ZRRIBDFETRE & oM DT FIZE T 5058

15540060

Wk 15 SR~ 1T SEERA IR R wlBh &
GERHRE (O) HARRRES

¥Rk 1844 A

FrEfrEE A A

T B
BERFEFER R

B EAFHESEE

ARIARATGIA

206801853




LR E

TR 16 A, 16 F8, 1TFED IFRMIChl > THERERELZ PO L THERESL

[ ZAREOFERE L ETEB I DD 2 RMFOFR

DY & THEREREMBE (BEFE (C) 0EBE ST T, BIRELETLE. Z 2t

FOMEMEREZRETS.
TR 2k i
MRfEE KEER (M EKRFE¥ER - 237)
WRsEE FRARFE  FERFEPFE - #iR)
MRyHEE E#fEE (BEXRFEHRER - #2)
S WAk BHEM BEXRFERER - £32)
M BE BHXHE B ERFEERES - #R)
MESEE Tt S ERFEFER - BhER)
MELSBE ITE{EZ G ERFEEES - B1F)
AR ERR (SR : )
HEER HIERR a5
YRk 15 £ 1300, 000 0 1300, 000
gy 16 EBE 900, 000 0 900, 000
Ty 17T EE 1000, 000 0 1000, 000
KEt 3200, 000 0 3200, 000




MERER

B

R

YRGBV THRARRER U RS EE DR FRIEFICRR LI ERHERR T
UTDEEY THAD.

KAEER

{1] K. Mikami and T. Mizutani,
Foliations associated with Nambu-dacobi structures,
Tokyo Journal of Mathematics Vol. 28, 33-54, (2005).

[2] K. Mikami and T. Mizutani,
Integrability of plane fields defined by 2-vector fields,
International Journal of Mathematics, 16(2), 197-212, (2005 ).

[3] K. Mikami and T. Mizutani,
Lie Algebroid Associated with an Almost Dirac Structure,
Travaux mathematiques, Vol 16, 255-264, (2005).

[4] K. Mikami and T. Mizutani,
A Lie Algebroid and a Dirac structure associated to an Almost Dirac Structure,

~ (to appear).

(5] K. Mikami and T. Mizutani,
Lie algebroids associated with deformed Schouten bracket of 2-vector fields

(to appear)

RAF K

[1] K.Sakamoto,
Variational problems of normal curvature tensorand concircular scalar fields,
Tohoku Math.Journal., Vol 55, 207-254, (2003).



[2] T. Ohkubo and K. Sakamoto,
CR Einstein-Weyl structures,
Tsukuba J. Math. vol.29, 309—361, (2005).

REER

(1] M. Nagase,

Twistor spaces and the general adiabatic expansions,( preprint)

[2] M. Nagase,
On the trace and the infinitesimally deformed chiral anomaly of Dirac operators

on twistor spaces and the change of metrics on the base spaces,( preprint)

[3] M. Nagase,
On the infinitesimally deformed super chiral anomaly of Dirac operators and the

gauge transformation of twistor spaces, (preprint)

R

[1]T. Fukui and J. Weyman,
Cohen-Macaulay properties of Thom-Boardman strata II: The defining ideals of
ZAg,
Proceedings of London Mathematical Society, 87, 137-163, {2003}.

(2] T.. Fukui, K.. Kurdyka and L.. Paunescu,
An inverse mapping theorem for arc-analytic homeomorphism,
Geometric Singularity Theory (eds. Heisuke Hironaka, Stanislaw Janeczko,
Stanislaw Lojasiewicz),Banach Center Publications, 65, 49-56, {2004}.

[3]T. Fukui and J. Nuno Ballesteros
Isolated roundings and flattennings of submanifolds in euclidean space,
Tohoku Mathematical Journal, 57, 469-503, {2005}.



[4] T. Fukui and A. Khovanskii ,
Mapping degree and Euler characteristic,
Kodai Mathematical Journal, 29, 144-162, (2006}

B H S HE

[ 1] M.Ohkouchi and F.Sakai,
The gonality of singular plane curves
Tokyo J. Math. 27, 137-147, {2004}.

[ 2] M.Ohkouchi and F.Sakai,
The gonality of singular plane curves,
Tokyo J. Math. 27, 137-147, {2004}.

[3] Sakai,F. and Saleem,M,
Rational plane curves of type (d,d-2),
Saitama Math. J. 22, 11-34, {2004}.

Tt

[1] M. Hachimori and K. Shimokawa,
Tangle sum and constructible spheres,
J. Knot Theory Ramifications, 13, 373-383, {2004}.

[2] M. Brittenham, C. Hayashi, M. Hirasawa, T. Kobayashi and K. Shimokawa,
Essential laminations and branched surfaces in the exteriors of links,
Japan. J. Math., 31, 25-96, {2005}.



NERFEXR

YEMEHEICE O THRARRERCHRSBEIT > 12 HERE, HERRERED

ABRICE 2B L RERIILLTOEBY THD.

AKEBR

(1] #®EBB (Some properties of plane fields defined by 2-vector fields(joint work
with Kentaro Mikami) |

(ERE£# Geometry and Foliations Kyoto 2003) (200349 A 18 H)

[2) #EEEH [K7 Y%, Lie Algebroid (23 5 ZE8)
(Kwansai Seminar on Differential Analysis) (2004418 5 H,6 8,7 H)

[3] #7EREE  [Lie Algebroid associated with 2-vecor fields|

(EBE£&# Foliations 2005, Lodz Poland) (200546 A 18 H)

BRAF K

(1] #%EEE [(CR Einstein Weyl &2\ T
(FRES ay&s F o M{2004 49 8 11 A-12 B}

(2] #mEEE (EfERF VUCETAESBEICHOWVT]

(ML TdhR &L HEmOIERFAENT)) (2004 12 A 16 B-18 )

B

[1] :%&EBE  [Lower bounds for the gonality of singular plane curves]
(B AERESKEREHS, HILKE) (2005 F 9 A 22)

[2] #®EE  Lower bounds for the gonality of singular plane curves]
(rRoyn REHRR], PRKXF) (20054 12 5 20 A)



(3] #mEREE  [Rational plane curves of type $(d,d-2)$)) (M.Saleem, B UHE)
(BAMFRES, FEKR¥) (200438 298)

(4] 8B  [The gonality of singular plane curves]
(KFES, KHKF) (200346 12 8 4 H)
T

(1] :#®EE [Exceptional surgery and boundary slopes]
(rgES TR REEIF—) (2003 1 A6 1)

2] #EEB  (&E® Dehn surgery DWW < DD EEEIZ DV T
(LR BUB L SREDORM L% I} (200349 A 6 H}

[3] #®BEB  Tangle sum and constructible spheres]
(First KOOK Seminar International for Knot Theory and Related Topics)
(2004 7 A 10 B}
[4] :#®EB [Culler-Shalen theory and A-polynomials]
(AZERY~—8EI7)—) (2004 F8 A 6H)

BRARRIC L D TERAHEROHR - RERR

ML



B ZEER

WRARERCHRSBEZTNENORESTF TOFRLZITY, HERECHhrbD
WOT—<ICEA L THBIUSUTHREER, T TiE, WERREXE-REFLAL
BBIZOWTHND & LB, EFREFBICERLIZAN, RUBX E LTHA L ERER
LTWaH0, EFHBRTELR>TH A2 H00FXRL0O% S BEBFTHZ LT,

WRAREIZLD ZOHBOFREBDOBREILUTOLEY THD, ,

FE—OWEHMTIE, X7V BEECBILZRT VY - aREQ P—ZH L TEOEM
FHIRERHVERBEIC LT,

Oy, 1RxTaFxETrY— $HA0, H 1§ OBRIZIBSH THHOT 2KRTatETnTs—
$H 28 HEMICHBEL 228, B2 (R7yy - 7oy vaHEN §HA2$ OTé LTH
ABLDITEINI L DONH LM REERLREBEE LTLEY ST, HBonlmEo—
2L, TU37 Mg 3 KEBHRETLORRELZHIZTHLOOPIC, L<Hbhk) —HD
BZEMELTHONZLDOLRRDIBDOEBE LI L THD, ZORT VU EBHREDD
DYV T 4y 2 BREITLEL Hirsch BEE LTHLONTW DI -2TWVWD,
DFBOBFFRINTIVE TEIMLERMTA H 5 WIZEATFRNIBREV BIEA R LTV 5,

FEZOHRLAMCISNTE £F, BHYIEERE BLEDOL IR BERS bABICK
STHEBMToND2OD»EAER, ILKBARCKHIET IEBBEIC DWW TORELR/-,

q ROBEWY 2 v EEEIT BRESEX {fundamental identity} & FEIZN 5 q BRI
75 BIMEELFOLOL LTEREN, BEDOVYaIEZHREDH D HA~DIETH 5,
BS1# L T Leibniz algebroid (25§ L Tid Leibniz Algebras associated with foliations
{Kodai Math.Journalliz = DI R EERER LT,

BZOMELHMTIE, —BED 22T bE & Bholl &, TROERTHESHDORE
ZHENSFREEICOWTHRZIZENGIRUDE, ZHKEALTE, 2AvTy - 757y

b lr,n] E1RBHEFROT T 7y MIBET2ERNRBEEXEE T, BRLED, BF
R E
Integrability of Plane Field Defined by 2-vector fields(International J. of Math.)
IEEDT, LI, ZOBREEREMENBEAIZL 72 Dirac EOHRLTEL X
almost Dirac #51&(ZfTB 3 % Lie algebroid K U' Dirac#&IZ L CTHEkH 2ERMBHE S
hic, ZTRODHERIIERIE LTHERELTH D,



Ve

KEER
1 Lie algebroids associated with deformed Schouten bracket of
2-vector fields. (by K. Mikami and T. Mizutani)

2  Lie Algebroid Associated with an Almost Dirac Structure.
(by K. Mikami and T. Mizutani)

3 ALie algebroid and a Dirac structure associated to an almost
Dirac structure. (by K. Mikami and T. Mizutani)

LS
1 CR EINSTEIN-WEYL STRUCTURE (by T. Ohkubo and K. Sakamoto)

RHIER
1 Twistor spaces and the general adiabatic expansions (by M. Nagase)

2 On the trace and the infinitesimally deformed chiaral anomaly of Dirac operators

on twistor spaces and the change of metrics on the base spaces (by M. Nagase)

3 On the infinitesimally deformed super chiral anomaly of Dirac operators and the

gauge transformation of twistor spaces (by M. Nagase)

B HEOsk
1 ISOLATED SINGULARITIES OF BIANRY DIFFERENTIAL EQUATIONS OF
DEGREE n (by T. Fukui and N. Ballesteros)



Lie algebroids associated with deformed Schouten bracket of

2-vector fields
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Dep. of Computer Sci. and Engineering Department of Mathematics
Akita University Saitama University
Akita, 010-8502, Japan Saitama, 338-8570, Japan.
Abstract

Given a 2-vect6r field and a closed l-form on a manifold, we consider the set of
cotangent vectors which annihilate the deformed Schouten bracket of the 2-vector field
by the closed 1-form. We show that if the space of cotangent vectors forms a vector
bundle, it carries a structure of a Lie algebroid. We treat this theorem in the category of
Lie algebroids. As a special case, this result contains the well known fact that the 1-jet

bundle of functions of a contact manifold has a Lie algebroid structure.

1 Introduction

The Poisson bi-vector field on a Poisson manifold (M, ), defines a bundle morphism 7 :

T*(M) — T(M) which is given by a — 7(a,-). The image of % is called the characteristic
distribution of the Poisson structure 7. It is integrable and gives a generalized foliation of
M consisting of leaves with symplectic structure. Moreover, T*(M) has a structure of a Lie
algebroid which leads to the Poisson cohomology. One can naturally ask the condition for a
general 2-vector field 7 (not necessarily a Poisson), under which the image of 7 is integrable
and ask how special a Poisson bi-vector is. The condition for the integrability can well be

seen from the formula (see Section 3)

[m(a),7(B8)] = 7({e, B}) + %[W,W](a,ﬁ) for 1-forms « and 8



where {¢, 8} is the bracket on I'(T*(M)), and 7(a) means 7(a) in precise, but we often use
both notations interchangeably. The formula above says, if the Schouten bracket (7, 7] is in
the image of 7, the Frobenius condition are satisfied and the distribution is integrable (while
in the case of Poisson structure a fortior: |7, 7] = 0 holds). In [5], the authors considered the
condition that [r, ] is a image of a closed 3-form under the induced map of # and proved
T*(M) has a Lie algebroid structure which they call a twisted Poisson structure. Clearly, this
condition implies the integrability of the image of 7 by the above formula.

In our previous paper ([4]), we considered the space of cotangent vectors A = {a |
[7,7)(a,-,-) = 0} and proved A has a natural Lie algebroid structure (provided A is a vector
bundle of constant rank). In this paper, we generalize the discussion to the case of deformed
Schouten bracket (7, 7]® and show that the same result is obtained in this case too (Theorem
3.4). Also, we introduce the definition of a Jacobi-Lie algebroid. It is nothing but a Lie
algebroid equipped with a specified 1-cocycle. However, this definition is sometimes prefer-
able when we treat such objects formally. For example, one can define the homomorphims
between two Jacobi-Lie algebroids. In the next section, we recall some basics on the Lie
algebroids and the Schouten-Jacobi bracket. In section 3, we prove our main theorem and

give a computational example of the theorem.

2 Lie algebroids and Jacobi-Lie algebroids

In this section, we review some basic ingredients of Lie algebroids for later use and introduce,
the notion of a Jacobi-Lie algebroid. All manifolds and functions are assumed to be smooth

(C*°) throughout the paper.
Definition 2.1 A vector bundle £ over a manifold M is a Lie algebroid if
(a) the space of sections I'(L) is endowed with a Lie algebra bracket [-,-] over R

(b) there is given a bundle map a : £ — T(M) (called anchor) which induces a Lie algebra
homomorphism a : I'(£) = ['(T(M)), satisfying the condition

(X, fY] = (a(X),df)Y + f[X,Y], X, Y eT(L), f e C®(M).



Thus a Lie algebroid is a triple (£, [-,],a), however we often say £ a Lie algebroid when the
bracket and the anchor are understood. The most popular and important example of a Lie
algebroid is the tangent bundle with usual Lie bracket of vector fields. The cotangent bundle
of a Poisson manifold is another example of a Lie algebroid. There are many other examples
of Lie algebroids which are useful in geometry (see [1]).

Let L* be the dual vector bundle of £. We note that the anchor of £ induces a dual
morphism a* : T*(M) — L*.

The Lie algebra bracket on ['(£) and the action of a(X) on C*°(M) induces an ‘exterior
differential’ d; on I'(A*L*) defined by a well-known formula;

r

(dﬁw)(XOyle' .- )Xr) = Z(—1)1<d(UJ( ,Xiy" . ))7a(X1)>
1=0

+ > (D)X, X, Xy Xy,
1<J

wel(A™LY), Xo,...,Xr €T(L) .
For example,

(dcf, X) = (df a(X)) = (a*(df), X),  fE€T(A°L*)=C™(M), X eT(L) .
(deB)(X,Y) = (d(B(Y)), a(X)) - (d(B(X)),a(Y)) - (8,[X,Y])
= La(X)(:B(Y)) - La(Y)(ﬂ(X)) - (ﬂ! [Xv Y]): g€ F(AI‘C*)a X, Y € P(E) .

With this differential dz, I'(A®*L*) becomes a differential graded algebra and a* induces a
homomorphism of differential graded algebras I'(A*T*(M)) — I'(A*L*).
Conversely, the exterior differential dz on I'(A®L*) recovers the anchor and the Lie algebra
bracket on £, hence recovers the Lie algebroid structure of £ by the formulas
(a') (a(X),df) == (X,dcf),
(6) (X, Y], B) = (X,dc(B(Y))) ~ (Y, dc(B(X))) — (deB)(X,Y), (B € T(LY)).
In [3], the authors introduced the deformed ezterior differential and the Schouten-Jacobi

bracket on I'(A*L) deformed by a 1-cocycle ¢.

Definition 2.2 Let ¢ be a 1-cocycle in I'(A®*L*) with respect to dg, i.e., ¢ € T'(L*) and ¢



satisfies

(X, YY) = Lagxy (6(Y)) = Logry(8(X))

for X,Y € I'(£). The deformed exterior differential is defined by
dla=dea+dha, ael(A°LY). (2.1)
The operator d‘z satisfies
Podb =0, Carf)=dranB+(-)%ardiB-¢Aranp,

where |a| means the degree of o, namely, o € ['(Al®£*). On the other hand, (¢-deformed)

Schouten-Jacobi bracket [-,-]% is defined by

[P,Q]* = [P,Q] + (~1)PP(é) A (g—1)Q + (p — 1)P A Q(9), (2.2)
P eT(APL),Q € T(AIL) .

Here and hereafter, P(¢$) denotes the interior product (4P or ¢ 1P of ¢ and P. We use these

notations interchangeably.

This bracket on I'(A°L) shares similar properties with the usual Schouten-Nijenhuis
bracket. In our sign convention, formulas of calculation for [-,-]% are the following

(1) [X,Y])? = [X,Y] (Lie algebra bracket), for X,Y € I'(£)

(2) [PQ)?=~(~1)F- D[, P)?

3) [P[Q,R)?)® = [[P,Q]*, R)® + (-1)?P~D-1[Q, [P, R]*]® (super Jacobi identity)

4) [P,QARP =[P,QP AR+ (-1)P"VIQA[P,R]® + (-1)PP($) AQAR

(5) [f,P)¥ =-P(d%f), feC™(M)
where P € T(APL),Q € T(AIL), R e T(ATL).

For ¢ = 0, these are just the formulas for the Nijenhuis-Schouten bracket. The only
difference is that the deformed one does not satisfy the Leibniz property for the wedge product
(see (4) above). Since dﬁf in (5) above is defined by d¢cf + f¢ = a*(df) + f¢ in ['(L*), the
action of X € I'(£) on C®(M) through [-,-]? is given by X - f := [X, f]® = (a(X),df)+ f(X, $)
where (a(X), df) is the usual action of Lie algebroid through the anchor map. Putting f = 1,



we see that the 1-cocycle ¢ is recovered from the bracket since ¢(X) = [X,1]® = X - 1 holds.
The difference of the action of X on C*®°(M) from the usual derivation leads to the different
‘exterior differential’ and ‘Lie derivation’. The ¢-Lie derivative operator L? for ‘forms’ and

‘vectors’ are defined by

Lya=(dbix +ixdh)a=Lxa+ ¢(X)a (2.3)
L% P =[X,P}® = [X,P] - (p — 1)$(X)P (2.4)

respectively. Then we have the following list of formulas.

Le(anB) =LbanB+aALsB —dp(X)aAp (2.5)

LE(PAQ) =L4PAQ+PALLQ - ¢(X)PAQ (2.6)
L% (P(e)) =(L% P)(a) + P(L% @) + (la] = 1)$(X)P(a) (2.7)

Lé(((P)) =a(L% P) + (L% @)(P) + (p — 1)$(X)a(P) (28)

L%(P,Q)® =[L% P, Q) + [P, L%Q)* (2.9)

LY P =fLYP - X A P(dcf) (2.10)

Note that (2.7) or (2.8) tells us that Lf( does not commute with the contraction in general,

although Lx does.

Remark 2.1 Let ¢ be a usual closed 1-form on M. We can see a cue of defining of the
¢-deformed Schouten-Jacobi bracket [-,-]? in the following observatioh when £ = T(M). Let
¢ = df locally where f is a function on M. For a p-vector field P, we put P = e~(P-1fp,
Note that this assignment P — P is injective and it is the identity transformation on the

space of vector fields. If we compute [13, Q], we have e'@+q‘2)f[P, Q)¢

As we will see below, one of the advantage of introducing [-,-]® is that we can treat a
Jacobi structure on M as if it were a Poisson structure on M with respect to [-,-]%. It seems
natural here to generalize the Lie algebroid slightly, and introduce the notion of Jacobi-Lie
algebroid.

Let 7*M denote the bundle of 1-jets of functions on M. T*M has a natural projection

onto the bundle of 0-jets which is a trivial line bundle e = M xR. The kernel of the projection



is the cotangent bundle T*(M) and T*M = T*(M)®¢ by jlf — (dfz, f(z)). Let TM denote
the dual bundle and call it the eztended tangent bundle of M. The sections of T M form the
set of differential operators on C°(M) of order < 1. Geometrically, 7M can be identified
with the tangent bundle T(M x R) restricted to M x {0} (or to any level M x {t}). Then a

section X of 7 M is expressed as

0
=X i
X +)\aT

where X is a vector field on M lifted to M x R and -8—87_— = (%) is the tangent vector of R
0

at 0. From this view point, we may write 1-jet j! f as df + fd7, where dr is the dual of —.

-

i

X acts on C°(M) as a first order differential operator by
X-f=(X,5'f)=Lxf+\f

d
The commutator bracket of X = X + )\3; and Y=Y + ”56; in I'(7 M) as operators, is

X, Y] = [X 4 Agn, ¥ ] = (Y14 (X, d) = (V005

With this bracket on I'(7M) and the natural projection pr; : TM — T(M) as the anchor,
(TM,[-,-],pr1) is a Lie algebroid, and the action of X on f € C®°(M) here, is through the
vector field X. The difference between the two actions of X is the multiplication by A. The
map ¢ : X — A = X -1 can be considered as a 1-cocycle of the Lie algebroid 7M. Indeed

(dpo)(X,Y) = Lxp — Lyd — ¢o([X,Y]) = 0.

We call this cocycle ¢g of TM the canonical 1-cocycle.
Let (£,[-,-],a) be a Lie algebroid and ¢ any Lie algebroid-1-cocycle of £. Then we have a
a

bundle map @ : £ — T M defined by a(X) = a(X) + ¢(X)5T- € T(M)@e =TM. Using this

map, we formulate a Lie algebroid with specified 1-cocycle as follows.

Definition 2.3 A Jacobi-Lie algebroid over a manifold M is a triplet (£, [-,],&) of a vector
bundle £, a Lie algebra structure [-,-] on I'(£), and a bundle map @ of £ into TM (called

also anchor), satisfying



(1) (£, [,],pr1 ea) is a Lie algebroid over M,
and

(2) a induces a Lie algebra homomorphism from I'(£) into I'(T M).

Note that ¢ = a*(¢p) is a 1-cocycle of £. Conversely, if a Lie algebroid (£, [, ],a) has a
1-cocycle ¢, then the map @ : X — a(X) = a(X) + ¢(X)8—6—T is verified to be an anchor of
Jacobi-Lie algebroid. Indeed, for X,Y € I'(£), we have
_ a
3((X,Y]) = o(1X, Y]) + 91X, Y]) o~

= [a(X), a(¥)] + (a(X), d(6(Y )} ~ (a(¥), d(g(X)))) =

= [8(X) + (X) o, a(Y) + 9(¥) ~-] = [a(X),a(¥)],

(X, FY] = F[X, Y] + (a(X), df)Y

Since TM = T(M) @ €, we have an isomorphism APT M = APT(M) & AP"IT(M). Thus an
element P € I'(AP(7T M) is expressed also as a pair (P, P’) of p-vector field and (p — 1)-vector
field. The correspondence is given by P = P + 8—87 /\ P’ (P,P'). Similarly, an element
a=a+dr Ad € T(APT* M) is given as a pair (o, ) consisting of p-form and (p — 1)-form.
Especially, the canonical 1-cocycle ¢ is a pair (0,1) where 0 denotes the zero 1-form and 1

is a constant function. We sometimes adopt these notations.

Example 2.1 (Jacobi structure on M) Let 7 = (7, £) be an element in I'(A?7T M). With the

above notations, we have

[, 7]% = (7, £), (1, )] = [(m,€), (7, €)] + 2(igo (,€)) A (m,€)
= ([m,7],2¢, 7)) + (26 A7,0) = ([m, 7] + 2§ Am,2(¢, 7)) .

Thus [m, 7]% = 0 is equivalent to that (m,£) is a Jacobi structure. The differential d®° f is
(df, f) and ‘Hamiltonian vector field® w(d® f) of f is a pair (m(df) + f&, —(¢,(df))). The



bracket of functions f and g is given by

{£,9} = m(d™f,d"9) = LY 4 1 9 = Lintap)+se,~(car)) 9 + $o(m(d® ))g

In the case of contact structure, 7™ A€ is nowhere zero and the map f — n(df)+ f¢ is injective

from C°°(M) into I'(T(M)) and this vector field is called a contact Hamiltonian vector field.

€

3 Deformed bracket on 1-forms

Let £ be a Lie algebroid over a manifold M whose anchor is a : £ — T(M) . We fix a 1-
cocycle ¢ and consider ¢-deformed exterior differential dﬁ and ¢-deformed Schouten bracket
[,7]%. By an abuse of language, we call P € T'(APL) a p-vector field and o € T'(APL*) a
p-form. In this section, we prove our main theorem. Namely, we show that ([71', 7r]¢)0 has a
Lie algebroid structure (Theorem 3.4). (P° denotes the space of annihilating elements of P
in L£*.)

First we prove

Lemma 3.1 Let P € T'(APL),Q € I'(AL) be p-vector field and g-vector field, respectively.

For a 1-form «, the following equality holds;

[P,Q)*(a) = [P(a), Q)* + (~1)*"}[P,Q(a)]®
+(~1P(PAQ)(d%a) + (-1’1 P(dEa) AQ + (-1)PT'PAQ(dRa)  (3.1)

where for p < 1, we understand P(d‘za) = 0 and similarly for ¢ < 1, Q(d‘ﬁa) =0.

This immediately shows the following

Corollary 3.2 For a 2-vector field 7 and a 1-form a, we have
1
[7(a),7]® = 2(7r A 7r)(d¢a + [7r )% (a) + W(dd’a)

Proof of Lemma 3.1: In the case ¢ = 0, the proof is seen in [4]. For general ¢, we recall

the defining equation (2.1) d¢a =dcat+dAaof d¢ and the equatlon (2.2) of [,-]*. Using



these formulas, we can check that the terms containing ¢ are equal on both sides in (3.1).

Consequently, the equality is valid for general Schouten-Jacobi bracket. )

Given a 2-vector field 7 € I'(A%2£) and a l-cocycle ¢, we define a bracket on 1-forms as

follows.
{0, B} = L% B~ LYy a—di(n(e, ), e BeT(L). (3.2)
Since d‘ﬁ(w(a, B)) = Lf:(a)ﬁ - iw(a)dﬁﬂ, we have another expression
{0} = in(a) 028 — Lyzer - (3.3)

This bracket is not a Lie algebra bracket in general. The following formula is useful in our

computations.

Lemma 3.3 For a 2-vector field 7, the following equality holds:
1
[r(a), 7(B)}* = n({a, B}%) + 5[7r,7r]¢(a,ﬂ) : (3.4)

Proof When £ = T(M) and ¢ = 0, the above equation is already known in [4]. Since
{e,8)2 = in(a)d(zﬁ - Li(ﬂ) a, we have

m({a, B}2) = 7(in(a)d2B) — 7(LE 4 @)
= T(in(a)d28) + [r(0), 7(B)]* + [T(B), 7]*(a) . (3.5)

Here, we used a general formula
L% (P(a)) = (L% P)(e) + P(L% a) + (ol = 1)$(X)P(a)
for X = n(B) and P = . By Corollary 3.2, (3.5) is followed by

rlis(a)@26) + [r(e), TP - 5l 7I¢(e, B) = (n(a) A m)(d2B) + m(d2B)m ()

= [n(a), ()] -

P =~

[, 7l']d’(a’ B) -



Here we used the identity
T(in(a)d28) — (w(@) A m)(d%B) + m(d%B)m(a) = 0
which can be verified by putting d‘ﬁﬂ = 01 A 6, if necessary, where 6,8, € T'(L). a

Remark 3.1 Since [X,Y]? = [X,Y] for each 1-vector fields, the Lemma above means, for a

2-vector field 7, the following equality holds:
1
[7(e), 7(B)] = n({e, B}2) + 5lm, 7)* (e, B) - (36)

Theorem 3.4 Let (£,[-,-],a) be a Lie algebroid over a manifold M and ¢ be a l-cocycle.
That is, £ has a Jacobi-Lie algebroid structure with anchora : £ - TM, X — a(X)+¢(X)a‘9—T
Let 7 be an arbitrary 2-field of £, that is # € ['(A?L). Suppose that the rank of [r,7]? is

constant. Then the sub-bundle ([r, 7]?)? is a Jacobi-Lie algebroid with respect to the bracket

{0, 8Y% = LE )8 — Ly gy — d2(x(e, 8)
and the anchor is given by the composition of @ and 7 restricted to ([, 7]%)°

Corollary 3.5 H = a o #(([r,7]?)?) is an integrable distribution.

Proof of Theorem3.4: First we show the space of sections of ([r, 7]?)? is closed under the
bracket { , }%. Let 1-forms « and 3 be sections of ([, 7]%)° so that a_l[r, 7| = B_[r,n]¢ =

In order to prove {a,ﬁ}ﬁ _I[r,x]® =0, we use Corollary 3.2 again. It says
5 (e B} i, ml® = [i({e, B}2), 7] + S (e, 8)2) (A ) — w(d? {a B}
in general. By the same formula, « and J satisfy

[#(e), ]¢+ (d2a) J(n A ) = m(dba)r =0
and

(7(8),71? + 5(d28) I (x A ) — n(d2B)m = 0.
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Since fr({a,ﬁ}f) = [#(a),#(3)]? and {a,B}? = W(Q)B qu )% dﬁw(a,ﬁ), we have

5 {0 BY% i, ]
—[[#(a), #(B)]%, 7] + % (LE@yd28 - L gdba) Jn? = (LE d26 - L2y dta) =
=), 60 w1¢1¢+u~ () 7l?, HO)
( 2 oy B8 — L gdba) dm? = (L2 a6 — L2 g dba) m
=L% <_-(dﬁﬁ)_m +7r(d‘;;ﬁ)7r> - L, (——(dﬁa)_m +n(dﬁa)w)
Ldba) dn? = (LE 28~ L%y dia)

( W(a)dfl'ﬁ L¢
< 7r(a)d'j’ ) n? - —dd’B.JL‘ﬁ 7r2 - —¢(7r(a))d¢ﬁ_m
?

L
o) (2B)T + (L2 (d28)m + w(d"’mL

d‘za)_lyrQ.;.-;-d‘f:a_JL?( )7r + qS d¢a_J7r

+ 4+
/h\ Mlb——‘A t\DIb—dl\.’H)—l

(ﬁ)w)(dﬁa)w - W(Lg(ﬁ)(dﬁa))w - 7r(d¢a) 70T
L )d‘éﬁ— Lﬁ(ﬁ)d‘za) 72— ( (a )d‘f:ﬁ L‘f’ )d'f:a> T
428 L™ + (LM (@200 + m(dZB) LY,

#(a)

+

+
MlH[\Dl’—‘MlHM]H
Y

a_JL;.’:(ﬂ)ﬂ'? - (L (ﬂ)ﬂ")(d‘za T — w(d‘za)Lv.r(ﬁ)W

(a))dlp 1n? + ¢(( B))dla It .

’:}7

The sum of the 2nd and 5th term of the very right hand side of the equations above is zero

as we see from the assumption

m)(d2B)T = (LY 5y m)(dfc)m
=<—§dﬁﬁ_1d?3am +r(dRa)m(d20))m ~ (- ydbo 1d28_In* + n(dEp)m(db))m

=0
and also from the assumption the sum of 3rd term and 6th term becomes

~sr(d2p)dba in? + Sn(dta)d2B In®

11



Thus,

{o BY2 [, 7]

= — 28 1(2[7 (), 7® Am = p(7())7?) + dha J (2[7(B), 7] A - (%(ﬁ))vrz)
— n(d}B)dba in? + n(dha)dlB In? — (F()dEB I + $(7(B))dfar

=d?B 1 ((dfa Jn?) Am - 2m(da)r ) dha I ((d2B I A - 2m(dEB)n )
— n(dfB)dba In® + n(dGa)d}p ]

=d%f _| ((d‘za_lvrz) mr) - w(d‘};a)(dﬂ’ﬁ_m ) - dla_ ((dﬁﬁ_m?) /\7r)
+ m(dpB)(dfa In?) .

We claim that the above is identically zero. To prove this, it suffices to verify in the case
when d‘za =0, Afy and d‘zﬁ =m A no. By a direct and lengthy computation, we can verify
that the above actually vanishes.

Proof of the Jacobi identity: Let o, 3,7 € ([r,7]?)%. Using the definition of the bracket,

we see that

{aa{ﬁx7}$}$ = Jd”{ﬁ,')’}d) L-({B }¢)
- <°>{ﬁ’7}¢ TE(F(@) B = L5y

using Lemma 3.3
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= ¢ (7? p) ddty - L2, )ﬁ) ~d? (ir(a)_l(ﬁ(ﬁ)_ld‘zv—L;.fw)v))
L[ #B),7 (7)]‘”a
= L2 (L 7(8) 7)) = Loy Ly
~d? (#(a) J7(8) Jdﬁ”"”(a)—mwﬂ) = Ll ®
= Linli (ﬁﬂ L a)dﬁ(”(ﬁ’ M) = L Lim?
( (8) gy = 7(e) ILG 57 ) L) n1e®
= Lialip- Lw(a) LB = Liso) aimpe
—d} (L2 (x(8,7) + 7 )m( ) ddfy — 7(a) I 47)
= Lo LieT — Ll — L ame®
~d} (#(a) Jdh(n(8,7) + F(a )—lvr(ﬁ)-!d‘f;v
—(a) J7() Jdby — (a) JdLF(B) J))

— ¢ @ _r¢ @ e
= Liwlig? = LiwbimP ~ Lag s ©
and so we have
$\P 19 _
St = 8 ((L"<°>L”<ﬂ)7 L)L = [ir(ﬁ),v‘r(‘r)]"a) =0

using L‘f( o Lif, - L‘f, o L‘i, = LE’;{ yjs OB T'(A®L*) for each vector fields X and Y, which is true
by virtue of the closedness of ¢.

The anchor for Lie algebroid: Since

L%(£8) = (L4 H)B+ FLEB — (¢, X) FB
LYya = fLYa+ (X Ja)d.f

we have

{a, £BYS =(LE 0y 1B+ FLE 0B — (&, (@) fB = (FLE 5y + (7(B)) J)dc f
- (fdl:(ﬂ’(av IB)) + "T(a)ﬁ)dﬁf - f7r(a, ﬁ)(p)
=f{a, B}¢ + Rest,

where
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Rest =(L%, ) f)B — (¢, 7(a)) B — (#(B) Ja)dc f — (w(a, Bdc f ~ fr(a, B)9)
=(#(a), dc f)B = (a(#(a), df)B .

Thus, we have
{o, 1B} =F{a, B} + (a(7(e)), df)B .

This shows a o 7 is the anchor for Lie algebroid (([r,7]%)°, {-,-}).
Corresponding 1-cocycle: We will verify ¢ o 7 is a 1-cocycle on (([r, 7]®)°, {, },,,a o)

Put here ¢ o & by ¢. We have to show
p({a, BY2) = Ly (¢(8)) = Ly(py(9(@))  for each o, B € ([m, 7]%)° .
The right hand side is reduced as
RHS =Lg(#(a)) (¢7(B)) — Laa()) (67 () = ([T (), 7(B)])
because of ¢ being closed. Concerning to the left hand side, we have

LHS =(¢ o 7){e, B}7
=([F(), #(8)] - 5[ W*(e, 0)  using (36)

because of «, 3 € ([m,7]?)°. Thus we have checked the equality of the both sides, and @ o 7
is the anchor for the Jacobi-Lie algebroid. 0o

Remark 3.2 In the proof above, we see that if ¢ is exact, then the corresponding 1-cocycle
is also exact. In fact, assume ¢ = d.f for some f, i.e., (¢, X) = (dof, X) = (df,a(X)) for
each X € I'(£). Then, we have (p, a) = (¢7, @) = (¢, T()) = (df, a(7(a))).
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3.1 An example

We show an example on the 5-dimensional Euclidean space R® with the Cartesian coordinates
(z!,..., %), which tell us some difference between ordinary bracket and the deformed one.

Since the space is simply connected every closed 1-form is exact, and every closed 1-form ¢

of

is of form ¢ = df = Z 3f dr? = Z de:v’ for some function f, where f; = 3a7

Take the frame ﬁeld {Zy,.. Z5} defined by

3] z? 9 ] zl o
5T BT AT e

d zt 9 0 z3 9 0
B=gm 5o L gt e BT

Then, Zs is a central element and the bracket relations are given by
(Z),2,) = =22, 2)) = |23, Z4) = —[Z4, 23] = Zs

and all the other brackets vanish.

Let us consider a 2-vector field =:

r=aRZIAZy+aBZiAZ3+a®Zi AN Zs+aBZy A Z3 +a®Zo A Zs +a®® Z5 A Zg

where {a*} are constant. The rank of 7 is 4 if and only if A := a'2a3® — a!3a® + a'%a® # 0.

Hereafter, we assume that 7 is of rank 4. We have the following calculation:

[71',7!'] =2q!? (ale ANZy+ 0,1321 ANZ3+ a23Z2 A Zg) A Zy

—9g12 (a12i/\_i?+a13_a_/\ 9 +a23_6_/\i> /\_3_

ox! Oz ox!  Oz3 0z?  0zx3 ox’
and
1,1 )
5[7!',7(] =§[7r,7r]+7r(¢)/\7r
_—fsAa 362/\53_+( 212+fA)6 362/\53._5’
3 0 0 0 0 3]
+(1213 fA) 83 65+(1223+fA) 63/\$

These equations above imply that [r, 7] = 0 if and only if a'? = 0, and [, 7]® = [, 7] if and
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only if ¢ = df with f; = fo = f3 = fs = 0 for some function f, and [, 7]® = 0 if and only if

1 1 1
fi= —Eana% , fa= Zawals , fa= __A__alzam , fs=0. (3.7)
Now, we consider the following special cases.
(Case 1) If a!? = 0 and A # 0, then {7, 7] = 0, and so [r, 71]° is the whole cotangent bundle
of R® and dimﬁ'([7r,7r]0) =4, fr([7r,7r]0) = Im7. Choose ¢ = df with fi # 0 and fo = f3 =0.
Then ([r, 7]?)® is spanned by ¢ and dz*. #(([r,7]?)%) is spanned by

4 4
#df) =fo( G0 — a¥) o + (S0 = a®) 0

1 2 4
13 T 23 _T° 13 35 9 T 13 15 o
+<fla +f5(2a 2a ¢ )) 81‘3 f1(20. a )65135

and we see that this does never vanish from the assumption A # 0. Thus, #(([r, 7]?)°) is of
dimension 1.
(Case 2) Assume a'? # 0 and A # 0. For example, choose a!? = a¥ = 1,a!3 = 023 = 0.

Then |r,7] = 2— 0 0 and so [m,7]° is spanned by dz® and dz*. Thus, #([x,]%)

AD
dr! 61:2 drd
is spanned by —ag and dim #([r,7]°) = 1. According to the condition (3.7), if we choose
fi=fo=0, f3 =1and fs = 0 then [r,7]® = 0 and so ([r,7]?)? is the whole cotangent
bundle and #(([r, 7]?)%) = Im7 is of dimension 4, which is spanned by Z,, Z5, Z3, Zs.

If we choose f; # —a'2a®/A, (ie., f # O right now), fo = fs = 0, and f3 = 1, then

[z, 7] = 2f; 662 A 663 A i # 0. ([7,7]%)? is spanned by dz' and dz?. Since 7(dz') =
% 5,2, 9 = (. 4) — ~ 610y ; ; :

322 +(a™ + —2—)% and 7r(d:1: ) = 0, we see that 7(([r, 7]?)°) is 1-dimensional.
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Lie Algebroid Associated with an Almost Dirac Structure

Kentaro Mikami and Tadayoshi Mizutani

Abstract

We show that to an almost Dirac structure of a manifold, there asso-
ciates a Lie algebroid. In the case of a Poisson manifold, this Lie algebroid
coincides with the usual cotangent Lie algebroid with Lie algebra bracket
on the space of one-forms.

1 Introduction

Let m be an arbitrary 2-vector field on M, i.e. a smooth section of A2(TM). We
denote by , the bundle homomorphism T*M — TM defined by o, — m(ag,")
(z € M). By an abuse of notations, we denote by the same letter 7, the homo-
morphism T'(T*M) — I'(TM) between sections. For the Schouten bracket [r, ]
of 7, which is a 3-vector field, we define ker[r, 7] = {a € T*M | [, 7](c, -,-) = 0}.
If ker[m, 7] forms a bundle of constant rank, it was proved in [7] that ker[r, ]
becomes a Lie algebroid with respect to the bracket Liq)8 — Lzgyo — d(7(c, B))
and the anchor p(a) = #(a). Clearly, it coincides with the usual Lie algebroid
structure of T*M of a Poisson manifold (M, 7), where [r,7] = 0. On the other
hand, the graph of © : T*M — TM defines a sub-bundle of TM & T*M, which
is an almost Dirac structure (see Section 1), and ker[r, 7] can be identified with
a subset of this almost Dirac structure. The aim of this paper is, generalizing the
above result, to show that a certain sub-bundle L, of an almost Dirac structure
is a Lie algebroid with respect to the bracket and the anchor, which are natu-
rally defined on the almost Dirac structure (Theorem 2.1). The sub-bundle £, is
given as the kernel of the 3-tensor field T restricted to the almost Dirac structure,
introduced in [1] (see Definition 2.2).

In Section 1, we review some basic facts on Dirac structures and prove that £,
is a Lie algebroid. In Section 2, in order to clarify the conditions under which an
element belongs to ker 7', we use the description of an almost Dirac structure by
means of a “2-vector field on a sub-bundle of T*M”. In Section 3, we give a ‘dual’
description of Dirac structures in which we use “2-forms” defined on a sub-bundle
of TM. We also give simple examples.

It is possible to generalize our result in the case of deformed bracket in [4] or
(3], and also seems highly possible in the case of the twisted Poisson structures
(8]. However, we restricted ourselves to the case of the ordinary Dirac structures
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in order to make the arguments and the computations clear. We hope interesting
examples will come about from the further generalizations.

2 Dirac Structures

Let T(M) and T*(M) be the tangent and the cotangent bundle of M, respectively.
Let (-, )+ be the symmetric pairing on T(M) @ T*(M) defined by

(Xzy 0z), Yoy Bo))+ = 0a(Ya) + Ba(Ya), (X, ), (Ya, Bs) € ToM & TE M.

Definition 2.1 (T. Courant). A smooth sub-bundle £ C T(M) & T*(M) is
an almost Dirac structure if £ is maximally isotropic with respect to the pairing
{-,-Y+. This means £ is a sub-bundle of rank n(= dim M) and the restriction of
{;-)+ to £ x L vanishes identically.

Remark 2.1. In [1], an almost Dirac structure is called a Dirac structure, however
we use the word Dirac structure to mean the one which was called an integrable
Dirac structure in {1].

On I' (T(M) @ T*(M)), we have a bracket defined by
(2.1) _

1
[(X1,01), (X2, 00)] = ([Xth]_ » Lx,a2 — Lx,01 + §d (u(Xz) = aZ(Xl)))
where [ X7, X5| is the usual Lie bracket of vector fields and Lx« is the Lie derivative
of 1-form o« with respect to the vector field X.

The bracket [(X3, 1), (Xa, )] is skew-symmetric but does not satisfy the
Jacobi identity. Indeed, let (Ji, J2) denote the Jacobiator

(Jl, J2) = M(Xl, a1)7 (X2) aé)]) (X37 a3)E +C.p. .
Clearly J; = 0. As for Js, however, we have

Proposition 2.1. The second component Jy lof the above Jacobiator is given by

Iy = id (200 (e, Xal) + L, (02(Xs) = 0(2)) + .

Especially, the restriction of Jy to an almost Dirac structure L is
1
Ed(al([Xg, Xg]) + LX1 (a2(X3))) + c.p..

Proof. This is shown _directly from the definitions of (-,-)s and [-, ] O

Definition 2.2. An almost Dirac structure £ is called a(n) (integrable) Dirac
structure if I'(L) is closed under the bracket [-,-].
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In [1], Courant introduced the R-tri-linear map on T(M) & T*(M) to R
defined by T((Xh al)) (X27 0‘2)’ (X3’ 013)) = ({[(XI’ al): (X27 0‘2)]]7 (X31 a3)>+ for
(Xi,05) € T(M)®T*(M) (i = 1,2,3), and showed that an almost Dirac structure
is integrable if and only if T restricted to £ vanishes: T|; = 0. We note that the
restriction T'|; has the tensor property. That is T'| is tri-linear over C°(M).

Proposition 2.2. Let £ be an almost Dirac structure. Then T|z, T restricted to
L, is computed as

T (X1, o), (X2, o), (X3, 03)) = (01 ([X2, X3]) + Lx, (22(X3))) + c.p.

and

Jolc (X1, en), (X, 09), (X3, 03)) = -;-d (Tl (X1, o), (X, 02), (X3, 03))) -
Proof. On L, we have |

([(X1, 01), (X2, 00)], (X3, c3))+
= (Lx,00)(Xs) = (By0) (Xs) = 5 Lxa(0a(X0) = e (30)) + (X1, X))
= Lx, (@2(X3)) — 0a([X1, Xs]) — Lix, (01 (X3)) + 01 ([ X2, X5])
— Ly, (02(X1)) + o3([ X1, Xa]).-
This together with Proposition 2.1 shows Proposition 2.2. o O

Let £ be an almost Dirac structure. We consider the ‘sub-bundle’ £, of £
consisting of the elements in ker T'|.. More precisely, we put

‘£0={e=(Z,7) €L | T(er,ez,€) =0, ey,e2 € L}.

Since T restricted to L, is skew-symmetric with respect to all the arguments, Lo
can be considered as the kernel of the bundle map T : £ — A2L*, e — T(-,-, ).
Since the fiber dimension of £y may change from point to point, to get a Lie
algebroid, we have to restrict £y to a submanifold of M where L is of constant
rank. Hereafter, for simplicity, we assume that L is a bundle of constant rank on
whole M. The following proposition is obvious from Proposition 2.2.

Proposition 2.3. If one of e, es,e3 in I'(L) is an element in T'(Ly), we have the
Jacobi identity: ‘

|[[[el, 62}], 6.3]] + M@z, 63]}, 61]]_ + M63, 61]], 62]} =0.

The following proposition is used to show that £, is closed under the bracket

II., ]]
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Proposition 2.4. For e = (Z,7) € T'(Ly) and e; = (Y,0) € I'(L), we have
le,el] € T(L).

Proof. Since T restricted to £ is skew symmetric, we have ([e, e1], ea)+ =T'(e, e1, €3)
=T'(e1, e2,€) = 0, for any e, e; € I'(L). By the maximality of £, we can conclude
[e, e:] is in T'(L). : a

By the above propositions, we obtain the following theorem.

Theorem 2.1. Let L be an almost Dirac structure and Ly the kernel of T, which
we assume a sub-bundle of L. Then Ly is a Lie algebroid with respect to the bracket
[-,-] and the anchor pr,, which is the natural projection p : T(M) & T*(M) —
T(M) restricted to L. :

Proof. Let ey, e; be two elements of T'(Ly). Then for any e3 and e, in T'(L), we
have :

~T(l[61, 62]]7 €3, 64) = <Mela 62]]7 63115 64)+ = <M€1, 63]]7 62]] + ‘[el, ‘162: 63]]]: 64)+
= T(l[el, 63]], €q, 64) + T(el, '[82, 63]]-, 64) =0.

The second equality holds because of the Jacobi identity (Proposition 2.3) for
e1,e2,e3 and the last one is true because [es, €3], [es, €3] are both in I'(£) by
Proposition 2.4. This shows that I'(Lg) is closed under the bracket. Since the
Jacobi identity is obvious for the elements in I'(Lo)(Proposition 2.3), [, -] is a Lie
algebra bracket on I'(Ly). That pg, satisfies the condition of an anchor map is
also verified directly from the definition (2.1) of [, ]. O

3 An alternative description of a Dirac structure

In this section and the next, we give alternative descriptions of an almost Dirac
structure and give more explicit conditions for an element in £ to be in the kernel
of 3-tensor T .

Let £ be an almost Dirac structure on M and p. and p}. denote the restriction
of the natural projections T(M)@T*(M) — T(M) and T(M)dT* (M) — T*(M)
to L, respectively. We put £ = Imp, and A = Imp}.. As was remarked before, the
fiber rank of £ as well as A, may not be constant. To justify our computations
we only treat the case when £ and A are bunldes of constant rank.

Take an element o € A, (the fiber over € M ), then for some X € T(M),
(X, ) lies in £. That L is isotropic implies that the restriction X|4, of X con-
sidered as an element in A% (dual space) depends only on o and we obtain an
well-defined fiber map « : 4 — A* (see [1]). We may consider 7 as a ‘2-vector
field’ defined on (each fiber of) A. It is skew-symmetric since for o, 8 € A, we
have

m(a,B) = X(B) = -Y(a) = —n(B, ), where (Y,8) € L.
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From the sub-bundle .4 = Imp} and a skew-symmetric 2-field 7 on .4, we can
tecover L as a bundle given by

L={(X,0ecT(M)eT(M)| 0cA 76 = X|).

Indeed it is easy to see that L' is a vector bundle of rank n(= dim M). That £’
is isotropic with respect to (-,-); follows from the skewness of . If (X', o) € L,
we see

(X',a),(X,0))y =a'(X) +0(X") ==(8, ) + 6(X)
=—7(c,0) +0(X')=-X'"0) +0(X') =0

for (X, 0) € £'. This together with the maximality of £ implies £ = £'.

Now we are going to characterize the element of £y in terms of 7 and A,
where Ly is the sub-bundle ker T'|; of £. First, we observe that .A* is a quotient
bundle of T(M) by the sub-bundle A°, where A° is the bundle consisting of the
annihilators of A. = is an element A2A*, however we choose and fix a splitting
to the projection T(M) — A*, and consider A* as a direct summand of T(M),
obtaining a 2-vector field which extends m. This is possible since we are assuming
A is of constant rank. We denote this extended 2-vector field by the same letter
m, since we hope this will not cause any confusion. Then L is given by

(1) L={(X,0) | a € Ai(a)=X[}={F#0)+X,0) | a€AXecA).

For e; = (X, a),es = (Y, ) and e3 = (Z,7) in L, we look for the condition on
e3 under which T'(e,eq,e3) = 0 holds for all e;,ex € L. We can write e =
(F(a) + X,a),es = (#(B) +Y,B) and e3 = (7(y) + Z,7), respectively, where
X,Y,Z € A°. With these notations, we have . '

[(X,0), (v, 8)] = ([(a) 7(6)] + [7(0), V] + (X, #(6)] + (X, 7],
L,—,(a),@ + L,—,(ﬁ)a — d(ﬂ‘(a, ,6)) +LgpB— L;%a) .

Writing {a, 8}r for Lia)B — Lz(sya — d(7 (e, 8)) and making the pairing (-, -) 4 of
the above element and (Z,v) = (#(vy) + Z,7), we obtain

(32)  [7(a), (BI(Y) + [7(@), Y](v) + [X, #(B)](7) + [X, Y](7)
+ 7T(’7a {Ol, :B}r) + Z({an@}w) + 7‘-(’77 L)—(:B - L)'/Ot) + Z(LX':B - LYOZ),

which is nothing but T'(ey, €3, 63).;
If we choose X =Y = 0, then (3.2) gives

(3.3) [7(e), #(B]() + (7, {0 }x) + Z({e, B}4) = 0,
for a, 0 € A. We put Y =0 and a=0in (3.2), we obtain
(3.4) (X, 7(B)](7) + n(v,LxB) + Z(LgB) =0, X e A, feA
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If we put @ = 8 = 0 into (3.2), we get y([X,Y]) =0 (X,Y € A°). It is easy to
see that this is equivalent to

(3.5) : Lyye A, X e A.

Conversely, it can also be seen that if (Z,v) = (7(y) + Z, ) satisfies conditions
(3.3), (3.4) and (3.5) then (3.2) vanishes identically.-

In the following; we will simplify the conditions (3.3) and (3.4). First, we note
(3.4) is equivalent to the following: -

(Lxm)(B,7) +m(LxB,7) + (v, LxB) + Lx(Z(8)) — [X, Z](B) = 0.
Since Z(B) = O; this means
(3.6) (L;;(w)('y) +LgxZ =0, onA.
To simplify the condition (3.3), we use the following
Lemma 3.1. For Z € A° and o, 8 € A, we have
| 2l ) = Z({e, B
Proof. By the definition of {a, 8}, we have

Z({a, B}a) :(L*(G)IB)(Z) - (Lﬁ(ﬁ)‘a)(z) — Lz(m(e, B))
=L7-"(a) (,B(Z)) - ﬁ(Lir(a) Z) - L,}(ﬁ) (O{(Z))
+a(LigZ) — Lz(r(a, B))
(since a(Z)=6(Z)=0) : .
- =—a(Lz(7(B))) — T()(LzB)
= a([Z’ 7ﬂ)(ﬂ)) = [Z’ W](av :8) .
[

_Lemrﬁa 3.2. The condition (3.3) for (Z,v) = (7#(vy) + Z,7) can be replaced by
the next equality: .

(1), 7(B)] + (Lz7)(B) — ({7, B}x) =0, B €A,

or equivalently by .
5mm() +Lzr =0 on A.

Proof. By Lemma 3.1, (3.3) can be replaced by

(37 [#(e), 7B + 71 @ Bl + Z, 1), f) =0 a,B€ A,
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Using the general formula for a 2-vector field (see (71, [9])

(3.8) [7(a), 7(B)] = 7“r({a i) + [7r (e, B)

we thus rewrite (3.7) as
Sl l(, 6,7) + (Lzm)(@, ) =0 e, flmml(s)+Lym=0.
O

From the above lemmas, we can summarize the conditions on £, as follows.

Proposition 3.1. Let A and A° be as before and 7 a skew symmetric bilinear
form on A. Let

L={(X,a) | a€ An(a)=X|s}={F)+X,0) | c€ A X € A}
.be an almost Dirac structure defined by w. We put
Lo={e=(Z,7)= @M +Z,7) €L | T(er,e2,6) =0, er,e2 € L}.

Then (Z,v) = (7(y) + Z,7) € L belongs to Ly if and only if the following condi-
tions (C1), (C2) and (C3) are satisfied:

(C1) Lgy€ A, forall X € A°,
(C2) (Lxm)(v)+LzxZ=0o0nA, foralX € A°,

(C3) —;—[W,W](’y)—l-[Z,vr]:O on A.

Example 3.1. Let A be an arbitrary Pfaffian system. We consider the case when
7 = 0. Then

L={(X,a) | c€e A, X e A°}.

(C1) means Lxy € A for any X € A°, and (C2) mean [X,Z] € A° for any
X € A°. Clearly, (C3) is vacuous in this case. Thus £y = Char(A) X A;, where
Char(A) is the Cauchy characteristic of A4 and A, is the first derived (Pfaffian)
system of A, respectively. In particular, if A is completely integrable and hence
A is the tangent bundle of a fohatlon F, Lo is just the product TF x (T'F)°. The
bracket in Lg is given by

[(X,0), (¥; A = (X, Y], LxB — Lya).

Example 3.2 ([7]). We consider the case when A = T*(M) and = : T*(M) —
T(M) is an arbitrary 2-vector field. Since A° = {0}, the conditions (C1) and
(C2) are trivial. (C3) implies [r,7](e,7y,-) = 0 for any a € T*(M). Thus,
Lo = {(7(7),7) | 7 € ker[r, 7]} and ker[m, 7] is a Lie algebroid with respect to
{-, }«- This is our previous result in [7].
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4 Description by 2-forms

In this section, we describe an almost Dirac structure by a ‘2-form’ on € = p.(£) C
T(M) and find the conditions which characterize L£q. To justify the compution,

we assume & is of constant rank again.
Let w : £ — £ be a skew symmetric bundle homomorphism as before. The

almost Dirac structure is given by

L={(X,0) eT(M)@T (M) | ixw=oale, X €&, acT(M).
The bracket on I'(£) is given by A

[(Xy, a;), (Xq,00)] =([X1,X2] , Lx,02 — Lx,0n + d(w(X1, X5))).

Let e; = (X, a),ea = (Y, B),es = (Z,v) be three elements in T'(L). We look for
the conditions on ez = (Z,7), so that T'(ey, es, 63) = 0 holds for all e1, e; € T'(L).
We choose a section s of the natural projection ¢* : T*(M) — £* and consider the
map sow : & — T*(M). Extending s o w to a map from T(M) to T*(M), we
obtain a 2-form @ € A*(T*(M)) satisfying (e, e2) = wles, eq), for ey, e0 € £. We
write an element (X, ) in £ as (X,ix@ + @), where & € £° (= the annihilators
of £). We compute T{ey, €2, €3) using the formula in Proposition 2.2:

T((X, ), (Y, 8),(Z,7v))

=a([Y; 2]) + B((Z, X]) + +([X, Y]) + Lx(B(Z)) + Ly (v(X)) + Lz(a(Y))

= —da(Y,Z) — dB(Z,X) = dy(X,Y) + Ly(a(2)) + Lz(B(X)) + Lx (v(Y)).
Ma,king use of '

da =dix® +daé = Lx@& — ixdw + da,
da(Y, Z) =(Lx@)(Y, Z) - (d2)(X,Y, Z) + (da)(Y, Z),
Ly(e{Z)) =Ly (&(X, Z) + &(Z)) = Ly(@(X, 2)),
we see the above T'(e;, ez, e3) is equal to
di(X, Y, 2) + a([Y, 2)) + B(Z, X]) + 7((X, Y)).

From this, we obtain the following conditions (4.1) and (4.2) on e3 = (Z,7) which
assure T'((X, @), (Y, 8),(Z,v)) =0 for all (X, a),(Y,8) € L.

(4.1) do(X,Y,Z) +7([X,Y]) =0 for X,Y €&,

(4.2) B([2,X])) =0 for X €&, Beé&°.

Now, (4.1) is equivalent to that (dw)(Z) — dy = 0 on £ and from v = iz@ + 7,

this is equivalent to Lz& — dy = 0 (on &). Similarly, (4.2) is equlvalent to that
LZS C £. Thus L, is given by the following:

Lo={(Z,v)eL | LzECE, Lzio—dy=0o0n &}.
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We note that Lzw is well-defined since the right—hand side of
ix(Lz@) = Lz(ix®) — i[z,x)@
is independent of the choice of @. The bracket (in L) is given by
[(Z,%), (W,0)] = (1Z, W], Lz6 ~ Lwy + d(y(W))) .
Since Lizwi€ = Lz(Lw€) — Lw(LzE) C € and

L[Z’W](I) :Lz(Lth) — Lw(Lz(IJ) = Lz(d5) - Lw(d"/)
=d(Lz0 — Lwy + d(v(W))), on &,

that [(Z, ), (W, 8)] € Ly is verified.

Example 4.1. Consider the case where & = T(M) and w is an arbitrary 2-form.
Then

L={(X,0) e T(M)®T(M) | ixw = o} ={(X,ixw) | X € T(M)}.

It is easy to see Ly = {(Z,izw) | Z € kerdw}. In particular, if w is closed Ly is
a Dirac structure given by the presymplectic structure on M.

Example 4.2. Let £ be a contact distribution with its contact 1-form 8, and let
w = df. The only vector field in & satisfying Lz& C & is the zero vector field.
Thus T'(Ly) = {(0,f8) | f € C*(M)} with trivial bracket. Similar situations
occur with distributions whose Cauchy characteristic is trivial, since the condition
LzE C £ means that Z is contained in the Cauchy characteristic of £. With such
distributions, it is appropriate to consider the ¢-deformed bracket ([3],{4]).
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1

The Lie algebroid structure of T*(M) of a Poisson manifold (M, ) is one of
the basic tools in Poisson geometry and it comes from the condition |7, 7] = 0.
If we use the Schouten-Jacobi bracket, this is generalized to the existence of
Lie algebroid structure of 7*(M) = T*(M) xR of a Jacobi manifold (M, «, £).
For an arbitrary 2-vector field 7 on a manifold, we proved that ker[r, 7] has a
natural(in a sense) Lie algebroid structure provided ker[r, 7] is a sub-bundle
of T*(M) of constant rank ([7]). This result is generalized further to the case
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Abstract

We show that to an almost Dirac structure there associates a Lie
algebroid. From this Lie algebroid, we obtain a Dirac structure. Thus,
to an almost Dirac structure, there associates a Dirac structure. We
apply these results in the case of a deformed bracket.

Introduction
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of the deformed bracket by a 1-form ([8]). To prove these results in a unified
framework, it is relevant to utilize an almost Dirac structure of a Courant
algebroid. An almost Dirac structure is just a maximally isotropic sub-bundle
of a Courant algebroid ([9]). In this paper, we consider the Lie algebroid
associated to an almost Dirac structure including the case of twisted bracket.
In particular, from an arbitrary 2-vector field and a closed 3-form, we obtain
a certain 3-vector field whose kernel has a Lie algebroid structure (Theorem
2). We also show that to an almost Dirac structure, there associates a Dirac
structure (Theorem 5).

In section 2, we review some basic notions related with Lie algebroids.
Here, we define a Courant algebroid starting from a Lie algebroid. Then,
we introduce an almost Dirac structure and a 3-tensor 7 on it and give a
proof of our fundamental result to the effect that the kernel of T forms a,
Lie algebroid(Theorem 1). In section 3, we compute the tensor T in the
case where the almost Dirac structure is given as a graph of a 2-vector field.
As a result, we obtain a description of our Lie algebroid in terms of the 2-
vector field and its Schouten bracket. In section 4, we discuss the process
to get a Dirac structure from the Lie algebroid which was obtained from an
almost Dirac structure. -In section 5, we take an opportunity to deal with
a Jacobi manifold in a framework of deformed Schouten bracket and give a
computational example for a result in the previous section.

Throughout the paper, we work in the C'™° category.

2 Courant algebroid of a Lie algebroid

Let A be a Lie algebi‘oid over a-C* manifold M with the anchora : A —
T(M). Namely, - »

(a) A is a C* vector bundle over M, whose space of sections I'(A4) has a
Lie algebra bracket [-,-]4 over R

(b) a: A — T(M) is a bundle map which induces a Lie algebra homomor-
phism a : T'(A) — I(T(M)), satisfying the condition '

[7)1,fU2]A = (a(v1), df yva + floa, 'U2]A; v, v € I'(4), f e C®(M).

We will use the same letter a to denote both the bundle map and the induced
homomorphism of sections. The Lie algebra bracket on I'(A) and the action
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of a(v) on C°°(M) induce an ‘exterior differential’ d4 on ['(A\" A*) defined
by a well-known formula. For example,

(da8)(v1,v2) = La(uy)(0(v2)) — Lauy) (0(v1))— (8, [v1, v2] 4),
g e T(N\' A, vy,v, € T(A) .

We usually write L, in stead of L,(,) which denotes the Lie derivative operator
with respect to the vector field a(v). From a Lie algebroid we get a Courant
algebroid in the following way. First, we recall the definition.

Definition 1 A Courant algebroid is a vector bundle E over a manifold M
equipped with

(a) a (usually non-skew) bracket [-,-|g on I'(E),
(b) a non-degenerate symmetric bi-linear form (-,-)+ on E,

(c) a bundle map p: E — TM (also called anchor) which induces a homo-
morphism p: T(E) — I'(TM), satisfying the conditions

(1) ler, [e2, e3lele = [[e1, e2]E, e3]e + [e2, [e1, e3]e]
(2) ple){er,e2)+ = (e, [e1, e2]E + [e2, 1))+
(3) ple)er,ea)s = <[e,el]E, e2)+ + (e1, [6, e2)E)+

It can be shown that [e1, fealz = fler, e2)e + (Lye,) f)ez and p([er, e2]g) =
[p(e1), p(ez)] hold ([5]). Thus a Courant algebroid is a Leibniz algebroid with
additional conditions (b), (c2) and (c3).

From a Lie algebroid A, we construct a Courant algebroid as follows. Let
Es=A@®A*. On E4, we define the symmetric bi-linear form (-, -), and the
bracket [-, -], by

((v1,81), (v2,62))+ = 61(v2) + O2(v1) (1)
[(vlw 91)) ('U27 92)]&4 = ([Ul’ v2]A’ Lv192 - I’vzd/‘gl) ) (2)
(v,-,Oi) € P(E) (Z = 1,2),

where, ¢, denotes the interior product. The anchor p: E4 — T(M) is given
by p = a o pr;, where pr, is the projection to the first factor A® A* — A
and a : A — T(M) is the anchor of A as a Lie algebroid.



Then, it is a standard calculation to verify E4 is a Courant algebroid
with this bracket, the bi-linear form and p as the anchor. We abbreviate this
Courant algebroid (Eg4, p, [, |Ea (- )+) to Fa.

Besides E4, we have another class of Courant brackets on A ® A*. They
are deformed brackets. To define a deformed bracket, we choose a closed 1-
form (precisely, a Lie algebroid 1-cocycle) of A, namely an element ¢ e I'(A*)
satisfying

Blon,0214) = Ly (6(2)) — L (B(00)).

Then we have a ¢-deformed exterior differential operator dﬁ and ¢-deformed
Lie differentiation operator L¢ defined respectively by
dﬁasza+¢/\_a, ‘ ’
Lfvy=[v1,05)a, (3)
Lo = dﬁbva + 1, d0, for v,v;, v, € T(A), @ € T(A"AY).

The operator L¢ does not commute with contraction but it satisfies the
formula '

Ly(a(P)) =a(LYP) + (L§e)(P) + (p —~ 1)¢(v)(P)

for a ‘p-vector field’ P and a ‘form’ o .
Fortunately, we have the following familiar formulas in this case, too.

djoLf= Lf? odf, LS, L4 =L} .., (4)
L¢ Olyy — 1wy © L¢ = Yoy,uzlas , (5)
( (v2)) = (L a)(vg) + Ol(L v2), (a: ‘1-form’). (6)

Using dfl and L?, we will define a new bracket [ ]%A on I'(E4), (Ea =
A® A*), by simply replacing ds by d% and L, by LZ;

[(,Ula 01)) (UQ) 62)]%,; = ([IU]-’ U2]A’ Lf),e? - l’”2dﬁ91)'

Since we have the formulas (4), (5), (6), we can verify the axioms for
(Ba,0,[]% > {"»)+) to be a Courant algebroid, where the anchor p is the

same as before. We denote this Courant algebroid by Eﬁ.
Now, we define a(n) (almost) Dirac structure which we will concern.
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Definition 2 (Dirac structure) Let (E,p,[-,|g, (-,*)+) be any Courant al-
gebroid. A smooth sub-bundle L C E is an almost Dirac structure if L is
mazimally isotropic with respect to the symmetric pairing (-, ). If, more-
over, L 1s closed under the bracket [-,-]g, it is called a Dirac structure.

To state our results, we also need a map defined by

T:T(E)xI'(E)xT(E) > C®(M)
T(ey, ez, e3) = {[€1, €2)E, €3) 4. (7)

T is not skew-symmetric in general. Note that however, on the bundle L, it
is skew symmetric and C*®(M) tri-linear, by (c2) and (c3) in the definition
of a Courant algebroid (Definition 1).

Now, we have the following general result.

Theorem 1 ([9]) For an almost Dirac structure L C E, we put
Lo={e€ L|T(e,ez,e3) =0, Vey,Ves € L} =kerT.

Assume that Lo is a C*° sub-bundle of L of constant rank. Then Ly 1s
a Lie algebroid with respect to the bracket [-,-|g and the natural projection
Pico : Lo = T(M) as anchor.

Proof. Since the bracket restricted to I'(Ly) is skew symmetric, as we
remarked above, what we have to see is only that I'(L,) is closed under the
bracket. The Jacobi identity is automatic. We can see

(1) Ife; € I'(Ly) and e; € T'(L) then 0 = T'(ey, €2, €3) = ([e1, €2k, €3) 4+ for
any ez € I'(£). Thus the maximality of £ means [e;, e;]g € T'(L).

(2) Let ey, ey be two elements of ['(Ly). Then for any e; and eq in I'(L)
we have

T([e1, e2]E, €3, es) = ([[e1, e2]E, €3]E, €4) +
= ([e1, le2, e3]elE, €a)+ — ([e2, [er, es]E]E, e4)+
= T(el, [82, 63]5, 84) - T(eg, [61, 63]3, 64) = 0.

This shows [ey, e2|g is in ['(£o) and T'(Ly) is closed under bracket [, ]g. O



A further example of a Courant bracket on E4 is obtained by choosing a
‘d%-closed 3-form’® in A*(A*) ([10]). This bracket is given by the following

[(v1,61), (v2, 62))3 = ([v1, v2]a, L 02 — 10, d%01 + @(v1, 02, ).

That this new bracket defines a Courant algebroid on E4 is verified just in
the same way as in ([10]) since we have formulas (4),(5),(6) and so on, for
¢-deformed differentiations. In the next section, we will consider the Dirac
structure defined by a 2-vector field and examine the Lie algebroid £y in the
relationship with the 2-vector field.

3 Computation of the kernel of T

In this section, we consider the almost Dirac structure given as a graph of ‘2-
vector field’ 7. Then we express the map T in terms of 7 and apply Theorem
1. We use the same notations as in the previous section.

For elements e; = (v;,8;) (1 = 1,2), e = (v,60) in I'(E4) and the bracket
[, -], we have

T(el)e'27e) = <[ely eQ]gae>+

= 0([v1, v3)a) + (LE,02)(v) — (60, @361 (v) + (w1, v3, v)

= (L,82)(v) ~ (L$,61)(v) + 8([v1, v2]a) + LE(B1(v3)) + B(w,v1,)  (8)
We consider the case where C i1s given as a graph of a ‘2-vector field’

T € T(A? A):
L= {( ),6) c A A" |6 A},

where, 7 is 7 considered as a map A* — A (We often use 7 to denote @ when
there is no danger of confusion). Then, (8) above is calculated to be

62 — L$(92)91)(ﬁ'(9)) ﬁ- (77(9 2))
+0([7(61), 7(02)]4) + 2(7(8), 7(61), 7(62))
(0 Ld) (6, )92 L #(f2)"1 ) 1r(9)(7r<91) 02)) + 7I‘({91, 92}7r7 )

1
+§[TF, W]ﬁ(ely 92) 8) + (7?*@) (9, 91, 92)

1 -
= (3l 75 + 7.2)(0,6,,62).

¢
(L'fr(ol)



In the above, #, denotes the map A® A* = A® A induced by # and we used
1
the formula [7(8)), 7(82)]% = n({6:,6:}%) + 5{71’, % (61, 6,) ([8] Lemma 3.3).

From this, we see (7(6),) € L, is equivalent to that [r, 7]%(6) +2(7.,®)(0) =
0. Applying Theorem 1, we obtain

Theorem 2 Let m be an arbitrary ‘2-vector field’of a Lie algebroid A. Let ¢
and ® be a I-cocycle and a 3-cocycle of A , respectively. If ker([r, 7]%+27,®)
forms a sub-bundle of A* of constant rank, then it is a Lie algebroid with
respect to the bracket

(61,615 = L2 5,02 = inond%01 + B(7(61), 7(62), )
and the anchor 1s the composition of maps
ker([r, 7]% + 27,®) < A* 25 T(M).

An example is found in the last section.
Similarly, we treat the case where £ is given as a graph of a ‘2-form’ w;

L={(v,w(v)) e Ea=A® A'|v e A}.

We put e = (v,w(v)), ey = (v1,w(v1)), €2 = (v2,w(v,)) and compute T'(e, ey, e3)
After a short calculation, we obtain T'(e, e1, €3) = (d%w + ®)(v, vy, v3). Thus
by Theorem 1, we have

Theorem 3 Let w be an arbitrary ‘2-form’ of a Lie algebroid A, that is,
wE I“(/\2 A*) . Let ¢ and ® be a I-cocycle and a 3-cocycle of A, respectively.
If ker(dﬁw + &) C A forms a vector sub-bundle of A of constant rank, then
it 1s a sub-Lie algebroid of A.

Example 1 (d?-closedness ) Let A = T(M) be a tangent bundle with usual
bracket. We choose ¢ to be a closed 1-form on M and & = 0. Then the
condition d®w = 0 for a 2-form w means that w is expressed locally as a
multiple of a closed 2-form by a positive function. Indeed, writing locally
¢ = df , we have

d(e’w) = eldw + el df Aw = &/ (dw + df Aw) = eld?w = 0.

Thus, w is called a locally conformally presymplectic form on M.



4 Presymplectic structure of £,

The image of the anchor of a Dirac structure is an integrable distribution
of the base manifold. It is a generalized foliation each leaf of which has
a presymplectic structure (A presymplectic structure on a manifold is just
a closed 2-form on it). In this section, we prove that Ly defines a fiberwise
‘presymplectic structure’ys . This structure in turn gives a Dirac structure. In
this way, starting from an almost Dirac structure we obtain a Dirac structure.

To fix the arguments, we discuss the case of Courant algebroid F, =
A® A* with the bracket [-,-]g,. The arguments are also valid in the cases of
[,-]% and [+, )% with suitable modifications.

Let (Ea,p, [, )g4, (-, )+) be our Courant algebroid over M. Let pr, :
E4 — A be the projection and K = pr,(Ly). On each fibre K, over z € M,
there exists a ‘2-form’ fi, defined by fi;(v) = 6k, where, (v,6) € L, and
6|k, denotes the restriction. The totality i of iz, (z € M) gives rise to a
well-defined map K — K™ and it satisfies

A(v1)(v2) = 01 (v2) = —02(v1) = —fi(va) (1)
(v1,601), (ve, 62) € L.

This shows that p(vy,ve) = f(v1)(v2) is a skew-symmetric 2-form on fibers
of K. Now, we prove p is d4-closed. Indeed, for vy, v2,v3 € I'(K), we have

(dap)(v1,v2,v3) = (ty,dap)(v2, v3)
= (Lyy it — da(to, 1)) (va, v3)
(Gup Ly 1) (03) — (da61)(v2, v3).

That is,

(dAu)(vlv Vg, ) = Lv1 ivzﬂ' - i[vl ,vz]Aﬂ.— ivgdAgl
= Ly 0 — 19,da0; — p{[v1, v2]4). (9)

Since L, is closed under the bracket [-,-|g, , ([v1, v2]a, Ly, 02 — 14,da6:1) € Lo,
and the above should be 0 on K, hence u is da-closed. In this way, p is
considered as a kind of presymplectic structure of M. In the case where
A = T(M), p is actually a usual presymplectic structure of each leaf of a
foliation.

In the case of a general Lie groupoid A, we discuss as follows. Put D =
Impiz,, (p = aopry, a: anchor of A ). As is well-known, D is an integrable
distribution and defines a generalized foliation.
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Proposition 4 Assume K is a smooth bundle and kerajx C ker . Then
each leaf of D has a presymplectic structure.

Proof. For an element u € D, we choose any element v € K such that
u = a(v). The ambiguity of the choice of v is in kerajx. Because of the
assumption ker ajx C ker ji, as elements in K™, fi(v) is determined by u. For
an element w in ker qjx, we have fi(v)(w) = —fi(w)(v) = 0. If we look at the
exact sequence
0— D" = K* — (kergx)" = 0

this shows that 4(v) is in D*. Thus, we obtain a well-defined map i : D — D*
which is skew symmetric as easily seen and & may be regarded as a leafwise
2-form. To prove [i is leafwise closed, we note that the sections of ker a;x form
a Lie ideal in I'(K') and that in our notation the Lie derivations L, and Lo,
are the same. Then, we can see from the usual formula of exterior differential,
(diz)(uy, ug, u3) is equal to (dap)(vy,ve,v3), (a(v;) = wi, i = 1,2,3) which is
equal to zero. a

Now, we will show that we have a Dirac structure associated with L.
For this, we put

Lo ={(,6) € K x A" | ji(v) = Oixc} (10)

where, K = pr,(£,) and p is a 2-form on K.

Since § + K° (° denotes annihilator) defines a single elementx, we know
that at each point of M, the fiber dimension of L is equal to the fiber
dimension of A.

Theorem 5 Assume that Lo is a smooth bundle, then it is a Dirac structure
with respect to the bracket [-,|g,

Proof. For (vy,0;), (ve,0s) € Lo, we have

<(U1)91)1 (’02,92)>+ = 91(”2) + 92(”1)
= p(vy, va) + p(vg,v1) = 0.

Since the fiber dimension is equal to that of A, as remarked above, we may
conclude that £, is maximally isotropic with respect to (-,-}, . Next, we
show I'(Ly) is closed under the bracket [, ]g,. Since

[(U1, 91)> (U2, 92)]15,, = ([U1>02]A, Lv, b, — ivsz91),

9



what we have to show is fi([v1,v2]a) = (Ly,02 — Ly, dab1)x. From that K
is closed under the bracket [-,-]4, we see that (Ly,62)x = Ly, (02)x) and
(ngdAgl)lK = vadA(ellK). By this we have,

(Lo, 02 — 14, d 401 )1k = Ly, (i(v2)) — Lo, da(fi(v1))
= p([v1,v2]4), (see (9) above).

Thus, we have proved L, is a Dirac structure. O

What we have shown above is that for an almost Dirqc structure £ in
(Ea,p,["-)E4, (,°)+) there corresponds a Dirac structure £y provided Ly is
a smooth vector bundle.

5 Jacobi Structure and an example

In this section, we recall a formulation of Jacobi structure expressed in terms
of a deformed bracket and give a simple computational example of the pre-
ceding result.

Let T (M) be the extended tangent bundle of M. Namely, 7 (M) is the
tangent bundle of M x R restricted over M x {0}. A section of 7(M) is
written as X + a2, where X is a vector field of M, a € C*(M) and £ is a
canonical vector field along M x {0} in the direction of R. T (M) has a Lie
algebroid structure whose bracket is given by

[X+a(%,Y+b%]=[X,Y]+(be—Lya)£ (11)
and the anchor is p(X +aZ) = X. Let ¢ = dr be the dual to 2. Then ¢ is
a Lie algebroid cocycle since we have

dd(X,Y) = Lyx)d(Y) — Loy 9(X) ~ 8([X, Y])
= be - Lya - (be - Lya) = 0,

here, X and Y denote X + aga; and Y + b%, respectively.

A Jacobi structure on M is given by a 2-vector field # € T(A\*TM)
which satisfies [m, w)4” = 0, where [-,-]%" is a Schouten-Jacobi bracket with
1-cocycle dr (or a dr deformed bracket). Writing # = 7 + 5‘9; A &, where

10



T € T(A’T(M)) and € € T(T(M)), by the formulas of Schouten-Jacobi
bracket ([8]), we have

[m, 7] = [, 7] +26 AT+ 2% A€, 7).

Thus, the condition [, 7]%" = 0 is equivalent to that
[r,7]+26 Am=0 and [{,7]=0,

which is the condition often used as the definition of a Jacobi structure (7, £).

A contact manifold is a special case of Jacobi manifold where w# = 7w +
% A& is non-degenerate. The 1-form § determined uniquely by 6(¢) = 1 and
m(#,-) = 0 is a contact 1-form with £ as the Reeb vector field. Conversely,
from a contact 1-form one can obtain (7,£). On a Jacobi manifold, clearly
T*M = ker[m, w|*" holds. Therefore, by our results in preceding sections,
T*M which is the 1-jet bundle of functions on M, is a Lie algebroid with
respect to the bracket

{61, 92} = Lg&el)og - ngddTol. (12)

As an example, we take a contact form

0= dy - i ZidIII,‘
i=1

which is the canonical form on M = J}(R", R!) or just a contact form on
R?*!. The Reeb vector field 6 is easily seen to be a%' The corresponding
Jacobi structure (,§) is

"\ 9 0 0 0

=), 5 (6:ri+zi5§)’ €=%-

Thus, we obtain the extended 2-vector field

7r=7r+2/\§

or
_y 2 (8+.=:a)+—a--/\-2
N o 8z, ‘8z;  ‘oy’ T or By
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The almost Dirac structure we consider is the Dirac structure £ which is the
graph of v : T*M — T M. It is spanned by

9 0
(—-&;,dfl),...,(—aydl‘n) ]
o 0 o 0 9 ;
(6_1‘1 + Zl-aTJ)dz1>7 .. ey (_a,Tn +Zn5?;:dzn> b) (%,d’f) ] <—-a—7_-?dy> *

We choose d7 as a 1-cocycle and dTAdz) Adz; for 3-cocycle ® and compute

Lo with respect to the Courant bracket [-,-]47. As we have seen, Lg is the

graph of the map = restricted to ker([m, w|%" + 2mw,®) = ker r,®. We have

7, ® = —5‘-2—1 A a% A a% and ker(m,®) is spanned by 1-forms

dze,...,dT,,dz2y, ..., dz,, dr.

Therefore, L, is spanned in 7 @ 7" by elements

0 0
("'55,(1232) g ey (—E, diL‘n) y
g - 0 0 0 0
<6_:L‘2. Zgé—y-,dZQ) yeeey (Eﬁ-zn%,dzn) s <5y—,d7'> .
From this, we have the ‘2-form’ i defined on K, which is given by

u= Z dz; A (dz; — z;d7) + dy A dr.
=2

Finally, Dirac structure Lo is spanned by 2n + 2 elements

0 0
(O,d.’El), (———622, d.’l?g) Yoy (——azn,dl‘n) y
0 0 0 0 a
(O,d31)7 (3_12 + Zzégj‘,dzz) 1oy (% + Zna—y',dzn) ,(O,d'r), (@7617') .
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CR EINSTEIN-WEYL STRUCTURES
TAKAAKI OHKUBO AND KUNIO SAKAMOTO

ABSTRACT. An Einstein-Weyl! structure is a natural generalization of an Einstein struc-
ture within the framework of conformal geometry. We are interested in considering an
Einstein-Weyl structure on a CR manifold. A CR manifold has a conformal structure
only on its hyperdistribution. In this paper, on a CR manifold we naturally define an
Einstein-Weyl structure closely related to the conformal structure on the hyperdistribu-
tion.

0. INTRODUCTION

A conformal structure on a differentiable manifold is a conformal equivalence class of
Riemannian metrics (or pseudo-Riemannian metrics) on the manifold. On a conformal
manifold, the objects which are invariant for every Riemannian metric included in the
conformal class are important, or more strictly, the object except for them does not
have significance. Weyl conformal curvature tensor is representative one of them. It is
interesting to consider whether the results obtained in conformal geometry also hold in CR
geometry. In this paper, we study an analogy of Weyl structure in CR geometry. A CR
structure on an odd dimensional manifold is a pair (2, J) of a 1-codimensional subbundle
9 of the tangent bundle and a complex structure J on 2 with a certain integrability
condition. Assuming the nondegenerate property for &2, we have a conformal class of
fiber metrics on 2. It is well-known that Bochner curvature tensor is one of the objects
which are invariant for this conformal class on CR manifolds. :

In this paper, we discuss a structure analogous to Einstein-Weyl structure on a confor-
mal manifold and especially consider whether we can comfortably define this structure
for a conformal class on 2. An Einstein-Weyl structure is a natural generalization of
an Einstein structure within the framework of conformal geometry. Strictly speaking,
Einstein-Weyl structure is a pair of ([g], D) of a Riemannian metric class [g] and a linear
connection D, preserving [g], whose Ricci tensor satisfies an equation that the symmetric
part is proportional to g pointwise. On a CR manifold there are naturally almost contact
structures (¢,&,d) which determine a conformal class on 4. Therefore almost contact
structures (¢, &,0) associated with (2, J) correspond to Riemannian structures in con-
formal geometry. Furthermore, a connection corresponding to Levi-Civita connection is
defined by Tanaka [L1], which is called Tanaka connection. We need to define a connec-
tion which preserves the conformal class on 2. Such connection corresponds to the Weyl
connection D R : - A

In Section 1, we recall the definition of Einstein-Weyl structure and relation between
a Weyl connection D and Levi-Civita connection V of a Riemannian metirc included
in a given conformal structure (cf. [7], [8]). This section will be useful to understand
the analogy mentioned above. In Section 2, we recall the definition of CR structure,
results obtained in [9] and certain cochain complex {CP%(M),d"} defined by Tanaka
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[11]. In Section 3, we define CR Weyl connection and study the relation between CR
Weyl connection D and Tanaka connection V, where Tanaka connection V is a unique
linear connection associated with almost contact structure (¢, ¢, 8) introduced in Section
2. In Section 4, we see a CR Weyl connection from the standpoint of the frame bundle.
Section 5 is devoted to the study of curvature tensor of a CR. Weyl connection. In Section
6 we study the relation between the curvature tensor of a CR Weyl connection and that
of a Tanaka connection. In fact, we obtain an equation including these two tensors, which
is similar to the equation appearing in [2]. Using this equation, we define a CR Einstein-
Weyl structure in a natural fashion. In the last section, we introduce an example of a
CR Einstein-Weyl manifold. In fact, we see that SO(3)-bundle over a quaternion Kéhler
manifold admits a CR Emstem—Weyl structure.

1. EINSTEIN-WEYL STRUCTURES

Let M be an n-dimensional manifold with a conformal class [g]. A Weyl connection
on M is a torsion-free linear connection which satisfies the following condition:

(1.1) Dg=-2p®g

for some 1-form p. If we choose ¢’ = e?*g for a smooth function  in the conformal class
lg], we have a 1-form p’ = p — dy instead of p for the equation (1.1). From this we can
say that a Weyl connection D preserves the conformal class [g]. Let ([g], D) be a pair
of a conformal class [g] and a Weyl connection preserving it. A pair ([g], D) is called a
Weyl structure on M and if M admits a Weyl structure, then (M, [g], D) is called a Weyl
manifold. We can-also say that a Weyl connection is a torsion-free linear connection
which is reducible to a connection in CO(M) corresponding to the conformal class [g],
where CO(M) is a subbundle in the frame bundle F(M) with a structure group CO(n).

Now let V be the Levi-Civita connection of g on a Weyl manifold M. We can write
D =V + H where H is a tensor field of type (1,2). Then we have from (1.1)

(1.2) H(X,Y)=p(X)Y +p(Y)X — 9(X, Y)P

for X,Y € X(M), where P is the dual vector field of p with respect to g. Conversely if we
define D with (1.2) for an arbitrary pair (p, g), D satisfies the equation (1.1). Therefore
we see that an arbitrary pair (p, g) determines a Weyl structure on M.

Now let 7P be the Ricci tensor of a Weyl connection D. Note that as D is not a
metric connection, 72 is not necessarily symmetric. A Weyl structure ([g], D) is called
an Einstein- Weyl structure if the symmetric part of r? is proportional to g pointwise.
Note that the proportional factor may be non-constant. If M admits an Einstein-Weyl
structure ([g], D), then M is called an Einstein- Weyl manifold.

Now if we let 7V be the Ricci tensor of the connection V then r° and rV are related
by the following equation (cf. {7], [8]):

(1.3) D(X Y)=(1-n)(Vxp)(Y) + (Vyp)( )+ (n —2)p(X)p(Y)
+ g(X Y)(ép+ (n—2)g(P, P)) +r(X,Y)

for X,Y € X(M), where dp denotes the codifferential with respect to g.
We have the following local characterization of Einstein-Weyl structures (cf. [7], [8]):



Proposition 1.1. Let (p,g) be a Weyl structure on M. Then (p, g) is an Einstein- Weyl
structure if and only if there exists a smooth function A on M satisfying the equation

e )(Y) + (Vyp) (X) = 2000p(Y)) +r7(X, Y) = Ag(X, Y)
for every X,Y € X(M).

2. CR STRUCTURE AND TANAKA CONNECTION

Let M be a connected differentiable manifold of dimension 2n+1 (n > 1). An almost
contact structure on M is a triplet of a (1, 1) tensor field ¢, a vector field £ and a 1-form
0 satisfying

(2.1) 8(¢) =1, P=—I+0R¢
which imply '
(2.2) =0, Oop=0 and rankeg = 2n,

where I denotes the identity transformation. An almost contact structure (¢, £, 6) natu-
rally corresponds to a reduced bundle in the frame bundle F(M) with structure group

1 0
0o C

Now let 2 denote a 1-codimensional subbundle of the tangent bundle TM, which is
called a hyperdistribution. A cross section J of the bundle 9 ® 9* satisfying J2 = —1I is
called a complex structure on 2, where 2* is the dual bundle of 2.

If M admits a pair (2, J), there is always a locally defined almost contact structure
(¢,&,0) satisfying that the 1-form 6 annihilates 2 and the restriction of ¢ to 2 coincides
with J. In fact, since there always exists a 1-form 6 annihilating 2 in each coordinate
neighborhood U of M, we have a vector field £ on U in such a way that (§) = 1. Then
we can define, on U, a (1,1) tensor field ¢ by '

(V) =J(V - 0(V)¢)

for V € X(U) because V — §(V)¢ belongs to &. We shall denote V' — 8(V)¢ by Vi, and
call Z-component of V with respect to £. Then a straightforward calculation shows that
(¢,€,0) is an almost contact structure on U. An almost contact structre (¢, &, 8) such
that the 1-form & annihilates 2 and the restriction of ¢ to 2 coincides with J. is said
that the almost contact structure (¢,§,8) belongs to the pair (9, J). In addition, if M
is orientable, there are globally defined almost contact structures (¢, ¢, 6) belonging to
(2,J). A l-form 6 annihilating 2 is determined up to a non-vanishing smooth function.
Moreover we have ’

C € GL(m; (C)}.

d(fO)(X, Y) = fdO(X, ¥)
for every X,Y € I'(2) and smooth function f, where T'(2) denotes the set of cross
sections of the vector bundle 2 on M. Therefore, in virtue of this fact, the following
definition is well-defined. If dfl is nondegenerate on 2, then (2, J) is said to be nonde-
generate.

A pair (2, J) is called a CR structure if the following two conditions hold

(C.1) [JX, JY]-[X, Y] e I(2)
(C.2) [JX, JY]-[X,Y]-J(X, JY]+[/X,Y]) =0



for every X,Y € I'(2). If M admits a CR structure (%, J), then M is called a CR
manifold. In the sequel, (2, J) will be a nondegenerate CR structure.

Now let M be a connected orientable manifold furnished with a CR structure (2, J)
and (¢, &,0) an almost contact structure belonging to (2, J). Define w by

(2.3) : w = —2d0.
Then w satisfies
(2.4) w(JX, JY) =w(X,Y)

for every X,Y € I'(2) because of the condition (C.1). Moreover define g: 9 x 9 — R
by

(2.5) | 9(X, Y) = w(JX, Y),
which satisfies the equations ‘
(2.6) 9( X, Y) =g, X), g(JX,JY)=g(X,Y)

for every X,Y € I'(9). Therefore g is symmetric, Hermitian and nondegenerate, which
is called Lewvi metric.

From a given almost contact structure belonging to (@ J) we can always make an
almost contact structure which belongs to the same (2, J) and satisfies the following
condition

(%) - 6 T@) cl(2)
(cf. [9]). This condition (*) is equivalent to
(2.7) CZb=0 or w(¢ X)=0

for X € 9, where %; denotes the Lie differentiation with respect to {. Such an almost
contact structure is denoted by (¢,&,0)* and we call it a Z-preserving almost contact
structure. We shall restrict our attention to the family of Z-preserving almost contact
structures which belong to CR structure (2, J). The following result is proved in [9]:

Lemma 2.1. If (¢,£,0)" and (¢/,£',0')" belong to (2, J), then they are related by
(2.8) | 0 =ee®, € =ceME(-2Q%), ¢ =¢—-20Q P

where € = £1, pu is a smooth functzon P* € T'(2) is defined by g(P*, X) = du(X) for
X el(D) and Q* = JP*.

Next we shall explain Tanaka connection associated with (¢,¢,6)* and how the con-
nection changes under (2.8). We don'’t have to assume the condition (C.2) so far, but we
need to assume the condition (C.2) for the next lemma (cf. [9], [12]).

Lemma 2.2. Let (¢,£€,0)* be a 2-preserving almost contact structure. Then there exists
uniquely a linear connection V such that V¢ = 0,VE =0,V =0, V°g =0, Ty, = 0
and T(€, X) = —1/2¢(ZLe¢) X, where V° denotes the induced connection on the hyper-
distribution 9 and T, (X, Y) the D-component of the torsion tensor T(X,Y) of V with
respect to & for X, Y € I'(9).

Remark. We put FV =T(&,V) for V € TM. Note that F is symmetric with respect to
¢ and anticommutes with J (cf. [9]).

The linear connection stated in the above lemma, is called Tanaka connection associated
with (¢,&,0)*. We give the following (cf. [9]).



Lemma 2.3. Let (¢,&,0)" and (¢,£,8')* be two P-preserving almost contact structures
which belong to the CR structure (2,J). Let V and V' be Tanaka connections associated
with (§,€,0)* and (¢',&,8')" respectively. Define the difference H between V and V' by

H(V, W) =V, W — VW, V,\W e X(M).
Then we have
(29) HX,Y) =p"(X)Y+p" (V)X —g(X, V)P +¢"(X)JY +¢*(Y)J X —g(J X, Y)Q",

(2.10)  H(& X) = Vyx P+ VxQ" —2¢"(X) P+ 2p"(X)Q" + 29(P*, P*)J X,
for every XY € T(9D), where p* =dp and ¢* = —p*o¢.
Remark. We have g(P*, X) = p*(X) and ¢(Q*, X) = ¢*(X) for every X € I'(2). -

Next we shall introduce a cochain complex { C*9, d"} of a CR manifold M with
complex coefficients, which corresponds to that in the case of a complex manifold (cf.
[11]). We shall use the following fact in Section 6. '

Let (2, J) be a nondegenerate CR structure of a (2n + 1)-dimensional orientable man-
ifold M. Then the complexification CT'M of the tangent bundle TM is decomposed as
CTM =C9P & £ where C2 is the complexification of 2 and £ is a trivial line bundle
isomorphic with CTM/C2. The complex structure J on & can be uniquely extended
to a complex linear endomorphism of CZ and the extended endomorphism will be also
denoted by J. Let 219 (resp. 2%!) be a subbundle of C2 composed of the eigenvectors
corresponding to 4 (resp. —i) of the endomorphism J. Note that 2%! = 2° where
the notation “bar” denotes the conjugate operator. It is clear that conditions (C.1) and
(C.2) are equivalent to

(2.11) - [[(2%9), T(2~%)] C T(9"°).

Now we put A¥(M) = I'(A*(CTM)) and denote by FP(A¥(CTM)) the subbundle of
AF(CTM) consisting of all ¢ € A¥(CTM) which satisfy the equality:

(212) 'l,b(Xl, ey Xp—11 }_/1, ey ?lc—p-'f-l) = O

forall Xy, ..., X, € CTM and Yy, ..., Yipi € 940, Note that we define FO(A*(CTM)) =
A¥(CTM). Then we have : :

(2.13) FrHUAR(CTM)) € FP(AS(CTM)),  FPHY(AP(CTM)) = 0.
Furthermore putting A”»9(M) = I'(FP(AP*4(CTM))), we easily find that
(2.14) d AP M) C AP (M),

because of (2.11). Moreover putting CP4(M) = AP 9(M)/AP+1:9-1(M), then we have the
well-defined operator d' : CP9(M) — CP9t1(M) which is naturally induced from the
operator d satisfying (2.14). And we obtain the cochain complex

(2.15) 0 — QP — CPOUM) — CPHM) — CPHM) — - -,

where QP denotes the kernel of CP9(M) — CP1(M), whose element is called a holomor-
phic p-form in the mean of CR geometry. Since AP (M) = AP*La-1(M) @ CP (M), we
have the decompositon:

APa(M) = (D orrehi(u),

1=0



Now for 9 € CP%(M) we have dip € AP9*1(M) or more precisely the following fact is
well-known (cf. [11]):

(2.16) ' dy € CP2 Y M) © CPHH (M) @ CPITH(M).
Consequently di can be written uniquely in the form:
dip =AY +dp+d'y,

where Ay € CP*291(M) and d'tp € CP*19(M). For any ¢ € CP9(M), Ay, d+p and d"+p
are described as follows:

(2.17) (A)(X1, ooy Xpi2, Yay oo, Y1)
1 ' .
= > (—1)MY(T(Xy, Xy), Xay ooy X,
. p+ag+1 = | 7
L) Xua sy Xp+1)‘}71) LRS! }_/q—l)
(2.18) (dY)( X1y ooy Xpars Yoy -0, V)
1 . _ —
=i S V) (X, Koy o X, Y L ),
) A
(2.19) (d" ) ( Xy, - -, Xp, iy ooy You)
—1)p -~ 2 D
=;%'__E):-l—{ Z(—_l))ﬁ-l(v?)‘w)(xh ey Xp, }/11 LR Y)\) R Yq+1)7
A .

+ Y (DMEY(T(X, V), X, -, X,
A '

A

._,,X,,,fq,...,yy,...,zﬂ)}

for Yy, € 2% and X, € 2V %@ %, where V is a Tanaka connection associated with some.

9-preserving almost contact structure (¢, £,6)* and T is the torsion tensor of V. Note
that £ = C ® span{¢}.

3. CR WEYL STRUCTURES

Let (M, 9, J) be a connected orientable (2n + 1)-dimensional manifold furnished with
a nondegenerate CR structure (2, J). Under the notation of lemma 2.1, if g and ¢’ are
the Levi-metrics made from # and @' respectively, we have

(3.0) L g=eeyg

Therefore the family of Z-preserving almost contact structures which belong to the CR
structure (2, J) induces pseudo conformal geometry only on the hyperdistribution 9.
We shall naturally define a certain Weyl structure with respect to this pseudo conformal
geometry. The word “ naturally ” of the above sentence means that the relation between
a CR Weyl connection of the CR structure (2,J) and a Tanaka connection of a 9-
preserving almost contact structure belonging to (2, J) is analogous to that between a



Weyl connection of a conformal class and Levi-Civita connection of a Riemannian metric
in the conformal class.

Definition. Let (¢,&,8)* be an arbitrary Z-preserving almost contact structure be-
longing to (2, J). A linear connection D on M is a CR Weyl connection if, for every
V e X(M), X,Y € T'(2) and for some l-form p on M, the following conditions are
satisfied:

) - Dyb = —2p(V)8

(
(5 Dyt =2(V)éy

(c) DyJ =0

(d) vg=—-2p(V)g

© T(X, ) = ~o(X, V)6
® TG, X) = 5 (L)X,

where D° denotes the induced connection on the .hyperdistribution 2, T the torsion tensor
of D, & =& —2Q, ¢, = ¢ — 20 ® P, P the cross-section of & such that g(P, X) = p(X)
for every X € I'(2) and Q = JP. .

Remark. If D is a CR Weyl connection, we can show that
(3.2) " Dyd,=0, (DyT)(X,Y)=0

for every V € X(M) and X,Y € [(2) by direct calculation. In addition, we note that
(¢p, &, 0) is also an almost contact structure belonging to (@ J) which may not satisfy
condition (*).

The family of almost contact structures belonging to (2, J) and satisfying (*) is smaller
than that of all almost contact structures belonging to (2, J). However, we can always
obtain an almest contact structure satisfying () from almost contact structure belonging
to the same (9, J) if it is nondegenerate (cf. [9]). Therefore we may deal with only 2-
preserving almost contact structures. The following propositoin allows us to call D a CR
Weyl connection. By direct computation, we obtain :

Proposition 3.1. The CR Weyl connection D is well defined: the equations from (a) to
(f) in above definition are invariant for the change (2.8).

Remark. If we replace (¢, £,0)* by (qS’ £,60')*, then the 1-form p in the above definition
changes top’ =p — du. ,

From this, we can say that a CR Weyl connection D preserves the CR structure (2, J).
Let ((2,J), D) be a pair of a CR structure (2, J) and a CR Wey! connection preserving
it. The pair ((2, J), D) is called a. CR Weyl structure on M.

Next we closely observe the conditions of a CR Weyl connection. In fact we don’t
have to assume the condition (f) if we add a certain condition to the torsion tensor of
a linear connection satlsfymg from (a) to (e) for a 1-form p. To see this, we need the
following:



Lemma 3.2. Let D be a linear connection satisfying from (a) to (e) for a 1 form p and
T the torsion tensor of D. Then T satisfies :

(3.3) 0T (6 V) =0,
(3‘4) ¢p(T(§pa ¢pv)) +T(£pa V) = "d’p(iﬂ&p‘ﬁpﬂv)
for every V € X(M).

Proof. Tt is sufficient to show that T'(&,, V') belongs to I'(Z) for V= and V =X €
['(2). When V =&, T (&, &) = 0. When V = X, we have

T(&, X) = D, X — Dx&p — (6, X] = De, X — 2p(X)&p — épr X ,
because of (b) The condition (a) implies that DyI'(2) C I‘(@) The Z-component
(&5, X] 2, with respect to &, is given by
65 Xlag, = (& X] = 0(1&p) X])é
= [&, X] - 6([¢ — 2Q, X])&
=& X]+20(Q, X)&
= (&, X]+2w(Q, X)&
=&, X+ 29(P, X)&p = &, X]+ 2p(X)&p.
Therefore we have
T(fp: X) = DépX - QP(X)fp - ([&pv ]95,, - 2P(X)§p)
which proves (3.3). Since
0= (D€p¢p)v = Dﬁp(‘é'?V‘)"‘ ¢p(DEpV) , .
= DszVgp + [EP’ d’pV] + T(&p: ¢pv) - qsp(DVEp + Kp» V] + T@pv V))) '
we have ‘ : _
T(&, ¢pV) — 0o(T (&, V)) = =2p(¢pV)& — (‘?ﬁpﬁbp)v
because of (b) and the equation ¢,&, = 0. Thus if we apply ¢p to the both hand sides of

the above equation, we obtain (3.4). O
Now put F,V =T(&,, V) for V € X(M). Then we have |

(3.5) oF,=0,

(3.6) PpoFpodpt+ fp= —¢P(°%p¢p)f

We demand for F, the condition that F, anticommutes with ¢,. Then F, must be
—1/2¢,(Z;,$p). Conversely we see that F, anticommutes with ¢, if F, = ~1/2¢,(Z;,¢,).
Therefore if we add the condition that F, anticommutes with ¢, to the conditions from
(a) to (e) for a 1-form p, D becomes a CR Weyl connection. For F,, we also have

Lemma 3.3. Let D be a connection satisfying from (a) to (e) for a I-form p and T the
torsion tensor of D. Then Fy satisfies '

(3.7) 9(FpY, Z) + g(Y, FpZ) = —g(¢P(“ng¢P)Y) Z) — 4dp(JY, Z)
for every Y, Z € T(9). ' B ‘



Proof. Since F,Y = T(£,, Y), we have, from (b),
) Dgpy = 2p(Y)£p + [fp: Y] + FpY- _
We substitute this equation into the right hand side of (Dg )Y, Z) =& -w(dY, Z) —
w(¢pDe,Y, Z) — w(dpY, D¢, Z). Since ¢|p = ¢plg = J on 2, we consequently obtain
(38) oY, 2)+ 9V, RZ) , |
=€, - w(ppY, Z) — w(gpl&p, Y, Z) — w(dpY, 2p(2)& + &, Z]) — (DZ,,Q)(Y, Z).
On the other hand, we have :
(39)  ~2(d Z0)(65Y, 2) = (1) - 0p, Z1) = Z - 006, 6,Y]) + & - w(dyY, 2)
= 0([$pY, £, 2]) — 0([Z, (6pY), Z])
by using Jacobi identity. Combining (3.9) with (3.8), we obtain
Q(pra Z) + g(Y, FpZ) = ——2(d ,%p@)(q&pY, Z) - (¢py) ) ‘9([51)1 Z]) +Z- 9({517, ¢pYD
— 0((¢pY, 2p(2)&]) + 0([(Z;, 8p)Y, Z]) — (D, 9)(Y, 2).
Furthermore by (2.7) and (d), the above equation becomes
(3.10) 9(FY, Z) +g(Y, Fp2Z)
=4(d Z0)(8Y, Z) +2(¢Y) - w(Q, Z) - 2Z - w(Q, ¢Y)
— 0([¢Y, 2p(2)&]) + 0([(Ze, 9p)(Y), Z]) + 2p(&p)w(8Y, Z).
Next we shall calculate 4(d £50)(¢Y, Z). If we use (c), we have »
(311)  2D2g)(Y, 2) = 2Q - w(gY, Z) — 2(Da(#Y), Z) — 2(4Y, Do7).
We obtain p(@) = 0 since ¢ is Hermitian, so that the left hand side of (3.11) vanishes by
(d). Applying this fact and (e) to (3.11), we have .
(3.12) 0=2Q w(¢Y, Z) ~ 2w(DgrQ, Z) — 20([LH(¢Y) — w(Q, ¢Y)&p, Z])
| — 2(eY, DzQ) — 20([¢Y, LHZ — w(Q, Z)&)).
On the other hand, a straightforward computation shows
4(d Zab)(9Y, ) = —24Y) - w(Q, Z)+27 - w(Q, §Y) = 2Q - w(8Y, Z)
+20((Zo(¢Y), Z1) + 20([8Y, Z5Z]).

Combining this equation with (3.12), we obtain
(3.13) 4(d Zo0)(9Y, Z)

=~ 2(9Y) - w(Q, Z) + 22 - w(Q, $Y) — 2:( D@, Z) — 20(4Y, DzQ)

+20([w(Q, 9Y)&p, Z]) + 20([9Y, w(Q, Z)&)).
Moreover, we directly calculate 4dp(¢Y, Z). Then we obtain
(3.14)  4dp(Y, Z) =2¢Y) - p(Z) - 2Z - p($Y) — 2p([4Y, Z])
=29(Dgr Q. 62) +29(Q, Dyv($2)) — 4p(¢¥)g(Q, $2)
—29(DzQ, $*Y) — 29(Q, Dz(¢*Y)) + 4p(2)9(Q, 4*Y)
— 2p(Dyy Z — Dz(8Y) + w(8Y, Z),)
=2w(DyyQ, Z) + 2w(9Y, DzQ) — 2p(&,)w (Y, Z).



Substitute (3.13) into (3.10) and use (3.14). Then we have
(3.15) 9(FY, Z) +g(Y, F,2) _
= — adp(4Y, 2) +20(W(Q, $Y)p, 7)) + 0(((Zub)Y, 2)).
Finally since the 2-component of (.%,,)Y with respect to &, is given by
(("%p¢?)y)95p (’S’ﬂqubp)y + 2w(Q, Qby)fp,
substituting which into (3.15), we obtain (3.7). O
By Lemma 3.3, we have

Lemma 3.4. Let D be o CR Weyl connection and p the corresponding 1 form Then P
satisfies

(3.16) dp(JX, JY) +dp(X, Y) =0
for every X,Y € I(9).

Proof. Applying the assumption (f) or the condition that F, anticommutes with J to the
equation (3.7), we have

(3.17) g(FX,Y) —go(X, FY) =4dp(JX,Y).
Thus by anticommutativity of F, with J, we obtain (3.16). O

Now as we deal with Z-preserving almost contact structures (¢,¢,8)* belonging to
a CR structure (2, J), we have a unique linear connection called Tanaka connection
associated with (¢,£,6)*. Therefore we have to compute the difference between a CR
Weyl connection D and Tanaka connection with respect to a fixed @—preservmg almost
contact structure (¢, €, 0)*.

Proposition 3.5. Let (4,€,0)* be a Z-preserving almost contact structure, D a CR Weyl
connection and V Tanaka connection associated with ($,&,6)*. Define the difference H
between D and V by

H(V,W)=DyW -V,W, VW e X(M)
Then we have | » 7
(318) H(X,Y) =p(X)Y +p(Y)X - 4(X, )P +q(X)JY +q(¥)JX — g(JX, Y)Q,

(319)  H(E X) = VixP + VxQ ~ 2(X)P + 2p(X)Q + 29(P, P)JX,

for every X, Y € T'(9), where p is the 1-form of D corresponding to (¢,£,0)*, P (€ T(2))
defined by g(P, X) = p(X) for X € I'(2), Q = JP and q a 1-form defined by g = —po ¢.

Proof. First we denote the torsion tensor of Tanaka connection by 7V and note that
(3.20) : TVY, Z) = —w(Y, Z)¢
for Y,Z € T(9) since Tg, = 0 and 8(T7 (Y, 2))§ = —w(Y, Z)¢ by Lemma 2.2.
Computing H(Y, Z) — H(Z, Y) directly, we have
H(Y, Z)— H(Z,Y)=DyZ —VyZ — DzY + VY
=T(Y, Z) +1Y, 2]~ (T°(Y, Z) + IY, Z])
= T(Y, 2) - TV(Y, 2)
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for Y, Z € T'(9). Using (e) and (3.20), we obtain

(3.21) H(Y, 2) - H(Z, Y) = 2(Y, 2)Q.

On the other hand, since (D%g)(Y, Z) = —2p(X)g(Y, Z) and (V%g)(Y, Z) = 0 for
X,Y,Z € T(9), we have

(3.22) - gHX,Y), 2)+ (Y, H(X, 2)) = 2p(X)g(Y, Z).

In the e@uation (3.22) we permute X,Y and Z cyclically and subtract one from the sum
of the other two. Applying (3.21) to the resulting equation, we have the equation (3.18).

Next we compute H(¢, X) for X € I'(2). Since F, X = D X — 2p(X)&, — &, X] and
FX =V:X —[¢, X], we have :

H(EP: X) = Dpr - vfpy = FPX + [fpa X] + 2p(X>£P - VEX + 2VQX
= FpX+[{-20Q, X]+2p(X)& — (FX +[¢, X]) +2VeX
= F,X-FX-2(Q, X]|+2VoX + 2p(X)&,.
Furthermore, applying (3.20) to this equation and noting that w(@, X) = p(X), we have
(3.23) H(&, X)=F,X - FX +2VxQ — 4p(X)Q. ‘
Now computing F,X — FX directly by the equation F, = —1/2¢,(%;,¢p) and F =
—1/2¢(%:$), we have
| 1
(3.24) FpX = FX = ~ A&, TX] = 656, X]) = J([€, JX] = [, X])}

= ~2{85(l6, IX] = 20Q, TX] ~ JIE, X] +26,{Q, X))
~ J(&, JX] - Jlg, X))

= ($-26® P)Q, JX| - (p~ 20 ® PY[Q, X]

= (Vo X - VxQ+w(Q, JX)E)
—20(VoJX — VixQ +w(Q, JX)E)P
— (¢ =20 @ P){$(VoX — VxQ + w(Q, X)¢)
~20(VoX — VxQ +w(Q, X)§)P}

=V xP - VxQ+2q(X)P + 2p(X)Q.

Therefore we have

(3.25) H(&py X) = VoxP+VxQ +29(X)P — 2p(X)Q.

In the equation H (&, X) = H({, X) —2H(Q, X), we use (3.18) for H(Q, X) and (3.25)
for H(&,, X). Then we obtain the equation (3.19). : O

Remark. We can compute H(X, &) and H(, £) by the same way as the equation (3.19).
They are given by '

(3.26) H(X, §) =2VxQ ~ 4p(X)Q — 49(X)P + 29(P, P)JX + 2p(X)¢,
(3.27) H(¢, €) =2(VeQ — VP + VqoQ — 49(P, P)P — 2p(£)Q) + 2p(£)¢.

Conversely, one may ask whether given Tanaka connection V and D define a CR Weyi
connection. We have the following answer to this question.
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Proposition 3.6. Let (¢,£,0)* be a Z-preserving almost contact structure belonging to
CR structure (2,J) and V Tanaka connection associated with (¢,€,0)*. If D is defined
by DyW = Ny W+ H(V, W) for a given p satisfying (3.16), where H is defined by (3.18),
(3.19), (3.26) and (3.27), then it becomes a CR Weyl connection.

By Propositon 3.6 we see that an arbitrary pair (p, (¢,£,6)*) of a 1-form p satisfy-
ing (3.16) and a 2-preserving almost contact structure (¢,£,6)* determines a. CR Weyl
structure. )

4. ‘THE VIEW FROM G-STRUCTURE

Let M be an oriented (2n+1)-dimensional manifold and 7 : F*(M) — M the principal
bundle of positively oriented frames over M. Assume that a pair (2, J) of a hyperdistri-
bution 2 and a complex structure J on 2 is given on M. In addition, we assume that
(2,J) is a nondegenerate CR structure. Now we define the subspace %, in R*™*!, the

matrix Jy € GL(2n + 1;R) and the matrix Jy € GL(2n; R) by -
_ (= 2n+1| 10 ~ (0% , (0 -,
(4.1) Dy = { ( % ) eR =03, J= 0 Jo and Jp= I, 0

respectively, where I, is n X n unit matrix and the boldface denotes a column Vector of
degree 2n. We have a pr1n01pa1 subbundle P of F*+(M):-

={u€ F(M)|uDyC D, Julg =uolg }

whose structure group is

i

where the linear frame u is considered as a linear map from R®*™ to T, M(cf. [4]).
Futhermore we define 6y € (R?"*1)* and £, € R*"*! by

(4.2) Go=(1 '0) and §0=<(1)>

respectively. By using a local cross section & of 3, we define a 1-form 6% and vector field
£% on an open set U? by

a >0, bER2n, CJO=JOC},

(4.3) 0% = 657" and &7 = 56
respectively. Then we obtain
(4.4) 6°lg =0, 6°(&%) =1

because of their definitions. Note that the definitions of §° and £ are dependent of the
local section . Later on, we shall study between 67 (resp. £7) and 67 (resp. £7) defined
by another local section 7 whose domain has non empty intersection with U°?.

Next, we define a 2-form w’ by

(4.5) w® = —2d6°.

Then since we assume that (2, J) is a nondegenerate CR structure, we see that w? is a
nondegenerate and Hermitian 2-form when it is restricted to 2:

(4.6) ' (IX, JY) =uw’(X,Y)
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for X, Y € T(U?, 9), where I(U?, 2) denotes the set of cross sections on U7 of the vector
bundle 2. By using w®, we define B? € I'(U?, 2) by .

(4.7) W (B%, X) = -’ (&%, X)

for every X € I'(U?, 9). This is uniquely defined since w? is nondegenerate. Moreover
define a local bilinear form g% on 2 by

(4.8) , FX,Y)=u"(JX,Y),
which satisfies the equations L
(4.9) FXY)=gY X), X JTY)=¢(XY)

for X,Y € I'(U?, 2). Thus it becomes a fiber pseudo-metric of & defined on U?. When
we take two local cross sections & and 7 of 9 defined on U? and U7 respectively, we
suppose that they are related by 7 = h on U?7, where U’ denotes the intersection of
U? and U7, h is a G-valued function of the form

(410 =0 8)=(% a)
and 4 a function on U?7. Then we obtain

(4.11) " . 0" = e*g°

on U%7. Thus we have ‘

(4.12) W = M 4du v

because of (4.5). Furthermore we have
(4.13) W o =g, g o =g |a.

Therefore we have the conformal structure [g°} over 9. Let a(p,5) be the dimension of

the maximal subspace in 2, where g is negative definite for each point p € M and local

section & defined on a ne1ghb0rhood of p. These numbers are necessary even and we see

from the equation (4.13) that a(p,5) depends only on p. So we put y(p) = a(p, &). Since

7 is a lower semicontinuous function on M and M is connected, we easily see that it is

constant. :
Now we define a subbundle P of P by

p={ue® o (u( ) u(y)) =By o) =u}

whose structure group is
t
(4.14) G={<g8) : a>0,beR™ CJy=JyC, CEC’—aE }

~ [(E, 0 (=L 0

E’Y“<O E7>’ E’y—,< 0 In-—-'y>.
We remark that C' € CU, = GL(n, C)NCO(2v, 2n — 27). A local cross section o of B
is witten as

(415) : U=(£a, X]_,...,X.n, JXl,...,JXn>,

where
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where {Xy, ..., Xa, JXi, ..., JX,} is alocal orthonormal frame field of & with respect

to ¢°. And we can also express (4.15) as follows: -

(4.16) X; =oe; JX; = oJoes (i=1,...,n)

where e; = (0|0 -~ 1 --- 0[O0 --- 0). x
Let g and cu,, denote the Lie algebra of G and CU, respectively. Let ¥ = ( ?; to? be

a connection form of a linear connection D reducible to 13, where ¢ is R-valued 1-form,.
n R**-valued 1-form and o cu,-valued 1-form on 8. The connection form ¥ satisfies

(4.17) o A) =4 R = Ad(R™1)9,

where A* denotes the fundamental vector field correspondmg to A € g and h an element
of G. Since

B(90) = ado 1>(¢ D)-(ee) (e
B (—(1/2/)(10-% Ct?l ><naﬁaoéb ;%)=(f C"ZOO‘C >

where * = C~}(—¢b + an + ab), we have ,
(4.18) Ri¢ = ¢, *n = C~(—¢b + an + ab), Ria = Ad(C™)a.

Now let o and 7 be local cross sections of 3 defined on U? and U™ respectively. Suppose
that they are related by 7 = ogh on U’", where h is a G-valued function of the form as
(4.10) with C' € CU,. Then, for the differential maps of o and 7, we have

(4.19) dr(V) = dRy(do(V)) + (h~Y(dh)(V) )*

for Ve X(U°") (cf. [4]). Applying the connection form ¥ to (4.19), we obtain, from
(4.17), ,

(4.20) 9= Ad(h~Yo™9 + h1dh.
On the other hand, we have '

i 1/a 0 da 0\ (al'da 'O
“2) - hdh= ( ~(1/a)C"'b €1 ) ( db dC’) = ( o CTlC

where xx = C~!(—a"'bda + db). In particular, we have

(4.22) a lda = —2dy
by (4.10), and hence from (4.20) we obtain
(4.23) T = o*¢ — 2dpu.

We put 2p” = ¢*¢ and 2p” = 7*¢ for local cross section o and 7 respectively. Thus we
obtain

(4.24) pr=p7 ~dpu.

We regard local cross sections of B as those of . Then we also have 67, £7, w° and ¢°
on U°. We define P?, Q7 € IU?, 2) by

(4.25) | 9°(P?, X) =p°(X), Q°=JP°
for every X € I'(U®, 9). Then we have
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Lemma 4.1. Let o and 7 be two local cross sections of P such that T = och on U°7. We
put £pe = &7 + B — 2Q°, where B is defined by (4.7). Then & and §;r are related by

(4.26) Epr = € HE .

It follows that we have a transversal line bundle £ = span{{y} associated with the
connection D.

Proof. Since 0 = w™ (€™ + B", X) = w?(§ + B?, X) because of (4.7), by using (4.12) we
have ‘ ‘
0=w(§"+ B, X) =e*u(¢"+ B, X) — 4(du A 07)(&" + BT, X)
= W (E7 + BT, X) — w7 (€7 + B, X) + 2du(X).
Define (du*)” € T(U°", 2) by
(4.27) Py, X) = du(X)
for every X € T(U?7, 2). We have _
P (€ + BT, X) = (€7 + B, X) — 267 ((dh)", X)
= w7 (&7 + B, X) — 2w (J(dph)", X).
Therefore, since w’ is nondegenerate, we obtain
(4.28) £ 4+ B" = e #(¢° + B° — 2J(du)?).
We have, from (4.24), s :
9 (Q", X)=g"(JP", X) =—g"(P", JX)
= —p"(JX)
=—(p" —du)(JX) -
= —p?(JX) + du(JX)
= ¢7(Q° — J(dp*)’, X).
It follows that
(4.29) | Q7 = e~(Q° — J(dut)").
Combining (4.28) with (4.29), we obtain (4.26). O

Next we investigate the covariant derivative D of TM determined by 9. We take a
fixed local frame field (4.15) of TM. Note that, for a fixed W € X(U?), the local frame
field ¢ induces a map o'W : z € U’ — o(z)"'W(z) € R*™+1, The covariant derivative
of W € 2(U?) in the direction V € TU? is given by

(4.30) DyW =o(d(c™ W)(V) + (¢*9(V)) (e 7' W)).
Futhermore, since 07'X € R for X € T(U?, 2), we obtain
(4.31) Dy X = o(d(e™ ' X)(V) + (c*a(V)) (¢ X)).

Note that the product of the second term of the right hand side in the equations above
is the matrix multiplication. From (4.31), it is clear that

(4.32) Dy T(2) C (D).

It follows that D induces the covariant differentiation of the vector bundle 2, which is
denoted by D°. '
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Lemma 4.2. Let D be the covariant derivative of TM determined by ¥ and D° the
covariant derivative on 2 determined by . Then D and D° satisfy

(4.33) Dy 87 = =2p7 (V)87 DyJ=0 and vg® = =2 (V)g°
forV eTU".
Proof. Since
(Dy8°)(X) =V -6°(X) - 6°(DyX) = —6° (DL, X) =0
for every X € ['(U?, @), we have (Dy8°)(X) = —2p°(V)07(X). Futhermore, we have
(DyO7)(€7) = V - (67€7) = 6% (Dype) = =67 (o (" 0V)(0™267) ) ) = —o" (V)67 (7).
Thus we obtain (Dy 87} (W) = =2p° (V)87 (W) for every W € X(U?). Next we have
J(DvYy) =J{a((0"a(V))o™'Y)) }
=o{ Jo(c"a(V))o™ Yy }
=o{(0°a(V))o (0 Joo™'Ys) }
=o{(o"a(V))(c 7 JY3) }
=Dy (JY3)
for A =1,---,2n, where we have put ¥; = X;, Y4 = JX; (i = 1,--- ,n). Therefore,
since (D} J)(Ya) = Dy(JY)) — J(DvY,), we obtain D5 J = 0. At last we show that
D5, g° = —2p°(V)g?. Since . N
‘aE, + E,a = ¢E,,
we have
g’ (DyYs, Y,) ={(c*a(V))o YA} By (071Y,.)
=(o7'Y3) (0" (V) By (07Y,.)
= (e By (0" (V) + o*¢(V) B, Ho'Y,)
== g°(Va, DyY,) +2p°(V)g” (Y, Y,).

Therefore, for local frame {¥,} of 2, we have

(4.34) (Dyg”)(Ya, Yu) = =2p°(V)g° (Ya, Y,)

from which we obtain D}, g% = —2p?(V)g¢°. O
Now assume that the torsion tensor T of D satisfies

(4.35) T(X,Y) e 2,

(4.36) T(L, X) € 2, T(L, JX)=-JT(L, X),

(4.37) (DyT)(X,Y)=0

forUeTM, XY € 9 and L € ¥. Then we have

°(T(X,Y)) = (X, Y),  67(§e) =1
because of (4.32) and (4.35). Therefore we obtain
(4.38) T(X,Y)=—w' (X, Y)ée
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for XY € 2. We define (1,1) tensor ¢7 by ¢°¢7 =0 and ¢°X = JX for X € 2, and
MOreover ¢po by

1
(4.39) oo = ¢° — 20® <P" + 5]8”) .

It is easy to show that
(4.40) P X =JX, Gpo = Gpr, 9% o ppe = 0, Gpobpe = 0.
Since 87(Dy € — 2p°(V)épe) = 0, we have
9°(Dvépe = 20°(V)pe, Y) = w”(J(Dvépr — 207(V)&pe), ¥)
= WU(¢p°(Dpr”) - QPU(V)¢p"fp"v Y)
W (Ppe (Dvépe), Y)
W (~(Dy ¢pe)pe, Y)
97 (J(Dy pe )6pe, ¥).

i

Il

i

Therefore we obtain
(4.41) Dybye — 27 (V) = J(Dy $pe )
for V€ X(U?). From (4.37) and (4.33), we have
0=Dy(T(X,Y)) —=T(DyX,Y)-T(X, DyY)
= — Dy(w(X, Y)épe) + w7 (Dv X, Y)épe +w? (X, DyY)&pe
—2p° (V)W (X, ¥ ) — (X, ¥) Dype.
Combining this equation with (4.41), we obtain
(4.42) Dyéy = 2°(V)&e, Dy =0.
In particular, Dgp,, ¢pe = 0 and hence
0 = Deyo (¢ X) = b (Dgyo X)
= Fpodpoe X + Do,oxpo + (6o s po X]
— Gpo (Fpo X + Dxépr + [§pe, X])
= [Fpo, JIX + (Ze,0 6 )X + 20 (I X)Epr,
where we have put Fe X = T(£,+, X). Equation (4.36) implies that

(4.43) T(Ge, X) = = 50y (Lo ) X.

Finally, if o satisfies w?(X, £€7) = 0, then we obtain, from Lemma 3.4,
(4.44) dp?(JX, JY)+dp’(X,Y) =0

for XY € 2.

Proposition 4.3. Let ‘B(M,G) be the subbundle determined by the CR structure and D
a linear connection reducible to ‘P(M,G). Then there is a I-dimensional distribution &
on M transversal to 9. For a local cross section o of B(M,G), D satisfies

Dy6° = =2p°(V)6°, Dy J =0, Dy g% = =2p°(V)g°®
for V€ X(M). Moreover, if the torsion tensor T' of D satisfies
"X, YYe?, T(L X)e2, T(L,JX)=-JT(L, X), (DyT)X,Y)=0
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for X, Y € @ and L € &, then D satisfies

T(X, ¥) = ~"(X, V)b, TG, X) = =5 bpe (Lo bpe) X
Dy o = 2D (V)pe, - Dvgpe =0
and if w7 (X, £€7) = 0 holds for X € D, then p° satisfies
dp®(JX, JY)+dp°(X,Y) =0.

Remark. We assume that M is orientable. Then we have a nonvanishing globally defined
vector field £ transversal to 2. Then, for the local cross section ¢ and 7 of the form
(4.15), h reduces to a matrix that

1 %0

b C )’

where tCEVC’ E It follows from (4.11), (4.13) and (4.24) that 0, ¢, w, g and p are
globally deﬁned on M and &, is a global section of .22. Moreover, 1f we take € such that
w(X, &) = 0 for every X € 9, then p satisfies (3.16). .

5. CURVATURE OF CR WEYL CONNECTION

In this section, we investigate the property of the curvature of a CR Weyl connection.
Let D be a CR Weyl connection of the CR structure (2, J). Let R be the curvature
tensor field of D defined by

R(U, V)W = DyDyW — Dy DyW — Dy yW

for U,V,W € X(M). We fix a D-preserving almost contact structure (¢, &,0)* and let p
be the 1-form of D corresponding to (¢,&, 6)*. Since DE, = 2p ® &,, we see easily that

(5.1) - R(U, V)&, = 4dp(U, V)&, UV eTM.
The property DyT'(2) C T'(2) implies that

(5.2) R(U, VY2 C D, - U, VeTM.
Since D¢, = 0, we have '

(5.3) R(U, V)¢, = ¢,R(U, V) , U,V eTM.

fweput R(U, V, X, Y)=g(R(U, VX, Y)for U,V € TM and X,Y € 2, then we have
the equation .
(5.4) R(U,V,X,Y)=-R(U,V, Y, X) +4dp(U, V)g(X, Y).
The first Bianchi identity is the formula (cf. [4]):
S{R(U, VW} = &{T(T(U, V), W) + (DyT)(V, W)},

where U, V, W-€ T'M and & denotes the cyclic sum with respect to U, V and W. Replac-
ing U, V,W with X,Y,Z € 9 respectively in the first Bianchi 1dent1ty above, we have
from (3.2),

G{R(X,Y)Z}=G{T(T(X,Y), Z2)}.
Moreover, applying the condition (e) in the definition of a. CR, Weyl connection to the
above equation, we obtain

(5.5) S{R(X, )2} = ~6{w(X, Y)F,Z)
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for every X,Y,Z € 2. Putting U = &, and replacing VW with Y| Z € 2 in the first
Bianchi identity, we have

R(&, Y)Z + R(Y, 2)& + R(Z, &)Y
=TT Y), 2)+T(T(Y, 2), &)+ T(T(Z, &), Y)
+ (D, T)Y, Z) + (DyT)(Z, &) + (DzT) (&, Y)
=T(FY, 2)+ T(-w(Y, 2)&, &) —T(T(&%, 2), Y) — (DyT) (&, Z) + (D2T) (&, Y)
= —w(FY, 2)6 +w(FpZ, V), = Dy(T(&, Z)) + T(Dyép, Z) + T(&y, Dy 2)
+ Dy(T(6, Y)) = T(Dzby, ¥) = T(éy, D3Y)
= —w(FY, 2)6 +w(FLZ, YY), — (Dy F,)Z + 2p(Y ) FoZ + (D2 F,)Y — 2p(Z)F,Y,
where we have used (3.2) and (b), (e) in the definition of a CR Weyl connection. In
addition, when we rewrite (3.17) with w, we have
(5.6) w(FpX,Y)+w(X, F,Y)= —-4dp(X, Y).
Substituting (5.1) and (5.6) into the first Bianchi identity including &, above, we obtain
(5:7) (& Y)Z = R(&, 2)Y = ~{(Dy F)Z - (Y)E,Z} + {(D2F,)Y = 2p(Z) FyY)
for Y, Z € 9. Since the second Bianchi identity is the formula:
S{DuRY, W)} = ~S{R(T(U, V), W)}
for U,V,W € T M, we have immediately
(5.8) S{(DxR)(Y, 2)} = 6{w(X, Y)R(&, 2))

for X,Y,Z € 2. Furthermore, if we put U = £, and replace V,W with Y,Z € 9
respectively in the second Bianchi identity, then

(5.9)  (De, )Y, Z) = (DyR)(&, Z) + (DzR)(&, Y) = —R(F,Y, Z) + R(F,Z, Y).
We shall prove the following formula:
(5.10) R(X,Y, Z, W) —-29(JX, Y)dp(JZ, W) +29(X, Y)dp(Z, W)

~R(Z, W, X, Y) +29(JZ, W)dp(JX, Y) = 29(Z, W)dp(X, Y)
= —g(JX, 2)g9(F,Y, W) + 29(JX, Z)dp(JY, W) + 29(X, Z)dp(Y, W)
+9(JY, Z)g(F X, W) — 29(JY, Z)dp(JX, W) — 29(Y, Z)dp(X, W)
— g(JY, W)g(F,X, Z) + 2g(JY, W)dp(J X, Z) + 2g(Y, W)dp(X, Z)
4 o(JX, W)g(EyY, Z)  29(JX, W)dp(JY, Z) - 29(X, W)dp(Y, Z),
where X,Y,Z, W € 2. If we put
R(X,Y, Z,W)=R(X,Y, Z, W)+ R(Y, Z, X, W) + R(Z, X, Y, W),
then we have
R(X,Y,Z,W)-R(Y, Z, W, X) - R(Z, W, X, Y) + R(W, X, Y, Z)
=2{R(Y, Z, X, W) - R(W, X, 2, Y)}
+4dp(X, Y)g(Z, W) — 4dp(Y, Z)g(X, W) + 4dp(Z, X)g(Y, W)
— 4dp(Z, W)g(Y, X) + 4dp(Y, W)g(Z, X) + 4dp(W, X)g(Y, Z)
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because of (5.4). The equation (5.5) shows

R(X,Y, Z, W) = —{w(X, Y)g(F,Z, W) + w(Y, Z)g(F,X, W) + w(Z, X)g(E,Y, W)).

Combining the two equations above, applying (3.16) and (3.17) to the obtained equation
and changing Y for X, Z for Y and X for Z, we have (5.10). From (5.7) we have

R(&, Y, Z, W) = R(&, 2, Y, W) = = g((Dy F,)Z, W) + 2p(Y)g(FpZ, W)
+9((DzF,)Y, W) = 2p(2)g(FpY, W),
in which we permute the letters Y, Z and W cyclically and subtract one from the sum of
the other two. Then we have
(5.11) 2R(&,, Z, W) Y)
+4dp(&y, Y)9(Z, W) = 4dp(&,, Z)g(W, Y) — 4dp(&,, W)g(Z, Y)
=—g((Dy£3)Z, W)+ 2p(Y)g(FpZ, W)
+9((DzF,)Y, W) = 2p(Z)g(E,Y, W)
+9((Dw k)Y, Z) = 2p(W)g(F,Y, Z)
— 9((Dy F)W, Z) + 2p(Y)g(F,W, Z)
—9((DzFR)W, Y) + 2p(Z)g(F,W, Y)
+9((Dwf3)Z,Y) = 2p(W)g(F,2, Y)

because of (5.4). Note that Dy F}, satisfies the following equation
(512)  g((DvF)X, Y) = g(X, (DvE)Y) + 4(Dydp)(JX, Y) + 8p(V)dp(JX, ¥)

for V.€ TM and X,Y € 2, which is obtained from (3.17). Moreover note that (3.16)
shows that

(5.13) (Dvdp)(JX, JY) = —(Dydp)(X, Y)
for V€ TM and X,Y € 2. Applying (5.12) and (5.13) to (5.11), we obtain
(5.14) R(,, Y, Z, W)
= g(Y, (DzF,)W — (DwF,)Z) + g(Y, 2p(W)F,Z ~ 2p(Z)F,W)
= 2(Dwdp)(JY, Z) + 2(Dydp)(JW, Z) + 2(Dzdp)(JY, W)
= 2dp(&, W)g(Y, Z) + 2dp(&, Y)g(Z, W) + 2dp(&,, Z)g9(Y, W)

forevery Y, Z, W € 2.
Next we get the following formula for the difference of R(JX, JY) and R(X, Y):

(5.15) R(JX, JY)Z - R(X,Y)Z
=9(JX, Z)F,Y - g(JY, Z)F,X + g(X, Z)F,JY — g(Y, Z)F,J X
+ folX, 2)IY — £V, 2)IX + f(JX, 2)Y = f,(JY, Z)X
~4dp(X, Y)Z + 4dp(J X, Y)J Z,

where X,Y, Z € 2 and we have defined f, by
(X, Y)=9(FX,Y), X Y€
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This formula can be proved by using equations (3.16), (5.3) and (5.10). In fact we see
that

R(JX, JY, Z, W) —29(J*X, JY)dp(JZ, W) + 29(J X, JY)dp(Z, W)
=R(Z, W, JX, JY) =2g(JZ, W)dp(J*X, JY) + 29(Z, W)dp(J X, JY)

—g(J?X, Z)g(F,JY, W) + 29(J*X, Z)dp(J*Y, W) + 29(J X, Z)dp(JY, W)

+ g(J?Y, Z2)g(F,J X, W) — 29(J%Y, Z)dp(J*X, W) — 2¢(JY, Z)dp(J X, W)

— g(J%Y, W)g(F,J X, Z) + 29(J*Y, W)dp(J*X, Z) + 29(JY, W)dp(J X, Z)

+g(J*X, W)g(F,JY, Z) — 29(J*X, W)dp(J?Y, Z) - 29(J X, W)dp(JY, Z)
={R(Z, W, X,Y) —29(JZ, W)dp(JX, Y) + 2¢(Z, W)dp(X, Y)}

+49(JZ, W)dp(JX,Y) — 49(Z, W)dp(X, Y)

+9(X, Z)g(F,JY, W) +29(X, Z)dp(Y, W) + 29(J X, Z)dp(JY, W)

- g(Y, 2)9(F,J X, W) = 2g(Y, Z)dp(X, W) — 2g(JY, Z)dp(J X, W)

+ g(Y, WYg(F,J X, Z) + 29(Y, W)dp(X, Z) + 29(JY, W)dp(J X, Z)

- 9(X, W)g(F,JY, Z) — 2g9(X, W)dp(Y, Z) — 2g9(J X, W)dp(JY, Z)
={R(X,Y, Z, W) —29(JX, Y)dp(JZ, W) + 29(X, Y)dp(Z, W)

+9(JX, Z)g(F,Y, W) = 29(J X, Z)dp(JY, W) = 2¢(X, Z)dp(Y, W)

—g(JY, Z)g(F,X, W) +2g9(JY, Z)dp(J X, W) + 2g(Y, Z)dp(X, W)

+g(JY, W)g(F,X, Z) = 29(JY, W)dp(J X, Z) — 29(Y, W)dp(X, Z)

—g(JX, W)g(EY, Z) +29(JX, W)dp(JY, Z) + 29(X, W)dp(Y, Z)}

+4g(JZ, W)dp(J X, Y) — 49(Z, W)dp(X, Y)

+ (X, Z)g(F,JY, W) +29(X, Z)dp(Y, W) + 2g(J X, Z)dp(JY, W)

- g, Z)g(F,J X, W) = 29(Y, Z)dp(X, W) —29(JY, Z)dp(J X, W)

+9(Y, W)g(F,JX, Z) + 29(Y, W)dp(X, Z) + 29(JY, W)dp(J X, Z)

- g(X, W)g(F,JY, Z) — 2g(X, W)dp(Y, Z) - 2g(JX, W)dp(JY, Z).

We turn to the study of the Ricci tensor field of a CR Weyl connection. We shall define
two kinds of Ricci tensors. In general, Ricci tensor field s is defined by

(5.16) s(V, W) = trace of (U — R(U, V)W)
for VW € TM. We define another Ricci tensor field k by
1
(5.17) k(V, W) = - trace (@p,R(V, ¢p,W))
for VW € T M. Restricting s to 2, we obtain the following equation
(5.18) s(X,Y)=s(Y, X) = —4(n+ 1)dp(X, Y)

for every X, Y € 2. The proof of (5.18) is as follows: Noting that R satisfles (5.2), we
may consider the contraction in only 2. Since

(5.19) traceg (R(V, W)) = 4ndp(V, W), V,W e TM,
where we have used (5.4) and traceg denotes the trace in only 2, we have
s(X,Y) —s(Y, X) = tracep (Z — 6{R(Z, X)Y}) — 4ndp(X, Y).
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Therefore, from (5.5), (3.17) and the fact that tracegf, = 0,
s(X,Y) = s(Y, X) = —traceg (Z — 6{w(Z, X)F,Y}) — 4ndp(X, Y)
=g(F, X, JY) — g(FpJY, X) — w(X, Y)traceg F, — dndp(X, Y)
=—4(n+ 1)dp(X,Y).
Next we obtain the relation between s and k:
(5.20) kX, Y)=s(X,Y)=(n=1f,(JX,Y)-2ndp(X,Y), X, Y€
The equation (5.20) can be shown as follows:
s(X,Y) =traceq (Z — —JR(Z, X)JY)
=traceg (Z — JR(X, JY)Z + JR(JY, Z)X
+w(X, JY)JF,Z +w(JY, Z)JF, X +w(Z, X)F,Y)
=2k(X,Y) + traceg (Z — JR(JY, Z)X)
—w(X, JY)traceg (FpJ) + g(JFp, X, Y) + g(FpY, JX)
=2k(X,Y) + traceg (Z — JR(JY, Z)X) + 4dp(X, V),
where we have used (5.5), (3.17) and the fact that F, anticommutes with J, and using
(5.15) and (3.17) again, we have
traceg (Z — JR(JY, Z)X)
=traceqg (JZ — JR(JY, JZ)X)
=tracey (Z — R(JY, JZ)X)
=traceg (Z — R(Y, Z)X + g(JY, X)FLZ — g(JZ, X)F,Y + g(Y, X)F,JZ
—9(Z, X)F,JY + f,(Y, X)JZ - f,(Z, X)JY + f,(JY, X)Z - f,(JZ, X)Y
—4dp(Y, Z2)X + 4dp(JY, Z)J X)
= —s(Y, X) + g(JY, X) traceqg F, + g(F,Y, JX) + g(Y, X) traceq (F,J)
— g(FpJY, X) + fo(Y, X)traceg J — g(FLJY, X) + 2ng(F,JY, X) — g(F,JY, X)
—4dp(Y, X) + 4dp(X, Y)
=-s5Y, X)+2(n-1)f(JX,Y)+8ndp(X, Y),
which shows (5.20). From equations (5.18) and (5.20) we obtain

(5.21) KX, Y)-k(Y, X)=—-4(n+ 2)dp(X, Y)

for every X,Y € 2. The defining equation (5.17) of k shows the following property
(5.22) k(JX,JY) = k(X,Y)=4(n+2)dp(X,Y)

for every XY € 2. It follows that

(5.23) s(JX, JY)=s(X,Y)==2(n—-1)fp(JX,Y) +8dp(X,Y)

for every X, Y € 2. It is easy to show »

(5.24) s(X, &) = —4dp(X, &), X €9

Furthermore, by making use of (5.7) and (5.19) we obtain

(5.25) 5(&p, X) = traceg (Z — (DzFp)X) — 2p(FpX) — 4ndp(&,, X)

= traceg (Z — (DzT)(&, X)) — dndp(&,, X), X € 2.
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We introduce two notations for later use. Define S € I'(2* ® 2) by

(5.26) g(SX,Y)=5(X,Y), X, Ye2
and p by
(5.27) p = traceg S

which is a smooth function on M and will be called scalar curvature.
Finally we state the following lemma and conclude this section.

Proposition 5.1. The Ricci tensor field s satisfies
2n
1
(5.28) D_eDes)(X, &) = 5 (dp = 2pp)(X)

for X € 2, where {e;} denotes an orthonormal frame of 2 with respect to the pseudo
metric ¢ and €; = g(e;, €;) = £1.

Proof. From the second Bianchi identity (5.8) we have
S{(DxR)(Y, )W} = &{w(X, Y)R(&, Z)W}

for W € 2. Therefore, if, in the above equation, we replace Y with e; and take the inner
product with e;, we have

(5.29) (Dxs)(Z, W)+Zeig((DeiR)(z X)W e;) — (Dzs)(X, W)

=—g(JX, R(&, 2)W) = g(JR(&, XW, 2) +9(J2, X)s(&pr W),
where we have used the following equation
2n
(530) Dxe,; = — Zejg(Dxej, 6i)€j + 2p(X)e

j=1
Moreover, replace both Z and W with e; and sum with respect to j. Then we have

(5.31)

ZEJ'(DXS)(eJ" ej) + Z EiEjg((DeiR)(ej’ X)ejv ei) - Zej(De,-S)(Xa 6]')

j=1 i, j=1
=— Zejg(JX R(&,, ej)e;) — Zejg(JR (€p, X)ej, ) + Zng Jej, X)s(&p, €;).
J=1 1=1

We calculate the each term of the equation (5.31). Applying (5.30) to the first term of
the left hand side of (5.31), we have

(5.32) Ze, Dxs)(e;, &) = (dp — 2pp)(X).

Applying (5.4) and (5.30) to the second term of the left hand side of (5.31), we have
2n

(5.33) Z €:€;9((De, R)(e5, X)ej, &) = Zez(De‘s X, e)+ 4Z(D dp)(e;, X).

1, j=1
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For the first term of the right hand side of (5.31), we have, from (5.4),
2n
(5.34) = e;9(JX, R(&, €))e;) = —s(&p, JX) — 4dp(&y, JX).
j=1
To compute the second term of the right hand side of (5.31), we prepare the following
equation

> eig((DxFples, Je)) = ) _eg((DxFpJd)e, €) = traceg Dx(F,J) = 0.

By using (5.3), (5.7) and the equation traceg(F,J) = 0, we have
2n

(5.35) = 3 €g(JR(E, X)es, &) = traceg (Z — (DzF,)JX) = 2p(FJ X) + 5(65, JX).

i=1

For the third term of the right hand side of (5.31), we have
2n

(5.36) > ei9(Jes, X)s(6p, €5) = —5(&, IX).
j=1

We see from (5.34), (5.35), (5.36) and (5.25) that the right hand side of (5.31) becomes
4(n — 1)dp(&,, JX). Substituting (5.32) and (5.33) into (5.31), we have

(5.37) ~23 e Das) (X, &) + 43 ei(Desdp)(es, X) + (dp - 20p)(X)

= 4(n = V)dp(&y, JX).
If we prove
(5.38) 23" ed(Dedp)(JX, &) = 2(n — 1)dp(&, X),

then we conclude (5.28). The proof of (5.38) is as follows. We calculate the exterior
derivative of dp.

3d(dp)(Y, Z, W) = &{(Dydp)(Z, W) — (Y, Z)dp(&,, W)}

for Y, Z,W € 2, where we have used (e) in the definition of the torsion tensor of CR.
Weyl connection. Replacing Y with e;, Z with Je; and W with X in the above equation,
and summing with respect to ¢, we have

(5.39) Zci(Deidp)(Jei, X) + Zei(DJeidp)(X, &)

1

= —(2n - )dp(&,, X).
For the first term of the left hand side of (5.39), we have

(5.40) = e Dedp)(Jei, X) = ei(Deidp)(JX, €:).

For the second term of the left hand side of (5.39), we also have
(5-41) — Y edDyedp)(X, &) = Y e Dyeidp)(J X, Jes)

= Z&(De,»dp)(-]x) &),
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where we have used (3.16). Substituting (5.40) and (5.41) into (5.39), we obtain (5.38).
O

6. CR EINSTEIN-WEYL STRUCTURES

Let D be a CR Weyl connection on a CR manifold (M, 2, J). Fixing a @-preserving
almost contact structure (¢,&,8)* belonging to the CR structure (2, J), we know that
there exists uniquely a Tanaka connection V associated with the almost contact structure
(¢,€,0)" (cf. [9], (12]). Then the difference tensor H between D and V is given in
Proposition 3.5. Thus we may calculate the difference R(X,Y)Z — RY(X, Y)Z for
X,Y,Z € 9, where RV denotes the curvature tensor of V. We introduce suitable 2-forms
and rewrite the resulting long equation comfortably. Next we shall calculate k — kY and
p — pY. In this way, the curvature tensor R will be expressed as the equation including
Bochner curvature tensor. Making use of this equation, we can define a CR. Einstein-Wey!
structure on a CR manifold.

To begin with, we calculate the difference R — RV. Since

DxDyZ =Dx(VyZ + H(Y, Z))
=VxVyZ+ H(X, VyZ)+ (VxH)Y, Z)+ H(VxY, 2)
+ H(Y,VxZ)+ H(X, H(Y, Z)),
(X, Y]=VxY = VyX —=TY(X,Y) = Vx¥Y - Vy X +w(X, Y)¢
for X,Y,Z € T'(9), where we have used the equation TV(X, Y) = —w(X, Y)¢, we have
(6.1) R(X,Y)Z~RY(X,Y)Z
= (VxH)(Y, Z) - (VyH)(X, 2)
+H(X, H(Y, 2)) - HY, H(X, Z2)) —w(X, Y)H(£, Z).
We substitute (3.18) and (3.19) into (6.1). The calculation is long but routine and hence
we omit the proof. The result is as follows (cf. [9]):
(62) R(X,Y)Z-RY(X,Y)Z
=—{(Vyp)(Z) = p(Y)p(Z) + a(Y)a(Z) + p(P)g(Y, Z)}X

+{(Vxp)(Z) — p(X)p(Z) + a(X)a(Z) + p(P)g(X, Z)}Y

—{(Vy)(2) = q(Y)p(2) — p(Y)a(Z) + p(P)g(JY, Z)}J X

+{(Vxq)(Z) — a(X)p(Z) — p(X)a(Z) + p(P)g(J X, Z)}JY

—g(Y, Z{VxP - p(X)P +q(X)Q} + g(X, Z){VyP —p(Y)P + ¢(Y)Q}

= 9(JY, Z{VxQ - q(X)P - p(X)Q} + 9(JX, Z){VyQ ~ q(Y)P - p(Y)Q}

+{(Vxp)(Y) = (Vyp)(X)}Z + {(Vx)(Y) = (Vyg)(X)}JZ

+ 9(JX, Y){VizP+ VzQ +2p(P)JZ}.
Now we define a € ['(2* ® 2*) by

(6:3) al¥, 2) = (Vvp)(2) - p(¥)0(2) + (¥ )a(2) + a(Pa(Y, 2) + +p(€)a(JY, 2)
and vy € ['(2* ® 2*) by

(54 (Y, 2) = (T4a)(2) ~ (¥ }p(2) - oY )9(2) + 5 P(P)(IY, Z) = =plE)aY, 2).
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Then they are related as
(6.5) alY, Z) =~(Y, JZ).

Rewriting the exterior differentiation dp and dg of the 1-form p and ¢ in terms of the
Tanaka connection respectively, we obtain

(6.6) 2p(Y, Z) = (Vyp)(Z) = (Vap)(¥) - p(E)lY, 2),
(6.7) 2dg(Y, Z) = (Vyq)(2) = (Vzq)(Y)

for Y,Z € 9, where we have used ¢(¢) = 0. From (6.3) and (6.6), we have
(6.8) alY,Z)—a(Z,Y) =2dp(Y, Z).

We also have, from (6.4) and (6.7),

(6.9) WY, Z2) - +(Z,Y) =2dq(Y, Z) + p(P)g(JY, Z).
Furthermore, define A, C € ['(2* ® 2) by

(6.10) AY = Uy P~ p(Y)P+4(V)Q + 5p(P)Y + 2p(E)JY,
(611) CY = 94Q ~ (V)P ~ p(Y)Q + 5B(P)JY = Sp(e)Y.
Then we have

(6.12) G(AY, 2)=alY, Z),  o(CY, 2) =(Y, 2),
and from (6.5)

(6.13) JA=C.

Substituting (6.3), (6.4), (6.10) and (6.11) into (6.2), we easily obtain the following
equation and we omit the proof (cf. [10]).

Lemma 6.1. R — RV is given by
(6.14) R(X,Y)Z-RY(X,Y)Z
=—alY, )X + (X, 2)Y — (Y, 2)JX +~(X, Z)JY
-g(Y, Z)AX + g(X, 2)AY - g(JY, Z)CX + g(JX, Z)CY
+{a(X,Y)-a(Y, X)}Z + {7v(X,Y) -7, X)}JZ
+9(JX,Y)AJZ +CZ).
Remark. We can represent the equation (6.14) in the form similar to [10]:
R(X,Y)Z - RY(X,Y)Z
=-—olY, 2)X +a(X, 2)Y =Y, 2)JX +~(X, 2)JY
-g(Y, 2)AX + g(X, 2)AY — g(JY, Z)CX + g(J X, Z)CY
+{v(X,Y)-~Y, X)}JZ +g9(JX, V){CZ -*CZ}
+2dp(X, Y)Z +29(JX, Y)dp"(J Z),

where 'C denotes the transpose of the linear transformation C of 2 with respect to g
and dp* is the linear transformation of 2 defined by g(dp*X, Y) = dp(X, Y).
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Next we shall compute k(Y, Z) — kV(Y, Z) for Y, Z € 9, where kV is the Ricci tensor
of the fixed Tanaka connection V. Before contracting the equation (6.14), we consider
the symmetric part of . For f(Y, Z) — f(Y, Z), we obtain

(6.15) VWY, Z2) ++(2,Y) = =Y, 2) + f(Y, 2) + 2dp(JY, Z),
where f(Y, Z) = g(FY, Z). In fact, since
LY, Z) = £(Y, Z) = (Vayp)(Z) - (Vva)(Z) + 20(Y)a(Z) + 20(Y )p(2)
because of (3.24), the bilinear form o satisfies
(6.16) a(JY, 2)+alY, JZ) = f(Y, Z) = f(Y, Z),

which implies (6.15).
Well we compute s(Y, Z) — sV (Y, Z), where sV is the Ricci tensor of V. Contracting
(6.14), we see that

s(Y, Z) - sV(Y, Z)
= - 2na(Y, Z) + a(Y, Z) — (Y, Z)traceg J + y(JY, 2)
—g(Y, Z)traceg A+ a(Y, Z2) — g(JY, Z) traceg C — (Y, JZ)
+{a(Z, V) —al¥, 2)) - (1JZ, Y) =Y, JZ)}
—9(AJZ, JY)—g(CZ, JY).

Since traceg F, = traceg F' = 0, we obtain traceg C' = 0 by virtue of the equation
(6.15). Making use of (6.5), (6.8), (6.15) and (6.16), we have

(6.17) s(Y, Z) = sV(Y, Z) = = 2(n+ 2)a(Y, Z) - 3f,(JY, 2Z)
+ f(JY, Z) — g(Y, Z)traceqg A — 4dp(Y, Z).
Therefore, by the equation (5.20), we get
Lemma 6.2. The difference k(Y, Z) —~ kV(Y, Z) is given by
(6.18) kY, Z) = kv (Y, Z) = - (n+ 2){a(Y, Z) + a(JY, JZ)}
—g(Y, Z)traceg A — 2(n + 2)dp(Y, Z)
for every Y, Z € 9.
Using the equation (6.17), we have
(6.19) S~ SV =-2(n+2)A-3F,J+3FJ - (traceg A)I5 — 4dp",

where SV denotes the linear transformation of 2 defined by g(SVY, Z) = s¥(Y, Z) and
I denotes the identity transformation of 9. We obtain, from (6.19),

Lemma 6.3. The difference p — p¥ is given by
(6.20) p—p¥ =—4(n+1)traces 4,
where p¥ denotes the scalar curvature of V.

Let us define { and m by

1
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and
1 kv, 2+ =
2(n+2) ' 8(n+1)(n+2)

respectively, where Y, Z € 9. From the equation (5.21) and (5.22) we obtain

(6.22) m(Y, Z) = pg(JY, 2)

(6.23) WY, 2)-U(Z,Y)=2dp(Y, 2),
(6.24) WJY, JZ) - I(Y, Z) = =2dp(Y, Z).
Also we similarly obtain

(6.25) m(Y, Z) = -m(Z,Y),

(6.26) m(JY, JZ) -m(Y, Z) = =2dp(JY, Z).
The forms ( and m are related as

(6.27) m(Y, Z) = (JY, Z).

We define L€ I'(2°® 2) and M € (2" ® 2) by

(6.28) 9(LY, Z) =Y, Z2),

(6.29) g(MY, Z) =m(Y, Z)

for every Y, Z € 2 respectively.
We express a, v, A and C by the above notations:

Lemma 6.4. The bilinear form «a on 2 is given by

1
(630)  al¥, 2) =UY, 2) = °(Y, 2) = 5{,IY, 2) - F(IY, 2)} - dp(Y, 2),
so that we have
(6.31) A=L-L" - %(F,,J - FJ) - dp*,
and the bilinear form vy is given by

1

(632) Y, 2)=m(Y, 2) - m°(¥, 2) = ={£(Y, 2) - f(¥, 2)} — dp(JY, 2),
so that we have

1
(6.33) C=M-M"~ -2-(F,, - F) —dp'J,

where IV, mV, LV and MV denote the tensors similarly defined by (6.21), (6.22), (6.28)
and (6.29) with respect to V respectively.

Remark. In [10], the following equations are easily verified:
VY, z2)=1Z2,Y), mV({Y, Z2)=-mY(Z,Y)
VY, JZ) =Y, 2), m (JY,JZ)=m" (Y, Z)

for Y,Z € 9. These are derived from the fact that kV is symmetric on 2 and satisfies
KV(JY,JZ)=k(Y, Z)for Y, Z € 9.
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Proof. 1t suffices to prove the equation (6.30) from which the others are trivially derived
from the above remark. From the defining equation (6.21), we have
1
— kY, Z2)-kY(Y, Z
sy (kY. 2) = k(Y. 2)
! v
—-p )Y, 2).
ST DT D) (p=p")glY, 2)

We substitute the equation (6.18) and (6.20) into the above equation. Then we have

Wy, 2y -1, 2) = -

+

(Y, 2) ~ 7Y, 2) = {a(Y, 2) + alJY, JZ)} + dp(Y, 2),
and hence, we obtain (6.30) from (6.16). d

Next we shall rewrite the equation (6.14) by making use of Lemma 6.4. Before we do
so, we need to state the Bochner curvature tensor which is invariant under the change
(2.8).

Sakamoto and Takemura (cf. [10]) state the Bochner curvature tensor in the following
form.

Lemma 6.5. Let By, B; € ['(2"* ® 2) be defined by
(6.34) Bo(X,Y)Z
=RY(X,Y)Z+I°(Y, 2)X - IV(X, 2)Y + m (Y, Z2)JX —m" (X, Z)JY
+g(Y, Z)LVX - g(X, Z)LYY + g(JY, Z)M X — g(JX, Z)M'Y
—2{mY(X,Y)JZ + g(JX, Y MY Z},
(6.35) Bi(X,Y)Z = %{RV(J’X, JY)Z - RY(X,Y)Z}.
Then B = By + By s invariant under the change (2.8). (The tensor field B on 9 is
called Bochner curvature tensor. )
The right hand side of the definition of B, is given by
(6.36) RY(JX,JY)Z - RY(X,Y)Z
=g(JX, Z)FY — g(JY, Z)FX + g(X, Z)FJY — g(Y, Z)FJX
+ f(X, Z)JY - f(Y, 2)JX + f(JX, 2)Y — f(JY, 2)X

for X,Y,Z € 2 (cf. [10]).

We introduce the important notations for a CR Einstein-Weyl structure by which we
rewrite the equation (6.14). We define ric? by
(6.37) ric®(Y, Z) = (Y, Z) - dp(Y, Z)

for Y,Z € 2. From the equation (6.23) we see that the tensor ric? is symmetric and
hence ric? is the symmetric part of /. We obtain, from (6.27),

(6.38) ric?(JY, Z) = m(Y, Z) — dp(JY, Z).
Furthermore we define Ric® € ['(2* ® 2) by

(6.39) g(RicPY, Z) = ricP (Y, Z)

forY,Z € 2. 1t follows that

(6.40) Ric® =L - dp* RicPJ = M - dptJ.
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We obtain, from Lemma 6.1,

Theorem 6.6. Let (2, J) be a nodegenerate CR structure on M***! and (¢,€,0)* o 9-
preserving almost contact structure belonging to (2,J). Let D be a CR Weyl connection.
Then the curvature tensor R of D satisfies
(641)  —{RUX, JY)Z + R(X, Y)Z}
=—ricP?(Y, Z)X + ricP(X, 2)Y = ricP(JY, Z)IX +ric®(JX, Z)JY

~g(Y, Z)Ric® X + g(X, Z)RicPY — g(JY, Z)Ric®JX + g(J X, Z)Ric®JY

+ 2{ricP(JX, Y)JZ + g(JX, Y)Ric"JZ}

+ B(X,Y)Z
for every X,Y,Z € 9.

Proof. Substitute the equations from (6.30) to (6.40) into (6.14). Then we obtain (6.41).
g

Remark. For XY € 2 we define the transformation X AY on 2 by

(6.42) (XAYYZ =g(Y, 2)X —g(X, 2)Y

for Z € 9. Furthermore, for Ric?, I € T(2* ® 2) we define Ric® A I by

(6.43) (RicP ANg)xyZ = Ric®Y ANIpX = RicPX A gY

for X,Y,Z € 9. Using such notations as (6.42) and (6.43) and rewriting the equation
(6.41) and (5.15), we obtain

(6.44) %{R(JX, JY)Z + R(X, Y)Z} = {Ric® A Iy + Ric®J A J}x v 2

+2{ric®(JX, Y)JZ + g(J X, Y)Ric? I Z}
+B(X,Y)Z,

(6.45) %{R(JX, JY)Z - R(X,Y)Z} = %{Fp NI+ Fd AgyxyZ
~ —2{dp(X, Y)Z — dp(JX, Y)JZ}.

We find that the equations (6.44) and (6.45) are similar to the equation in [2] which
describes the relation between the curvature R of a Weyl connection and the Weyl con-
formal curvatrue tensor W. The definition of an Einstein-Weyl connection is that the
symmetric part of h” in [2] is proportional to ¢ pointwise. Therefore it will be appropriate
that we define a CR Einstein-Weyl connection as follows:

Definition. A pair of a nondegenerate CR structure (2, J) and a CR Weyl connection
D is CR Einstein- Weyl if the bilinear form ricP is proportional to g pointwise, where g
is the Levi metric of arbitrary 2-preserving almost contact structure (¢, &, )* belonging
to (2,J). And a CR manifold M furnished with a CR Einstein-Weyl structure is called
a CR Finstein- Weyl manifold.

Remark. The bilinear form pg does not depend on the choice of (¢,&,6)* and so does
ricP. Therefore the definition that the CR Weyl connection is CR Einstein-Weyl! is
independent of the choice of (¢,¢&,6)*.
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By the following proposition, we may state that a certain pair of a 1-form p and %-
preserving almost contact structure (¢,¢,0)* determines a CR Einstein-Weyl structure
as in the case of Einstein-Weyl structure.

Proposition 6.7. The CR structure (9, J) admits a CR Einstein- Weyl connection D if
and only if D is determined by a pair of a 1-from p satisfying (3.16) and a P-preserving
almost contact structure (¢, &, 0)* which satisfy

(6.46)  KY(Y, Z) — (n+2{(Vyp)(Z) — (Vor)(Z) + p(§)9(JY, Z)} = Ag(Y, Z)
for everyY, Z € 9.
Proof. First we assume that ric®(Y, Z) is proportional to ¢(Y, Z) pdintwise. Then by

the definition of ric® and (6.30), we have

647 ricP(¥, 2)=1(Y. Z) + oY, Z) + %{ LY. 2) - #IY, 2)}.

Moreover, applying (3.24) to (6.47), we have

648)  ric®(Y, 2) = I7(Y, 2) + 5 {(V¥p)Z) = (Vova)(Z) + p(E)g(TY, D)}
+5p(P)al, 2).

Substituting the definition of [V into (6.48), we have
(6.49) '

ric®(Y, Z) = — mkv(y, Z)+ %{(Vyp_)(z) — (Vva)(Z) +p(&)g(JY, Z)}

1
TS

which implies (6.46). '

Conversely, we assume that there exist p and (¢, €, 8)* which satisfy (6.46). By Propo-
sition 3.6, we have a CR Weyl connection D. Then we define the tensor ric” of the CR
Weyl connection D. Substituting (6.46) into (6.49), we see that ricP is proportional to
g pointwise. ]

(0¥ +4(n+1)(n + 2)p(P)}g(Y, Z),

Next we state the main theorem in terms of a holomorphic 1-form. If (¢,&,0)* is
a 9-preserving almost contact structure such that the Ricci tensor kV of the Tanaka
connection V associated with (¢, €, 0)* is proportional to g pointwise, that is,

(6.50) k(Y Z) =cg(Y, 2)

for Y, Z € 9, where c is a smooth function on M and g is the Levi metric of (¢, ¢, 8)*,
then (¢,£,0)* is said to be pseudo-Einstein (cf. [6]).

Theorem 6.8. Let (2,J) be a nondegenerate CR structure on a (2n + 1)-dimensional
manifold M. Assume that there exists a D-preserving pseudo-Einstein almost contact
structure (¢,&,0)* belonging to (2,J). If there exists a holomorphic 1-form p ++/—1q,
where p is a real 1-form and ¢ = —po ¢, then the CR Weyl connection D determined by
p and V (Tanaka connection associated with (¢,&,0)*) is CR Einstein- Weyl.
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Proof. First we put u = p + v/—1q. We see from (2 19) that d"u = 0 if and only if u
satisfies the following equations:

(6.51) (V gpym1sz) (Y — v”‘JY)—zATVof V=1JY, Z +V/=1J2)) =

(6.52) (Vary=tszw)(€) = (T (¢, Z++/=1J2)) =0
for Y, Z € 2. We have, from (6.51), | :
(6.53) (Vzp)(Y) = (Vaza)(Y) + p(§)9(JZ, Y)

+V=1{(Vzp)(Y) + (Vzg)(Y) = p(£)9(Z, Y)} = 0.
Combining (6.53) with the assumption that (¢,€, 9) is pseudo-Einstein, we see that
(6.46) is satisfied. Since
2{dp(X, Y) +dp(JX, JY)} =(Vxp)(¥) — (Vyp)(X) + p(T(X, Y))
+ (Vaxp)(JY) = (Voyp)(JX) + p(T(J X, JY))
=(Vxp)(Y) = (Vax)(Y) +p(§)g(/ X, Y)
—{(Vyp)(X) = (Vovg)(X) + p(£)g(JY, X)}

for X,Y € 9, we also obtain (3.16). Therefore, by Theorem 6.7, the CR Weyl connection
D determined by p and V is CR Einstein-Weyl. O

7. EXaMPLE OF CR EINSTEIN-WEYL MANIFOLDS -

We shall explain an example of a CR Einstein-Weyl manifold. We shall show that
the total space of SO(3)-principal bundle over a ‘quaternion Kéahler manifold has a CR
Einstein-Weyl structure.

Let M be a Riemannian manifold of dlmensmn 4dm (m > 2). The manifold M is
a quaternion Kéhler manifold if the holonomy group of the Levi-Civita connection is
contained in Sp(m) - Sp(1), where Sp(m) acts on H™ on the left and Sp(1) acts on H™
as ¢'— ¢- % on the right for § € H™. Thus Sp(m)-Sp(1) is a subgroup of SO(4m), which
is isomorphic to Sp(m) x Sp(1)/{x1} (cf. [1]).

A Riemannian manifold (M, g) is a quaternion Kahler manifold if and only if there are
an open covering {U} of M and (1, 1) tensor fields Jy, Jo, J3 (defined on U) satisfying

Ji=-I, J2=-I, J=-I
NJa=—-NJi=J;, JSJs=-Bla=J1, JHJi=-IJz=J,
(X, JY)=9(X,Y) (1=1,2,3)
and 2
A W5(X)Jy —265(X)Js
(7.1) Vi, = —203(X)J +26,(X) s

for X,Y € TU, where V¥ is the Levi-Civita connection of g. The tensors J;, J; and J;
form a local basis of a vector bundle V(M) over M. For another local basis J;, J, and
Js on U', we have, on UNU’,

(7'2) (]{,J;,Jg) = (‘]1:']21‘]3) Syuy' s Syy' € 50(3)’

where the product of the right hand side is the matrix -multiplicativon.
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Let & be the principal SO(3)-bundle associated with V(M ), that is, £ is the principal
bundle consisting of frames of V(M ). The dimension of the total space of & is equal to
4m + 3. We shall show that the total space & admits a CR Einstein-Weyl structure. We
take a basis of the Lie algebra so(3) of SO(3) as follows:

0 -2 0
2 0 0 |.
0 0 0

00 O 0 0 2
(73) e = 0 0 -2 y €o = 0 00 s €3 =
02 0 -2 00

Then the basis satisfies

(7.4) [e1, e2] = 2e;, [e2, €3] = 2ey, [es, e1] = 2e,.

By using 1-forms 6, 05 and 63 appearing in (7.1), we define wy by

(7.5) wy = 0,e; + Ore5 + G3e3

on the each U. Hence wy is a so(3)-valued 1-form. We have, from (7.1) and (7.2),
(7.6) wy =syy tdsyy sy lwusyy

on UNU'. Therefore the family so(3)-valued 1-form {wy} determines a connection w in
the principal bundle &. If we consider o = {J;, J», J3} as a cross section of & on U,
then o*w = 6,e + Oaey + B3e3. We put

’ (7.7) W = w)e; + weer + Wwsey,
where w, wy and w; are 1-forms on 2. The curvature form 2 of w is given by
Q) = dw; +ws Aws, Qg=dwg+w3/\w1, Qg=dw3+w1/\w2,

where = Qje; + Qpey + Q3e3. Let §; be the fundamental vector field corresponding to
e; (1 =1,2,3). Then we have from (7.4)

(7.8) [C1, Go] = 23, [C2, Ga] = 2¢, (G, G1) = 2¢2
and
(7.9) wi($y) = bi;.
The Ricci identity for J; and (7.1) imply that ,
[RI(X,Y), Ji] = 40*Q3(X, Y) o —40"Q(X, Y)Js
(7.10) [RU(X,Y), o] = —40*%(X,Y)] +40*Q (X, Y)J3
[RI(X,Y), J3s) = 40*NW(X,Y))y —40"Q(X,Y)J],

for XY € TU. If m > 2, then it can be shown that (M, g) is Einstein. For the proof
of this fact, [p. 403, 2] or [3] where (7.10) is used as a key equation. Let X# denote the
horizontal lift of X € TM. Then we have

(7.11) Q (X” Y, = —-—g(JX Y) (i=1,2,3),

where ¢ = p?/{8m(m n 2)} and pf is the scalar curvature of (M, g). In the sequel, we
assume that the constant p9 does not vanish. We put § = —w;/c and £ = —c(;. Let
9 be the hyperdistribution spanned by the horizontal distribution 4% of w, {; and (3 at
each point of 4. Then we have 6({) =1 and §(2) = 0. Moreover

(7.12) —2df(X" | YH), = —{Q XH Y H) = 20wy Aws)(XH, YH)),
= _g(JIX) Y)
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for X, Y € TU. We define Ju : Dy — Dy atu={J,Js,J3} € P by

(7.13) = (LX) — w3(Va) (o + wa (V)
for V= X" +V, + Vs € 5, @ span{(a} ® span{(s}. It is easily verified that J(; = (3,
J¢s = —(; and hence J is a complex structure on 2. We also define w; and g by

wy, = —2d0 and g.(-, -) = wr(J-, -), respectively. Then
(7.14) wr (X7, YH), = —g(1X,Y), wi (X7, @) =wr(X¥, &) =0,

wr(Ce, (3) = —%,
since [{a, (3] = 2¢; and [XH,‘ G] = 0. Putting & =/ |c|/2e(; (§ = 2,3), we have
(715) gL(XH) YH) = g(X1 Y) ) gL(XHv 6]) = 07 gL(€]1 5]) =E£

for j = 2,3, where ¢ is the signature of ¢. It follows that gz, is nondegenerate and positive
definite (resp. pseudo-metric with v = 2) if the scalar curvature p? is positive (resp.
negative). It is easy to show that g; is Hermitian, that is, g, (JV, JW) = g,(V, W) for
V,W € 2. Thus we see that the nondegenerate pair (2, J) satisfies (C.1) in Section 1.
To prove (C.2), we first show

(7.16) (JXH JyH) — (xH vH - J((XE, J7YH) + [JXH, YH]) =0

for X,Y € X(U). For an arbitrarily fixed u € 2, we can take a cross section o =
{/1,J2, J3} on U such that o(x) = u and do(ToM) = F#,, where w(u) = z, m being the
projection & — M. Then the left hand side of the above equation is equal to

(7.17) (L X)H, (LYY = (X7, YH] = J(XY, (V)] + (LX), YH))

at u, since JXH = (J;X)# along o. The horizontal component of (7.17) is the horizontal
lift of .

(7.18) [ X, 1Y) = [X, Y] = L(X, hY]+ [JiX, Y)).

