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Abstract
We define a Nambu-Jacobi structure as a bracket of several functions which
satisfies the Fundamental Identity. Then we express the Nambu-Jacobi struc-
ture in terms of two tensor fields and show the necessary and sufficient con-
ditions they should satisfy. We investigate the foliations associated with a

Nambu-Jacobi structure. This allows us to give many examples of Nambu-
Jacobi manifolds.

1 Introduction and Definitions

It is well-known that a Poisson manifold has its associated foliation. It is a gen-
eralized foliation in the sense of Stefan and Sussmann whose leaves are immersed
symplectic manifolds. In the case of a Jacobi manifold(in the sense of Lichnerowicz),
we have also a generalized foliation whose leaves are either symplectic or a contact
manifolds. In this paper, we consider the case of Nambu-Poisson and Nambu-Jacobi
manifolds. First, we review briefly the definition of a Nambu-Poisson manifold and
its natural generalization 'Nambu-Jacobi’ manifold.
Let C*°(M) be the set of smooth functions on a manifold M.

DEFINITION 1 = {...} is called a Nambu-Poisson bracket of degree ¢ if it is a
skew-symmetric g-linear map

{o.}:C®(M) x -+ x C(M) — C®(M)

q

which satisfies the following:



| (1) (Fundamental Identity or Generalized Jacobi Identity)

q
{fla"' ) q—la{glv"' 7gq}}:Z{g17"' 7{f17"' 1fq—179'11}7"' 7gq}

=1

where fi,... o1, 915--- 92 € C*®(M).

(2) (Leibniz rule) For each argument of the bracket, the usual derivation rule
holds, that is, for fi,..., fer1 € C*(M)

{fl) .- 'afq—-17quq+1} = {fla- . '7fq—17fq}.fq+1 +fq{f17- . 7fq—-17fq+1}

holds. -
Remark Sometimes it is more convenient to write the Fundamental Identity 1n

the following form.

7°'-7.f}7g )"'1g}={{flag%"')gq}).f%"-7fq}
{{fl ’ 2 q +{fla{f2’g27'"7gq})f27"',fq}

+ {fl)f?) s 7fq—17 {fq’927 e :gq}}-
In Appendix we use this formulation which is equivalent to condition (1).
As in the case of usual Poisson bracket, this is also equivalent to the existence

of a g-vector field n on M satisfying
n(dfy, .- dfg) = {fr-- o for fuyee oy o€ C=(M),

[n(dfq—l)7"7] = L,,(d_fq_l)n =0 for fi,-.. )fq—l € COO(M)a

i iati _,, n(df,_,) stands for the vector
the abbreviation of dfi A ... A dfg-1, n(dfe-1 _
geﬁzr;gi% o dfqe_la, -} on M, which is the Hamiltonian vector field determined by

. . . - vative.
several functions (cf. [1]), and L, , £, onise Lie derivativ:
DEFINITION 2 7 is called a Nambu-Poisson tensor of degree g.

A Nambu-Poisson tensor has the following striking property.

THEOREM 1 (P. Gautheron[2] K. Mikami[3], N. Nakanishi[9]) ThIf q is f::}i(;;
than 2, Nambu-Poisson tensor of degree q is locally decomposa?le. is mfac; pat
if is,nonnzero at a point, then on a neighbourhood of the point there exist vec

fields Y1, ...,Yq 80 that n can be written as

2

Now we define a Nambu-Jacobi manifold and see that the bracket of a Nambu-
Jacobi manifold is described by a pair of two multi-vector fields. Let us begin with
a general definition.

Let M be a C* manifold and C*(M) the algebra of smooth functions on M.
For an integer ¢ > 1, we consider an alternating g-linear map

pr(M)XXCw(Ml_—)Cw(M)

q

We call the map A a bracket of degree g and often write { f1,..., f,} for A(fa,..., fq)-
We always assume a bracket satisfies the following conditions:

(a) The map A is continuous with respect to C* topology, and
(b)  supp{fi,...,fq} CsuppfiN---Nsuppf,.

When ¢ = 1, we understand .A is just a linear map. By a theorem of Peetre[10],
these conditions assure that the bracket is a differential operator and the resulting
function is written in terms of the derivatives of the argument functions of A.

DEFINITION 3 If A is a bracket of degree ¢ on M which satisfies the Fundamen-
tal Identity in Definition 1, we call A a Nambu-Jacobi bracket. A smooth manifold
with a Nambu-Jacobi bracket is called a Nambu-Jacobi manifold.

We remark that when g = 2, a Nambu-Jacobi manifold reduces to a usual Jacobi
manifold. The Leibniz rule in the definition of a Nambu-Poisson bracket clearly

implies our condition (a) and (b) on bracket. Thus a Nambu-Poisson manifold is a
special case of a Nambu-Jacobi manifold.

We first remark that a Nambu-Jacobi bracket is a differential operator of order
at most 1. Indeed we have the following:

THEOREM 2 Let M be a smooth C*™ manifold of dimensionn and A a Nambu-
Jacobi bracket of degree g > 2 on M. Then on a coordinate neighbourhood (U, z1,. . ., %)
of M, A(f1,...,[,;) is given by the formula

S Cruer, (0" 1)) (07Fy), (1.1)

|| <1, B2 }<1-| I |<1

where Cpp,..1, 15 a function, I, denotes a multi-index (i§“),...,z‘,(,“)) and |I,] =
i 4o 9. 87 stands for (8,) - - (8y), 8; = 8/0x;.




In fact, this will be shown along the line of the proof of Kirillov (see for example
[6]).

This theorem allows us to describe a Nambu-Jacobi bracket in terms of a pair of
two multi-vector fields on M. Let P be a p-vector field on M. P naturally defines
a bracket of degree p by (fi,...,fp) = P(df1,... ,df). We denote this bracket by
{f1,... ,f,}¥ or sometimes by P(f1,.-., f,) when there is no danger of confusion.
This notation is analogous to the notation X (f) to denote the derivative of a function
f by a vector field X. We define a new bracket 1 A P of degree p+1 by the formula

p+l

(1 A P)(fh T ,fp+1) = Z(_l)i—lfip(dfla e 7d’\fia v 7d.fp+1) (12)
i=1

Then we have the following observation on-a Nambu-Jacobi bracket.

LEMMA 3 Let A be a Nambu-Jacobi bracket of degree q (g > 2). Then there ezist
uniquely a g-vector field Q and a (q — 1)-vector field P which are Nambu-Poisson
tensors such that A = Q + (1 A P) holds.

Proof Let p =g — 1 and put B(f1,..-, fp) = A, fi,--., fp)- Then it is easily seen
that B is a bracket of degree p and satisfies the Fundamental Identity. From the
skewness of A, B(fi,...,f,) = 0 if one of the arguments is a constant function.
Thus, the order of B as a differential operator is exactly equal to 1. This means B
is defined by a p-vector field P. Now put C = A— 1A P. Then by the same reason
C is also a bracket defined by a g-vector field. Denoting it by Q, we obtain Lemma
3. Uniqueness is verified easily.

DEFINITION 4 We call the pair (Q, P) a Nambu-Jacobs pair if @ +1A P defines
a Nambu-Jacobi bracket.

Notation: In the sequel, we frequently use the contraction of tensor fields. For
example, let @ be a g-vector field anda =g A... ANy a pform (p £ q). We
denote the contraction Q and o by the following various notations, interchangeably.

Q= Q) = Q(a, D= Qo A ... Aoy, )

92 What the Fundamental Identity means

We consider the bracket A defined by (p+ 1)-vector field @ and p-vector field P, by
the equality A = @+1AP. We now look for the conditions on P and @ under which
A satisfies the Fundamental Identity. Namely the conditions that make (Q,P) a
Nambu-Jacobi pair. When degP = 1 and deg Q = 2, the Nambu-Jacobi pair
Q@+ 1A P is a usual Jacobi bracket and the conditions on P and @ are well known.

4

Na¥ne1y, they sati.sfy [P,Q] =0, [Q,Q = —2P AQ if and only if the bracket
satisfies the Jacobi identity, where [-, ] is the Schouten-Nijenhuis bracket (cf. (3.1).)
Therefore our interest is on the case deg P > 2.

To proceed our calculations, we introduce the following notations.

DEFINITION 5 For a p-vector field P and a g-vector field @ (p > 2,9 > 1) which
are both considered as brackets, we define a map B

JPQ: C®(M) x --- x C®(M) — C*(M)

p+g—1

by

(']PQ)(fla .. 7fp—1;91) s 7gq)
= P(.fh sy fp—l;Q(gla e 7gq))
- (Q(P(fla oo 7fp—1agl)3927 o )gq) — Q(gla P(fh ) fp—17g2),g37 s 7gq)
—"'—Q(gla-'w q-—l:-P(fly"'7fp—1)g¢I)) (21)
fla cen :fp—17gl7' -1 9q € OOO(M)
Note that-: JP Q can be considered as a contravariant tensor field but does not define a
bracke’lco since it is not fully alternating with respect to the argument functions. Note
thatPJ P = 0 means that P satisfies the Fundamental Identity. The same formula
as J*' Q) can be defined for any brackets( not necessarily given by multi-vector fields).

In the present case, where the initial brackets are defined by multi-vector fields (P
and @), we have the following equivalent expression.

']PQ(fl)-'-7fp—l;gla"'7gq) = [P(df —17')7@](dgl7'--adgq) (22)

where df, ; = dfi A--- Adf,_, as before, P(df, ;,") = P(d i
- , p—1:") = Pdf1,...,dfp-1,") is a
:ve(_:tor field and [P(df,_,,"), Q] = Lp df,,_l,-)Q is a Lie derivation. Thus JXQ =0
is equivalent to that the "Hamiltonian vector fields’ preserve Q .
We also need the following map

DEFINITION 6 For a p-vector field P and a g-vector field @ (p > 2,9 > 1)
we define a map I

PFQ:C®(M) x - x C®(M) — C™(M)

ptq

by

(P F Q)(fl) LR .fp—l; go,--. 79q) = (P(dfp—la ) A Q)(d907 . 7dgq) (23)
where df,_; =dfi A+ Ndfp_1.




Also, P I @ is not a bracket in general. Note that P+ P =0 if and only if P is a

space. Put B = P I (). It suffices to show that By = :
i locally decomposable. at By = 0 for arbitrary (p + g)-

dimensional subspace V. From the definition, if Qw = 0 for any ¢-dimensional
subspace W C V, then clearly By = 0. So assume Quw # 0 for a g-dimensional

‘\
| In order to get the relation between P and Qin A= Q+1AP, we need to

calculate JAA since the condition that A is to be a Nambu-Jacobi bracket is

JAA(fi, - Fpi 915+ 9p11) = 0 (2.4)

By a direct computation we can express the left hand side of this equation (2.4)
so that a certain sum of multiples of functions consisting of {...}5, {.-. 19, and f;,
g; which are outside of the brackets {... Wor{...}%

Although it is straightforward, the computation is lengthy. We will do it in

Appendix separately.
The relations of P and Q which we obtain are in the following;:

PROPOSITION 4 Let A= Q-+ (1A P) be a bracket of degree g =p+ 1 defined
by p-vector field P and q-vector field Q. Then a necessary and sufficient condition
for the bracket A to be a Nambu-Jacobi bracket is that P and Q satisfy the following
four identities.

(1) JFP=0,
@2 JPR=0,
3) JOP(df,; )+ (—1PTQE(PEAS,): )
+3 (1P - P)(dfy - dfic dfyidfis- ) =0,

i=1

P
@) JOQUEf,;---)+ Y (~1H(PF Q)(dfy -+ dfi- - dfyidfi ) =0,
=1
where df, stands for differential form dfy A ... A dfp.
Proof As is stated above, this is done in Appendix by a direct but a long calcu-
lation . O

To simplify the above identities we need the following two lemmas.

LEMMA 5 Let P and Q be multi-vector fields of degree p and g, respectively. If
P F Q is also a multi-vector field (i.e. P+ Q is a skew symmetric tensor field ) and
p>3andg>1then PF Q wvanishes identically.

Proof Considering the equation at each point of the manifold, we may assume the
case when P and Q are alternating multi-linear maps on finite dimensional vector

subspace W. Then there exist y;,...,y, € W satisfying

Q(yla e 7yq) 75 0.

claim We can find an element z € V such that z Ay; A--- Ay, # 0 and

QYt,--- » T_s--- rYq) #0 for some 1.

i

(proof of claim) Consider the following linear functional on V

q
w:VﬁR:xH;Q(yh... ,\Ja;_/,... y Yg)-
We have
ey) == ¢(Yg) = Q¥1,--- ,Yq) #0
and

Y2 = Yiy.-- ,Yqg— Y1 € Kero
Since dimKeryp =p+¢g—1 and p > 1, we find an element z € Ker ¢ so that

ZYo— Y1,--- ,Yg — Y1 € Kerp

are linearly independent. Then it can be seen that the set

Z+Yi,Y%,Y2,. .. y Yq

is linearly independent and = = z + y; is an element with desi
we have esired property. Indeed,

q
;Q(yn--- nZo oY) = 0(@) =z +u) = o(u) = Q.- ,5) #0.

This means there exists some 7 such that

Q(y]-"" 7\\"1;/7-” 73/(1) %0

%

(end of the proof of claim).



For z and Y = (y1,... ,Yq) Which we found above and for any (p — 2)-tuple T,
we have

0= B(T,z;z,Y)
= (P(T,z,") N Q)(=,Y)

q
= P(T,z,2)QY) — > P(T,2,4;)QW1, - » T s--- 1%)

j=1 J

q
= _P(T7$72Q(y17"- 7\37’_,)"' ;yq)yj)
Jj=1 J

g
If we putuz-ZQ(yl,... s T .-+ ,Yq)Yj, this shows
J=1 j

P(z,u,T) =0 forall (p— 2)-tuple T.
For any (p — 3)-tuple of vectors T" and g-tuple of vectors T” in V', we have
B(z,u, T";T") = (P(z,u,T',-) AQ)(T") =0

( p > 3 is necessary here). . '
Since we are assuming B is a multi-vector and {z,u} are linearly independent,
this clearly shows By = 0. a

The next lemma shows that in our case, P+ P, P+ @ and @ I—' Q are pr.ox.fed
to be multi-vector fields and we can apply Lemma 5 to the identities in Proposition
4.

LEMMA 6 Let A = Q + (1 A P) be a Nambu-Jacobi bracket determined by ¢-
vector field and p-vector field P,(¢ =p+1). Then P+ P, P+ Q and QF Q are
fully alternating and hence they are multi-vector fields.

Proof To prove P - @ is a multi-vector field, we have only to verify skewness of
P | @, namely the identity

(P'_ Q)(hla.f%"' 7fp—1;h2;gla-" 7gp+1)
+(P = Q)(h27f27' . 7fp—1;h'17gla' .. 7gp+l) =0 (25)

for arbitrary functions hy, ha, f2, ..., fo-1, 91, - -+ > Gpt1-
For this, we calculate

JPQ(hihg, fay- -« s fp-15015- -+ » Gpt1)
= [P(d(h’lh2))df27 R 7dfp—17')7Q](dgla e 7dgp+1)
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which is identically equal to 0 by Proposition 4. Thus we have

0 = [P(d(hihy),dfs,. .. ,dfp-1, ;), Q] = [P(h1dha + hodhy, dfa, . .. ydfp—1,-), