nZ ! Z) ",, et(A) x e'(A) = -2{uk(dAX) X e;(A) + e;(A) x uk(dAX)}.

                             'Then we have

(4•9) 2 p,z(ei(A)) zll.7 .=,VÅí,iZ.]ha

      == 2 p,z(et(A)) i{(Vg,Z(.)OZ)(e,• (A), ei(A)) + (Vg,Z(.)DZ)(e,(x4), e, (A))}

      = i pgz (u(AAX) - 22 uk(V2b, X) vk(e`i v.l'A)) .

Thus we obtain (4.5).

 . Now let us write down adia(ip;.z 6xag.z) explicitly. Through the canonical identifica-

tlon

(4'10) $g.Z QSg.Z (2 $g.Z X$;,Z) ZAT'ZXÅë,

the Clifford action pg.z<e,b•e) acting on gJ'(P) at (4.1) and the one pg.z(e,be• ) acting on

gj(P') (i•e•, pg,z(e,be• ) at (4•2)) induce the actions on the right hand side of (4.lo)

(4.11) p,.z(e,be) = e'i12dx,b A -ei12dx,bv, p;.z(e,be) = e"(E-i12dx,b• A +ei12dx9v)

with e"cv E (-1)Pq for cv E APT'ZQ (C.
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  Lemma4.3. urehave

                • 10
(4•12) adia(ifg.z 6xl,.z) = 2 eM/2adia(l;z6xip,z : m/2) + O(r(P)) + O(r(p'))

                m=-1
     == E'i!2{-eA 2 dx9i A yk(dAx) A sl.llE<b, (zsl.Illf + Suk(FA)A) }(PO)

     +eei2{-e" 2 dxet A pgz(v(v/b,X)) ziitl{l.g ;il.ll;ij

     - Z) pgz(e?'(A)) yk(dAX) A (a.O,,t + ; uk'( FA)A) (51.lisf + i uk(FA)A) }(PO)

     + o(Ei/2) + e(r(P)) + (P(r(P'))

  ProoÅí Let us describe adia(ipe.z), adia(6xO,.z) clearly. Referring to (3.3) and (4.11),

we have

      ag.z ,p' = 2 pg.z (ege) V.$,ie?.9 + Z) pg.z (e>(A)) v.t21f,geZ $ - i p,.z (u(.F'A))

                                '     = Z p,,z (etb,) E'12 {e9(A) + i 2 C(Vg")t2i!(etb) pg.z (eLE) pg.z (eZt' )

      + i 2 C(VgV)k,k, (e?(A)) p,.z (e;i (A)) p,.z (e;2 (A))}

      + Z pg.z (ef(A)){ei + i 2 C(VgV)k, k, (ekf) p,.z (e;i(A)) p,.z (e?2 (A))}

      - 2 t Pg.z (e; (A))pg.z (eit')pg.z (eib2.) 6212 uk(FA (e9,,e,b, ))

     = ei12 2 p,,z (eN) e/ax,b• + 2 p,.z (e;(A)) 0/ax(

      - e212 2 i p,.z (e?(A)) p,.z (ebt' ) p,.z (eti2 ) uk(FA (e,b, , e9, )) + O(r(P')),

     0g.z ,pt - ei12 2 p;.z (eN) 0/0x9• + 2 p;.z(e>(A)) a/Ox(

      - e212 ]E) i p;.z (eh' ) p;,z (ets' ) p;.z (e7(A)) uk(FA (e?',, el,)) + O(r(P'))

     = E eA (dx9 A +e212dx9v) o/ox? + E p;z(e;(A)) 0/ax( + 2 i (dx,b, A

      + e2/2dx,b, v)(dx,b•, A +e212dvX v) p;z(e? (A)) uk(FA (e9•,, e,b•,)> + O(r(P'))

and, hence, we have

(4•13) adia(a;.z) = e-i12 e" 2 dx9• A a/ax;.b

         +2 p;z(e;(A))(0/Ox7 + iuk'(FA)A) + o(ei12) + o(r(p')).

Next, referring to the above calculation and (4.5), we have

   6xeg.z = - 2 pg.z (e>(A)) uk(V,"etX)V/i.gee?.9 - 2 pg.z (ete) vk(V4be X)V,$,f9eZ $
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    + S p,.z(E e;(A) E2/2uk(AAX) - 2eZ.' A e`.' A eh' g uk(V2,b:X) uk(FA(e,be, ,e9,e))

    - Z efi (A) A e;2 (A) A elbe uki (V.A,. X) uk2 (FA (e,be, e,be)))

   = ' 2 p,,z (e7(A)) e212uk(V2b, X) 0/0x9' " Åí p,.z (e'i ) ei12 uk (V/b, X) 0/0xt .

    + i p,.z(2 e;(A) e212uk(AAX) - 2 e',.' A eZe' A eg3. S uk (Vtb,fX) yk(FA (e,be, , e,b,e))

    - 2 efi (A) A e;2 (A) A el,. uki (VTtl.X) uk2(.FA (e,be, e,be))) + o(T(p))

   = -e212 ]Z) p,z(u(V/b,, X)) a/Ox9• -2uk(dAX) O/0xl. .

    + E2/2 2 dxgv yk(v/,, x) o/ax( + e212 g p,z(u(AAx)) - i 2 uk(dAx)uk(FA)

    + e2/2i Z (dx9, A dx?,v dxe, A +dxe, V dxe, A dx?, A

    + dx,b•, A dx9, A dx,b, v) uk(V.A,b,X) uk(FA (e,b, , e,b, ))

    - e`12i 2 (dx9, v dx9,v dx9, A +dx9, V dx?, A dx,b, V

   + dx?, A dx,b, v dx,b-,v) uk(V/b,,X) uk(FA (e9, , e9, ))

   + e6/2t 2 dx9, v dx,b•,v dxl, v uk(V/b, ,X) uk(FA (e,b•, , e,b•,))

   -- E212S 2 p,z(e;i (A) A e;2 (A)) dx,b A ukr (V.A,b X) uk2 (FA (e,b, e,b))

   + e`/2S 2 p,z(e;' (A) A e?2 (A)) dx,bv uki (V/b, X) uk2 (FA (e9, e,b)) + O(T(P))

               '                    '
and, hence, we have

(4• 14) adia(6x ipg,z) = -Åí Uk (dAX) A (0/0X( + SUk (FA )A)

            -Ei12 2 p,z(u(vTti. X)) O/ax,b• + O(e212) + O(r(P)).

(4.13) and (4.14) then imp!y (4.12).

5 The proofs of Theorems 2.1, 2.2

  As is well-known, the pointwise super trace str(pg,z(ei(A))) = tr+(pg,z(ei(A))) -

tr .- (p,,z (ei (A) )) is equal to (2/ A) ("'2)12 if I = (1, • • • , n + 2) and equal to O if I l

(1, • • • ,n + 2) (see [15, Lemma 2.5]). Hence we have

(5•1) ' S'Tlr(l,.z6xa,.z e-tip;eZ) = -STr(ip;,z6xip,,z e-tÅë;tZ) (see (4.1))

        = - ( v2iT) (""?)i2 f. a;.z 6x ip,,z e-`ptez (po, po)

        ( = - ( k)(""2)12 f, dgZ(pO) (0;,z 6x ipg.z e'toj`Z (PO, PO)) ..,,
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where we regard ag,z 6xOg.z e-`eteZ(PO,PO) as an element of the right hand side of

                         "(4.10) and dgZ(PO)(ag.z 6xO,,z e'ta;eZ (PO, PO))... is its term with degree n + 2. Note

                         othat (dxf)(i'2)(PO)(0;.z 6xOg.z e-tO;ei(PO,PO))..k is equal to the term with degree 2

             oOf (ag.z 6x ip,.z edtlg`Z (PO, PO))(,,...,.),e E $gv,po X $,'v,po = ATPoZpo X (C (see (3.4) and

(3.5)). Therefore, by observing (3.7), (3.16), (4.12), we find out that there exists a

Taylor expansion

(5'2) STr (0, .z 6x a,.z e'tip;eZ )

     = -( flir) ("'2)/2 {.2I.li.,eMi2fz.,.2.,=e"dia(a;z6xa,z : rn!/2) E(m2!2:)(t, pO)

                     +e(MO+i)12fz(Åë;.6xlg.E)((Tno+i)12,ei12)(t,po)}

     ,! d (Å}) (n+2)12 .'ri.O.;ilEm12fz(ip;.6xeg.E)(m12,')(t, pO).