Since 6; = 0 at z (i = 1,2,3), we see from (7.1) that (7.18) vanishes at z. The vertical
component of (7.17) also vanishes at u since

wi((X)F, (LY)H] - [XH, YH))
= 2= (LX), (WY)H) + Q;(XH, Y}

= ~2cg(J;X, Y)

and

wi(JIXF (A + J[(L X)), Y H))

= W ((A1X, WY = ws((XT, (WY ])G + wa((XT, (1Y)7))Gs)

+wi (N[N X, YT = wa(((LX)F, YH)G + wa (1 X)F, YH))G)

= —2c9(J; X, Y)
at u for j = 2,3. Secondly we show, for j = 2,3,
(7.19) XH, JG) = (X7, ) = J(XH, JG) +[IX7, ¢]) =o.
Note that [X#, ¢;] = [X¥, J¢;] = 0. Thus it suffices to show that
(7.20) [(JXH, J¢) - JIXHE ¢ =0
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at u. Since

[JXH Cilu —hm—{(d%(JXH)) - (JXT)}
= lim ‘t'{(Jl(—t) - L)X}

= —((ueh X)) (¢ = Rexp(te;)),
where (J1(2), J2(2), J3(t)) = (J1, Ja, J3) exp(te;) and ((uej)l, (ue;)s, (uej)s) = (J1, Ja, Ja)e;.
If5 = 2, then [JX 7, Gal, = 2(3X)¥ and hence JIJX*, (ol = 2(J1aX)if = ~2(RX)Y.
Since [JXH, C3ly = —2(JoX)H, we see that |
v [JXH, JG] = J[TXH, (] =0
at u. We have (7.20) for 7 = 3 in the similar way. Thirdly it is easy to show

(J¢2, JGa] = (G2 Ga] = J([Gay JGa] + [J G20 Ga]) = 0.

We have proved that the condition (C.2) is satisfied. The palr (2, J) is a nondegenerate
CR structure on 2.

Let ¢ be defined by ¢£ = 0 and ¢|g = J. Then (¢,&,0) is an almost contact structure
belonging to (2, J). For fXH + g¢, + h(3 € ['(2), we have

[FXH + gGa+ his, €] = 2cgs — 2¢h¢a  (mod 2).

Therefore (¢,&,0) is a ZD-preserving almost contact structure.

Next we compute the curvature tensor of the Tanaka connection V associated with
(¢,€,0). Since F = —1/2¢(Z¢) on D, we easily have F§; = 0 (§ = 2,3). Moreover,
¢(Lp)XH = J[¢, JX¥] and hence FXH = 0 by the same method as the proof of (7.20).
Thus we have F' = 0. It follows that

(7.21) v Veby=—2cf3,  Vebs=2ck.

Since . '

—wr (&2, £3)6 =T (&2, &8) = V& — Vis&a — [§2, &3
= V&3 — Vg + &€

and wr (&2, £3) = —¢, we see that V&5 = Ve, €. Note that

Vebs = Ve (86) = ¢V,

Vels = dVelo = ¢V = ¢’ Ve,
To prove .
(7.22) Vel =0 (4,k=2,3),
we have only to show V¢, = 0. Since V°g, =0 and Ty, = 0 on 2, we have

291(Ve&o, W) =& g1(&, W) + & - gr(§a, W) = W - g1(&2, &2)
~ 91(&2, (&2, Wlae) — g1(&a, (62, Wlae) + gu(W, (&2, &2)a,)

for WeTl(2). W =¢; (j = 2,3), then the right hand side vanishes. If W = X# then
the right hand side also vanishes because of the equation [£;, X#] = 0. By the equation
VeX# = FXH + (€, XH], we obtain

(7.23) VX7 =0
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for every X € X(U). Note that
21 (Ve, X5, W) =&; - gu (X", W) + X5 - g1(&, W) = W - g (&5, XT)
— gu(&, (X7, Wlag) — gu(X¥, [, Wla,) + (W, &, X¥]a,).
If W =& (k= 2,3), then the right hand side vanishes and if W = Y¥, then
| 290(Ve, XH, YH) = — g1 (&, [X¥, Y¥]g,)
=~ g(&, wa(IX", Y )G + ws((X7, Y7))G)

==~ (X", Y7

=EQJ;(XH7 YH))
e

where a = /[c[/2. We define K; (j = 2,3) by (K;)u X = (/;X)F and K;¢&; = K63 =0 -
at u = {Ji, Ja ) J3} € 2. Then Kj is a linear transformation of & such that

(7.24) Q(V, W) = ———gL(K Vv, W)
for every V, W € 2. With this notation, we have

(7.25) Ve, X7 = —eaK; X",
Since [X ¥, £;] = 0 and w(X¥, &) = 0, we obtain

(7.26) L UgnE; = —eaK,-XH.
We also use

201 (VxuYH, ZH) =XH" . g (YH, ZH) +YH. g (X, ZHY - ZH . g (X" YH)
~gu(XH, Y5, Z5)5) = g (YH, (X7, Z9) ) + 927, [XT, Y] )
=X -g(Y,2)+Y -9(X,2)-Z-9(X,Y)
- 9(X, [, 2)) - oY, [X, Z])) + 9(Z, [X, Y])
=29(V%Y, Z) = 29:.((V%Y)¥, 27),
from which '
(7.27) VY = a{gr(KoX¥, Y& + gr(KaXH, YH)&) + (VS Y)F.

To calculate the curvature tensor easily, we assume that VIX = VIY =VIZ =0 at ¢
and o = {J, J, J3} is a cross section of @[y such that o(z) = u and do(T, M) = J£, for
an arbitrarily fixed u € &|y. So the calculation is always evaluated at u. Using (7.27),
we have

(7.28)  RY(XH, Y\ ZH =a(XH . gL (KoYH, ZH))ey + ag (KoY, ZH)V guéy
+a(X¥ g (KsYH, ZH)) e + agr(KsYH, ZH)V gués
—a(YP g (Ko X¥, ZM))&; — ag (K, XH, Z7)Vyué,
—a(Y¥ - gr(Ks X", Z7))&s — agr (KX, ZH)Vyns
+ (RU(X, Y)2Z)®
=20 (XH YHVK,ZH — 205(X T YH YK, 2,
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from which and (7.26),
(7.29)

gu(RE(XH, Y27, x7) = = 2e(g(X, B2)gl 1Y, X) + 9(X, HZ)g(hY, X))
+9(RY(X, Y)Z, X).
Similarly we have
equ(B7 (&, Y)Z¥, &) = a’eG; - gu(BGY Y, 27) + 2g(¥, 2)
for 7 = 2,3. Since
G- 9ol Y, 2%) =S gul Y, 2 gt et

d
d
=59 (1)Y, Z) [e=0
=g((ue;);Y, 2)
=0, |
where the notation J;(t) and (ue;); are defined in the proof of (7.20), we have
c
(7.30) egu(RY(&, YH)ZH, &) = oY, 2).
It follows from (7.29) and (7.30) that
VyH pHy_ _ Mt H oH

The calculation of g, (RY(X¥, £)¢;, XM) and egr(RY (&, &), &) (4, k = 2,3, 7 # k)
1s easy. The results are

1
(7.32) g(RY(XH, &), X)) = —2—ceg(X, X)
and
(7.33) egr(RY (€, &), &) = 2ce.
It follows from (7.32) and (7.33) that
v __m+l1 L
(7.34) s (&, &) = T %) p7a.(&5, &)

for j = 2,3. The equation (7.28) implies that g, (RV(X", YH)¢&;, XH) = 0. We have,
from RY (&, &)&; = 2ce€;,

(7.35) 9L (RY (&, Y™VE;, &) =g (RY (&5, &x)&x, YT)

=0,
where we note that the first equality is derived from F' = 0. Therefore we obtain
(7.36) sY(YH g)=0.

Similarly we have

g (RY(XH, &)&, XH) =0,  gu(RY(§, &)&, &) =0

and hence

(7.37) sV (&, &) = 0.
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The two Ricci tensors sV and kY coincide when F = 0 (cf. [10]). Therefore we conclude
that (¢, &, 8) is pseudo-Einstein.

Finally we show that p = aw; + Bws (@, 8 : constant) satisfies (3.16) and (Vyp)(W) —
(Vivq)(W) +p(E)g(JV, W) =0for VW € 2. It is easy to show that p satisfies (3.16)
by virtue of the structure equation of the connection w. Since

(Vyvp)(W) = (Vivg)(W)
=V -p(W)-p(VyW)+ JV - p(JW) = p(JV v W),

we easily see that (Vyp)(W) — (V,vq)(W) = 0 in the cases where (V = X7 W =YH)
(V=X0W=¢),(V=¢W=XH)and (V =&, W = &). Noting that p(£) =0, we
obtain the assertion.

In this way, we have shown that the total space of the SO(3)-bundle associated with a
quaternion Kahler manifold of dimension 4m (m > 2) with non vanishing scalar curvature
admits a CR Einstein-Weyl structure.
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Abstract. We investigate the behavior of the derivatives of the fundamental solution of the
parabolic equation for the square of the Dirac operator on a twistor space when the metric is -
blown up in the base space direction. Such a blowing up operation is expected to be an effective
method for éxtracting some intrinsic values from various geometric invariants, most of whose

cores consist of the derivatives of the fundamental solution.

§0. INTRODUCTION

Let M = (M,g™) be an n-dimensional compact oriented Riemannian manifold equipped -

with a Spin? structure introduced in {17]
(0.1) E7 : Pspint(n)(M) = Popin(n)(M) Xz, Psp(1) = Pson)(M) X Pso)

where Pgso(n) (M) is the SO(n)-bundle consisting of SO(n)-frames of TM, Pso(3) is a given
SO(3)-bundle and the bundle map Z9 is equivariant to the Lie group homomorphism =7 :
Spin?(n) = Spin(n) xz, Sp(l) — SO(n) x SO(3), Z([¢, h]) = (E(#), Ad(h)) with Ad(h) =
(ImIHI 5 u Ad(h)u = huh™! € ImIHI) € SO(3). Given a set of local trivializations {fy» =
(fous, fugs} of the (globally defined) principal Spin?(n)-bundle Psyine(ny(M), the sets {foys},
{fus} define locally defined principal bundles Pspin(n) (M), Psp(1) respectively, whose transition
functions fj ;s etc. may not satisfy the cocycle condition in the sense fy yeys(p) fo vews(p) =
fousws(p) of = fo yews (p) on UPNVPNW? (3 p), etc. Now, using the canonical action of Spin?(n)
or Sp(1) on Spin?(n)/Spin¢(n) = Sp(1)/U(1) and the identification Sp(1)/U(1) = iCPI through

. . a -
the representation rg : Sp(1) = GLc(H) = GLc(C?) with ry(a +jB) = 3 &ﬁ , we get a

CP!-fibration

(0.2) Tz = PSpin"(n)(M) X can CP! = PSp(l) X can CP! > M.



Let us then take an Sp(1l)-connection A of Pgyyy, so that the twistor space Z possesses a
canonical Spin structure ([18], [19]). Namely, the connection induces a splitting of TZ into
horizontal and vertical components, ‘TZ = H &V, with natural orientation and the metric
g% = 7 gM + g¥ (7*gM™ = g%|H) where gV is the Riemannian metric on V induced from the
Fubini-Study one ds©F of CP!. Further we have the locally defined spinor bundle B,m associated
t0 Pspin(n)(M) and a locally defined hermitian vector bundle # = Pg,yy X, H, which together
produce the globally defined vector bundle 7§ s QT H == Sgm ®Bv = §,z on Z, whose rank
is certainly equal to 2/4imZ/2] Then, the locally defined Clifford action pgr of CU(T™M, g™)
on §,m, together with the action pyv of Cl(V*,g¥) on J,v induced from the fiberwise global
canonical Spin structure, gives the globally defined action pgz of Ci(T"Z, g%) on Bgz, ie.,
0y (17Es) = T py(€) ® 1 (€ € T*M) and pya(€s) = 7" pgoa () @ pov(Es) (€ € V*) where
Tom is the complex volume element of (M, g™). Thus (Z, g%) has a canonical Spin structure,
which gives the Dirac operator @z : I'(§;z) — ['($,z). Now, consider the semi-group with

2
¢ kernel =057 associated to the parabolic equation with the initial condition
. 2
(0.3) (57 +952) ¥ =0, ¥|_, =v0eL’T(8:2).

The purpose of the paper is to study, replacing g% by gEZ =g lrgM 4 ¢¥ = " gM 4 g'v with
2
€ > 0, the behavior of ‘e“tagez and its derivatives when € — 0.

Such an operation of blowing up the metric in the base space direction (or shrinking each
fiber into one point), called the adiabatic operation, is expected to be an effective method for
- extracting some intrinsic values from various geometric invariants of Z. For example, Witten
([21]) found that the adiabatic limit of a certain n-invariant is closely related to the so-called
global gravitational a.nbmaly which may impose some restriction on our universe, and his result
_ was further extended mathematically by Cheeger([8], [9]), Bismut-Freed ([6]), Bismut-Cheeger
((5]), Dai([12]), etc. Getzler ([13]) also essentially used the operation to give a new and amaz-
ingly short proof of the Atiyah-Singer index theorem for Dirac operators. It seems, however,
that the arguments used.in (6], [5], etc. are too specialized to be applicable for the study of
other various invariants (refer to Remark on Proposition 2.2). In the paper, to settle their
studies upon a sound basis, we intend to show the fundamental properties of the behavior of
e-‘@;,z itself which is an essential component of various ones. That is, we will show for example
that e“tﬁzzz(P", PP) has a series expansion at €'/? = 0 using €™? (0 < m < o0), which we will
call an adiabatic expansion, and study the basic properties of the coefficients and describe

the constant term explicitly. Its derivatives are also studied and consequently, with no ad-hoc



argument, the formula for the index of Dirac operator is canonically derived, and, moreover, the
study of several invariants can be reduced commonly to further investigations of some deriva-
tives of the above coefficients. Last, the author would like to mention that only the situation
(0.2) in which he has been interested is treated here, but it will be obviously easy to extend our

results into general fibrations.

§1. THE MAIN THEOREMS

Let us take a coordinate neighborhood (U = Upo = U® x U/, z = (2% z/)) around P° € Z
in the following way. First, at p® = m(P?), take a ¢ -normal coordinate neighborhood (U? =
U;,’O,J:b”’o) and set z°(P) = z "’( (P)) Then we fix a trivialization fiys of Pgy)|U® given by

a cross-section

(1.1) h with V55, h =0 (ry is the distance function from p° in (M, g™)),
which induces an identification

(1.2) ' L’:f 1,’,’4 Zy=7"t(p) = Z =CP.

In other word, this is the A-parallel displacement along the g*-geodesic from p to p? and,
together with a g¥-normal coordinate neighborhood (U = U, Lo, zhP%) at PO ¢ Zp, gives
the coordinates z/ with z/(P) = :z:f'PO(LA(P)). Further, let us take a local SO(n)-frame
e = (,---,e) of (TM,gM) which is parallel along the geodesics from p® and is equal to
(8/0z°)0 = (8/6x8,---,8/0zh),0 at p°, and similarly a local SO(2)-frame e/ = (ef ef) of
(V,9")|Z,0 with e/ (P%) = (8/8zf)po. Note that, referring to (1, Appendix II}, we have, for
example,

(1.3) €z =D (8/0z8)s - vhi(2®), vh(a®) = &5 + 2 Z%%anm 0) + O(l=*P)

6 i

where we put Rmm (p) = gM(F(Vg )(8/0z8, 6/63;1’)6/63:,1,6/63:?2)@). Moreover, let e°(A) be
the A-horizontal lift of €® and let us spread e/ out on U by using (1.2) and denote it by the same
symbol. They give a local SO(n + 2)-frame e, (A) = (e?(4), ef) of (TZ, g%), alocal SO(n + 2)-
frame eS(A) = (e?(A),ef) = (e/%e5(A), ef) of (T Z, g7) (e*(A) is the A-horizontal lift of e* =
€1/2¢%), and the dual frames e*(A) = (es, e7(A)), ei(A) = (eve, ef(A)) = (€72ey,e5(A)). The



frame e5(A) then gives local SU(2["+2/2])_frames s(eS(A)) = (s(eS(4)),---) = T s(et %) g
s(ef), s(es(A)* = (s(eS(A)?Y,---) of $,z, $g'z. Now, on the neighborhood let us express the
Dirac operator as @,z = 3 pyz(e; (A))V$g‘ where V$9cz is a spinor connection associated to

the Levi-Civita one V9 , and express the kernel as
2 . @
(14 e Po2(P, ) = T s(e(AD(P) @ s(eE(A)(P) - (752 ) “(p, ),

Differentiate it by 0% = (8/0z)® = (8/0za,)(0/0%ay) -+ (8/0%,) = (6/012,{)(8/8225)---

(8/02t, )(8/0x!,)(8/0x!,)---(8/0<!, ) =9 with respect to P and by 8 = (8/0z)
la®1 i 2 ]af[

= 8°"3%" with respect to P, namely, set

(15) om0 (P, P) = 3 (e (AN(P) @ (e (A (P) - 070 (=907 ), ),
Precisely the purpose of the paper is to investigate mainly its behavior at (P, P') = (P% P9)

when ¢ = 0. To clarify what should be studied, let us consider the canonical inclusion

(1.6) $gg_po ® $;22,po - /\T;OM® Fgv po® $;V,P°

el (p°) : nis even (in the case, this is isomorphic)

P z(e] ) >
92 \Cbe %{C{e + (V=T )+ 0/2( - )M+ *gyegc}(pO) . nis odd
and regard (1.5) with (P, P') = (P° P?) as an element of its right hand side, that is,
2
(17) 00 =P (P, P%) = 3 ef (3°)@s(e e (P)@s(e) (PF) - om0 (=52 ) 1 (0 )

where the multi-index I is always lined up in increasing order, i.e,, J = (i; <42 <--- < {p)).
In contrast to the expression (1.5), the terms ef(p%) ® s(ef)k(P%) @ s(ef)* (PO) above do not
depend on € and we have only to investigate the coefficients 9%’ ( -tz ) (P° P%) for our
purpose. Because of the advantage, hereafter we will use not (1.5) but the expression (1.7).
Further (1.7) can be interpreted canonically as follow: Let AT*M ®x 3,v ® F v be the pull-back
of AT*M & g,v & § v by the map 7= U) x oY (U®) = M x Z x Z, (P,P') = (n(P), P, P')

and let us extend the inclusion map (1.6) to
(1.8) 3,21 (U @ Bz |n ™ (UP) & AT U @ Fov(n ™ (U®) & Fiv|n ™} (U°)

by the chain of maps fyz p®F,z pr & $z . (P)®$Z 2P > AT M o P)®$ v 5" 2 (e o
/‘\T;(P)M®$9v’p®$;v’}>l where the f'ust LSOITlOI‘phlSH’l is given by s( i(A )i (P)®s( ,(A)) (P
o s(ei(A))i(Lff(P)) ® s(ei(A))j(L’f(P')), the second is by (1.6) and the third is by €/(p®) &



0
(e () (P) @ s(e!) (5 (P)) & el (n(P)) @ s(e/Ju( P) @ s(e)!(P"). Now, regard (1.4) which
is a cross-section of the left hand side of (1.8) as one of its right hand side, i.e.,

(k.8)
92,1

19) PP P = S el((P)@seu(Pr@se)(P) - (7))

and differentiate it into

(k,2)

(1.10) aaaa’e“@zf’(am =) ei(r(P))®s(el)(P)@s(ef ) (P) .aaa"'( -1z ) (B P).

Then its value at (P, P’) = (PP, P?) is obviously equal to (1.7). Next, let us define the pointwise

norm of (1.9), etc. with respect to the metric g% by
(1.11) E ~P.2(p, p) { = {3 (e -4,z )(“) P, P) | 32

etc., and, using various metrics, va.rious pointwise norms of cross-sections of the right hand
side of (1.8) are similarly defined. Note that the so-called pointwise operator norm of (1.4) is

equivalent to the norm Ie—t@;f (P, P ), ; With respect to gZ uniformly for all € with 0 < & < &q:
% '

e—t@if(‘p’ P) = 2(5_1/236)1(77(13))®3(ef)k:(P)®3(ef)£(P/) /2 (e—ts?:,Z);'?(P, P,)F

(1.12) )e“@Zf(P,F)[gf |2 (e“@:?);'lj(P, P’)l2}1/2

In the paper we will argue mainly on the right hand side of (1.8) using the norm of (1.11) type.
Its merit lies in the fact that (the inclusion map changes, but) the bundle of the side does not
depend on the parameter ¢ (refer also to the comment following (1.7)), so that it makes sense to
ask whether or not its elements which depend on ¢, such as e't%ez (PP, PY) etc., can be expanded
into series with respect to the variable e. Anyway, to expand them, they need to inhabit some
bundle not depending on €. In [6] etc., a certain bundle isometry ;2 = § .z (see Remark
to Lemma 5.1, and see (7] for its further generalization) was adopted, by which they inhabit
$,2® .z not depending on e. This scheme is of course equivalent to ours. But, comparing

these, ours will be rﬂﬁch simply introduced and the results in our scheme will describe more

clearly how (1.5) etc. depend on the parameter €.

Now the first result is

Theorem 1.1. Given a, o and 7 > 0, there ezist constants Cy > 0, C; > 0 and an integer

N > 0 satisfying

ana’ -tazz 0
(113)  |9°0% e~ s (P, P°)

9%



< Cy ( 1 N 1) I (with noqcondition),
= gllef+a®D/2 \¢(nt2+el+e /2 ~lag (BRI (B PO > 7,

(1.145 [a°a°"e“¢’3?(P,P°)|gz

C 1 1 : (with no condition)
< TR ( rrTHla a2 tN) ~(ryz(P.P2)=7)/Cat
elle®t+la)/2 \ ¢ @ e "9 T T‘gz(P,PO) > T

L4

1/2 -
(0<ve’?<e)?, 0<Vt < oo, VP € Z, YP € 7 H{UY po)))

where Tz (P, P%) is the distance from P to P° with respect to the metric gZ. Further, given a,

o, 7> 0 and Ty > 0, there exists a constant C > 0 satisfying
O e~z PP 5t

<
)’gz = glla®l+]a’®))/2 g(n+2+|al+|'])/2

a na’ -ta22 0
(1.15) |60~ ™52 (P, P

(0<Ve’2<ed? 0<Vt< Ty, VPP € Z, VP € Upo).

Next, in the case P = P?, we have

Theorem 1.2. For any integer mg > 0, there ezist C™-sections K (m/q)(t, P°, P,P') (m =
0,1,---,mgp), K((moﬂ)/zvsx/z)(t,PO,P, P'Y of the right hand side of (1.8), which are also C™
with respect to the variable P° (and gl/2 ), satisfying the following two conditions.

(1) Define the differentiations of K(m/)(t, P°, P, P') etc. at (P, P') = (P° P°) in the same
way as at (1.10). Then, at /2 =0, (1.7) has a series ezpansion called an adiabatic expan-
sion

m=0 '

2 rn‘O 1 V]
(L16) 0% e PP, Py = 3 (et Ht /2 2 g ke (4, PO, PO, )

+ e 1Dt/ 500 K (g oy 2,1y (8 PO, P, PO).

(2) Given a, o, there ezist constants A > 0, C > 0 and an integer N > 0 satisfying

, 1
0 p0 PO —tA 4(1-bom)/2
| 8%0% K(my2)(t, P, P, PO)yz < C = l=fom/ (t(n+2+|ai+la’l)/2 +1),

(1.17)

, 1
0 p0 pO 1/2 N
|0°0% K (mg+1)2,61(t P P Fr)lgz < C't (t(n+2+]a}+la’l)/2 +e )

(0<Vel2 < el? 0<Vt < oo, VPP € Z)
where Sgm = 1 tf m = 0 and dgm = 0 if m # 0.

Moreover, the first term Kq)(t, P? P, P") can be described concretely. After some prepara-

tions, we will introduce it. First, let us define the functions v*(A(e?)) on U by

(1.18) ef(A) = et — 25 VF(A(ed))el, hence, ef(A)=ef+2> vF(A(e)) e,



Considering various connections A, the map A(e?)(7(P)) — v(A()(P) = > v (A(e?))(P)
ei(P) gives a linear map sp(1l) 3 a = v(a)'(P) € Vp. Hence we obtain cross-sections v(4)",
v(7)%, v(k)", which are independent of the choice of A, and using which we have the expression
V(A = (e A(E) + v(G) ADD + vk AP for A(el) = iA(e2)D + jA()D) +

kA(ef)(k). Further, for its curvature 2-form F4 = iFjgi) +jF,(1j) + k:Flfl ) e Q2(sp(1 )psp(1)> etc.,

we set
(1.19) v(Fa) = v(i) @ Fy + (i) @ FY) + v(k) @ FY) = 3 of @ v4(Fa),
etc. Then, let us consider the elliptic operator acting on I'AT; M ® BovlZp)

(120) A% = Ao, = 1805y = 3 v (Fa)po A- 1oz>\7’$v ' Z(Zuk(FA)po/\~pgz.(e§(A)))2
with v*(Fa)yo(P) = 5 37 v*(Fa(0/024,0/053)) (5 (P)) (6 A (o)

where V95 is the spinor connection for § v|Z, associated to the Levi-Civita one V9" on Zy,
which coincides with V9° restricted to Z, because each fiber is totally geodesic, and @gv is the
associated fiberwise Dirac operator. (Note that Vﬁgv has no meaning now.) Clearly (1.20)
gives a (C°) semi-group with C*-kernel exp(—t.Af:o), which is a cross-section of AT; M ®

$v1Zp 8 3 v Zp C End(AT; M) ® $,v|Z, B $yv|Z, expressed as
£
(1.21) exp( tA2 ) Zeb(p ®s(e)(P)@s(el ) (P exp( t,Apo)( )

We take then a cross-section of the right hand side of (1.8) defined by

(1.22) exp(-—tAf,o)(P,P')
= S n(P)@s(eu(PY@s(e! V(P - exp(~tals) (P, f PP P,

Next, on the coordinate neighborhood (U, z%) at p® = m(P?), let us set Rf;‘(po) = Rf;w(po, D)
1 . .
=3 Rf::lij(po) (e;* A €2)(p), which belongs to T'(AT*M|U?®), and denote by R9M(p%) =
RQM(pO, p) the anti-symmetric matrix whose (4, j)-entries are equal to Rij(po). And, putting

zb = z8(P), 2’ = zb(P’), we set

y exp<_4_1t_<($b — 2 ‘ thz(pO) coth 2(p") i (zt - z/b)> + %<Ib ' R (0 1 z/b>)’

which is a cross-section of the right hand side of (1.8). In particular, Kp(t, P°, P, P%) (that
is, z® = 0) was originally introduced by Getzler([13], (3, Theorem 4.20]) as a formal solution
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of a certain parabolic equation (see (5.25)). Note that F(tRI (%)) = det (sinh(thM(po)/Q)/
(tR?" (po)/2)> is a polynomial with respect to t and 7(OR?"(p°)) = 1, so that j“1/2(thM(p°)) =
det1/2((thM(pO)/Z)/(sinh (thM(pO)/Z))) is well-defined as an analytic function of ¢t. Hence, by
considering the degrees of differential forms Rf;w(po), we find it also a polynomial with respect
to ¢t and so is (1.23) devided by the Gaussian kernel (47rt)'"/2e‘|’b'x'b|2/4‘.

Now, under these preparations and referring to (1.3), we have

Theorem 1.3. We may set
(1.24) Koy(t, P°, P, P') = K (t, P°, P, P') exp(—tAf,o)(P, P’y . detv*(P).

Note that detv*(P’) = det(gM(B/B:cf,6/6x?)(z’b))‘1/2 =1+ O(|z"?).

§2. TwoO PROPOSITIONS AND THE PROOF OF THEOREM 1.2

Let us introduce two propositions, using which we will prove Theorem 1.2. The proofs of the

propositions will be postponed to the following two sections.

As in [13], [5], etc., let us start our discussion with showing that the proof of Theorem 1.2
can be reduced to a study of parabolic equation (0.3) for @iz localized at each point p° € M
in the following way. First, since the injectivity radius i(g™) does not decrease when &€ — 0,
there exists a constant 79 > 0 with i(gM) > 37y (0 < & < €q). Fix p° € M and let us identify its
normal coordinate neighborhood (U%, z¥ = z#°) with an open ball By, in M(p°) = (R*,z°)
centered at the origin and with radius 2rg. We take a metric g¥ ) on M (%) so that its
restriction to Bsr, is equal to g™ through the identification, outside Bs,, it is trivial, and,
moreover, z° are its normal coordinates at the origin all over M(p°). Further, let us spread the
frames €®, e, on U® = By, all over M(p°) by the parallel displacement along the geodesics from

the origin. Consequently we have a trivial Spin? structure

(2.1) Z9p°) : Popint(n) (M (2°)) = Pspin(n) (M(Pb)) Xz, Pspy (M (2°))
= Psom)(M(®°)) x Pso)(M(p°))

which coincides with (0.1) on U® = Ba,,. Note that the bundles above are all globally defined
and canonically trivial, so that M(p°) has a Spin structure Pspin(n) (M (%)) = Psom) (M%),
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from which the Spin? structure is induced. Accordingly, (2.1) gives a trivial CP!-fibration
(2.2) ©(0°) : Z(1°) = Psgint(n) (M (%)) Xcan CP* = M(P°) x Zo = M(p°)

with a fiberwise metric gv(i"o) which coincides with g¥ on Bar, = U® and is independent of z°
outside Bsn,. Moreover, we will take a connection A(p®) of Psp1) (M (p°)) which coincides with

the original A on Ba,, = U® and satisfies A(p°)(e}) = 0 for all 7 outside By,

Now, under the setting such localized at p?, certainly there exists a canonical Spin structure
on Z(p°), a spinor bundle $gf(po) and the Dirac operator @gzz(,o), etc. as in §1, all of which
coincide with the original ones on Bj.,, = U®. And, on the coordinate neighborhood (U =
M(P°) x Uf,z = (2°,z7)) (taken as in §1) and using the frame e, ® s(ef), if we write @zz(Po)
as — ) 6i.c, aij(x) % + Za,i(x)é% + ¢(z) (ai; = ajs), then the coefficients a;;(z), ai(z), c(z)
can be expressed canonically using the derivatives of the coefficients of geZ ®) and A(p"). Since

0
gEZ %) s independent of z° outside Bs,, and also A(p°) is flat outside Ba,,, and, moreover, the

principal symbol of @;z(,o) at (z,€) € T Z(p?) is equal to gf(po)(f, €) ~id$ .
< s"27(11

oo we know that
)

the finite-times derivatives of a;;(z), ai(z) and ¢(z) are all bounded on U,

(2.3) and the principal symbol is hermitian and uniformly elliptic.

Hence, the Yosida’s theorem ([22, Chapter IX]) says that the parabolic equation (0.3) for @22(,,0)
>

2
—t 0
with the canonical domain has a (C?) semi-group with C>-kernel e @-%Z ey

The first proposition is then as follows. Refer to {12, Lemma 3.3] which gives the similar

estimates.

Proposition 2.1 (the Duhamel’s principle). Given o and o/, there exist constants C; > 0
and Cq > 0 such that, for each p° € M, we have

2 2
a na’ -t@ z a aa’ —t@ 2(p%) Cut —Ca/et
(24)  |0@0% e (P, P') = 9707 o (P’p)‘gz S ez

0 < Vel/? _<_ 63/2, 0<Vt<oo, V(P,P)e w“l(U:O)'x w‘l(U:O) with (putting
w(P) = p, etc.) rgM(p,pO) <7ro/2, Tym (¢',p%) < 19/2 and rem(p,p') <1o/3

2
where we regard 5"‘8"'6—@93 (po)(P, P') also as a cross-section of the right hand side of (1.8)
with Z replaced by Z(p°).

2 s
Hence, the difference e—té’geZ(P, PY-e t@gf(po)(P’ Py (P,P' € U C Z) may be counted in

the remainder term K, 11y/2,61/2)(¢, PO P, P') at Theorem 1.2 and the study of (1.7) is now

9



2
-t
-reduced to that of e @95(”0). Abbreviating Z(p%), M(p°), etc. to Z, M, etc. to simplify the
description, we will investigate it in the following.
To do so, let us consider, not ng‘z(= @gz(,,o)), but @g‘z ® id$-M , acting on the cross-sections
e ge' P
of the right hand side of
(25) $9¢Z ® $;£",p° > AT"M Qr $gv.

In the same way as in (1.8), the inclusion map is given as § 2 p @ Jom 0 = 0220 (P) ® om0 &
(Bgm po ® $;£4 20) ® $gv,L;O(P) < ATHM® $9V,L20(P) 2 ATy M@ Fgv p. Its action, originally
on the left hand side, can be obviously extended to the action on the right hand side by regarding

poz(e72}) as (71/%e}) A— (72} )V where V is the inner product. Thus we obtain an elliptic
operator
(2.6) Doz (= §pz ®id Foae o ) : D(AT* M @n Fqv) — D(AT*M @ 5yv)
and, observing (2.3) around, its square @;z (= (@_qz-)2 ® id$-M ,) with the canonical domain

& 3 oM p

2

certainly gives a (C°) semi-group with C*°-kernel e~tPaz , which is a cross-section of the bundle
(2.7) (ANT*M B (AT*M)") ®@x (v & $;v)

Note that, if we express (1.9) for gZ = gez(pO) as

(2.8) e"ajf(’”’(P, P) |
=S el(P)® (e‘@:f“’"’)gz’l(aﬁ) =S (e7V2%,) (P)® (e"@:f’"“))I(P,pﬂ)
with abbreviating ef (r(P)) to e/(P), then the above kernel can be written as
(2.9) e P97
= 2«5—1/28,,) A ) Vi) (Pa (e ) ) (P & (PE) (P
= (V) (P) @ () ) (P) @ () (PP,
that is,

(2.10)  8°8~ (e"@:f“’”) , =eM2 e (e“‘?zf@"))I = - II/2 gage! (e"@:f)

(1.9
Thus the study of (1.7) or (2.8) was reduced to that of (2.9). Next, let us replace the metric

9z =1 g™ + gV which diverges when € — 0 by a non-divergent metric. That is, consider a

(global) diffeomorphism of Z = Z(p°) given by

(2.11) e 227, z=(z% ) (V%2 zf)
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and set
z « 7 * . Ji t 1
(2.12) Gle) = te9: =T,2a g(eM) +gY¥ with g?g) =2gM = Z ey(e) ® ey(e).

This change of metric is the generalization of the change in (9] (from (1.15) to (1.16) in it). Since
lim, o g(e Sdz? ®@dzd = g(MO) and lim._,0(¢24)((8/8x2)(z)) = 0, certainly (2.12) converges
to the product metric 9(0) +3 ef ® ef = g{"’o) +g¥ = g<ZO) on Z =M x Z,. Let us then consider
(2.6) with gZ replaced by gé). Its square @;(z) with the canonical domain (see (2.3)) also gives

2
-1 Zz.
a (C%) semi-group with C™-kernel e ag(e) and obviously we have

(213) ¢ P8 (2,0) = 120 P (@), 1a()) o () with

0 AT M@ gy = AT" M@y, ((e7%e) @s(ef)k)(1e(z)) = (e} (€)@5(e7)e) ().

Hence, if we express it similarly to (2.9) as

2

t@g 19,z '
(2.14) “z,7) = Y ee@ @) @) (¢ @), (@),
then we have
(2.15) Foinlond (e-‘f?)iz) (z,7') = 8262 (e—t@;(%) Y (z), ()
- z Yz (1,J) ) z Yz (1,J) € » e
P

c—ll+la2ga ot (TPeE
9 (e ”)(

Le l(z) —1
That is, referring to (2.10), finally we have

2 2
agel ;0,269 0 POy — ~(lat+a®)/2-111/2 pa nat (,~PsZ
(216)  0°9%(e )gz,I(P,P)—e 020 (e <>)(m)(o,0).

Thus, the study of (1.7) or (2.8) was further reduced to that of (2.14). The limit metric gz%)

is of product type as was explained and (2.6) etc. associated to it are certainly as follows:

2 2, a2
(2.17) @g( A =(d+ 5g(zg)) + g, @g(zo) = (d+ 69?3)) +@gv

where d is the exterior derivative and 59("5’) is its formal adjoint. Hence, obviously we have

2

2.18 eﬁt@g(%) T,z =K t,0,2,2') = K.m (8,0,2°, %) - K v(t,0,27,2%)
90y g
—Jzb -2 /4t - 2
= € -t fooaf
=3 (dz®)( ® ((d*))"(= /)W'e @gv(xﬁrl )-
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Referring to (2.14) and (1.3), now put

(2.19) e_t%({)(x, ') = K(t,e,z,2') = Z(dmb)l(x) ® ((d®)))* (') - K (t,¢e, =, ') 1.0
= > (=) (2) ® ((d=))" (=) @ s(e)i ® s(e/)* - K (t,¢,2, 7)),

—td.z , '
(2.20) hence, (e ag(d)([ J)(x,:c') = ZK(t,E, z, ') 0 v8 (Y22 vy T(e1/25%)

with (dz®)?'(z%) = b (2%)- el (z?), ((dz®)?")* () = v (=) (ef)*(z),
then we can state the second proposition.

Proposition 2.2. The kernel K(t,e,z,2’), i.e., each K(t,&,2,7)(1 5y, is C™ with respect
to ('/?,t,z,2') € [0,5(1,/2] x (0,0) x Z x Z. Consider then the Taylor expansion

mg .
(2.21)  K(te,z,2) = > e 2K(t,m/2: z,2') + ™tV 2K (¢, (mg + 1) /2 : €'/2, 2, 2").

m=0
Let us here define the differential %0 K (t,e,z,2') etc. by the differentials of the coefficients

K(t,e,z m’)(k'l) etc. (not of the coefficients (e_taji))(k'l) etc.), set [0%0% K (t,e,z,2')| 2
It Rl ([,_]) . ([,J) ~/2 [ Radh) 9(0)

aqa’ k2 .
{300 K (t,e,x, m’)ELJ))lQ}I/Z (compare with (1.11)}), and put o2, (z) = 'rg(zo)(z:, 0). Then we

have:
(1) Given o, & and 7 > 0, there exist constants Ao > 0, Cy > 0, C2 > 0 and an integer

N > 0 satisfying

(222) |0°0%K(t,;m/2:2,2)|z < Ci(L+7g ()"

1 : (with no condition),

—(r,z (z,@')—F)?/Cyt
O]

. e—tho ( 1 + 1) #{1—-60m)/2

NESSENPS PP 11z (2,7) > 7,

e
90

(223) 80 K(t, (mo +1)/2:€"%,2,2)jz < C1 (141 ()70

1 : (with no condition)
—(r,z (z,")=F)?/Cat
(0)

1 N 172
) (t(n+2+lal+la’l)/2 +e )t .

(0 < V2 < g)f?, 0 <Vt < o0, V(z,2) € Z X Z).

(2) (the detailed estimate for t > 0 small) Given o, &, 7 > 0 and Ty > 0, there exists a

constant C > 0 such that, for every m with 0 <m < mo + 1, we have

-,z (z,2')%/5¢
(0

(2.24) 10707 K (t,m/2: gz < C (L7yg (/)™ ¢~/ 2r{=00m2 ¢

(0<VeV2<e?, 0< V< Ty, Yz, 2) € Z X Z).
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(3) For every m with 0 <m < mg+ 1, let us set
(2.25) K(t,m/2:--) =) (dz*)/(z) ® ((dz*))"(=') - K(t,m/2 ) 1.p)

as at (2.19). Then we have K(t,m/2 : -}y n = 0if [(I,J)| = [I| = |J| > m. Further, for
(I,J) with |(I,J)] =m, if K(t,m/2:---)1 ) # 0, then m s even.

Remark. In the study of the adiabatic limit of the n-invariant 7(@,z) in [6], (5], it was an
important point to show that that it has no term which diverges when € — 0. To show it they
introduced an auxiliary Grassmann variable and used a certain transformation by Bismut-Freed
(see 5, (4.58)]). It will be, however, unfortunately difficult to apply their method to study the
adiabatic hehavior of other various invariants, or, to investigate their divergent terms as a first
step. In contrast to it, Proposition 2.2 (3) certifies not only that n(#,z) has no such a divergent
term, but, more strongly, that 8% (e—tazez ) which forms the core of various invariants has no
such one. That is, it is (3) that plays an important role in proving the fact that the expansion

at (1.16) starts from the term with m = 0.

Now, using the fact in Proposition 2.2 (3), let us rewrite Proposition 2.2 (1)(2) into an
assertion which naturally implies Theorem 1.2. First, it is easily found out by referring to (3),
2
, —td,z
(2.20) and (1.3) that the term e~H1/2 66 (e @gtd)

respect to the variable £'/2 up to €!/2 = 0. Since the theorem is concerned with the estimates

u 0)(0, 0) .appearing in-(2.16) is C* with

of the coefficients of its Taylor expansion, we want to rewrite (1), (2) into the assertion for
1.J —‘@22 . . .

eIt/ (e (5))(1 " (z,2’). Thereupon, let us consider the bundle isomorphism over the

identity map 1 : Z — Z

(2.26) L : AT" M@0 AT M@ $,v, eh(z)® h(z) = (£7%es(€)) (z)® h(x).

Observing (2.14) and (2.19), we have then

2

d
o Pz . _ -t@,z
@27) 17 A (z,e)ele = Y ej(a) @ () (&) TV (e )
=) ej(z) ® (e7)" (=) - KOt 2, ) 1.0y = K9(t,2,2")
= ej(z)® (ef)"(2) - S e WWIIRK (e, 2, 2) 1 ) w8 (eY220) v I (€/22").

@)

]

Hence, we will rewrite them into the assertion for this. Proposition 2.2(3) and the expansion

at (1.3), etc. say that there exists a Taylor expansion

K(E)(ti z, xl)(l,.f) = Z E(m—I(II'JI)I)/2,ZK(t7 ml/Q:z’ zl)(f',.]’) O(|Ib|m2‘zlblm3)

m=mj+me+m3>0

= > YK (ma+ (I, T))/2:3,2) 1,0 O ™)

m=m|+mz+m3>0
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and now, using Proposition 2.2 (1)(2), certainly we have

Corollary 2.3. The kernel K€)(t,z,2/), i.e., each K(E)(t,:c,m’)(;J), is C°° with respect t,

(eV2 t,z,2') € [0,68/2] x (0,00) x Z x Z and has the Taylor ezpansion

my
(2.28) K(E)(t, :C,iL',) — Z €m/2K(m/2:)(t’z’r/) + E(mo+1)/2K((mo+1)/2;51/2)(t, :I:,:L‘,)
m=0
(2.29) with K®(t,2,2') = 3 ef(z) ® (&) (') - K (&, 11, I)I/2 : 7,2") 1, .-

Further we have:

(1) Given «, o and 7 > 0, there ezist constants \g > 0, Cy > 0, C2 > 0 and an integer
N > 0 satisfying
(2:30) [8°0% K™2)(¢,2,7)|gz < C1 (147,z2(2))™ (1+7g2(z)))™ ™

‘e-t)‘o( 1 + 1) H(1=Gom)/2 1: ('wzth/no czondztwn),
t{n+2+[al+la'l)/2 o~ (rgz (22} =7}/ Cat ryz(z,2) > 7

(231) 19°0° Ko /2D e 2 o) 2 < Oy (L2 (@)™ (Lbrya(a)) 7ot
1 A Lo [ 15 (with no condition)
(e 1) e ztemr-niron roala ) > 7

(0 < Vel/2 <eb? 0 <Vt < oo, ¥(z,7') € Z x 2).

(2) (the detailed esttmate for t > 0 small) Given o, o, ¥ > 0 and Ty > 0, there exists a

constant C > 0 such that, for every m with 0 <m < mo + 1, we have
(232)  |970% K™t 2,242
| < C(L+rgz(z))™(L4rgz(z )™ = (n+2Hal+e')/2+(1=bom)/2 =Tz (:2)?/5¢

(0 <Vel/? <ell? 0 <Vt < Ty, Yz, o) € Z x Z).

Assume that Propositions 2.1, 2.2, and, hence, also Corollary 2.3 hold. Then, Theorem 1.2
will be already obvious. That is, we have
Proof of Theorem 1.2. Observing (2.16), (2.27) and Corollary 2.3, it is clear that we

have only to set

K2t g, =Y el(z) ® (eF)"(&) - K™ (¢, 2,2') 1 gy,

(2.33)
K(m/2)(t’ PO’P’ P,) = Zelf(P) ®K(m/2)(tr I(P))Z(P’))(f,@)'

2
2 -t .
By using K((mOH)/z‘El/g)(t,m,:z:’) + (e't@&z(x,z’) —e asrzz(”c)(m,:«r:’)) (see Proposition 2.1), the

remainder term K. 1) /2,172 (t, PO P, P} is given similarly.
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§3. PROOF OF PROPOSITION 2.1

Let us start with investigating the connection V9% and the distance function ToZ-

We will first collect what will be needed for their investigations. For the point P € Zyo =
CP?, select wisely its representative P € H = C? (= H) with |P% =1 (hence, P° € Sp(1)) so
that the local coordinate w = w; + v/—1 wy around P° defined by Ufsp= rH(f’O) [w(lp)] €
CP! satisfies

(3.1) e/ (P%) = ( (3/3w1)o, (8/0wz2)o)-

Then, on U/ (C Z ), clearly we have

1+w? 8 2
- =" __d
2 ow T I+

(3.2) e,{ =

and the connection form of the hermitian covariant derivative V=L for TAOCP! may be
expressed, with respect to the U(1)-frame (1/2)(1 + |w|? )6/8111 = (1/2)(e1 - \/_leg) as
\/—_l<w2e} —wue}) = W = /=1TwE”, so that we have V ’,’Oe1 = —w&P(e )62, V ”O =

P (ek) . Further, the form v*(F) (for general F) given at (1 19) may be mterpreted now as
follows: The (locally deﬁned) bundle $gv = m" i can be splitted into the locally defined universal
bundle (or the tautological bundle) g = {([v],cv) € **H} and its orthogonal complement
Fov (= ($;v) ). Accordingly, let us take an SU(2)-frame (u*, ™) of §y|U =" H|U =U x H
given by '

(3.3) pE(P) = (P, p¥(w(P))) € U x H with

—-w

(ut(w), p~(w)) = rg(P°) mﬁ; (i 1 ) € H® H,

vu(F) —vm(F)
v (F)  vu(F)
vHF) + v=1v*(F). In addition, v, (F) = v/=1vz(F) is purely imaginary and, moreover,

using which the pull-back 7* F may be expressed as ( ) Then we have v, (F) =

obviously we have the formulas

e (W M(F)) = ~SFe]) (F), (VM (F)) = vig(F) —w§fed) V3 (F),
el ((F)) = —uz(F) + SPel) M(F), e (WA(F)) = wS7(ef) 0}
vz (Fy) AVA(F) = VA(F) Avyz(Fy) = 3 ul([F2 AF)),
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(3.4 1 -
UuI(Fg) A 1/1<F1) -V (Fg) A VuI(Fl) = — 5 v ([FQ A Fl]),

el (vz(F)) = V}(F), ef(nz(F)) = =} (F),

VA(Fy) A VA (FL) — vM(Fy) AVA(FY) = % vz ([Fa A Fi]).
Next, let us take a connection V9’ = PYov9% of V where PY : TZ = HBYV — Vis the
projection. Hence, for v,V € T'(V) and u € I'(H), we have VﬂvV = Pv([u, V]) and Vg:p)V =
sz(p)V. Note that the latter is the fiberwise one and has already appeared (see (1.20) around).
The Levi-Civita one V9" on (M, gM), together with the above V9, defines a new connection
V98 = 1 V9" @ V9’ of TZ = H & V, which certainly induces the coﬁcept of ng@-geodesic,

etc. as usual.

Lemma 3.1. The connection V9°@ s compatible with the metric g% and its torsion is equal
to 2u(Fq)¥. Further, the coordinates z = (2 zf) at P° are the V9”® .normal coordinates with
(8/0z) = e.(A) at P° and the SO(n+2)-frame e.(A) is V9@ parallel along the V9°®_geodesics
from PO.

Proof. The compatibility will be obvious. Let us compute its torsion T(X,Y) = Vg(z@Y -

V“}’,Z@X — [X,Y]. First clearly we have T(e(A),e%(A)) = —Pv([ef(A),eg’-(A)]), T(ei,e,{,) =0,
T(el,e?(A)) = 0. And since the formulas (3.4) yield

(3.5) [e2(A), 5(A)] = (€}, 51(A) = 2u(Fa(el, €)'

1 ) ;
where [ef,eg](A) is the A-horizontal lift of [ef,e?], we have T = 3 ZT(ef(A),e?(A)) egnel =

T v(Fa(el, eh))te; Ae] = 2v(Fa)l. Next, we will show that the curve c(s) = (c(s),c/(s)) = sz
(0 <s<1)isa V9 @ geodesic, i.e., (ng@ ¢)(c(s)) = 0, which implies that the coordinates z
are V9°®_normal coordinates. Set r4(z?) = |2?|, r4(z/) = |z|. (1.1) implies
(3.6) (8/0rs)(A)(z) = (8/0rs)(<), hence, v(A(8/drs))}(z) =0
where (8/9r)(A)(z) is the A-horizontal lift of (9/drs)(z). Hence, we have

¢= 32t (002 + 3 7l -(0/0] )ets) = m(a*)(0/0rs)ets) + 74(2T) (887 1)t

= 15(2%)-(8/075)(A)e(s) + 77(z7)-(8/0r)egs) = €™ + &Y (= PH(¢) + PY(¢)),

(VI°® ¢)(c(s)) = (1" V" ) M 4 (1" V) wéH + V9, & + Vo &Y

=1 (V5 &) + Ve + VO & =7 (V4 &) + PV, &) + VY

=7 (V5 @) + PV, e+ Ve =0 (VS ¢ =0,V ¢ =0, (@] =0).
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Also, we have VI ®e2(4) = n*(V5 e?) = 0, VI @] = PV, ef] + VY, e = 0, which mean
that e,(A) is A-parallel.

z
Now, as for V9% and ToZ, We have

Lemma 3.2. We have
(3.7) el (A) = el —et/22> " Uk(A(eh)) ef, ef (A) = s + /2 2> VF(A(ED) €,

and, putting V4,'e? = T C(V")(e8)uys ¢f, and wEFV(A(D)Y) = T u§Pe]) v*(A(el)), we have

Vgge(A) ek (A) =S¢ V") ()i e Z e, J ) ef,

Vel = /{20 Ale) + 28 <u<A<e?>) )}ef + eZu (Fa(el, &) ete(4),
(3.8) Vgéc(,,)ez —61/2{2!/@(/1( BY) — 2EP(u( } 30 VA(Fa(el, eb)) el (4),

VfZZ e (A) =e» V¥(Fa(el eb))e (A), Vg,el = P(ek)e2,Vg,e = wEFel) el
Further, the square rggz(a:,a:’ )2 can be expanded as
(3.9) ToZ (a: )% = el rm (2 2) + (rgv(a:f, 5 + O(|zb - ="*?|z/ - :c’fl))

+ Z e™ T(2),g z(m/2:z,z') 4 gmo+l @) gz((mo—}— 1)/2:¢,z,1'),
r(g)’gz(m/Q s x,1)) = Ol — 2|zl - 2|z = Z']) (1 <m <mo+1).

This is termwise differentiable with respect to the variables z, ', and the difference ez (2,7 )2~

6'11"9 (2 2°)? 1s analytic with respect to € near € = 0.

Proof. (1.18) implies (3.7). As for (3.8): We want to prove them with € = 1 and clearly it

suffices to show

Vo &EA) = 3 GV Y eha ek (4),
VoGl = {2 na(A@) + 27 (A } o],
vgf(i’;) = {2ua(Alel) - £ (A} ],

(3.10)
vg e2(A) =0, vg o el = —wEFel) e, vg,ee{ = wSfe ﬁ)ef

b(A vgb(i +ZV FA u J { (A)®e’jc'(‘4)—e£®e‘l7>})

V/ —Vg GB'*'Z V*(Fa( Cue)) (A)®eb

vg
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The formula for ng(i = PVY([eb(A),el]) comes from (3.4) and the others for VI® will be

all obvious. And, if we set S = V9% ~ V9°® then we have

9%(S(2(A))ef, (A)) = —gZ(S(et(A))es(A), ef) = g (S(ef)eb(4), e2(4))

J

- §gZ(T(ef( ).e (A)) ek) = V5 (Fa(el, 3’)) g%(S(), ) =0 (otherwise)

(3.11)

where T is the torsion of V9°® as before (see [4, Chapter9]). Therefore, we have

S(e2(A)) = S_ v (Falel,eh)) (2(A) ®@ ef(4) — el ® €]),
S(ef) =S VF(Fa(el,ed)) eb(4) ® €,

which imply the remained formulas. As for (3.9): It suffices to prove the case 2/ =0, i.e.,

(3.12) rez(z, P°)? = e + (127 + O(1=* )
o |
+ Z em T(2),07 (m/2: z,PO) + gmotl r(2),g‘z((mo +1)/2:¢,z, PO),

m=1

Tgf,(Z)(m/Z T, PO) = O(be”:l:f”x!) (1 S m S mg + 1)'

To prove it, let us show that the gZ-geodesic c*(s,z) (0 < s < 1) from 0 to z is analytic with

respect to € at € = 0 and its expansion ¢*(s,z) = }_s50€™ cl™) (s, z) satisfies

(s, z) = sz, ™ (s,z) = O(s]zb]|zf]) (m > 0),

(3.13)
(s, (22,0)) = s(z?,0), (s, (0,z7)) = (0, z7).

If these are true, then the gZ-normal coordinates z° = (¢, z/¢) with 9/9z¢ = e5(A) at 0 can

be written as

(3.14) = (V2 + Z e™Y2 (8ch™ /85)(0, z), =f + Z ™ (8c™ /85)(0, 2))

m=1 m=1
where we put (™ = (™), ¢f(™)), which obviously implies (3.12). Now let us investigate the
gZ-geodesic. For £ = ¢} el(A) + L&Y ef = €7 +¢€Y andn = Tt el(A)+ Ll ef = n™+7Y,
(3.10) and (3.8) imply ;

(3.15) Vg‘n Ve &t + Vi &Y + Vg <t +\7€vn
z
= {Valr - FA@H,n“»ek}+{vgﬁnv+ezu'°<FA<f“,e§»nze§(A>}
{Vg EBTf’{—i-:;‘ZukF H,el? f‘.)e’?(A)}-i-ng@nv

= (VI — ST UA(Fa(el, b)) eXntel ) + €3 v* (Fatel, e {eln + €1l et (4).
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And, setting 8/9z% = ngi e? and 6/83:,{, = vaﬁ"e{ (see (1.3) and (2.20)), we have, for a

curve c(s),
=3 &(s)0/0zi = ¢i(s) v el + 3 enpur(s) v ¥ €]
=3 0 ¢(s)el(4) + z{zv';"‘ bniv(s) +2 Z v M (A(ed)) &(s) pef
=) s)el(A) + Z &k (s) el = M (s) + ¢¥(s) (= PT(¢(s)) + PV(C‘(S))),
Gl =35 ) Gsm), bunls) = Tovlu (o) - 2 H (Al )
Hence, the curve c(s) is gZ-geodesic, i.e., VI ¢ = 0, if and only if
(3.16) vt 4 2 > VF(Fa(el,eh)) cleyel(4) = 0 (and c(0) =0, =(1) = ),

which implies that c*(s,z) is certainly analytic with respect to € and satisfies (3.13). For
example, as for c*(s, (2%,0)) = s(zb,0): ¢(s) = s(z* 0) satisfies V§z$é =0 and ¢/(s) =0
because (3.6) yields Y, ; vl Uk (Aled)) éi(s) = V5 (A(D £39/92%)) = 0. That is, ¢(s) = s(z*,0)
satisfies (3.16), which means (s, (z,0)) = s(z®,0). Moreover, as for c(™ (s, z) = O(s|z?||z/|)
(m > 0): Certainly we have c¢(™ (s, z) = O(s|z®|™|zf|™f). And, observing the second line of

(3.13), we have my > 1, my > 1.

Next, let us introduce an important formula for the proof of Proposition 2.1 (and also for the
proof of Proposition 2.2). Consider a complete Spin manifold (V,g"). The square ¢9§~ of its
Dirac operator acting on compactly supported smooth cross-sections of the spinor bundle § Y
is non-positive and essentially self-adjoint. The square root of its closure @ﬁu : LZP($g~) -
L*T'(§,~) can be defined by the spectral theorem, '\/g’ﬁg—N = /0 éo)\ dE\. Thus we obtain a
bounded and self-adjoint operator acting on L2T'( o)

-—t@zN _ a2
(3.17) e" Ve = e " dEy (t>0),
: 0

which has a C*°-kernel. Note that this is just a definition and whether this defines a (C?) semi-
group or not is an another story. Now, applying to it the same argument as in [10, Example

2.1 and Theorem 4.1 which deals with the Laplacian acting on functions, we obtain

Lemma 3.3. Given constants R > —oo, 7 > 0 and integers m > 0, k, k' > 0, there ezists
a constant C' > 0 such that, for every m-dimensional complete SpinAmanifold (N, g™) with

Ric(g") > R at every point, we have
’ 2
(3.18) ‘@SN@SN e—tagN(P, PI)IgN
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< ¢ (t(m+k+k’ )/2 + t(k+k)/2]
(0<Vt<oo, V(P,P')e N xN)

1 . 1 ) 1 : (with no condition)
¢~ (rgn (PP =7)2/8t ron (P, P') > 7

' 2 ’
where @SN@;‘N e~tPon (P, P') 1s the derivative of the kernel by @:N, @’;N with respect to P, P,
and the left hand side is the pointwise operator norm (see (1.12)).

Remark. Refer to (10, §1] and set f;()\) = . Then we have fi(u / Fe(A) emV IR gy
= fo's) e—u'/4t .
— \/; —u?/4t o4 £.(0 / f: L /- W cos uA du, which implies

(3.19) =P = f:(\/— /oo Z; /1‘2 cosu\/—du

2
Here, cos u,/@gn is the wave kernel and the wave equation (% + @3»1) = 0 with Y|u=0 =
Yo € I(f,w) and Zwlu—o = 0 has a unique solution, denoted cos u,/ ~ . Importantly the
kernel has the finite propagation speed property, i.e.,
(3.20) Supp cos U\/@gN C{(P,P)|rgn(P,P') < |l }.
Note that the property and the formula (3.19) yield the existence of the term ¢~ (rgn (PP)=7)/8t
at (3.18).

For example, for our compact (Z, gZ), there exists a constant R > —oo satisfying
(3.21) Ric(¢Z)(P) > R (0<Ve/2<el/? VP e 2).
Actually, (3.8) implies
g2 (F(V% ) (el (4), e} (A))ef*(A), ()

= M (F(9) (e}, eh)el, eb) + 362 S vk (Falel, €))%,

(3.22) Ay

oZ (F(V% (e[ e])el, ef) = ¢ (F (V7" )(el e])el €],
gZ(F(V9) (el (A), ef)eb*(A), ef) = —€? 3 v (Falel, b))

(More strongly, the curvature coefficients are certainly all bounded.) Hence, applying Lemma

3.3 to it, for given 7 > 0, k, K/, there exists a constant C > 0 satisfying

(3.23) ]@gz@ z € -tags (P P')
1 1 1 : (with no condition)
sC (t(n+2+k+k')/2 + t[(k'*'k’)/zj) —(r Z(PP’)—r) /sz (P P>

0 <Vel’2 <el? 0<Vt<oo VP, P)eZxZ).
0
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L N

(3.9) says that rgg(:z;,PO) = 7 is almost equivalent to GESE + 2 = 1 and we may

. - PP'y~7)? .
apparently know by observing the term e (g (PP =7)/8t how the norm is deformed when ¢, ¢,

P, P’ move, and how powerful the property (3.20) which produces the term is. It will be clear
that, in our case where Z is compact, (3.17) with @zN replaced by @iz coincides with the (C?)
semi-group generated by g?iz, and, further the estimate (3.23) implies that, for given o, o and

7 > 0, there exists a constant C > 0 satisfying

(3.24) |a“a°'e"@§3(1>, P,

L4

C 1 1 : (with no condition)
S I ( etz T 1) o~z (PP)-7)?/8t
ella®l+la’])/2 \ ¢ 42 (P,P) >

(0 <Vel/? < ell? 0<Vt < oo, V(P,P)en} (U x w’l(U") ).

Note that, for cross-sections % of $gz the two kinds of pointwise norms 3 ;, 7" 92 W (P)lgz,
2lal<t ele®l/2|gay (P P)|gz over 7~ L(U?) are equivalent independently of the choices of P € U and -

8,z

0<e/?<e, {2 The equivalence will be clear from the facts that Boz = 2 pgz(€t(A)V o es(a) =
$.2

¥ poz((e™V/2dz?, d:z:f)")V(E‘l’jza/az,,' 5021, 1S elliptic, the norm |"lgz is invariant under the Clifford

actions pyzz(ei(A)) and the expressions of V l/fa/axb’ Vf/;, with respect to the frame s(eZ(A))
are €1/2{8/8z! + O(e, )}, 8/ + O(e, ), where O(e, ) is a square matrix any differentials

of whose entries are all bounded on [0,5(1)/ 2] xU.
Let us now prove Proposition 2.1.

Proof of Proposition 2.1. First note that, though Z(p°) is non-compact, the kernel
e-t¢:3<p°)

sume that P, P’ belong to 7~} (U®) from now on. Take a cut-off function ¢ on [0, 0) (3 §) with

coincides with the one abstractly given using the spectral theorem (see (3.17)). As-

@(6) = 1if § < r3/4 and with ¢(8) = 0 if § > 7. Then, if y = z°(P), y’ = z%(P') € B,y/2, we

have
e~ Doz (P P') o(ly — ¥'|?) - e Pize (P, P)o(ly - o)
t o —(t=6 @ 1 9@“2@0) ' "2 " 72
_/de /dge (P")e ZP,P"ye PP olly — v ey - ¥1?)

=~ [0 [ag2 (P{(3g ™ FE(P, ) PP P plly =5 el - o)
-+-0%%¢(p, P") (@ o PP olly = o Pl o)

2 —8 o
= - [a8 g2 (P (9o ™ "PsE(P, P e P20 PP oy = Pl ~ o1
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—6d*
t 9)@ (P P”) a Z(pO) - (8 @gf(po)

(PP elly =o' Belly” - y1%)
_(t—9)@ P, P") ZEI/Q i:y“< (ly - y//l Yo(ly' - y/|2)) (ng(eze(A)) @g‘z(po),P“
+@ 2(p9) p z(ef, (A))) e—B@:zZ(po)
\ ge P pr TOE R TEE

+e PP P S ed b (olly = D) olly” — 1)

X yz(ehel ) oz (e (A)) ¢ E P P )
- /0 td@ / dgZ(P") - e'““’)f?’ZZ’(P, P
A e (elly =P ely” = ¥'1) (poz (ehel ) B 260 + B, 26 7 (che(4))
+e X etet(olly —y' P ey = ¥'1%) ooz (€he(A)) pyz (el (A)) } e P )

(P P')

Hence, further if jy — y'| < 79/3, then we have

2 a2
(325) 0207 e~ PF(p, Py — 0up e o2 b pY)
ro/8<ly"~'|<r 2
== [lan [*0 " g (P gy (P, P

o/2< |y —yl<ro

fon e et (souy-y"P))w(ty"—y'l'ﬁ)(pgg<ez€(A>>@gf<po)+¢95<po>pgg<eze<A»)
+e Z et (e} (w(ly — y"|2>)<p<|y" ~ V) bz (ke A)) gz (AN} P2 P )

r /‘2<[y”—y[<r 32

To/6<|y" —y|<ro

: a(m{e” S wlly=y"1P)ed (ply" ~v/'1%) (poz (ehe(4)) 2050, + @ wo)pg z(eh(4)))
+e 3 efolly ~ v oy ~ V1) £z (ehe(A)) oz (el (A))} e 2,20 o )
In the above we used the estimate (3.24) (with 7 — ro) for gZ and g& 20 Remark that the

latter metric also has the property (3.21) so that (Z(p°), g?®") has the same estimation as
(3.24). That is, we have

2
—t@ 2(:0)
[ 4

2
(et +a®)/2 ]aaaa'e-t@a?(P, Py —5°6%e (P,P)| ,

2
~t@) 2(59)
(¢

< gln+leb+Ha™®])/2 'aaaa'e-‘azé"(P, P) - 0% e (P, P')

o7 (see (1.11), (1.12))

1 2 2 1
2 —r3/(39)%(t-6 ra/(39
< (,'51/ /d9 (t )( a3 + 1) e 3/(39)%( )5((3—1,1)/2 + 1) 3/(39)%

< 0/61/2/d9 En+2+]a|)/2 + 1) —ro/(40) (t—~8)e (E(n+3+|a'|)/2 + 1) —ro/(40)

- 0

< C'el/2 td() e—rg/(40)2(t—o)s—rg/(40)29: < C'el/? tde e—r§/(40)2ae = ("£1/2 e—rg/(40)2t.e
- 0 - 0 '

Thus we obtained the estimate (2.4).
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§4. PROOF OF PROPOSITION 2.2

Let us start with investigating @g(z‘) acting on I'(AT* M ®x§,v). Referring to (1.18) and (3.7),
take the local SO(n + 2)-frames for (Z, g(Zs))
eu(e, il A) = 2ef(A) = (eb(e, 1t A), ef),
e’ (e, 11 4) = lel(A) & (esle), ef(e, 24)),
elle, 1t A) = el(e) — €223 VM (A(e])) (we(2)) e,
ej(e, it A) = ef +e/22) VF(A(ed))(e(2)) € e),

(4.1)

then we have the Lichnerowicz formula (see (3.8))

( ) $< ) $“<Z) "o,
(42) 9(7;) = Z( es(e s A) Vesle, L:A) -V z ) +— with
Ve ((“) 2 4% (a2 A)

8,2 z . .
Ve = eile 2A) + § SOV exle, 2 )iz (€5 e D)y (€2, 1240),
b7 (¢5(6,124)) = eh(e) A = el(e) V, oy (eh(e, 1)) = o2 (e5(A)),
(43)  esl(e)(@) = (dz")z w(te()), C(VHO)(exle, 2 A))iyia (2) = C(V ) (e5(A))iyig(te (),
ko2 (z z) = K, () +2 - D VK (Foaleb(e), €2())) ()
= engm(te(z ))+2—62ZV (Fa(el, €0)?(te(2))-
The last formula for the scalar curvature KgE, will be obvious from (3.22). And, corresponding
to lime_ g(ZE) = g(‘%) (see (2.12)), clearly we have lim,_,q g?g( ) @3(%) (see (2.17)).-
Next, let us regard (2.14)=(2.19) which was originally a cross-section of (2.7) as a cross-

section of
(4.4) (AT"MRATM) ®x (v 8 Fv),

that is, we set
2

2
-tg_ .z
(4.5) e s (‘)(z z') Zeb(s )® e} (e)(z) - (e @9(‘))( )(ﬂ?, )
= E(t,E,I,IB) = Z(dmb) (I) dzb) (IE/) (t £T,T )(] J)-
Then the coeflicients appearing in (2.19) and (2.27) can be expressed as
(46) K(tl £,T, x/)(I,J) = Z E(ty &z, ml)(],J') v.b]’.]"(sl/QI,b) v.b].]" (El/leb)7
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(4.7) Kz, ) =Y. e WIW2E(t e, 2,2') 1 py vl (e 22%) 08, (eY/22),
(4.8) with o8, (e"/2z?), v{’ (e} ?zb) = 615 + Z e™20(|z|™)
m>2

and the action of (2.14)=(2.19) on ¥(z') = T es(e)?(z') - ws(ep(e) :2') € T(AT*M ®rf,v) may

be expressed as

(4.9) (E(t, ) /Zeb (e (e)) (= 4 (wJ(eb(e):g;')) dglly(z')
__/ (t,e,z,7'),¥(z ))g() E/ (t,e,z,2") *Mw(z))$vdg( z')
:/ZZ (dz®)!(z) - tex:r)(lj)( ") (= )*g Y(z )>$vd9 ()

where *g(M) denotes the star operator associated to gé’). Note that we have hence

(410 (B(t,00$)(z) = / (B(t,0,2,2),%(2") 5, doy (=)
- /Z Crgpt = ¥ 0 B(,0,2,2),%()), 2 dofy ().

g(o

The purpose of the section is to prove Proposition 2.2 and, observing (4.6) and (4.8), ob-
viously it suffices to prove it with K(t,¢,z,2’) replaced by E(t,e,z,2z'). Hereupon, paying

attention to the formula

(4.11) E(t,0,z,2') = Eg(Mm(t, 0, a:b,:r;’b) . ng(t,O,xf,z:’f)
o o128 =22 /4t P
= >_(d=")'(2) ® (d=")(e") —pwag— -7 9e (2], =) (compare with (2.18)),
let us prove (1) and (2) separated into two cases, the case where t > 0 is large and the case
where t > 0 is small. (3) will be shown in the former case. The smoothness of E(t,¢, z,1z’)
( <v>(e:) = (y)g(zz),

) T(e) = TgZ» T =T(0) to simplify the description in the following.

will be obvious from either discussion in both cases. We put ;) = *,

|l =1 lgz,

Proof of Proposition 2.2 for E(t,) with ¢t large. On the model of the argument by
Cheeger (9, §3, §4], let us prove first (2.22), (2.23) with ¢ > Tp. Remark that (4.27), (4.28)
which we intend to show as a first step will hold with no restriction on t. The restriction
becomes necessary on and after (4.42) at which the proofs of (2.22), (2.23) with ¢t > T will

start substantially. Now, we start our argument with three preparations.

First, the metric g(Zs) has the property (3.21) (see (4.3) and (3.22)) so that we have the

estimate similar to (3.23) for g(ZS). Further the two pointwise norms Zkgzl@:(z)w(z)l(s) and
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Llaj<e [099%()|(¢) are equivalent to each other and also |- (), () are equivalent to | - l(0)5

T(0) = T, respectively. Thus, for given a, o’ and 7 > 0, there exists a constant C > 0 satisfying

1 . 1 : (with no condition)
t(n+2+]a|+|e])/2 ) e—-(r(x,:r’)—r")2/8t . 7‘((1?, fL‘/) > F

(0 <Ve’? < elf? 0 <Vt < o0, Y(z,7) € Z x Z).

(4.12) [8°07 E(t,e,2,7)|q) < C (

Let us take then a cut-off function ¢; on R depending on the parameter a > 7 (> 0) and
satisfying: 0 < ¢s < 1, suppga C {u | Jul < 7 +a}, supp(1 = ¢a)  {u | [u| > a} and
[(d/du)*pa(u)| < Ci. (The constants C; > 0 are independent of @ > 7.) And, set

—td°z oo -ul/dt
(4.13) P /_ mémw(%(u)cosu,/aj& +(1—¢a(u))cosu1/;?§(z‘)>du

2

= () + (%)

a,00

—t@z -tPz = :
and denote the kernels of (e (=>) , (e M) by Ea(t,€), Eq(t,€), respectively. Then
a a,00

y

the estimate (4.12) and the finite propagation property (see (3.20)) which cost, /@;(z) has imply

the following: For given o, o' and 7 > 0, there exists a constant C' > 0 such that, for Va > T,

0 < Vel/? 363/2, 0 <Vt < > and V(z,2') € Z x Z, we have

(4.14) 1Bt €)llep < 1, IEa(t€)llep < 1, 1 Balt,€)llop < Ce™ /%,
1+ ¢—(dimZHal+Ho'D/2 |, rg o0y < 7
(4.15) 10%0% Eq(t,€,z,2)|0) S C{ e~"==)/8t . 7 < r(z 2') < F+a,
0 : F+a < r(z, @),
2
aqa’ & ’ e ¢ /8¢t : T'(x,m,) ST +a,
(4.16) 090 Ea(t,€,2,2")|(0) < C{ e == )/8 L F 4 g < r(z, o)

where || - ||op is the global operator norm of an operator acting on LI'(AT*M ®x v, g<ZO)), and,
setting L,(t, &) = (8/0t + @3(2))E,,(t,5) =—(8/0t + @z(z))E'a(t,s), we have

(4.17) |La(t,&)llop < C ™7™,

—a?/8t .- / o
ol , e : r(z,2') < T +a,
(4.18) 16%0% La(t,€,2, @ )|(0) < C{ 0 : Ft+a<r(z, o).

Second, the Duhamel’s principle says

(4.19) 0% E(t,e,z,7') = 8%0% Eq(t,e,z,2') + %0~ Ey(t,e,z,z')
mo+1 —_
(4.20) = ZO 0%0% (e, * (o) o Eals O) f (—@jé) Ea(,0N™  (see (4.10))
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(a.21) +0°5% Ba(,0) B(~P2z Bal,0))™" 4 (<02 Eul,<)

mo+1
(4.22) + 3 %% Ea(,0) §( a Ea(,0))™ La(,€) .

m=0

mo+1 —_— —
(4.23) = 3, 0TOTEO)k(- ai(i)Eaco»’"‘ln<~a§({)La(,0)>nE,,(,e)
(4.24) +@°c")° E.(t,e,z,)

where we set (E°§ EY)(¢, z,2’) /dtlfdg(o)(Q J(E(t - t1,2,QY), E'(t1,Q%, @) (o), etc., and
7 = Paz, = Pogy Bal OB (=02 ol 0)° = Ea(,0) = Ba(t, 0,2,7'), (= 93z Bal,0)) (6,2,
= (0% . O P22 Eol, 08,2, 2), Eal,0) (=02 Eal,0) 7 (—agg) (,0) =

(,0), etc. Since we perform the convolution operation f repeatedly, strict description will
be rather hard to read, so that, for example, we denote (E°f E')(t,z,z') above by EO} E!,
EP(t—t)) § EY (1), EO(t —t1,2, Q") { E*(t1, @, 2') or /tdtlEo(t—tl,x,Ql) f B, Q2), etc.
according to the situations. Judging from the circumstoa.nces it will be easy to understand such

expressions correctly. To prove the formula (4.19), first note that
Eo(t,e,2,2") — ey ar *(0) E,(¢,0,z,7) = /(E 0,0,z,Q%), E.(t,¢, Q, z')) (o) dg(o)
_ /(*(E),Ql * 3 o1 Ea(t,0,2,Q1), E(0,€, Q, 2)() daF

/(E(O 0,2,QY), Ealt,e, Q%)) o) doh, — /(Ea(t,o, z,QY), £(0,¢,Q", 7)) o) do,
= / (Ea(0,0,7,Q"), Ea(t,e, Q" 2)) (o) dg) — / (Ea(t,0,2,Q"), Ea(0,€,Q, 7)) (0) dgfy)

/dt1 Btl/ — £,0,2,QY), Ba(t1,€, @4, 7)) o) dof

1 6E 1 1,

_E(t_tly (tly yQ ( —t1107m)Q)ﬂEa(t1)EsQ ,I)
= _Ea.(t_tlyorva )ﬁ@g(Z)Ea(tl,E,Ql; )+ﬁz(z())Ea(t—tl,O,l’,Ql)nEa(tl,E,Ql,I/)

+Ea(t - 1,0,2, Q") t La(tr, €, Q" ') = La(t — 1,0,2,Q") § Ba(t1,6,Q, ')

= ~Eat - 11,0,2,Q") 492z Ealt1,,Q",)

+Eq(t —t1,0,z, QY i Loty €, QY ') — La(t — t1,0,z, Q") Ealty,e, Q4 2).
Then, replace E,(ty,¢, QAl,x') in the second line from below by *(.) s *(“0;;, E.(t,0,Q, 7)) -
E.(t;—t3,0,Q%, Q%) @g(zz) E.(t2,€,Q% 2')+- - - which was found out to be equal to it. Repeating
such a replacement again and again, we obtain (4.19).

Third, observing (4.2), (4.3) and (3.8), obviously we have the series expansion

2 m m 2 m
(425) Pz =8s ~Bp = 3 €@z )Y + etV APl (Mo 20)
2<m<mg
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(@22 )R () = 3 (da®n) o (d2®V)T - 50 O(12*™)(8/82°)%(eF )P (Iz*] - o),

@ lal+iBl<2
. N 2 (m/?) 2 (m = 2r3))
max{|I| | I appears in the above expression of (@gz ) 3} <

(@ 4 (m > 4).

. Now, for each 2’ € Z in (4.19), we assume that the parameter a we use belongs to the
interval [r(z’),o0). Then, since E4(t,e,z,2') = 0if 7+ a < r(z,z’) (see (4.15)) for any € < ¢,
all of the domains of integral appearing in (4.19) can be restricted to the bounded domain
Noo = NZot+8 = N;gor_'"j = {Q| Q) < (mo + 3)(F+a)}. And, (4.25) says that, for given q,

mg and 7 > 0, there exists a constant C > 0 satisfying

(4.26) |0% (each coeflicient of (@zg)))(m/z)(u)) at Q£ Ca™ (2<m<my+1)
(VQ € NZF3, Va > 7) '

PO Fa’
where “each coefficient of - - - ” means each term denoted by O(|z®|™) at (4.25). Now, by inves-
tigating (4.20)-(4.24) using the above estimates, we intend to show that there exist constants
Ao > 0, C; > 0 and (sufficiently large) integers N, N’ satisfying
(4.27) 8°6% E(t,e,z,z')
mo+1
= Z E’"/z{O((l + 7z, PO))me_t’\"(t"("'*'z’*'N 2 4 1)) + O(e't’\°e"“2/g‘)}

m=0

§ Mo+ (gt 2Hmot2 (¢=(nH2EN')/2 o NY) 4 07 /% V) ¢ (with no condition),
(4.28) 8%8% E(t,e,z,z’)
m=
+emot2 O(gn+rmot? tNe'('(”zl)‘f)z/c") + (9((3"“2/Qt tN) rifr(z,z) > F
(0 <Vel/2< el/? 0 <Vt < o0, 7 <Va < o0, VPP € (compact Z), ¥(z,2') € ZxZ)

where the terms O((1 + r(z, P?))™e (¢~ (n+2+N")/2 4 1)) etc., that is, the first terms of the
coefficients of €™?2 (0 < mm < my), do not depend on €'/2. In the following we will show this by

investigating (4.24), (4.23), (4.22), (4.21), (4.20) in the order named.

First, let us show an estimate commonly available to the cases “with no condition” and

“r(z,z’) > 7", that is,
(4.29) (4.24) + (4.23) + (4.22) = O(e™ /% M),

Clearly (4.16) implies that the term (4.24) has such an estimate. (4.23) and (4.22) vanish if
z & N°™2, so that we assume z € NZR*? = Npo. The estimate of (4.23): Consider (4.25),
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(4.26) with mo = —1 and set (@[(nﬁ-? /2]+|a/l+1> _ l+@ n+2 /2}+laf|+1 @ *i0)* E)@ Z o) (~0§
ey
Further, let | f(z,z')|(0),L2(z1y denote the pointwise norm w1th respect to the variable and the

L?-norm with respect to z’. Interpreting the other notations of norms similarly and using the

elliptic estimates appropriately, we have

| - 6202 Eal,0) (=82 Eal,0) ™ (=02 La(, 0§ Eal, )l

<C /dma:La< ~t,,0,2,Q") § (7 ﬁ"jj)/”*'“ Y Ea(ty, e, Q4 2") (o) L2
—C /dtllagz;a(t —t,,0,z,QY ¢ (@lgi’::g{/?““’"“)Ea(zl,e, QL =)0y L2
= C/dtll ("+2)/2]+|° l+1)6_,‘,“.’11,1(25 —11,0,z, Q) } Ea(t1, €, Q% 2")|(0),L2(2)
< C [an|(@, "”” o 02 Lt = 11,0,2, @Y 0 2@y (by (414))
=0 fan; 55;5’/ 08 Lt = 1,02, @) gy 2 grenp s

< 016—02/8ta(ﬂ+2)/2 t<Cy 8—42/93 t("+2)/4+1,

|- 6202 Eal,0) (=92 Eal,0))% (=2 La(,0)EEal,&)l(0)
< C/dt dta|( @‘(;"“j,),/?]*'“'“)E (t—t1,0,2",Q")
W z L (tl —15,0,Q", Q%) $8Z Ealts, €, Q% ') 2(a)(0)

=C /dtldtglE( —t,,0,2", Q") } (@“"*2)/2]*“"‘“)@3&La(tl—tz,O,Q‘,QZ)
§ 0% Ea(ta, €, Q% ') 12(z) (0)
< C/dt dia|( ;9( "+2)/2l+l°"+1)¢ 2 La (t1—12,0, Q% Q1) 8% Ealtz, €, Q% 2')12(01)0)
= C/dt dtq|( ﬁ[("“)/?]”am)@ z La(tl‘_t2>01Ql) Q) H 0 Eulta e, Q2 ﬂ?l)‘L?(QleNpo).(O)
< Cl/dt dts| @‘("“ [ttty g2 z La(t1=12,0,Q,Q%)
(ﬁ[ "+2)/2]+|a Y Bty 6, Q% z )| L2(Q1eN0) L2 (=)
_ Cl/dtldt l n4:2)/2l+la |+1)(¢[(n+2 /2]+!al+l>¢§(zg)La(t1“t2, 0, Ql, Q2)
i Eq (tQ,E Q% 2" L2 (QreNpo) L2(z")
n+2)/2]+|a’|+1 n a 2
< ledtldt2| [( + / ]+|a'|+ )<¢[(Z+2)/2]+l l+1>¢§(Z¢)La(t1“‘t2,O, Ql, Q2)|L2(Q"ENP0),L2(Q2)

g(o)rQl
= /dtldtg
((n+2)/2+l'|+1, | a((n+2)/2]+|al+1\ 22 2
l(@g( ),Q )(@L( ),Q)l/ |+l )@g(Z‘)La(tl"Q, O,QI,Q )|L2(Q1€Npo),L2(Q2€NPo)

< Cy 6—62/8t a‘n+'2 t2 < 03 e~ 8 2/9t (7‘+2)/2+2
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and, in the case m > 2, similarly we have

|- 0208 Eal,0) B (~9%2 Fal, )™ 4(=25 La(,0)8 Eal, )l

n ™ ~[(n+2 o'
< C/dt1 “dtme1 |(¢[ +2) /2]+|a|+2 +1>(@E?((ZE:Q)"/‘3-];H I+1>

L. (t = tm+1,0, Q™ Q™) L2 (gmeno) L2(@m+ 1 e0)

< e-a’/&t gt mtl < C, e—az/gc ¢(n+2)/2+m+1

Thus we have such an estimate of (4.23) as in (4.29). The estimate of (4.22): Using (4.25),
(4.26) with mg = —1, we have ‘

19202 Ba(,0) (=0} Ea,0))™# Lal;)l(0

n+2)/2 2m a ™

< C’/dt1 dtm+ I(@[ +Q)i+]f'°'+ 188 Lo(tms1,€, Q™Y =)l L2(@m+1entuo) o)

<Ce® 2/8t a(nt2)/2 tm+1 < Cy e-—a"’/Qt #(n+2)/44m+1
Thus we have obtained the estimate (4.29).

Next, let us show

(4.30) (4.21) +(4.20) = nflgm/z{o((l +r(z, PO))‘me—tr\o(t—(n+2+N')/2 +1)

m=0

+ O(e”"\"e’“z/g’)} + E"‘°+2O(a"+2+2(’"°+2)(t_(""’z"'N-l)/?+ ™)) : (with no condition)

with z € N;;"H = Npo. The estimate of (4.21) with “no condition” : Here we use (4.25), (4.26)

with mg = 1. Set
aaaa,'E,,<,0)n(—ﬁ)Ea(,O))”*‘tt(—%E)Ea(,e))
/ it [ dts - / " dtings2 03 Falt = 11, 0)f (~97  Bolt1 ~1,0))

ﬂ( @ 2, Baltmo+1 = tme+2, 0)) # (= @ z 8 Ea(tmo+2,€))
(O—tmo+3<tmo+‘2<tmo+1< <t2<t1<t0§t)

mg+2 ti_2 ;—"\%W—‘c‘_ t; tmg+1
= Z /m +2 ../ 4 ‘dt-L 1/ dt; dtl'*’l --/ dtmo+2 (. . )
m0+3 D+5 ‘5‘—2 0 0 0
(ti-1 = ti 2 t/(mo + 3))
'-mo-}-l mg+3 (1
/m +2, / dtm0+1 tmo+2 Z dty --dtmgsa (- ).
moF3t Ftmo+1

(tmg+2 2 t/(mo +3))

Then we have
(1)
|/ dty -dimg+2 (- *)l(0)
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W) —
g/ dty +dtmgr |97 Ealt = £1,0,2,QY) 82 Balty —t2,0) -+

ﬁ@ E ( mo+1 ~ tmo+2, O) u@g(zz\ag’,Ea(tmoé-?: &, Qmo+2: ml)[(O)

<Co/ dtr - dtmer2 102 Falt = £1,0,3,QY) 182z Falti = t2,0)f -

ﬂ@ z Eo(tmo+1—tmo+2, )H@g )@(njz,),ﬂma [+1>Ea(tmo+2,€, Qm°+2,x//,)|(o),1,2(zu)

z

< Co/ dty - dtmg 42 |0 Balt = 1,0,7,QY) 827 Balts —t2,0)4 -+

(n+2)/2]+|’|+1

(@ Z Q"*o+2 )@gz),Q"‘o“@ z E, (tmo+1—tmo+2y Qmo+1,Qm0+2)

l(0),L2(@mo+2enr,0)

(1)
<C’1(sa2)/ dty -ty 12 yagEu(t—tl,o,x,Ql)n@j(z)Ea(tl-tQ,O)n
[(n42)/2]+|a’|+3
Wg( )(@ 7 gmott ) Ba(tmer1—tmgs2, 0, QT QM) gy 12 gmosa)
<.

() l(n+2)/2)+|a’[+1+2(mo+2)
SCm+2(602)m°+2 dtm0+2[( (z Ql ! o )QgEa(t—tl,O,IL‘,QI)[(O)'Lz(QL)

v
m0+2(6a2)mo+2/6 dty - -dtmg+2

5((n+2)/2]+|a’|+1+2(mo+2) 1
I(@g(zz)’Ql \ )a:Ea(t“tle, z,Q )I(O),Lz(Q‘GNP"(;OM)

< Cegmot? a(n+2)/2+2(mo+2)(1 + t—(n+2+[(n+2)/2]+|a|+]a’]+1+2(mo+2))/2) trrzo+2"

(2)

| [ dt g -y
@) 1y 4 22

5/ dty dtmos2 102 Ealt = t1,0,2, Q") £ 927 Balts — ta, 0) -
885z Ealtmo+1 = tmos2, 0) bz 03 Baltmar2,, @7, 7))

(2)
< Cm+2(502)m+2/ 1 Atmg+2

2((n+2)/2]+|aj+[a’|+1+2(mg+2)
I<ag( )’Ql )Ea(tl —t2; 0) QI) Q2)|L2(Q1wp0).L2(Q2ENPO)

< Cemot? an+2+2(1no+‘2)(1 + t—(n+2+‘2[(n+2)/2]+|a|+[a']+2(rno+3))/2) tmot?

etc. Thus, the term (4.21) with “no condition” appears as the term e™o+2 O(gn+2+2(mo+2)
(t=(m+2+N')/2 4 ¢NYY in (4.30). The estimate of (4.20) with “no condition” : We want to show
that it produces the first term in the right hand side of (4.30). Note that *) .- (0) appe:mnty
at (4.20) has a series expansion

(431) *(E z’* Z E *(m/2:),xl *&);'2, =1id + Z Em/20([2',blm),

m>0 m>2

which produces (1 + r(z/, P%))™ at (4.30). Hence, it suffices to show the following estimates
(4.33), (4.34) of (4.20) with *(E).r’*(_f)g,x' deleted. (If r(z', P%) < a, then we have (1 +r(z/, P))™
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e=0tg=a?/9 < (] 4 g)me—tote=a’/O% < (' g=t/2,=a%/10t  Hence at (4.30), we have no need to
add (1 4 r(z, P°))™ to the part O(e"\"‘e""z/g‘).) That is, we have

mo+1 —_ mo-+1

4.32) > aced Ea<,o>n<—a§z Ei(,0)™ = 3 8202 Ea(,0)
m=0 m=0
B( D26 (=(852 )/ Eal, 0) + /2 (= (B3 )/ P) 61/ Ea(,0))
2<i<g
mo+1

= Y Y 0202 Ea(,0)
m=0 m=ij+-+ip f(— (@ ) 11/2)) E.,0)t --- ﬁ(—(@zé))(ip/Q))Ea(yO)

+ emo+2 O(gntiHAmot2) () 4 4= (n+2+2[(n+2)/2l+lal+Ia’l+2(mo+3))/2) Moty

mo+1 : . .
m ana’ (1‘ /2)7"'t("P/2)
= > ™Y 8502 B, 00 (-2 )Ea(,0))

m=0 m=ij+-+ip

+ gmo+2 O(an+2+2(mo+2)(1 + t—(n+2+2((n+’2)/2]+la|+|a’|+2(mo+3))/2) tm°+2)

mo+1 . .
m and (i1/2)(ip/2)
= 3 Y oe08 EI(,O)n((—@;%))El(,O)) 1 .

m=0 m=i+-+ip

mo+1 i1/2), (0
+ 3 m/?/da (9/00) Y 0505 Eal,0)8 (=92 )Eul, )"/
m=0 m=iy+-+ip

+ Emg-f—? O(an+2+2(mg+2)(l +t (n+2+2[(n+‘2)/2]+la|+|a'|+2(mo+3))/2) tmo+2)',

(The above estimate of the remainder term can be obtained in the same way as that of (4.21)

with “no condition”.) Then we intend to show that there exists a constant Ag > 0 satisfying

o nal (51/2),(ip/2)
(4.33) 8707 Enr(,0) ((—@f,(zo))El(, 0))

= O(e“'\f’(t—(n+2+2[(n+2)/2]+1a1+[a'|+2)/2 +1)),

(434 [ da(@jaaz08 B 0)1 (-2 )Ea(,0))

= Ot ¢71/%) 4 O(e7tho e'“z/g‘).

As for (4.33): Since the Dirac operator @,v acting on I'($v[Zp0) (see E(t,0) given at (4.11)) is
invertible ([19, (5.15)]), there exists a constant o > 0 with Spec(;ﬁzv) > po > 0. Hence, more

strongly than the estimate (4.12) with € = 0, there exist constants Ag > 0, C > 0 satisfying

(4.35) 166 E(t,0,2,7)|0)
1 1 : (with no condition)
—th (__ -
=Ce (t(n+2+la!+la’l)/2 + 1) { —(r(22)=F/8t (g 2) > F

(0 <Vt < o0, ¥(z,2') € Z x Z),
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which implies further the estimate stronger than (4.15) with e =0

1 4+ ¢~(dimZHal /2 . iy ) < 7
(4.36) |8%0% Ea(t,0,2,2)|ig) < Ce™t0{ e=r(@a)?/8t . 7 < p(z,2/) <F+a,

0 :T4a < r(z,z’).
Using it, now let us show (4.33). Set

0203 Ex(, 0) 8 (B3 )V EL(, 0) -~ #(Phz ) /P En(,0)

tp-1 2 \(i1/2
- /dt1 dty - [ dtp 02 Ey(t — t1,0) § (2 2 JIE; (b1 - 1,0)
nagm))“v-l/”&(tp 1=t 0) (P2 ) /P03 B2y, 0)
(0=tpy1 <tp <tpoy < - <t2<t1<to=t)

Pt tq—2 g—:;—_gt -1 (g tpy
=30 [t [t [Tty [t [ty ()
= g a2

g=1 Ff-_l p+3
(tg-1 —tg > t/(P‘*'l))
t tp—2 to—1 P'“
+ /;%ctitl A / dty --dt,
(tp 2t/(P+1))

Then we have

| / dty dty (- )]0y

'5/ dty dty [OZEa(t — 11,02, Q") } (925 ) /P Byt — 12, 0) -
b(Pgg, )P Er(tp-1 = 15, 0) (qagm)(‘f/"’)b‘f Ey(t,0,Q%,7') (o)

< C, /mdtludt |02 EL(t — t1,0, z, Q‘)u(@2 )(i‘/z)El(tl —t,0) 4 - -
Pz )P Er(tom —, 01 (B2 )<‘v/2><¢“"“”‘”°'“>E (t,0, Q. "0y, L2z

(1) .
< Co/ dty --dtp |07 Er(t — 11,0, , Q‘)ﬂ(@ﬁg)))(“”’El(tl —t2,0)8 -

(ﬁi(n+2)/2]+la |+1>(¢2Z )(t,,/:z)(@ )(i,_1/2)El(tp_1 —t5,0, Qp—1’ QP)|(0),L7(QP)

90 @ o)

< CI / dt; "dtp l@“El — 1,0, z, Ql) n (@z({)))(il/Q)El(tl — 19, O)n Ce
t(22; ><'v-1/2><¢“"” /A B (81—, 0, QP QP) (0),22(0%)

<cC / dt; - dtpl@“(@ln+2)/2l+|a'l+l+2p)El(t—tl,O,z,Ql)l(o)'Lz(Qz)

9

=G / dtr ~dty 03 (9,7 0! T Bt — 11,0,3, Qo) 12 @renpo)
< Ce” t)\o(l +t ("+2+[(n+2 /2|+1°'|+|0'|+2P+1)/2) P

< C/e—tAg/Z(t—(n+2+2[(n+2)/2]+la|+|a'|+1)/’2 + l),
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etc. That is, we have obtained (4.33). As for (4.34): In the same way as we have shown (4.16)

using (4.12), first we can show, using (4.35),

OE,(t,0) o gmu?/4t 6¢a : d

Ba / (4rt)/? Ba °°S“v “

10F4(t,0,z,2)
Oa

(4.37) .
—a“/8t . 7 -

8°5% < —~tho ) € : T(Z‘,:L') <T+a,

| I(O)—Ce { 0 : F4+a < r(z, o).

Let us set now

a( aqa’ (1' /2)7v(“P/2)
a—a@ ! Ea(,O)B((—@z(%))Ea(,O)) h
= opoy 25200 ( Dy (- 73z )Ea(,0)) Il

+Z@°6"E<o ) H (=5 )/ Ea,0) 8

b~ (9% oE(, 08:L00y g~ (9% )ir/?)E,(,0).

(1q/2)
) ) da {0)

-"<0>

Then, in the same . way as the estimation of (4.23), using (4.37) we have, if 1 < g<p-1,

16262 Eqa(,0) § (- (@2 YE/INE(0)Y -

%)
0E,(,0) , :
2 2 ip/2
ﬂ(—(ﬁg(o)) W) L 'ﬂ(*(é’g(z )& /DY Eq(,0)l(0)
S Cateeai [ dty oy (PRI gL R G,
BE (tq tq+1) 0) Qq Qq+1)
5 |L2(Qeen0),L2(Qr+ 1 en0)

< Cpa't-.-alremho gnt2peat/8t < 0, o= tho y(nt24) i =1)/24pH e /%(a/t)

< C3 e—tAg/? e—az/gt(a/t)‘
The remained cases are similarly shown. Gathering those estimates, finally we obtain

(0/0a)0208 Bal, 001 (=92 )Eal,0)) /Y < 0(evor2 e/ (a ),

90
which implies the estimate (4.34). And, we have thus finished the proof of (4.30). Remark the
comment preceding (4:32). '

Let us then show

mo+1 B
(4.38)  (4.21) + (4.20) = Y em/2{0((1+r(z', POY))methoe=(r(z:)=)?/City

m=0

+ O(e—t/\oe—az/gt)} + 6m0+2 O(an+2+2(mo+2) tN e—(r(:z:,z’)-—f’)2/01t) . T‘(I‘,I/) > F
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with z € N;’$°+3 = Npq, hence, with 7 < r(z,z’) < (mg +2)(7+a). The estimate of (4.21) with
“r(z,z’) > 7": Here we use (4.25), (4.26) with mgq = 1. We set

620 Eal,0)4 (<32 Eal, 004 (<02 Eal,))
= /dtl “dt"’10+2 a:?Eﬂ(r 07 z, Ql) ﬂ ("‘(3:2]:2:) EG(! 01 Qly Q2)) ﬁ e

—

(~9% Bal,0,Q7", Qo) 108 (927 Bulye, @70, 2)
mo+3 Z mo+3
= /dtl dtmo+2/ dg(%)(Ql)“'dg(o)(QmOH) /dtl dtmo+2/
~(Q=1,@%) 2r(z.2)/(mo+3) @)

Then, similarly to the estimation of (4.21) with “no condition”, we have

l/dtl'-dtmo+2/()l(0)

S Olea) o ity || BT 02 80,2, Q10,0000
= C (ea?)™+? dt - dtmg+2

I(ag((nj—z)/z]+|a|+[a'[+1+2(mo+2))Ea(

< Cl (Ea )m.o+2 tm.o+2a(n+2)/2€—(r(:,z’)/(mo+3))2/8t

0,2, Ql)I(0),Lz(r(x,z’)/(mo+3)+a2r(x,Q1)Zr(x,x’)/(mo-f-B))

< O emot2g(n2)/2+2(mo+2) gmo+2 e—(r(z,z’)—?)z/("‘o+3)28t’

- ‘ 2\ymo+2 ~ ((n+2)/2]+|al +a'| +1+2(mo-+2)
| Jdtr-dtmosa [ o) < Cravalea®)™*? [atr-dtmoss [ 101572, )

“Ea(,0,QY, Q%) 2(Q eNpo) LA (r(z.a)/(mo+3) +a2r(Q Q1) 3r(z,2)/ (mo+3))

< C (ea?)mot2mot2gnt2e=(r(z=')/(mo+3))?/8¢

= ( Mo+2yn+2+2(mo+2) ymo+2 e-(r(z,z’)—i‘)z/("lo+3)28t’

etc.  Thus, the term (4.21) with “r(z,2’) > 7" appears as the term e™0+2 Q(qn+2+2mo+2) ¢V
e“('("’/)"')z/clt)‘ in (4.38). The estimate of (4.20) with “r(z,z’) > #”: We want to show that
it produces the first term in the right hand side of (4.38). To do so, according to the comment

preceding (4.32), it suffices also to show the following estimates (4.40), (4.41). That is, we have

mo+1 ) mo+1
(4.39) Y 820% Ea(,0) 4 (- a : Ea(,O)™ = 3 8202 Ea(,0)
m=0 m=0
A e (—(agg,)><*/2>>Ea<, 0) + €9/ (~ (93 )(/¥) (67 Ea(,0)
mo+1

= > ™3 0207 B 0B (=g )™ Bl O -+ B(=(Pyz )/ Ea, 0)
m=0 m=ij+-+ip :

1 emot2 (g2 HAme+2) gma+2 o= (r(n,e') )%/ (mo+3)%8t)
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mg+1

m o na (11/2),+,(1p/2)

= 3 &Y 207 Bl 08 (=P, ) Ea(,0) .
m=ij+--+ip (

+gmo+2 O(an+2+2(mo+2) tmo+2e-(r(:r,z’)—F)z/(mo+3)2SC)

mo+1

= 2y peod Ed(,O)ti((—@f,z )Eq(,0)
m=0 m=ij+-tip (0)
mo+1

+ Z m/zfdaa/aaZaf*aaE(O) ((~#52 )Ea(,0)

m=ij+-- +1p
4 gmot2 O(an2+2(mo+2) mo+2,=(r(z,2')~7)2/(mo+3)? St).

(41/2),,(3p/2) '
) = 2y - 7)

) (il/2)v”’r(i?/2)

Then we want to show that there exists a constant Ag > 0 satisfying

a aa’ (t1/2),,(3p/2)
(4.40) 8203 Ea(, 0)1 (=93 )Eal,0) 7

- O(e—b\o e—("(xﬂ/)—f")z/(}’*'l)zgt) (d = r(;z:, :1:/) - 7"),

(4.41) /: da (3/30)3;’8:,’ E.(,0) ((—@3(76))Ea(, O))(ix/Z),...,(iph)

— O(e—tAo e—(r(z,z')—r’)z/gt) + o(e—tz\o e—az/gt).
Using (4.36), let us show (4.40) first. Set
0208 Eal,0)1 (92 )P B, 0)1 -+ 17l )\ B0

_/dtl dtPaaEd( O z, Q )ﬂ(@( )(’l/z)Ed( 0 Ql Q2)ﬁ
(P22 )0 Ea(,0,Q7, QP) § (9 )+ D02 Bu(,0, 7, )

p+1 (@4 ~1 Q7 )<r(z =)/ (p+1),¢' <q

= Z/dtl dtp/ dgy(QY) - - - dgff)(QP) E;/dtl--dt,,/(q).

"(Q""1 QI)2r(z,=')/(p+1)

Then, similarly to the estimation of (4.33), we have

'/ dtl“dtv/(l) g sCd 1+..‘+,~,,/ b / Iaa@;’;:é)‘mﬂa ) Eal,0,2, QM0 221

<O d(n+2)/2+me—A0ttmo+2e—(r(:z,:v:’)/(p+1)) /8t < Coe™ Aot/2e—(r(z,z')-—r")2/(p+1)29t,
etc. That is, we obtamed the estimate (4.40). Also the estimate (4.41) can be shown similarly
to that of (4.34). And thus we obtained the estimate (4.38).

We have thus obtained the expansions (4.27), (4.28). That is, (4.29), (4.30) imply (4.27), and
(4.29), (4.38) imply (4.28). Using the expansions, we can now show (2.22), (2.23) for E with
t > Ty in the following way. As for the case “with no condition”: We will take the parameter a

with
(4.42) a? = (mg + 2)(9/2) t|loge] (> r(z,z')%), hence, e7/% = ¢(mo+2)/2,
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Then (4.27) gives the expansion

(4.43) 9°0% E(t,¢, z, )
mo+1 ' ,
= D" e™H{O(1 +r(z, PY)mem o (=2 1 1)) 4 glmot 220 mt) )
m=0

+€mo+2| log5]("+2+m°+2)/2O(tN+("+2+m+2)/2) + E(mo+2)/20(1)

= Zo e™2O((1 + r(a), PO))me~ o (¢~ (PH2HNI/2 1 1)) 4 g(motl)/2 (¢l +Hnt2hmot2)/2)

=0 . .
™ (T <t < oo, and “with no condition”).

Referring to the comment following (4.28), note that the coefficients of €™2 (0 < m < mg) in
the last line do not depend on €/2. Thus we obtained the estimates (2.22), (2.23) for E with
t > Ty and “with no condition”. As for the case “r(z,z’) > 7”: We will take the parameter q

with

(444) @ = (r(z,2) — F)(9/CL) + (mo + 2)(9/2) tl loge] (< 2Amo +2)(9/2) ¢ loge]),

hence, e_az/gt = 5(m°+2)/2 e—(r(z,z’)z—f)z/clz

where C; > 0 is the constant appearing at (4.28). (Here we take 9 > 0 and Ty > 0 such that, if
(e¥2)t) € (0,53/2] x (Tp, o), then we have (r(z,z’) —7)2(9/C1) < (mq +2)(9/2) t|loge|.) Then
.(4.28) gives the expansion

mo+1

(4'45) aaaa’E(t’E’ z, z') = Z 5m/2{0((1 + T'(II, PO))me—tAoe—(r(x'x/)__,-.)z/clt)

m=0

+ E(mo+2)/2 O(e—tAoe—(r(:r,::’)z—F)z/Clt)}
4 gmo+2 ! log£|(n+2+"‘°+2)/2 O(tN+(”+2+"‘°+2)/2 e-(f(x.r')-F)z/Cxt)

+E(mo+2)/2 O(tN e—(r(z,z’)2—F)2/Clt)

mo+1 N g
— Z Em/2 e—(r(z,x Yy—-F)4/Crt 0((1 + 7‘(:1:/, PO))me—tAo)
m=0

+ 6(m0+1)/2‘e—(r(z,z’)2—r")2/013 O(tN+(n+2+mo+2)/2 e—tz\o)

(To £t < oo, and “r(z,z') > 7").
Note that the coefficients of €™?2 (0 < m < mg) in the last line also do not depend on £!/2.
Thus we obtained the estimates (2.22), (2.23) for E with t > Ty and with “r(z,z') > 7.

We have thus finished the proofs of the estimates (2.22), (2.23) for E with t > Ty,

As announced let us here prove (3) by referring to (2.21) and (4.27). Assume mg > n. (3)

for E(t,(mg + 1)/2 : ---) holds because there is no (I, J) satisfying |(I,J)| > mo + 1 (> n).
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Then consider E(t,m/2:---) with m < mg. Observing (4.32) and its preceding comment, its
top degree as a differential form in the M—direction., ie., max{|(Z,J)|| E(t,m/2: -- . # 0},
is certainly equal to such a top degree of

(4.46) > > Hma/20 *io) o0 Ea(,0) Eal,0) B (=232 ) Eal,0)) e
m=my+my my=i4ebp

so that let us inquire into the latter top degree. Referring to (4.11) and (4.13), the degree of

E,(,0) is clearly zero. This fact and (4.25) imply that, denoting by 7, the number of what are

equal to j (> 2) among iy, 12, - -,%p (> 2 inevitably), and by k the top degree of (4.46), we have
k<2(mga+m3)+4(mg+ms+---) < 2my + 3mg + 4my + 5ms - = m.

Moreover, if k = m, then we have k = 2(my + m3) 4+ 4(mg + ms + - --) = m, which is certainly

even. Thus, when mg > n, (3) holds. And clearly this implies that (3) holds even if my < n.

Proof of Proposition 2.2 for E(t,e) with ¢ small. We have only to show the estimate
(2.24), which implies (2.22), (2.23) with ¢ small. Hereafter we assume 0 < ¢ < Ty and intend
to show the estimate (2.24) by constructing the kernel concretely using the well-known Levi
method. In constructing it, keep in mind the facts that the manifold Z = Z(p°) is non—compabt

and the operator gﬂz(z) has the extra parameter €.

Now, consider the parabolic equation (0.3) for @35) with 9o € L2T(AT*M ®x $,v with g(i))
and its formal solution at each point 2’ € Z, E(¢,¢,z,z') = qg(z)(t,a:, ) T2t Ei(e, z,2') with

Qg(Z)(t,l‘,a:/) = (47Tt)'("+2)/23“T(x)(2,x’)2/4t and.

G,z (a:,a:')—l/4cg(z,r)(a:,m') (i =0)

(e
1 -
(4.47) E-;(€, 113,3:’) = - Gg(z‘) (3)513/)’1/41,!]&) (:B, :1:/) [.' ds 51—1 Lg(Zz)(S:L'(s, z, :1:')’ z’)—l
' (G;g@ﬁg)Ei—l(E))(sz(e,z,m'),x') (i >0)

= > ej(e)(z)® €f (e)() - Eiles(e) : €, 7,2 )10y
= Z(dzb)](x) ® (dz%)’(z') - Ei(e, z, ') 1,0)

= Z e Ei(m)2: z,7) + €™V 2B (mg +1)/2 : €¥/2, 2, 7),
m=0

(4.48) E;(m/2:-,z,%') = Z(dzb)f(:c) ® (dzb)’(z') - Ey(m/2 : ST, T ) (1)
where z(g) = z(e,-,z’) is the g(‘i)-normal coordinates at =’ with (8/0z(€)i) = eb(e,ttA)z,

]
ez, (z,2') is the V "(Zz)-para.llel transport from z’ to z and we set Gg(z)(:c, )= det(g(i)(a/@z(e)i,
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0/0z(e);))(z). As above (4.47) has certainly a series expansion. Further, for given o, o and

integers mg, IV, there exists a constant C' > 0 satisfying

(4.49) 10%0% Ei(m/2 : -, z,2")|(0) £ C (1+7(z, o)™ (1+r(z'))™
(0<Ym<my+1,Vi<N,V¥(z,z')eZ x Z).

Actually, consider the parabolic equation (0.3) for @iz with o € LT(AT*"M @, gv With
g%), its formal solution at each point =’ € Z, £(t,¢,x,z') = g,2(t, z, ) 20 iié'i(s,a:,:r’) with
Eile,z,7') = T el (2) ® e («') - Eilewe : €,2,7')(; sy and the expression similar to (4.47). Ob-
serving (3.8), the derivatives of &(ese : €, %,2')(s,s) With respect to €Y%, z, z' are all bounded

n {0, 1/2] x Z x Z (3 ('/?,z,2')), and, similarly to (4.3), we have
(4.50) Ei(es(e) 1 €,2,2') 1.0y = Ei(ene 1 €, Le(T), Le(x")) (1,17

These facts, together with expansion of e;(¢) (see (4.3) and (2.3)), certainly imply (4.49).
Meanwhile, the Gaussian kernel part of the formal solution E(t, €, z,z’) can be expanded as
(4.51) %z, (¢, z,2') "ZEm/qu gt z,z') + e(mot1)/2 g,z (¢, z,7),

m=0 (tmo+1)/2:e1/2)

3<|°tl Na AY. 2
z—-z')™ z — /)%
(4.52) c;(g(zm/2 (t,z,2') = qg( )(t T,7’) Z ( - ( . (x 'b)ﬂ as ﬁ" (:rf, :z:'f),
0<Y " lab|+|B8|<m+2 @>1litm>1) (m/2:)
a>1ifm>

because we have the series expansion

(4.53) 7'(5)(1:,21:’)2 = rgzz(t,s(a:),Le(:t:)) =10z, T )2 + Z em™/? gov (m/2 z,z')
3<]a| bm—2 R
with T(2).07, (m/2:z,2') =) (z - 2)*(z")” -ra’)ﬁgz (m/2:zf,2'F)
0<|ad]+|B| <m+2 T

which comes from (3.9) by the same argument as in (4.3).
Now, let us take a parametrix of §/0t + @35‘) as usual. That is, let ¢ be the cut-off function
taken in the proof of Proposition 2.1 and set

(4.54) E(N)(t,e,:z:, ') = o(rg (s, z')? )qg (¢, z, x)Zt‘E (e,z,2)
=0

= ng/zE’(N)(t,m/Q cz,1') +e("‘°+l)/2E(N (t, (mo +1)/2: €Y% 2, 7')
m<mg

(4.55) with E(N)(t,m/Z iz, ) = Z(dz‘ ) (z)® (dmb)J(z") . E’(N)(t,m/Q : ‘,:E,I,)(I'J)
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where N > 0 is sufficiently large. Then, for given ¢, ¢, there exists a constant C > 0 satisfying
(456) Iaaaa E(N (t m/r) )l ) < C(1+T( ))mt—(n+2+[a|+|a'|)/2+(l—60m)/2 e—r(z,:’)2/5£
(0<Ve? < e, 0< Wt <Ty,0<VYm<mo+1,¥(z, )€ Z x Z).

Moreover, if N > (n +2)/2, then (8/0t + @z(z))E’(N)(t, €,z,2’) can be extended continuously to
0,To]xZx Z (3 (t,z,2')) and there exists a constant C > 0 satisfying

(@57 | [(Bun(t.e,2,2), 9= wdafy(@) - ¥, < O suplolri(z, =)o

(0S‘v’ei/zseé/?,0<.\7’t§To,\7’(m,:r)EZxZ).

(4.56) comes from (4.49), (4.52) (¢t(1=%m)/2 appears in (4.56) because of the conditions “a > 1

if m>1” and 3 < |ay), and the expansion @(r)(z,z')?) = @(r)(z,2)?) + Zm>2£ r(g) 7,
(a

(m/2 : 2,2') ™ (r(g) (2, 2)?) + el D/ 2p((mg + 1)/2 : €2, z,2’) (see (4.53)). (4.57) comes
from the usual argument by referring to (4.49) with mq = —1 (that is, (4.47) is bounded on
Zx 7).

Here, taking care of the management of (1+7(z’))™ appearing in (4.56), let us repeat the

operation of convolution again and again as usual. We obtain then a fundamental solution.
That is, we set

(Lol DA (6e,2,2) = (8/0t + 9 ) Bum(t,,7,2),

(LN 62, 2') = (Lowy G W (L ()T (e, 2, 2)

= [t [ o@Dt = 1,6,2, Q10 (L () o1, @ e,

‘C(N) (t’ &7, I/) El i(_l)q(L(N) (’ '))q(tv &, ml))

q=1
wsy (= P0) (@) = By (t,6,2,2) + (B My £an ()t 6,7,2)
.-E(N)(t e,2,7) + 3 €™ En( Mo Lan (Nt m/2: 2,7)
m<mg

+5(m°+1)/'2(E(N)(, ‘)ﬂ(.)['(N)(r ‘))(tx (mO + 1)/2 : 51/2’ .’1:,2:/)

2

2 -_—
= % Em/g(e_cagﬁ““"))(m +E(mo+1)/2 (e t@g(Z(moH)/z;.l/z))

m=0

We find out that, if N > (n+2)/2 + N, then (E(N)(, MWeyLvy(-))(t,m/2 ) can be extended
smoothly of class (C2,Clel, Cl¥'l) ((la] + |o])/2 +a < Np) to [0,To) x Z x Z (3 (t,z,7')) and

(N)

there exists a constant C' > 0 satisfying
(4.59) l(a/at)aaaaal(E(N)(y MWL GNEm/2 )
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< C(1+T(I/))m tN—(n+2+[a|+|a’|)/2—a e—r(:,x’)z/St'

(0< Va2 <ef/? 0< ¥t < Ty, 0<Ym <mo+1,¥(z,z) € Zx Z).

Using the standard argument, (4.57) and (4.59) yield that, if V > (n 4+ 2)/2 + 2, then we have
—t@’z :
e

2
) = (e-t@g(z‘))(m That is, (4.59) is certainly equal to the C™-kernel of e—tg?g(i) and,

now, (4.56) and (4.59) imply (2.24).

§5. Proors oF THEOREMS 1.1, 1.3

First let us prove Theorem 1.1.

Proof of Theorem 1.1. Clearly (3.24) implies (1.13). As for (1.14): (2.15), (2.33) and
(2.28), (2.31) with mg = —1 imply '

C
(x’o)’gz(x"’) s gllei+la])/2
1 : (with no condition)

o —t@z 0) o -
I6°0 e |0%0% K g/2.e1/2)(t, 15 (2), 0)] 250y
Ci N
S 7 7 +1 - L:l 0)~7)2/C .
(b Ho]) 2 (t(n+2+lal+la ehadd { e oru (e EOTCE (TM(),0) >

and we have rgz(,o)(LE‘l(:c), 0) = rg‘z(,o)(P, P?). Hence, observing (2.4), we obtain (1.14). As for
(1.15): Here, using (2.32) with mg = —1, similarly we have
‘ o W @0 st
( ’O)LZ(P°) = glle®l+la®])/2 g(n+2+{al+e])/2”

2
—t9 200,
4

ja‘*aa'e

Hence, again considering (2.4}, we obtain (1.15).

Hereafter the purpose is to prove Theorem 1.3. Let us start with investigating @(E) =

lglo@g(z‘)o L., etc. where 1, is the bundle isomorphism given at (2.26).

Lemma 5.1.
(1) Referring to (4.1)—(4;3), we have

17% gz (eh(e, 2 A)) o Lo = e /2(e} A —eefv) = 672 (),

(5.1) _
1% oy (eh(e, 2 4)) o L = o2 (e5(4)) = P15 4)),
€) = 1-1 o0
(52) Voroeaye =l @ Vesiensayz) ° Le
- 6—1/2 M 1 £ 0
= el(e, i A)(z) + 1 > C(Vv? )€])izi, (te()) 219 (i)' (e2)
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V2 uu(Aeh) — CPAE)Y Hee()) 9 (4)) + —Q—p O (V) (e (),

(€) - $9(¢) f L cpi fyi £y (o)
(5.3) Vf()—l oV jole = e () + sw (ek)(r)p‘(fgvM)H PO (Fa)) (ee(2)),

(T 2 2
. K,z
()2 _ (€) (€) () e
(5’4) (@ E)) - = Z( vei(s,L;A)vej(e A T v ey(z) ) + 4 :
Vei&'L;A)ci(E,L;A)

where we set T,v(A) = /-1 e}(A) A e}(A) (the complez volume element), o) (V(F4))(te(z)) =
5 T (Falel, €)(kel@)) pO(E5(4)) 59 () o) (e]), et

(2) V:gE,L;A)(x), (9’9(5))2, etc. are all C* with respect to €'/2 near €¥/? = 0 and, referring to
(1.20) and (1.23), we have

(0)
+ Z va/axby
(55)  Hm VL am = 1 L
(22 A)(z) ei(l‘) + §wcp(e£)(i’?f) pez(Tev(A)) + §yk(FA)po = v(f;)(x)
ON2 — o ael2 © V2 _ v (o@g® _ o0 1
(56) (97)* = lim (8"’ Z(Va/ax") Z(Veg Ver =V yeg)+2
‘k

- S () 4 4 = O 4

Remark. Importantly ¢ = 1;10%({)015 = 17% 12 0P,z o (1) "*o 1. coincides with the
Getzler transformation ([13], [5]) of @,z. Our study up to now will assert that, to study the
kernel e_taizz , our interpretation of the transformation is more appropriate than the original
one which we review below: We have the global rescaling Pso(ny2)(Z, g%) = Psom+2)(Z, g2),
e.(A) — e;(A), and it gives a pointwise isometry b : f5z = F 2z to which we referred at the
comment following (1.12). Then @yz is transformed into

- , $yz0
b o@gzob —61/22,09 (eb V,,(i) +Zpgz(e’}(A))Ve,92

actmg on I'(ANTyM ®n$gv)( D(AT*M @z §4v), (dz®)’ ® h(z, zf) & el(z®) ® h(z’, zf)),

(see [5, (4.26)], [12, (1.3)]) where V552 is the spinor connection associated to V9°® and we

— = 0,2 (v(Fa))

regard p,z(e}) as dmfA —dz? V. Further let 7; be the transformation of ATgM @ v given by
(dz®) @ h(zb, zf) > e~ 111/2(dz®)! ® h(e/ 2z, zf). Then it is Tz o (b-lo@gz obe)o 77! that is the
original definition of the Getzler transformation of @,z or b L, gz obe. The difference between

the original one and ours thus lies in which we choose, the isometry b, or the inclusion (1.8).

Proof. As for (1): For ¢ = ef ® h which belongs to the right hand side of (2.5), we have
17l (e) Ao Le(z) = 17 6 el (e) A (€1 2ep(e))! ® h(z) = e7V %€} Ay(z),
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(5.7) ‘
17 teey(e)V o le(z) = 17 o eh(e)V (e 2es(€))’ @ h(z) = e!/%}v 4(a).

Thus we get the formula in the first line of (5.1). Its second line is obvious. (4.2), (4.3) ang
(3.8) imply (5.2) and (5.3), which, together with (4.2), yield (5.4). As for (2): By an easy
computation (see the expansion at (1.3)), we have

(68 OV )i (2) = g(eh, VR )(@) = 5 3 a8 R 4(0) + O(la)

which, with referring to (4.3), implies (2).

Now, let us regard (2.29) and the right hand side of (1.24) denoted K(o)(t,z,z') = 3. € (z)

Koyt z,2')r = T ef(z) - det v*(z’) - Kpu(t, z,7) s as cross-sections of (4.4) canonically:

(5.9) EO(t,z,2) =) el(z)® e} (') K(t, (1, I)|/2 : z,2') 1,7 with
(EOp)(=) = [ (EO(t 2,2 >,w(m’)>gz dg?(&'),
(5.10) Eg)(t,z,2") = detv®(z') - Emv(t,z, @) = ) ef(z) Aej (z)® ] (') - K(o)(t,z,7")r
=> ep(@)®ef(z) - Kyt z,2') 10
= det v’(z') D _ el (z)® €] (z') - Kapv(t, z,2')(1,y with
(E@(©9)(@) = [(Eqt,2,2), 6() 1240 (2) = [ (Brav(t,2,2), 9(2 ) gs ol ().

Then what Theorem 1.3 asserts is their coincidence. We wish to show it by the standard method,
that is, by proving that each of them defines a (C°) semi-group of the parabolic equation (0.3)
for ({19(0))2 and such a (C?%) semi-group exists uniquely. But, there is a serious obstruction to
such a method. If £ > 0, then, with no obstruction, certainly the parabolic equation (0.3) for
(31?2 with 9 € LAT(AT*M ®x $,v with gZ) has a unique (C°) semi-group with C-kernel
e“(@(:))2 = E€)(t,z,2') = Yel(z)® el (') - E)(¢,z,7')(1,7) which is (2.27) regarded as a

cross-section of (4.4), i.e
(5.11) (% + (@<‘>)2)E<=)(t,z,m') =0, E€(t)p - in L? (t — 0).

This comes from the propérty of @3(2‘) through the tfa.nsfonnation 1. (see (2.27) around), or more
straightforwardly, from the fact that the coefficients of the expression of (Q("))2 withe > 0 (using
the frame e, ® s(ef)) satisfy the condition (2.3). Now, unfortunately the coefficients of such a
expression of (@(0))2 do not satisfy it (observe the existence of :r:? at (5.5)). Or, more clearly, by
observing (1.23) etc., (5.10) which is expected to be a (C°) semi-group of the parabolic equation
(0.3) for (529(0))2 may not transform L*T(AT*M ®x $qv with g%) to itself, or what is worse, for
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some element 9 of it, the integral in the definition of E(o)(t)w may diverge. To overcome such
a serious obstruction, it is the idea of using (not L?-space but) the space of rapidly decreasing

cross-sections that attracted the notice of the author.

That is, let us consider the Fréchet space

(5.12) S={p e AT M@<$,v) |r( }131)3 OL(1+T(P))‘6°’,1/J(P)|(O) =0 (v¢,Ya)}

with semi-norms pgq (%) = suppez|(L+7(P))0*W(P)l ), G = {pra}
where we put 7(P) = rq)(P, PY%), and the parabolic equation with the initial condition
9 ©12) . — -
(5.13) (5 + @) v =0 9|_ =wes.

Then, first, we want to show that (5.9) defines its (C?) semi—group with C*°-kernel.

As a preliminary we have

Lemma 5.2. Let 60 = {p; 0)} be another family of semi-norms of S consisting ofp (1/1)
suppez|(1 + r(P))l(@(O))%w P)l0)- Then the two kinds of families G and SO are equivalent

to each other.

Proof. It suffices to show that, for given ¢, k and «, there exist ¢;, k{,qi (1 <1< N) and
a constant C > 0 satisfying
N
(5.14) - Pea(¥) S C Yo pra(d), Pral¥) < c}:pﬁ"’k (v € S).
i=1
The first inequality will be obvious. As for the second inequality: Set Rj; = Rj’iM "), ¥ =
Y el ® 1 and note that we have

(5.15) (@) =3 e (- Z(a/aa:?f + v )oor + (—- > Rjie}® z3(8/0ai)r

7,0

—Zu*(FA eb®V )+Z( Z ZRnx + = p(")( (Fa))?)ef® ¥

Nil=1 i
Fv

{——ZRJ,®:: (8/9z?) %—Zu"(m v/

+ 3 e,,®( Z 8/6z) +@gv)¢1}+{—§ Z Rjiel® 22(8/020)9;

Il1)1=2 i5ll7ll=1

~ S Wk(Fa eb®V$ b+ Y e (- (9/02)) +¢3")¢’}

kJi)=1 % 1]=3 i

¥ g
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{ Z ZRﬁﬂ: )@ + = po)( (Fa))?® %—% > Rjie{® 22(9/9z! )y

Ll ]|=2

-y k(FAeb®v$ bt 3 ef@ (= 3(0/0:)" + Ppivr} +

k| Ilf=2 iHl=4

= 3 el®Dopr+y. 3 e®{ S DU, )pbs+ Do}

I711=0,1 P22 |{/||=p I/ll=p—2
where we denote 1y with |7| = 0 by 1)p. Then it suffices to prove that, for given  and 3, there

exists a constant C' > 0 satisfying

18}
(5.16) 12%(8/0z)Y 1(@i0) S C Y Py yjap () (V6 € S).
k=0

(Note that the first inequality at (5.14) implies Pﬁglm «(¥) < 00.) Assuming that all of ¢y are
compactly supported on U/ (3 zf), let us prove it by the induction with respect to |I|. First,
as for (5.16) with [I| = 0 or 1, the standard elliptic estimates for the elliptic operator Dgy imply

it, i.e.,
I:r"(@/ax)ﬁz/;]ko < C{Pﬁghal 0(1{}1) +p§3L|a|,o(Dg3l‘/’1)}
< C{PNyiao®) + Pihat o) }-
As for (5.16) with |I| = 2: Expand (#‘Y)*y as in (5.15). Then the coefficient of e (|I| = 2)

is equal to 34 4k, =k-1 DE'D(I,0)o Dk + DE b1 and we can apply (5.16) with |I| = 0 to the
part 3 i vka—k—1 D D(I,0)oDE*y. Hence, we have

12(0/02Y ko) < Cr{PRhiat 0 (B1) + Plvial o D8 1) }

<O {pN+|a] 0(¢1) +pN+|a| 0( Z Dle I, Q)OD(};Z’(//@ + le d’f)
ki+k2=[81-1

Q)
+Pivbiatol 2 Do DU, 8)aD5*bo) }
k1 +k2=|B1-1

(0) (0)
<G {PNH(,[‘O(’»/’) _}-‘DNHGLWI ) + ZPN1+]0[ 3 ¢>}

Thus we have proved (5.16) with |[I| = 2. In this way (5.16) is shown inductively.

Then, as is desired, we have

Lemma 5.3. {E©(t)}ocicco defines a (C°) semi-group with C™-kernel associated to the

parabolic equation (5.13). That is, we have
(5.17) (gi + (@) EO(t,2,2") =0,
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and EO(t) gives a continuous linear map from S to itself, and, for given Ty >0, £ >0 and «,

there exist C > 0, o > 0, B1,- -+, On satisfying

(5.18) PealEO ()Y =) S CtY2 Y prragp(¥) (0<VE< Ty, W€ S),

and, moreover, we have

(5.19) EQ ) EO(ty) = EO(t; +t5) (0 < Vey, VHa).

Further, the semi-group is equicontinuous, that is, for given { > 0 and a, there exist C > 0,
£y >0, B, -+, BN satisfying

(5.20) Pa(EQ %) < C S pritos(¥) (0 <Vt < oo, VY €5).

Proof. Take ¢ € §. (2.30) implies
(5.21) | /Z (1+7(2)) 02 BO(t, 2, 2'), (")), z dg? (=)l o)
<Gy [ (1 +r(@) 12 B0 (2, )0 (@)l do” ()

< G2 pyeo{ | (1 r(a)) (L4 r()) ()0 doy ()

r{z,z’)<2F

+ (1 _*_7.(1,))[(1 +r(z/))ne—(r(x,z’)—f)2/0tI,l/}(zl)l(o) dg(Zo)(a:')}

r(z,z')>2F

S Gy o [ (e, a) (14 (@) (0 dafy (@)

4+ ( (,,-, +1 +7‘($/))£+n(7'(2,1' ) _ ,,-.-)le—(r(z,x')—r’)2/Ctl,(/)(zl)l(o) dg(‘%)(:c’)}
r(z,z’)>27
< Cy (t-(n+2+|a|)/2 + 1) e—t,\o{(zf)(+n+2pt+n,o(w) + tl/2P£+n,O(¢)}~

That is, certainly E(9(t)1 belongs to S and the map E©)(2) is continuous. Consider then the
Taylor expansions of the first equality at (5.11) and of E(€)(¢1)E€)(ty) = E(€) (¢, + to). Their

constant terms yield (5.17) and (5.19). Let us show the remained assertions below. First, we

have
(5.22) | @NHEO()) = (BO1) (3 *¥)(=).
Actually, if €'/? > 0, then we have
POHEO )@ = [ (P)PE(t7,2), 92,2 do” ()
17 Bz, Bt 2,2, ), L&) ooy (=)
12 [(Bt6,2,9), (g2 10 )0 dofy (<)
= 17 (Bt 6,2, ), L0 ) dely (&) = (B0 () )(a).

II

II
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Hence, by taking the limit, we have (5.22). Next, we want to show that, for given £ > 0, ther

exists an integer IV > 0 satisfying
(5.23) |1+ (@) ((EO @) (z) - (@) lo) < CE2pnol) (W e S).

As for the case £ = 0: Referring to (2.22), (2.18), (4.57) and (4.59), we have

(EE (t))(z) — %(2)] oy = D_| Z/;(E(‘)(t,e, Iyxl)(1,J),¢J(fC}))$ Vdgz(ml) = (=)o)
roJ g

<ZI(S JE @I IN/2:2,2) 00, 9500 g d97(&) = 9u(2) (o) + Cre /4 pyo(1)

<3 / (£,0/2:2,2) 10, ¥3(&) g, do” (&) = $1(2)) [0

+Cy tY/? Pmo+1,0(%) + Cre!/2t! /ZPmoH,O(W)
< Cat 2oy + Cotpio(w) + Cre 2t 2py o () < CtYV2pno(¥).

(This is an estimate stronger than the second part of (5.11).) Hence, again taking the limit, we

obtain (5.23) with £ = 0. As for the case £ > 0: we have
|(L+r(@) (EO)() - $()) o) < (B @) A+r())(2) — (L+r(2)) ()]0
+1(1+r(2)) (EQ(0)9)(z) = (EQ @)1+ () %) (@)l 0)
< C 2 p 0y o) + [(1+7(@) (B ()9) (=) — (BO ) (1+7()) ) ()0

and, referring to (2.32), we have

(A +r(E) B )(=) ~ (B ()W) o
= | [ {((r(@) - (@) BO k2, 2), (oo

4H>0
<Gy [ =) ) EEO 2 ) oy )

£y +8,=¢
<G Y [ a2 (1) = O, 7,2 o B dafy (=)

< 02 Z/ r(z, :L' ll(l‘*—’f‘( ))32+ﬂt (n+2)/2 —7‘(2‘ z')2/5t]1/)(x )l(O)dg 0)(1‘)
< 0321%24,71 O(w /t (n+2)/2+24,/2 —r(z z')’/chg( )( ) < Cy tl/ngg_)no(d/)
Thus we obtained (5.23). Then (5.22), (5.23) imply the inequality p(o) (E@(t)yp) — 9) <

Ct1/2pl+n (1), and, using Lemma 5.2, we obtain (5.18). Last, as for the equicontinuity, in the

case t small (5.18) implies it, and in the case ¢ large (5.21) implies it.
Now let us prove Theorem 1.3.
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Proof of Theorem 1.3. We intend to prove that E(t) coincides with E(o)(t). First
let us show that Ejg)(t,z,z") also satisfies the conditions from (5.17) to (5.18). We regard
K (t, 28, 2%) as a cross-section of AT*M & AT*M (see (4.4)) canonically
(5.24) Ep(t, 2% 2" = Zeb ) A el (2% ® ef () - K (t, 2% %),

=Y ef(z)®el(z") -Kum(t, 252" (1 5.

And, set Spr = {p € D(AT*M) | limygs|_ 00 [(1+]2%])¢0% o (z?) |0y = 0 (V€,Va)} with semi-norms
gt,a(p) = supgsepr|(1+]28))0%0(2°)| (o). Since the operators (@§M>2 and A%, are commutative,

it suffices to prove the following: First we have
(5.29 (2 + (@0) Euste, =) =0,
and, if we set, for ¢ = 3¢ (z°) - s(z°) € Su,
(5.26) (o)) = [ (Baa(t,=%2"), 0(="))gn dalf ()
=3 el(zh) - /Z Kn(t, 22 1,0y 01(=") dgtl () (see (5.10)),

then Eas(t) defines a continuous linear map from Sy to itself, a.nd, last, for given £ > 0, @ and

To > 0, there exist C > 0, & > 0, By, -, Oy satisfying
(5.27) Qra(Ext () — ) < O S qriaanlp) (0 <Vt <To, ¥ip € Sur),

Let us show these with setting y = z°, etc. As for (5.25): As was mentioned in the comment
following (1.23), it is Getzler ([13], (3, §4.2]) who showed (5.24) with ¢/ = z° = 0 satisfies (5.25).
Set R = RgM(po) and Y =y — ¢/, then, using his result, we have

o 1 2 0 1 1 2
P = =3 (55 + g ZwBs) == 27 + 3 ZwiR) + 3 X% B}
, . 0
e~ WIRY)/4 (@S}})?oe@“‘ly M4 = Z( A ZYRJ,) :
(2 + @) Eultyy)

= o(WIRIY)/4 (é?t Z(i + lz Y_;Rji>2) e“<y|R|y'>/4EM(t, y,y’)
0

o
e WIRIY)/4 =
(5 - Z(ay + - ZYRﬂ) ) Ene(t,Y,0) = 0.
That is, certainly (5.25) for general i/ = z° holds. The continuity of the operator E(t) can
be shown similarly to that of E(®)(t). As for (5.27): First we have
(5.28) (6/0y)*(En(t)e)(y) — (En(£)(8/0y')%0) (y)
B>0

-3 / S () ﬁ( R)gy En(t,9,9), (8/0Y' Y 0(y')) gm dgfty(y')

a=0+y /3’(>0
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. 1
ACtua‘uyy since we have (@/5yz)EM(t, yyy/) = (—(6/6?/:) + Z Z(yJ - y;)RJI)EM (tv Y, y/)y Wi
obtain (5.28) referring to the definition (5.26) of Epr(¢). Then, since there is a term (y—y')8

(I8’ > 0) in its right hand side, the above can be estimated as

(5.29) 1(8/0y)* (Ea(£)0)(v) — (Ear(8)(8/8Y )0} (W)li0) S CtY2 D" gy (i)

[l <|af

On the other hand, similarly to (5.23), we have
(5.30) (1 + [ (Enm (£)90) (@) — 0o@)o) < C Y2 g olw).

Hence we have obtained (5.27).

We have thus showed that E(g(t,z,z’) also satisfies the conditions from (5.17) to (5.18).
We do not ask here whether (5.19) for Eyg)(t, z,z’) holds or not. (Note that once the proof is
finished, consequently we know it holds.) However it is obviously continuous with respect to ¢,

that is, there exists a constant C > 0 and an integer {3 > 0 satisfying

(5.31) Poa(E)(t)0 — E(g)(t + 8)¥) < s(t™2 + t7) C pgy p(¥)
(0 <Vt < o0, 0 < Vs < £/2, ¥ € S).

This weak estimate is enough for our purpose. Now let us show E(©)(t, z z') = Ey(t,z,2').

First, for given 0 < t) < tp <t and ¢ € S, we have
630 [ [ (B0 ,7,2), (Bl = 172,92 ) o 40 ) dg” (@)
/ / Nty z,z' ) Byt —t1, 2", 2"), 0(z")) gz 201) gz 0 dg? (z') dg?(").

Actually, by referring to (5.17) for E© and E(oy and moreover (5.22), we find out that the

difference between the right and left hand sides is equal to

t2
dt'é- /Z (BN, z,2'), (Bt =t 2, "), (")) g2 zn) g2 = dgz(_x') dg? (z")

/tzdt { / ((@(0))2E(0)(t/, Z, I,)y (E(O)(t — t/) mlr IH) ’ 1/}(1://))92':://)92’:/ ng(I,) ng(z//)
+/ t T, T ) ((@ ) E(O)(t - t/, :LJ) a:"), 1!"(3:”))5]2,:1.4’)5]2,::’ ng(x/) ng(mI/)}
= / dt/{—/ (E(O)(t/, x, II), ((@(0))2E(0) (t - t,) IB,, IN)! w(xn))gz,z”>gz,x’ ng(xl) ng(x//)

31

+ [ (B, 2,2, (9 E 0t =12") 8 Dya oo 0 267 () (") } = 0
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And we have

| /Z/Z<E(°)(t2, z,2'), (E()(t = t2, &, 2"),%(2")) g2 o) g2 - dg?(z') dg? (")

| - [(BOt,2,2), 9(@)ye 2 dg? ()
< (B (ta) (Eqoy(t—t2)¥ — 9))(2)(0) + (B (22) (B (t— o) — ) (@)l o) (by (5.19))
<C Z{plo;ﬂx(E(O)(t — ta)1h — ¥) + Pro,g (EO(t — t2) — )} (by (5.18) for EO)
SCt-1)"2Y pp o, (¥) =0 (t2 > t) (by (5.18) for B and E(g),
[ [ BO 62,2, (Bt = t1,0',5"), 95"} g7 0002 2 dg? (5" dgP (2")

- [ (Bo(t.2,2), 92 )ge 0 da? oy

< |(BO(t1) By (t ~ t1)t — Eqgy(t — t1)¥) (&)l (0) + (Bt = t1)w — Eoy(t)9) ()] o)
<C 1 pr . (Bt = t)9) + t2(t72 + ") Cpr () (by (5.18), (5.31))

< CY 0 Py () + 1(672 + %) Cpgop($) = 0 (81— 0)
Hence, for any ¥y € S, 0 <t < o0 and = € Z, we have
633)  [(EO)u), d7(@) = [ (Boyltiz ) b)) do7(@)

Thus we have proved E(O(t,z,2) = E(t,z,7').
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Abstract. We show that the trace of a quotient of two Dirac operators and the
infinitesimally deformed chiral .anomaly of a Dirac operator on a twistor space have

adiabatic series expansions. Further their top terms can be explicitly described.

0 Introduction

Let M = (M,g™) be an even dimensional compact oriented Riemannian manifold

equipped with a Spin? structure introduced in (8]
(0.1) E7: Pspint(n) (M) = Pspin(n)(M) Xz, Psp1) = Psom)(M) X Psoa)

where Pso(n) (M) (n = dim M) is the reduced structure bundle consisting of SO(n)-
frames of TM and Pgp(3), Pspint(n)(M) are some principal bundles with structure groups
SO(3), Spin?(n) = Spin(n) xz,Sp(1), respectively. Remark that Pspiy(n)(M), Psy) are
locally defined bundies and the bundle map =7 is assumed to be equivariant to the
canonical Lié group homomorphism =7 = (2, Ad) : Spin?(n) — SO(n) x SO(3). Then,
using the canonical action of Spin?(n) or Sp(1l) on Spini(n)/Spin¢(n) = Sp(1)/U(1)
and the identification Sp(1)/U(1) = CP! through the representation rgy : Sp(l) —
-8

- ?

GLc(H) = GLc(C?) with rg(a +38) = we get a CP!-fibration

a
B
(0.2) T+ Z = Pspint(n)(M) Xcan CP' = Pgp(1) Xcan CP' = M.

1



Let us now take an Sp(1)-connection A of Pgy(1y, so that the twistor space Z possesses
a canonical Spin structure ([9], [10]). Namely, the connection induces a splitting of T'Z
into horizontal and vertical components, TZ = H & V, with natural orientation and
with the metric g% = 7*gM™ + g¥ (7*¢™ = gZ|H) where gV is the Riemannian metric
on V induced from the Fubini-Study one of CP!. Further we have the locé.lly defined
spinor bundle Bynt associated to Pséin(n)(M ) and a locally defined hermitian vector
bundle I = Psp1) Xry H, which together produce _f;he globally defined vector bundle
T @ H =7 F,m @ Fpv = §z on Z , whose rank is certainly equal to 27/2*!, Then,
the locally defined Clifford action pgu of CI(T™M, gM) on $gm, together with the action
pgv of Cl(v*,g¥) on Bgv »ihduced from the fiberwise globally defined canonical Spin
_structure, gives the glpbally defined action pyz of Cl(T"Z, g%) on Bgz, 1., pgz (") =
g (£5) ® 1 (€ € T"M) and pyz(€7) = 7y (1) ® pyv(€7) (¢ € V*) where T, is
the complex volume element of (M, g, _Thus-(Z, g%) has a canonical Spin structure,
which gives the Dirac operator @;ﬁ) : F($g(§)) - I‘(.ﬁ'g(f)). Note that the. canonical
splittings S, = Fi © Fne, v = 7 H = 5505 = {([u], o) € 7 H}® (F5)* where
($+) is the orthogonal complement 1nduce the sphttmg gz = $ 7 D $ z canomcally
Now let us take another metric A on M and an associated Spmq structure with
the same PSO(3) as in (0.1), whose twistor space is hence equal to the one given at (0.2).
We have thus another Spin structure for Z with metric h% = 7*hM 4+ gV, which induces

- another Dirac operator ;3( I‘($(i)) — F($(¥)). Let us consider then the invariants

called the traces of the quotlent Pz /;?gz _
| T [T i,
(0.3) *a(Phz /957) = = <o T i(agz Pz e P57 ) at,

" with the equalities Try (agz Pnz e tas ) Trz (é?hz Pgz € tag )

(The equalities at the second line will be shown at (2.1).) -Remark that e‘taaz
cross-section of the vector bundle $!§:Zt) & $g(:zb)* over Z X Z, on which the operator @,z
cannot act in a naive sense. In the paper we will let @,z act on it (see (1.6)) by using
the meﬁhod introduced by Bourguignon and Gauduchon ([4], [5]), the explanatlon for
which will be offered at the beginning of the next section. The first purpose is then
to study the adiabatic series expansions of (0.3) and the difference STr(@),z [Bq2) =
Try(Prz/P,2) — Tr—(Phz/P,z). Namely, by replacing the metrics g% etc. by ¢Z =
LrtgM + g¥ = m*gM + gV (e > 0) etc., we obtain Tre(@sz/P,z) etc., and we want
to investigate their asymptotic expansions when € — 0. Incidentally to express the

right hand side of (0.3) by Trx(@sz/@yz) will be appropria,t‘e in the following sense:

2



Using the series of eigenvalues (0 <)Af < AF < ... = oo (see Lemma 2. 1) and the
corresponding series of orthonormal eigen-cross-sections of the operator @ z acting on
P($g ), let us set e~ta? Ze—u’ <f>ji ¢.;t* and put /J'j = (@gz@hmj »¢j )2 where
() V2 = <"'>L71‘($_fz) is the global inner product which F($g*z) has. Then, formally
the right hand side of (0.3) is equal to

s —tAE + [T it #}t
S gty ), p N a = [T a= T

Second, let us consider some infinitesimal deformation of the so-called chiral anomaly.

That is, let us take a symmetric bilinear form X on TM and set ga{) = gM 4+ uX
(0 < u < ug). The metric induces the Dirac operator g?g(zu) acting on I'(§,z) as above
and we have the infinitesimal deformation of @z

l
du lu=0

We are then interested in the associated invariants called the infinitesimally de-

.z

9wy

(0.4) (5)(@gz =

formed chiral anomalies of @,z

d

R 2
(05)  logdet (6xP,e)* = ! /  Tes (9,2 8x P,z P57 ) a

s=0 F(S) 0
. ) ,
with the equalities Try (@gz 6x;$gz e“agz) = Trg (6)(%2 @gz e“‘@gz)

and we want to investigate the asymptotic expansions of log det (dx, @gz)ﬂ: and also their
difference when ¢ — 0. If the operators Py2@, z, acting on I’ ($ z) happen to have the
spectra consisting of eigenvalues {A;(u )\f(u)} all of which lie in a positive cone about
the positive real axis in C and have the corresponding orthonormal eigen-cross-sections
{pj(u) = ¢Ji(u)} which are all smooth with respect to the parameter u at u = 0, then

we have

21
= (Pyz8xPy2;(0), 6;(0)) L2 + <a2z¢;(0) $5(0)) 12 + (P220;(0), ¢5(0)) 12

= (y20xPy295(0) 65012 + 25(0) o] (B5(a), 85(u)s

= (P20x4261(0), 9;(0)s2  (hence, A;(0) > 0 if ;(0) #0)

A5(0) = @gz@g( )¢J( u), ¢;(u)) 2

and the right hand side of (0.5) is formally equal to

/ d 1 s-t 0
ZA1<°)a;s=o‘r‘(s—)/t t Z,\o —u

ogHA(u)

X (0)#0 2(0)> v
— _d_ —slogAj(u - i log d t(@ @ )i
du lu=0 s=0 ¢ dutu=0 g ae 97 g(zu) )
. (X;(0)>0)



Thus, formally (0.5) are the infinitesimal deformations (into the direction X) of the
chiral anomalies logdet (ﬁgz@ga))i which were mathematically introduced by I.M.
Singer (12, Appendix]. (Note that in general all but a finite number of eigenvalues
At(w), -+, Ag(u) lie in a positive cone about the positive real axis and, moreover, the
eigen-cross-sections ¢;(u) are generalized ones. And strictly Singer said to define the
anomalies as log det (42992@5,(21‘))i = =A1(u) - Me(w)(8/05)|s=0 25 €7 1082 ™))

Our investigation in the paper is an attempt to embody the idea ([3]) that such an
operation as replacing gZ etc. by g;z etc. and taking the parameter € up to 0, that is,
blowing up the metric gZ in the base space direction, will extract some intrinsic values
from various geometric invariants of Z. And we want to emphasize here that it is mainly
the general adiabatic expansion theory concerning the kernel e“@zz ((11] and Lemma

2.3) that induces our main assertions, i.e., Theorem 1.2 and Corollary 1.3.

1 The operator @,z acting on I'($,z) and the Main Asser-

tions

According to the Bourguignon and Gauduchon’s method ({4], [5]), first we will make
@nz act on ['($,z). The projection from the set F*(T, M) of positively oriented frames
on T,M to the set I(Tp,M) of inner products on T, M, given by e +— “ the inner prod-
uct (-,-)e which has e as an orthonormal frame”, has a structure of principal SO(n)-
bundle, which is trivial since the base space I(TpM) is contractible. And the tan-
gent space T.F+(T,M) = gl(n), (d/da)|a=o(e - Ba) + (d/da)la=0Ba, has a subspace
He(FH(TpM)) = {B € gl(n) | B = *B} which is projected onto T. ., I(T,M) isomor-
phically. Clearly the distribution e — H.(F*(Tp,M)) gives then a connection for the
bundle, which induces the parallel displacement n™ : Psom)(M)p = Psom)(M, M,
along the segment from g},"’ to hﬁ” . Gathering such displacements now we get the bundle
isomorphism
(1.1) 7™ : Psogny (M) = Psogmy(M, kM)

with oM : TG M 2 (TO M, RM), 7™ ([, v]) = [nM (%), v]
where we use the canonical expression TM = Psom)(M) Xcan R™ (3 [e®,]), etc. More
explicitly, for a gM-SO(n)-frame €® = (&}, --,€}), set n* = (n)) = (hM(ef,eg))‘l/z,

which is positive and symmetric. Then we have

(1.2) M) = e nb, nM(ed) = nM(e’)i=> el nl.



These come from the fact that, if we take the segment ¢ — g{,"!( )=(1- t)g{,w +th£’f and
for each g;,”(t) we put nM(eb) = e - (gz/,"( )(ef,e])) 172 then nM(eb) is a g{,"(t)-SO(n)-
frame and (9/9t)nM(e®) is horizontal. Next let us assume to use the common Psp1)
for the two metrics (see (0.1)), which consequently determines (locally defined) Spin
structures = : Prpin(n)(M) = Psom)(M), Epm : Pspinin) (M, RM) & Psom)(M, hM).
Since the above connection for the (trivial) bundle F*(T,M) — I(T,M) induces a
connection for the associated (trivial) Spin(n)-bundle F*(T,M) — I (TpM), similarly
to the above we obtain a bundle isomorphism n™ : Pspin(n)(M) = Pspinm) (M, RM) and,

further, we have the bundle isometry

(13) UM : $gM = $hM1 UM(W), 3]) = [UM(U’),S]
with 7o pu () = pu (™ (€)) o™ (£ € T*M).

Thus we get the identifications

(1.4) n=nMeid: TZ=HeV=(TZ h?) =(H,~M eV
given by el(4) = wel, ef = M (), e,
(1.5) n= TIM®id : $gz =7r‘$gM ®‘$gv = Fhz =7 Fum ®$gv

with 7opyz(€) = paz(n(§))en (£ €T 2Z)

where ef = (e{,eg) is a g¥-SO(2)-frame of V. Set e,(A) = (e1(A),---) = (e°(4),¢ef),
which is a g2-SO(n+2)-frame, and denote its dual by e*(A) = (e} (4), - - ) = (eb, er(A)).
Then we have the expressions @,z = 3 p,z(e(4)) V f’(A > pgz(e(A)){e:(A) +
~ Zg \ (A)e.;l (A), ei,(A)) pyz (€™ (A))pyz (€72 (A))} etc. where 97 is the Levi-Civita

connectlon associated to the metric g2, and now

(1.6)  Prz=n"loPpzon=Y pyz(ei(A)) vf(j('A) :T($,z) = [(§,2) with

nyz.hfzz v+ %Zgz((flﬁovfon) ei, (A), e, (A)) pgz(eil (A))pgz(eiQ(A))
=v+ % Z hz(szn(gil(A)),n(e,iz(A))) Pz (eil(A))pgz(ei2 (A)

is the desired one at (0.3). By putting eS(A) = (e*(A),ef) = (c¥/%e*(A),ef) and

e:(A) = (ese, ef(A)) = (67 %€y, e5(A)), their adiabatic versions are then expressed as

(1.7) Doz =D poz(€i(A)) V$g‘z Pz =D _poz(e )Vég(efiA))

Remark that the map 7 for gZ etc. coincides with (1.4) for g2 etc.



Let us next consider the identity
2 2
(1.8) Tre (@ggahg e~tPaz ) Trx (@ 2 pr Prz.pePeE (P, P’))

where we put @;‘z,p/ Pnz pi(P)E 2(P') = @z p 01(P)BPyz prp2(P'). Conveniently

the right hand side contains only derivatives up to the first order for each variables P,
2 . 2

P’. First we intend to state the behavior of @;5 Dnz e~tPoz (P,P)= @;zz’P/@hCZ’pe—tagtz (P,

P’)|p=pr (when € — 0) regarded as an element of the third side of the identification

(1.9) [($,2 ® $,2) = [($,2 ® $32) = T(AT"Z ®C),
s(e5(A)) ® s(e5(A)) & s(e5(A)) ® s(e5(A))", poz(el(A)) & el(A)

where s(e£(A)) is the SU(2%/*+!)-frame of $,z induced from e(A), and I = (I°, 1)
is a multi-index with I® = (1§ < -.. < if’[,,l) and I/ = ({ < - 'Iflfl) and we put

el = el n-- Ae,,';”', el (A) = €7 (A) A Ae ""(A) and el(A4) = el Ael’ (). Let us
take now a (globally defined) tensor field

(1.10) T = % S {lebetl(4) ~ (ed(a), b o ef nel = S el o Th

where [e?, €2 ](A) is the H-horizontal lift (€ H) of the bracket [e?, e J] and the difference
(€2, e J](A) - [€8(A4), ej( )] is vertical (€ V). And consider an elliptic operator acting on

1

DAT, M ® 8,v|2Zp) (Zp = 7' (p))

2_ a2 1 k Fov
(1.11) AP =92 - §ZTA A18V7

where we put @,v = Zpgz(e’}(A))Vi’v, pgz(e'}(A)) =(-1)¢® pgv(e’f‘) for ¢-forms in
the M-direction and TX(P) = (1/2) E‘Eef,/\e‘};)(p) -T} ;;(P). This generates a (C°)-semi-
group with C*-kernel which belongs to ATy M®(§,v| 2,88 v | Zp)). Its value at (P, P)
can be canonically regarded as an element of A(m*T*M)p @ A\V*(A)pQ@C =NTpZQC
(see (1.9)), which we denote by exp(—tA2>(P). Then we have

+ %(Z TEA- pgz(e;(A)))2

Proposition 1.1. When € — 0, there ezists a formal series expansion

(112)  Pz0nz =Pz (P, P) = Z ™2 Dy (8, P Pz [Pyz) with
m=-—2
(113)  Diaynts P: ra/Bys) = 0 o (e n* oot o 1} ) )
1 o  tRTY/2 .
X ) det <——sinh (thM/2)>(P) exp(—-t.A )(P)
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where we set p = ©(P), 8" w = (=1)Yw for j-form w, and RgM(p) is an anti-symmetric
M

matriz whose (1, 7)-entries are equal to Rfj (p) =(1/2) ZgM(F(VgM)(ef,e?)efl,efz)(p)

(e)t Ne?)(p). (See Lemma 2.4 for further informations for the coefficients.)

Now let us state the main assertions.

Theorem 1.2. In the definitions of Tr+(@Pnz/Pgz) (see (0.3)), the functions to be

1 [ :

differentiated by s, that is, _l:(?) / t* Try <@g¢z Pnz e—t@gg) dt, are absolutely integrable
0

if Re(s) > n/2 + 2 and have the meromorphic extensions to C (5 s) which are analytic

at s =0. When € — 0, then there exist the asymptotic expansions
(1.14) Tri(é’hz/@g )

m/2 F2r n/2
- Z n/2+1 ds | s=0 p dt t* D(m/2)<t P:Pnz/Pqz)

m=-2
m/2 n/2 d 1
+Z P Bl T e D)6 P PnzPo2) 1 dg® (P),
—(n+2)

(1.15) STY(s?hZ/@gZ) = TY+(¢hZ/@g,) Tr-(Pnz/Pqz)

m/2 2n/‘2+l s
= - Z € )n/2+1 ds 0T S)/ dt-t Dm/g)(t P: @hz/@gz)

m=—2

where the functions differentiated by s are also all absolutely integrable if Re(s) > n/2+2
and have the meromorphic extensions to C which are analytic at s = 0. In particular,

as for (1.15), the coefficients of €™'? with m < 0 are all pure imaginary.
As for the infinitesimally deformed chiral anomalies, we have

Corollary 1.3. In the definitions of log det(<5x‘g?_qzz)i (see (0.5)), the functions to be
differentiated by s are absolutely integrable if Re(s) > n/2+2 and have the meromorphic

extensions to C which are analytic at s = 0. And set

L
(1.16) C’H(m/g)(t,Pzéxagz)z-(EL D2 (tP:@z /952), hence

(1.17) CH(_Q/z)(t,Pzéx@g)—G—<ele 2 {coth M—l}leb>(p)

1 tR9" /2
< T (m)(p) exp(~tA”)(P).

Then we have the asymptotic expansions when € — 0

(1.18) log det(éxeé?gez)at



_ Z m/z 2:/22“ js _ OI‘(I)/ dt - t/CH(m/g)(t P:6xd,z2)
m=—2
m=—(n+
(1.19) S-logdet(dx, Pgz) = Iogdet(éx‘@gz)“" — log det(dx,Pyz)”
=_m_z25m/z (\/212:/12“ i . F(l)/ dt - t/ CHmy2)(t, P: xPy2).

So as itn Theorem 1.2 are the functions dzfj‘erentzated by s and the coefficients of e™/?
withm < 0 at (1.19).

2 Proofs of Theorem 1.2 and Corollary 1.3

First let us show

Lemma 2.1. There ezists a constant Ag > 0 satisfying Spec((ﬁgz) > Ao for any €

with 0 < € < egg. And we have
2 . 2
(2.1)  Trs (agg Prz e-f@gz) = Try (ahzz@gzz e-%z)
-t e/ 2n(el)(det nb . .
= TI':F (agzz@hez [+ tagzz) +'I&‘;F (Z ( ) 3 ) pgcz(ezc) agez e t@ﬂez)

detn

and further there ezists a constant C > 0 satisfying

(2.2) | Tre (@Zz,pl Pnz.p ez (P, P')) ’ < Cem*/3 Try (e'(‘/ﬁ)azez)

(0 < Ve <egpand 0 <Vt < o0).

Proof. The assertion concerning the spectrum of @iz comes from the invertibility
of @,v ([10, (5.15)]) and (3, Proposition 4.41]. Namely, first consider a connection
V9 = PYoV9” of V where PV : TZ = H®V — V is the projection. This together with
the Levi-Civita one V9% gives a new connection VIS = v @V of TZ=HSV,
which is compatible with gZ and whose torsion is equal to T4 given at (1.10) ({11, Lemma

3.1]). Denote by v%:2% the associated connection on 8,z and set Th = 3 ef(A)OT) =
% ZT&M A€} A ez. Then we have

(2.3) Bgz ="} pyz (eh) {V$"‘ pgz(Z o)} + 8 = P+ By,
@ztz = Eéi + @zv + 51/2{&5 o@gv + @gv oés} = eée + @3\,

8



1/2 $ z® el/? i i ]
te {Zpg ebe/\ef(A)> (A)el] .Tpgzz(ZTA,ij/\ebeAerg)O@gv

£1/2 o
—Pgvo = Pg,Z(Zfo,ij A Epe N efm)}-

Let || - |lp,, be now the Sobolev H!-norm of elements of I'($,z) restricted to Z, with
metric gZ|Z,. Then there exist constants C > 0, C’ > 0 such that for any p € M,
P e ['(§,z) we have

| /Z (e o Bgv + Bpv o Bk, u) g o 1Zp| < Cligllpa, ClIRgvdlln 2 [l

where (-, -) 3., denotes the pointwise inner product which I'(§,z) has. The first estimate

comes from the fact that d, oPgv + Pgv oée is a first order differential operator on Z,
and the second comes from the fact that @ v is invertible. Since further ;55 is self-adjoint

and éf is nonnegative, finally we have
Doz 2 Bov + /2 BeoByy + Qv oBe} 2 (1 - £2°CC) Pl

We have thus shown the assertion concerning the spectrum. As for the equalities (2.1):
To simplify the description, let us assume € = 1. Set e"‘@:z =Y e thig; ®¢; € I"'($;Lz ®
$+‘) as usual (refer to the argument following (0.3)). Because of @2z@gz¢j/\/X; =
A Pazdi//Aj €T($2) and (Pyz¢i/\/ N5, Bgzbi/NAi) 2 = bji, we have

Te_(Byahe e-‘@iz) = 3 [ By Paryeti /5 0,26,V g, " (P)
= e Nt / (PrzPyzbs, Dgzdi) g ,dg” (P)
= 3 [ @uedyatsbi)g o7 (P) = Tev (Braiys e P57).
Thus the frst equality (2.1) was proved. Next let us prove the second one. We have
(2.4) Do = detrbo Pz odet(n?) ™! = Pz — S 1L def:;t" pyz(ed)
because (1.6) implies
/ <¢hzw,¢>$zdgz = [(S e AN oy o) 01, a2
= [ e AN VR (), cet(r) " m(8) g, dn”
-/ <n<w>,2phz (e (ANVEZ 4 det(n?) " n(6) g, dh?
= [t detn® 3 pys (AN T detn) ) g do”

9



2
Hence, using the above expression of Try (@hz@gz e_‘ﬁyz), we have

Te (nsPyr 7%57) = e [(9,20,(P), sy (Pl dg”(P)

Ze—c,\,/@g $:(P), ZTI def;tn gz(e§)¢j(P))$gzng(P)

= Ze_t)‘f/(@hz¢j(P),@gz¢j(P)>$gzdg (P)

+Ze_u,-/ Zn détd;tn Z(ez)@gz¢j(P),¢j(P))$gzng(P).

Thus we have proved the second equality. Last, as for the estimate (2.2): Assume ¢ =1

2
and remember the above expression of e"‘@yz . Then we have

Ten (B20nee™ P52 ) | < e | [ aats (P 2y205(Pl) g, o7 (P)

<> e 1Pz dsllza 1Bz dillie < D e” (CIA2 + con}”
<Y e/ < el Ze—e,\j/s = Oy eth/3 rn.+(e—(t/6)¢32)_

Thus (2.2) with € = 1 was proved. And, remembering the estimate Spec(ﬁgf) > Ao
for any € with 0 < € < €g, obviously we know that the above estimation holds also for
general €.

Before we give the proofs of the three assertions stated in the previous section, we
will make some preparatory arguments. Take a point P9 € Z. Though we have taken
a g2-SO(n + 2)-frame e.(A) around P° with no specific condition, now it is convenient
for the proofs to take such a frame in the following specific way. First fix e.(A)(P?) =
(e8(A)(PP),ef (P%)). Then let e.(A) = (e?(A),ef) be V9°®_parallel along the V9°9-
geodesics from P° and be equal to the fixed one. at P% and, ﬁlrther, let e*(A) =
(es,ef(A)) be its dual. Remark that ve'e (= vef ®) is compatible with the metric g%
so that e,(A) is certainly a g%-SO(n + 2)-frame. Note also that e®(A4) coincides with
the H-horizontal lift of the g™-SO(n)-frame €’ on a neighborhood U®(cC M) which
is VgM—paraIlel along the V—"M-geodesics from p® = 7(P°) and is equal to the given
e’(p%) at p°. Also take such a gV-SO(2)-frame on U/ (C Z,0) which coincides with
the given ef(P°) at P° and then spread it on a neighborhood U (C Z) by the the -
parallel displacement along the v -geodesics from p°. The frame on U thus obtained
is certainly equal to the above ef. Further, let us take the V9°®_normal coordinate
neighborhood (U = U x U7,z = (zb,zf)) with (8/0z) po = e.(A)(P?). Similarly to the

above, °(P) are v -normal coordinates of 7(P) and z/ (P) are VY-normal coordinates

10



of the image (€ Z,0) of the point P by the #-parallel displacement. Hence we have

e2 (%) = > (8/023) 5 - vii(z"), vhi(z®) = 85 + O(Iz*),
(2.5) . |
C(VI )iz, (&) = (ng el eh) = 0(z")), Aled) = O|z*)),

etc. Hereafter we will use the coordinates and the frames thus given and of course
the gZ-SO(n + 2)-frame e5(A4) = (e*(A),ef) = (e1/2eb(A),ef) and its dual er(A) =
(eve,ef(A)) = (e7Y2%ey,e7(A4)) (see (1.7)) are assumed to be defined by using such

frames. Now first let us show
Lemma 2.2. On the coordinate neighborhood (U, z), we have
(26) Dy = 3 0/05] - oz (€5(4)) + 30 /26/028 - py5el)
= S ST (0) oz (e (A) gz (eit gz (ei2) + O(la),
(2.7) é)hz = Za/aa:k Pgz ef A)) + 261/277;’1 6/6:1: pgz(ebe)
= S 0) 7 (0) 5T 152 (0) g7 (5 (A)) gz (el )z (62) + O(Jal).
Proof. Remark that V9" = V9" and V#' = VA", Referring to (2.3) we have
Bz = poz(ele) el/z{ef(A) + % > OV )ipia(€8) Pz (el )pgz (el2)
42 3 O i () o ¢ () €40
+ 3 oz (AN {el + 3 3 OV Vi (e]) oz (€5 (A))pz (52 (4)}
3 Thive oz (5 (ADpoz (it ngz (o).

Hence using (2.5) we obtain (2.6). Next, put C’(V"M)im(n(ef)) = (VY'I‘(IZ) (e fl),
n(efz)). Then we have

Prz —Zpg (ehe) €2 {m(e(A) + 1 57 GV Viaa (D) bz (ei2 iy ()
+3 ch‘f)km(n(e-m» paz (¢ (4))pgz (e (A)) }

+ 3 p el :A»{e,. £ T e () e (A (5141}
—_ZTA 1(€,)) poz (€5(A)) pgz (€32)pgz (€32)-

Hence using (1.2) and (2.5) we obtain (2.7).

Next let us consider the identification
(2.8) D($,21U ® §;2|U) = C=(U x U, AT, Z)

11



given by s(e5(A4))(z) ® s(es(4))*(2') - 8(z,2") & ((z,7), 5(€2(A))(0) ® s(ei(A))*(0) -
¢(z,2)) € Ux U x §zlpo ® Fyzlpo 3 ((z,2), pyz(el(A4)) & ((2,2'),el(A)(PP)). The
Clifford action pg‘z(eé(A)) acting on the left hand side can be expressed on the right

hand side as

(2.9) poz(€e(A)) = e(A) A —ec(A)V

and the operator @;zz’ pr given at (1.8) can be expressed on the right hand side as
(210) 9 —Zp £ (eh(A)) - €£(A)(P)

+7 Zpg Pz (€5 (A))0z (¢:(A)) - O(V# )(€5(A))ie,(P) with
p32(€i(A)) = O7(eL(A) A +€i(A)V)

2
Let us then regard the kernel e~tPsZ a5 an element of the right hand side of (2.8) and set
2 2
e'té)gez(m,a:’) = Y el (A)(PY)- (e"tagzz(z,:c'))], and moreover define its differentiations

as
2 2
2.11 6"6",/ -td Z aaaa -t@ z ’
(2.11) 20y e P (z,7') = E:e ( y (ZE,IL‘))I
’ - ' 2 2 1/2
2.12 ith xH “ta Zz / = a g —t@ z ’
( ) wi 0,07 e a(z:,a:)gz {E 828 (e s (z,m))] }
where o = (a®,0f) = (a'f, o, 0d, a{,a{) is a multi-index and we put 0% = (3/9z)* =

(8/8z%)°"(8/0z)* (8/61:1)"1- -(8/0zL)*n 0/61:1)"‘1(3/8:1:2)“2 etc. Then we have

2

Lemma 2.3 (The general adiabatic ezpansion theorem as to e~tPoz . {11, Theorems
1.2, 1.3 and the proof of Proposition 2.2 for E(t,€) with t small]).

(1) For any integer mg > 0, there exist C°-functions K(m/g)(t,Po,z‘, ') (m =
0,1,---,mg), K(("lo+1)/2)51/2)(t’ PO z,12’) belonging to the right hand side of (2.8), which
are also C* with respect to the variable P® (and €'/2), and satisfying the following
condition: For any o and o/, (2.11) with (z,z') = (0,0) has the series expansion

! 2 e b 7 Y ’
(2.13) 8202 e~ PaZ(P°, P0) = > e HaD2m2 52 % K 1 oy (8, PO)
m=0

— ab a/b ™
et N/ 2Hmot0/2 gagal f (2, P)

where we put |ab| = 3 ol etc. and 820% K(m/z)( , P%) etc. mean 82 Bx, Kim/y(t, Pz,
T')|g=zr—0 etc. Further, there exist constants A > 0, C > 0 and an integer N > 0

12



satisfying

t{n+2+]al+|a’])/2 + 1) !

e, )], < G-t
(2.14)

1
a 1/2 N
'5 0% K (mq 1)/2,61/2) (t: P )' <ot (t(n+2+laI+I0’I)/2 +eV)

(0<\7’£1/2§£é/2, 0<Vt<oo, VPP € Z).

And, if |a| + || < 2, then, given Ty > 0, we have the series expansion

(2.15) 8205 K(my2,)(t, P°) = (amt)( n+2)/‘2{ Z t' 0705 K2, (i : P°) + O(ti°+1)}
i=—dom
(Vig >0, 0<¥m<mo+1, 0<Ve/2<el? 0<Vt < Ty, VP € Z).
(2) The top term K(O)(t,PO,I,:E/) can be written as

(2.16) Ko (t, PO z,z') = Kp(t, P°, 2%, 2") exp(-—tAz)(:z:f,:z:'f) - det v’(z")

where we set

(2.17) Kp(t, PO, 2%, 2®) =

& det1/2< tRY"(p°)/2 )
(4nt)n/2 sinh (¢R9(p9)/2)

L

)

and exp(—t.A"’) , see (1.11) around, is here regarded as an element of the right hand side
of (AT M & (v IUI B $ov|UT)) = C=(UT x U/, AT} Z), and we have det v®(z”®) =
det(gM(8/02?, 6/61: )(2®) "2 = 14+ O(|z")?) (see (2.5)).

Here let us prove Proposition 1.1.
Proof of Proposition 1.1. (2.10), (2.13) and Lemma 2.2 imply the formal series

expansion

(2.18) @*z@hze't@:‘z('PO P%) =9,z pPnz, Pe—t@f"z(}D P p=pr=po
- zsm/ﬂng €he)Pyz (he) 714(0) (8/08)(8/ 033 K 2y (2, P°)
+ ™Y bz (el (A)pgz (he) 3i(0) (8/0 ) (8/025) K ) (8, P)
+Zem/22pgz<eb¢ Poz (€5(A))(8/072)(8/OTL) K im 2 (£, P°)
+3 ™S g (e (A))pyz (e5(4))(8/028)(8/02 L) K2y (2, P)
+ Ze””mﬂ Zpgg(ebe Poz (€ (A))pgz (€1t) Pz (€i)
4 (0) 77521-,,(0)(——1/ (Fagiie) ) (0) (8/02) K ms2) (£, P°)
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+ 0TS oy (e (A))pog () Pz (612)) gz (ele)

7%4(0) (—— v (Fags)) (0) (9/023) K2y £, P°)
+ Y PN ot (e (A))pgz (€F(A))pyz (e1k) Py
0 o>( T (F i) 0)0/02) Ky (2, P)
+ DN (g (8 (A))pyz (o3 )pez (612))" gz (€5 (4))

(-39 (P ,))(0) (8/0z]) Km2) (£, P°)
+Y0 IR (pa (e (A))pgz (e3t) Pz (€40))" Pyz (¢5 (A))pgz (e )pgz (e2)
O s (0) (=1 7 (Fag) ) O (= g7 (Fag)) (O) Ky (6 ).

z(ebs)

L4

Hence, observing (2.10), we know that (2.18) can be expanded as in (1.12). And (2.16)

implies further
(2.19) Dicaso)(t, P°: Pz /Byz) = —6" 3. € A eh Anfi(0) (9/02)(8/02) Koy (t, P°)

M M
. {coth - 1} e,,>(p)f<(o)(t,P).

1
="6A2—t €b‘7l

Thus we have obtained the formula (1.13).
Further, as for the coefficients in (1.12), Lemmata 2.2 and 2.3 say

Lemma 2.4.  For any integer mo = 0, put D((mg41)/2,61/2)(2, PY . Pnz/Pyz) =
PozPnz e"@ge (PO, P%) — 30 €™ 2 Diyyay(t, PO : @pz/Pyz). Then there exist con-
stants A > 0, C > 0 and an integer N > 0 satisfying

- _ 1
|D(m/2)(t, PO: ahz/@gz)lgz <Ce th t(l 6%)/2(W + 1) (m < mo),

1
0, 1/2 N
|Dimosiy/crin(t P Paz/,2) i S0t (g 1)

(2.20)

(0<Ve¥/2 < el? 0<Vt < o0, VP € Z).
Further, for given Ty > 0, we have the series expansion
(2.21) Dy, (t, PO @;,2/@92)
W{ Z £ Dz, (i 1 PUs Bz [By2) + O£ }

i=—8om

(Vig 20,0 <Vm<mo+1,0<Ve’?2 <e/?, 0<Vt < Ty, VP € Z).

As our last preparation let us investigate the pointwise trace tr+(p,z (e’ (4))).
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Lemma 2.5. We have

n o 2n/?
(2.22) tr:t(PgZ(e@(A))) =272, tri:(PgZ(e(l’ ’ +2)(A))) = i(ﬁm,
tri(pgz(eI(A))) = 0 (otherwise),
(2.23) Q=e, Py = > el(A)(P) - e~ 1D/ 2tr (p 2 (e (A)))
. on/2
— E—n/? 271/2 + (_\/%ng(P)

Proof. The first two equalities at (2.22) and the equality tri(pgz(eI(A))) =0 (J]]
is 0dd), and moreover try(p,z(e’(A))) = tr—(pyz(e'(A))) = (1/2) tr(pyz (e! (A))) (|| is

even and |I| < 2n) are all obvious. Hence we have only to prove
(2.24) tr(p,z(e'(4))) =0 (0< |I]=2m <n+2).

Take the standard frame (e!,---,e?") = (e;,Je1, - -,er, Jer) of R¥ where J is the
standard complex structure, and let us prove (2.24) for the standard Clifford action
p: Cl(R?T) = End(A*C"), i.e., p(e¥™!) = egA—eyV, p(e*) = /=1(esA+e,V) and hence
p(e¥0e?) = /=1(eg A etV — egVegN). Assume I = (217 — 1,241), -, (2im — 1, 2ipn))
I=(0G < -+ <im),0<m<r)andset (1,2,---,7) =IUJ with J = (j; <+ < Jrem).

Then we have
m
ple’) = (V=)™ [ [(es, A&V — €0,V i),
=1
IDK=(k <-- <kg), pleN)ex Aey = (V=1)™(=1)"Kleg A ey,

tr(p(e)) = (V=D)" ) (-1)™ ™ =0.

K
Thus (2.24) for such a type of I was proved. And it will obviously holds if I is not of
such a type.
Now let us prove Theorem 1.2.
Proof of Theorem 1.2. Let us set D(m/g)(t,PO) = D(m/g)(t,PO: Prz/Pyz), etc.
to simplify the description, and put Dimy2)(t, P°) = 30 e’ (A)(P°) - D(m/2)(t, P%) as in
(2.11). Then we have

225)  TeE (Dypy(t)) = /Z 6% (D (1, P)) dgZ (P)
= /Z S tra(pgz (el (A))) - V2 (Diguyoy (8, P°) ) €b(A) Axyzel(4)

= /Z Dimy2)(t, P’) A xgz Q% (e, P°)
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where trfgz(D(m/z)(t, PY%) mean the pointwise traces of Dm/2)(t, PY% regarded as an
element of F.z po ® $;;Z,P° and *,z is the star operator associated to the metric gZ.
Hence, setting Q¥ (e, P%) = 3 _,<po €/2 0% (€/2: P°) (see (2.23)), (1.12) and the above
give the formal series expansion

(2.26) Try (@;5@hge—t@:5> = 5 ™2 (D (£))

m=-2

00
= Z Em/g/ Z D(ml/g)(t,Po)/\*yth(mg/2:P0)
m=—(n+2) Z m=mi+m2 .

oG

= > e"‘/2/ZD(m/2:t,P°).

m=-(n+2)
Thus, observing (2.23), we find out that Try(@,z/@,z) can be expanded into (1.14)
(still not asymptotically but) formally. Further the first estimate at (1.17) and the
series expansion (1.18) imply that, for given ng > 0, if m < ng, then the function (to be
differentiated by s)

(2.27) f-(ls—) /Owdt . t’/ZD(m/2 . t, PY)

is absolutely integrable if Re(s) > n/2 + 1 and has a meromorphic extension to C (3 s)
which is analytic at s = 0. Hence, to finish the proof of the assertions concerning
Tr+(Pnz/Pyz), we have only to show that so is (2.27) with D(m/2 : ¢, P?) replaced by
the remainder term D((ng+1)/2,6/2 : ¢, P%) = tri‘z (@;gz;?hge"t@;z (PO, PO))dgf(PO) -
Z:‘n“:_(n +2) e™?D(m/2 : t, P%). To prove it let us now investigate the remainder term
for t large. That is, fix Ty > 0 and assume t > T;. Then there exists a constant

C = C(Tp) > 0 such that, for any t (> Tp), we have

< Ce ™2 et/

(228) (1es (95 0npe )

Actually (2.14) witha =o' =0 iniplies

im(e—ts?iz) =

2
/ e"aaez(Po, P AxyzQ%(e, PY)| < C'e7™/2N,
z

which, combined with (2.2), gives the estimate (2.28). Next let mg > 0 be the integer
appearing in (2.20). Then (2.28) and the first estimate at (2.20) imply

glmo+1)/2 / D((mo +1)/2,2 : 1, PY)
Z

2 mo
= ,I\f'ﬁ: (@;gzahfe‘tﬁgzz) - Z 5m/2/; D(m/2 . t, PO) < Cl E—(n+2)/2 e—“\o/4’
m=—(n+2)
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which, combined with the second estimate at (2.20), yields

(2.29) glmo+1)/2 / D((mo + 1)/2,6"2 : ¢, PY)
zZ

< Cy e (n+2)/4 j—tro/8 (mo+1)/4 tN/2 < Cy glmo—n—1)/4 e~ tro/9

Hence we may take mg > 0 so large that we have

(2.30) ‘/D((no +1)/2,€? 1 ¢, PO)} < Cyet/9,
z

Actually, since we have

/D((no +1)/2,e¥% ¢, PO = / Z (m=no=1)/2B(m/2 : t , P%)
z

m=ng+1

+eMo=m0)/2D((mq +1)/2,6Y/2 - ¢, PO)}

and (2.29) yields

< Oy elmo—2no—n-3)/4 g=tho/9

glmo=no)/2 / D((mq +1)/2,€¥/2 : t, P%)
4

we have only to take mg satisfying mg — 2ng — n — 3 > 0. The estimate (2.30) with ¢
large and the series expansion (2.21) with m = mg + 1 (and here mg = ng) now imply
the desired assertion about (2.27) for the remainder term.

Let us show the remained assertions concerning the difference (1.15). (1.15) is obvi-

ous. And (1.1) says
(2:31) Re(STr(Phz/P,z))
= -;-(Twh,z/ag,) T Gn 052)) — 5 (Te- Pz /P52) ~ Tx Brg 0,2))

d 1 ts ST&_(Z € 77( 1)(de Ui ) pggz(ezz) agez e—t@gzz) dt
0 i ‘

ds ls=0 20(s) detn?

and (2.6) implies

e/n(e )(detTl ) i —t3’z
Z det 17 pgg (ebe:) é’gtz € ge

Un(eb b . .
=23 %(0) e A {3 e A (8/025) Kyt P°)
+Zpgz<ef a/azi)K (0/2) (t PO)

+ Z( 8 AJLJz) )pgz(e’}(A)) el]>1 A e{)z A K(0/2)(t’ PO)} +
Thus the series expansion of (2.31) has no term with e™2 (m < 0).

17



Last, let us prove Corollary 1.3.

Proof of Corollary 1.3. We have né’u) = (g{‘{f)(ef,ej.))—lm = (E +uX)~Y2 where

E is the unit matrix (compare with (2.1)), which implies

d

1
32 | b =—X.
(252 Talao = ~3%

Hence, referring to (27) with h? replaced by gé) = w‘g?g) + gV, we have

‘ d » 1, i
(2.33) 0x,Pgz = @lwo 02, = —et/23" 5%i(0) 0/0x5pyz (eh)

: 1 i i
+22 S Xy 6zin + 50, Xjinin }(0) 1_6'T§,j1j2(0) paz(e5(A))pyz (€}l)pyz (e2)
+ O(|z]).-

Thus obviously Theorem 1.2 implies the corollary.
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Abstract. We investigate the adiabatic expansion of the super chiral anomaly . as-
sociated to the Bourguignon and Gauduchon sense infinitesimal deformation of Dirac
operator in the direction of a cross-section of the adjoint bundle. Further its top term

is explicitly described.

1 Introductionl

Let us assume that an even dimensional compact oriented Riemannian manifold

M = (M, gM) is equipped with a Spin? structure introduced in [11]
(1.1) E7: Pspint(n)(M) = Popin(n) (M) X2, Psp1y = Pson)(M) X Psos)

where Pgo(n) (M) (n = dim M) is the reduced structure bundle consisting of SO(n)-
frames of TM and Psdsy, Pspint(n)(M) are some principal bundles with structure groups
SO(3), Spinf(n) = Séin(n) xz, Sp(1), respectively. Remark that Psginn)(M), Psp)
are locally defined bundles. Then, using the canonical action of Spin?(n) or Sp(1) on

Spin?(n)/Spin(n) = Sp(1)/U(1) and the identification Sp(1)/U(1) = CP' through the

representation rg : Sp(l) = GL¢(H) = GLC(CQ) with ry(a 4+ j8) = (g _dﬁ ), we
get a CP!-fibration
(12) m:Z= PSp'm"(n)(M) Xcan CPI = PSp(l) Xcan CPI - M.
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Let us now take an Sp(1)-connection A of Fgy1), so that the twistor space Z possesses
a canonical Spin structure ([12], [13], [14]). Namely, the connection induces a splitting
of T'Z into horizontal and vertical components, TZ = H & V, with natural orientation
and with the metric g% = n*gM™ + gV (n*g™ = g%|H) where g¥ is a Riemannian metric
on V induced from the Fubini-Study one of CP!. Further we have the locally defined
spinor bundle J,m associated to Popin(n)(M) and a locally defined hermitian vector
bundle # = P.SP(U Xry H, Which together produce the globally defined vector bundle
T @ H = 7" Fm @ Fv = Fpzon Z ,b whose rank ié certainly equal to 24™Z_ Then,
the locally defined Clifford acﬁion pgm of CI(T* M, g™) on Bya, together with the action
pgv of Cl(V*,gY) on ;v induced from the fiberwise globally defined canonical Spin
structure, gives the globél_ly, defined action pgz of Ci(T*Z,g%) on Boz, e, pyz (7*&) =
7 0goe (69) ® 1 (6 € T"M) and pya(£r) = 7 pyu (ryae) ® pyv(E7) (65 € V*) where 1, is
the complex volume element of (M, g™). Thus (Z, g%) has a .ca.nonical Spin structure,
which givés the Dirac operaf.orﬁ(i) : I‘($(i)) — I‘($§f)). Note‘that the canonical
splittings fyu = B © Booe, By = H = FL @55 = {([v], v) e T HYo($5)* Where
($+ )* is the orthogonal complement induce the canonical one §z = $ zDfz.

- Concisely to state, the purpose of the paper is to mvestl-gate the adiabatic behav-
jor of the supe.r chiral anomaly assocjated to the Bourguignon and Gaudu-
chon sense infinitesimal deformation ¢ xg?gz of @,z in the direction of a cross-

section X of the (globally deﬁned) ad_]omt bundle 5p(PSp(1)) = Pgp1) Xad 5p(1)

4 [ eon o bena )

2 32
with the equality STr (ﬁgz ] xg?gz etz ) = —STr (5 XPgz Pygz e~ tPez )

(1.3) S-logdet (0x@,z) =

where we set STr(---) = Tr.,.(- ) = Tr_(---) and Trs(---) are the global traces of the
operator @,z Ox @,z e'tazz acting on 1"($ ). (The equality at the second line will be
obvious by describing e~ azz with the eigenvalues and the corresponding eigen-cross-
sections of @ .) First of a.ll it will be proper to explam here the operator dx @,z exactly.
To do so, let us take the curve a — hg = exp(aX) € I‘(Sp(PSp(l))) = F(Psp(l) xAdSp(l))
hence with X = (d/ da)la_gh Each hq gives a gauge transformatlon of the twistor
space Z (over the identity map on M), P = h, (P) = h ({ P)) = [ha(9), P]. Wi

have hence the pull-back metric hig?, which defines a Dirac operator Phsgz _'acting on
I'($hsg2)- In a naive sense the operator OxPgz is its differentiation by a at a = 0. But
such a differentiation is obviously impossible because the spinor bundle changes with the

parameter a. Here by applying the Bourguignon and Gauduchon's method ([4], [5]) let
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us make @. .z act on I'(F,z) so as to be possible. Consider the projection from the set
FH(TpZ) of positively oriented frames on TpZ to the set I(TpZ) of inner products on
TpZ, given by e — “ the inner product (-, -). which has e as an orthonormal frame”, has
a structure of (trivial) principal SO(n+2)-bundle. And the tangent space T.F'*(TpZ) =
gl(n + 2), (d/da)la=o(e - Ba) + (d/da)|a=0Ba, has a subspace He(F¥(TpZ)) & {B €
gl(n +2) | B = B} which is projected onto T\. .y I(TpZ) isomorphically. Clearly the
distribution e — H(FT(TpZ)) gives then a connection for the bundle, which induces
a parallel displacement nZ : Psomn+2)(Z)p = Pson+2)(Z, h:g?)p along the segment
from g,ZD to (hig?)p. Gathering such displacements we get the bundle isomorphism

nZ Pso(n+2)(Z) = Psom+2)(Z, h2g?), which induces the vector bundle isomorphism
(1.4) 07 TZ = (TZ,hqg?), nZ(le,v]) = lnZ(e),vl.

Now we take a local g%-SO(n + 2)-frame e = (e1,- -+, ent2) and its dual (e!, .- -, e™+?),

denote by V9% the Levi-Civita connection associated to the metric hzg? and set

(15) h‘ Z) Zpgz(e SZ(Ze";ﬂ : F($g2) — F($gz) with

gl 4 1 Z hag?) (VI DZ (e:,),mZ (e3,)) pyz(€?)pgz (€).

This is the desired one called the Bourguignon and Gauduchon sense deformation of @,z
and '

(1.6) 0xPgz = dia a=0{z?(h;gZ)
is the infinitesimally deformed one appearing at (1.3).

The concept of (super) chiral anomaly was of course introduced physically and in
(15] we formulated its mathematical definition according to its interpretation offered by
I.M. Singer ([16, Appendix]). Our investigation in the paper is an attempt to extract
some intrinsic values from the anomaly by such an operation as replacing g% by ¢Z =
e~ lr*gM + g¥ and taking the parameter € up to 0, that is, adiabatically blowing up the
metric in the base spa;ce direction (refer to (3], [17], [15]). For the latter metric we can
take canonically a Sp{nq structure with the same Pgp(sy as in (1.1) and whose twistor
space is equal to the one given at (1.2), and precisely we want to investigate the series

expansion of S-log det (§x@,z) when ¢ — 0 using the general adiabatic expansion theory
2

concerning the kernel etz ([14)).



2 The Main Theorems

First we want to state

Theorem 2.1. In the definition (1.3), the function to be differentiated by s, that is,
1 S 2 1 o0
L [ STe(9,26x8,2 e P57 ) dt, is absolutely integrabl _/ :
F(s)/; (@gz XPgz e "9 ) is absolutely integrable (i.e ) Jo tSTr(@gz

dt < o0) if Re(s) > (n + 2)/2 and has a meromorphic extension to C

6xyz e™tP57)

which ts analytic at s = 0. When €2 5 0 we have then a Tt aylor expansion

(2.1) S-logdet (9xP,2) = > €™? S-logdet (m/2 : 6xP,z).

m=0

Subsequently to some preparations we will describe the top term S-logdet (0/2 :
6x@,z) explicitly. -

We fix a point p® of M arbitrarily and take a local trivialization of Pgp;y over an open
neighborhood U® of p° by using a local cross-section ¢ with vg/arb¢ = 0 where 7 is the
distance function from p°, which gives a local trivialization 7 =!(U®) = U®x Z0 of Z with
Zy = n'(p°). Let us take a local coordinate neighborhood (U = U *xUf, z = (2, 2f))
at P € Z, as follows: (U®z®) is a gM-normal coordinate neighborhood at p° on
M with (8/8z%)(p°) = (8/0x8,---,8/3z5)(r°) € Psom)(M)pe and (U, zf) is a g¥-
normal coordinate one at P° on Z, with (0/0zF)(P%) € Pso(2)(Zpo) po. Further let
ef = (e{, eg) be a local g¥-SO(2)-frame of V|Z,0 which is g”-parallel along the geodesics
from PP and is equal to (8/0z/) at P°, and, for each generator %, j, k of the Lie algebra
sp(1), let v(i)! = 3" uk(i)el etc. be the uniquely determined cross-sections of V|Zy
defined as follows: For any connection B = 1 ® B® 4+ I® B9 4+ k® Bk, of Psy(1)
and for any v € T,0M, the B-horizontal lift of v to a point P € Z;o near P? can be
given by v(B)(P) = v — 2{BO(v) u(i)!(P) + BD(v) v(§)}(P) + B®(v) u(k)}(P)} =
v—2v(Bw)l =v -2 v5B(v)) e{ € Hp. Using these, for general sp(Pgpy))-valued
differential form F = i@ F® +j @ FU) + k@ F(*) we put V(F(p°) = uk(i)F(i)(pO) +
VE(§)FD (p0) + V5 (k)F) (p°). In particular, we often use v*(Fa), v¥(daX), v(Fa)t =
Zei ® v"(FA), etc., where Fj4 is the curvature 2-form of A and d4X is the covariant
exterior derivative of X by A.

Now let us set Z(p°) = M(p%) x Z,o with M(p°) = (R”,z°) (D (U®,z), canonically)
and consider the bundle AT*M (p°) on M(p°) and the standard spinor bundle §yv 0 =
BqvlZpo on (Zppo, g% = 9Y1Zy0). We denote by AT*M (p°) ®x §,v the tensor product



of their pull-backs to Z(p°), consider the bundle

(22) (AT* M%) ©r §,v) B (NT*M(2°) 95 §20)

over Z(p°) x Z(p%) (3 (P, P') = ((z*, PY), (2, P'f))) and take its cross-section
(2.3) E(t,p°, P,P') = Ep(t,7°, 2% ) exp(—tAio)(P, P

as follows: Let R%, .(p°) = g™ (F(V¥" )(8/02%,0/0x8)0/0x8 ,8/02% )(2°) be the cur-

vature coefficients of V9" at p°, and let us denote by RM(pY) = RgM(po)( %) the

slkew-symmetric matrix whose (i, j)-entries are equal to R;‘.’;(po) Rg %) (zb) =
M .
-Q-Zszilij(po) dz? (z°) A dzl (z%) and set <:cb|RgM(p°)’x’b> = iz}bej (%), etc.,

and now put

o1 thRY (p”)/2
(24) Kum(t,p% 2" 2") = (art)"/2 detl/é (sinh (tRyM(pO)/Q)>
. exp(—zlz<:rb—:c'blth 2(p0) coth th2(p0) lmb—xlb>+:11<l'bleM(Po) :I:'b>)
= (dz®)'(z%) - Ku(t, 0", 2%, 2°)1,
(28)  Eu(t,p%, 2", 2") = ) (") (e")A(d2’) (=" ® (dz”) (") - K (2, 2%, 2%, 2",
= 3(de") (=*) ® (") (=?) - Bua(t, %, 2, 5") 11

where the multi-index I is lined up in increasing order, ie., I = (i; < i3 < -+- < i11)

and (dz®)’ denotes dz? A---A dx,l ;- Next let ef = (e}, e%) be the dual of e/ and let us
take the Dirac operator @,v = pyv(e f)Vi"v acting on ['(§ v 0) and consider an elliptic

operator

(2.6) Al =1@ 0w - > v FA(pO))/\1®V —Zu (Fa(®))?

acting on the cross-sc?ctions of AT M ) 2§ gv» which generates a (C%) semi-group

with C*°-kernel E(d@?b)’(po) -exp(~tA%)(P/, P'7);. Then we set

(27) exp(—tA%)(P, P) =3 (dx)(P) (da")(P)® (de®) () -exp(~tA%)(PY, P,
= 37(d2)!(P) ® (da")(P') - exp(~tA%) (P, P 1.

(Strictly speaking we should distinguish (dz®)’(z*) and (dz®)/(P) = (7*(dz®)?)(P) but,

to simplify the description, we will use them without distinction.)



For two elements E1(P,Q) = Y. (dz®)/(P) ® (dz*)’(Q) - E1(P,Q);J, E ) Q,P') =
S (dz®)?(Q) ® (dx?®)!'(P') - Eo(Q, P') sy of (2.2), let us set

(28) (EI(P’ Q)r E2(Qr Pl))g(Po)(Q)
= _(dz")/(P) @ (dz")(P') - (Ex(P, Q)1s, B2(Q. P)ar)g ,

v.Q

which is an element of (2.2) at (P, P'). Here (E (P, Q)IJ,EQ(Q,P/)J11>$ L s the
9v.Q
pairing of the $v 5-component of E1(P,Q)ss and the § v o-component of E2(Q, P') s

and g(*°) is the metric given by
(29) ¢"(Q) =3 del(y") @ dzb(¥’) + Y e5(QF) ® ef(QF) = gy (v*) + 9V (Q7).
Then the second assertion is as follows.
Theorem 2.2. We set
(2.10) slogdet (8x,2)(t, P°) = /0 @ Z(pdg(” (Q) (chi(6xP,2) B(t—,5% P, Q),
chi(azz){<xb’Rgn;(‘po)(l-i-coth )Id:z: > Q) E(r,1°Q, PO)}>

= > (dz?)!(P°) ® (dz*)T(P®) ® (dzf)7 (PP) - s-log det (§xP,2)(¢, P")u,m
€ “(2.2) at (P°,P%)” = (AT M (%) ® AT, M (%)) ® ATpoZp0 @ C,

where the operators chi(6x@,z), etc. (acting at P = (zb, PT)) are given as follows:

(2.11) chi(ixPyz) = 3 vA(daX)E) A (f + 5 EaEIA),

gM

(212) chi(plz) = 3 Y ot ‘"‘““ %) dz, /\d:z:b/\{ﬂ-i- SR (00)A )
-2 AR A {1 5+ LA EN).

The value (2.10) does not depend on the choice of the coordinates T at P°, the double
integral is absolutely integrable and we have the formula ”

(2.13) S-logdet (0/2: 5X¢gz) - (7_?-_1)(114-2)/2

: .
x = /dtt /ng(PO)slogdet(ffx@g )t PO)((1,m) 0),(1,2)-

s=0 F

Here the above function to be differentiated by s is also absolutely integrable if Re(s) >
(n + 2)/2 and has a meromorphic extension to C (3 s) which is analytic at s = 0.



3 The general adiabatic expansion of e~tPyz

We put g = g®%, () = (,)g (see (2.8)), | -| = |- |g (the pointwise norm),
(P, P') = rg(P, P') (the distance between P and P’ with respect to the metric g) and
r(P) = (P, P%) to simplify the description. Let us start our argument with reviewing
the general adiabatic expansion theory ([14]) concerning the semi-group with C*°-kernel
e“@;z.

Let us consider a connection V9° = PYoV9° of V where PY : TZ = H@®V — V
is the projection. This together with the Levi-Civita one vt gives a new connection
V9°® = r* V9" V9" of TZ = H@V, which is compatible with gZ and whose torsion is
~ equal to 2v(F4)! ([14, Lemma 3.1]). Note that the coordinates z are the V9°®.normal
ones. Let us take then a local g2-SO(n + 2)-frame e.(A4) = (e?(A), e) which is V97&.
parallel along the V9°®-geodesics from P® and is equal to (8/0z) = ((8/0z?), (8/0z7))
at P? and let us denote its dual by e*(A) = (ep,ef(A)). Take a local gM-SO(n)-frame
e® which is V9" -parallel along the V-"M-geodesics from p° and is equal to (8/9z®) at 29,

hence, with
(3.1) e2(z?) =D (8/0z8)ps - vi(z?), vhi(z?) = b;: + O(I2*}?),

then its A-horizontal lift clearly coincides with e®(A), that is, we have e’(4) = e’ —
25 vk(A(e )ek = eb — 2(A(el))". We set v(Fa) = Zef(A ) A v¥(F4) and denote by

V$sz ® the spinor connection associated to V92®_ Then we have

(32) V§12)=v$b(i;“’+2pg (v(€3VFa)), Vfgz v’ ”’+2pg (V(Fa)),
63 Pyr =Y o) Vi + 3 a4 VT~ 2 o (u(FA)

where V denotes the interior product, hence, we have e,VF4 = Y Fa(e?, ?) e{;.
Now let us take the gEZ-SO(n + 2)-frames e5(A) = (e¥(A),ef) = (c'/2€°(A),ef),
*(A) = (ese, ef(A)) = (€71 %es,e5(A)) and consider the inclusion

€

(34)  T(Fzlm ' (U°) B Ezlln ™ (U")) € T((AT"U® @n $4v) B(AT™U® @ $v)).

That is, denoting by s(ef(A)) the local frame of §,z associated to e{(A), we have

s(e5(A))(P)Bs(e£(A))"(P)-¢ & s(e5(4)) (0%, P))Bs(eS(A))* (2%, P)-¢ = s(e*(4))(p°)

®s(e(A))*(p°)-s(ef)(PT)Rs(ef)" (P7)-¢ € C®(a= (UP) xm ™1 (U°), (Fp o ®F g 50) ®r
(B,v 0B85y 10)) 3 pou (el ) s(ef)(PH)Bs(ef)*(P7)-¢ & e (p°)-s(ef)(PT)Rs(e? )" (P)-



¢ = (da®)!(0) - s(e/)(PT) B s(e/)* (P)- e W2¢ & (dz®)! (2°) - s(ef ) (PT) R s(ef)" (P)-
712 (€ C=(UP, T((AT"U® @ $4v) B Fgv 1)) = L(dz®) (%) A (d2®) (%) ® (dab)?
() - s(ef)(Pf) ® s(ef)*(P) - e~111/2¢. Regarding e—t@iz as an element of the right
hand side of (3.4), i.e., e't@:ez(P, P') = Y (dzb)! (2%) ® (dz)7(2") - (e"‘ﬁzez(P, P’))

(compare with (2.5)), we set

I

(3.5) o205 e~ Po2(P P) = 3 (ds") (%) ® (dz®)!'(z") - 525% (o2, )

= (s ® s(N)e)(P) ® (e ® s(e ) ) () - 6505 (e-Pat(p, ) "
2 2 1/2
8285 —tag, (P, P’) { axaat;l’ —t@gez(P, P,) }
= (Sl (), |

r i

where we put 82 = ((9/(9:1:)"( ) = (8/8z")*"(z) (a/axf)a’(x) (8/8z8)*1 - .. (8/8z8)on
(6/6zf)°1 (6/8:32)"2 etc. Then we have

r

. ith
(3.6) wit o

ozoz (= Piz(p,P))

r

Proposition 3.1 (14, Theorem 1.2]). For any integer mo > 0, there exist C™-
cross-sections E™N(t, P°, P,P') (m = 0,1,---,mp) and E((m°“)/2"1/2)(t,P°,P, P
belonging to the right hand side of (3.4), which are also C*° with respect to the variable
P? (and €'/?), and satisfying the following condition: For any o and o, when /2 — 0,

(3.5) with (P, P') = (P% P°) has the series ezpansion

mp
(3.7) o20s e~ Po2(PO, PY) = 3 e~/ 24m/2 gage! glm/2) y po)
m=0
E_(lab|+lalb!)/2+(mo+l)/2 agasllE((m-{-l)/?,el/I) (t, PO)

where we put |o®] = 3 a? etc. and 20% E™/2(¢t, P°) etc. mean 820% E™/2(t, PO, P,
P'\|p=pr=¢ etc. Further, there ezist constants A > 0, C > 0 and an integer N > 0

satisfying
! . . 1
m/2) 0 —tA 1(1=80m)/2
- 8203 B/ (1, PY)| < Cemt t=bon/2 (o 1),
: ' 1)/2, 1/2 0 1/2 1 N
6,‘,_.’62‘, E((mo+1)/2e )(t’P )’ <Ct (t(n+2+|al+|a'|)/2 +t )

(0<V¥m <mg, 0<Ve/2<el/?, 0 <Vt < oo, VPO € Z).

Next let us examine the terms E(™/D(t, P°, P, P') closely. We take a metric g ®°) on
M(p°) (D U?) so that its restriction to U? is equal to g™, outside some open set U® (D



U®) it is trivial, and, moreover, the coordinates z® are the ¢™(P*)-normal ones all over
M(p°). Also we will take a connection A of M(p%) x Sp(1) (D U® x Sp(1) = Psp(l)lUb)
which coincides with the given one on U® and vanishes outside U®. Consequently we

have the trivial Spin? structure and the trivial CP!-fibration

Z9(p°) : Papint(n)(M (")) = Pspinm) (M (2°)) Xz, Psp1y(M ("))
(3.9) = Pso(my(M(p°), gM%) x Pgow (M),
71'(po) : Z(po) = PSpinq(n)(M(pO)) Xcan (CPI = M(po) x Zp° - M(po)

which coincide with (1.1), (1.2) on U?. Take then another metric gZ®°) = 7 (p0)*gM®°) +
g¥ on Z(p®) (compare with (2.9)) and let us use the same symbols.as for Z, i.e., denote
by e.(A) = (e?(A), ef), etc. “ alocal g2*°)-SO(n + 2)-frame over M (°) x U which is
ng(PO)@-parallel along the ng(i’o)@-geodesics from P° and is equal to (9/0z) at P°,

etc. We consider further the transformation of Z(p%)

(3.10) e Z(P") = 2%, P= (mb’Pf) — 1e(P) = (e/2z? pf)
and set
(3.11) e(e, i A) = Lel(A) = (ei(e, ¢ A),---) = (', £ A), &f),
hence, with ef(s,z,;A)(P) = (12e%(A))(P)
=Z(6/5‘az§)p~v§i —61/2221/ (A(e )ek P),
. . . . Z(P) (Po) =
which is a local SO(n+2)-frame with respect to the metric ¢%gs = T qL20e +g¥ =

Yei(e) ®ej(e) + ef(e 1A ® ef(e t:A). We have now the (globally defined) elhptlc
differential operator acting on the cross-sections of AT* M (p°) ®x §,v gV

) () (e) (e)
(3.12) (@(E)) == Z(V e, A)ve‘(e wA) v 2,279
V: (‘z L A) e,(s )

+ %{EKQM(,,O) +2- S A (Faleh ) o)) with
P (ey) = da? A —edz}v, p(eF(A)) = p 260 (e5(4)),

2 My iLy (€) ( iz
V) o = e + = Yo ) (€0)izt, (2e() 91 (€10 (€2)
+e2(ef + 0(V° )(“3{)12)1/2(/4(5‘ D)) P (e} (A) A €} (4))

1/2 %
+—2—pf><u<evaA>>< ) (V5 e, = 300 el e, ete),

V) = f = 2012 PEHA) A HA) + 5 PO FL) )



where Rom(p0) 1S the scalar curvature of g™} and we put p(E)(U(GZVFA))(LE(~)) =
YR (Fa(el, €))(ee(+) o) (e5(A) A €)), etc. Note that this is the pull-back of the
square of the Dirac operator @_gz(po) by the bundle isomorphism AT M (p°) @ By =
AT*M(p°) ®x B,v, (dz®)! (z)® h(z) — (eY/%ep(g))  (z)® h(z) (see (3.2), (3.3) and (14,
5
(2.26)]). Hence, if we write (3.12) as — > aﬁmiaﬁ(e,m) ;9—5 + Zai(s,m)% + c(e, z)
(aij = aj;) and fix the parameter € > 0, then the finite-times derivatives of the coef-
ficients a;;(€, x), ai(e, z), c(e, z) are all bounded on Z(p®). The Yosida’s theorem ([18,

Chapter IX]) says now that the parabolic equation with the initial condition
3} -
(3.13) (E + (@M)?)w =0, Yl=o =0 € L’TIANT"M(p°) @< 8,v, 9)
has a (C?) semi-group with C*-kernel E(‘)(t,po, P, P"), which is a cross-section of (2.2).

Proposition 3.2 ({14, Theorem 1.3, Corollary 2.3 and the proof of Proposition 2.2
for E(t,€) with t small]). When e}/? — 0, the kernel has a Taylor ezpansion

[ o]
(3.14) E©@,p° P, P) =Y ™ E™)(t,p° P, P)
m=0
(3.15) with EQ/%)(t % P, P) = E(t,7°, P, P')

and, as for EU™/?) in Proposition 3.1, we may take
(3.16) E™/2 ¢ PO P, P = E™/2) (¢, p° P, P') det v’ (P)

where we set det v®(P') = det vb(z") = det(gM(a/axf,8/8:5?)(:1:"’))"1/2 =1+ O(|z"?)
(see (3.1)). For given integer mg > 0, E("‘/Z)(t,pO,P, P (0 < m < myg) and the
remainder term E((’"OH)/?:EW)(&PO, P P = 6'(m°+1)/2{E(6)(t,p0, P,P) -y o ™2
E™/2)(¢ pO P, P')} have the asymptotic ezpansions, when t — 0, .

~r(P,P)2/at FO(Um21)
EEM/Z) (5. g0 P P') with

~(m+2)/3%i

€

(m/2:) 7y 0 =
(317) E (typ 1P) Pl) - (47rt)(n+2)/2

1::20,

< Crmg(L+7(P))™ (147 (P

| B 1, P P) PP i<
! y . ]

agagllE(m/Qp)(t’pO’ P, Pl)l
< Cmo (1+T(P))m(1_+_,r(PI))n+mt—(n+2+|a|+la’])/2+(1-60,,.)/2 e—'I‘(P,P’)z/St

(0<Vm<mo+1,0<Ve’2<el?, 0<Vt < Ty, YP,YP € Z(p"))

where we set E(™%) = E/%) (m < mg) and E((met1)/2) = E((mot+1)/2:e1/%),

10



Here let us investigate E(/%)(¢,p°, P, P} closely.

Lemma 3.3. (3.12) has the Taylor ezpansion

(3.18) (@©)? Zsm/z 2y(m/2)
m>0
with
3 2)(0/2) RS SN LI
(3.19) (") ——Z{@q}: SR} + A,
gM
(3.20) ()02 = {2 S ahah, ””‘“(za)dxi’mdmfw

' —P(o)(v(eEVFA))( () }{6 b+ beRgM }
— ST gt 9 A(po)/\{1®v$v+ ~UK(F (po))/\}

Proof. Set R% = R%" p°), etc. and refer to (3.12). We have
. 7t 71

(3.21) V9. .4 Zsm/?vﬁ"‘/zi), Vi = v (i < ), v =9IV with
m>0
v/ = 5 T a Z:c REA, VM) = 1®v$" VE(FA)A,
(1/2 0 1g211111 3 (0)
b'!. _. 12 ijl ]2 d‘r /\dIL' /\ +2 p (U(ebVFA))( ( ))
aRg, y 1 ;
o S o, T b e+ g ({elV ) (o),
aF
V(1/2 _Z b k( A
and
2( )
Vi, " yele,cA) =Y C(v4 297 (€ e, 12 A)) el (e, L A)
)
251/20 VgM(P )(e )]1(1’5( ) ej(E; teA),
2
V:,g‘ p Vg ek ZC Vg )k'k ei,,
k
M(p%)
(3.22) v o =Y 20V ) () jilee() v%’m .4y = O,
v <ge eb(euz A)
ez a) Bi\Ete .
v
(323 VY L0 =3OV )l VY
Lty ? ek k’

k

11



and
394 1 9 — g2 K(F, (&b ab))2 = 1o
(3.24) e gm0 + 2= 3 A (Faleh, ) Hue() = 5 + O(2).
Hence, certainly we have the Taylor expansion (3.18) and the formula (3.19). (3.21)
implies
(@2)(1/2:) - _ Z(V(I/Z)V(O/Z) + v(0/2:)v(1/2 ) + ZC, Vg 1/2)
2:) 5 (0/2: :
= -2y v/HvER o Lsg {u" YA+ (v ek,)kk,v‘ff,{“
- —9 Z o (1/2) 7 (0/2)
which yields (3.20).
Let us consider then the Fréchet space consisting of rapidly decreasing cross-sections
(3.25) S={yp eTAT"M®:8v) | lim |(1+7(P))!8°¢(P)| = 0 ("¢," )}
T(P)—o0

with semi-norms pyx(¥) =  sup |(1+7‘(P))l5°¢(P)|
PeZ(p%),Jal <2k

and the parabolic equation with the initial condition
O L (902 y — _
(3.26) (55 + @) $=0, gloo =0 € 5.

Proposition 3.4 ({14, Lemmata 5.2, 5.3/).

(1) Set pQw) = sup |(1+r(P)((P*)*))¥'(P)|. Then the two kinds of
PeZ(p®) K<k

families of semi-norms {pg),Z} and {py} are equivalent to each other.
(2) {E(t,0°)}o<t<eo defines an equicontinuous (C°) semi-group with C™-kernel

assoctated to the parabolic equation (3.26). Hence, in particular, we have
(0/2:) =
(3.27) (at (°) )E(t %, P,P') =0,

and, for any Ty > 0 and any semi-norm pyx, there exists a constant C > 0 and a

semi-norm pyp g satisfying
(3.28) pes(E(t, PV —9) S CtVpep(¥) (0<VE<To, VY ES).
Now we havé
Proposition 3.5. We have
(3.29) EW2) (¢ 00 P, P
= [ar [ _dal@) (B Q=7 P.Q), PV B(r 5,0, )

Here the double integral on the right hand side is absolutely integrable.

12



Remark. Similarly to the following proof, we can show that generally we have

E(m/?:)<t’p0’P’ Pl)

ma<m

= — t —7r Y 2\(m1/2:) pr(m2/2:) 0 ’
/Odv—/z(pg)g@)w(t L% PQ), 3 (BRI ) (1 19 0, PY).

mi+me=m
But the double integral on the right hand side may not be absolutely integrable.

Proof. We abbreviate E(t,p° P, P') to E(t, P, P’). The right hand side denoted
E(t, P, P’) is absolutely integrable and there exists a constant C > 0 satisfying

630 [ewp P s [ar [ do(@ |-, Q)0 B Q,PY)
) .

< Ct=(mHA/24Y2-T(PPVTE (g <yt < Ty, VP,VP € Z(p?)).
‘Actually, observing (3.17) and (3.20), we have

) [ dol@)|(E -7 P.Q) )YV ERQ )

(%)
< [ 4@ ]EC~7.PQL@)EC Q. P)
<G :1 +r(P)N)(t - 7)=(n+2)/2,~(n+2)/2-1/2
dg(Q) (1 + r(Q)N)e~T(PR/5(t=7) o ~T(Q.P")?/57
Z(p°)
< Co (1 + r(P)N)(t = 1)~ (422~ (n42)/2-1/2
dg(Q) (1 + r(Q, P)V)e~T(PQI*/5(t=7)=T(Q,P)?/57
Z(p®
<C3(1+ T(Pl)wv(;;()t - 7—)—("+2)/2T-(n+2)/2_1/2
dg(Q) (1+ TN/z)e""(P-Q)z/S(t—r)e_r(Q'Pz)z/GT
Z(p°) '
< Cy (1 + (PN (t = 7)~(n+D/ 2= (n+2)/2-1/2
dg(Q) e~T(PQ?/6(t=T)=T(Q.P')? /67
Z(p°)

and

(3.32) / télzf(t—f)"("“)/ 2.-(42)/2-1/2 [ 3g(Q) e~ T(PRI/6(t=m)=T(Q.P)? /67
‘ | 26°) |
: t/2
< Cl t—(n+2)/2e—1'(P,pl)2/7t/ dr T..(n+3)/2
0
dg(Q) e~ TP =TI T@.PV/1r
Z(p%)

t/2
<C t—(n+2)/2€—7‘(P,P')2/7t/ /dT T—(n+3)/2/ dg(Q) 6-r(Q,P’)2/7r
B 0 Z(p°)
< Cy t_(n+2)/2+1/28—r(P’Pl)2/“,
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t
(333) / dr (t__T)—(n+2)/27_—(n+2)/2—1/2/ dg(Q) e—T(P,Q)z/G(t—T)—T(Q,P’)z/ﬁT
t/2 Z(p%)

t/2
://d,r,r-—(n+2)/2<t_T)—(n+2)/2—1/2
g

dg(Q) g"r(PyQ)2/6T—1‘(Q,p/)2/6(t_7)

Z(p°)

t/2

< ) - (nHD/2-1/2 =T (P Te / Y, / dg(Q) e~/
0 Z (%)

< Oyt~ (/2412 =T(PP)/ Tt

It will now suffice for the proof of the proposition to show that, for any ¢ € S, we have
(3.34) dg(P') (EM/*)(¢, P, P'),o(P")) = / dg(P") (€(t, P, P'), 0(P")).
Z(p°) Z2(p°)
(Remark that the both hand sides are absolutely integrable because of (3.30) and (3.17)
with m = 1, a = o = 0.) To show it, we want to prove the following assertion: The
left hand side (EY/2)()0)(P) and the right hand side (£(t)p)(P) are both of class C®
with respect to P, (at least) of class C* with respect to ¢ and satisfy
o . . .
(55 + @) (BY2) (0)0)(P) + (#) ) (E(t)e)(P) = 0,

(2 + @) E)(P) + (@)D (E@)(P) =,

(3.35)

and, for any Ty > 0 and any semi-norm pgx (at (3.25)), there exists a constant C > 0

and a semi-norm py 4 satisfying

(3.36) Dex(EY B (1)) < tCpp i (), Pex(E(t)p) < tC pep ()
(0 <Vt < Tp, Yy €S).

Assume that this holds and take ¢ € S. Then ¥ = (E(/%)(t) — £(t))p € S is a solution
of (3.26) with 99 = 0. Hence we have ¢ = 0 because of Proposition 3.4 (2). That is,
we obtain the formula (3.34). Accordingly let us prove the above assertion. First, as
for the assertion for (E(t)tp)(P): Since '(E(t—’r, P,Q), (%)Y E(r,Q, P'),(p(P’)))‘ is
integrable on (0,t] x Z(p°) x Z(p%) (3 (7,Q, P’)) (see (3.30), etc.), one may reverse the
order of the integrals of (£(t)y)(P). Hence we may put

o(r,Q) = (P VPEMe)Q) = | dg(P)((#") V¥ E(r,Q, P), o(P)),

zZ(p°)

Bt 7, P) = (E(t-7)p(1)(P), (E(t)e)(P) = — /0 dr §(t,7, P).
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Clearly ¢(7) and ¢(¢, 7) belong to S and (3.20), (3.28) imply
(3.37) Pei(@(t, 7)) < C1pey ey (P(T)) < CaPag e (E(T)0) < C3 gy s (0)-

Hence we obtain the second inequality in (3.36). Further (3.37) implies

B39 GNP =~ [ ar @)Dt P,
Q
(3.39)  1(0/08)(t,7, P)| = |(@) /P g(t,m, P)| < Capruali) (0<Vr<t).
Set ¢(t,t, P) = ¢(t, P). Then the function ¢(t, 7, P) of T is continuous on [§,¢] (§ > 0)
and has the estimate (3.39). Hence we have
t é
(3.40) (8/8t)(E()o)(P) = (8/08){ - /6 dr $(t, 7, P) - /O dr 4(¢,7,P)}
t é
= {-s(.e.P) - [ar (/o007 P)} = [ i (0/0000(t,7, P)

= —¢(t,t, P) — /0 :i'r (8/6t)¢(t, T, P),

which shows that (€(t)p)(P) is of class C* with respect to ¢t and, combined with (3.27)
and (3.38), implies the second equality in (3.35). Second, as for the assertion for
(EY/2)(4)p)(P): The first equality in (3.35) will be obvious. Let us show the first
inequality in (3.36) in the following. >By observing (3.17), the inequality with £ =k =0
holds obviously. As for the inequality with k& = 0, we have

|1+ r(PYUEYD 1)) (P)| < |(BY2 &)1+ 7())(P)|

+ (L4 r(P)Y BV (1)) (P) - (BW2 (1)1 + 7())p)(P)|
and the second term on the right hand side can be estimated as

Vdg(P’) (L+r(P)’ = (1+r(PNHEV>)(t, P, P'),ip(P’))I

£1>0
<aiy [ dg(P)|(r(P)=r(P)E(1+r(P)) BVt P, P)| |o(P)

H+l=

< 022/@(13/)

< CsZ/dg(P').r(P, P’)l‘(l+r(P))(1+r(P'))lz+n+1
.t—(n+2)/2+1/2e—r(P,P')2/5t I‘P(Pl)l (by (3.17))

r(P, P/)ll(1+T(P/))£2E(1/21)(tyip,P,)‘ I(p(p’)l

£ >0
< C4 Z /dg(P,) T(P, p)l1(1+r(Pl))£2+n+1 15-—('n+2)/2+1/26—'!‘(}’,}3')2/& I(P(P’)I
4 +Ea=L+1
< tCspnp(p)
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Thus the inequality with & = 0 holds. Last, consider the series expansion of (3(®)2 E(€) =
E©) (32 with respect to /2. We have

(@) /¥ E(t) = E(t)(9*)°),

(P BU(E) = EV(e)(81 ) + B> - (9 B ()
= BUY/2(e)(@) ) - (@), E(e) - 1

and inductively we have
(3.41) (9?07 B2 (1) = EMB) (8)((9%)VP)* + Py (E(t) - 1) Qo

where Py and Qg are some polynomials consisting of (3%)(™/%) (m = 0,1). Hence

Proposition 3.4 (1), (3.36) with k = 0 and (3.28) imply the general inequality.

4 The local expression of the operator adia(@,z0x@,z)

If we denote by {u;} and {¢;} the spectrum consisting of eigenvalues and the corre-

sponding orthonormal eigen-cross-sections of @iz acting on F($;§)), we have

(1) STr (agf‘s)‘@af ft@jg) =2 e S’n(@gﬁx@gf p;(P)& %‘(P'))
= - et STr(axagg 0;(P)® agggoj(zy)) = —S'I‘r(@;‘z 50,z P32 )

where, as an operator acting on the left hand side of (3.4), @;ez is given as

(42) By = pa(ei(4)) - eE(A)(P)
£33 0 (e (A)) P (el ()63 (€h(4)) - C(TF) (e (A))izy (P') with
072 (e (A) ((e£)(P) B s(e€)" (P')) = s(e5)(P) B s(€5)" (P') (—pyz (€1 (A))).

We will investigate (4.1) by examining STr (@;‘z 6xPqz 6_t¢:xz ) in the following because
the iatter has the merit that for each parameter only a first order differential at the most
appears. Since we want to expand it into a series (see (5.1) and (5.2)) by using the series
expansion (3.7), in the section we will explicitly write down the operator adia(@;z0x#,2)
which is defined as follows: Express the operator @;,Z dx @,z acting on the right hand side
of (3.4) by using the coordinates = on U at P?, replace the differentials 8/8z?, 8/63:{
at P by e~1/29/0z?, 6/6m£ (at P) and feplace the differentials 8/0z?, 0/6:2{ at P’ by
e71/25/02?, 8/} (at P').

Let our argument start with studying the operator dx@,z acting on I'($,z) (compare

with (3.3)).
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Lemma 4.1. We denote by na = (14,i;) the matriz expression of (1.4) with respect
to the g%-SO(n + 2)-frame e.(A), i.e., nZ(e.(A)) = en(A) - 1a. Then we have n, =
d
((h2g%)(ei(A),e;(A)))~? and, if we set 7 = (1ij) = Tal_ome then we have

(4.3) Nij = Tntkptk =0, Tnikj = Njntk = —Vk(V%X) (1<4,j<n)
where VA = d + (A, ] is the covariant derivative for the bundle sp(Psp1))-

Proof. Let us consider a segment t — gaZ,P(t) = (1 - t)gZ + t(htg?)p in I(Tp2)
and a curve ¢ 1Z(t)(eu(4)) = ea(4) - (9Zp(t)(ei(A), &3(4))) ™2 in F+(TpZ). Then
nZ(t)(e.(A)) is a gap(t) -SO(n + 2)-frame and, moreover, nZ (t)(e.(A))/dt belongs to
Hoz(t)e.a)(FT(TpZ)) ((4], [5]). Hence we have n, = ((h397)(ei(A4),€;(4)))" 2. In
general a gauge transformation (I'(Sp(Psp1))) 3) h 1 Z = Z gives a bundle isomorphism

(4.4) he TZ=Ha®V ZTZ=Hpa®V
e (A)(P), el(P) = el(h A)(A(P)), el (h(P))

and we have ef(h.A) = e2(A4) — 23 vF((h A — A)(el)) ei at h(P). Therefore we have

(h*g%)(X(A), e2(A)) = g7 (e} (h. A), e2(h. A))
=0 +4Y  UF((had — A)())VF((had — A)(eD)),
(h*9%)(b(A),ef) = g%(b(h.A),e]) = =25 v¥((h. A - A)(e))),

(h'g Z)(ek,e#) g (ei’e{l) = Qppr

and certa.inly we have (8/6a)|u=o(ha,A - A)rr(ha(P)) = (B/Oa)[azo(ha,.A - A),r(p) =
—daX € Q' (sp(Psp(1)))- The lemma was thus proved.
Denoting by A4 the covariant Laplacian, i.e., A X = =) (vj,,vg,, - VgMCb)X, we
£d i b~

3

know
Lemma 4.2. We have

(4.5) 5X¢gz_ > pgz(W(V] bX) Zpgz(l/ dAX))V

+ 5 pyz (U(AAX) ~ 5 KdaX) A u"(FA) ~ > HVAX) A z/(ebVFA)) .

Bz

Proof. We refer to [4], [5]. Set 7%(e;(A)) = (8/0a)|a=0nZ(ei(A)) = T e;(A) - 1.
Then (1.5) and (1.6) imply

) ; $ ha
5l D P AN Vol + (vPt- v$gz)ng(e(m))}
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(4.6) 0xPyz =



; $z z.ha
=Zpgz(e (A)V A))+0a| Zpg ‘(A)) Uaaz(V‘g h v$ )e,.m)

i 3 $ ha
= Zpgz (e (A) Z(c T Zpg aa a=0 e‘(i)
And (3.2), (4.3) imply
o%s 8,
(47) 3 poa () V20 = = DV (VA0 {pp2(e5(4) VIZZ, + 02 () V*’ZZ}
B,z

= - > p((V4X) )v,,(A > pyz(v dAX))V
== Z sz(V(VgA? ’Sb'(i@ Z pgz(V(daX)) $ z®
~ 5 Y pe (UVAX)) oz (VL)) ~ 5 3 pya (v dAX»pgz( (Fa))
= = Y e VAN VLT = T (a3 757
_1 pgz(}: u"(dAX) AVH(Fa) + Y v(VAX) A V(ebVFA)
-2 Z evaA))

Further, let us regard 7% € T'(End(T'Z)) as a symmetric 2-tensor, i.e.,

(48) 77 =) (A @A) ==Y {u"(dAX) ® ek(A) + e5(4) ® u"(dAX)} .

Then we have

(4.9) Zpgz(e"(fi))ia_0 f(i)a

= Zpgz(ei( Z{ Vej(A)ﬁ )(ej(A)y ei(A)) + (VZjZ(A)ﬁZ)(ei(A)»ej(A))}

= :‘]):-pgz (V(AAX) - 2Zu"(Vf§,X) V"(e};VFA)) .

Thus we obtain (4.5).
Now let us write down adia(;}?;‘z dx{Pyz) explicitly. Through the canonical identifica-

tion
(4.10) Bz ®@Fz (25,20 $;‘z) =2=ANT"ZQC,

the Clifford action pgz(e'?") acting on ¢;(P) at (4.1) and the one pgz(e’?':) acting on
w;i(P') (i.e. ) Py Z( %) at (4.2)) induce the actions on the right hand side of (4.10)

(4.11) pgg(efe) = e~V A —e/2dzlv, p;‘z(e?‘) = 9™ 2%dz? A +eY/2dzbv)
with 8*w = (-1)?w for w € APT*Z QC.
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Lemma 4.3. We have

10
(4.12) adia(@;z 0xPyz) = Y €™ *adia(@}20xPyz : m/2) + O(r(P)) + O(r(P"))
m=—1

:5—1/2{ 0> ded A vF(daX) A aalb(66f+ SV (F A )}(po)
5 8
=37 5 (et (4)) v (daX) A (;-,7 + % uk’(FA)A) (% + % AEDN) }(P)

Tk

+s°/2{-9Adef,Apg (M(V4X))

+OEY?) + Or(P)) + O(r(P))

Proof. Let us describe a.dia.(@;‘z), adia(dx@yz) clearly. Referring to (3.3) and (4.11),

we have
bz = Y ) Vo + o (HAN V"~ L ppuira)
=Zpgz (eho) 2 {eb(4) + 3 S C(v >i,i1<ei)pg,z(ez:>pg,z(e;;§>
+ 7 S0 O ek, (e2(4)) pyz (e ’"(A»pgz@'"(A))}
+Zpgz<ef el + 3 30 COT Yeuka () pyz (e (A) pyz(e2(4)) }
'Z Pz (€5(A))pyz (eit) pyz (ei2) ¥/ vF (Fa(el, €b,))
—sl/ﬁng (€he) 0/0zt + 3 pyz(ef(A)) 0/0x]
-swz Pz (€5(A)) pyz(est) poz (ei2) VA (Falel,, €h,)) + O(r(P')),
Bz pr =€V piz(eh,)0/0zt + Y plz(ef(A)) 8/0a]
2 g (e2) A el 35 (5(A)) VA (Faleh b)) + O (P))
= 50" (dz? A +6¥2dztV) 8/0x + Y pz(e5(A)) 8/0zL + Z 1 (dz?, A
+e¥2dzd,v)(dz?, A +e¥2dal V) p)z (e (A)) V¥ (Falel,, eb)) + O(r(P"))

and, hence, we have

(4.13) adia(P;7) =€ /20" ) _dzi A 0/0z
+ 7 e e5(A)) (8/05 + 3 (Fa)A) + O(E¥%) + O(r(P).

Next, referring to the above calculation and (4.5), we have
$ z@® $ z®
5X¢gtz = - Z pgzz (e}fc‘(A)) Vk(vﬁfcx bg:(A) Z ng(CbE k(V ) g'
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1 e »
+_pg§(ze§( 22K (A LX) - Ze 2/\e;§§yk(vfng) (Fa(el, ef))
= SO B (A) A € (A) A e, VU TAX) 1V Fafele, €)))
= pyz(ek(A 52/2uk(\7;‘},X) a/amf DN FICS, 51/2u’°(ng) 8/0x!
1
+§Pg3(ze'}( M (AX) =D e neR N —uk(VjZ; ) VE(Fa(els, b))
~Sehia) /\efz(A) &, VM (VA X) V2 (Fy (el ) ) + O(r(P))
= =23 p,z(V(V4X))8/03} —Zz/"(dAX)a/c')mk
+52/2Zd;r Vv (V X) 3/3$k +e¥/? §PgZ(V(AAX -5 ZV (daX)v* (FA)
+ Ez/zz Z(dmg’l/\ dzd v dz? A +dzd V dad A dzd A
+daf, A dzl, A dzl,V) (T X) v (Falely, eh)
1
._.64/2:1- Z(dl’flv dl','qv dmi3A +d:t:,~lV dxiz/\ d:rfav
+daf, ndal, v dal V) (T X) vF(Falel, o)
1
R DAL A A Vk(V:}lX) V¥ (Fa(er,el,))
1
€25 D pyz(ef (A) N et (A)) doh A T AX) v (Fa(el, o))
+54/’§ S pyz(el(4) A €82(4)) dabv oM (VAX) 2 (Falel, o) + O(r(P)
and, hence, we have

(4.14) adia(6xP,z) = — Z AdaX) A (0/0z] + %uk(FA)A)
—e 2> " pa(v X )) 8/8z8 + O(e¥?) + O(r(P)).

(4.13) and (4.14) then imply (4.12).

5 The' proofs of Theorems 2.1, 2.2

As is well-known, the pointwise super trace str(pgg(eI(A))) = tr+(pg¢z(eI(A))) -
tr;(pgg(eI(A))) is equal to (2/v=1)™+2/2if I = (1,---,n + 2) and equal to 0 if I #
(1,-+,n + 2) (see (15, Lemma 2.5]). Hence we have

( o20x Pz " 3:) = —S’I‘r(@;z6x¢gz e-‘@iz) (see (4.1))
(_\/_z (n+2)/2/¢ zéxs?gze tagg(Po P°)

(= —(\/—2_— (n+2 /ng(PO) Poz0xPgz €™ Pz (P, PO))

(5.1)

max
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where we regard @;5 OxPyz e—t@ch(Po,Po) as an element of the right hand side of
(4.10) and dgZ(P°) (@;5 0xPyz e~t07 (PO, P"))max is its term with degree n + 2. Note
that (d.’lﬁf>(l’2)(P0)<@;ez 6xPgz 0oz (PO,PO))ma* is equal to the term with degree 2
of (@;3 5x P,z =92z (PO, PO))(I,.‘.,,,),@ € B, p0 ® Fv po = AT Zy0 @ C (see (3.4) and
(3.5)). Therefore, by observing (3.7), (3.16), (4.12), we find out that there exists a

Taylor expansion

(5.2) STr(é?gg5X@gz e—t@iz)

2 (n+2)/2
=_<_\/:—I) E ’"/2/ 5 adia(@)z0x P,z : my/2) E(m/2) (¢, PO)
m= Zmy+ma=m

+E(nto+1)/2/z(¢g2(5x@ng) mo+1)/2751/2)(t1 pO)}

mo+1

_( 2 )(n-%—?)/2 Z em/2‘/Z(@;z5x@gZE)(m/2")(t:PO)-
m=-—1

/1

Futher (3.8) says that there exist constants A > 0, C > 0 and an integer N > 0 satisfying

I(@ z20x @, zE)(m/z)(t PY| < Cet (- éom)/2<

t("+4)/2 + 1) ’

- N
oz T )
(0<Vm <mg, 0<Ve2<el? 0<Vt< oo, YP' € Z)

(5.3)
(952892 BY(mor D20, )| < 042

and (3.17) says that for given Ty > 0 there exists a series expansion

(5.4) (agzaxang)<m/2’~{(t,P°)

= m{ Z t*(@ z5x(?ng)(m/2 )( PO) + O(t"”’l)}

i=—080m

(Vig>0,0<¥m<mg+1,0<Ve’2<et/? 0<Vt< Ty, VP € Z).
Lemma 5.1. We have
(5.5) / adia(@26x,z : m/2) OBt P =0 (m = —1,0)
zZ

and the double integral at the right hand side of (2.10) ts absolutely integrable and we

have

(5.6) /Z adia(@}20x P,z: —1/2) EV/¥)(t, P%) = - /Z s-log det (6xd,2)(t, P°).
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Remark. By examining (4.12) in detail we know
/ adia(@20x 9,2 : 2/2) B/ (2, P°)
z
1 . 0
[ 583 A S gt

—_— +

G:I:Lf
/ adia(f28xP,z - m/2) EO/2)(t, P) = 0 (otherwise).
Z

% (Fa)R) B2, PO),

Proof. Refer to (2.3) and (4.12). As for (5.5): Since adia(@z0x@yz : —1/2) is a first
order differential in the M-direction, (5.5) holds if m = ~1. Since adia(@}z0x @4z : 0/2)
is an exterior product of odd degree in the M-direction, (5.5) holds also if m = 0. As
for (5.6): We abbreviate E(t,p° P, P') to E(t, P, P'). (3.29) says

(5.7) adia(@}20x P,z : —1/2) E/*)(¢, P?)

= —adia(@’ zdxagz -1/2) /dr/ dg(Q) (E(t~T, pP° Q) (@2)(1/2:)E(T’Q’ pO))

but it may not permitted to reverse the order of adia(@,z0x@,z : —1/2) and the double

integral. Consider then the term of even degree in the M-direction
(5.8) even-adia(@}z0x P,z : —1/2)E/¥)(t, P°)

= —adia(P20xP,z : ~1/2) /0 @ /z 49(Q) (Ble—r, P*,Q), chi(@) B, @, P
(refer to (2.12) and (3.20)). On its right hand side, fortunately we can reverse the order

as is proved hereafter. Let us denote by ' € M(p°) the fundamental vector whose i'-th

entry is equal to 1. Then (2.3), (2.4) and (4.12) imply
), chi(@2z) E(T,Q,Po))
,bchl(s? z)E(1,Q, P%)) .

(5.9) —adia(@]z0xPyz: —1/2)(E(t~7, P*,Q

=0">_ dz}(P°) A (chi(8xP,z) E(t—7, P°,Q),

=0"> dzh(P°) A

(chi(6xPyz) E(t—T, F°,Q),

= —6"(chi(6xP,2) E(t—7, P’,Q

RI"(p°, 4

chi(@3e) (v

chi(@}z) ("

chi(@}2) ("

RI™(p?,

4

4

4

%)

(1 + coth

(14 coth

~6"(chi(6x Py2) E(t—7, P°,Q),
R0, 8),

1 + coth

7RI (p,1?)

2

de,(

7RI (p ,¥°)

2

7RI"(p°, %)
2

)

)

)|dz®

e“)E(r,Q,P%)
eV E(r,Q,P%)

¥"))E(r,Q, PY)).

Remark that by observing (2.4) the second equality above comes from the formula

0

oz’

D)

KM(ty xba O)
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g™ (0 +RIM (10 1
= {%{Zz?(”{ ®) corn L2 ))ii’ + szngM(Po)ii/}KM(t,Ib,O)

2 2
g™M(.0 ¢RI (0
=sz(—R—g(p—)(l+coth—li—‘)Lp—)))ulKM(t,rb,O).

Similarly to the estimation (3.31), then we have
(5.10) dg(Q) |(chi(xP,2) B(t—, P°,Q),

Z(p°)
. RI"(p°, TRIY(p%, ¢
chi(@}2) (v’ —<§——)(1 + coth #)Iw(yb)ﬁ(a Q. P%)
< C(t _ 7_)—(n+2)/2—1/2T—(n+2)/2-—1/2/ dg(Q) e—'I‘(Q)"’/G(t—T)—T(Q)z/ST.
z2(2°)
(Note that (5.7) may not have such an estimate.) And, by the same argument as

(3.32)-(3.33), we find out that (5.10) is integrable over the interval (0,t) (3 7). Thus

we can reverse the order of adia(@,z0x@,z: —1/2) and the double integral in (5.8) and
the double integral at the right hand side of (2.10) is certainly absolutely integrable.
Further (5.8) and (5.9) imply the formula (5.6).

Now let us prove Theorems 2.1, 2.2,

Proofs of Theorems 2.1, 2.2 (compare with [15, Proof of Theorem 1.2]).
Take an integer ng > 0. Then the first estimate at (5.3) and (5.4) imply that, if
—1 < m < ny, the function (to be differentiated by s)

1 oQ
. — | dtt® *28 E)(m/2)(¢, pO
(511) w5 | e [(@txpge )™ (e, )
is absolutely integrable if Re(s) > (n + 2)/2 and has a meromorphic extension to
C(3 s) which is analytic at s = 0. Hence, to finish the proof of Theorem 2.1, we

have only to show the assertion that so is (5.11) with (g?;z(SX@ng)("‘/ 2 replaced by
(P520xPyz E)((%+1)/2'51/2). And, to show it, it will suffice to prove that, for given Ty > 0,

there exist constants C > 0, Ag > 0 satisfying

(5.12)

/(@;ng?gzE)(("O*"l)/?,s‘/?)(t, PO) < Ceth (Vt > To).
z

Actually, if this holds'g_ then this, together with (5.4) (with m = mg+1 = ng+1), clearly
implies the above assé}tion for the remainder term. Now let us show the estimate (5.12).
First, since @ v is iri;fertible (13, (5.15)}), there exists a constant A; > 0 satisfying
Spec(@iz) > Ay (> 0) for any € with 0 < € < &g ([3, Proposition 4.41], (15, Lemma 2.1]).

Hence we have
2 2
STe(§;26xPyz P52 )| < Crem M/ Tx (e /9Pa7 )

(5.13)

23



(see [15, (2.26)]). The first inequality comes from the standard elliptic estimate and the
boundedness of the spectrum from below (see [15, (2.2)]), and the second one comes
from (3.8). Let my be the integer appearing at (5.3). Then (5.13) and the first estimate
at (5.3) imply

€(mo+1)/2 Z(a;zéxagzE)((mo+1)/2,51/2)(t1 PO)

J=IN (n42)/2 2
(5=) " ST (9000, 7o ) - 30 e | (920x P02 E)™2(2, PF)

2
m<mg

< Cl E-—n/2 6—51\1/4,
which, combined with the second estimate at (5.3), yields

(5.14)

E(mo+1)/?/z(@;Z6X¢ng)((mo+1)/2,€1/2)(t’ PO)

S 02 E—Tl/4 e—-tAl/S E(mo+l)/4 tN/2 S 03 E(mo+l—n)/4 e—tkl/g.

Now consider the formula

mo
* / m—rg— - m
/Z(@gzgxang)((noH)/?,e‘ 2)(t,P°) =/ { Z e(m—no 1)/2(@925)(@ng)( /2)(t,p0)

Zm=ng+1

+ 6("“’_"")/2(¢;z5x(39zE)(("'"“)/?"l/z)(t, PO)}.

(5.14) implies

E(mo—no)/2 /;(@;Zé‘xagzE)((m0+1)/2'51/2)(t’Po)l < C3 LE(mg—»?n()—n.—l)/4 e—t)q/Q.

Hence, by taking mg with mg — 2ng —n — 1 > 0, this and the first estimate at (5.3)
imply (5.12). Thus we finished the proof of Theorem 2.1. And (5.2), Lemma 5.1 imply

now Theorem 2.2.
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ISOLATED SINGULARITIES OF BINARY DIFFERENTIAL
EQUATIONS OF DEGREE n

T. FUKUI AND J.J. NUNO-BALLESTEROS

ABSTRACT. We study isolated singularities of binary differential equations of degree n
which are totally real. This means that at any regular point, the associated algebraic
equation of degree n has exactly n different real roots (this generalizes the so called
positive quadratic differential forms when n = 2). We introduce the concept of index
for isolated singularities and generalize Poincaré-Hopf theorem and Bendixon formula.
Moreover, we give a classification of phase portraits of the n-web around a generic singular
point. We show that there are only three types, which generalize the Darbouxian umbilics
Dl, D2 and D3.

1. INTRODUCTION

The study of the principal foliations near an isolated umbilic point of a surface M

immersed in R® leads us to the consideration of quadratic binary differential equations
(BDE) of the form

a(z,y)dz?* + 2b(z, y)dzdy + c(z,y)dy* = 0,

where a(z,y), b(z,y), c(z, y) are smooth functions in some open subset U < R? which are
defined, after taking a parametrization of M, by means of the coefficients of the first and
second fundamental form of M. Since the principal lines are orthogonal in the induced
metric of M, we have that the discriminant A = b(z,y)* —a(z, y)c(z,y) > 0, with equality
if and only if (z,y) corresponds to an umbilic of M, so that a(z,y) = b(z,y) = c(z,y) =0
and hence, (z,y) is a singularity of the BDE. It was Darboux (5] who classified the
generic singularities and discovered there are only three topological types, known as the
Darbouxian umbilics Dy, D, and Dj (see (1] and [12] for a modern and precise study of
this classification).

In fact, we can consider quadratic BDE of this type for general functions a(z, y), b(z, y)
and ¢(z,y), with the discriminant property: A > 0 with equality if and only if a(z,y) =
b(z,y) = c(z,y) = 0. The quadratic forms with this property are called positive and have
been studied by many authors (2, 6, 9, 11, 13]. A positive quadratic differential form
defines a pair of transverse foliations in the region of regular points. Moreover, Guifiez
showed has that in this more general situation, the only generic singularities are again
the Darbouxian umbilics D,, D, and Dj. '

The aim of this paper is to generalize this to degree n BDE of the form

ao(z,y)dz™ + a;(z,y)dz" " 'dy + - - + an(z, y)dy™ = 0,
where a;(z, y) are smooth functions defined on U C R? such that for any (z,y) € U, either
it is a singular point (that is, a;(z,y) = 0 for any ¢ = 1,...,n) or the associated algebraic
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2 T. FUKUI AND J.J. NUNO-BALLESTEROS

equation has exactly n different real roots. If the functions a;(z,y) have this property,
then we say that the symmetric differential n-form w = 3 | ai(z,y)dz""dy’ is totally
real.

When n = 1, a differential n-form is always totally real and it induces an oriented
foliation in the plane with singularities. For n = 2, totally real is equivalent to positive in
the Guinez sense and hence, the BDE defines a pair of transverse (non oriented) foliations.
However, for n > 3, the corresponding BDE induces locally a n-web in the regular region
(that is, a set of n foliations {F,...,F,} which are pairwise transverse). It seems that
isolated singularities of n-webs in the plane have not been considered previously in the
literature. Moreover, we feel that the use of degree n BDE is a good approach to treat
this subject.

The topological configuration of a n-web (n > 3) can be extremely complicated, even in
the regular case. When n = 3, the curvature of the web is a function which is a topological
invariant. Hence, even for regular webs we find that the topological classification has
functional moduli. It is known that a regular 3-web is parallelizable or hexagonal (that
is, equivalent to three families of parallel straight lines) if and only if the curvature is
zero. We should also mention that because of the rigidity of webs (any homeomorphism
between two regular webs is in fact a diffeomorphism (7]} the topological and differentiable
classifications are the same.

We show here that for n > 3, the classification of generic singularities of totally real
differential n-forms gives again only three types, which we call the generalized Darbouxian
Dy, D, and Ds. Here, generic means a generic choice of coefficients in the linear part of the
functions a;(z,y). Moreover, the classification has to be understood not as a topological
classification, but just as a description of the phase portrait of the foliations around the
singular point.

One of the main ingredients of the classification is the index of an isolated singular
point. It is defined as a rational number of the form k/n, where k € Z and it can be
interpreted as the rotation number of a continuously chosen vector tangent to the leaves,
when we make a trip around the singular point. We also show the generalization of the
Poincaré-Hopf theorem: if M is a compact surface and w is a totally real n-form with
a finite number of singular points, then the sum of the indices is equal to the Euler
characteristic x(M).

Another important point in the paper is the use of complex coordinates. By setting z =
z+1y and Z = T —1y, we can express any n-form as w = Agdz™ + A;dz""1dzZ+- - - + A dZ",
where A; = A,_; are differentiable functions. Then the index of an isolated singular point
is equal to — deg(Ap)/n, where deg(Ap) is the mapping degree of Ag. This implies that
generically, the index is £1/n.

The final ingredient for the classification is the use of the polar blow-up method to study
singularities with a non degenerate principal part (see {3] and [11] for related results for
vector fields or.quadratic forms). We obtain a generalization of the Bendixon formula,
which says that the index is equal to 1 + (e — h)/2n where e, h are the number of elliptic
and hyperbolic sectors respectively. On the other hand, for a non degenerate singularity,
the blow-up produces a n-form which has only singularities of saddle/node type. The
configuration of these singularities gives a description of the phase portrait of the foliations
around the singular point.

We finish the paper with a section dedicated to higher order principal lines and umbilics
of surfaces M immersed in some Euclidean space R". This was the original motivation of
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the authors to study singularities of differential n-forms. Other geometrical motivations
of the same kind can be found also in [15] or {10].

2. TOTALLY REAL DIFFERENTIAL FORMS

Definition 2.1. Let M be a C* surface. A (symmetric) differential n-form on M is a
differentiable section of the symmetric tensor fiber bundle S™(7T*M). If we take coordi-
nates z,y on some open subset U C M, any differential n-form can be written in a unique
way as ’

w=Y  fdzr'dy"™,
i=0
where f; : U — R are smooth functions.

We will say that p € M is a singular point of w if w(p) = 0. We will denote by Sing(w)
the set of singular points of w.

In general, if p € M, w(p) : T,M — R is a form of degree n. Let p € M \ Sing(w),
we say that w is totally real at p if there are n linear forms A,..., A, € T,M"* which are
pairwise linearly independent and such that w(p) = A; ... A\.. We say that w is totally real
if it is totally real at any point p € M \ Sing(w).

A linear differential form (n = 1) is always totally real. In the case n = 2, a quadratic
differential form is totally real if it is positive in the sense of [9]. Take local coordinates
z,y defined on some open subset U C M and assume that w is given by

w = Adz® + 2Bdzdy + Cdy?,

for some smooth functions A, B,C : U — R. Then w is totally real in U if and only if for
any p € U, either A(p) = B(p) = C(p) =0 or B*(p) — A(p)C(p) > 0.

Definition 2.2. A (1-dimensional) n-web on a surface M is a set of n (1-dimensional)
foliations W = {F,, ..., Fn} on M such that they are pairwise transverse at any point of
M.

If w is a totally real differential n-form on M, then we can locally associate a n-web on
M \ Sing(w) in the following way. For each p € M \ Sing(w), there are pairwise linearly
independent linear forms A,...,An € T,M* such that w(p) = A;...A,. Moreover,-it is
possible to choose these linear forms so that they depend smoothly on p (and hence define
differential linear forms) on some open neighbourhood U C M. Then, the n-web is just
defined by taking F; as the foliation determined by A; on U (that is, the tangent vectors
to F; are the null vectors of \;).

Note that in general, it is not possible to extend this to a global n-web on M \ Sing(w)
(unless it is simply connected). Moreover, two totally real differential n-forms w; and we
define the same n-web on U if and only if there is a non-zero smooth function f: U — R
such that w; = fw, on U.

Remember that if w is a differential n-form on N and f : M — N is a differentiable
map between surfaces, then f*w is the n-form on M given by f*w(p)(X) = w(f(p))(f.X)
for any p € M and X € T,M, and being f, : T,M — Ty, N the differential of f at the
point p.

Definition 2.3. Let w,,w; be two totally real differential n-forms defined on surfaces
M, N respectively. We say that they are C*-equivalent (resp. topologically equivalent) if
there is a C* diffeomorphism (resp. homeomorphism) ¢ : M — N such that
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(1) ¢(Sing{w,)) = Sing(ws),
(2) ¢ : M\ Sing(w;) — N \ Sing(w,) preserves locally the leaves of the foliations of

the n-webs defined by w;,ws.

It is obvious that if ¢ is a C* diffeomorphism, then condition (2) is equivalent to the
existence of a nonzero smooth function f: M \ Sing(w;) — R such that ¢*(w;) = fw; on
M \ Sing(w,).

3. THE INDEX OF AN ISOLATED SINGULAR POINT

We will define an index for isolated singular points of totally real differential forms,
which generalize the index in the case of linear or quadratic forms.

Definition 3.1. Let w be a totally real differential n-form on a surface M and p € M
an isolated singular point. Assume that M is orientable and choose some orientation.
Moreover, we choose a Riemannian metric g on M and orthogonal coordinates z, i on some
open neighbourhood U of p in M, compatible with the orientation. Now, let o : [0,¢ — M
be a simple, closed and piecewise regular curve, such that ([0, £]) C U is the boundary of
a simple region R, which contains p as the only singular point in the interior. Moreover,
we assume that a goes through the boundary of R in positive sense. Since a is a closed
curve, it is obvious that we can extend it to a: R — M, with a(t + £) = a(t). _

For each ¢t € R we choose a unit tangent vector X (t) which is a solution of the equation
w(a(t))(X) = 0 at the point a(t). Since it is an algebraic equation of degree n, we can
choose X (t) so that it defines a differentiable unit vector field along a.

If we start with ¢ = 0, after a complete turn, X(¢) must coincide with one of the 2n unit
vectors which are solution of w(a(0))(X) = 0. Because of transversality, after 2n turns
in positive sense, we must return to the initial vector, that is, X(2nf) = X(0). Now, let
6(t) be a differentiable determination of the angle from a%la(t) toX(¢). Then, 6(2nf) and
6(0) differ in an integer multiple of 27. We define the indez of w in p by

8(2nf) — 6(0)
4rn ’

It follows from the definition that the index is always a rational number of the form s/2n,
with s € Z.

ind(w,p) =

Lemma 3.2. The indez ind(w, p) does not depend on the choice of:

(1) the determination of the angle 8,
(2) the vector field X,

(3) the coordinates z,y,

(4) the curve ¢,

(5) the Riemannian metric g,

(6) the orientation of M.

Proof. Note that two determinations of the angle must differ in an integer multiple of 2.
Thus, it is clear that the index does not depend on the determination.

We show now that the index does not depend on the vector field X. Suppose that
we consider two vector fields X, (t), X2(t). Note that they are solutions of an algebraic
equation of degree n and they are differentiable with respect to the parameter t. Thus if
X1(t) = £X,(t) at some point of the curve, then this should be true for any point. In this
case, the corresponding determinations of the angles should differ in an integer multiple
of 7, giving the same index.
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Thus, we can assume that X;(t) # £X,(t), for all ¢ € R. Then, we can choose the
determinations so that

0 <[6:(t) = 62(t)] <,
for all t € R. Moreover, suppose that
v 9,(27’1[) - 9,(0) Si

4drn 2n
with 51,82 € Z. Then,

51 = 52] = 5= 16,(208) — 6:(0) = B2(208) + ,(0)] < 1,

and necessarily s; = s;.

To show that the index does not depend on the coordinates, let Yy € Th0)M be any
nonzero tangent vector. Let us denote by Y'(t) the parallel transport of Y, along o(t) and
let 9(t) be a determination of the angle from Z|a( to Y(t). Following [4, Eq (2), page
271}, we have that ’

B(8) — %(0) = /R Kda,

where K denotes the gaussian curvature of M and do is the area element. From this we
deduce

(1) Qn/RKda = 2rs = (¢ — 6)(2nf) — (Y — 6)(0),

being s/2n the index. Since the angle 3 — 8 does not depend on the coordinates z,y, we
get that the index does not depend either.

Let now a and f be two curves satisfying the conditions of the definition of the index.
We will show that the index given by both curves is the same. Suppose first that the
curves are disjoint. Then it is obvious that we can construct a family of curves ¢, with
t € [0,1], depending continuously on ¢, which verify the conditions of the definition of
index and such that ap = a and a; = 3. Taking into account that it is possible to express
the index by means of an integral expression, we deduce that the index with respect to o,
depends continuously on ¢. Since the index can only take rational values, we deduce that
it must be constant. In the case that the curves o and f are not disjoint, we can take
a third curve small enough so that it is disjoint with o and § and then apply the above
argument.

The independence with respect to the Riemannian metric g has an analogous argument.
In fact, if ¢ and h are two Riemannian metrics, we can consider the family of Riemannian
metrics g. = (1 — t)g + th so that go = g and g, = h. Again by means of an integral
expression of the index; we see that the index with respect to the metric g, depends
continuously on ¢ and hence, it must be constant.

Finally, it only remains to show that it does not depend on the orientation. In fact, if we
change the orientation, we have to change o by &(t) = a(¢ —t) and 6 by 4(t) = —6(£ —t).
Then,

8(2ne) — 6(0) = —6(£ — 2nL) + 6(¢) = —6(0) + 6(2n¥).

a

As a consequencé of this lemma, we deduce that the index is well defined and it only
depends on the differential form w. Moreover, the definition can be extended to the case
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that M is not orientable, just by taking a local orientation in a neighbourhood of the
singular point.

On the other hand, the definition of index can be also extended to the case that p
is a regular point, although in such case the index is always zero. In fact, we can take
coordinates in such a way that 9/0z coincides with X along o and hence, 6(¢) = 0.

Finally, another immediate consequence of the above lemma is that the index is invari-
ant by equivalence. Let w;,ws be two totally real differential n-forms defined on surfaces
M, N respectively, which are equivalent through the diffeomorphism ¢ : M — N. Then,
for each p € Sing(w,),

ind(wy, p) = ind(w2, ¢(p)).

Remark 3.3. We give here a formula which can be very useful to compute the index.
Let us denote by X(t),..., X2a(t) the unit vector fields along « which are solution of
w(a(t))(X) = 0. We assume that they are ordered so that

01(t) < 0a(t) < -+ < Baa(t) < 6y(t) + 2m,

where 6;(t) denotes the determination of the angle of each vector field X;(t). In particular,
we have that
61(¢) = 6;(0) + 27m,
for some m € Z and ¢ € {1,...,2n}. Then, the index is given by
1—1
2n
In fact, we introduce the notation 8on41(t) = 61(t) + 27, O2n42(t) = 62(¢) + 27, and in
general, fyny;(t) = 0;(t) + 2¢m, for any ¢ € Z and 5 € {1,...,2n}. Then,
91 (Z) = 9,(0) + 27rm,
6:1(22) = 6;(8) + 2rm = 62.,(0) + 47m,

ind(w,p) =m +

91 (277,[) = 92n(i—1)+l(0) +4rnm = 91(0) + 27!'(27?.771 +1— 1)

From this, we arrive to

6,(2nf) — 6,(0) —m+ 7 — 1.
4rn 2n

We finish this section by showing the genera.lizationvof the well known Poincaré-Hopf
Theorem for vector fields or quadratic differential forms [14, 4].

ind(w, p) =

Theorem 3.4. Let M a compact surface and let w be a totally real differential n-form
with a finite number of singular points p1,...,pm. Then,

X(M) = Zind(w,pi),

where x(M) denotes the Euler-Poincaré characteristic of M.

Proof. The proof given here is just an adaptation of the proof given in [4, page 279] for
the case of vector fields. We show first the theorem in the case that M is orientable.

We choose some orientation and a Riemannian metric on M. Let {¢; : U; — R%},;
an atlas on M so that each chart is orthogonal and compatible with the orientation.
Moreover, we take a triangulation 7 such that:

(1) Each triangle T € 7 is contained in some coordinate neighbourhood.
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(2) Each triangle T € T contains at most one singular point pr. (In the triangles with
no singular points we choose any interior point pr.)
(3) The boundary of each triangle T € 7 has no singular points and is positively
oriented.
Let X7 be a vector field along the boundary of each triangle T € 7 which is a solution
of equation w(X) = 0. Moreover, we choose it in such a way that if T}, T, are adjacent
triangles, then Xr,, X7, coincide along the common edge. From Equation (1) we obtain

/ Kdo — 2rind(w, pr) = ‘2}‘;

for any T € 7, where Ar denotes the variation of the angle from Xp to some parallel
vector field after going through the boundary of T 2n times in positive sense.

Now, summing up for any 7' € 7 and taking into account that each edge is common to
two triangles with opposite orientations, we arrive to

/Kda—QﬂZmdpr) Z = 0.
TeT rer 2

Finally, the result is a consequence of the Gauss-Bonnet Theorem:
/ Kdo =2nx(M).
M

In the case that the surface M is not orientable, we consider T : M — M a double
covering, where M is an orientable and compact surface. Then x(M) = 2x(M) and since
7 is a local diffeomorphism, each singular point p; of w gives exactly two singular points
of the induced n-form 7*w with the same index. Thus this case is a consequence of the
orientable case. a

4. DIFFERENTIAL FORMS IN COMPLEX COORDINATES

We identify R? = C and use the following notation

N
II

=+ 'Ly, - 7/!,/;
dz = dz + idy, dz = dz — idy,
0

o 1 0 _; 0 1 0 +i 1o}

oz 2\8x dy)’ 9z 2 \oz dy /)
With this notation, it is obvious that any differential n-form on an open subset U C C
can be written in a unique way in this coordinates as

Jw= Agds" + Adz""Ydz + -+ ApdZ,

for some d1fferent1able functlons A;:U — Csuch that A; =A,_;forall =0,...,n
The following theorem is a genera.hza.txon of {14, VIL.2. 3] in the case n = 2.

II

Theorem 4.1. Let w be a totally real differential n-form on an open subset U C C and
let p € U be an isolated singular point. Then, p is an isolated zero of Ay and

ind(w, p) = _deg(:o,;v)’

where deg(Ag, p) denotes the local degree of Ay at p.
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Proof Let § > 0 small enough and let a(t) = p + de*, for t € R. We denote by
X,(¢),..., Xa(t) unit vector fields along a which are pairwise linearly independent and
are solution of the equation w(a(t))(X) = 0. We also denote by 6;(t) a differentiable
determination of the angle of Xj;(¢), so that
09

0z
It is obvious that X;(¢) annihilates the linear form A;(t) along a given by

Ai(t) = e10dz + e~il) gz,

being ¢;(t) = m/2—0;(t). Thus, by using elementary properties of the algebraic equations
of degree n, we deduce that along a it is possible to factor w as

w(a(t)) = fOM(L) ... Aalt),
for some non vanishing function f: R — R.
On the other hand, by comparing the coefficient of dz™ in the above expression, we
have that

16, 8 —1
Xj(t) = B0 o~ 4 e

Apla(t)) = f(t)ei(¢l(t)+'“+¢n(t))'

From this we see that Ag(a(t)) # 0, for all ¢ € R, which shows the first statement.
Moreover, a differentiable determination of the angle of Ag(a(t)) is given by

B(t) = i(t) + - + alt) + g,
for some ¢ € Z.

Finally,
4 - B(0 T b4 — &:(0
deg(Ao,p) = B(L’Zr;ﬁ(_l =3 ¢5( ”’Zm ¢;(0)
j=1

j=1
O

Corollary 4.2. The indez of any isolated singular point of a totally real differential n-
form on a surface M has the form s/n, with s € Z. Moreover, for each s € Z there is a
totally real differential n-form with an isolated singular point of indez s/n.

Proof. The first part is an immediate consequence of the above theorem. To see the second
part, just consider M =C, p =0 and

2°dz" + Z°dz", if s >0,
W=
ZBldzm + 21ldzr. if s < 0.
a

According to Definition 3.1, an isolated singular point of an n-web will have an index
of the form s/2n, with s € Z. The above corollary says that in the case that the n-web
is induced from a totally real differential n-form, the index will be of the form s/n, with
s € Z. This can be interpreted as some kind of orientability condition for the n-web
defined by a differential n-form.

For instance, when n = 1, a linear differential form in M induces an orientable foliation
in a neighbourhood of each point of M. In this case, the index of an isolated singular
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point is an integer. For n = 2, a positive quadratic differential form induces a pair of (non
necessarily orientable) transverse foliations in a neighbourhood of each point of M. The
index associated to each one of the foliations is the same (because of transversality) and
it is a half-integer (see (14, VI1.2.2]). '

Corollary 4.3. Let w be a totally real differential n-form on a surface M and p € M

an wsolated singular point. Let o : [0,€] — M be a curve satisfying the conditions for the

definition of the index and let X (t) be a unit vector field along a, solution of w(a(t))(X) =

0. Then X(nf) = X(0) and

8(nf) — 6(0)
2mn

where §(t) denotes a determination of the angle of X(t).

ind(w,p) =

¥

Proof. This is consequence of the above corollary and Remark 3.3. Let us denote by
X1(t), ..., Xz2n(t) the unit vector fields along o which are solution of w(a(t))(X) = 0,
being X (t) = X,(t). We suppose that they are ordered so that
Bl(t) < Hz(t) < e <L 92n(t) < Bl(t) + 27,
where 6;(t) is the determination of the angle of each vector field X;(t). Then,
) , 1—1
ind(w,p) =m + P
where 6,(¢) = 6;(0) + 2rm, with m € Z and ¢ € {1,...,2n}. Moreover, we introduce the
notation fa4ny;(t) = 6,(t) + 2¢n, for any g € Z and j € {1,...,2n}.
From the above corollary we see that ¢ — 1 must be even and hence, we can write
1— 1 =2q, with g € Z. Thus,
01(nl) = Opi—1)+1(0) + 2rmn = 6,(0) 4 2r(mn + q),
giving X;(nf) = X;(0). O
Definition 4.4. We say that a singular point p of a totally real differential n-form w is
simple if the linear part of w at p is itself a totally real differential n-form having p as an
isolated singular point. Suppose that in complex coordinates
| w= Aydz" + Adz" N dE + - - + AndF",
for some differentiable functions A; : U — C. We also assume, for simplicity, that p = 0.
Then, each one of these functions A; has a Taylor expansion at the origin
Ai=aqz+b6Z+...

with a;, b; € C. The linear part of w at p is the differential n-form

wy = (apz + boZ)dz" + (a1z + b1Z)dz" " dZ + - - - + (anz + bZ)dZ".
Corollary 4.5. Any Sizﬁple singular point of a totally real differential n-form on a surface
M has indexr £1/n. '}
Proof. We take comp1e>§ coordiriates, suppose that p = 0 and the linear part of w at p is

wy = (aoz +boZ)dz" + (a1z + byZ)d2" " dZ + - - - + (Gnz + baZ)dZ".

If wy is totally real and p is an isolated singular point, by Theorem 4.1, p is an isolated
zero of the linear function agz + bpZ and hence, such linear function is regular. Since it is
the linear part of the function Ay, p is a regular point of Ay. Thus, deg(Ag, p) = £1 and
ind{w,p) = £1/n. a
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5. NON DEGENERATE DIFFERENTIAL FORMS

Let w be a totally real differential n-form on some open subset U < C and let p € U be
an isolated singular point. We can extend the notation introduced in the above section
and denote by wy the homogeneous part of degree k of w. That is, each one of the
coefficients A; admits a Taylor expansion at p and wy is the n-form whose coefficients are
the homogeneous parts of degree £ in the expansion of the A;.

Definition 5.1. We say that w is semi-homogeneous at p if there is £ > 1 such that
w; =0fori=1,...,k — 1 and wg is a totally real differential n-form having p as an
isolated singular point. Note that when k = 1, this is equal to the definition of simple
singular point.
Assume for simplicity that p = 0 and let

wi = Akd2® + ARd" N dE + -+ ARdE,
where A* are homogeneous polynomials of degree k. We define the characteristic polyno-
mial of w as the (real) homogeneous polynomial of degree k +n

P, = A§z" + A5z 4+ -+ AR

Let us denote by 7 : R?2 — C the polar blow-up, that is, w(r,t) = re*. We fix § > 0
small enough such that 7((—4,6) x R) C U and p = 0 is the only singular point of w in
such set.

Lemma 5.2. If w is semi-homogeneous with principal part wg, then

1 : .
;Iw(re“), ifr #0,

w(r,t) = ) ,
wi(e*), ifr =0,

defines a totally real differential n-form along © on (=6,6) x R with no singular points.

Proof. Suppose that w is given by
w= Apdz" + A dz"'dZ + - + ApdZ

and let us denote by A? the homogeneous part of degree k of A;. By the Hadamard
Lemma it follows that
Aj(re®) = r*By(r, t),
for some differentiable functions B; : (—4,8) x R — R such that B;(0,t) = A¥(e*). In
particular
&(r,t) = By(r,t)dz™ + By(r, t)dz""'dZ + - - - + Bp(r, t)dz".
a

As a consequence of the above lemma, if w is semi-homogeneous, we can choose n unit
vector fields Xy (r,t),..., Xa(r,t) along 7 on (—4,d) x R which are pairwise linearly inde-
pendent and solution of &(r,t)(X) = 0. Moreover, we denote by 6;(r,t) a differentiable
determination of the angle of each vector field X;(r,t). Then we showed in the proof of
Theorem 4.1, that it is possible to factor @ as

@=fA... An,
being A; the linear forms given by
A; = e®idz + ez,
with ¢; = 7/2 —; and f:(-4,0) x R — R a non vanishing function.
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Definition 5.3. The pull-back through = of the n-form & defines an n-form #*@ on
(=4,6) x R, which is called the polar n-form of w. Analogously, we call linear polar forms
of w the linear forms 7*Aq,...,7*A,, in such a way that

o= frtA .. A,
An easy computation gives that foreach j=1,...,n
T A; = 2(cos p;dr — rsin @;dt),

where ¢; = ¢; +t. Thus, each one of these polar linear forms has singular points (0, ¢t)
with ¢;(0,t) = 7/2 + qm, ¢ € Z.

Note that a point (0,t) can be a singular point of only one of the polar linear forms.
In fact, suppose that

©7(0,t) =m/2+qm, ¢5(0,t) =7n/2+ g,
for some ¢q;,¢, € Z. Then
ejl(o)t) - sz(ovt) = (q2 - ql)”rv

which implies that the corresponding vector fields are linearly dependent and hence, j; =

J2-
Moreover, under some conditions it is possible to determine the topological type of
these singular points. Let A; the vector field given by

. d 0
A= rsmtpjé; + cos (pjé?

Then, the jacobian matrix at a singular point is
1 =%
DA;(0,t) =+ < 59,}') .
0 —%
As a consequence, we have that (0,t) is a hyperbolic singular point of 7*; if and only if
67:1 # 0. Moreover, (0,t) is of saddle type when %“:1 > 0 and of node type when 6_5? < 0.

Lemma 5.4. Let w be a semi-homogeneous totally real differential n-form and p =0 an
isolated singular point. Then z = e* is a root of the characteristic polynomial P, if and
only if (0,t) is a singular point of one of its polar linear forms. Moreover, it is a simple
root if and only if (0,t) is a hyperbolic singular point of such polar linear form.

Proof. In general, we have that 7°dz = e*(dr + irdt) and 7°dz = e #(dr — irdt). In
particular, restricted to r = 0, we get

W'@(O,t) = <Z A;?(e“)(ei‘)j(e‘“)"’j) dr™ = Pw(e“)dr".
! j=0
On the other hand, by using the factor of 7*@ in the polar linear forms, we see that
7*@(0,t) = f(0,¢) cos1(0,t)...cospn(0,t)dr",
which implies that
P,(e") = 2" f(0,t) cos 1 (0, 1) ... cos pa(0,t).

Thus, it is obvious that z = € is a root of P, if and only if (0,¢) is a singular point of
one of the polar linear forms.
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Moreover, since P, is a homogeneous polynomial it is easy to check that z is a simple
root if and only if £ (P.(e")) # 0. But if we differentiate in the above expression, we
arrive to

d it 890]‘

— ) = £27 t)—(0, ).
Therefore, it is a simple root if and only if (0,t) is a hyperbolic singular point, by the
above remark. a

Remark 5.5. Suppose that z = e is a root of the characteristic polynomial P,. By the
above lemma, (0,t) is a singular point of one the polar linear forms, that is, ©;(0,t) =
7/2 + g, for some j € {1,...,n}, and g € Z. For each p € Z, e‘**P™) = £z is also a root
of P, and hence, there are j, € {1,...,n}, and g, € Z such that ¢; (0,t+pw) = 7/2+g,m.
This implies that

©;(0,t) — ¢;,(0,t + pm) = (p — gp),

for any p € Z. But looking at the way that the functions ; are constructed, if this is
true for some point ¢ € R, then it must be true for any ¢ € R. Then, by taking derivatives
with respect to t,

O %3

ot ot
Thus, (0,t) is a singular point of 7*}; of saddle or node type if and only if (0,t +p7) is a
singular point of 7*);  of saddle or node type respectively. In conclusion, the singularity
type only depends on the direction determined by z = e'.

(0,t) =

(0,t + pr).

Definition 5.6. Let w be a totally real differential n-form with an isolated singular point
p. We say w is non degenerate at p if it is semi-homogeneous and the characteristic
polynomial has only simple roots.

Theorem 5.7. Let w be a totally real differential n-form with a non degenerate singular

point p. Then,
+ - -
ind(w,p) =1 - S—n-S—,

where St and S~ denote the numbers of characteristic directions of saddle and node type
respectively.

Proof. Denote by Sf and S; the numbers of singular points of saddle and node type
respectively of the polar linear form 7*; in the interval [0, 27n). Then,

isf = 2nS7, Zn: S; =2n8".
j=1 =1

Remember that such points are given by the points (0,¢) such that ¢;(0,t) = 7/2 + ¢,
with ¢ € Z. Moreover, it is of saddle type when ¢; is increasing at such point and of node
type when it is decreasing. This implies that

QOJ'(O,QWTL) - wJ(O)O) = W(S;- - Sj—)’
forallj=1,...,n.
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Now, by Corollary 4.3,

ind(w,p) = — Z O 2”” 500 _ 1 3 $5(0,27n) — ¢;(0,0)

- 27n
Jj=1
_ 1 Z ¢3(0,27n) — 27n — ¢;(0,0) _ 1 zn: ;(0, 2mn) — ;(0,0)
4 2tn : 2mn
ij=1 j=1
=1-—= s ﬂ_—_‘i—_ =1- St -5
n 4 2n n
j=1
since ¢;(0,¢) = Z — 0;(0,t) and ¢;(0,¢) = ¢;(0,t) + ¢. O

Definition 5.8. Let w be a totally real differential n-form with a non degenerate singular
point p. By a sector we mean each one of the regions bounded by two consecutive
" characteristic directions S; and S,. We say a sector is

(1) hyperbolic: if both S} and S, are of saddle type;
(2) parabolic: if one of S; and S, is of saddle type and the other one is of node type;
(3) elliptic: if both Sy and S, are of node type.

Let S* and S~ denote the number of characteristic directions of saddle and node
type respectively and let h and e denote the numbers of hyperbolic and elliptic sectors
respectively. It is obvious that e —h = 2(S~ —S™*). Thus, we get the following immediate
consequence of Theorem 5.7, which generalizes the well known Bendixson formula for the
index when n = 1.

Corollary 5.9. Letw be a totally real differential n-form with a non degenerate singular
- point p. Then,

—h
on '

where e and h are the numbers of elliptic and hyperbolic sectors respectively.

md(wrp) =

Remark 5.10. When w has a non degenerate principal part, it is possible to improve
the formula for the index given in Remark 3.3. Let X;(r,t),..., Xa(r,t) be unit vector
fields along m on (—4,8) x R which are pairwise linearly independent and solution of
@(r, t)(X) = 0. Moreover, we suppose that they are chosen so that

61(0,t) < 8,(0,2) < --- < 8,(0,t) < 6,(0,t) + m,

where 6;(r, t) denotes the determination of the angle of each vector field X;(r, t). Note that
for r = 0, these vector fields are solution of an equation with homogeneous coefficients,
which implies that

6,(0,7) = 6;{0,0) + mm,
for some m € Z and ¢ € {1,...,n}. Then, it follows that

1—1

ind(w,p) =
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6. PHASE PORTRAIT OF NON DEGENERATE SINGULAR POINTS

In general, the foliations of an n-form can present very complicated configurations
around a singular point. In the case that w has a non degenerate singular point, the
n foliations are obtained as the image of the integral curves of the polar linear forms
through the polar blow-up. Moreover, since the characteristic polynomial has only simple
roots, then the problem is simpler, because the polar linear forms only have singularities
of saddle or node type.

Definition 6.1. Let w be a totally real differential n-form with a non degenerate singular
point p. Let z be a point near p and let L one of the n leaves of the web passing through
z. We say that L is

(1) hyperbolic: if p is not an accumulation point of L;
(2) parabolic: if p is an accumulation point on just one side of L;
(3) elliptic: if p is an accumulation point on both sides of L.

If the leaf L is hyperbolic (respectively parabolic, elliptic), then it corresponds to an
integral curve of one of the polar linear forms with a saddle-saddle (respectively saddle-
node, node-node) connection. In order to have a complete description, we need to know
how many sectors the leaf is going to pass through when connecting the two singular
directions (Figure 6.1). '

Lemma 6.2. Let x be a point near p and let L be a hyperbolic leaf through = connecting
two saddles. Assume that L passes through k sectors containing n; saddles and ny nodes
(so that ny + ny =k —1). Then,

k=mn+ 2n,.

Proof. Let R be the union of the closed sectors that L passes trhough, which is bounded
by the two saddles 57 and S,. Since R is simply connected, we can separate the web in R
into n foliations 7, ..., F,. We will assume that L is a leaf of ;. Then F; also contains
the saddles S}, S; and all its other leaves of F; are also hyperbolic.

Let F; be one of the other foliations, with 2 = 2,...,n. We can use the leaves of F; to
define a continuous map ¢; : L — S1US,. Given y € L, we take the leaf L; of F; passing
through y. Because of transversality, either L; intersects Sy U S; in a single point which
we define as ¢;(y) or p is an accumulation point of L;, in which case we define ¢;(y) = p
(see Figure 2).

Since the leaves of F; are disjoint, we have two possibilities: either ¢;!(p) is just one
point and F; contains just one saddle, or ¢; '(p) is an interval, so that F; contains one
node and two saddles (see Figure 3).

Finally, assume there are a foliations of the first type and b of the second type, with
a+b=n-1. Then, n, = a+ 2b and n, = b, which gives the desired result. O

Lemma 6.3. Let x be a point near p and let L be an elliptic leaf through x connecting
two nodes. Assume that L passes through k sectors containing n, saddles and n, nodes
(so that n; + nyg = k —1). Then,

k=n+ 27?.1.
Proof. We assume that p = 0 and that w has the following principal part
we = ASdz" + -+ Afdz",
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FIGURE 1

p=¢y)

FIGURE 2

where A¥ are homogeneous polynomials of degree k. We take now the inversion z = 1/w,
which gives:
dw  wWrdw

n T e em—— T ————
dz" = wn (w@—)zn’
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FIGURE 3
and o
A = (D) = i

Then we obtain that in C\ {0}, wx is equivalent to the differential form
Ok = Ag(w)-m%dw" 4ot A:(E)w%dE"),

Note that o is also totally real with non degenerate principal part and the characteristic
polynomial has the same roots as wg, although the inversion transforms saddles into nodes
and nodes into saddles. Moreover, elliptic leaves of the foliations of wy are transformed
into hyperbolic leaves of o and vice versa. Thus, the result is a consequence of the above
lemma. In Figure 4 we present the result of taking the inversion of Figure 3.

s S

FiGURE 4

O

Lemma 6.4. Let z be a point near p and let L be a parabolic leaf through = connecting a
saddle and a node. Assume that L passes through k sectors containing n, saddles and n,
nodes (so that ny +ng =k —1). Then,

Proof. We follow a similar argument to that of the proof of Lemma 6.2. We denote by
R the union of sectors containing the leaf L, which is bounded by the saddle S; and the
node S,. Let Fi,...,F, be the n foliations determined by w in R so that L is a leaf of
Fi. ; ;

For each one of the foliations F;, with ¢+ = 2,...,n we have again two possibilities as
listed in Figure 5. In one case F; does not contain any characteristic direction, while in
the other cased it contains one saddle and one node. If we denote by a,b the number of
foliations of each type respectively, we have that a+b = n—1 and n; = ny = b. Therefore,
we get k =14 2n,. ’

a
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FIGURE 5

Remark 6.5. Once we know how many directions of saddle or of node type we have, as
well as their relative position around the singular point p, the three above lemmas allow
us to complete the phase portrait of all the leaves of the n web determined by w. We call
this the phase portrait of w at p. When n < 2, it is well known that this is enough for
topological classification, that is, if two differential n-forms have the same phase portrait
at a point, then they are locally topologically equivalent. For m > 3, this is not true
anymore because the curvature of the web is a topological invariant.

7. PHASE PORTRAITS NEAR HYPERBOLIC SINGULAR POINTS

In this section we give the possible phase portraits of “generic” singular points of totally
real differential n-forms.

Definition 7.1. We say that p is a hyperbolic singular point of a totally real differential
n-form w if it is simple and the characteristic polynomial F,, has only simple roots.

Theorem 7.2. Let p be a hyperbolic singular point of a totally real differential n-form w
(n > 2). Then, there are only three possible phase portraits of the foliations of w around
p:

(1) Type Dy or lemon: there are n — 1 directions of saddle type with hyperbolic leaves
passing through n sectors.

(2) Type D, or monstar: there are n directions of saddle type and one of node type;
the hyperbolic leaves pass through n + 2 sectors, while the parabolic leaves pass
through one sector.

(3) Type D3 or star: there are n + 1 directions of saddle type with hyperbolic leaves
passing through n sectors.

Proof. Let S* and S~ be the numbers of directions of saddle and node type respectively.
The sum S* + S~ is the total number of roots of the characteristic polynomial P, which
has degree n + 1. Since the roots are simple,

OSSE"'—i-S' <n+1, StT+S5 =n+1 mod?2.
Assume that St + S"é= n+1. 1If S~ > 2, then S* <n -1 and by Theorem 5.7,

St -85~ -1-2
indfw,p)=1-2 -2 >y trzZl=2 3
n n n
This is not possible, by Corollary 4.5, since the index can only be £1/n. Thus, the only
possibilities are St =n+1, S™ =0 or S* =n, S~ = 1 which correspond to the types
D5 and D, respectively. Note that the index in each case is —1/n or 1/n respectively.
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Next case is ST + S~ =n — 1. As above, if we suppose that S™ > 1, then S* <n -2
and hence,

St -8~ n—-2-1 3
i =12 2 > - _2
ind(w,p) =1 - >1 - ~
The only possibility is ST = n — 1, S~ = 0 which correspond to the type D; and has
index 1/n.
Finally, assume that S*+S~ < n—3. Then necessarily S~ > 0, S* < n—23 and hence,
St -5~ n—-3-0 3
ind(w,p) =1 >1 - -

Therefore, it is clear that there are no more possibilities.
The discussion about the number of sectors of hyperbolic or parabolic leaves is a con-
sequence of above lemmas. a

The above classification in the case n = 2 gives the classification obtained by Darboux
for the curvature lines around generic umbilic points of an immersed surface in R?® (see
[1] and [12]). A proof for the general case of hyperbolic singular points of quadratic forms
can found in [9)].

Example 7.3. Consider w; = Zdz"™ + zdZ". By Theorem 4.3,
ind{wy,0) = — deg(z,0)/n = 1/n.
Moreover, the characteristic polynomial is
P,=Z"+2" =22(2"" ' + % -1, .
which has n — 1 real simple roots. Thus, for any n, w; has a hyperbolic singular point of
type lemon or D,.
Now, let wp = (iz — (1 + €)iZ)dz" + (—iZ + (1 + €)iz)dZ™, with € > 0. In this case, the
index is again 1/n and the characteristic polynomial is
Po,. = (iz = (1 + €)i2)2" + (—iZ + (1 + €)12)Z"
= (iz —1Z)(2" + Z") + €izZ(2"7 = 2771,
Given n, it follows that for € small enough, F,,, has exactly n+1 real simple roots. Then,
wy ¢ has a hyperbolic singular point of type monstar or D,.
Finally, we consider w3 = zdz" + Zdz". The index is now —1/n and P,, = 2"+ 4z,
For any n, it has n + 1 simple real roots, so that wj is of type star or Dj.
In Figure 6, we can find pictures of the foliations for the three examples Dy, Dy, D3 in

the cases n = 2 (top) and n = 3 (bottom) obtained with Mathematica (D; and D;) and
with the program Homogeneous equations lines by A. Montesinos [16] (D2 with € = 1/2).

8. HIGHER ORDER PRINCIPAL LINES AND UMBILICS

Let g : M — RY be a C* immersion of a surface M in Euclidean space RY. We
consider the distance squared unfolding D : RY x M — RY x R given by

D(z,7) = (z,d:(7) = (=, 51z — 9PN

We use Thom-Boardman notation for singularities. Then, it follows that 82(D) is the
subset of RY x M of pairs (z, p) such that the jacobian matrix of d, has kernel rank 2 at
p, which is nothing but the normal bundle of M in RY.
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FIGURE 6

Assume N = 3. Then Z2!(D) is the subset of £2(D) given by pairs (z, p) such that the
hessian matrix of d; has kernel rank 1 at p. This is known as the focal set of M in R3 and
corresponds to the subset of pairs (z,p) such that z is a centre of principal curvature at
a non umbilic point p € M. Moreover, we can also consider the contact directions, which
are defined as the tangent directions X € T,M such that X € ker Hess(d;),. When p is
not parabolic, then these contact direction correspond to the principal lines of M (when p
is parabolic, principal lines are in fact contact directions of the height function, in which
case the sphere becomes a plane and z goes to infinity).

By taking local coordinates u,v in an open subset U C M, it is possible to find the
differential equation of principal lines:

dv? —dudv du®
E F G |=0,
L M N

where E, F, G and L, M, N are respectively the coefficients of the first and second funda-
mental forms of M in R3. The singular points of this equation are the umbilic points of
M where the surface has a contact of type £%? with some sphere of R3 (if the umbilic
is non flat). However, for our purposes, it is better to consider the following equivalent
differential equation:

Jiu  G2u  G34 0 0

gy 92y 93y 0 0

uu  F2uu G3uu E dv? =0.
Jluy  2uy  3uw F —dudv
Tw G2 93w G AV
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This matrix (excluding the last column) was introduced in [8] to define the notion of k-
rounding of an immersion g : M — RY. It is a higher order generalization of umbilic point
and for an appropriate choice of the ambient dimension /N these points are generically

isolated.

For instance, assume now that £ = 3 and consider an immersion of a surface M in
R7. We define the third order contact directions as the tangent directions X € T,M such
that X € ker J3(d;), and (z,p) € Z%2Y(D). Here J® is the operator defined in local

coordinates
fuuu fuuv

Js(f) = Jusuv fuw
fU‘U'U fWU
Note that f, = f, = fuu = fuw = fow = 0, this definition does not depend on the

coordinates.
Note that we can do the same construction by taking the height function unfolding

H:S5%x M — S® xR given by
H(v,p) = (v, h(p)) = (v, (v, 9(p)))-

We also include in the above definition of third order contact directions those X € T,M
such that X € ker J3(hy), and (v, p) € T>21(H).

Assume that M is locally parameterized locally by a map g : U C R? — R’. We use
the following notation: @.s = (ga, gs) are the coefficients of the first fundamental form

and
Papy = (aps G7) + (Pap)v-

Theorem 8.1. With the above notation, the differential equation for the third order con-
tact directions ts

g1y e g7 0 0
g1, e g7 0 0
Jlww -+ G7uu. Puu 0
Jluw -+ Gtww  Puv 0
Ay - [ O Pyy 0 = 0.
DNuww -+ GTusu tpt_nm d'U3
lyuy -+ Tuuv (pﬁuv —dudv?
Tluve - GTuow Puw duidv
Jiws -+ JTeww P —dU’

Proof. Let X = ag, + bg, be a non-zero tangent vector at p with a,b € R. It follows from
the definition that X is a third order contact direction if and only if f, = f, = fu, =

fuv = fw = 0; (fuuuyfuuuyfuuuy fuuu) # 0 and

fuuu fuuu 0 :
fuuv fuw ( Z ) = 0 )

fum  fow 0
for either f = d, or f = h,. Note that this last equation is equivalent to
fuuu b3
f uuv _ -ab2
fow | =2 e |

fmm —a3
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for some A € R, A # 0. In order to simplify the expressions we introduce the notation
Oapy, Which are defined by

Crsn v

Tuyy . —ab?
T | a’b
Tovu ~ad

Then we can express shortly our conditions by f, = fas = 0 and fog, = Aoap,-
On the other hand, we recall that for f = d, we have
fo=={9a,z - 9),
fop = —(90p, 2 = 9) + Pap,
fapy = =(9apy, T = 9) + Papy,
while for f = h,,
fo = (e v),
fog = (9ap, V),
fapy = (Gapy, V).
Assume we have a third order contact line with f = d,. Then,

9a 0 0 z—g 0
Gag  YPop 0 -1 = 01,
Gapy Papy Tapy A 0

which implies that the matrix has determinant equal to zero. For f = h, we take (v,0, A)
instead of (z — g, —1, A). .

Conversely, if the determinant of the matrix is zero, then there is (X,Y, Z) # 0 such
that

Go 0 0 X 0
9op  Pap 0 Y |=10
Gapy Papy Tapy A 0

IfY #0, we take z = —X/Y +gand A = —Z/Y, which gives a third order contact line for
f = d;. Otherwise, Y = 0 implies, necessarily X # 0 so that we can define v = X/|| X||
and A = Z. This gives a third order contact line for f = h,.

We see that third order contact lines are defined by means of a cubic differential form
and can be interpreted as some kind of “third order principal directions”. The singular
points corresponds to the “third order umbilics” (that is, points p € M where g(M) has
a third order contact £%?%? with some hypersphere or hyperplane of R?). In general, this
cubic differential form is not always totally real (as it happens with principal lines of a
surface in R3). However, in the case that it is, we find that for a generic immersion the
singularities are hyperbolic and the phase portrait of the 3-web is described in Theorem
7.2, in analogy with the classical Darbouxian classification of principal foliations near
generic umbilics.

Corollary 8.2. Letg: M — R7 be a generic immersion. Let p be a third order umbilic
such that the third order contact lines are defined by a totally real cubic differential form
near p. Then, p ts hyperbolic in the sense of Definition 7.1.
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Proof. Given a map g : M — R7, we denote by jig: M — J*(M,R7) its 4-jet extension.
We also denote by U C J“(M ,R") with the following property: p € M is a third order
umbilic of g if and only if jg(p) € U. It follows that C U is an algebraic subset of
codimension 2 in J4(M,R7).

We also denote by U, the subset of U such that 7*g(p) € U, if and only if p is not a
simple singularity of the cubic differential form which defines third order contact lines.
Analogously, we define U, as the subset of & where the chara.ctemstxc polynomial of the
cubic differential form has not simple roots.

In both cases, Uf; is an algebraic subset of J4(M,R") of codimension 3. In fact, the
equations of U are functions which only depend on the derivatives of g up to order 3, whilst
the equations of Uf; involve in a non-trivial way the 4th order derivatives. This implies
that codiml; > codimiU. The result follows now from Thom transversality theorem by
requesting transversality to both U; and U,. d

This construction can be generalized easily to any k. We just need to consider an

immersion g : M — RY, with N = &—2)2“—*'1—)- — 3. Then, the k-th order contact lines

are defined by means of a symmetric differential form of degree k, whose singularities
correspond to the k-roundings of M in RY (see [8] for more details).
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