
巨4 bうち… !律 璃71 LllLf､ア/{IJ

ポアソン多様体および接触多様体
にかかわる幾何学の大域的研究
平成11-13年度科学研究費補助金 (基盤研究 (C)(2))

(課題番号 :11640060)

研究成果報告書

研究代表者:水谷忠良

(埼玉大学理学部数学教室)

平成14年3月

998005255 998005255

等Tコ一十一



･遅れて返却すると､遅れた日数分の貸出停止となりますo

I 返 却 期 限 日 返 却 期 限 日

ll 13

2 14

3 15

L㌔4 16

･5 17

8 20

10 22

ll 23

12 24

埼玉大学附属図書館 048-858~3667

平成11-13年度科学研究費補助金 (基盤研究 (C)(2))

研究成果報告書

研究課題

ポアソン多様体および接触多様体にかかわる幾何学の大域的研究

課題番号 11640060

作成年月 平成14年3月

研究代表者 水谷忠良 (埼玉大学理学部 ･教授)

研究分担者 (平成11年度,平成12年度,平成13年度)

奥村正文 (埼玉大学理学部 ･教授)

阪本邦夫 (埼玉大学理学部 ･教授)

長瀬正義 (埼玉大学理学部 ･教授)

矢野 環 (埼玉大学理学部 ･教授)

竹内喜佐雄 (埼玉大学理学部 ･教授)

樫井 力 (埼玉大学理学部 ･助教授)

福井敏純 (埼玉大学理学部 ･助教授)

江頭信二 (埼玉大学理学部 ･助手)

研究経費

平成11年度 1400千円

平成12年度 1000千円

平成13年度 1200千円

合計 3600千円



研究発表

学会誌等

水谷忠良

[11T･Mimtan1,0nexactPoissonmanifoldsofdimension3,Proceed-
ingsofFOLIATIONS:GEOMETRYANDDYNAMICS(ed.byP･

walczaketal)WorldScientific,(2002),371-386

[2]K･Mikami andTIMizutani,FohationsassociatedwithNambu-Jacobi
stmctures,prepri血

[3]Y･HgiwaraandT･Mizutani,Leibmi algebrasassociatedwithfoha-
tions,preprint

長瀬正義

ll]M.Nagase,TwistorspaceandtheSeiberg-Wittenequation,Saitama
Math.∫.,18(2000),39-60

[21M.Nagase,TwistorspacesandtheadiabaticlimitsofDiracoperators,
NagoyaMath.I.,164(2001),53-73

[3】M.Nagase,Theadiabatichmi tsofsignatweoperatorsforSpinyman-
ifolds,OsakaI.ofMath"38(2001),541-564

奥村正文

[11M.DjoriCandM･Okumwa,Oncontactsubmamifoldsincomplex

projectivespace,Ma比･N礼血 ,202(1999),17-23

[21M.Okum ul･a,CRsubmanifoldsofmaximalCRdimensionofcomplex

projectivespace,Bul1･oftheGreekMath.Soc･,44(2000),31-39

阪本邦夫

ll】K.Sakamoto,Variationalpl･Oblemsofnormalcurvatl∬etenSOrand

concircdarscalar丘elds,preprint

矢野 環

ll】央野鼠 君台観左右帳記の数理文献学的研究, ｢日本語学｣19(2000),
4-5

【2】竹内順一and矢野 環,｢名物記の生成構造｣, 茶道学体系第10巻
｢茶の古典｣(2001),45-108 (淡交社)

竹内喜佐雄

[1】K.TakellChi,Totanyrealalgebraicnum berfieldsofdegree9,Saitama
MathematicalJournal,17(1999),63-85

福井敏純

ll】T.Fu uiandI.Weyman,Cohen-MacauleypropertiesofThom-Boardman

strataI:Morin'sideal,Proc･LondonMath･Soc･,80(2000),257-
303

[2】T.FuuiandL.Paunescu,Stratificationtheoryfromtheweighted

pointofview,Canadian J.ofMath･,53(2001),73-97

[3】T.Fhkd,T-C.Kuo,L.Paunescll,ConstructingBlow-analyticls0-

morphisms,Am .Inst.Fourier,Grenoble,51(2001),1071-1087

(出版図書)

【4】徳永浩雄,島田伊知朗,石川剛郎,斎藤幸子,福井敏純 共著,特異点
の数理4代数曲線と特異点,(共立出版社),(2001),384ページ



口頭発表

水谷忠良

1Nambu_JacobiManifoldの菓層構造

｢接触構造,線叢,微分方程式｣(熱海)2000年1月14日

2FoliationsAssociatedwithNambu-JacobiManifolds)

"InternationalConfel･enCeFOLIATIONS:GEOMETRYANDDY-

NAMICS",2000年6月 (ワルシャワBanadlCenter)

3ト構造と菓層構造について

｢菓層構造論シンポジウム｣2000年10月18日 (日本大学八海山

セミナーハウス)

4Fohationの Sym plectic幾何 ｢葉層構造の位相的研究｣2001年10月23

日 (日本大学八海山セミナーハウス)

奥村正文

1CRsubmanifoldsofm血malCRdimensionofthecomplexprojective

Space

2000年9月,(ワルシャワ,Bana血 CeI止er)

2Thesecond鮎ndamentalfom andCRsubmanifoldsofmaDdmalCR

dimension.

"htemationalConferenceonGeometryandApplications乃2001年

8JHVama,Bulgaria)

研究成果

研究分担者は,それぞれの専門分野での研究を行ったが,ここでは研

究代表者および研究分担者 長瀬正義の研究成果を中心に述べる

｢

水谷忠良(研究代表者)

平成11年度 :平成11年度はNa血blユーJacobi多様体の特徴づけとそれに

同伴する葉層構造について研究した｡p-M の拡張概念として J-M

がある｡これは,p-JM がCoo(M)に括弧積 tf,9)を持ちLie代
数の構造を定めることのほかにライプニッツ則

(I,gh)-9(I,9)+If,91

を満たすことが要請されるのに対して,この要請をはずした構造を

もつ多様体として定義される｡PJは2-ベクトル場 Aと通常のベ

クトル場 Eを与えることによって得られる｡ただし,これらは次

の条件を満たさなければならない｡

lA,A]--2E Â,lE,A]-0･

括弧横との関係は

(I,gI-A(df,dg)-fE(9)+9E(I)

で与えられる｡

一方,q次の 南部ポアソン多様体 はfundam entalidentity

q
(fl,-,jTq-1,‡91,-,9qナナ-∑tgl,- ,tfl,I-,fq-1,gi),- ,gql･i=1

(1)
とライプニッツ則 を満たす括弧積を持つものとして定義されるが,

ライプニッツ則の条件をはずして血ndamentalidentityだけを要求

したものが 南部ヤコビ多様体である｡本研究では,この種の多様

体について㌢次の南部ヤコビ多様体 がどのような多重ベクトル場
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によって特徴付けられるのかを調べ,さらに自然に対応する菓層構

造についての結果を得た｡

これらの結果は秋田大学の三上健太郎との共著として論文

FoliationsassocaitedwithNambu-JacobistructWeS

にまとめ,その結果をワルシャワにおける研究集会で発表した｡そ

の後類似する選考する結果があることが判明して出版にいたってい

ない｡しかし,この方向の研究では基本的な結果であり,記述にも

特徴があり意義のある結果であると確信しているo

平成12年度,平成13年度:南部ポアソン多様体 にはLeibmi 代数が付

随する｡Leibniz代数とはベクトル空間gでt,]:gXg4gが

lgl,[9,,93]]-ll91,g2],93]+lg2,[91,93]]･

を満たすものであり,Lie代数 の性質から積 の反対称性の条件を

除いたものであるoNambu-Poisson構造に関連して,積分可能な

く分解可能)㌢次微分形式が与えられると(p+1)一次ベクトル場全体が
Leibniz代数 の構造を持つことがわかる｡12年度には,このような

状況でLie代数になるLeibniz代数の例を探したが･そのような例

はまれであることがわかっていた｡13年度には,このようなLeibniz

代数の同型類は菓層構造の同型類に対して定まり･さらに 菓層に

沿うベクトル場の作るLie代数 の中心拡大となっていることを観

察した｡さらに,この中心拡大とLeibniz代数 の2次元Leibmi コ

ホモロジー元との対応を明らかにした･その結果は次の論文として

まとめた｡今後の課題として興味深いのは,特異点を持つ場合に具

体的な切断を記述してその結果として得られる2次元コサイクルの

表示を求めることである

Y.HagiwararTmi utani"Leibmi algebrasassociatedwithfohar

tions叩

平成13年度にはこの他にPfaff系の幾何学的性質についての考察も
行った より具体的に述べると･次のような考察である接触多様体

にはよく知られているようにシンプレクティツク化が付随している

これは標準的なSym p多様体T*M のsymp部分多様体であるがこ

れは接触構造の完全積分不可能性を忠実に反映している これをモデ

ルにして,一般の按平面場の積分可能性と按平面場を定義するPfaff

系のrM の部分多様体としての性質との関係を調べようとするも

･のである按平面場が積分可能であれば対応するPfaff系 (r M の

6

部分バンドル)はcoisotropic部分多様体となり,symp直交する接

平面場はこの部分多様体上で積分可能になる この按平面場は最初

の按平面場-菓層構造のBott接続から得られるものになっており,

菓層構造の特性類との関係が注目される この研究では,コホモロ

ジーを多重ベクトル場が定義し,コホモロジーの積を多重ベクトル

場の交叉であると見直すことによってGodbinon-Vey類を多重ベク

トル場の交叉で捉える試みを行った これは,特異点のある菓層構

造の不変量の記述への応用が期待される

長瀬正義 (研究分担者)

るトウイスター空間のカイラルアノマリー (右手系か左手系かに関

する異常項)の初歩的研究に取り組んだ｡

anomaly(異常項)は物理学者の多用する用語である.特にglobal

(gravitational)an om aly,covariantanomaly,chiralanomalyは,辛
宙の幾何的構造と密接に関係しており,物理学的には非常に重要な

概念であることが知られている｡我々幾何学者に取っては ｢宇宙-

多様体｣であるから,それら概念は我々にとってもまた非常に重要

であろう.実際,globalanomalyはり一不変量,ホロノミ-の理論に

対応し,coⅧriantanonalyはQlユmen計量の理論に対応している,

と考えられる｡こうした少々荒い考察の後,当研究期間においては,

特に,数学的chiralanomaly"logdet(∂)"の定式化に取り組みほぼ

満足の行く結果を得た｡

平成12年度: 主に,Spin構造の変形物であるSpinq構造に付随す

るトウイスター空間の無限小カイラルアノマリーについての基礎的

研究に取り組んだ｡物理学サイドの言うカイラルアノマリーについ

てはそれをどの様に数学的に設定するかさえ唆味であった｡この研

究では,前年度得たそれの妥当な数学的設定の持つ様々な問題点に

ついて考桑を重ねた｡

第-の問題点は計量に依存して変化するスピノール束をある固定さ

れたスピノール束となんらかの手段で "標準的に同一視する''こと

であり,この研究ではBour如 gnon-Gauduchonの手放を参考にそ

の標準的同一視を与え,その下ウイスター空間に付随するある方向
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への無限小ディラック作用素の公式を導いた｡次にその無限小ディ

ラック作用素の与える無限小カイラルアノマリーの研究の足場とな

る "ディラック作用素の二乗に関係するある初期値問題の核"の基

本的性質について考察した｡実際には,その初期値問題をどの様に

設定するのか,その核の何をどの様な手段で考察するのか,本当に

充分役立つ情報が最終的に得られるのか,といった問題が絡み合っ

ており即断はできないが,ほぼ満足のいくところまで到達しており

･無限小カイラルアノマリーの本質的部分 "を引き出せる段階にま

で至っている｡ただし,それが真に本質的部分であるのかといった

問題も絡んでいることも記しておく｡カイラルアノマリーについて

は数学サイドから何を研究すべきかも唆味であり,この研究ではそ

の揺らえ所のない対象を何らかの意味で揺らえてみようとしている｡

平成13年度: 主にSpinq構造 (四元数 Spin構造)に付随するト

ウイスター空間の無限小カイラルアノマリーの本質的部分の抽出に

取り組んだ｡

前年度の数学的定義や意味付けについての考察の結果,そのアノマ

リー (logdet6x∂と記される)を (計量gZの与える)ディラック作
用素∂に付随する半群のCoo一核e-t∂2のある種の2階微分6i82e一昭
のトレース Tr(6i∂2e-t∂2)を使って定義することとし,特にそのト
レースのi4 0の場合の挙動の研究が重要であると認識した｡今
年度はそれの本質的部分と思われる断熱極限lime→ologdet6xaEの

研究に取り組んだ｡ここでaEはその下ウイスター空間の底空間方

向にE11だけ引き延ばした計量geZの与えるディラック作用素であ
り,対応してトレースn(6ieE2e-taE2)のt→0&E→0の場合の挙
動についての考察が重要となる｡そして当然その極限換作はt,e達

の減少スピードの相互関係をどう設定するかによって結果は大きく

異なると予想され,本研究では0<t<Ea(a>0)なる状態でのそ
の極限操作による極限値について考察したC研究分担者者は:,本質

的tL思われる断熱極限の真に本質的な部分はこの状態での極限操作

より得られ他の状態での極限は消えてしまうと予想しており,更に

その状態での極限値については予想 (充分な準備が必要なので厳密

な記述は避ける)を持っている｡

奥村正文 (研究分担者)

極大CR次元を持つCR部分多様体には特別な性質を持つ法

線ベクトルが定義でき,この法線を用いて概接触構造が部分多

様体上に自然に導入される｡今回は,複素射影空間の極大CR

次元を持つ CR部分多様体の概接触構造が接触構造となる場

合について研究し,このような極大 CR次元を持つ CR部分

多様体を複素射影空間のなかで完全に決定した｡

阪本邦夫 (研究分担者)

極小曲面とWillmore曲面,更に法曲率テンソルに関する変分

間題の臨界部分多様体について研究した｡特にコンパクト部

分多様体の次元が4で法接続が自己双対又は反自己双対であ

るとき,臨界的であることを示した｡更に,曲面の場合を考察

し,汝曲率ベクトルの長さがOでない定数でcurvatureellipse
が円という条件下では,臨界的であることとⅦllmores11血ce

であることとは同値であることを示した｡これに関連してS_
Willmorepointの対数的留数についての公式を得た｡この公

式は留数と共形不変量及びオイラー数との関係の研究も必要と

なり以前に田代氏によって得られた結果を一般化した｡

竹内喜佐雄 (研究分担者)

一次元および高次元有界対称領域に作用する不連続群のうち

で､特に数論的に定義された群について研究をおこなった｡特

に,9次以下である代数体kについて,その判別式d(k)の小
さいもののリストを作り,それぞれについて整数底を具体的に
決定した｡

矢野 環 (研究分担者)

｢山上宗二記シンポジューム｣(五島美術館,平成7年11月)

において,およそ50件の異本がいくつかの系統に分類して紹

介された｡それを聞いて,より重要な室町時代の美術書と言う
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能であることを確信した｡
その研究結果が【11である｡また,
その手絵を更に発展させ,
生物の種の分化の如く,
名物記の生

成構造図を得ることに成功した｡

福井敏鈍く研究分担者)

【1]では写像のジェット空間におけるトム･ボードマン多様体

の特異点がシチギーの幾何学的構成陰を使って解析されること

を示した
｡
【2]では位相自明化を構成するイソトピー補題につ

いて考察した重み付き(W)正則性の概念を導入しその基本的

性質を明らかにした
｡

江頭借ニ (研究分担者)

コンパクト多様体上の C2級より弱い微分可能性における余吹

元1葉層構造の定性的理論を研究した｡これと平行してDenjoy

の定理において C2級の微分可能性がある場合,Cl級と比較
して定性的に大きな制限が生じることがわかっているが,この

制限を生じさせる微分可能性の `̀下限"を探る研究も行った｡

また,菓層構造のGV不変量と定性的理論の関係,エントロ

ピーと定性的理論の関係,例外型局所極小集合の横断的ハウス

ドルフ次元やハウスドルフ測度について研究を行った｡特に余

次元 1菓層構造の例外型局所極小集合の中で典型的に生成さ

れるタイプの集合の場合,横断的ハウスドルフ次元が 0にな

ることが予想されるが,まだ解決に至っていない｡
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Foliations associated with Nambu-Jacobi structures

Kentaro MIKAMI and Tadayoshi MIZUTANI
Akita University, Akita, 010-8502, Japan

and
Saitama University

Urawa, 338-8570, Japan.

Jan 28, 2001

Abstract

We define a Nambu-Jacobi structure as a bracket of several functions which
satisfies the Fundamental Identity. Then we express the Nambu-Jacobi struc­
ture in terms of two tensor fields and show the necessary and sufficient con­
ditions they should satisfy. We investigate the foliations associated with a
Nambu-Jacobi structure. This allows us to give many examples of Nambu­
Jacobi manifolds.

1 Introduction and Definitions

It is well-known that a Poisson manifold has its associated foliation. It is a gen­
eralized foliation in the sense of Stefan and Sussmann whose leaves are immersed
symplectic manifolds. In the case of a Jacobi rnanifold(in the sense of Lichnerowicz),
we have also a generalized foliation whose leaves are either symplectic or a contact
manifolds. In this paper, we consider the case of Nambu-Poisson and Nambu-Jacobi
manifolds. First, we review briefly the definition of a Nambu-Poisson manifold and
its natural generalization 'Nambu-Jacobi' manifold.

Let Coo (M) be the set of smooth functions on a manifold M.

DEFINITION 1 {... } is called a Nambu-Poisson bracket of degree q if it is a
skew-symmetric q-linear map

{... } : Coo(M) x ... x Coo(M) -t Coo(M)
, v J

q

which satisfies the following:

1

-i



r

2

~~. .
Remark Sometimes it is more convenient to write the Fundamental Identity m

the following form.

{{h, ... ,fq}, g2,'" ,gq} = {{h, g2, .. · ,gq}, 12,· .. , fq}
+ {h, {h, g2,"" gq}, 12,···, fq}

+ .
+ {h, 12,··· ,fq-ll {fq, g2,' .. ,gq}}'

A dix se this formulation which is equivalent to condition (1).
In ppen we u

As in the case of usual poisson bracket, this is also equivalent to the existence

of a q-vector field 'fJ 01). M satisfying

(d'of d'of) {f .f} for h,···, fq E COO(M),'fJ 'II, .. " 'l/q = 1l ... ,Jq

('fJ(d!q-1),'fJ) = L",(d!q_l)'fJ = 0 for h,···, f q-1 E COO(M),

d.f (d!) stands for the vector
h e d! is the abbreviation of df1 /\ ... /\ 'l/q-l, 'fJ q-1 . d b

w er q-1 d.f .) on M which is the Hamiltonian vector field determme Y
field 'fJ(dh,· .. , 'Iq-ll , . L' d . t'
several functions (cf. (1)), and L",(d!q_l)'fJ IS a Ie enva 1ve.

DEFINITION 2 'fJ is called a Nambu-Poisson tensor of degree q.

A Nambu-Poisson tensor has the following striking property.

THEOREM 1 (P. Gautheron(2) K. Mikami(3), N. Nakanishi(9)) It q is gre~~:

~han?, Nambu-Potisson .tetS;{e~fo~g;e~e~g~b~::~~dd:j:O;;:~~'t[~: ::s~n:eetor
if 'fJ 'tS non-zero a a po'tn ,
fields Yi, ... ,Yq so that'fJ can be written as

'fJ = Y1 /\ ... /\ ~.

(1.1)L CIIh..Iq (OII !l)(OI2h)'" (OIqfq),

III19,1hI9···II q19

We call the map A a bracket of degree q and often write {!l, ... , fq} for A(!l, ... ,fq).
We always assume a bracket satisfies the following conditions:

(a) The map A is continuous with respect to Coo topology, and

(b) supp{!l, ... , fq} C suPP!l n··· n suppfq.

When q = 1, we understand A is just a linear map. By a theorem of Peetre[10]'
these conditions assure that the bracket is a differential operator and the resulting
function is written in terms of the derivatives of the argument functions of A.

Now we define a Nambu-Jacobi manifold and see that the bracket of a Nambu­
Jacobi manifold is described by a pair of two multi-vector fields. Let us begin with
a general definition.

Let M be a Coo manifold and Coo (M) the algebra of smooth functions on M.
For an integer q ~ 1, we consider an alternating q-linear map

3

DEFINITION 3 IT A is a bracket of degree q on M which satisfies the F\mdamen­
tal Identity in Definition 1, we call A a Nambu-Jacobi bracket. A smooth manifold
with a Nambu-Jacobi bracket is called a Nambu-Jacobi manifold.

q

THEOREM 2 Let M be a smooth Coo manifold of dimension n and A a Nambu­
Jacobi bracket ofdegree q ~ 2 on M. Then on a coordinate neighbourhood (U, Xl, ... , xn )

of M, A(f1, ... , fq) is given by the formula

We remark that when q = 2, a Nambu-Jacobi manifold reduces to a usual Jacobi
manifold. The Leibniz rule in the definition of a Nambu-Poisson bracket clearly
implies our condition (a) and (b) on bracket. Thus a Nambu-Poisson manifold is a
special case of a Nambu-Jacobi manifold.

We first remark that a Nambu-Jacobi bracket is a differential operator of order
at most 1. Indeed we have the following:

where CIIh"Iq is a function, la denotes a multi-index (i~a), ... ,i~a)) and Ilal
i~a) + ... + i~a). OI stands for (odil ... (on)in, Oi = OjOXi'

r
I
t.

I
t
t.
L

I

(Fundamental Identity or Generalized Jacobi Identity)

q

{f
of {g . . , g}} = '"'{gl,.·· ,{h,··· ,fq-ll gi}," . ,gq}

1, .. , ,J q-I, 1, ,q L..J
i=l

where h, ... ,fq-1' gl,'" ,gq E COO(M).

f h b lr. t the usual derivation rule
(Leibniz rule) For each argument 0 t e raC.l\.e,

holds, that is, for h, ... , fq+1 E COO(M)

{f of 1 of of +1} = {fll"" f q-ll fq} fq+1 + fq{h,··· ,fq-l, fq+1}
1," ., Jq- lJqJq

(2)

(1)



p+q-l

p+q

by

(2.3)

P f- Q: POO(M) x '" x COO(Ml---+ COO(M)
v

Na~ely, they satisfy [P, Q] = 0, [Q, Q] = -2P /\ Q if and only if the bracket
satIsfies the Jacobi identity, where [".] is the Schouten-Nijenhuis bracket (cf. (3.1).)
Therefore our interest is on the case deg P ~ 2.