Futher (3.8) says that there exist constants A > O, C > O and an integer N > O satisfying

           (opgz6.xipgzE)(M12)(t, PO) sl Ce'tA t(i-60M)12(t(.+14)12 + 1) ,

(5.3)
           (ip;z6xip,zE)((Mo+1)12'e'12)(t, PO) S Ctl12 (t(.+14)/2 + tN)

           (os vm s mo, o< vei12 s e612, o< vt < oo, vpO Ez)

and (3.17) says that for given To > O there exists a series expansion

(5•4) (ip;z 6x a,zE) (M12") (t, pO)

                   ic      = (47rt)i+2)12 {,=;6,mtt(a;z6xa,zE)(rn12,•)(i , po) + o(ti,+i)}

       (vio )o, os vm s mo +1,o< vei12 s e512,o< Vt s To , VPO EZ).

  Lemma5.1. We'have
                                          '                                      '(5•5) f. adia(a;z6xa,z : m/2) E(O12:)(t, pO) =o (m = -1, o)

and the doubte integral at the right hand side of (2.10? ts absolutely integrable and we

have

(5•6) fz adia(op;z6x ip,z : -1/2) E(i12:)(t, PO) = - fz s-log det (6x ip,z)(t, PO).
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   Remark. By examining (4.12) in detail we know

           f. adia(aez6xe,z : 2/2) E(O/2:)(t, pe)

                            '           = f. g u(AAX) A 2p;z(e;(24))(o.0,,f + i uk(.l7A)A)E(t, pO),

           fz adia(a;z6xÅë,z : rn/2) E(O12:)(t, Pe) = o (otherwise).

  Proof. Refer to (2.3) and (4.12). As for (5.5): Since adia(l;z6xl,z:-1/2) is a first

order differential in the M-direction, (5.5) holds if m = -1. Since adia(O;z6xagz : O/2)

is an exterior product of odd degree in the M-direction, (5.5) holds aiso if m = O. As

for (5.6): We abbreviate E(t,pO, P, P') to E(t, P, P'). (3.29) s'ays

(5•7) aclia(ip;z6xO,z: --1/2)E(i/2:)(t, PO)

    = --adia(a;z6xip,z : -1/2) f,tdTf.lpd,g((?) <E(t-T, PO, (?), (a2.)(i12:)E(r, Q, pO)>

but it may not permitted to reverse the order of adia(e;z6xipgz: -1/2) and the double

integral. Consider then the term of even degree in the M-direction

(5•8) even-adia(a;z6xa,z:-1/2)E(i12:)(t,pO) ,
    = -adia(a;z6xip,z : -1/2) f,tdrf.lpd,g((?) <E(t-T, PO,Q), chi(a;z)E(T, (?, PO)>

(refer to (2.12) and (3.20)). On its right hand side, fortunately we can reverse the order

as is proved hereafter. Let us denote by ei' E M(pO) the fundamental vector whose i'-th

entry is equal to 1. Then (2.3), (2.4) and (4.12) imply

(5.9)

Remark that by obs

-adia(0;z6x ip,i : '1/2)<E(t-r, PO, (?), chi(of,z)E(T, (?, PO)>

= e" 2 dx,b•,(PO) A <chi(6xa,z)E(t-r, PO, (?), o2;g chi(0;z)E(T, (?, PO)>

== e" 2 dx,bt (PO) A <chi(6x a,z)E(t-T, PO, (?),

   ,hi@;.)<yb Rg"gliO,yb)(i + ,.th TRg"(2pO,yb)) .it>E(., (?, po)>

= -e" <chi(6x O,z)E(t-T, PO, (?), iE) dx?t (yb) A '
   ,hi(ipg.)<yb Rg"(l{iO,yb)(i + ,.th 44.g"(2pO,yb)) .i'>E(., (?,po)>

                                    '= -e" <chi(6x ip,z)E(t-r, PO, (?), ' '
   ,hi(o3.)<yb Rg"(iO,yb)<1 + ,.th TRg"iizO,yb)) d.b(yb)>.E(., (?, po) >l

         erving (2.4) the second equality above comes from the formula

0   KM(t, xb, o)
ax;.9
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       .. { sit 2 .g(tRgg(pO) ,.th tRg;(pO))., + i 2 .,bRgM(po),,,}K.(t, .b, o)

       = z .g. ( Rg"4(pO)(1 + ,.th tRg;(pO))),,,KM(t, .b, o).

Similatly to the estimation (3.31), then we have

(5•10) f.@,gg(Q) <chi(6xip,z)E(t--r, pO,Q),

                                   TRg "(po , yb)                   R9"(pO , yb)         chi(e;z)<yb 4 (1+coth 2 ) da b(yb)>E(T, Q, pO)>

        :E{ C (t - T)'("+2)12-1/2.-(n+2)!2-i12fz(pg)g((?) e-r(Q)216(t-T)-r(c?)216T.

(Note that (5.7) may not have such aii estimate.) And, by the same argument as

(3.32)-(3.33), we find out that (5.10) is integrable over the interval (O,t)() T). Thus

we can reverse the order of adia(a;z6xagz:-1/2) and the double integral in (5.8) and

the double integral at the right hand side of (2.10) is certainly absolutely integrable.

Further (5.8) and (5.9) imply the formula (5.6).

  Now let us prove Theorems 2.1, 2.2.

  Proofs of Theorems 2.1, 2.2 (compare with [15, Proof of Theorem 1.2]).

Take an integer no > O. Then the first estimate at (5.3) and (5.4) imply that, if

                                                  '-1 S m S no, the function (to be differentiated by s)

(5•11) r(1 ,) f, C"d' ttS fz (O;z6x ip,z E)(M12) (t, pe)

is absolutel' y inte.qrable if Re(s) > (n + 2)/2 and has a meromorphic extension to

C(D s) which is analytic at s = O. Hence, to finish the proof of Theorem 2.1, we

have only to show the assertion that so is (5.11) with (Åë;z6xlgzE)(M12) replaced by

(ip;z6x ipgzE)(("o+i)!2,e'f2). And, to show it, it wil1 suffLce to prove that, for given To > O,

there exist constants C > O, Ao > O satisfying

(5.12) fz(ip.;z6xa,zE)((no+i)12,e'i2)(t,pO) s{ce'`Ao (vt)To).

                ttl'
Actually, if this holds' 4•.then this, together with (5.4) (with m = mo +1 = no+1), clearly

implies the above assettion for the remainder term. Now let us show the estimate (5.12).

                rFirst, since opgv is inyertible ([13, (5.15)]), there exists a constant Ai > O satisfying

Spec(a3,z) }) Ai (> O) for any e with O < e S eo ([3, Proposition 4.411, [15, Lemma 2.1]).

Hence we have

(5'13) STr(i2P;,z6xl,,z e-top;eZ) sl Ci e-`"i!3 'Ilr(e'(t16)ip;,Z)

               E{ C2 e-tAi13E'"12 tN s ce-n12 e-tAi14
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(see [15, (2.26)]). The first inequality comes from the standard elliptic estimate and the

boundedness of the spectrum from below (see [15, (2.2)]), and the second one comes

from (3.8). Let mo be the integer appearing at (5.3). Then (5.13) and the first estimate

at (5.3) imply

    e(MO+i)/2fz (a;. 6x ag. E) ((mo+i)12 ,eii2) (t, po )

    = (){iill)(n'2)12s rt(e;,z6xo,,z e-tip;eZ) --.]i.l,l.,eMl2fz(0;z6x0gzE)(M12")(t, PO)

    E{ Ci e-"/2 e'tAi14,

which, combined with the second estimate at (5.3), yields

(5•14) e(MO"i)1?fz (a;. 6x a,.E)((rno+i)12,e'12)(t, po)

             :S C2 6-"14 e-tAi18 e(MO+1)14 tN12 f{ C3 e(Mo+1-n)!4 e-tXi19.

Now consider the formula

   fz (a;z6x ip,zE)(("o+i)i2•eii2)(t, pO) = fziltlll2.c(m-"e'i)i2(ip;z 6xa,zE) (mi2) (t, pO)

             +e(Mo-no)12(ip;.6xag.E)((mo+1)12,ei!2)(t,pO)}.

(5.14) implies

     E(Mo-no)12fz(a;.6xog.E)((mo+i)12,ei12)(t,pO) f{ c3e(mo'2no'n-i)14e-tAilg.

Hence, by taking mo with mo -2no -n- 1 2 O, this and the first estimate at (5.3)

imply (5.12). Thus we finished the proof of Theorem 2.1. And (5.2), Lemma 5.1 imply

now Theorem 2.2.
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ISOLATEDSINGULARITIES OF BINARY DIFFERENTIAL
   EQUATIONS OF DEGREE n

T. FUKUI AND J.J. NUNO-BALLESTEROS

ABSTRAcT. We study isolated singularities of binary differential equations of degree n
which are totaily real. This means that at any regular point, the associated algebraic
equation of degree n has exactly n different real roots (this generalizes the so called

positive quadratic differential forms when n = 2). We introduce the concept of index
for isolated singularities and generalize Poincar6-Hopf theorem and Bendixon formula.
Moreover, we give a classification of phase portraits of the n-web around a generic singular

point. We show that there are only three types, which generalize the Darbouxian umbilics

Di, D2 and D3.

                            1. INTRODUCTION

  The study of the principal foliations near an isolated umbilic point of a surface M
immersed in R3 leads us to the coRsideration of quadratic binary differential equations

(BDE) of the form

                   a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2 == O,

where a(x,y),b(x,y),c(x,y) are smooth functions in some open subset U c R2 which are
defined, after taking a parametrization of M, by means of the coethcients of the fust and
second fundamental form of M. Since the principal lmes are orthogonal in the induced
metric of M, we have that the discriminant A = b(x, y)2 -a(x, y)c(x, y) ) O, with equality

if and oniy if (x,y) corresponds to an umbMc of M, so that a(x,y) = b(x,y) = c(x,y) = O
artd hence, (x,y) is a singularity of the BDE. It was Darboux C51 who classified the
generic singuJarities and discovered there are only three topological types, knowR as the
Darbouxiam umbilics Di, D2 and D3 (see [1] and [12] for a modern arrd precise study of
this classification).

  In fact, we can consider quadratic BDE of this type for general functions a(x, y), b(x, y)
and c(x,y), with the discriminant property: A 2 O with equality if and only if a(x,y) =
b(x,y) = c(x,y) = O. The quadratic forms with this property are called positive and have
been studied by many authors [2, 6, 9, 11, 13]. A positive quadratic differential form
defines a pair of transverse foliatioms in the region of regular points. Moreover, Guin"ez
showed has that in this more genera! situation, the only ge4eric singularities are again
the Darbouxian umbilics' Di, D2 and D3•
  The aim of this paper is to generalize this to degree n BDE of the form

              ao(x, y)dx" + ai (x, y) dx"'idy + • • • + a.(x, y)dy" = O,

where ai(x,y) are smooth functions defined on U c R2 such that for any (x,y) E U, either

it is a singular point (that is, ai(x,y) = O for anyi= 1,...,n) or the associated algebraic

  2000 Mathematics Subject C7assification. Primary 37C15; Secondary 34C20, 34A34, 53A07, 53A60.
  Kest worals and phrtzses. totally real differential form, principal lines, Darbouxian umbilics, index.
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equation has exactly n clifferent real roots. If the functions ai(x,y) have this property,
then we say that the symmetric differential n-form w == Z)Z•=i ai(x,y)dx"-idyi is totally

reaL
  When n == 1, a differential n-form is always totally [eal and it induces an oriented
foliation in the plane with singularities. For n = 2, totally real is equivalent to positive in

the Guin- ez sense and hence, the BDE defines a pair of transverse (non oriented) foliations.

However, for n ) 3, the corresponding BDE induces locally a n-web in the regular region
(that is, a set of n foliations {.JE'i,...,.7 1.} which are pairwise transverse). It seems that

isolated singularities of n-webs in the plane have not been considered previously in the
literature. Moreover, we feel that the use of degree n BDE is a good approach to treat
this subject.

  The topological configuration of a n-web (n ) 3) can be extremely complicated, even in
the regu!ar case. When n = 3, the ctll vature of the web is a function which is a topological

invariant. Hence, even for regular webs we find that the topological classification has
functional moduli. It is known that a regular 3-web is parallelizable or hexagonal (that
is, equivalent to three families of parallel straight 1ines) if and only if the curvature is

zero. We should also mention that because Qf the rigidity of webs (any homeomorphism
between two regular webs is in fact a diffeomorphism [71) the topological and differentiable

classifications are the same.
  We show here that for n >- 3, the classification of generic singralarities of totally real
differential n-forms gives again only three types, which we call the geheralized Darbouxian
Di, D2 and D3. Here, generic means a generic choice of coefficients in the linear part of the
functions ai(x,y). Moreover, the classification has to be understood not as a topological
classification, but just as a description of the phase portrait of the foliations around the
singular point.

  One of the main ingredients of the classification is the index of an isolated singular
point. It is defined as a rational number of the form k/n, where k E Z and it can be
interpreted as the rotation number of a continuously chosen vector tangent to the leaves,

when we make a trip around the singular point. We also show the generalization of the
Poincar6-Hopf theorem: if M is a co[npact surface and w is a totally real n-form with
a finite number of singular points, then the sum of the indices is equal to the.Euler
characteristic x(M).
  Another important point in the paper is the use of complex coordinates. By setting z =
x+iy and 7 = x-iy, we can express any n-form as w = Aodzn+Aidz"-idr+• • •+A,,d2z't,
where Ae• = A.-j are differentiable functions. Then the index of an isolated singula.r point

is equal to -- deg(Ao)/n, where deg(Ao) is the mapping degree of Ao. This implies that
generically, the index is Å}1/n.

  The final ingredient for the classificatien is the use of the polar blow-up method to study
singularities with a non degenerate principal part (see [3] and [111 for related results for

vector fields or quadratic forms). We obtain a generalization of the Bendixon formula,
which says that the index is equal to 1 + (e - h)/2n where e, h are the number of el!iptic
and hyperbolic sectors respectively. On the other hand, for a non degenerate singularity,
the blow-up produces a n-form which has only' sin6qularities of saddle/node type. The
configuration of these singularities gives a description of the phase portrait of the foliations

around the singular point.
  We finish the paper with a section dedicated to higher order principal lines and umbilios
of surfaces M immersed in some Euclidean space RN. This was the original motivation of
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the authors to study singularities of differential n-forms. Other geometrical motivations
of the same kind can be found also in [15] or [10].

                  2. TOTALLY REAL DIFFERENTIAL FORMS

Definition 2.1. Let M be a COe surface. A (symmetric? differentialn-fo7m on M is a
difIierentiable section of the symmetric tensor fiber bundle S"(T'M). If we take coordi-
nates x, y on some open subset U C M, any djfferential n-form can be written in a unique

way as
                               n                           W = Z fidxidyn-i,

                               i=o
where fi : U - R are smooth functions.
  We will say that p E M is a singular point of w ifw(p) = O. We will denote by Sing(ul)

the set of singu!ar points of w.

  in general, if p E M, tu(p) : T,M - R is a form of de.qree n. Let p E MX Sing(w),
we say that w is totallz real at p if there are n linear forms Ai,. . . , A. E TpM' which are
pairwise linearly independent and such that cv(p) == Ai...A.. We say that w is totally real
if it is totally real at any point p E MXSing(w).

  A lmear differential form (n = 1) is aiways totally real. In the case n = 2, a quadratic
differential form is totally real if it is positive in the sense of [9]. Take local coordinates

x,y defined on some open subset U c M and assume that w is given by

                       w = Adx2 + 2Bdxdy + Cdy2,

for some smooth functions A,B,C : U -. R. Then w is totally real in U if and oniy if for
any p E U, either A(p) = B(p) = C(p) = O or B2(p) - A(p)C(p) > O.

Definition 2.2. A (1-dimeRsional) n-web on a surface M is a set of n (1-dimensional)
foliations W == {F!, . . . , X.} on M such that they are pairwise transverse at any point of

M.
  If w is a totally real differential n-form on M, then we can locally associate a n-web on
M X Sing(w) in the following way. For each p E M X Sing(w), there are pairwise hnearly
independent lmear forms Ai,...,A. E TpM' such that w(p) = Ai...A.. Moreover,+it is
possible to choose these 1inear forms so that they depend smoothly on p (and hence define
differential 1inear forms) on some open neighbourhood U C M. Then, the n-web is just
defined by taking .Ti as the foliation determined by Ai on U (that is, the tEmgent vectors

to Fi are the nul1 vectors of N).
  Note that in general, it is not possible to extend this to a global n-web on MNSing(tu)
(unless it is simply conRected). )tvloreover, two totally reaJ clifferential n-forms cvi and w2

define the same n-web'•9-n U if and only if there is a non-zero smooth function f : U - R
such that wi = fcu2 on U.

  Remember that if w is a differential n-form on N and f : M . N is a differentiable
map between surfaces, then f'w is the n-form on M given by f'w(p)(X) = w(f(p))(f.X)
for any p E M and X E T,M, and being f. : TpM - Tflp)N the differential of f at the
pomt p.

Definition 2.3. Let wi,ev2 be two totally real differential n-forms defined on surfaces
M, N respectively. We say that they are COO-equivalent (resp. topologically eqntvalent) if

there is a Coo diffeomorphism (resp. homeomorphism) ip : M - IV such that
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   (1) ip(Sing(wi)) = Sing(ev2),

   (2) di : MNSing(wi) . NXSing(w2) preserves locally the leaves of the foliations of
      the n-webs defined by wi)w2•

  It is obvious that if Åë is a Coo diffeomorphism, then condition (2) is equiyalent to the

existence of a nonzero smooth fLmction f : MXSing(wi) - R such that ip'(w2) = fwi on
M X Sing(wr).

               3. THE INDEX OF AN ISOLATED SINGULAR POINT

  We wi11 define an index for isolated singular points of totally real differential forms,
which generalize the index in the case of linear or quadratic forms.

Definition 3.1. Let w be a totally real differential n-form on a surface M and p E M
an isolated singular point. Assume that M is orientable and choose some orientation.
Moreover, we choose a Riemarmian' metric g on M and orthogonal coordinates x, y on some
open neighbourhood U ofp in M, compatible with the orientation. Now, let a : [O, e] - M
be a simple, closed and piecewise regular curve, such that a([O, e]) c U is the boundary of

a simple region R, which contains p as the only singular point in the interior. Moreover,
we assume that a goes through the boundary of R in positive sense. Since a is a plosed
curve, it is obvious that we can extend it to a : R - M, with a(t + e) = a(t).
  For each t E R we choose a unit tangent vector X(t) which is a solutioR of the equation
cu(a(t))(X) = O at the point a(t). Since it is an algebraic equation of degree n, we can
choose X(t) so that it defines a differentiable unit vector field along a.
  If we start with t = O, after a complete turn, X(e) must coincide with one of the 2n unit
vectors which are solution of cv(a(O))(X) = O. Because of transversality, after 2n turns
in positive sense, we must return to the mitial vector, that is, X(2n.e) = X(O). Now, let
e(t) be a differentiable determination of the aRg!e from S}.71.(t) toX(t). Then, e(2ne) and

e(O) differ in an integer multiple of 2T. We define the index of w in p by

                                  e(2ne) - e(o)
                         ind(cV,P)= 4Tn ''

It follows from the definition that the index is always a rational number of the form s/2n,

with s E Z.

Lemma 3.2. The inderind(w,p) does not depend on the choice of:

   (1) the determination of the angle e,
   (2) the vector field X,
   (3) the coordinates x,y,
   (4) the curve a,
   (5) the Riemannian metric g,
   (6) the orientation ofM.

Proof. Note that two determinations of the angle must cliffer in an integer multiple of 2T.

Thus, it is clear that the index does not depend on the determination.
  We show now that the index does not depend on the vector field X. Suppose that
we consider two vector fields Xi(t), X2(t). Note that they are solutions of an algebraic
equation of de.qree n and they are differentiab!e with respect to the parameter t. Thus if
Xi(t) = Å}X2(t) at some point ofthe curve, then this should be true for any point. ln this

case, the corresponding determinations of the angles should differ in an integer multiple
of T, giving the same index.
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  Thus, we can assume that Xi(t) 7E Å}X2(t), for al}tE R. Then, we can choose the
determinations so that

                          O < Ie,(t) - e2(t)l < T,

for all tE R. Moreover, suppose that

                          ei (2ne) - e, (o) s,

                              4Tn 2n
with si,s2 E Z. Then,

                       1              lsi - s21 = IEI.i7 Iei(2ne) - ei(O) - e2(2ne) + e, (O).l < 1,

              '                                               'and necessanly si = s2.
  To show that the index does not depend on the coordinates, let Yo E T.(o)M be any
nonzero tangent vector. Let us denote by Y(t) the parallel traasport of Ye along a(t) and
let th(t) be a determination of the angle from zi}.7[.(t) to Y(t). Following [4, Eq (2), page

                         th(e) - th(O) = f. Kdu,

where K denotes the gaussian curvature of M and da is the area element. From this we
deduce

(i)
2n f. Kdu - 2Ts = (ip -- e)(2ne) - (th - e)(o),

being s/2n the index. Since the angle ip -e does not depend on the coordinates x,y, we
get that the index does not depend either.
  Let now a and fi be two curves satisfying the conclitions of the definition of the index.

We wiR show that the index given by both curves is the saJne. Suppose first that the
curves are disjoint. Then it is obvious that we can construct a famiIy of Åëurves at, with
t E [O, 1], depending continuously on t, which verify the conditions of the deEinition of
index and such that ao = a and ai -- 6. Taking into account that it is possible to express
the index by means of an integral exp'ression, we deduce that the index with respect to at

depends continuously on t. Since the index can only take rational values, we deduce that
it must be constant. In the case that the curves a and fi are not disjoint, we can take
athird curve small enough so that it is disjoint with a and fi and then apply the above

argument.
  The independence with respect to the Riemannian metric g has an analogous argument.
In fact, if g and h are two Riemannian metries, we can consider the family of Riemamian
metrics gt = (1 - t)g+ th so that ge = g and gi = h. Again by means of an integral
expression of the indexs, we see that the index with respect to the metric gt depends
continuously on t and hence, it must be constant.
  Finally, it only remaiii$ to show that it does not depend on the orientatign. In fact, if we

change the orientation, We have to change a by a(t) = a(e-t) and e by e(t) == -e(e-t).

Then, lt•
             e(2ne) - e(o) = -e(e - 2ne) + e(e) = •-e(o) +e(2ne).

                                                                    o

  As a consequence of this lemma, we deduce that the index is well defined and it only
depends on the differential form w. Moreover, the definition can be extended to the case
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that M is not orientable, just by taking a local orientation in a neighbourhood of the
singular point.

  On the other hand, the definition of index can be also extended to the case that p
is a regular point, although in such case the index is always zero. In fact, we can take
coordinates in such a way that 0/0x coincides with X along a and hence, e(t) =- O.
  Finally, another immediate consequence of the above lemma is that the index is invari-
ant by equivalence. Let wi, w2 be two totally real differential n-forms defined on surfaces

M, N respectively, which are equivalent through the diffeomorphism ip : M . N. Then,
for each p E Sing(cvi),

                         ind(wi,p) = ind(cu2,Åë(p)).

Remark 3.3. We give here a formula which can be very useful to compute the index.
Let us denote by Xi(t),...,X2.(t) the unit vector fields along a which are solution of
w(a(t))(X) = O. We assume that they are ordered so that

                   ei(t) < e2(t) < ••• < e2.(t) < ei(t) + 2T,

where e,•(t) denotes the determination of the angle of each vector field X,•(t). In particular,

we have that
                           e,(e) = ei(o) + 2Tm,
for some m E Z and i E {1,...,2n}. Then, the index is given by

                                       i-1                          ind(w,p) = 7n + 2. '

  In fact, we introduce the notation e2.+i(t) = ei(t) + 2T, e2.+2(t) = e2(t) + 2r, and in
general, e2,.+,•(t) == e,•(t) + 2qT, for any qE Z and ]' E {1,...,2n}. Then,

              e,(e) == e,(o) + 2Tm,

             ei(2e) = ei(e) + 2Tm = e,,-,(o) + 4Tm,

            ei(2ne) = e2.(i-i)+i(O) + 4Tn7n = ei(O) + 2T(2nm +i - 1).

From this, we arrive to

                   i.d(.,p) = ei(2ne4).: ei(O) =.+ i 2-.' 1.

  We finish this section by showing the generalization of the well known Poincare-Hopf
Theorem for vector fields or quaciratic differential forms [14, 41.

Theorem 3.4. Let M a compact surface and let w be a totalty real differential n-form
utth a finite nu7nber of singutar points pi,...,p.. Then,

                                 m                          'x(M)= ]Z) ind(w,pi),

                                 i=1
where x(M) denotes the Euler-Poincare' characteristic of M.

Proof. The proof given here is just an adaptation of the proof given in [4, page 279] for
the case of vector fields. We show first the theorem in the case that M is orientable.

  We choose some orientation and a Riemannian metric on M. Let {pi : Ui . R2}iEi
an atlas on M so that each chart is orthogonal and compatible with the orientation.
Moteover, we take a triangulation T such that:

   (1) Each triangle T E T is contained in some coordinate neighbourhood.
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   (2) Each triangle T E 7" contains at most one singular point pT. (In the triangles with
      no singular points we choose any interior point pT.)
   (3) The boundary of each triangle T E 7' has no singular points and is positively
      oriented.

  Let XT be a vector field along the boundary of each triangle T E 7' which is a solution
of equation w(X) = O. Moreover, we choose it in such away that if Ti,T2 are adjacent
triangles, then XT, , XT, coincide along the common edge. Frorn Equation (1) we obtain

                      L Kdg - 2T ind(w• pT) = :.T ,

for any T E T, where AT denotes the variation of the angle from XT to some parallel
vector field after going through the boundary of T 2n times in positive sense.
  Now, summing up for any T E 7- and taking into account that each edge is comrr}en to
two triangles with opposite orientatiens, we arrive to

                  fM Kda - 2T T2ETMd(W'PT) = T2ET :nT = O

Finally, the result is a consequence of the Gauss-Bonnet Theorem:

f. Kdu = 2Tx(M).

  In the case that the surface M is not orientable, we consider T : M . M a double
covering, where M is an orientable and compact surface. Then x(M) = 2x(M) and since
T is a local diffeomorphism, each singiilar point pi of cll givp)s exactly two siRgular points

of the induced n-form T'w with the same index. Thus, this case is a consequence of the

             4. DIFFERENTIAL FORMS IN COMPLEX COORDINATES
  We identify R2 = Åë and use the following notation

             Z=X+IY, Z=X- ZY,
            di= dx+idy, d7=dx-idy,
           8.=i(ge.-zÅí)} Åí=S(8.+zÅí)•

With this notation, it is obvious that any differential n-form on an open subset U c C
can be written in a unique way in this coordinates as

                  •;,i w = Aodz" + Aidz""ict7 + ••• + A.W,

                  •: .for some differentiable functions Ai• : U . C such that Aj• = A.-j for all j = O,...,n.
 The following theorern is a generaJizatien of [l4, VII.2.31 in the case n = 2.

Theorem 4.1. Let w b.e a totally real differential n-form on an open subset U c C and
letp E U be an isolated singular point. Then, p is an isolated iero ofAo and

                                    deg(Ao,p)
                         ind(w,p) ==- ,
                                       n
where deg(Ao,p) denotes the local degree of Ao at p.
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Proof. Let 6 > O small enough and let a(t) = p+ 6eit, for t E R. We denote by
Xi(t),...,X.(t) unit vector fields along a which are pairwise linearly independent and
are solution of the equation w(a(t))(X) = O. We aiso denote by 0,•(t) a differentiable
determination of the angle of Xj(t), so that

                       x,(t) = ete)(t) 8t + e-te](t) zll>

It is obvious that X,•(t) annihilates the linear form A,•(t) along a given by

                        Al•(t) = eioJ(t)dl + e-iip:'(`) d7,

being ipJ•(t) = T/2 - ei•(t). Thus, by using elementary properties of the algebraic equatierrs

of degree n, we deduce that along a it is possible to factor tu as

                        cu(c!(t)) = f(t)Ai(t)•••An(t),

for some non vanishing function f : R - R.
  On the other hand, by comparing the coeMcienP of dz" in the above expression, we
have that
                       Ao(a(t)) = f(t)ei(ipr(t)+'"+din(t)).

From this we see that Ae(a(t)) i7E O, for alItE R, which shows the first statement.
Moreover, a differentiable detemination of the angle of Ao(a(t)) is given by

                      B(t) = ipi(t) + ' ' ' + ipn(t) + Tq,

for some q E Z.
  Fina!ly,

               deg(Ao,p) - B(47'Z).ii 6(O) - S) dii(4Tn4).ii dii(O)

                                       1'=1
                       = - ]ilil) ei (4T n4).i ei (O) = -. i.d (., p) .

                           J'--1
                                                                     o

Corollary 4.2. The index of any isolated singular point of a totalty real differential n-
form on a surface M has the form s/n, with s E Z. Moreover, for each s E Z there ds a
totatly real differential n-form utth an tsolated singular point of index s/n.

Proof. The first part is an immediate consequence ofthe above theorem. To see the second
part, jmst consider M = C, p = O and

                     g-(:r,d, :.'.7;fl,il,bi., liglg:

                                                                     o
  According to Definition 3.1, an iso!ated singular point of an' n-web will have an index
of the form s/2n, with s E Z. The above corollary says that in the case that the n-web
is induced frorn a totally real differential n-form, the index will be of the form s/n, with

s E Z. This can be interpreted as some kind of orientability condition for the n-web
defined by a differential n-form.

  For instance, when n = 1, a linear differential form in M induces an orientable foliation

in a neighbourhood of each point of M. In this case, the index of an isolated singular



ISOLATED SIYi GULAR.ITIES OF,BINARY DIFFERENTIAL EQUATIONS OF DEGREE n9

point is aR integer. For n = 2, a positive quadratic differential form induces a pair of (non

necessarily orientable) transverse foliations in a neighbourhood of each point of M. The
index associated to each one of the foliations is the same (because of transversality) and
it is a half-integer (see [14, VII.2.2]).

Corollary 4.3. Let w be a totally real differential n-form on a surface IVI andp E M
an isolated singular point. Let a : [O,el - M be a cu7've satisfying the conditions for the
deLfinition of the indear and let X(t) be a unit vecto7' .iEeld along ct, solution ofcv(ct(t))(X) =

O. Then X(ne) =X(O) and

                                  e(ne) -- e(o)
                         ind(cJ,P)= 2.n '

where e(t) denotes a determination of the angle of X(t).

Proof. This is consequence of the above coro!lary and Remark 3.3. Let us denote by
Xi(t),...,X2.(t) the unit vector fields along a which are solution of w(a(t))(X) = O,
being X(t) = Xi(t). We suppose that they are ordered so that

                   ei(t) < e2(t) < ••• < e2.(t) < ei(t) + 2T,

where e,-(t) is the determination of the angle of each vector field Xj(t). Then,

                          ind(w,p) =m+i2-.1,

where ei(e) = ei(O) + 2Tm, with m E Z and i E {1, . . . , 2n}. Moreover, we introduce the
notation e2,.+,•(t) = e,•(t) +2q7r, for any q E Z and j E {1,..., 2n}.

  From the above coronary we see thati--1 must be even and hence, we can write
i-l =2q, with qE Z. Thus,

              ei(ne) = e.(i.i)+i(O) + 2Tmn = ei(O) + 2T(mn + q),

Definition 4.4. We say that a singular point p of a totally real differential n-form tu is
simple if the linear part ofw at p is itseif a totally real differential n-form having p as an

isolated singular point. Suppose that in complex coordinates

                   w == Aodz" + Aidz"-id7 + • • • + A.d7n,

for some differentiable functions Ai : U . C. We aiso assume, for simplicity, that p = O.
Then, each one of these functions Ai has a Taylor expansion at the origin

                           Ai = aiz+ bi7+...
with ai, b, E C. The linear part of w at p is the differential n--form

         wi == (aoz -E, bo7)dz" + (aii + bi7)di"-id7 + • • • + (a.z + b.7)d7n.

                  -4:                 ttCorollary 4.5. Any siz.ti. ple singularpoint of a totally real differentiat n-form on a surface
M has index Å}1/n. i

                         '                  tProof. We take complex. coordinates, suppose that p=O and the linear part of w at p is

                  t/         wi = (aoz +'bo7)dz" + (aii + bi7)dz"-'diz + • • • + (a.z + b.7)d7i.

If wi is totally real and p is an isolated singular point, by Theorem 4.1, p is an isolated
zero of the linear function aoz + bo7 and hence, such linear function is regular. Since it is

the liRear part of the function Ao, p is a regular point of Ao. Thus, deg(Ao,p) = Å}1 and
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                 5. NON DEGENERATE DIFFERENTIAL FORMS

  Let w be a totally real differential n-form on some open subset U c Åë and Iet p E U be

an isolated singular point. We can extend the notation introduced in the above section
and denote by wk the homogeneous part of degree k of w. That is, each one of the
coefllcients Ai• admits a Taylor expansion at p and wk is the n-form whose coefficients are
the homogeneous parts of degree k in the expansion of the Aj.

Definition 5.1. We say that w is se7ni-homogeneous at p if there is k ) 1 such that
wi = O for i == 1,...,k- 1 and wk is a total!y real differential n-form having p as an
isolated singular point. Note that when k = 1, this is equal to the definition of simple
singular point.
  Assume for simplicity that p = O and let

                   wk = A,k din + Af din-i d7 + • • • + A# d7n ,

where Alk axe homogeneous polynomiais of degree k. We define the characteristic pol3tno-

miat ofw as the (real) homogeneous polynomial of degree k + n

                     p. == ACizn + Afzn"17+ • • • + A#-l:m.

  Let us denote by T : R2 - C the polar blow-up, that is, T(r, t) = reU. We fix 6 > O
small enough such that T((-6, 6) Å~ R) c U and p = O is the eniy singuLar point of w in
such set.

Lemma 5.2. ijw is semi-homogeneous with principal part wk, then

                      c)(r,t)-(tlkw,,[:,fit)' #;,=g;

deLfines a totally real differential n-form along T on (-6, 6) Å~ R with no singular points.

Proof. Suppose that w is given by

                    w = Aodz" + Aidi"'id7 + • • • + A.d7n

and let us denote by A,k• the homogeneous part of degree k of Aj. By the Hadamard
Lemma it fo!lows that
                           Aj(re`t) = rkB,•(r, t),

for some differentiable functions Bj : (-6,6) Å~ R - R such that Bj(O,t) = A,k•(eit). In
particular
            di(r, t) = Bo(r, t)di" + Bi (r, t)dz"-id7 + • • • + B.(r, t)de".

                                                                     o
  As a consequence of the above lemma, if w is semi-homogeneous, we can choose n unit
vector fields Xi(r, t), . . . , X.(r, t) along T on (-6, i) Å~ R which are pairwise linearly inde-

pendent and solution of di(r,t)(X) = O. Moreover, we denote by e,•(r,t) a differentiable
determination of the angle of each vector field Xj•(r, t). Then we showed in the proof of
Theorem 4.1, that it is possible to factor di as

                             cl) = fAi • • • An,

being Ai• the linear forms given by

                          Aj = eiipj dz + e-idij dr,

with ipj = T/2 - ej and f : (-6, 6) Å~ R - R a non vanishing function.
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Definition 5.3. The pull-back throu.crh T of the n-form di defines an n-form T'cb on
(-6, 6) Å~ R, which is called the polar n-form ofw. Analogously, we caH linearpolarforms

of cv the linear forms T'Ai,...,T'A., in such a way that

                           7r'cl) = f7r'Ai . . . 7r'A.,

  An easy computation gives that for each ]' = 1,...,n

                       7r'Aj = 2(cos <pjdr - rsin <pjdt),

where p,• --- ip,• + t. Thus, each one of these polar lmear forms has singular points (O,t)
with cpj (O, t) = 7r/2 + q7r, q E Z. •

  Note that a point (O,t) can be asingular point of only one of the polar linear forms.
ln fact, suppose that

                 sOj, (O, t) = 7r/2 + qiT, (pj, (O, t) = r/2 + q2T,

for some qi, q2 E Z. Then

                       e,•,(o,t) - e,-,(o,t) = (q2 - gi)T,

which implies that the corresponding vector fields are linearly dependent and hence, 1'i =
]'

2•

  Moreover, under some conditions it is possible to determine the topological type of
these singular points. Let Ai• the vector field given by

                                    00
                         Aj = rsin pj -or + COS qj -o-t •

Then, the jacobian matrix at a singular point is

                         DAj(o,t)-Å}(6 :Ilbl/•)•

As a consequence, we have that (O,t) is a hyperbolic singular point of T'Aj if and only if
:a32Z9 lO. Moreover, (O,t) is of saddle type when ra2iZP, >Oand of node type when Ot", <O,

Lemma 5.4. Let w be a semi-homogeneous totally real differential n-form and p = O an
isolated singular point. Then z == eit is a root of the characteristic polynomial P. if and

only if (O, t) is a singular point of one of its polar linear forms. Moreover, it ts a simple

root if and only if (O, t) ts a hyperbolic singular point of such polar linear foTm.

Proof. In general, we have that 7r'dz = e'`(dT + irdt) and 7r'dr = e-"(dr - iTdt). In
particular, restricted to r = O, we get
                                             '             T'ci)(o,t) = (II.ll=, A,k(e`t)(eit)J'(e-`')""') dr" = p.(eit)drn.

  OR the other hand, by using the factor of T'di in the polar linear forms, we see that

                 T'cl>(O, t) = f(O, t) cos gi(O, t) ...cos {p.(O, t)dr",

which implies that

                  P.(e'`) == 2"f(O, t) cos {pi(O, t) ...cos (p.(O, t).

Thus, it is obvious that i == eit is a root of P. if and only if (O,t) is asingular point of

one of the polar linear forrns. •
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  Moreover, since P. is a homogeneous polynomial it is ea,sy to check that z is a simple
root if and only if iS,7(P.(e`t)) '7'E O. But if we differentiate in the above expression, we

arrlve to
                     5/ (p.(e2`)) = Å}2"f(o,t) 0o`Pti (o, t).

Therefore, it is a simple root if and only if (O,t) is a hyperbolic singular point, by the

Remark 5.5. Suppose that z= ei` is a root of the characteristic polynomial P.. By the
above lemma, (O,t) is asingular point of one the polar 1inear forms, that is, p2•(O,t) ==
T/2+gT, for some ]' E {1,...,n}, and q E Z. For each p E Z, ei(t+P'r) = Å}i is also a root

of P. and hence, there are j, E {1, . , . ,n}, and q, E Z such that pj,(O,t+pa) = 7r/2+q,T.

This implies that

                     (pj(O, t) - cpj,(O,t + pa) = (p - q,)T,

for any p E Z. But looking at the way that the imctions (pj are constructed, if this is
true for sorne point tE R, then it must be true for any t E R. Then, by taking derivatives
with respect to t,

                        ao9t7 (o,t) = 0ZiiJp (o,t+ p7r).

Thus, (O,t) is a singular point of T'Aj of saddle or node type if and only if (O,t+ pT) is a
singular point of 7r'Aj. of saddle or node type respectively. In conclusion, the singularity
type only depends on the direction determined by z = eit.

Definition 5.6. Let w be a totally real differential n-form with an isolated singular point

p. We say w is non degenerate at p if it is semi-homogeneous and the characteristic
polynomial has oRly simple roots.

Theorem 5.7. Letw be a totally real differential n-form with a non degenerate singular
pointp. Then,

                                     s+-s-
                         ind(w,p) =1 -• ,
                                        n
where S+ and S' denote the numbers of characteristic directions of saddle and node type
respectively.

Proof. Denote by S; and S,: the numbers of singular points of saddle and node type
respectively of the polar linear form T'Aji the interval [O,2Tn). Then,

                      nn                     2S,'• -2nS', 2S,: -2nS'.

                     J'--1 j=1
Remember that such points are given by the points (O,t) such that pj(O,t) = T/2 + qT,
withgE Z. Moreover, it is ofsaddle type when g2• is increasing at such point and of node
type when it is decreasing. This implies that

                     (pj(O,2Tn) - (pj(O,O) =: 7r(S,'• - Si• ),

for aJl j = 1,,..,n.
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   Now, by Corollary 4.3,

    md(cJ,p) -= li S., ei(O•2Tn,),,ii ei(O•O) = -ii ;.?, q'i(O•2Tn,),,;i gbj(O•O)

           == -lJ I;I,l.l?, CF'2(O,2Tn) -2.2Iin - <Pi(O,O) = 1 - li ;l.l?, {pJ(O,27rz),,;i soi(O,O)

           - i - ;i S) Sj" ,--. Si = , - s+ ili s- ,

                  a'=1

 since ip,•(O, t) =g- ej(O, t) and gj(O, t)= ip,•(O, t)+t. O
 Definition 5.8. Let w be a total!y real differential n-form with a non degenerate singular

 point p. By a sector we mean each one of the regions bounded by two consecutive
S characteristic directions Si and S2. We say a sector is

    (1) hyperbolic: if both Si and S2 are of saddle type;
    (2) parabolic: if one of Si and S2 is of saddle type and the other one is of node type;
    (3) etliptic: if both Si and S2 are of node type.

   Let S+ and S- denote the number of characteristic directions of saddle and node
 type respectively and let h and e denote the numbers of hyperbolic and elliptic sectors
 respectively. It is obvious that e-h = 2(S' -- S+). Thus, we get the following irnmediate

 consequence of Theorem 5.7, which generalizes the well known Bendixson formula for the
 index when n == 1.

 Corollary 5.9. Let cv be a totally real differential n-form with a non degenerate singular

 pointp. Then,

                                        e--h                           ind(W,P)=!+ 2n '

 where e and h are the numbers of elliptic and hyperbolic sectqrs respectively.

 Remark 5.10. When w has a non degenerate principal part, it is possible to improve
 the formula for the index given in Remark 3.3. Let Xi(r, t),...,X.(r, t) be unit vector
 fields along T on (-6,6) Å~ R which are pairwise linearly independent and solution of
 di(r, t)(X) == O. Moreover, we suppose that they are chosen so that

                  e,(o, t) < e2(o,t) < ••• < e.(o, t) < ei(o, t) + T,

                    -1
 where ej (r, t) denotes the determination of the angle of each vector field Xj (r, t). Note that

 for r = O, these vector fields are solution of an equation vvith homogeneous coethcients,

 which implies that

                           ei (o, T) = ei (o, o) + Tm,

 for seme mE Z and iE {1,...,n}. Then, it follows that

                                        i-1                           ind(w,p) =m+ .
                              -n
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          6. PHASE PORTRAIT OF NON DEGENERATE SINGULAR POINTS

  In general, the foliations of an n-form can present very complicated configurations
around a singular point. In the case that w has a non degenerate singuaar point, the
n foliations are obtained as the image of the integral curves of the polar 1inear forms
through the polar blow-up. Moreover, since the characteristic polynomial has oniy simple
roots, then the problem is simpler, because the polar 1inear forms only have singularities
of saddle or node type.

Definition 6.1. Let w be a totally real differential n-form with a non degenerate singular
point p. Let x be a point near p and let L one of the n leaves of the web passing through

x. We say that L is

   (1) hyperbolic: 'ifp is not an accumulation point of L;
   (2) parabolic: ifp is an accumulation point on just one side of L;
   (3) elliptic: if p is an accumulation point on beth sides of L.

  If the leaf L is hyperbolic (respectively parabolic, elliptic), then it corresponds to an
integral curve of one of the polam linear forms with a saddle-saddle (respectively saddle-
node, node-node) connection. In order to have a complete description, we need to know
how many sectors the leaf is going to pass through when cormecting the two singu!ar
directions (Figure 6.1).

Lemma 6.2. Let x be a point nenrp and let L be a hyperbolic leof through x connecting
two saddles. Assume that L passes through k sectors containing ni saddles and n2 nodes
(so that ni + n2 = k - 1?. Then,

                              k = n + 2n2.

Proof. Let R be the uLnion of the closed sectors that L passes trhough, which is bounded
by the two saddles Si and S2. Since R is simply connected, we can separate the web in R
inton foliations JFTi,...,X.. We wi11 assume that L is a}eaf of JPTi. Then JrTi also contains
the saddles Si, S2 and aH its other leaves of Jrri are also hyperbolic.

  Let .ITi be one of the other foliations, withi= 2,...,n. We can use the leaves of Jiito
define a contmuous map ipi : L - Si U S2. Given y E L, we take the leaf Li of ITi passing
through y. Because of transversality, either L{ intersects Si U S2 in a single point which
we define as ipi(y) or p is an accumulation point of Li, in which case we define dii(y) = p
(see Figure 2).
  Since the leaves of .li are disjoint, we have two possibilities: either ip,: i(p) is just one

point and X contains just one saddle, or ip,: i(p) is an interval, so that Fi contains one

node and two saddles (see Figure 3).
  Final!y, assume there are a foliations of the first type and b of the second type, with

a+b =n -- 1. Then, ni =a+2b and n2 =b, which gives the desired result. 0

Lemma 6.3. Let x be a point near p and let L be an elliptic leaf through x connecting
two nodes. Assume that L passes through k sectors containing ni saddles and n2 nodes
(so that ni +n2 =k- 1). Then,

                              k=n+2ni.

Proof. We assume that p=O and that w has the following principal part

                        wk = A8dzn + • • • + A# d7n,
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where A5• are homogeneous polynomiais of degree k.

which gives:
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We take now the inversion z = 1/w,
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and
                         Af(z) = Af(;il ) = i//i-Slll

Then we obtain that in ÅëN {O}, wk is equivalent to the differential form

                  ak = A6k(izT)th2ndwn + • • • + A#(iz7)w2ndiw17n).

Note that ak is also totally real with non degenerate principal part and the characteristic
polynomial has the same roots as wk, although the inversion transforms saddles into Rodes
and nodes into saddles. Moreover, elliptic leaves of the foliations of wk are transformed
into hyperbolic leaves of ak and vice versa. Thus, the result is a consequence of the above
lemma. In Figure 4 we present the result of takng the inversion of Figure 3.
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FIGURE 4

o
Lemma 6.4. Let x be a point nearp and let L be a parabolic leaf through x connecting a
saddle and a node. Assume that L passes through k sectors containing ni saddles and n2
nodes (so that ni + n2 = k -- 1?. Then,

                              k=1+2n2.

Proof. We follow asimilar argument to that of the proof of Lemma 6.2. We denote by
R the union of sectors containing the !eaf L, which is bounded by the saddle Si and the
node S2. Let JFi,...,1. be the n foliations determined by w in R so that L is a leaf of
.r7i.

  For each one of the foliations .77i, with i = 2, . . . ,n we have again two possibilities .as

listed in Figure 5. In one case JI i does not contain any characteristic diregtion, while in

the other cased it contains one saddle and one node. If we denote by a,b the number of
foliations of each type respectively, we have that a+b = n-1 and ni = n2 = b. Therefore,
we get k = 1 + 2n2.

                                                                     o
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Remark 6.5. 0nce we know how many directions of saddle or of node type we have, as
well as their relative position around the singular point p, the three above lemmas aJlow
us to complete the phase portrait of all the leaves of the n web determined by w. We call
this the phase portrait ofw at p. When n S 2, it is well known that this is enough for
topological classification, that is, if two differential n-forms have the same phase portrait

at a point, then they are locally topologically equivalent. For n }l 3, this is not true
anymore because the curvature of the web is a topological invariant.

          7. PHASE POIUI'RAITS NEAR HYPERBOLIC SINGULAR POINTS

  !n this section we give the Possible phase portraits of "generic" singular points of totaXLy

real differential n-forms.

Definition 7.1. We say that p is a hyperbolic singular point of a totally real differential
n-forrn w if it is simple and the characteristic polynomial P. has only simple roots.

Theo;em 7.2. Let p be a hzLperbolic singular point of a totally real differential n-form w
(n 2 2). Then, there are only three possible phase portraits of the foliations of tu around

p:

   (1) Type Di or le7non: there are n -- 1 directions of saddle type with hyperbolic leaves

      passing through n sectors.
   (2) Type D2 or monstar: there are n directions of saddle type and one of node types
      the hyperbolic leaves pass through n + 2 sectors, while the parabolic leaves pass
      through one sector.
   (3) Type D3 or star: there are n+ 1 diTections of saddle type w2'th hyperbolic leaves
      passing through n sectors.

Proof. Let S+ and S' be the numbers of clirections of saddle and node type respectively.
The sum S+ + S- is the total number of roots of the characteristic polynomial P., which
has degree n + 1. SinceShe roots are simple,

               OS si" +S- Sn+ 1, S' +S- =- n+1 mod 2.

  Assume that S+ + S-t=n+ 1. lf S' ) 2, then S+ S n-1 and by Theorem 5.7,

                ind (.,p) = 1 - S' - S- z ! - n-1 -2 = g.

                               n nn
This is not possible, by Corollary 4.5, since the index can only be Å}1/n. Thus, the only
possibilities are S+ == n+ 1, S- = O or S+ = n, S- = 1 which correspond to the types
D3 and D2 respectively. Note that the index in each case is -1/n or 1/n respectively.
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  Next case is S+ + S- =n- 1. As above, if we suppose that S- ) 1, then S+ Sn-2
and hence,
                             S+-S'- n-2-1 3                ind(W)P)=1- . 21- n =E'
The only possibility is S+ = n- 1, S- = O which correspond to the type Di and has
index 1/n.
  Finally, assume that S'+S- -< n-3. Then necessarily S- l) O, S' E{ n-3 and hence,

                             s+-s-                                          n-3-O 3                ind(w,p) =1 -- 21- =-•
                               n nn
Therefore, it is clear that there are no more possibilities.

  The discussion about the number of sectors of hyperbolic or parabolic leaves' is a con-

  The above classification in the case n = 2 gives the classification obtained by Darboux
for the curvature lines around generic umbMc points of an irpmersed surface in R3 (see
[1] and (121). A proof for the generaJ case of hyperbolic singralar points of quadratic forms
can found in [9].

Example 7.3. Consider wi = 7di" +zd7". By Theorem 4.3,

                      ind(wi,O) = - deg(7, O)/n = 1/n.

Moreover, the characteristic polynomial is

                     P.1 = 7z" + l=zn = 7z(zn-1 + -z=rn-1),

which has n -- 1 real simple roots. Thus, for aAy n, wi has a hyperbolic singular point of
type lemon or Di.
  Now, let w2,, == (iz - (1 + E)i7)dz" + (-i7 + (1 + 6)iz)(tZn, with 6 > O. ln this case, the

index is again 1/n and the chaxacteristic polynomial is

                P,e2,, = (iz -- (1 + E)i7)z" + (-i7 + (1 + E)iz)7n

                    = (il - i'z-)(ln + -z=i') + eiz7(zn-1 . -zpt;-1).

Given n, it follows that for E small enough, P,u,,, has exactly n+1 real simple roots. Then,

w2,, has a hyperbolic singular point of type monstar or D2.
  Finally, we consider w3 == zdi" +7d7n. The index is now -1/n and P,., = z"+i + =i"+i.
For any n, it has n+1simple real roots, so that w3 is of type star or D3.
  In Fig;ure 6, we can find pictures of the foliations for the three exarnples Di, D2, D3 in

the cases n = 2 (top) and n = 3 (bottom) obtained with Mathematica (Di and D3) and
with the program Homogeneous equations lines by A. Montesinos [16] (D2 with c = 1/2).

              8. HIGHER ORDER PRJNCIPAL LINES AND UMBILICS

  Let g : M - RN be a Coo immersion ef a surface M in Euclidean space RN. We
consider the distance squared unfolding D : RN Å~ M - RN Å~ R.given by

                   D(x,p) == (x, d.(p)) = (x, llllx - g(p)ll2)1''

                          'We use Thom-Boardman notation for singularities. Then, it follows that Åí2(D) is the
subset of RN Å~ M of pairs (x,p) such that the jacobian matrix of d. has kernel rank 2 at
p, which is nothing but the normal bundle of M in RN.
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  Assume IV = 3. Then Åí2•'(D) is the subset of Z2(D) given by pairs (x,p) such that the
hessian matrix of d. has kernel rank 1 at p. This is known as the focal set of M in R3 and

corresponds to the subset of pairs (x,p) such that x is a centre of principal curvature at
a non umbilic point p E M. Moreover, we can also consider the contact directions, which
are defined as the tangent directions X E T,M such that X E kerHess(d.),. When p is
not parabolic, then these contact direction correspond to the principal lines of M (when p
is parabolic, principal 1ines are in fact conta,ct directions of the height function, in which

case the sphere becomes a plane and x goes to infinity).

  By taking local coordinates u,v in an open subset U c M, it is possible to find the
differential equation of principal 1ines:

                         dv2 -dudv du2
                          E F G =O,
                          LMN
where E, F, G and L, M, ?V are respectively the coefficients of the first and second funda-
mental forms of M in R3. The singular points of this equation are the umbilic points of
M where the surface has a contact of type Åí2'2 with sorne sphere of R3 (if the umbilic

is non flat). However, fpr our purposes, it is better to consider the following equivalent
differential equation:

                 •1                     gl. g2. g3. 0 O
                     gl. g2. g3. 0 O
                     gluu g2.. g3.. E dv2 =o.
                     gl.. g2.. g3.. F -dudv
                     glvv g2.. g3.. G du2
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  This matrix <excluding the last column) was introduced in [8] to define the notion of ic-
rounding of an tmmersion g : A(I . RN. It is a higher order generalization of umbilic point

and for an appropriate choice of the ambient dimension N these points are generically
isolated.

  For instance, assume now that k = 3 and consider an immersion of a surface M in
R7. We define the third order contact directions as the tangeitt directions X E TpJ14 such
that X E kerJ3(d.), and (x,p) E Åí2'2'i(D). Here J3 is the operator defined in local

coordinates
                         '3(f)=(fffl.:'fff:..ue.V)

Note that f. = f. = f.. = f.. = f.. = O, this definition does Rot depend on the
coordinates.
  Note that we can do the same construction by taking the height function unfolding
H: S6 Å~M- S6 Å~R given by

                     H(v, p) = (v, h. @)) = (v, <v,g(p)>).

We also include in the above definition of third order contact drections those X E T,iN4
such that X E ker J3(h.), and (v,p) E Åí2,2•i(H).

  Assume that M is locally parameterized locally by a map g : U c R2 - R7. We use
the following notation: g.fi = <g.,gB> are the coefficients of the first fundamentaJ form

and
                         9aficr = <gae, g7> + (9afi)or•

Theorem 8.1. With the above notation, the differential eguation for the third order con-
tact diTections ts

 gl. •''
 gl. '''
gluu '''
g!uv •••
glvv '''

91uuu '''
g!uuv '''
gluvv '''
glvvv '''

g7.

 g7.

g7uu•

g7uv

97vv

g7uuu
g7uuv

g7uvv

g7trvv

o

o

Puu
9uv
9trv

9F. uu

9uuv
9uvv
qvvv

  o
  o
  o
  o
  o
 dv3
-' dudv2
du2dv

 -du3

=o.

Proof. Let X = ag. +bg. be a non-zero tangent vector at p with a,b E R. It follows from
the definition that X is a third order contact direction if and oniy if f. = f. = f.. --
fuv = fvv = O, (f.uu, f..., f..., f...) l O and

                      (lf:.:..:fi.k..")(z)-(go),

for either f = d. or f = h.. Note that this last equation is equivaJent to

                           fuuu b3
                                      "ab2                           fuuv                                 =A                                       a2b '                           fuvv
                           fvvv --a3
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for some A E R, A S O. In order to simplify the expressions we introduce the notation
aafi7, which are defined by

                           auuu b3
                           au.. -- ab2
                           a... a2b '
                                        3                           a... --a
Then we can express short!y our conditions by fa = faB = O and faz3-r = Aaax3-r•
  On the other hand, we recall that for f = d. we have

                         fa = =<ga , X - g> ,

                        fap = -<gap,X - g> + 9aB,

                       fafi7 == -(gafi7,X - 9> + Pafior,

while for f= h.,

                              fa = <ga,V>,

                             fafi = <gae,V>,

                            faficr = <9ath, V>•

  Assume we have a third order contact lme with f = d.. Then,

                 (,g9.a:", ,9,O.2,"., ..i)(X:,'g)==(8,)•

which implies that the matrix has deter][ninant equal to zero. For f = h. we take (v,O,A)
instead of (x - g, -1, A).

  Conversely, if the determinant of the matrix is zero, then there is (X, Y, Z) l O such

that
                  (,gg:as .p.2,e .Åío.)(g)=(go)

If Y 7E O, we take x = -X/Y+g and A = -Z/Y, which gives a third order contact line for
f = d.. Otherwise, Y = O implies, necessarily X l O so that we can define v == X/llXll

and A == Z. This gives athird order contact lme for f= h.. O
  We see that third order contact lines are defined by means of a cubic differential form
and can be interpreted as some kind of "third order principal clirections". The singular
points corresponds to the "third order umbilios" (that is, points p E M where g(M) has
a third order contact Åí2'2'? with some hypersphere or hyperplane of R7). In general, this

cubic differential form is not always totally real (as it happens with principal 1ines of a
surface in R3). However, 'in the case that it is, we find that for a generic immersion the

singularities are hyperbolic and the phase portrait of the 3-web is described in Theorem
7.2, in analogy with the 'classical Darbouxian classification of principal foliations near
generic umbdios.

Corollary 8.2. Let g : M - R7 be a generic immersion. Let p be a third order umbilic
such that the third ortler contact lines are defined by a totally real cubic differential form

nearp. Then, p ts hyperbolic in the sense ofDefinition 7.1.
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Proof. Given a map g : M - R7, we denote by 1'4g : M - J4(M, R7) its 4jet extension.
We aiso denote by U c J4(M, R7) with the fo!lowing property: p E M is a third order
umbilic of g if and only if 1'4g(p) E lt(. It follows that c U is an algebraic subset of
codimension 2 in J`(M, R7).
  We also denote by lxti the subset of Lt such that ]'4g(p) E ZIi if and only ifpis nota

simple singularity of the cubic differential form which defines third order contact lines.
Analogously, we define Zt(2 as the subset of U where the characteristic pelynomial of the
cubic differential form has not simple roots.
  In both cases, Ui is an algebraic subset of J4(M,R7) of codimension 3. In fact, the
equations ofU are functions which only depend on the derivatives ofg up to order 3, whilst
the equations of Lt(i involve in a non-trivial way the 4th order derivatives. This implies
that codimbli > codimor. The result follows now from Thom transversality theorem by

requesting transversality to both Ui and or2. 0
  This construction can be generalized easily to any k. We just need to consider an
immersion g : M - RN, with N = (k+2)2(k+i) - 3. TheR, the k-th order contact lines

are defined by means of a symmetric differential form of degree k, whose singularities
correspond to the k'-roundings of M in RN (see [8] for more details).
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