To proceed our calculations, we introduce the following notations.

DEFINITION 5 For a p-vector field P and a q-vector field Q (p > 2 q> 1) which
are both considered as brackets, we define a map - , -

(JPQ)(fI, ... ,fp-l; 91,"" 9q)

= P(fI,· .. , f p-1, Q(gl" " ,gq))

- (Q(P(fI,··· ,fP-l' 91), 92,··· ,9q) - Q(9l, P(fl'" ., fp-l, 92), 93,· .. , 9q)

- " . - Q(9l," ., 9q-1, P(fI,···, fp-l, 9q)) (2.1)
fI,· .. ,fp-l, g1, . .. ,gq E COO(M)

Note that JPQ can be considered as a contravariant tensor field but does not define a
bracke~since it is not fully alte~ating with respect to the argument functions. Note
thatpJ P = 0 means that P satisfies the Fundamental Identity. The same formula
as J Q can be defined for any brackets( not necessarily given by multi-vector fields).
In the present case, where ~he init~al brackets are defined by multi-vector fields (P
and Q), we have the followmg eqUlvalent expression.

JPQ(fl, ... , fp-l; 91, ... ,gq) = [P(dfp-l' .), Q] (dg1, ... , d9q) (2.2)

where dfp_l = dfl /\ ... /\ dfp-l as before, P(dfp-l") = P(dfI, ... ,dfp-l") is a
~e?tor. field and [P(dfp-l, '), Q] = Lp(dfp_l,.)Q is a Lie derivation. Thus JPQ = 0
IS eqUlvalent to that the 'Hamiltonian vector fields' preserve Q .

We also need the following map

DEFINITION 6 For a p-vector field P and a q-vector field Q (p ~ 2, q ~ 1),
we define a map

JPQ: gOO(M) x '" x COO(M)" -+ COO(M)
'"

(P f- Q)(fI, , fp-l; go,· .. ,gq) = (P(dfp_l") /\ Q)(dgo, .. . ,dgq)

where dfp_l = dfI /\ /\ dfp-l'

by

5

r
I

I
I

Notation: In the sequel, we frequently use the contraction of tensor fields. For
example, let Q be a q-vector field and a = al /\ ... /\ a p a p-form (p ::; q). We
denote the contraction Q and a by the following various notations, interchangeably.
ia.Q = Q(a) = Q(a,') = Q(al/\ .. , /\ ap, .).

We consider the bracket A defined by (p+ I)-vector field Q and p-vector field P, by
the equality A = Q+1/\P. We now look for the conditions on P and Q under which
A satisfies the Fundamental Identity. Namely the conditions that make (Q, P) a
Nambu-Jacobi pair. When degP = 1 and degQ = 2, the Nambu-Jacobi pair
Q + 1/\ P is a usual Jacobi bracket and the conditions on P and Q are well known.

4

Then we have the following observation on'a Nambu-Jacobi bracket.

2 What the Fundamental Identity means

p+l

(1/\ P)(fI, ... ,fp+!) = ~(_I)i-l fiP(dfl, .. · ,dti'''' ,dfp+!) (1.2)
i=l

DEFINITION 4 We call the pair (Q, P) a Nambu-Jacobi pairif Q+ 1/\ P defines

a Nambu-Jacobi bracket.

LEMMA 3 Let A be a Nambu-Jacobi bracket of degree q (q > 2). Then there exist
uniquely a q-vector field Q and a (q - I)-vector field P which are Nambu-Poisson

tensors such that A = Q+ (1/\ P) holds.

Proof Let p = q - 1 and put B(fI, ... , fp) = A(I, fI,···, fp)· Then it is easily seen
that B is a bracket of degree p and satisfies the Fundamental Identity. From the
skewness of A, B(fI, ... , fp) = 0 if one of the arguments is a constant function.
Thus, the order of B as a differential operator is exactly equal to 1. This means B
is defined by a p-vector field P. Now put C = A -1/\ P. Then by the same reason
C is also a bracket defined by a q-vector field. Denoting it by Q, we obtain Lemma
3. Uniqueness is verified easily.

This theorem allows us to describe a Nambu-Jacobi bracket in terms of a pair of
two multi-vector fields on M. Let P be a p-veetor field on M. P naturally defines
a bracket of degree p by (fl"'" fp) t-+ P(dfI, ... , dfp)· We denote this bracket by
{fI, ... ,fp}P or sometimes by P(fl,"" fp) when there is no danger of confusion.
This notation is analogous to the notation X (f) to denote the derivative of a function
f by a vector field X. We define a new bracket 1/\ P of degree p +1 by the formula

In fact, this will be shown along the line of the proof of Kirillov (see for example

[6]).



- -1

Q(Yb ... ,~, ... ,Yq) =1= 0 for some i.
i

Q(Y1' ... ,Yq) =1= O.

We can find an element x E V such that x /\ Y1 /\ ... /\ Yq =1= 0 andclaim

q

cp' V ---+ R' X H- '""'Q( ). . L...J Y1, ... ,~, ... ,Yq .
j=1 j

s~ace..Put B = P f- Q. It suffices to show that BIV = 0 for arbitrary (p + q)­
dimenSIOnal subspace V. From the definition, if Qlw = 0 for any q-dimensional
subspace W C V, then clearly BIV = O. So assume Qlw =1= 0 for a q-dimensional
subspace W. Then there exist Yl,"" Yq E W satisfying

(proof of claim) Consider the following linear functional on V

We have

(2.4)

PROPOSITION 4 Let A = Q + (1 /\ P) be a bracket of degree q = p + 1 defined
by p-veetor field P and q-vector field Q. Then a necessary and sufficient condition
for the bracket A to be a Nambu-Jacobi bracket is that P and Q satisfy the following

four identities.

Bya direct computation we can express the left hand side of this equation (2.4)
so that a certain sum of multiples of functions consisting of {... }P, {... }Q, and ii,
gj which are outside of the brackets { ... }P or { ... }Q.

Although it is straightforward, the computation is lengthy. We will do it in

Appendix separately.
The relations of P and Q which we obtain are in the following:

Also, P f- Q is not a bracket in general. Note that P f- P = 0 if and only if P is a

locally decomposable.

In order to get the relation between P and Q in A = Q + 1 /\ P, we need to
calculate JAA since the condition that A is to be a Nambu-Jacobi bracket is

(1) JPp = 0,

(2) JPQ = 0,
(3) JQ P(d/p;"') + (-1)P+1Q(d(P(d/p)),"')

p

+L(_1)i(p f- P)(dil'" dJi'" dfp; dfi,'" ) = 0,
i=1

p

(4) JQQ(d/p;' .. ) +L(_1)i(p f- Q)(dil" . dJi'" dfp; dfi,' .. ) = 0,
i=1

where d/p stands for differential form dil /\ ... /\ dfp·

Proof As is stated above, this is done in Appendix by a direct but a long calcu­

lation. 0

To simplify the above identities we need the following two lemmas.

LEMMA 5 Let P and Q be multi-vector fields of degree p and q, respectively. If
P f- Q is also a multi-vector field (i.e. P f- Q is a skew symmetric tensor field) and
p ~ 3 and q ~ 1 then P f- Q vanishes identically.

Proof Considering the equation at each point of the manifold, we may assume the
case when P and Q are alternating multi-linear maps on finite dimensional vector

and

Y2 - Yl, . .. ,Yq - Y1 E Ker cp

Since dim Ker cp = p + q - 1 and p ~ 1, we find an element Z E Ker cp so that

Z, Y2 - Yl, ... ,Yq - Y1 E Ker cp

are linearly independent. Then it can be seen that the set

Z + Y1, Y1, Y2, . .. ,Yq

is linearly independent and x = Z +Yl is an element with desired property. Indeed
we have '

q

~ Q(Y1,'" ,~, ... ,Yq) = cp(x) = cp(z + yr) = CP(Yl) = Q(yl, ... ,Yq) =1= O.
3=1 j

This means there exists some i such that

Q(Y1,'" ,~, ... ,Yq) =1= O.
i

(end of the proof of claim).

6
7
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which is identically equal to 0 by Proposition 4. Thus we have

PROPOSITION 7 If (Q,P) is a Nambu-Jacobi pair and degP = p ~ 2, then
P I- P = 0, P I- Q = 0 and Q I- Q = O.

(2.7)

(2.8)

(2.9)V* = I< EEl L

9

P(x,') /\ Q(x,',') = 0 for x E V*.

P(x, y)Q(x, z,w) - P(x,z)Q(x,y,w) +P(x,w)Q(x,y,z) = o.

0= [P(d(h1h2),df2, ... ,dfp-1, ~), Q] = [P(h1dh2+ h2dh1,df2, ... ,dfp-1, '), Q]
= [h1P(dh2 , df2"" ,dfp-1, '), Q] + [h2P(dh1,df2, ,dfp-1' '), Q]
= hI[P(dh2 , df2, ,dfp-1' '), Q] - (P(dh2 , df2, ,dfp-1") /\ Q(dhd)

+h2 [P(dh1, df2, ,dfp-1, '), Q] - (P(dh1, df2"" ,dfp-1") /\ Q(dh2 )

-:- -(P(dh2, df2, ,dfp-1") /\ Q(dh1)) - (P(dh1,df2, ... ,dfp-1,') /\ Q(dh2)

iFrom this it is easy to see the identity (2.5) holds.
The cases of PI- P and Q I- Q are proved by similar calculations using (1) and

(4) in Proposition 4. 0

Remark In a similar way, what we obtain from (3) in Proposition 4 is the following
relation.
The function

is skew symmetric with respect to the all arguments. In particular, if h = gl the
above function vanishes.

By the above two lemmas, we have most part of the following:

Proof For p > 2, the statement is obvious from Lemma 5 and Lemma 6. The case
p - 2 is treated separately.
Proof when p = 2. Assume A is a Nambu-Jacobi bracket. First, we prove Pis
decomposable 2-vector at a point where Q =I- O. As before, we consider P and Q
are 2-vector and 3-vector of a vector space V. Since degQ = 3, by Lemma 5 and
Lemma 6, we have Q I- Q = 0 that is Q is decomposable. The condition P I- Q is
fully skew symmetric means that

Taking the value at (y, z, w) we have

Regard Q as a linear map V* -+ /\2V and fix a direct sum decomposition

P(x, u, T) = 0 for all (p - 2)-tuple T.

For any (p - 3)-tuple of vectors T' and q-tuple of vectors T" in V, we have

B(x, u, T'; T") = (P(x, u, T',') /\ Q)(T") = 0

( p ~ 3 is necessary here). . .
Since we are assuming B is a multi-vector and {x, u} are linearly mdependent,

this clearly shows BIV = O. 0

The next lemma shows that in our case, P I- P, P I- Q and Q I- Q are proved
to be multi-vector fields and we can apply Lemma 5 to the identities in Proposition

4.

LEMMA 6 Let A = Q + (1 /\ P) be a Nambu-Jacobi bracket determined by q­

vector field and p-vector field P, (q = p + 1). Then P I- P, PI- Q and Q I- Q are
fully alternating and hence they are multi-vector fields.

Proof To prove P I- Q is a multi-vector field, we have only to verify skewness of
PI- Q, namely the identity

(P I- Q)(h1, 12,· .. ,fp-1; h2 , gl,'" ,gp+l)
+(P I- Q)(h2 , 12, ... ,fp-1; h1, g1, . .. ,gp+1) = 0 (2.5)

q

= -P(T,X,~Q(Y1'''' ,~, ... ,Yq)Yj)
j=l j

for arbitrary functions h1,h2 , 12,··· , fp-1, g1, ... ,gp+1'
For this, we calculate

JP Q(h1h2 ,f2, ... ,fp-1;gl,'" ,gp+l)
= [P(d(h1h2),df2, ... ,dfp-1,·),Q](dg1, ... ,dgp+l)

8

0= B(T,x;x, Y)
= (P(T, x,,) /\ Q)(x, Y)

q

= P(T,x,x)Q(Y) - ~P(T,x,Yj)Q(Y1"" ,~, ... ,Yq)
j=l j

q

If we put u = ~Q(Y1,' ., ,~, ... ,Yq)Yj, this shows
.1=1 j

For x and Y = (y1, ... ,Yq) which we found above and for any (p - 2)-tuple T,
we have
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(1) [P(dJp-l, '), P] = 0,

(2) [P(dJp-ll')' Q] = 0,

(3) [Q(d/p; '), P] = (-1)PQ(d(P(d/p)) , '),

(4) [Q(d/p, '), Q] = O.

hold, where dJp-1 stands for dfI A ... A dfp-I.

Proof By Proposition 7, the conditions in Proposition 4 reduce to the above for­
mulas. Conversely, assume that P and Q satisfy the above formulas. Then we have
the same conclusion as those of Lemma 6. Thus if p > 2, we have P f- P = 0, P f­
Q = 0, Q f- Q = 0 by Lemma 5. If we assume P is decomposable when p = 2, we
can get the same conclusion by the argument of Lemma 7. Consequently, P and Q
satisfy the conditions in Proposition 4. 0

11

rankP ~ 2 is when p = 2. Then A is a Nambu-Jacobi bracket if and only if the
following conditions are satisfied.

For any functions fI, 12, ... ,fp E COO (M),

3 Associated Foliations

Since P f- Q = 0 means P(dJp-ll ·)AQ = 0, in the case when P is non-zero, Q is
a multiple of P. Thus we have a vector field v satisfying Q = v A P. It is desirable, in
this case, to find the conditions on P and v which imply the Fundamental Identity.
This will be done in the next section.

In this section, we investigate some geometric structure of Nambu-Jacobi manifold,
namely the associated foliation which is given by the characteristic distributions of
the structure. As is well-known, the Jacobi identity of a Poisson manifold implies
the integrability of the characteristic distribution of the Poisson structure. This
leads us to the foliation by symplectic leaves. This foliation is singular in general
in the sense that the dimension of the leaves varies from point to point. Simi­
larlyon a Nambu-Poisson manifold we have a foliation and a contravariant volume
tensor(multi-vector field of highest degree on a manifold) on each leaf. Theorem 9
below may be considered as a geometric characterization of a Nambu-Poisson man­
ifold. We mean by the characteristic distribution of a p-vector field 7J the image of
the bundle map B1j : Ap-IT*M -+ T M where B1j (0:) = 7J(0:, .).

Recall that the generalized divergence of 7J is defined as follows. Let V' be a torsion
free affine connection on T M. V' gives a map V' : r(APTM) -+ r(T*M) ® r(APTM).
Let

c : r(T*M) ® r(APTM) -+ r(AP-ITM)

(2.13)

(2.12)

(2.11)

(2.10)

P(x, y)Q(x, z,·) - P(x, z)Q(x, y,') + P(x, .)Q(x, y, z) = 0,

This clearly shows that P is decomposable.
Thus we proved P f- P = 0 and P f- Q = 0 hold everywhere. This finishes the

o
proof in the case where p = 2.

By the above Proposition 7, the identities in Proposition 4 are simplified as in

the following form for p ~ 2.

THEOREM 8 Let A = Q + (1 A P) be a bracket on a manifold M, which is
given by a (p + 1) -vector field Q and a p-vector field P where p ~ 2 and assume

and as we saw above P maps K to O. This means 1m P C 1mQ. l,From this we
have P(x,') A Q = 0 for any x E V*. This shows P f- Q = O. .

If at a point a, Q = 0 and a is in the closure of the set where Q =1= 0, the seIDl-
continuity of the rank assures that rank P ~ 2 and we have P f- P = 0, P f- Q = 0

in this case too. .
Finally, we consider the point where Q vanishes identically on some ~el~bour-

hood of the point. In this case Proposition 4 (3) says P is a 2-vector satIsfying

P(x, y)P - P(x,·) A P(y,·) = 0 for x, y E V*

Since rankQ = dimL = 3, rankP must be 2 and P is a decomposable 2-veetor

hence P f- P = O. 2 *
Next we prove P f- Q. Regard Q and P as linear maps A V* -+ V, V -+ V,

respectively. Since we have

From this we see that

P(x, w)Q(x, y, z) = O.

P(x, y) = 0 unless x, y E L.

Given 0 =1= x E L, we can choose y, z such that Q(x, y, z) =1= O. Thus, we have

P(x,w) = 0 for any x E L,w E K.

If we replace x by x + v, (v E K), in (2.10), we have

(P(x,w) +P(v,w))Q(x,y,z) = P(v,w)Q(x,y,z) = 0 wE K.

where K = kerQ and L is a complementary subspace which is isomorphic to ImQ.

If w E K, from the above relation we have
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(3.2)

(3.3)

['fJ(f3, '),'fJ] = (-l)P'fJ(df3)'fJ

+ 'fJ(f3, .) /\ Div'fJ + (-l)P (Div 'fJ) (f3)'fJ

13

['fJ(f3, '), 'fJ] = Div('fJ(f3, .) /\ 'fJ) - (Div 'fJ(f3, .))'fJ + 'fJ(f3, .) /\ Div'fJ

= (-l)P(Div'fJ)(f3)'fJ + (-l)P'fJ(df3)'fJ + 'fJ(f3,') /\ Div'fJ.

Then we have
p

Div'fJ = L(-1)i-1X 1 /\ ... /\ (Div Xi) /\ ... /\ X p

i=l

"" i+ "-1 A A+ L..".(-1) J [Xi,Xj ] /\ .. ,Xi /\ ... /\Xj /\ ... /\Xp

i<j

This shows CPt preserves 1m B1)' Clearly, the set of vector fields 'fJ (dfI, . .. ,dfp-1,')
for various functions span ImB1)' Thus we may choose the {'fJ(dfI, ... ,dfp- q ,')} to
beX.
(2) =? (3). Since 'fJ is decomposable p-vector field, on a neighbourhood of each point
a E U, we can choose a set of vector fields X1,X2, ••. ,Xp Xi E r(ImB1))such
that

Since 1m B1) is integrable, [Xi, Xj] is a linear combination of XI, X 2 , .•. ,Xp at each
point of U. Thus Div'fJ is a (p-l)-vector field which is generated by X1,X2 , ..• ,Xp
and hence a cross-section of the bundle /\P-1(ImB1))' Define

J1) : (1m B1))* -+ /\p-1 (1m B1))

to be the bundle map given by J1)(a) = 'fJ(a,') = ia'fJ. Clearly it is a bundle
isomorphism on U where 'fJ is non-zero. This assures that there exists a I-form I on
U such that i-y'fJ = Div'fJ.
(3)=?(1). First we note the following formula.

LEMMA 10 Let f3 be a (p - I)-form and'fJ a decomposable p-vector field on M.
Then we have the following equality.

Proof of lemma: Taking the contraction on both sides of

we have

Thus we have

Div'fJ = c(V('fJ)).

12

[P, Q] = Div(P /\ Q) - (Div P) /\ Q - (-l)PP /\ DivQ (3.1)

(cpt)*('fJ(dg l , ... ,dgp_I, .))
= «cpt)*'fJ) «cpD- I (dg1), .. , ,(cp;)-1(dgp_1),')

= 'fJ(d(gl 0 CPt l
) , ... ,d(gp-1 0 CPt1

), .).

Div'fJ = i-y'fJ.

Proof (1) =? (2). By an integrability theorem of Sussmann-Stefan, it is sufficient
to prove that on a neighbourhood of each point in M, there exists a set of vector
fields X such that

(a) at each point of M, X spans 1m B1)'
(b) the local I-parameter subgroup of diffeomorphisms generated by a vector

field belonging to X leaves 1m B1) invariant.
We discuss every thing locally. Let CPt (-£ < t < £) be a local I-parameter subgroup
of diffeomorphisms generated by a vector field 'fJ(dfI, ... ,dfp-b .). By (1), we have

L1)(dfl,... ,d!p-l,.)'fJ = o.

This means (cpt)*'fJ = 'fJ. Thus for 'fJ(dgb ... ,dgp- 1,') in ImB1) we have

where p is the degree of P. It is independent of the choice of connections. In wh~t

follows, we choose once and for all a Riemannian connection on T M and the DIV
will be the one which is associated with this connection (See also [4]).

THEOREM 9 Let 'fJ be a decomposable Coo p-vector field on a Coo -manifold M .
Then the following statements are equivalent.

(1) The bracket {fI, ... ,fp}"1 = 'fJ(dfI, ... ,dfp) satisfies the Fundamental Identity.

(2) The characteristic distribution of'fJ is integrable (in the sense of Sussmann and
Stefan).

(3) On the open set U where'fJ is non-zero, there exists a smooth I-form I which
satisfies the equality

One of the definition of the Schouten bracket of multi-vector fields is given by the

formula

be the map given by the contraction of I-forms and p-vector fields. The generalized
divergence Div'fJ associated with V is defined by

II. II
:1. ,
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A=Q+l/\P

oshows that v preserves foliation :Fp.

We have the converse.

THEOREM 12 Let P be a regular Nambu-Poisson tensor of degree p ~ 2, which
we assume decomposable when p = 2. Suppose that there exists a vector field v which
satisfies

LvP = <pP

for some smooth function <p. Define (p + I)-vector field Q by Q = v /\ P. Then the
pair (Q, P) is a Nambu-Jacobi pair, namely the bracket

((LvP)(dfp_l' .)) /\ P = 0

0= [P(dfp_l' '), Q] = [P(dfp-ll')' v /\ P]

= [P(dfp-l' '), v] /\ P + v /\ [P(dfp-l, '), P]

= [P(dfp-l' '), v] /\ P

because [P(dfp-l) , P] = O. But [P(dfp-l, '), v] /\ P = 0 is expressed as

-(LvP)(dfp_l' .)) /\ P - (P(Lvdfp_l' .)) /\ P = 0

and (P(Lvdfp_l' .)) /\ P = 0 because of the decomposability of P. Thus we have

for arbitrary (p -I)-form dfp-l' Again by the decomposability of P, we see LvP is
a multiple of P. Thus we have a function <p satisfying LvP = <pP. The equation

Proof By Theorem 8, we have

[rJ(dh, ... ,dfp-b'),rJ] = 0

0= i,(rJ /\ rJ(dh,· .. ,dfp-b .))

= i,(rJ) /\ rJ(dh,··· ,dfp-l") + (-I)PrJ(dh,·· . ,dfp-l' ,)"1
= (DivrJ) /\ rJ(dh, ,dfp-l") - ((Div rJ)(dh, ... ,dfp-l))rJ

= (-I)P-l[rJ(dh, , dfp-l, '), "I].

on the whole M and the bracket {... }'I/ satisfies the Fundamental Identity.

Now we are going to investigate the foliation associated with a Nambu-Jacobi
structure. Let A = Q + (1 /\ P) be a Nambu-Jacobi bracket on a manifold M,
which is given by a (p + I)-vector field Q and a p-vector field P. Then by Theorem
8 (1) of preceding section, [P(dh, ... ,dfp-l, '), P] = O. Th~s. P is a Nam~u-Poiss~n
tensor and its characteristic distribution is integrable, gIvmg a generalized folia­
tion(Theorem 9). We denote this foliation by :Fp . Exactly the same thing h~lds
for the (p + I)-vector field Q. Thus we have two foliations :Fp and :FQ of M. Frrst
we restrict our attention to the case when P is non-zero or it may be said that we
consider the foliations of the open set of M where P is non-zero. By Proposition 7,
P f- Q = O. This is equivalent to

We used Lemma above for {3 = dh /\ ... /\ dfp-l.
If a E M \ U, rJla = 0 and the right hand side of the above lemma is equal to 0

and thus [rJ(dh, . .. ,dfp-l' .), rJ]la = O.
Consequently, we have

Note that rJ({3,') /\ "I = 0 holds by the decomposability. 0

We continue the proof of Theorem. Since "I /\ rJ(dh, ... ,dfp-b .) = 0 on U, we

have

P(dh, ... ,dfp-b') /\ Q = 0,

for any (P-l) functions dh, ... , dfp-l. On a neighbourhood of a point where P =1= 0,
we have functions dh, ... ,dfp such that P(dh, ... ,dfp) =1= O. Thus the set of vector
fields {Xl, ... ,X p} where Xi = P(dh, ... , dfi" .. ,dfp) is linearly independent at
each point. From the above relation, Q is a multiple of Xi'S and consequently, there
is a vector field v such that Q = v /\ P. A partition of unity argument assures that
we may consider v a global one.

PROPOSITION 11 The vector field v preserves the associated foliation fP' In

fact, there exists a function <p such that LvP = <pP holds.

14

defines a Nambu-Jacobi structure.

Proof Since we are assuming the decomposability of P, it is sufficient to verify the
conditions (1)-(4) of Theorem 8.
Condition (1) is our assumption. Condition (2) asserts that [P(dg, '), Q] = 0
holds for any dg := dgl /\ ... /\ dgp- l ' This is easily verified as follows by using
[P(dg, '), P] = 0 and the decomposability of Pi

[P(dg, '), v /\ P] = [P(dg, '), v] /\ P + v /\ [P(dg, '), P]

= -(<pP(dg,,) + P(Lv(dg) , .)) /\ P = O.

We verify Condition (4), first.
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S' Q = v /\ P is decomposable, from the view point of Theorem 9, it is enough
t:~: the integrability of the characteristic distribution:FQ of Q on open set where

Q =I O. Locally, we can write P and Q as follows.

P = hXl /\ .. ·/\ Xp, Q = hv /\ X l /\···/\ Xp

where Xi is a local vector field of the form P(dh /\ ., . /\ t!Ji ~ .... /\ dfp) and h is
a function. The vector fields Xl,' .. ,Xp , v generate the dls~nbutlOn !Q and they
form a involutive system since :Fp is integrable by assumptlOn and smce we have

the following:

[v, P(dg, .)] = Lv((P(dg, .))
= (LvP) (dg, .)) + P(Lvdg,,)

=P(r.pdg + Lvdg, .).

Now we use the assumption that there exits a I-form such that Div P = i-yP (The­
orem 9). Then the above (3.6) is equal to

(-l)P(i'YP)(iv(df)))P + (-l)PP(d(iv(df)))P + P(iv(df)) /\ (i-yP)
+ (-l)PP(df) [v, P] + (-l)PHv /\ P(d(P(dJ)),.)

= -i-y(P(iv(dJ)))P + (-l)PP(d(iv(df)))P + P(ivdf) /\ (i-yP)
+ (-l)PP(df) [v, P] + (-l)P+lv /\ P(d(P(df)),')

= -i-y(P(ivdf) /\ P) + (-l)PP(div(df))P
+ (-l)PP(df)r.pP + (-l)PHv /\ P(d(P(df)) , .)

= (-l)PP(Lv(df))P + (-l)PP(df)r.pP + (-l)PHv /\ P(d(P(df)) , .)
= (-l)PLv(P(df)P + (-l)PH(LvP)(df)P

(-l)PP(df) (r.pP) + (-l)PH v /\ P(d(P(df)) , .)
= (-l)P+1v /\ P(d(P(df)) , .) + (-l)PLv(P(df))P.

we calculate as follows:

and a general formula

Div(P(a)) = (_l)dega(Div P)(a) + (_l)degaP(da) , (3.5)

[Q(dJ, '), P]
= [P(iv(dJ), .), P] + (-l)P[P(df)v, P) . .
= Div(P(iv(dJ, .)) /\ P) - Div(P(iv(df)), ·)P + P(~v(dJ),·) /\ DIV P

+ (-l)PP(dJ) [v, P) + (-l)PHv /\ P(d(P(dJ)) , ... ) . .
= (-l)P((Div P)(iv(dJ)))P + (-l)PP(d(iv(dJ)))P + P(~v(dJ),·) /\ DIV P 6

+ (-l)PP(dJ) [v, P) + (-l)PHv /\ P(d(P(dJ)) , .). (3. )

This can be seen to be equal to the right hand side of (3.4), since we have

[P(dfp_l' .), Q] = [Q(a /\ dfp_l, '), Q] = O.

(-l)PQ(d(P(df)), .)= (-l)P(v /\ P)(d(P(df)), ... )
= (-l)Pv(d(P(df)))P + (-l)P+1v /\ P(d(P(dJ)) , .).

Thus, the pair (Q = v/\P,P) satisfy the conditions (1)-(4) and the bracket is a
Nambu-Jacobi pair. 0

Next we consider a Nambu-Jacobi structure Q+1/\ P where Q is regular, that
is Q is nowhere zero. In this case we obtain the following:

THEOREM 13 Let Q be a Nambu Poisson tensor or degree q("?:. 2). We assume
when q = 2, Q is decomposable. Let a be a I-form which is closed on the leaves of
~Q' That is Q(da,') = O. Put P = Q(a, .). Then (Q, P) makes a Nambu-Jacobi
pair.

Conversely, if (Q, P) is a Nambu-Jacobi pair and Q is regular, there exists a
I-form a which is closed along the leaves of Q such that P = Q(a, .).

Proof We first verify the condition JPQ = O. Namely, we prove

Using the decomposability of Q and the formula (3.5) for Div(Q(a)), we calculate

(3.4)

Q(dJ,') = (v /\ P)(dJ)
= P(iv(dJ) , .) + (-l)PP(dJ)v

for dJ = d!l/\ ... /\ dfp· ..,
First we calculate the left hand side of this equahty. Usmg

Thus:FQ is integrable and we have [Q, Q] = O. .
To verify Condition (3), we must prove the equahty

[Q(df; .), P](·· . ) = (-l)PQ(d(P(df)),·· . )
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q AL(-1/-1da(P(dlp_1, .),Xi)X1 /\ ... , /\Xi /\ ... /\ Xq

i==l

This is shown as follows.

[Q(dg, .), Q(a)] = [Q(dg, '), Q](a) + Q(LQ(dg,.)a,·)
= Q(diQ(dg,.)a + iQ(dg,.)da) = Q(diQ(dg,.)a)
= Q(d(Q(dg, a))) = (-l)PQ(d(P(dg)).

as follows:

[Q(a /\ dIp-I, '), Q] = Div(Q(a /\ dIp-I,·) /\ Q) .
_ Div(Q(a /\ dIp-I, .)) /\ Q+Q(a /\ dIp-I,') /\ DIVQ

= (-l)P+l(Div Q)(a /\ dIp-I,·) /\ Q
+ (-l)P+lQ(da /\ dIp-I,') /\ Q + Q(a /\ dIp-I,') /\ DivQ.

Clearly, this is equal to 0 where Q = O. On the other hand, on the ~pen set where
Q i= 0, we have a 1-form, such that DivQ = QC1,') and the above IS equal to

(_l)P+IQ(,/\ a /\ dIp-I,·) /\ Q+Q(a /\ dIp-I) /\ Q(,)

= -i-y(Q(a /\ dIp-I) /\ Q) = O.

Thus we proved JPQ = O.
Secondly, we prove

Div(Q(a, .)) = -(DivQ)(a,·) - Q(da, '),

Div(Q(a, dIp-I, .))
= (_l)p-l Div(Q(a, .))(dlp_1) + (-l)P-IQ(a, ddlp_1)

= (-l)p-IQ(a, A, dIp-I)'

Now by a characterization of Nambu-Poisson tensor field, there exists a 1-form
on M, satisfying DivQ = QC1, .). Since Q(a,') = P is also a Nambu-Poisson
tensor field, there exists a 1-form A on the open set where Q(a,') i= 0, satisfying
Div(Q(a, .)) = Q(a, A, .). By the condition [Q(a, dIp-I, '), Q] = 0, and the decom­
posability of Q, we have

0= -(Div(Q(a,dlp_1, .))Q +Q(a, dIp_I, .) /\ DivQ.

But we have the following

Q(iQ(dg,.)da) = 0 follows from da = 0 on ~Q'

Now we prove the converse. Namely, assuming (Q, P) is a Nambu-Jacobi pair on
M and Q is non-singular, we prove that there exists a 1-form a such that P = Q(a,')
and Q(da) = O. By assumption (Q, P) satisfies the following:

(1) [P(dlp_1, '), P] = 0,

(2) [P(dlp_ll '), Q] = 0,

(3) [Q(dlp; '), P] = (-l)PQ(d(P(dlp)), '),
(4) [Q(dlp, '), Q] = O.

If we consider Q as a bundle map /\PT*M -+ T M, lmQ is a (p + 1)-dimensional
sub-bundle of T M. Q is also considered as a non-zero cross section of /\p+l lm Q
and gives a natural isomorphism (1m Q)* -+ /\P Im Q. Let BQ : /\P 1mQ -+ (1m Q)*
denote the inverse isomorphism. Since we have P(d!l/\ ... /\ djp-l,') /\ Q = 0,
ImP C ImQ(see Proposition 7). Thus P is a cross section of the bundle /\PlmQ.
Put a' = BQ(P) and choose a 1-form a so that a projects to 01' under the natural
surjection T*M -+ (lm Q)*. Then we can see that

Q(a,') = Q(a' ,') = P.

Thus we have

(-1)P-IQ(a,A,dlp_1)Q = Q(a, dIp_I, .) /\ DivQ

= Q(a, dIp_I,·) /\ QC1,')
= -i-y(Q(a,dlp_1,') /\ Q) +Q(a,dlp_1,,)Q·

Since Q(a, dIp_I,') /\ Q = 0 by the decomposability, this means Q(a, A-".) = O.
If we use the formula

for dg = dg1 /\ ••• /\ dgp '

and since a is closed on lmQ.
Next, we prove

[Q(dg, '), P] = (-l)PQ(d(P(dg) , .)

[P(dlp_ll ')' P] = 0

£ f ctl'Ons f of 1 We use the abbreviated notations that p = q - 1 andor any un 1, ... ,Jp- •

dlp-l = djl /\ ... /\ djp-l as before. Then we calculate as follows;

[P(dlp_1, '), P] = [P(dlp- ll ')' Q(a, .)]
= [P(dlp-ll')' Q](a) + Q(Lp(dlp_1,.)a). (3.7)

As we showed above, [P(dlp_1, '), Q](a) = 0 and Q(Lp(dlp_1,.)a) = 0 is verified as

follows.

Q(Lp(dlp_1,·)a, .)
- Q(d' a + i I da .) = Q(ip(dl .)da) = Q(da(P(dlp_1, '), .).- ~p(dlp_l") P(d p-l") , p-l'

The most right term vanishes since if write Q = X1 /\ .•• /\ X q , this is equal to
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we have Q(da,') = -Q(a,ry - -X,,) = O. This is what we wanted to show. 0

Examples

By Theorem 12 and Theorem 13, we obtain concrete examples of Nambu-Jacobi
manifolds. Here, we have a few of them.
1. We consider the Reeb foliation of 8 3 as the underlying foliation. There exists a
2-vector field P which is non-singular on each leaf and tangent to it. We can assume
every thing is invariant under the natural 8 1-action on 8 3. Let v be the vector field
on 8 3 which is obtained from this action. Then LvP = 0 and (Q = v /\ P, P) is a
Nambu-Jacobi pair by Theorem 12. Q vanishes exactly along the toralleaf.

2. Let ~ be the Anosov foliation on the circle bundle over a closed surface of
genus g ~ 2.· The leaves are diffeomorphic to either R 2 or cylinder 8 1 x R. Since
both types of leaves are dense, there is no non-trivial vector field transverse to ~.

Therefore the only possible Jacobi pair is trivial one, namely it is (0, P).

3. Let A: Tn -+ Tn be a hyperbolic toral automorphism. The mapping torus MA

of A has a foliation foliated by the weak unstable manifolds. Let Q denote a natural
tensor field which gives a volume tensor field along each leaf. Let a be the I-form on
MA = rn x [0,1]/ rv-+ 8\ which is the pull-back of dB by the projection MA -+ 81•

Then a is closed and (Q, P = Q(a, .)) is a Nambu-Jacobi pair. P defines a foliation
foliated by strong unstable manifolds.

4. For any Nambu-Poisson structure Q on M, (Q,DivQ) is a Nambu-Jacobi pair.
Here Div is a divergence associated with a connection which preserves a volume
form of M. If Div Q = Q(ry, .), we have Q(dry, .) = - Div2 Q and Div2 = 0 since we
assumed the connection preserves a volume form. Thus by Theorem 13, we have
the result.

On a Nambu-Jacobi manifold for which the tensor fields P and Q are both non­
singular, we have a regular foliation FQ and its subfoliation F p . By our theorem,
on each leaf of F Q there exits a non-singular vector field and the subfoliation Fp

is defined by a closed I-form on the leaf. These impose a rather strong restriction
on the foliated structure of such a Nambu-Jacobi structure. It seems an interesting
topological question to find which manifold has such a foliated structure.

4 Appendix

In this appendix, we prove Proposition 4. .
We denote the bracket defined by a p-vector field P by { }p. Namely,

{fll"" fp}P = P(dlI, ... , dfp). The bracket {... } := { }Q+l/\P = Q + 1 /\ P
determined by a q(= p + I)-vector field Q and a p-vector field P, is by definition is

20

the following:

q

{fI,. " ,fq} = {fI, ... ,fq}Q +L(-1);-1!;{/l'" ., ij , ••• ,Jq}p.
;=1

q

= Q(dfI,· . . , dJq) +L(-1)i-lJ;P(dfI, ... ,df;, ... ,dJq)
j=l

We would like to write down the Fundamental Identity for this bracket in terms of
the brackets of Q and P and find the relations which Q and P satisfy.

P For the brackets {- .. }P and {- .. }Q of degree p and q, respectively, we defined
J Q and P f- Q as follows.

JPQ(II, , Jp-l; gl, , gq)

= {II, , Ip-l, {gil , gq}Q}P - {{II, , Ip-l, gl}P, g2, .. . , gq}Q

-{gl' {II, '" ,Ip-l, g2}P, g3, ... , gq}Q - - {gl, ... ,gq-l, {il, ... ,Jp-l, gq}P}Q
= [P(dJl /\ ., . /\ dip-I, '), QJ(dgl, ... ,dgq)

(P f- Q)(fl'" . ,Ip-l; go, . .. , gq)
q

= L(-1);{II,. " ,Jp-l, gj}P{gO, " . ,gj, ... ,gq}Q
j=o

= (P(dfI,· .. ,dfp-l,') /\ Q)(dgo, ,dgq)

The usual Fundamental Identity for {... } = { }Q+1/\P is the following identity
for any Goo functions Jl, ... ,Iq-l, gl, ... ,gq on M.

{Jl,··.,Jq-l,{gl, ... ,gq}}
q

= L(-I)i-l{{il, ... ,Iq-l,gi},gl, ... ,gi, ... ,gq}
i=l

~n this appendix, however, for our notational convenience, we adopt the following
eqUIvalent equation as the Fundamental Identity.

{{fl, ... ,lq},g2, ... ,gq}
q

= L {fl, ... , fj-l, {f;, g2,··., gq}, fj+1, ... ,fq} (4.1)
j=l

We now start the computation. Since by definition,

q

{fI, ... ,Iq} := {fl, .. . ,fq}Q +L(-1)j-l!;{il, ... ,ij , ... , Iq}P,
j=l
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the left hand side of (4.1) is calculated as follows.

{{!1, ... ,!q},g2,'" ,gq}
= {{fl, ... ,fq}, g2," . ,gq}Q + {h,···, !q}{g2,'" ,gq}P

q

+2:(-1)k-1gkHfl, .. . ,fq}, g2,··· ,9k,.·· ,gq}P
k=2

q
~ i-1 A }P }Q=Hh, ... ,!q}Q+ L..,.,(-1) !i{fl,···,!i, ... ,!q ,g2,···,gq
i=l

+{h,.··, !q}Q{g2"'" gq}P
q
~ i-1 A }P{ }P+ L..,.,(-1) 1i{!1, ... ,!i, ... ,!q g2, .. ·,gq
i=1

q

+2:(-1)k-1gk Hfl, ... ,fq}Q,g2"" ,9k,'" ,gq}P
k=2

q q

+LL(-1)i+k9k{!i{fl, ... Ji"" !q}P,g2'"'' 9k,'" ,gq}P
k=2 i=l

= Hfl, ... ,!q}Q,g2"" ,gq}Q
q

+2:(_1)i-1!i{{fl,···, Ji,'" ,!q}P,g2, ... , gq}Q
i=1

q

+ 2:(-1)i-1{fl, ... , Ji" .. , !q}P{Ii, g2,'" , gq}Q
i=1

+ {fl, ... , !q}Q{g2"'" gq}P
q

+ 2:(-1)i-11i{fl,.· . ,Ji"" ,!q}P{g2,"" gq}P
i=1

q

+ L(-ll-1gkHfl, ... ,!q}Q,g2"" ,9k,'" ,gq}P
k=2

q q

+2:2:(-l)i+kgk!i{{fl,··· Ji' ., ,!q}P, g2," . ,9k, ... ,gq}P
k=2 i=1

q q

+2:2:(-l)i+kgk{fl,··· Ji"" !q}P{Ii, g2,··· ,9k, .. ·, gq}P
k=2 i=1

This is the left hand side of (4.1) expressed in terms of Ii's, gi's and their brackets
with respect to {... }P and {... }Q.
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In a similar way, we calculate the right hand side of the Fundamental Identity
(4.1).

q

2:{!1, ... ,!j-1,{!j,g2, ... ,gq},!j+1, ... ,!q}
j=1

q

= 2:{fl,· .. , /;-1, {/;, g2,··· ,gq}Q, !;+1, ... ,!q}
j=1
q

+2:{fl, .. ·, !j-1, /;{g2,"., gq}P'/;+l"'" !q}
j=1

q q

+ L {fl, ... , /;-1, L(-1)k-1gk{/;,g2, ... ,gk, ... ,gq}P, !;+1, ... , !q}
j=1 k=2

q

= L {fl,··· , /;-1, {!j, g2,··. ,gq}Q, /;+1,'" ,!q}Q
j=1
q j-1

+ L L(_1)i-1!i{!1,.'" ii, ... , /;-1, {/;,g2, ... ,gq}Q, !;+1,"" !q}P
j=1 i=1

q

+L(-1)j-1{/;,g2, ... ,gq}Q{fl, ... , i j , ... ,!q}P
j=1

q q

+ L L (_1)i-1!i{fl, .. ·, /;-1, {!j,g2, ... ,gq}Q, !;+1, ... ,ii'"'' !q}P
j=1i=;+1

q

+ L {!I, ... ,!j-1, /;{g2, . .. ,gq}P, /;+1, ... ,!q}Q
j=1

q j-1
,,~ . 1 A+L..,., L..,.,(-It- !i{!1, ... ,!i, ... ,!j-1, /;{g2, ... ,gq}P, !j+1, ... ,!q}P
j=1 i=1

q

+ L(_1)j-1/;{g2, ... ,gq}P{!I, . .. ,ij , .. . ,!q}P
j=1

q q

+ L L (-1)i-1!i{!I, ... ,/;_1,/;{g2, ... ,gq}P,/;+l, ... ,ii, ... ,!q}P
j=1 i=j+l
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q q

+~~(-l?-I{iI, ... ,h-l,gk{h,g2,'" ,9k, ... ,gq}P, h+l"'" fq}Q
j=1 k=2

q q j-l
~~~ Hi A A P }P+ L.J L.J L.J(-1) h{fb' .. ,ii, . .. , fj-l, gk{h, g2,·· . , gk,· .. ,gq} , fHl," . , fq
j=1 k=2 i=1

q q
~~ o+k A pAp+ L.JL.J(-l).1 gk{h,g2, ... ,gk, ... ,gq} {fb···,h,···,fq}
j=1 k=2
q q q
~~ ~ Hi A pAp+ L.J L.J L.J (-1) fi{iI,··· ,ij-bgk{h, g2,· .. ,gk,··· ,gq} , fHb'''' fi,"" fq}
j=1 k=2 i=j+l

Further by applying the Leibniz rule, these are calculated as follows:
q

= ~{iI,··· , h-l, {h, g2,· .. ,gq}Q, h+l,'" , fq}Q
j=1

q j-l
+~~(-ll-1 fi{iI, ... ,ii'''' ,h-l,{h,g2,'" ,gq}Q, fj+b'" ,fq}P

j=1 i=1
q
~ 0-1 Q A P+ L.J(-l).1 {h,g2, ... ,gq} {fl, ... ,fj,.··,fq}
j=1

q q

+~ ~ (_l)i-l fi{iI, ... ,h-l' {h, g2,··· ,gq}Q, h+b" . ,ii'" ., fq}P
j=1 i=j+l

q

+~ h{iI,···, h-l, {g2,." ,gq}P, h+l"'" fq}Q
j=1

q

+~{iI, .. · , fq}Q{g2, ... ,gq}P
j=1

q j-l
~~ i-I A P P+ L.JL.J(-l) fdj{iI, ... ,fi,···,h-l,{g2, ... ,gq} ,fHI, .. ·,fq}
j=1 i=1

q j-l
~~ i-I pAp+ L.JL.J(-l) fi{g2, ... ,gq} {iI,· .. ,fi, ... ,fq}
j=1 i=1

q
~ 0-1 pAp+L.J(-l).1 h{g2, ... ,gq} {iI, .. ·,h, .. ·,fq}
j=1

q q
~ ~ i-I pAp+ L.J L.J (-1) fdj{iI, .. ·, h-l, {g2,'''' gq} ,fHl,"" fi,"" fq}
j=1 i=j+l
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q q

+~ ~ (_l)i-lh{g2,'" ,gq}P{iI, ... , ii"'" fq}P
j=1 i=j+l

q q

+~~(-l?-lgk{iI, ... , fj-I, {h,g2,'" ,9k,'" ,gq}P,h+l"" ,fq}Q
j=1 k=2

q q

+~~(-l)k-l{h, g2, ... ,9k, ... ,gq}P{iI,· .. ,h-l, gk, h+l,'" ,fq}Q
j=1 k=2

q q j-l
~~~ Hi A A+L.J L.J L.J(-1) figk{iI,···, fi,"" fJ-l, {h,g2, ... ,gk, .. ·, gq}P, h+l,"" fq}P
j=1 k=2 i=1

q q j-l
+~~~(-1)k+ih{h,g2'''' ,9k, ... ,gq}P{iI, ... ,ii'"'' h-r,gk, fHr,···, fq}P

j=1 k=2 i=1
q q

+~~(-1)Hkgk{fj,g2'''' ,9k,'" ,gq}P{fr, ... , ij , ... ,fq}P
j=1 k=2
q q q

+~~ ~ (-l)k+ifigk{iI, ... , fj-l, {fj,g2"" ,9k, ... ,gq}P,fHI,· .. ,ii'"'' fq}P
j=1 k=2 i=j+l
q q q

+~~ ~ (-1) Hi fi{h,g2, .. ' ,9k,'" ,gq}P{h, ... ,h-bgk,h+l,'" ,ii"" ,fq}P
j=1 k=2 i=H1

We will not simplify these any further since from the computation we can obtain
necessary conditions on P and Q for the bracket {} to satisfy the Fundamental
Identity.

First we note that the sums containing the product fdj cancel out because of
the skewness of the bracket.

To get the conditions, we put fq = gq =l(q = p+ 1) and compare the left hand
side and the right hand side of (4.1) which we computed above. Since {... , l}P and
{... , l}Q are bo~h constantly equal to 0, we obtain the following relations:

{{iI, . . , ,fp}P, g2,··· ,gp}P
P

= ~{iI,··· ,h-l, {h, g2,· .. , gp}P, h+I,· .. , fp}P.
j=1

This is nothing but (1) of Proposition 4 and the Fundamental Identity for {... }p.
Namely we get the condition

(4.2)
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This shows
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p

(4) JQQ(dJp;"') +L(_l)i(P f- Q)(dfl··· ifi'" dfp; dfi,'" ) = °
i=l

If P and Q satisfy the above condition (4.4), the terms of the form h{... } cancel
out.

Finally, in the same way, we obtain the following condition on Q.

{{f1,··.,fq}Q,g2, ... ,gq}Q
q

= :~":::)fl, ... ,h-1, {fi,g2"" ,gq}Q, fj+1,"" fq}Q
j=l

q q

+ LL)-1)k-1{fi,92"" ,9k,'" ,gq}P{fl, ... , fj-l,gk,fj+l, ... , fq}Q.
j=l k=2

+p{fl,··., fq}Q{g2"'" gq}p.

This is expressed as

JQQ(g2"'" gq; it,··. ,fq)
q

= L(-1 )k(p f- Q)(g2, ... ,9k, ... ,gq; gk, it, ... , fq) (4.5)
k=2

This is nothing but (4) of Proposition 4.
We have shown that (1)-(4) of Proposition 4 are necessary conditions for

{... }Q+IAP satisfy the Fundamental Identity.
Conversely, from our computation, we can easily see that ifthe relations (4.2),(4.3),(4.4)

and (4.5) on the brackets { ... }P and { ... }Q hold, the Fundamental Identity of the
bracket {... }= {... }QBAP is true.

Thus the relations (4.2),(4.3),(4.4) and (4.5) together are equivalent to the Fun­
damental Identity for {... }QBAP.

In this way, we obtained

PROPOSITION 4 Let A = Q+ (1 /\ P) be a Nambu-Jacobi bracket degree Q =
q = p + 1 ~ 3. Then we have the following identities

(1) JPp = 0,

(2) JPQ = 0,

(3) JQP(dJp;" . ) + (-l)PBQ(dP(dJp),'" )
P

+ L(_l)i(P f- P)(dfl ... ifi" .dfp; dfi,' " ) = 0,
i=l

These together are also sufficient for the bracket A = Q + (1 /\ P) to satisfy the
Fundamental Identity.

(4.3)

By this relation, we see that the terms which are the multiple of the fun~tiong~all
cancel out. Similarly, knowing the relations (4.2) and (4.3) and by puttmg fq = 1,

we obtain the following relation

{{fl, ... ,jp}P, g2,' .. ,gq}Q

p Q . P
= L {fl,··· ,fi-b {fi, g2,'" ,gq} ,f3+1"" fp}

j=l
+(-l)P{fl, ... , fp, {g2,'" ,gq}P}Q + p{fl,···, fp}P{g2,'" ,gq}P

p pB P

+L L(-1)P+k+j+1{92,." ,9k,'" ,gq,h}P{gk' fl,···, h-b fj+1,"" fp} .

j=l k=2

A little computation shows that this is equivalent to the following:

JQ P(g2"'" gq; fl,·· . ,jp)
= (-1)P{{g2"" ,gq}Pfl, ... ,jp}Q

q

+L(_l)k(P f- P)(g2,'" ,9k,"" gq; gk, fl,··· ,jp) (4.4)
k=2

This is the relation equivalent to (3) of Proposition 4. Note that

(P f- P)(g2"" ,9k, ... ,gq;gk,f1,'" ,fp)
PAp

= L(-1)j{g2,." ,9k,'" ,gq, fi}P {gk' fl···, fi,··· ,jp}
j=l
+ (-1)q-k{g2,"" gq}P{fl, ... , fp}P.
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and we get

Putting this condition in our computation, we see that the terms containing figk all

cancel out. .
Next, we put gq . 1, and by the same reason as before, we get the relatIOn

{{fl,··· ,fq}Q, g2," . ,gp}p

q P}Q
= L{f1, ... ,h-b {fj,92, ... ,gp} ,fj+1, ... ,fq .

j=l



Remark: When p = 1, if we interpret the formulas properly, the relation obtained
from the above is expressed as

4!

[P,Q] = 0, [Q,Q] = -2PAQ, (4.6)

which is the usual definition of Jacobi structure.
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Abstract

Certain types of singular foliations on a manifold have Leibniz algebra

structures on the space of multivector fields. Each of them h tas a s ructure

of a central extension of a Lie algebra in the sense of Leibniz algebra. To a

specific Leibniz h I Ico omo ogy c ass, there corresponds an isomorphism class of

central extension of a Leibniz algebra similarly as in the case of Lie algebra.

Introduction
[10] J. Peetre. Rectification a l'article "Une caracterisation abstraite des operateurs
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Recently, a lot of interests have been taken in Leibniz algebra which' . t d
, IS III ro uced

by Loday [10, llJ as a non-commutative variation of Lie algebra A L 'b' I b. el mz age ra

g is an R-module whe e R . ", r IS a commutatIve rmg endowed Wl'th a b'll, 1 near map

1



l , ) :g X g -7 g satisfying

Note that we do not require the anti-syrnrnetricity of [ , ).

In this paper, we consider Leibniz algebra associated with a certain type of singular

. . .£ ld More precisely we observe that when an integrable andfoliatIOns on a mam 0 . ,

locally decomposable q-form w on a manifold M is given, there yields a foliation :F

.' 0 Any transversely orientedof M whose leaves are either of dimension n - q or .

. fined b h form We show that theregular foliation of codimension q IS de y sue a q- .

( 1) t I\q+I T M on M has a Leibniz algebroid structure whose
bundle of q + -vec ors

anchor map is a interior product by w and whose bracket is given by

for any X, Y E ;rq+I(M), where [, ) denotes the Schouten bracket, ( I ) the natural

pairing and ;rq+I(M) the space of (q+ I)-vector fields. We see that the isomorphism

class of the algebra is determined by the foliation:F. It is not a Lie algebra in

1 un1
- 0 or q - n - 2 Considering the difference of ;rq+I(M) from Liegenera ess q - - .

algebra, it is shown that ;rq+I(M) is, as a Leibniz algebra, a central extension of the

2

Lie algebra of vector fields tangent to :F.

As it is known, central extensions of a Lie algebra g with the center A are described

by H£ie(g; A) where HLie(g; A) denotes the Lie algebra cohomology with coefficients

in A. One can ask the question: how about the case of Leibniz algebras? We

see that the "natural" cohomology of Leibniz algebra does not work, but a slightly

different cohomology H* (g; A) makes a similar one-to-one correspondence between

equivalent classes of central extensions and elements in H 2(g; A). It means that,

when g' is a central extension of a Leibniz algebra g with the center A, Leibniz

algebra structures of g' is determined by an element in H2(g; A). Applying it to

Leibniz algebras associated with foliations, we can obtain a lot ofgeometric examples

of central extensions of Leibniz algebras.

The (co)homology of Leibniz algebra is studied by Loday and Pirashvili [12]. Lod-

del' [14] extends the Leibniz cohomology from a Lie algebra invariant to an invariant

for a differential manifold. The notion of Leibniz algebroid over a manifold was de-

fined in [9] as a vector bundle with certain additional conditions as in the case of Lie

algebroid, and it was proved that the bundle of (p - I)-forms on a Nambu-Poisson

manifold has a Leibniz algebroid structure. In [6], one of the author discovered an

alternative Leibniz algebroid structure which is a natural generalization of the Lie

algebroid associated with a Poisson manifold. Description of all Leibniz algebras of

3



dimension three is given in [1].
such that

(2.5)

(2.6)

(2.7)

(2.2)

(2.3)

(2.4)

[a, [gl' g2]] = [[a, gl], g2] + [gl' [a, g2]]

[gl' [a, g2]] = [[gl' a], g2] + [a, [gl' g2]]

[g1, [g2, a]] = [[g1, g2], a] + [g2' [g1, a]]

for gl, g2 E g and a E A. We also use the notations ga = 19(a) = [g, a] and

ag = rg(a) = [a, g]. The condition (2.2) - (2.4) above is equivalent to that

where [ , ] in the right-hand side of (2.5) and (2.6) denotes the commutator of

operators.

The Leibniz cohomology of g with coefficients in A is the homology of the cochain

complex Ck(g; A) = HomR(®kg,A) (k 2: 0) whose coboundary operator Ok : Ck(g; A) -+

(2.1)

bilinear actions of g

for g1,g2,g3 E g. The map [ , ] is called the Leibniz bracket on g and (2.1) the

Leibniz identity. We remark that if [ , ] is additionally skew-symmetric, then the

Leibniz identity is just the Jacobi identity and (g, [, ]) is a Lie algebra. Therefore,

a Leibniz algebra is a non-commutative variant of Lie algebra.

Now we consider the cohomology of a Leibniz algebra with values in a module

[12]. Suppose that (g, [ , ]) is a Leibniz algebra and A an R-module equipped with

[ , ] : g x g -+ g satisfying

First we review the notion of Leibniz algebra defined by Loday [10, 11, 12].

Let R be a commutative ring and g an R-module endowed with a bilinear map

2 Leibniz algebras and cohomologies

[ , ] : g x A -+ A, [,]: A x g -+ A

4 5



C k+1(gj A) is defined by

k

= :2)_1)i-l gi (ck(gl, ... ,§i, ... ,gk+l)) + (_1)k (Ck(gl'"'' gk)) gk+l
i=l

+ L (_1)i Ck(gl" .. ,§i, ... ,gj-l, [gi, gj], gj+1,'" ,gk+l) (2.8)
l:$i<j:$k+1

where (gl, ... ,gk+l) denotes gl ® ... ® gk+1' The condition () 0 () = 0 is proved in

[12].

When the left action agrees with the (-1) times of the right action, we get the

following "natural" Leibniz cohomology:

Proposition 2.1. Let g be a Leibniz algebra and A a g-module with respect to the

representation ofg on A, that is, A is endowed with a bilinear map g x A -+ A such

given by

k+1
()kck(gll' .. ,gk+1) = L(_1)i-l gi (Ck(gl" .. ,§i, .. . ,gk+l))

i=l

+ L (-1)i ck(gl, ... ,§i, ... ,gj-l, [gi,gj],gj+l,'" ,gk+1)
l:$i<j:$k+1

(2.9)

defines a Leibniz cohomology of g with coefficients in A.

6

In most of the cases, we consider the Leibniz cohomology of this type, which is

denoted by HL*(gj A). If (g, [ , ]) is a Lie algebra, we obtain the subcomplex of

(C*(gj A), ()) that consists of the skew-sYIDffietric cochains. The cohomology of this

subcomplex is just the usual cohomology HLie(gj A) of the Lie algebra (g, [ , ]) with

coefficients in A. Thus there is a natural homomorphism

~: HLie(gjA) -+ HL*(gjA).

The followings are several examples of Leibniz cohomology we have in mind.

Example 2.2. ([2,4, 16]) Let (M, II) be a Nambu-Poisson manifold of order p, that

is, II is a p-vector field satisfying

[II(dlI, ... ,dfp-l), II] = 0

for fl,' .. ,fp-l E COO(M), where [ , ] denotes the Schouten bracket. It holds that

/\P-l COO(M) is a Leibniz algebra by the bracket [ , ] defined by

p-l

[II 1\ ... 1\ fp-1, gl 1\ ... 1\ gp-1] = L gl 1\ ... 1\ II(dlI, ... , dfp-1' dgi) 1\ ... 1\ gp-1
i=l

7



cohomology of the subcomplex of the skew-symmetric and COO(M)-linear cochains.

Then the diagram

X(M) satisfies the following properties:

(1) (Leibniz algebra homomorphism)

p([x, V]) = [p(x) , p(y)]

commutes where HOF(X(M); COO (M» denotes the Gel'fand-Fuks cohomology. The

HIJR(M)~ HOF(X(M); COO(M»

?rOt1 / 7r

H1j*(X(M);COO(M»

map ~ : HIm(M) ---t HOF(X(M); COO (M» is induced by the inclusion

(2.13)
(2) (derivation law)

[x, fy] = (p(x)f) y + f[x, y]

for all x, y E rCA) and f E COO(M).

Example 3.2. If the bracket [ , ] is skew-symmetric, we recover the Lie algebroid.

Example 3.3. The bundle of (p -I)-forms /\P-I T*M over a Nambu-Poisson man-

where Xk(M) denotes the space of k-vector fields on M and 7r : HOF(X(M); Coo (M» ---t

H1j*(X(M); COO(M» is induced by the projection ®kX(M) ---t Xk(M).

3 Leibniz algebras associated with foliations

The notion of Leibniz algebroid is introduced in [9] as a generalization of the Lie

algebroid:

Definition 3.1. A Leibniz algebroid is a smooth vector bundle 7r : A ---t M with a

Leibniz algebra structure [ , ] on rCA) (the space of smooth sections of A) and a

bundle map p : A ---t T M, called an anchor, such that the induced map p : rCA) ---t

10

ifold (M, II) of order p is a Leibniz algebroid with the anchor map II : /\P-I T*M ---t

T M and the bracket either (2.10) (p ~ 2 which we assume II is decomposable when

p = 2) or (2.11) (p ~ 2).

Example 3.4. ([5]) There is a different generalization of Lie algebroid. A Filippov

p-algebroid, or p-Lie algebroid, (E, 7r, [ , ••• , ]) over a manifold M is a vector bundle

E endowed with a p-Lie bracket [ , ... , ] on r(E), that is, the skew-symmetric

bracket satisfying the Filippov (or Fundamental) identity

P

[al,'" ,ap_I, [bI, ... , bp]] = I)bI, ... ,[al,"" ap-l, bi ], . .. , bp]
i=l

11



for any a1,"" ap-1, bb"" bp E r(E), and a bundle map 7f : I\P-1 E ~ TM, called

an anchor, such that the induced map 7f : r(l\p-1 E) ~ X(M) satisfies the following

properties:

p-1

[7f(a1/\ ... /\ ap-1), 7f(b1 /\ ... /\ bp- 1)] = L 7f(b1 /\ ... /\ [a1, ... ,ap-b bi] /\ ... /\ bp- 1),
i=l

for all a1, .. . , o,,-b b1, ... ,bp- 1, bE r(E) and f E COO(M). In this case, it is shown

that I\P-1 E is a Leibniz algebroid with the anchor 7f and the bracket

p-1

[a1 /\ ... /\ ap-b b1 /\ ... /\ bp- 1] = L b1 /\ ... /\ [ab'" ,0,,-1, bi] /\ ... /\ bp- 1'
i=l

In the recent paper [20], it has been shown that any Nambu-Poisson manifold has

an associated Filippov algebroid.

Let :F be a transversely oriented foliation of codimension q on M. Then we deduce,

by using a partition of unity, that there exists a transverse volume form w on M such

that w is decomposable (that is, w = W1/\ ... /\ wq for some I-forms W1, .. . ,wq) and

integrable ( dw =, /\ w for some I-form ,). In this paper, we call a decomposable

and integrable form w on M simply an integrable form. We remark that w needs

not to be nonsingular. When w is nonsingular, the transversely oriented foliation

12

:F is recovered by W1 = ... = wq = 0 where w = W1/\ ... /\ wq. If w is singular, it

yields a foliation whose leaves are of codimension q where w =f:. 0 and otherwise of

dimension O. Thus the equivalence class of an integrable form gives a foliation.

Now, we will prove that such a foliation given by an integrable q-form on a man-

ifold M gives the Leibniz algebroid structure to the bundle of (q + I)-vectors.

Theorem 3.5. Let M be an n-dimensional smooth manifold endowed with a de-

composable and integrable q-form w (q < n). Then I\q+1 TM becomes a Leibniz

algebroid over M whose anchor is the interior product tw : 1\q+1 T M ~ T M and

whose bracket is defined by

[X, Y]w = [twX, Y] + (-I)q(Xldw) Y

for any X, Y E Xq+l(M), where [ , ] denotes the Schouten bracket, ( I ) the natural

pairing and Xq+l(M) the space of (q + I)-vector fields.

Proof This Leibniz algebroid is essentially the same as that in Example 3.3 with

the bracket (2.10) by the correspondence IT = (_I)nq q,(w) where q, is an arbitrary

co-volume field on M (that is, a dimensional multivector field). However, we will

give a direct verification in the realm of multivector fields.

We abbreviate [ , ]w to [ , ]. It is easy to see [X, fY] = ((twX)f) Y + f [X, Y].

13



Let us prove Lw([X, Y]) = [LwX, LwY]. Since w is integrable, there is a I-form 1 such

that dw = 'Y A w. By the decomposability of w we have w(X(w)) = O. Thus

Thus we have

[X, Y](dw) = (.cX(w)Y)(dw) + (-I)q(Xldw) (Yldw)

Moreover,

(.cX(w)Y)(w) = .cX(w)(Y(w)) - Y(.cX(w)w)

= [X(w) ,yew)] - (-I)q(Xldw) (Y(w)).

Therefore, we get

LW[X, Y] = [X(w), Y](w) + (-l)q(Xldw) (Y(w))

(3.1)

(3.2)

<.

= .cX(w) (Yldw) - Y(.cx(w)dw) + (-l)Q(Xldw) (Yldw)

= (X(w))(Yldw) - Y(dLx(w)dw) + (l)Q(XldW) (Yldw)

= (X(w))(Yldw) - (Y(w))(Xldw). __<

- Therefore, by (3.2),

[[X, Y], Z] = [[X(w), Y(w)), Z] + (-I)Q((X(w))(Yldw) - (Y(w)) (Xldw») Z.

Also using (3.2), we have

[X, [Y, Z]] = [X(w) , [J(, Z]) + (-l)Q(Xldw) [J(, Z]

Now we will see that the Leibniz identity holds. Let X, Y, Z E Xq+1(M). By (3.1),

dLX(w)dw = w /\ (d(Xldw») + (-l)q(Xldw) dw.

14

= [X(w), [Y(w),Z] + (-I)Q(Yldw) Z]

+ (-l)Q(Xldw) ([Y(w) ,Z] + (-l)Q(Yldw) Z)

= [X(w), [Y(w) ,Z])

+ (-l)Q((X(w))(Yldw)) Z + (-l)Q(Yldw) [X(w) ,Z]

+ (-I)Q(Xldw) [yew), Z] + (Xldw) (YldW) Z.

15



I

I

In the same way, we have

[Y, [X, Z]] = [Y(w) , [X(w) , Z]]

+ (-1)q((Y(w))(Xldw)) Z + (-1)q(Xldw) [Y(w) , Z]

+ (-1)q(Yldw) [X(w) , Z] + (X\dw)(Yldw) Z.

Then the Leibniz identity

[X, [Y, Z]] = [[X, Y], Z] + [Y, [X, Z]]

is equivalent to

[X(w) , [Y(w) , Z]] = [[X(w) , yew)], Z] + [yew), [X(w) , Z]]

which is true since [.CX(w) ,CY(w)] = .c[X(w),y(w)] holds.

Corollary 3.6. (1) (Xq+1(M), [ , ]) is a Leibniz algebra where

o

and [X,kertw] E kertw where X, Y E Xq+l(M).

(2) For any non-zero function f, the multiplication by f induces an isomorphism

from the Leibniz algebra (Xq+l(M), [ , ]/w) to (Xq+l(M), [ , ]w). That is, the

isomorphism class of Leibniz algebra structure is determined by the foliation.

Proof. Since (1) is obvious, we will check (2). We have

[X, Y]/w = f [X(w) ,Y] - X(w) A Y(df) + (X(w A df)) Y + (-1)Q(Xlfdw )) Y

= f [X, Y]w + (X(w) A Y)(df)·

On the other hand, we have

[IX, fY]w = (fX(w A df)) Y + f [iX, Y]w

= f2 [X(w) ,Y] - fX(w) AY(df) + (-1)QP(X(dw)) Y + f(X(w Adf)) Y

= f2 [X, Y]w + f (X(w) A Y)(df)·

[X, Y] = [twX, Y] + (-1)Q(X(dw)) Y: (3.3)
This is equal to f [X, Yhw, and we obtain (2). o

The interior product tw is a Leibniz algebra homomorphism from XQ+l (M) to

the Lie algebra of vector fields (X(M), [ , D. It also holds that [kertw, Y] = 0

16

In general, (XQ+1(M), [ , ]) is not a Lie algebra unless q = 0 or q = n - 2.

Example 3.7. (1) The case q = n - 2 corresponds to the Lie algebra associated

17



1
) ,

1

with a Poisson manifold of rank 2 via the isomorphism by the volume.

(2) Consider the case q = O. For any function f on M, the Lie bracket is given as

[X, Y]f = f[X, Y] + (X f)Y - (Y f)X

where X, Y E X(M). This corresponds to the Lie algebra associated with a

Nambu-Poisson manifold coming from a volume form.

field of the form

Proposition 3.8. Let f be a quadratic function on Rn. In the Leibniz algebra

(X2(Rn), [, ]d/), the subset of constant bivector fields X~onst(~n) forms a Lie algebra.

(3) Consider the case q = n - 1. Then the Leibniz bracket is given as
Proof It follows from a direct computation. o

[ftP,g<1>]w = (fZg - gZf + fg(ZI,))<1>

where <1> is a co-volume field, f, 9 E COO(M), dw = ,/\ wand Z = <1>(w).

Therefore, if w is a closed (n - I)-form, (r(M), [ , ]w) is a Lie algebra. This

corresponds to (COO(M) , [ , ]z) defined by an arbitrary vector field Z where

[f,g]z = fZg - gZf·

Sometimes, we have a Lie algebra as a Leibniz subalgebra. For example, let us

consider (X2(Rn) , [, ]w). By Corollary 3.6, it is a Leibniz algebra if w is an integrable

I-form on Rn . In the following by a constant bivector field we mean the bivector

We can relate this Lie algebra to the Lie algebra of matrices; let (j, k) be the

signature and 1 the nullity of any quadratic function f on Rn. Denote by Pf the

matrix diag(Ij+k,Ol) where Ij+k is the unit matrix of size j + k and Ol is the zero

matrix of size l, and by soU, k, l) the set of matrices in gl(n) satisfying

where Ijkl = diag(Ij, -Ik,Il)' Then,

Theorem 3.9. (X~onst(Rn),[ , ]qr) is isomorphic to (soU, k, 1), { , }Pf ) where {X, Y}Pf =

XP/Y - YPfX for any X, Y E so(j, k, l).

18

Proof It also follows from a direct computation.
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In case f is nondegenerate, (X~onst(Jin), [ , ]df) is isomorphic to (so(j, k), [ , D·

Central extensions of Leibniz algebras4

Let us return to the Leibniz cohomology of a Leibniz algebra g. The condition

(2.2) - (2.4) admits the case that the right action r g = 0 for any 9 E g. IT this

is the case, we get a different Leibniz cohomology from "natural" one given by

Proposition 2.1. In this section, we assume the right action r 9 = 0, and we use this

kind of Leibniz cohomology since it is essential when we consider the extensions of

Leibniz algebras.

Proposition 4.1. Let 9 be a Leibniz algebra and A a g-module with respect to the

representation of9 on A, that is, A is endowed with a bilinear map 9 x A -+ A such

given by

k

8kck(gl, ... , gk+1) = L(_l)i-l gi (ck(gl' ... ,m,· .. ,gk+1))
i=l

+ L (_l)i Ck(gl'" . ,m,···, gj-l, [gi, gj], gj+l,'" ,gk+l)
l::;i<j9+l

(4.1)

defines a Leibniz cohomology of 9 with coefficients in A.
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We denote this Leibniz cohomology by H*(gj A). Note that even though 9 is a

Lie algebra and ck is skew-symmetric, ck+1 is not skew-symmetric in general.

Now, we will consider the central extensions of Leibniz algebras. A central exten-

sion (g', [ , ]) of a Leibniz algebra (g, [ , Dwith a center A is a Leibniz algebra with

a surjective homomorphism II : g' -+ 9 whose kernel A is a center in the sense of

[A, g'] = O. This is equivalent to giving an exact sequence

O---+A~g'~g---+O

such that A is a center of g'.

The next theorem shows that an analog of the case of Lie algebra holds.

Theorem 4.2. Let (g, [, Dbe a Leibniz algebra and A a g-module. Then an element

of H 2(g; A) determines an equivalence class of central extensions of9 with the center

A. The action of 9 on A is recovered by g. a = [s(g), a] where (g', [ , ]) is a central

extension of 9 ands : 9 -+ g' an arbitrary linear map satisfying II 0 s = idg •

.Conversely, an equivalence class of central extensions of 9 with the center A defines

the action of 9 on A by 9 . a = [s(g), a] where s is as above, and determines an

element of H 2(gj A). That is, a central extension of a Leibniz algebra 9 with a center

A is in one-to-one correspondence to an element of H 2(gj A) up to isomorphisms.
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Proof Take an arbitrary "section" s. Then S = s(g) has a Leibniz bracket [ , ]s

induced by s. We may write g' = S EB A. Thus it may be written !h = S(gi) + ai for

any g~ E g' where II(gD = gi E g, ai E A and i = 1,2. We deduce that the action of

g on A is independent to the choice of a section map s. It holds

and from II([gi, g~]) = [S(gl)' S(g2)]s it follows

for some linear map "ps : g ® g --+ A. It is shown that the Leibniz identity holds if

and only if"ps is a 2-cocycle. Now, we will see that ["ps] E H 2(g; A) does not depend

on the choice of s. Take a section s and let o'i = g~ - S(gi) (i = 1,2). Then we may

define a 1-cochain t : g --+ A by t(g) = s- s. Since

we have

22

The right hand of the equation is just 8t(gll g2), thus we deduce that ["ps] E H2(g; A)

does not depend on the choice of s. We denote this element simply by ["p].

Next we prove that by the equivalence class of extensions "p is determined up to

coboundaries. Suppose that (g', [ , ]), (g', [ , ]-) are isomorphic central extensions

of g, and "ps, ifs are corresponding cocycles with respect to sections s, s respectively.

We consider the commutating diagram

o ----+ A ----+ g' ----+ g ----+ 0
I. II

II 1f II
o ----+ A ----+ g' ----+ g ----+ 0

1.- II-

where f is a Leibniz algebra isomorphism. We define 1-cochain t : g --+ A by

t = f 0 s - s. Then, from iffos = f 0 "ps, flA = 1 and

where g~ = S(gi) + ai, it follows

Hence we have ['¢] = ["p]. Conversely, it is not difficult to see that if corresponding

cohomologies with two central extensions of g are equal then they are isomorphic. 0
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We remark that we cannot develop a Leibniz generalization of the abelian exten-

sion of a Lie algebra because [[all S(g2)] , S(g3)] + [S(g2) , [all S(g3)]] does not vanish

in general for g~ = S(gi) + ai (i = 1,2,3).

As an example of a central extension, we have the Leibniz algebras associated

with foliations. For any foliation F w given by a q-form w, we have shown that

(Xq+1(M), [ , ]w) is a Leibniz algebra. In fact, it follows from Corollary 3.6(1) that

there is a central extension

where Xw(M) denotes the image of tw, which yields the foliation Fw. We will cal-

culate the 2-cocycle of this extension. When w is nonsingular, that is, the given

foliation is regular, we may take a section s by seX) = Z /\ X where Z is an

arbitrary q-vector field satisfying w(Z) = 1, and then 'l/Js is given by

'l/Js(X, Y) = LXZ /\ Y + (XI,)(Z /\ Y)

where dw = , /\ w. Therefore, if a foliation is given by Wi = 0 for non-zero I-forms

24

q

'l/Js(X, Y) = LX(ZI /\ ... /\ Zq) /\ Y + (XI L ,ii)(Y /\ Zl /\ ... /\ Zq)
i=l

function, using a metric g we may take a section

1
seX) = Iw'1 2 Z /\ X

where g(Z) = w', which is well-defined since both Z and an element of Xw,(M) is

divisible by Iw'l· Using the metric g satisfying Iwlg = 1, the corresponding cocycle

with s is given by

'l/Js(X, Y) = LXZ' /\ Y' + (XI,)(Z' /\ Y')

where Z' and X' denote /f/-1Z and Ifl-IX, respectively.

Conversely, by the theorem above, an arbitrary element of H2 (X
w

(M); keu
w

)

determines a Leibniz algebra structure on Xq+l(M).

The following consideration gives us homomorphisms between Leibniz algebras.

Proposition 4.3. Suppose that a p-form a and a q-form {3 which are both integrable

are given, and that a /\ {3 ::I O. Then a /\ {3 is also integrable, and we get the exact
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i ,

i ;

sequence

The following diagram ofLeibniz algebra commutes where t'rJ = (-l) pqt,6 andX~+1(M) C

Xq+l(M) is the image of the interior product to. : P+Q+1(M) -+ XQ+1(M).

to. ./

(X~+l(M), [ , ]0.)

t,6 ~

~ t'rJ

(X~+l(M), [, ],6)

Proof. It is easy to see that aA{3 is an integrable (p+q)-form. Let us show the above

diagram commutes. All the maps are wen-defined since t,6(X~+l(M)), to.(X~+1(M)) C

Xo.A,6(M). For any X, Y E xP+q+1(M), we calculate

= [(taX) ({3), to.Y] - (-l)P+Q{Xlda A{3) (Y(a)).
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Therefore,

and thus we conclude that to. : F+q+l(M) -+ Xq+1(M) is a Leibniz homomorphism;

9 where

As we mentioned before, we may take a section seX) = e2/\ X. Then the corre-

sponding cocycle 'l/J E H 2 (g; 9 /\ g) is given by

'l/J(X, Y) = [X, e2] /\ Y - (XleD e2 /\ Y

similarly for t'p : F+q+l(M) -+ Xp+1(M).

Example 4.4. We consider the Lie algebra sl(2,JR) with the basis

o for any X, Y E g. Since it follows that

1
el =-

2

1 0

o -1

o

o

o

1
where a = es /\ el E 9 /\ g, we may write 'l/J = 2a e; 0 e;.

When we replace e2 with ce2 where c is a non-zero constant, which preserves the

Then it holds that
foliation, then by

Let us take the dual ei, e2' e; of ell e2, es. From de2 = -ei /\ e2' it follows that

(/\2 sl(2, JR), [, ]e2) is a Leibniz algebra which is a central extension ofthe Lie algebra

27

we deduce that the cocycle 'l/J is replaced with c-1'l/J.

Now, let us elucidate all the central extension (/\2sl(2, JR), [ , ]) of g. The action

28



of 9 on 9 /\ 9 is given by (the rest is given by (4.3) and [g /\ g, /\2 sl(2,IR)] = 0). Thus we have shown that,

on any central extension of 9 with the center 9 /\ g, the Leibniz algebra structure is

el' a = -2a,· e3' a = 0, (4.3)
necessarily of this type.

that is, g . a = 2£ga, and any l-cochain t is generated by
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VARIATIONAL PROBLEMS OF NORMAL CURVATURE
TENSOR AND CONCIRCULAR SCALAR FIELDS

KUNIa SAKAMOTO

ABSTRACT. We consider the integral of (the square of) the length of
the normal curvature tensor for immersions of manifolds into real space
forms, especially into spheres. The first variation formula is given and
the Euler-Lagrange equation is expressed in terms of the isothermal
coordinates when the submanifold is 2-dimensional. The relations be­
tween the critical surfaces and Willmore surfaces are discussed. We
also give formulas concerning the residue of logarithmic singularities of
S-Willmore points or estimate it by a conformal invariant.

We show that if a compact critical surface satisfies certain conditions
and the immersion is not totally umbilical, then the Gauss curvature
is a non-negative constant and the immersion is minimal. To prove
this result, We study 2-dimensional Riemannian manifolds admitting
concircular scalar fields whose characteristic functions are polynomials
of degree 2. Moreover, the case that the characteristic functions are
polynomials of degree 3 is studied.

O. INTRODUCTION

In the 1960's, T. J. Willmore proposed to study the functional

L:[</>] = 1M(rl- K) dv

on the space of immersions </> : M ---+ IR3 of a compact orientable surface M
into a Euclidean space IR3, where 'fJ is the mean curvature of </>, K the Gauss
curvature of the induced metric and dv the volume element. The functional
L:[</>] is called Willmore functional and the critical surface is called a Willmore
surface.

R. Bryant [4] studied Willmore surfaces in S3 and contributed to the
subject. He defined a conformal Gauss map of a surface Min S3 into the
de Sitter space of all oriented small spheres of S3 and showed that M is
a Willmore surface if and only if the conformal Gauss map is harmonic.
Furthermore, he obtained a duality theorem for Willmore surfaces in S3. N.
Ejiri [10] introduced S- Willmore surface and generalized the Bryant's duality
theorem to S-Willmore surfaces in sn. He also proved that Willmore surfaces
of genus 0 in S4(1) is a S-Willmore surface and classified them. Recently,
F. Helein [12] constructed a Weierstrass type representation of all Willmore
immersions in terms of closed one-forms. In the studies mentioned above, the
most important fact about Willmore surfaces is that L:[</>] is invariant under
conformal transformations of the ambient space. The Willmore functional is

1991 Mathematics Subject Classification. 53c42.
This research was partially supported by Grant-in-Aid for Scientific Research (No.

10640063), Ministry of Education, Science and Culture, Japan. .
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r

VN = -d</> 0 A,

g(X, Y) = g((d</>(X) , d</>(Y))

(1.3)

(1.2)

for any vector fields X and Y tangent to M. Let N : TL M -+ </>*TM be the
inclusion map of the normal bundle T L Minto </>*TM. Then it is regarded
as a Coo-section of H om(TL M, </>*TM). The connection on </>*TM induced
from the Levi-Civita connection on M and the normal connection on T L

M
induce a connection V on H om(TL M, </>*TM). Then Weingarten equation

for </> becomes

where we have used the so-called Einstein summantion convention. The
induced metric 9 is given by

(1.1)

1. SUBMANIFOLDS IN A SPACE FORM

Let </> : M -+ M be an immersion of an m-dimensional COO-manifold
M into an n-dimensional Riemannian manifold M. We shall denote the
Riemannian metric on M by 9 and the induced metric M by g. Indices
i,j, k,l run over the range {I, ... ,m}, A, f.l, 1/, K, the range {I, ... ,n} and u, v
the range {m+1, ... ,n}. The differential d</> of the map </> can be regarded as
a Coo -section of the bundle T* M ® </>*TM, namely d</> E Coo (T*M ® </>*TM)
and, in terms of local coordinates {Xl, ... ,xm } (resp. {yl, ... , yn}) in M

(resp. in M), it is represented as

Let </> : M 2 -+ sn(c) be an immersion of compact surface M 2

into sn(c). If </> is a critical immersion of nH</>], the mean
curvature vector is parallel and the curvature ellipses are cir­
cles, then the Gauss curvature is constant and the immersion
is a standard minimal immersion of a sphere, a minimal im­
mersion of a flat torus or a totally umbilical immersion.

To complete the proof of Theorem 4.9, we need §6 where we study concircular
scalar fields.

In §5, we shall consider the equation satisfied by concircular scalar fields
on a 2-dimensional manifold M as Euler-Lagrange equation of the functional

FJ[g] = 1M J(K) dVg,

where J is a function on lR. Moreover we shall introduce Tashiro's work
concerning concircular scalar fields.

In §6, by making use of elliptic functions, we classify complete 2-dimensional
manifolds admitting concircular scalar fields whose characteristic functions
are polynomials of the scalar field and of degree 2 or 3. The classification
is given in Theorem 6.3. The proof of Theorem 4.9 is completed by using
Theorem 6.4.

The author would like to express his hearty thanks to Prof. M. Okumura
who taught him the results by Tashiro [21] explained in §5.
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on the space of immersions </> : Mm -+ M(c) is also a conformal invariant
if q = m/2. However, for the most part, we shall deal with the functional
n L [</>] in the case that q = 2, because it is Yang-Mills integral of the normal
bundle. We shall also deal with the case that q = 1 when M is a surface. We
here note that the geometric meaning of L:[</>] and n L [</>] for surfaces is as
follows: The integrand of L:[</>] is equal, up to a constant factor, to the sum
of the square of lengths of major and minor axes of the curvature ellipse in
the normal space at each point. On the other hand, the integrand IIRL II 2 of
n L [</>] is equal to the square of the area encircled by the curvature ellipse
up to a constant factor.

1. V. Guadalupe and L. Rodriguez [11] studied the integral of the normal
curvature and obtained some inequalities relating the area of the surface and
the integral of the square of the length of the mean curvature vector with
topological invariants. Their integral of the normal curvature is different
from ours. We should note that nL [</>] is the integral of the absolute value
(or the square of the length) of the normal curvaure.

In §1, we give the fundamental formulas in the theory of submanifolds in
a real space form. We also rewrite the corresponding formulas in terms of
isothermal coordinates when the submanifold is two dimensional.

In §2, we obtain the first variation formulas of L:[</>] and n L [</>]. The
Euler-Lagrange equation of L:[</>] has already known as mentioned above.
However the computation in this paper seems to be more brief than that of
[19]. The Euler-Lagrange equation of n L [</>] is given in Theorem 2.7. The
functional n L [</>] where q = 2 is a conformal invariant if the submanifold
is of dimension 4 and is Yang-Mills integral. We shall prove in Theorem
2.8 that if </> : M 4 -+ M(c) is an immersion of a 4-dimensional compact
oriented manifold M 4 into an n-dimensional space form M(c) and the normal
connection is self-dual or anti-self-dual, then </> is a critical immersion of
n L [</>]. We should note that since n L [</>] is a functional defined on a space
of immersions, the normal bundle and the induced metric vary with </>.

In §3, we reduce the Euler-Lagrange equation of n L [</>] to the situation
that the submanifold is a surface. The result is given in Theorem 3.1.

In §4, we shall study critical surfaces of L:[</>] and n L [</>]. We give formu­
las relating the sum of residues of logarithmic singularities of S-Willmore
points in a compact oriented Willmore surface with conformal invariants.
In particular, the conformal invariant appeared in the formula (4.8) is the
Willmore integral. We conclude this section by showing Theorem 4.9 that
is stated as follows:

generalized to submanifolds in a Euclidean space or a sphere. One is Pinkall's
conformal invariant ([17]) and the other is given in [18]. The generalized
Willmore functional dealt with in this paper coincides with the latter. For
a general presentation of the problem, see [23].

It is well known that, for a submanifold M m in a space form, the normal
curvature tensor RL E Coo (/\2T*M ® (TL M)* ® T L M) is invariant under
conformal transformations of the ambient space. Therefore the functional

3



where A E COO (T*M ®TM ® (Tl..M)*) and, for a normal vector field ~,

Ae E Coo (T* M ®TM) is the shape operator correspnding to ~. The relation
between Ae and the second fundamental form h E Coo (S2T*M ® Tl.. M) is

(1.4) g(AeX, Y) = g(h(X, Y), ~)

for vector fields X and Y tangent to M. We shall put H = Noh, which
belongs to COO(S2T*M, </J*T!VI). Gauss equation is given by

[V', V"] 01= (q - p)I<F ® a.(1.15)

(1.16)

(1.17)

.
(i) P = P' E Un V'

(ii) w' = w (g:, (P)Y-:-(a-;::-a:,-(p-)--,--)q

see [7] for details. We shall sometimes use the complex conjugation EM ~

Eq,p in our computation. If a = iii for a E EM, then it is said to be real.
For instance, P(= F(z, z)dz ® dz) is in EI,I and real. The Gauss curvature
I< of 9 is given by

All higher order derivatives of </J will be considered as functions with values
in Cn+! = ~n+l ®lR C. Let the symmetric product a = (al, ... ,an+!) and
b = (bl' ... ,bn+l ) in cn+! be defined by

1 -
(1.13) I< = - p8810g F

1
= 2"L1 log F,

where 8 = 8/8z, 8 = 8/8z and L1 = -2F-188. The metric 9 induces Levi­
Civita connection V on the bigraded algebra E = Ep,q EM with tensor
product. The covariant differential operator V splits into V' and V", where
V' (resp. V") is a differential operator of bidegree (1,0) (resp. (0,1)). The
operators V' and V" are defined by

(1.14) V'a = (8a(z, z) - p8log P ·a(z, z))(dz)PH ® (dz)q,

V"a = (8a(z, z) - q8logP· a(z, z))(dz)P ® (dZ)q+1

for 01= a(z, z)(dz)P® (dz)q E COO(EM). In particular, we have V'F =°=
V" F. For the Ricci identity, we have

We immediately have

n+l

(a, b) = L ahbh·
h=l

Then the Hermitian product on Cn+! is given by (a, b). The norm of
a E EP,q ® Cn+! is defined as

Vd</J= H,(1.5)

(1.9) Ric(X, Y) = c(m - l)g(X, Y) + mg(h(X, Y), 'fJ)

- Lg(h(X, Xi), h(Y, Xi))

(1.10) p = cm(m - 1) + m211'fJ1I2 -IIHII2,

where 'fJ is the mean curvature vector field defined by 'fJ - (Ei h(Xi' Xi))/m,
{X!, ... ,Xm } being an orthonormal frame tangent to M.

Next, we deal with oriented Coo-surfaces differentiably immresed in a
sphere sn(c) = {p E IRn+!llIpll = 1/y'C}. Using isothermal coordinates
z = x + iV, we write the induced metric 9 as

(1.11) 9 = 2F(z, z) Idzl 2
,

V being the induced connection on the bundle T* M ® </J*T!VI. Let !VI be
a space form !VI(c) of constant sectional curvature c. Then the structure
equations of Gauss, Codazzi, Ricci are given by

(1.6)
g(R(X, Y)Z, W) = c{g(X, W)g(Y, Z) - g(X, Z)g(Y, W)}

+ g(H(X, W), H(Y, Z) - g(H(X, Z), H(Y, W)),

(1.7) (Vh)(X, Y, Z) = (Vh)(Y, X, Z),

(1.8) Rl..(X, Y) = h(X, AeY) - h(Y, AeX)

for X, Y,Z, W E TM and ~ E Tl..M (d. [8]), where Rl.. E COO (t\2T*M ®
(Tl.. M)* ® Tl.. M) is the normal curvature tensor. We note that V in (1.7)
is the induced connection on (T* M)2 ® Tl..M. In the sequel, we shall use
the same notation V for each connection induced on various vector bundle
composed of T M, Tl.. M and </J*T!VI except for the 2-dimensional case and
shall not state to which vector bundle various tensors belong. From (1.6),
we have formulas for Ricci tensor Ric and scalar curvature p:

The right hand side is a vector normal to M in sn(c), which we shall denote
by'Y. The mean curvature vector field 'fJ satisfies

Let Xl = x and x2 = y. We put Hij = H(8/8xi, 8/8xj), where H is the
second fundamental form of the immersion </J: M ~ sn(c). If we consider
Hij as a vector in Cn +!, then we see that the Gauss equation (1.5) becomes

where F is a positive valued Coo-function. We note that F becomes real
analytic if the immersion </J is minimal, has parallel mean curvature vector
or make M to be a Willmore surface (d. [10]). The area element is given by

(1.12) dv = 2F dx 1\ dy
= iFdz /\ dz.

For integers p and q, let EP,q be the complex line bundle over M whose
elements are equivalence classes of (U, z, P, w), where

(a) U is an open domain in M and P E U,
(b) z is a local isothermal parameter defined in U and w E C,
(c) (U, z, P, w) '" (U', z', P', w') if and only if

4

(1.18)

(1.19)

(1.20)

(V'</J, V'</J) = 0, (V"c/J, V"</J) = 0, (V'</J, V"</J) = F.

1
'fJ = cc/J - -L1</J,

2
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6

where Nt is the inclusion map of the normal bundle (T1. M)t into </>*TM
with respect to the immersion <Pt. We note that T and ( depend on t~ but
we do not put t on them. On (-E, E) X M, we define an operator at by

(2.2) at! = ~{, at (8~A ) 4j = w~r /Lv A (8~v ) 4j , at 8~i = 0

for every>. and i, where f is a COO-function on (-E, E) X M, r/LvAis the
Christoffel's symbols of the L:vi-Civita connection of M and (8/8yA) 4j is the
natural local frame in if!*TM. We extend at as a derivation to the tensor
bundle L:T;(M)® if!*Tf(M).

Lemma 2.1. Let 9t be the induced metric </>;!J on {t} x M for each t E
(-E, E), LT denote the Lie derivative with respect to T and (Ht), be defined
by (Ht), (X, Y) = !J(Ht(X, Y), N t() for X, Y E TM, where Ht is the second
fundamental form of the immersion <Pt. Then we have

(2.3) at9t = LT9t - 2 (Ht),.

Proof. We first note that

(2.4)

since

at (!JA/LdyA ® dy/L) = W V8~v!JA/LdyA ® dy/L

- !JA/Lwn:f"AvdyV 0 dy/L - !JA/Lw":fnILvdyA ® dyv

= W V'\1v!JA/LdyA 0 dy/L = O.

It follows from (2.4) that

(at9t) (X, Y) = at (9t(X, Y)) = at (!J (d</>t(X), d<pt(Y)))
=!J ((atd</>t) (X), d</>t(Y)) +!J (d<pt(X) , (atd</>t) (Y))

for every X, YETM. Since

atd</>t = at (~~~ dx
i

0 (8~A ) 4j)

_ (8W
A

v- A 8if!/L) i (8)
- 8xi + W r v /L 8xi dx ® 8yA 4j

= '\1W,

we have, from (1.5),

(at9t)(X, Y) =!J (VxW, d<pt(Y)) +!J (d<Pt(X), VyW)

= X·!J (W, d<pt(Y)) -!J (W; (V~d</>t) (Y)) -!J (W, d<pt (V~Y))

+ y.!J (d</>t(X) , W) -!J ((V~d</>t) (X), W) -!J (d</>t (V~X), W)

= X . 9t(T, Y) - 9t (T, '\1~Y) + Y . 9t(X, T) - 9t ('\1~X, T)

- !J (Nt(, Ht(X, Y)) - !J (Ht(Y, X), Nt()

= (LT9t) (X, Y) - 2 (Ht), (X, Y),
7

J( = c+ 11",11 2
- h12

,

"V1."( = F ''\11.""
1

9'{1.~ = F {(~, th - (~, ,)t},

(1.24)

(1.25)

(1.26)

(2.1)

for ~ E COO (EP,q ® CT1.M) , where 9'{1. = V'w - V"w + [w, w] E COO (E1,l ®
Hom(CT1. M, CT1.M)). We note that the components of 9'{1. are given by

(1.27) 9'{1. u v = ~R1.12Uvdz ® dz,

and hence it is a pure imaginary. We finally note that Ricci identity for
~ E Coo (EM 0 CT1. M) is

(1.28) ['V1., "'\11.] ~= (q- p)J(F®~+9'{1.~.

Definition. By a compactly supported variation of </>, we mean a Coo-map
if! : (-E, €) XM ~ iiI, where €is a positive real number, such that

(a) each map <Pt = if!(t, .) : M ~ M is an immersion and </> = <Po,
(b) the closure of the set {p E M I<Pt(P) =1= </>(p) for some t E (-€, E)} is

compact.

The variation vector V of if! is a vector field along </> which is defined by
V = dif!(8/8t) It=O. Thus, if we put W = dif!(8/8t), then W(O, p) = yep)
for every p E M. We decompose W into tangential and normal parts:

(1.23)

2. VARIATION OF THE LENGTH OF NORMAL CURVATURE TENSOR

Let <P be an immersion of an oriented m-dimensional manifold M into an
n-dimensional Riemannian manifold iiI.

in virtue of (1.21). The structure equation (1.6)"" (1.8) of Gauss, Codazzi
and Ricci are the following:

where", = ",v Nv , "( = ,vNv and w~ is the components of the normal con­
nection extended to the complexification CT1.M of the normal bundle. For
~ E Coo (EP,q 0 CT1.M), we may define the covariant differentiation of ~ by

(1.22) ''\11.~ = (''\1~u +w~~)Nu, "V1.~ = ("'\1~u + w~~V)Nu,

where ~ = ~uNu = ~U(z, z)(dz)P ® (dz)qNu. Then the Weingarten equation

(1.3) becomes

(1.21)

because L:i.</> = - (2/F)'\1'V" <p. Taking a local orthonormal cross sections
{N

3
, ..• ,N

n
} in T1. M and regarding them as Cn+l-valued functions, we

have



Lemma 2.4. We have

where we have put 0 = Otlt=o and so on. For the mean curvature vector TJ,
we have

We next compute the first and second terms of the right hand side of (2.7).
Hereafter we assume that ill is a Riemannian manifold iIl(c) of constant
sectional curvature c.

It follows from (2.7) rv (2.9) that

(2.10) (oH)(X, Y)
== N{(VV()(X, Y) + C9(X, Y)( + (Vh)(T, X, Y)

- h(X, A,Y) + h(VxT, Y) + h(X, VyT)}
mod d</>(TM),

mod d<p(TM) ,(2.11) o(NTJ) == N {~ (-~( + Sl.() + c( + VTTJ}

9

(VtVW)(X, Y) = vScVyW

= vSc{Nt ht (1'; T) + d<pt(V~T) - d</>t (A~Y) + NtV~(}

== Nt(Vtht)(X, Y, T) + Ntht(Y, VScT)

+ Ht(X, V~T) - Ht(X, A~Y) + NtVScV~(

= Nd(Vtht)(X, Y, T) + ht(X, V~T)+ ht(Y, VScT)

- ht(X, A~Y) + (Vtvt()(X, Y)} mod d</>t(TpM),

where A~ is the shape operator of <Pt with respect to (. 0

(2.8) R(W, d</>t(X))d</>t(Y) == cgt(X, Y)Nt( mod d</>t(TM),

(2.9) (VtVW)(X, Y)

=Nd(Vtht)(X, Y, T) + ht(VScT, Y)

+ ht(X, V~T)+ (Vtvt()(X, Y)

- ht(X, A~Y)} mod d</>t(TM),

for every X, Y E TM.

Proof. Since ill = iIl(c), we have

R(W; d</>t(X))d<pt(Y) = cg(d</>t(X), d</>t(Y))W - g(W, d<pt(Y))d</>t(X)

=cgt(X, Y)Nt( mod d<pt(TM).

Equation (2.9) is proved as the following:

VyW = V~(d</>t(T) + Nt()

= Ht(Y, T) + d</>t(V~T) - d</>t(A~Y) + NtV~(.

Therefore, if X E TpM and Y is a vector field on M such that Vx Y = 0 at
p, then

8

0= Ot (9t9t l
) = (Ot9t) 9t

l + 9t (Ot9t
l

) ,

substituting (2.3) into the first term, we obtain (2.5). We denote the deter­
minant of 9t by {It and (i, k)-cofactor by flik· Then 8..;gi/8t = (8{1t18t)/2..;gi
and

8{1 /8t = ~ { 8(9thk fl + 8(9thk fl + ... + 8(9t)mk fl }
t L..J 8t lk 8t 2k 8t mk

k=l

""' ""' ik= L..J L..J (Ot9t) ik (9t) {It

k i

= {It (LT9t - 2 (Ht),) ik (9t)ik

= 2 {divT - mg(TJ, ()} {It·

Thus we have (2.6). 0

Lemma 2.3. The variation OtHt of the second fundamental form Ht is
given by
(2.7) (OtHt) (X, Y) = (VtVW) (X, Y) + R (W, d<!>t(X)) d<pt(Y)

- d<pt ((Otr) (X, Y)) ,

for every X, Y E TM, where Otr = (8r jik(t))/8t)dx j
('2) dxk('2)8/8x

i
, rjik(t)

being the Christoffel's symbols of the Levi-Civita connection of gt·

Proof. From (1.5), we have

(OtHt) (X, Y) = (otVtd</>t) (X, Y)

= (Vtotd</>t) (X, Y) + R (V, d</>t(X)) d<pt(Y)

- d<pt ((Otr) (X, Y)) ,

for X, Y E TM, where we note that

t (82 >. 8ipv - >. 8ipl1- k 8ip>' )
V d<pt= 8'8 .ip +-8.rv 11--8. -ri j(t)-8kxt Xl x t Xl X

dxi ® dx
j

('2) (8/8Y>') ~

and hence we need the last term -d</>t((</>tr)(X, Y)) in the Ricci formula for
[Ot, Vt]d</>t. 0

Remark. In later computation, we shall take an inner product of OtHt with
normal vectors and so we need not compute Otr. Here, we only note that
Otr is a tensor field on M.

where Vt is the induced connection on the bundle T* M ® </>'t ill over {t} x
M. 0

Lemma 2.2. Let 9t l be the inverse matrix of the metric 9t and dVt be the
volume form on M with respect to 9t. Then we have

(2.5) Ot9t l = -'9t
l

{ LT9t - 2 (Ht),} 9t
l

,

(2.6) Otdvt = {divT - mg(TJ, ()} dVt,

divT denotin9 the divergence of the vector field T.

Proof. Since
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is
(2.16)

D(I/Lllm- 2 L) -IILllm-2{ (m -l)Q1.TJ - L.Ric(Xi' Xj)L(Xi, Xj)} = 0,
i,j

~.c[<jJt]lt=o = J511L ll
m

dv

= J{; IILllm-2511L1I2 + II L ll m(divT - mg(TJ, ())} dv

= mJ{_g(D(II L ll m- 2L), ()

+ IILllm-2g(L. h(SXi, Xi) - S1.TJ - IILII 2 TJ, () }dv.

Since Q1.~ = S1.~ - mg(TJ, ~)TJ and the second term in the integrand is equal
to

II L ll m- 2g(- L.Ric(Xi, Xj)L(Xi, Xj) + (m -l)Q1. TJ, (),

we get (2.16). D

Thus if the Ricci tensor is proportional to the metric tensor, then (2.16)
reduces to

where Q1. : T1. M --+ T1. M is a symmetric transformation defined by g(Q1.~, e)
= "Lg(L(Xi, Xj), ~)g(L(Xi, Xj), f) and DB . -(ViVjBijU)Nu for any
section B of T*M I8l T*M ® T1.M.

Proof. We see from (2.6) and (2.15) that

Therefore we have the following result which was obtained in [18] and [19].

Theorem 2.6 ([18, 19, 23]). The Euler-Lagrange equation of the confor­
mally invariant functional

D(IILllm-2L) - (m - 1)IILllm-2Q1.TJ = O.

In particular, we have the following result obtained in [18, 22].

Corollary. If m = 2, then (2.16) reduces to

(2.17) ~TJ - QJ.. TJ = O.

Proof. We have only to show DL = (m -l)~TJ. We can easily show that by
using Codazzi equation (1.7). 0

Definition. Willmore surface is a surface satisfying (2.17) immersed in a
space form.

Let us consider a variational problem for another conformal invariant R1. .
We shall compute the Euler-Lagrange equation for the functional

R1.[<jJ] = !IIR1.II QdV.

11

i,j

+ 2mcg(TJ, () + dIlHII 2(T),

511TJW = -~g(~(, TJ) + ~g(S1.(, TJ) + 2cg((, TJ) + dIlTJII 2(T) ,
m m(2.13)

i.j

respectively.

Proof. Since

II H II 2 = Hil Hke/Lgikgjeg>'/L and IITJII 2 = g(NTJ, NTJ),

equations (2.12) and (2.13) are derived from (2.4), (2.5), (2.10) and (2.11)
by a routine calculation. 0

Next, we shall compute the variation of the length of the tensor field L,
which we define by L = h - TJg, and the normal curvature tensor R1.. We
note that N Land R1. are conformally invariant, that is, N*L* = N Land
(R1.)* = R1. under the change g* = efg. Since

(2.14) IILII2 = IIHII
2

- mIlTJW,

equations (2.12) and (2.13) imply that

(2.15)
511LII 2 = 2 L.9(L(Xi' Xj), (VV()(Xi, Xj)) + 2 L.g(h(SXi' Xi), ()

S1. being the symmetric transformation T1. M --+ T1. M defined by g(s1.~, e) =
trace(AeAe). Here we take an orthonormal local frame field {Nu } in T1. M.
The equation (2.11) is proved as follows:

5(NTJ) = 2-5 {gi
j
Hi'>' (~) }m J By>' rP

= ~ {(59-I
);;H;/ (a:')" + /j(5H);/ (a~)J

== ~ {_("'ViTj + VjTi) + 2h
ij

u (U} Hil (B~>') rP

+ 2-N (-~( - s1.( + cm( + mVTTJ)
m

+ ~(ViTj)Hi'>' (~)
m J By>' rP

= 2-N(-~(+S1.()+cN(+NVTTJ mod d<jJ(TM) ,
m

because of (2.5) and (2.10). Let {Xih=I •...•m be an orthonormal base in
TpM.

Lemma 2.5. Let S be the symmetric transformation of T M defined by
g(SX, Y) = Eig(H(X, Xi), H(Y, Xi)). Then the variation of the length
of the second fundamental form and the mean curvature vector are given by

(2.12) 511HII 2 = 2 L.9(H(Xi, Xj), (VV()(Xi, Xj)) + 2L. H,(SXi, Xi)
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When m = 4 and q = 2, R.L[</>] is a conformal invariant and Yang-Mills

integral in the vector bundle T.L M. .

Theorem 2.8. Let </> : M 4 -T M(c) be an immersion of a 4-dimensional
compact oriented manifold M 4 into an n-dimensional space form M(c). If
the normal connection is self-dual or anti-self-dual, then </> is critical for the

functional R.L[</>].

(2.21) !oIlR.LW
2
=4V/;;h(Vh/uR.Lijuv + 2Pi,jhijuC

+ 2(2TkVihklvh/u + 2'VjTkDikuv - 'ViTk R.LkjUV)R.Lijuv'

The third term of the right hand side of (2.21) is equal to

2TkR.LijuvViR.Ljkvu.

The second Bianchi identity for R.L implies that this is equal to ('VTIIR.L1I
2
)/2.

It follows that

o11RJ..1I2 = 8Vi'Vk(V hjkuR.Lijuv + 4Pij hiju(U + Ti'ViIl R .L1I
2
,

and hence

~R.L[</>t]lt=o = J{4qVk'Vi(IIR.Lllq-2h/uR.Lijuv)

+ 2qIIR.LIIQ-
2Pijhijv - mIlR.Lllq'l]v }(Vdv

oin virtue of Green's theorem.

Therefore

(2.20) ~oIlR.L 11 2 = {(OD)ilJL - (oD)j/'\JL}{ Dkev" - Dek
v
" }gikgjlUAVUJL"

+ (Di/JL - Dj/JL)(DklV" - DekV")(og-l)ikgjluAvU/-£",

Next we compute oD:

oD = 0 (HokJLHolledXi @dx
j

@ (Y-) @ (Y-) )
2 3 {)yA </> {)yJL </>

= {(oH)ikJLHjlll + HikJL(oH)jlll + HikJL Hjl(og-l)kl}

dx
i

@ dx
j

@ ({)~A) </> ® ({)~JL) </>'

Using (2.5) and (2.10), we obtain

(OD)il JL == "h'VkCNvJLH/A+ 'Vj'VkCNvAHikJL

+ C(Hi/NvJLC + HijJLNvA(V)

+ Tl('VlhikvNvJLh/A + 'VlhjkvNvAhl JL )

+ 'ViTkDjk/-£A + 'VjTkDikAJL mod (d</>\ d</>JL).

Substituting this result into the first term of the right hand side of (2.20)
and putting Di/w = hikvh/u, we have

m

C(X, Y) = L R.L(y, Xi)h(X, Xi)'
i=l

Proof. Since

d .L
dt R [</>t]/t=o

= jIlR.Lllq- 2 {~oIlR.LW + IIR.L1I2(divT - mU(TJ, ())} dv,

we need to compute oIlR.L1I 2. Define Dt by

Dt = (Ht)ikJL(Ht)jl(gt)kedxi @ dx
j

@ ({)~A)~ ® ({)~JL ) ~ .

Then, from (1.8), we have

Then the Euler-Lagrange equation of the functional

IIR/1I2 = {(Dt)ilJL - (Dt)j/JL}{(Dt)keV" - (Dt)lkV"}(gt)ik(gt)jlUAVUJL'"

12

where P is defined by P(X, Y) = - Etrace(R.L(X, Xi)R.L(y, Xi)). In par­
ticular, if q = 2 , then (2.18) becomes

(2.19) DC - ~{LP(Xi' Xj)h(Xi, Xj) - 7I1R.L1I2TJ} = O.
i,j

is given by

We note that if q = m/2, then R.L[</>] is a conformal invariant. However
we are also interested in the case q = 2 for any dimension m, because the
right hand side of the definition of R.L[</>] is a Yang-Mills integral. Here we
explain the geometric meaning of IIR.LII in the case that q = 1 and m = 2
(d. [11]). For arbitrarily fixed point p EM, the curvature ellipse Ep at p is
defined as the set {heX, X)I X E TpM, IIXII = I}. This is an ellipse lying
on the plane IIp which pass through TJ and is spanned by normal vectors
a = (hn - h22 )/4F and b = h12/2F in the normal space Tp.LM. We easily
see that 41/'12(= 211L1I 2) is equal to 4(11all2 + IIb112) and hence equal to the
sum of the square oflengths of major and minor axes. The square of the area
surrounded by Ep in IIp is equal to 1r2(lIaIl2I1bIl2- (a, b)2). It follows that it

is equal to 1r2(1/'14 -I(/', 'YW)/4 at p. Since 19t.L12 = F-2Eu v 9l.Luv9l.Luv
,

we see from (1.26) that (area)2 = 1r219l.L 12/8 = 1r21IR.L 11
2/16 ~t p.

Theorem 2.7. Let C E COO(T* M @ T*M @ T.L M) be defined by
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D

"V.L "V.L(vt.L,) + 'V.L 'v1-(Vi.Lt )

= vt.L("V.L "V.L, - 'V1- 'V.Lt )

= pvt.L("V.L 'V.L1J - 'V.L "V1-1J)

=_pvt.Lvt.L1J,

we have (3.12).

= 2(1,14 _1(" ,)12
)

= 21,14

which is a non-zero constant. Assume that (3.7) holds. Then

"V.L "V.L (vt.L,) = Phl2 "V.L "V1-,

= -FI,1 2 (1J, tho

U,V

Since

(3.11)

Corollary. If the normal curvature tensor is parallel, then the immersion
4> is critical for the functional Rf[4>]. Moreover if 4> is minimal, then 4> is

critical for the functional R}[4>].

Proof. We immediately have

VIR.L12uv = _ 2i ('V.Lvt.LUv + "V.Lvt.LUV),

V2R.L 21uv = -2 ('V.Lvt.LUv _ "V.Lvt.LUV).

It follows that the normal curvature tensor parallel if and only if "V.LVt.L =
O. From the assumption, we see that "V.Lvt.L = 0 and so Ivt.L1 is constant.
If vt.L = 0, then it is trivial that 4> is critical. Assume that vt.L f:: o. Then
we see from (3.9) that (3.11) is equivalent to

(3.12) !~["V.L "V.L(vt.L,)] + (vt.L?1J = O.
P

The following proposition shows that (3.12) is equivalent to the defining
equation (3.7) of Willmore surfaces under certain assumption.

Proposition 3.2. We assume that IIR.LII is a non-zero constant and the
curvature ellipse is a circle at every point. Then (3.7) is equivalent to (3.12).

Proof. We first note that the curvature ellipse is a circle if and only if
(" ,) = o. Thus from the assumption, we have vt1-, = PI,12

, and

Ivt.L 12 =p-2 (vt.L, Vi.L)

=p-4 L:(tU,V _ ,UtV)(,UtV- tU,V)

For the conformally invariant functional

Rf[4>] = jIlR1-lI dV ,

the Euler-Lagrange equation is given by

Theorem 3.1. The Euler-Lagrange equation of the functional

RH4>] = j1lR1-112dV

for immersions 4> : M 2 --+ sn(c) of an oriented surface M
2

is given by

(3.10) ;3~["V.L "V1-(vt.L,)] + ;2 (vt.L)21J + ~lvt.L121J = O.

16

= _1_(4P2Ivt.L12h w+ 4p21vt.L12h W)N8p3 11 22 w

= 2Ivt.L121J.

Here we note that Ivt.L1 2 = p-2(vt.L, Vi.L) = IIR.L1I2/2. Therefore we have

obtained

VjVkCjkv

= 2~ {8(VkC1kv + i V kC2kV) + 8(VkC1kv - i V
k
C2kV)

+ £~(VkClkU+ i V kC2kU) + l~(VkClkU- i V
k
C2kU)}

= ;3 {"V1- "V.L(vt.LUV,U) + 'V.L 'v.L(Vi.LUv;yu)} + ;2 Vt.L w Vvt1-Uw1Ju.

We thus obtain

(3.9) -DC = ;3 ~["V1- "V.L (vt.L,)] + ;2 (vt.L )21J,

where ~[ ] means the real part of [ ]. The second term of (2.19) is com­

puted as follows:

L:P(Xi' Xj)h(Xi, Xj)
i,j
_ R.L. R1- .kuvhijwN- tkuv 3 w

and from (3.8)

VkC1kv + i V kC2kv = ; {_~ 'V1- (vt1-UVtU) + "V.L (vt.LUv1JU) },

we have

It follows that

(3.8) VkCav = ~{ - ~ 'V1-(Vt1-U
Vt U) + ~ "V.L(vt.Luv,U)

_ 'V.L(vt.Luv1JU) + "V.L(Vt.Luv1JU)},

VkC2kv = ~{~ 'V.L(vt.LUVtU) + ~ "V1-(vt.Luv,U)

_ 'V.L(vt.LuV1JU) - "V1-(Vt.Lu v1JU) }.

Moreover, we compute ViVkCjkv. Since
. k 'f. kV3V Cjkv = g3 Vf.V Cjkv

= gjf.(Of.VkCjkv _ ri jVkCikv + rf.~VkCjkU)



Therefore we have

"V.L "V.L (9t.L'Y) + 'V.L 'V1- (9"t.L t )

= -PI'Y12{(1], th + (1], /,)t}·

Since

(9t.L)21] = p-l 9t.L{ (1], th - (1], /,)t}

= (1], t)hI2/, + (1], /')1/'1
2
t,

we have (3.12). Conversely, assume that (3.12) holds. Then

0= p-1 {"V.L "V.L(9t.L/,) + 'V.L 'V.L(9"t.Lt )} + (9t.L)21]

= hI2("V.L "V.L/, + 'V.L 'V.Lt ) + 1/'12{(1], th + (1], /,)t}.

Proof. On M\E, we have

p-l V' V" log IwI 2

= ~~: {('V.Lw, "V.LW) + (w, 'V.L "v.LW»lwI
2

_ p-3(W, "V.LW)('V.LW, W)}

1 -4 (.T< 'n.L "n.L.=r<) A= Iwl2P ';l", v v ';l" + Iw14 •

Since

Since

Then we have

Lemma 4.1. Let </> : M --t sn (c) be a compact oriented Willmore surface
such that W#- 0 identically. Let E denote the set {p E MI W(p) = O} and
2jp the real analytic order of the zero of Iwl2 at pEE. Set N = LpEI: jp.

Then we have

(4.2) -21rN = 61rX(M) +J{1:'2 (lw/,12
-lwtI

2
) + 1~4 } dv,

where WI' = {('V.L1], /'h-(/', /,) 'V.L1]} /2, wt = {('V.L1], th-(/', t) 'V.L1]}/2

and A = I'V.L wI2IwI2 -I('V.Lw, wW·
18

4. CRITICAL SURFACES

Firstly, we shall study Willmore surfaces. Let </> : M --t sn(c) be an
isometric immersion of a compact oriented surface Minto sn(c). Define
WE coo (E3,O®A2CT.L M) by W= /'A 'V.L1]. The immersion </> : M --t sn(c)
is called a S -Willmore surface if I' At#- 0 and W = 0 everywhere on
M. It is known that S-Willmore surfaces are Willmore surfaces and there
exist Willmore surfaces which are not S-Willmore surfaces ([10, 9]). In
the following, we shall obtain an integral formula for the sum of residues
of logarithmic singularities of log Iw12. We note that the Willmore surface
equation (3.6) and Codazzi equation (1.25) imply that W is a holomorphic
section of E3,O ® A2CT.LM, i.e., "V.LW = 0 and hence either Wis identically
zero, or else the zeros of W can be at most isolated. Define the symmetric
product of two p-vectors €= 6 A ... A €p and ( = (1 A ... A (p in ACT.LM
by

D

JK dv = 21rX(M),

P-4 (w, 'V.L "V.LW)

=3Klwl2+ 2P-4 ~9t.LWUWwvwuv

= 3Klwl2 + 2F-5 ~(tw/,u _ /,WtU)WWVWUV

= 3Klw\2 + 2(lw/,12 -\wtI
2
).

we obtain (4.2).

where E
e

denotes the complement in M of an €-neighborhood of all points
of E. In virtue of the Gauss-Bonnet formula:

The equality holds if and only if (WI', t) = 0 and 'V.Lw is proportional to

W.

Iw/,12h\2 = ~I(/', 'Y)!2I wI
2+ I(W/" t)1

2
.
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we have

Theorem 4.2. Let </>: M --t sn(c) be a compact oriented Willmore surface.

Assume that W#- 0 identically. Then we have

Proof. We compute the first term of the integrand of (4.2) on M\E. Since

1
Iw'Y A /'1 2 = "41(1', 'Y)1

2
IwI

2
,

The residue of the logarithmic singularities of log \w1 2 is given by

-21l-J'f = lim r (P- 1 V' V"log Iw1 2) dv,
e-tO jr:,E

(4.3)

we obtain

D

1
(€, () = p!det(€A, (B»)A,B=I, ... ,P.

"V.L "V.L/, _ 'V.L 'V.Lt = P("V.L 'V.L1] - 'V.L "V.L1])

= -P9t.L1]

= (1], /,)t - (1], th,

(4.1)

we obtain (3.7).
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Proof. By Lemma 4.4, we can set

'\7i '\7i7] = a, + b1 + c '\7i7] + d "\7i""

'\7i, = a', + b'1 + c' '\7i7] + d' "\7
i

7].

Taking the symmetric product of the both hand sides of the above equation

and ,('\7i7]), we obtain

al'\7i7]12

p
2
b = 2\'111 2 '

P 3 b' = a("\7i7], ,)
2\'111 2 '

It follows that

(4.9) '\7i '\7i7] /\ '11 = aF-
3

{FI'\7i7]121 /\ '11 - ('\7i7], 1) "\7
i

7] /\ W},
21'111 2

'\7i, /\ '11 = ;~~: {("\7i7], ,)1/\'11 - P21,\2 "\7
i

7] /\ W}.

The following general formula for decomposable 2-vectors are easily proved:

(4.10) (p /\ Sll if /\ [1)(P /\ S2, if /\ [2) - (p /\ sll if /\ [2)(P /\ S2, if /\ [1)

3 - - )=2(P, if)(p /\ S1/\ S2, if /\ h /\ t2 .

Using this formula, we compute A defined in Lemma 4.1. We have

'\7iW= 0/\ 8+, /\ w,

where we have put 0 = '\7i" 8 = '\7i7] and w = '\7i '\7i7]. Then A is

computed as following:

A = \0/\ 8+, /\ w121, /\ 812
- 1(0/\ 8 +, /\ w, 1/\8)1

2

= 10/\ 81 21, /\ 81 2 -1(0/\ 8, 1/\8)1
2

+ I, /\ w1 21, /\ 812 - \(, /\ w, 1/\8)\2

+ p-4(O /\ 8,1/\ w)\, /\ 812 - F-7(0/\ 8,1/\ 8)(1/\ w, , /\ 8)

+ p-4(, /\ W, 0/\ 8)1, /\ 81 2 - p-7(, /\ w, 1/\ 8)(0/\ 8, ,/\ 8)

= ~ {181218 /\ 0 /\ ,\2 + 1r1
2
1r /\ w /\ 81

2

2
_ 2~(F-7 (8, ,)(w /\, /\ 8, 0/\ 1 /\ 8»)}.

J Jlal2
(4.7) -211":N = 611"X(M) - 1r12dv + \WI2dv,

where a = ('\7i '\7i7], ,) = _('\7i7], '\7i,). In particular, if M is a topo­

logical sphere, then we have

(4.8) J1,12dv = 1211" + 211":N.

.
Theorem 4.5. Let </> : M -+ 86 (1) be a compact oriented Willmore sur-
face. Assume that '11 =1= 0 identically and the curvature ellipse is a circle

everywhere. Then we have

\Vti 12 = 2(1,1
4

-1(" ,)1
2
).

Therefore we see from (4.4) and the non-negativity of A that

(4.5) p-1 \7' \7" log 1'111
2

_ IVti l2 1('11" 1)1
2

A
- 3K - 21,12 + 2 \'1112 1,\2 + 1'11\4

IVti l2
2': 3K - 21,12 •

Integrating (4.5), we have the desired inequality. 0

Surfaces with isotropic, in S4(c) are S-Willmore surfaces, because, and

1 form an orthogonal basis of CT i M and

p('\7i7], ,) = ("\7 i " ,)
=0.

This fact was proved in [10]. We also have

Theorem 4.3. Let </> : M -+ S5(c) be a Willmore surface whose curvature
ellipse is a circle everywhere. Then it is a S - Willmore surface.

This is immediately derived from the following lemma.

Lemma 4.4. Let </> : M -+ S6(c) be a Willmore surface whose curvature
ellipse is a circle everywhere. If '11 =1= 0 identically, then " 1, '\7i7] and
"\7i 7] form an orthogonal basis of CTiM on M\~.

Proof. Since (" ,) = 0, we get

(4.6) ('\7i, ,) = 0, ('\7i" ,) = 0,

and so, using (3.6),
o= \7"('\7 i7], ,)

= ("\7i '\7i7], ,) + ('\7i7], p '\7i7])

= p('\7i7], '\7i7]).

Therefore we see that the subspace spanned by , and '\7i7] in CT
i

M is
isotropic. Thus" 1, 'Vi 7] and "\7i7] form an orthogonal basis of CTiM

on M\~. 0
20

We also have
11'11112 = 4P - 5( ('\7i7], 1h - (" 1) '\7i7], ("\7

i
7], ,)1 - (" 1) "\7

i
7])

= ~{1,14I'\7i7]12 -I('\7
i

7], 1)1
2 1'i12

}

1= -1,1
2

1'111
2

.
2

It follows that
1 2 _ 2 IVti l2 1('11" 1)1

2

(4.4) 1'111 2 (1'11,1 -1'11,1) = - 41r12 + 1'111 21,12 '

where we have used



Thus we have

(4.11) A = %HyI21'V1. 'V1. TJ /\ '111 2 + I'V1. TJI21'V1., /\ '111
2

_ 2~(F-7 (" "V1. TJ)('V1. 'V1. TJ /\ '11, "V1.:y /\ ~)n·
Substituting (4.9) into (4.11), we get A = \aI2IWI2. Since '11, = 0, (4.2)

reduces to (4.7).
Furthermore if M is a topological sphere, a vanishes. To prove this result,

we have only to show that a is a holomorphic differential of degree 4. By

(3.6), we obtain

V"('V1. TJ , 'V1.,)

= ("V1. 'V1. TJ , 'V1.,) + ('V1. TJ , "V1. 'V1.,)

= _F-1(:y, TJ)(/, 'V1.,) + ('V1. TJ , F 'V1. 'V1. TJ + 2KF, - V{1.,)

=!FV'('V1. TJ , 'V1.TJ)
2

=0.
o

Secondly, we study surfaces satisfying (3.10). If the normal connection is
flat, then (3.10) trivially holds. By the same proof as that of Proposition

3.2, we obtain

Lemma 4.6. Under the assumption that the curvature ellipses are circles

of constant radius on M, (3.10) is equivalent to

(4.12)

An isometric immersion 4> : M -t !VI is said to be constant isotropic if
IIH(X, X)1I 2 is constant on the unit tangent bundle of M. In the case that
M is a surface, we easily see that 4> is constant isotropic if and only if it is
pseudo-umbilical (" TJ) = 0), the curvature ellipses are circles (" ,) = 0)
and IITJII2+ 1,12/2 is constant. In [20], we determined constant isotropic sur­
faces in S5(c). All of them were of constant Gauss curvature. In connection

with this result, we state

Theorem 4.7. Let 4> : M -t sn(c) be a pseudo-umbilical immersion of a
surface M. If the curvature ellipses are circles of constant radius on M and
4> satisfies (3.10), then K is of constant Gauss curvature.

Proof. Since ('V1. TJ , ,) = 0, we have, from (4.12),

o= V" ('V1. TJ , ,)

= ("V1. 'V1. TJ , ,) + ('V1. TJ , F 'V1.TJ)

F= -2"hI 2 (TJ, ,) + F('V1. TJ , 'V1. TJ)

=F(/V1. TJ , 'V1. TJ).
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Thus we see that

0= V" ('V1. TJ , 'V1.TJ)

= - 1112(TJ, 'V1. TJ )

= _!1,1 2V'IITJII 2.
2

If, = 0, then 4> is totally umbilical. If IITJII2 is constant, then K is constant
because of the Gauss equation (1.24). 0

Remark. If 4> -t sn(c) is a minimal immersion of a surface M, then the as­
sumption that 4> is pseudo-umbilical and satisfies (3.10) is trivially satisfied.
Minimal surfaces of constant Gauss curvature in sn(c) were determined in

[5].
Lemma 4.8. Assume that the mean curvature vector is parallel and (3.10)
holds. If the normal curvature V{1. does not vanish identically, then the

immersion 4> is minimal.

Proof. Take the symmetric product of the both hand sides of (3.10) and TJ·

From the assumption, we have

2~(F-3V"V"(V{1." TJ») + F-2«(V{1.)2TJ , TJ) + ~1V{1.12I1TJII2 = O.

Since
V{1.TJ = 'V1. "V1. TJ - "V1. 'V1. TJ

=0,

we see that TJ = 0 on the open dense set E' = {p E MIV{1.(p) =f O} and hence

TJ = 0 on M. 0

Theorem 4.9. Let 4>: M -t sn(c) be an immersion of compact surface M.
If 4> satisfies (3.10), the mean curvature vector is parallel and the curvature
ellipses are circles everywhere, then the Gauss curvature of M is constant
and the immersion is a standard minimal immersion of a sphere, a minimal
immersion of a flat torus (cf. [5, 15]) or a totally umbilical immersion.

Proof. If V{1. == 0, then, = 0 and so 4> is totally umbilical. Assume that V{1.
does not vanish identically. Then, by Lemma 4.8, we see that 4> is minimal.

Equation (3.10) reduces to

~["V1. "V1.(V{1.,)] = O.

It follows that

(V" V"I1'12)1 + (V/ V'I1'1
2)1i = O.

Vectors, and :y are linearly independent on E'. Thus V'V/111
2 = 0 on

E' and hence on M, which implies that V' V/K = 0 on M in virtue of the
Gauss equation (1.24). In the subsequent sections, we study a 2-dimensional
Riemannian manifold (M, g) which admits a function satisfying VVf = rg.
In the section 6, we prove that if the Gauss curvature K of a compact 2­
dimensional Riemannian manifold satisfies V' V'K = 0, then K is constant.
From this and the result of [5], we have the assertion. 0
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we get

r = J(K) - Kj(K).

VV j(K) = {J(K) - Kj(K)} g.

f = j(K),

(5.3)

(
0 ) ..2 otK (O)=ViVjk~J+~trk-Ktrk.

By integration by parts, we have

(5.2) 2F:,[g] = 1M {j(K)(ViVjkij + ~tr k - Ktr k) + J(K)tr k} dVg

=1M [ViVjj(K) + {~j(K) - Kj(K) + J(K)}9ij] k
ij

dvg.

The equation (5.1) is the necessary and sufficient condition for that F:,[g] = 0
for arbitrary k E TgM. The equation (5.1) implies that

~j(K) = 2 {Kj(K) - J(K)}

and hence is rewritten as

We now introduce COO-functions on M

Then (5.3) becomes

(5.4) VVf = rg,

which shows that f is a concircular scalar field on M (d. [21]). Recall that
TgM l = {k E TgMI f trk dVg = O} and TgM2 = {k E TgMI trk = O}. Thus
9 is a critical point of FJIMl (resp. FJIM2) if and only if the orthogonal
projection of the left hand side of (5.1) onto TgMl (resp. TgM2) is zero.
Thus if 9 is a critical point for the functionals FJ, FJIMl or FJIM2' then we
have a concircular scalar field on M. The function r, called the characteristic
function of f, can be considered as a function r(f) of f if j is strictly
monotone, Le., j =/= 0 anywhere on R. In fact, we have r = -~f/2 and
covariantly differentiating the both hand sides of (5.4) and using the Ricci

identity, we obtain

V~f = 2KVf·
25

(
0 .) 1 .ol/k (0) = 2g~P (Vjkpk + Vkkjp - Vpkjk)'

Using this equation in the derivation of the Rimannian curvature tensor

R ··kl.
~J •

The derivative (2t rji~) (0) of the coefficients of Riemannian connection V is

given by

g'(O) = (tr k)g,

where g(t) = det(gij(t)), g = g(O) and trk = kijgi
j
. Therefore we have

(dvg(t»)'(O) = ~jJ dxlJ\ dx
2

1
= 2trkdvg.
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and hence

5. EQUATION VVf = rg

In the proof of Theorem 4.9, we used the result that a compact surface
whose Gauss curvature satisfies V' V'K = 0 is only of constant curvature.
The equation V' V'K = 0 can be rewritten as a tensor equation VVK = rg,
r being a Coo function on M. In the present and next sections, we shall
study a complete two-dimensional Riemannian manifold M which admits a
function f satisfying VVf = rg (d. [3, 14, 16, 21]).

Let M be a two-dimensional Coo manifold. We assume that M is com-
pact and orientable. Let M denote the set of Riemannian metrics on M.
Furthermore let Ml denote the subset {g E MlfMdv9 = 1} and M2 the
subset {g E Mlldvg = JL}, where JL is a positive density on M with total
volume JM JL = 1 (d. [2]). In the compact open Coo topology, M is an
open convex cone in the set Coo (S2T*M) of all Coo sections of S2T*M. We
consider the following functional FJ from M to R:

FJ[g] = 1M J(K) dVg,

where J = J(x) is a function defined on 1R, J(K) the composition J oK and
dVg the area element of gEM. The Euler-Lagrange equation is given by

(5.1) VV j(K) + {~j(K) - Kj(K) + J(K)} 9 = 0

for a critical point gEM, where V denotes the covariant derivative with
respect to g, the Laplace operator is defined by ~ = -9ijViVj and j(K)
the composite loK. The equation (5.1) for the case J(x) = x

2
is well-known

(d. [2], Chapter 4). However, to complete this paper, we give the proof in

the following.
Let g(t) be a smooth curve (-EO, EO) ~ M such that g(O) = g. We compute

F:,[g] := (d/dtFJ[g(t)])(O). Since

, {. oK (
FAg] = 1M J(K) ot (0) dVg + 1M J(K) (dvg(t»)'(O),

we have to compute aal{ (0) and (dvg(t»)'(O). Let k E TgM be defined by

k = g'(O). Then it is easy to show that

(:t 9ij) (0) = _k
ij

Remark. For any standard minimal immersion of a sphere, the curvature
ellipses are circles. On the other hand, there are minimal immersions of flat
tori such that curvature ellipses are not circles.



I. f I 'I I f

28

t1I< = -2<p(I<) - ¢(I<)I!VI<1!2

Then, by virtue of (5.9),

j(I<) = v(I<) + {I< - <p(I<)¢(I<) + cp(I<)} v(I<)

=v(I<).

into this, we obtain

(5.9) cp(I<) + I< - <p(I<)¢(I<) = 0

on the set of non-critical points of I<. Assume that <p(I<) # 0 at an arbitrary
critical point of I<. Then the critical points are isolated and (5.9) holds on
M. Consider a nontrivial function v = v(I<) satisfying

d2v dv
dI<2 + ¢(I<) dI< = o.

1 1
(6.4) el + e2 + e3 = 0, ele2 + e2e3+ e3el = -4"g2, ele2e3 = 4"g3.

Since f is a function defined on M, f restricted to a geodesic is defined on
R So we have to exclude solutions which diverge at a finite number to E R
from nontrivial solutions of (6.1).

In the case that D > 0, the roots are real numbers. Fistly, we assume that
D > 0 and e3 < e2 < el. Clearly, the real solution f satifies e3 ~ f ~ e2
or el ~ f. In the case that e3 ~ f ~ e2, the solution with initial conditions
f(O) = e3 and 1'(0) = 0 is given by

(6.5) f(t) = p(t+w'),

where p is the Weierstrass elliptic function with periods 2w and 2w':

(6.6) w =100

dx ,w'= ijOO dx .
el J4x3 - g2X - g3 -ea J4x3 - g2X - g3

We note that p(w) = el, p(w + w') = e2 and p(w') = e3· Using the Jacobi
elliptic functions, (6.5) becomes

(6.7) f(t) = e3 + (e2 - e3) sn2(vel - e3 t),

where the modulus", is given by ",2 = (e2 - e3)/(el - e3)·
29

6. SURFACES ADMITTING A CONCIRCULAR SCALAR FIELD

All facts in this section about elliptic functions are well-known; for in­

stance, see [1, 6, 13].
If the equation VVf = rg is restricted to a geodesic, then it reduces to

an ordinary differential equation f" = T(I). When r is a linear function of
f, then the Riemannian manifold which admits the concircular scalar field
f was determined in [16, 21]. So we study the cases that T is a polynomial
of degree 2 or 3 under the assumption that M is a complete Riemannian
2-manifold, although the results are easily generalized to the case that the
dimension is not restricted.

We consider the real solutions of the following differential equations with
constant real coefficients:

(6.1) f" = 6f2 - ~g2'
2

(6.2) f" = 2f3 + 6a2f + 2a3·

Since, making use of solutions of (6.1), we can obtain those of (6.2), we first
deal with (6.1). We have from (6.1)

(6.3) (I'? = 4f3 - g2f - g3,

where g3 is a constant real number. The roots of the polynomial

p(x) = 4x3 - g2 X - g3

will be denoted by ell e2 and e3. The discriminant D is given by

D = 16(el - e2)2(e2 - e3)2(e3 - et}2

=g23 - 27g32.

We have the relations:J(I<) = I<v(I<) + v(I<)<p(I<)
Define J(I<) by

(5.10)

Therefore if we set

(5.11) v(I<) = Cf e-W(K) dI<, 'l1(I<) =f ¢(I<) dI<

with some non-zero constant C, then J(I<) defined by (5.10) satisfies j(I<) =
v(I<) and hence

vvj(I<) = v(I<)VI< ® VI< + v(I<)VVI<

= {J(I<) - I<j(I<)}g

because of (5.8) and (5.10).

Theorem 5.3. If the Gauss curvature I< of a compact, orientable Riemann­
ian 2-manifold M satisfies (5.8) and <p(I<) i= 0 at every critical point ?f I<,
then the metric of M is a critical point of the functional FJ where J = v
and v is defined by (5.11).

We finally start from the assumption that I< satisfies (5.8). Substituting

(5.8) into the Ricci identity:

'hV/VjI< = ViVhVjI< - I«8'ftgij - 8fghj)V pI<,

we easily obtain

cp(I<)VhI< gij + -J;(I<)VhI< ViI< VjI< + ¢(I<)Vi/< V hVjI<

= cp(I<)ViI< ghj + -J;(I<)ViI< VhI< VjI< + ¢(I<)VhI< ViVjI<

- I«8~gij - 8fghj)VpI<,

where· denotes the differentiation with respect to I<. Transvecting with gh
j

and using (5.8) again, we have

{cp(I<) + I< + ¢(I<)t1I< +<p(I<)¢(I<) + ¢2(I<)I!VI<1!2} V I< = O.

Substituting
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I '! j 1

q(X) = x4+ 6a2X2 + 4a3x + a4
30

In the case that el ~ J, the solution with initial conditions J(O) = el and

1'(0) = 0 is given by

(6.18)

31

1
J(t) =X4+-'c-t

and hence limt-+c IJ(t)1 = 00. Thus we first assume that X4 is a simple root.
Let XI, ... ,X4 be the roots of q(x). Put X= X4 + 1/z. Then we have

(z')2 = -a(z - al)(z - (2)(z - (3),

where a = (Xl - X4)(X2 - X4)(X3 - X4) > 0 and ai = (Xi - X4)-1 (i = 1,2,3).
Furthermore we put z = Ay + B. Then

(6.16) (y')2 = -aA (y + B ~al) (y + B ~ (
2

) (y + B ~ (
3

) .

So if we define A and B by A = -4/a and B = (al +a2+G3)/3 respectively,
then we can rewrite (6.16) as

(6.17) (y')2 = 4(y - el)(y - e2)(y - e3),

where ei = (ai - B) / A (i = 1,2,3). This means that a part of real solutions
of (6.15) can be obtained by setting J = X4 + l/(Ay+ B) for a real solutions
y of (6.17). We note that A, B E IR and

1
el = 4(2a2 - XlX4 - X2 X3),

1
e3 = 4(2a2 - X3X4 - XlX2).

Let us consider the case that X4 < X3 < X2 < Xl (real). By (6.18) we see
that e3 < e2 < el. The solution of (6.15) corresponding to (6.7) is

(6.19) J(t) = X3(X2 - X4) - X4(X2 - X3) sn
2(ve

l - e3 t)
(X2 - X4) - (X2 - X3) sn2 ('Jel - e3 t)

This solution attains the minimum X3 at t = 0, the maximum X2 at t = w
and is a periodic function with period 2w. The solution corresponding to

(6.8) is

(6.20) J(t) _ Xl(X2 -X4) - X2(Xl - x4)sn
2 (vel - e3 t )

- (X2 - X4) - (Xl - x4)sn2 (Jel - e3 t ) ,

which attains the minimum Xl at t = 0 and diverges at t = to such that
sn2(Jel - e3 to) = (X2 - X4)/(Xl - X4). The function pet) is certainly a
real solution of (6.3) which coincides with (6.8) up to the change of variable
: t -+ t + w. The solution of (6.15) corresponding to pet) is

(6.21) J(t) = X4(Xl - X3) - X3(Xl - X4) sn
2

( Vel - e3 t) .
(Xl - X3) - (Xl - X4) sn2 (vel - e3 t)

has at least a real root. We denote the minimum of the real roots by X4·
The nontrivial solutions of (6.2) satisfy

(6.15) (J')2 = q(J).

If X4 is a triple root, then the solution of (6.15) is given by

J(t) = Xl - 4X43(t + c)2,
1- 4X42(t + c)2

and hence limt-+to IJ(t)1 = 00, where to + c = 1/2x4' If X4 is a quadruple
root, then

1
J(t) = (t + C)2'

J(t) = pet +w).

J(t) = p(t+w+ w').(6.14)

(6.12)

(6.9)

where c is a constant. We also have limt-+-c J(t) = 00.

Thirdly, let us assume that D < O. One of roots, say e2, is real and the
others are conjugate complex numbers. We also see that the periods 2w and
2w' are conjugate complex numbers and so w +w' is real, which is given by

(6.13) w+w'=-l°O dx
e2 J4x3 - g2X - g3

(cf. [1]). In this case, the real solution with J(O) = e2 and J'(O) = 0 is given

by

Thus we have limt-+-(w+w') J(t) = 00. After all, we have

Lemma 6.1. Among the nonconstant solutions oj (6.1), the solutions which
are defined on the whole line IR are (6.7) in the case (D > 0, e3 < e2 < el)
and (6.9) in the case (D = 0, e3 < e2 = el), up to the change oj variable

: t -+ t+ a.

Let us turn to the differential equation (6.2). We assume that the poly­

nomial

which is the limit solution of (6.7) as ",2 -+ 1. We note that limt-+oo J(t) =
el. If J ?: eI, then the solution with limt-+oo J(t) - el and limt-+oo J'(t) =
0, (w = 00), is given by

1
(6.10) J(t) = el + (el - e3) sinh2 (vel _ e3 t)'

which shows that limt-+o J(t) = 00. Next assume that e3 = e2 < el' In this
case, '" = 0 and Jel - e3w = 1r/2. The real solution J satisfies J ?: el· The
solution with initial condition J(O) = el and J'(O) = 0 is given by

(6.11) J(t) = el + (el - e3) tan2
(vel - e3 t).

Thus limt-+to J(t) = 00, where to = 1r/(2Vel - e3). Assume that el = e2 =
e3' From (6.4), we see that el = e2 = e3 = O. Therefore the solutionis

(6.8)

In this case, we have limt-+-w J(t) = 00.

Secondly, we consider the case that D = O. Assume that e3 < e2 = el·
Then the real solution J satisfies e3 ~ J < el or J ?: el· In the case that
e3 ~ J < eI, the solution with initial condition J(O) = e3 and J'(O) = 0 is

given by



This attains the maximum X4 at t = 0 and limt-Ho f(t) = -00, where
sn2(Jel - e3 to) = (Xl - X3)/(Xl - X4)'

Next we consider the case X4 < X3 < X2 = Xl· We have e3 < e2 = el'
The solution corresponding to (6.9) (i.e., the limit of (6.19) as 1',2 -7 1) is

(6.22) f(t) = X3(Xl - X4) - X4(Xl - X3) ta~h2(Jel - e3 t )
(Xl- X4) - (Xl - X3) tanh (Jel - e3 t )

This function satisfies f(O) = X3, which is the minimum, and limt-+±oo f(t) =
Xl. For (6.10), we can show that there exists to such that Ay(to)+B = O. In
fact, the range of the function (6.10) is [eI, 00) and -B/A = (a2 + X4

2
)/2 >

(a2 + X1 2)/2 = el. Thus we have limt-Ho If(t)1 = 00 for (6.10). Since
o < (Xl - X3)/(Xl - X4) < 1, we also see that there exists to such that
limt-Ho If(t)1 = 00 for the limit solution of (6.21) as 1',2 -7 1.

Consider the case that X4 < X3 = X2 < Xl. Then we have e3 = e2 < el·
Thus the solution corresponding to (6.11) is

(6.23) f(t) = Xl(X2 - X4) - X2(Xl - X4) s;n
2
(Jel - e3 t )

(X2 - X4) - (Xl - X4) sin (Jel - e3 t)

Since 0 < (X2- X4)/(Xl-X4) < 1, there exists to such thatlimt-Ho If(t)1 = 00.

For f of (6.23), the function f(t + 1r/2) is the real solution with initial
condition f(O) = X4. We also have to such that limt--+to If(t)1 = 00.

In the case that X4 < X3 = X2 = Xl, we have el = e2 = e3 and hence the
solution corresponding to (6.12) is

(6.24) f(t) = X4 - 4X13(t + c)2 .
1- 4X12(t + c)2

Clearly we have to such that limt--+to If(t)1 = 00.

In the case that Xl and X3 are conjugate complex numbers, we see that e2
is real and e3(= el) is not real. The real solution with f(O) = X2 corresponds
to (6.14) and that with f(O) = X4 to y(t) = p(t). The range of (6.14) is
[e2, 00) and -B/A > e2. Thus we see that f(t) = X4 + 1/(Ay(t) + B)
diverses at some to.

Next assume that X4 is a double root (X4 = X3)' Consider the case that
X4 = X3 < X2 < Xl. Set j(t) = - f(t). Then j satisfies

-, 2 -4 -2 -(J) = f +6a2f - 4a3f + a4'

The roots of the polynomial: q(x) = x4 + 6a2x2 - 4a3x + a4 are X4 =
-XI, X3 = -X2, X2 = Xl = -X4. We note that ei (i = 1,2,3) does not
change. Therefore the real solution with initial condition f(O) = X2 can be
obtained by making use of (6.22):

f(t) = X2(Xl - X4) - Xt{X2 - X4) ta~h2(Jel - e3 t )
(6.25) (Xl - X4) - (X2 - X4) tanh (Jel - e3 t)

We note that f attains the maximum X2 at t = 0 and limt-+±oo f(t) = X4'
The other real solution in this case with initial condition f(O) = Xl (or
f(O) = X4) satisfies limt-Ho If(t)1 = 00 for some to E lR.

In the case that X4 = X3 < X2 = Xl, we directly solve (6.15). Using the

relation Xl + X4 = 0, we have

" I f

(6.26) f(t) = ±Xl tanh(xl(t+ c))
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or

(6.27) f(t) = ±Xl coth(Xl(t + c)),

where c is a constant. The solution (6.27) diverges at t = -c.
We consider the case that X4 = X3 and X2 (= xI) is not real. We put

f = X4 + 2/(y + 0:'1 + 0:'2), where O:'i = 1/(Xi - X4) (i = 1,2). We note that
0:'2 = 011 and so 0:'1 + 0:'2 is real. Then we have

(6.28) (yl? = 0:'{y2 - (0:'2 - 0:'1)2}, (0:' = (Xl - X4)(X2 - X4) > 0).

It is easy to solve (6.28). If we put 0:'2 - 0:'1 = ib, then the solution is
y = ±bsinh(t + c). Thus we have

(6.29) f(t) = X4 + . 2 ,
±bSlllh(t + c) + 0:'1 + 0:'2

and hence there exists to E IR such that f(t) diverges as t -7 to·
The remainder case is that the polynomial q has not a real root. If

X4 = X3 = X2 = XI, then (J')2 = (J - xd2(j - Xl)2 and hence f(t)
~Xl ± (~xd tan{(~xI)t+c}, which shows that there exists to such that f(t)
diverges as t -7 to.

Finally, we deal with the case that X4 = X3, X2 = Xl and Xl i= X4' We
reduce

(6.30) ! df ±(t+ )
vlf - x4121f - xll2 = c

to a Jacobi normal form (cf. pp. 106 rv 109, [1]). If ~Xl = ~X4, then
~Xl = 0, so that (6.30) becomes

! df
(6.31) V(j2 + b12)(j2 + b42) = ±(t+ c),

where bi = ~Xi (i = 1,4). Suppose that ~Xl i= ~X4. We put Ci = ~Xi (i =
1,4). Let f = (py + q)/(y + 1), where p and q (p > q) are roots of the
equation:

2 1 (2 2) 1(2 2 2)X + 2Cl b4 - bl X - "2 2Cl + bl + b4 = O.

Then the integral of (6.30) becomes

(6.32) p - q! dy
Ip - xilip - x41 V(y2 + 0:'2)(y2 + (32)

( 0:'= I~I, f3= Iq- X4 1)·p - Xl P - X4

Since the integrals of (6.31) and (6.32) reduce to the normal form:

! du (1',2 = (0:'2 _ (32)/0:'2)
V(1 - u2)(1 - K,2 u2)

by putting y2 = f32 u2/(1- u2), the straightforward computation shows that

(633) f(t) = q + pf3 tn{-y(t + cn ( 2 _ !(I _ I+ I _ 1)2)
. 1+f3tn{-y(t+cn' - 4 x4 Xl X4 X2 .

In particular, there exists to such that f(t) diverges as t -7 to·
Summing up, we obtain
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Lemma 6.2. Among the nonconstant solutions of (6.2), the solutions which
are defined on the whole line IR are, up to the change of the variable :
t -+ t + a, (6.19) in the case (X4 < X3 < X2 < Xl), (6.22) in the case
(X4 < X3 < X2 = Xl), (6.25) in the case (X4 = X3 < X2 < Xl) and (6.26) in

the case (X4 = X3 < X2 = Xl).

Let us return to the study of the manifold M admitting a concircular
scaler field f. We consider the case that the characteristic function T is a
polynomial of f whose degree is less than 3. Tashiro [21] determined M
when the polynomial is of degree ~ 1. We may assume that the polynomial
T(J) is of the form of the right hand side of (6.1) or (6.2).

Theorem 6.3. Let M be a complete 2-dimensional Riemannian manifold
and suppose that it admits a concircular scaler field f whose characteristic
function is a polynomialof f. If the degree is 2 or 3, then M is one of the

following:
[I] (deg = 2). M is diffeomorphic to 1R2 and the metric ds2 is given by

1ds2 = du2 + tanh2 (y'el - e3 u) sech4(y'el - e3 u)dfj2
el - e3

in terms of the geodesic polar coordinates {u, O} in 1R2
where el > e3

and 2el + e3 = O. It is isometric to the surface of revolution which is
obtained by rotating the unit speed curve:

x(u) = 1 tanh(y'el- e3u)sech2(y'el- e3 u ),
y'el - e3

1 ll(U) 1
z(u) = -2 --(:J(2e l - ~)(2e12 + ~2) d~

6el e3 el -."

in the x-z plane around the z-axis in 1R3
, where f(u) = e3 + (el ­

e3) tanh2(y'el - e3 u).

[II] (deg = 3).
(1) M is isometric to IR x Z with warped product metric:

ds2 = du2 + x1
4sech4(xIU)d02

,

where 0 is a local coordinate in a complete I-dimensional manifold

Z and Xl a positive constant.
(2) M is diffeomorphic to 1R2 and the metric is given by

ds2 = du2+ a(u)2d02,

where {u, O} is the geodesic polar coordinates in 1R2
,

( ) 2f'(u)
a u = (X3 _ xr)2(X3 - X4)'

f(u) = X3(Xl - X4) - X4(Xl - X3) ta~h2(y'el - e3 t)
(Xl - X4) - (Xl - X3) tanh (y'el - e3 t)

and XI, X3, X4 are constants satisfying X4 < X3 < Xl and 2Xl +
X3 +X4 = O.
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.
(3) M is isometric to S2 with metric

ds2 = du2 + a(u)2d02,

in terms of the geodesic polar coordinates {u, O} whose center is a

critical point of f, where

a(u) = f'(u) ,
X2(X1 2 - X2 2)

f(u) = -X2 {Xl + X2 - 2Xl sn2((Xl + x2)u/2)}
(Xl + X2) - 2X2 sn2((Xl + x2)u/2)

and 0 < X2 < Xl·

Proof. Recall the results proved by Tashiro ((1) f'J (3) in section 5). The
integral curves of grad f are geodesics. When the concircular scalar field
f is restricted to a geodesic, it satisfies (6.1) (resp. (6.2)) if the degree of
the polynomial T(J) is 2 (resp. 3). Thus f restricted to a geodesic is one of
solutions given in Lemmas 6.1 and 6.2. Suppose that the degree of T(J) is
equal to 2. Then we see from Lemma 6.1 that the number m of the critical
points of the concircular scalar field f is 1 or 2. If m = 1, then f restricted
to the geodesic 'Y which coincides with the integral curve of gradf is given
by (6.9). If m = 2, then fl')' is given by (6.7). Since ds2 = du

2 + a(u)2d0
2

(see (3) in section 5) and the metric ds2 (= g) is smooth at the critical point
PEW, we require the function a to satisfy

a(O) = 0, a'(O) = 1, a(2k) (0) = 0 (k = 1,2, ... ).

If fl')' is given by (6.9), then a = cf' is an odd function and satisfies the
condition a'(O) = 1 by setting c = 1/{2(el-e3?}' Let fl')' be given by (6.7).
Since we have from (6.4)

a'(O) = cp"(w')

= c ( 6p(w')2 - ~92)
= 2c(el - e3)(e2 - e3),

we have to put c = 1/{2(el - e3)(e2 - e3)}. Furthermore since ds
2

gives
the smooth metric g at another critical point Q E W, we also require a to

satisfy

a(w) = 0, a'(w) = -1, a(2k)(w) = 0 (k = 1,2, ... ).

However we have

and hence

a'(w) = cf"(w)

el- e2

el - e3
=",2 _ 1 > -1.
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We conclude that the case m = 2 does not occur if the degree is equal to 2.
It is easy to see that JR2 with metric given in [I] is isometric to a surface of

revolution:
Suppose that the degree of r(f) is equal to 3. If m = 0, then fl-r is the

function given in (6.26) and M is isometric to JR x Z with warped product
metric given in [II](I). If m = 1, then fl-r is th"e function given in (6.22)
which is essentially the same as (6.25). Therefore, in the case that m = 1,
we set c = 2/{(X3 - xI)2(X3 - X4)} so that a'(O) = cf"(O) = 1, and get the
case [II ](2). Next assume that m = 2. The function fl-r is that given in
(6.19). In order that a satisfies a'(O) = 1, the constant c must be equal to
2/{(X3 - XI)(X3 - X2)(X3 - X4)}' At another critical point (i.e., t = w), we
require a'(w) = -1. Noting that Xl + X2 + X3 + X4 = 0 and

a'(w) = cf"(w)

(X2 - XI)(X2 - X4)
= - (X3 - xI)(X3 - X4)'

we have X3 = -X2. Thus we see that M is diffeomorphic to 8
2

and

( ) f'(u)
a u = X2(XI + X2)(XI - X2)'

X2 {Xl + X2 - 2XI sn2((XI + x2)u/2)}
f(u) = (Xl + X2) - 2X2 sn2((xl + x2)u/2) ,

wherewenotethat-Jel- e3= (XI+X2)/2. We have got the case [II](3). 0

Corollary. Let M be a complete 2-dimensional Riemannian manifold. If
the Gauss curvature K satisfies VVK = rg, then K is constant or M is
isometric to]R2 with the metric whose curvature is given by K = -x"/x, x
being the function given in [I] of Theorem 6.3.

Proof. Since VVK = rg, we have -tlK = 2r and VtlK = 2KVK = VK
2

.
It follows that -2r = K 2 - A, where A is a constant. Thus we have

1
(6.34) vvK = -2"(K2

- A).

We put f = -K/12 and g2 = A/12. Then (6.34) becomes

(6.35) VVf = (6P - ~92) g.

The characteristic function r(f) is a polynomial of f of degree 2. Thus the
assertion is obtained from Theorem 6.3. 0

Now we consider the functional on MI:

(6.36) .1"2[g] = c 1M(0 - K)2 dVg (c # 0),

obeing a constant. Suppose that 9 is a critical point of .1"2. Then f =
j(K) = 2c(K - 0) is a concircular scalar field if K is not constant. Thus,
from the above Corollary, we conclude the following:

Theorem 6.4. Let M be a compact orientable 2-dimensional Riemannian
manifold. If the metric 9 of M is critical with respect to .1"2, then the Gauss

curvature is constant.
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Next for a given positive number 0, we consider the functional on MK,8 =
{g E MIK ~ 0 on M}:

(6.37) .1"3/2[g] = c1(0 - K)3/2 dVg (c # 0).

If the metric 9 is critical for the functional .1"3/2' then f = j(K) satisfies
(5.3) and hence

(6.38) VV f = (2:C2 f3 - Of) g.

Thus it is convenient to put c = .J2/(3v'3). If the metric 9 is critical for the

functional .1"3/2IMl' then

(6.39)

where the constant a3 is chosen in such a way that fM(2j3- of+2a3) dVg = O.

Since J(K) = c(o - K)3/2, (5.8) becomes

"2 1
(6.40) VVK = 3"(0 - K)(K + 20)g - 2(0 _ K) VK 0 VK.

In the case (3)[II] of Theorem 6.3, we have 0 = Xl 2+ X2 2 and 6P = 0 - K.
Therefore the maximum of K is equal to O. We see that the metric given in
(3)[II] of Theorem 6.3 is on the boundary of MK,8 n MI'

Theorem 6.5. Let M be a manifold diffeomorphic to 8 2
• If a metric 9 on

M is critical with respect to .1"3/2IMl' then the Gauss curvature of g is a
positive constant or 9 is the metric given in (3)[II] of theorem 6.3 and on
the boundary of MK,o n MI.
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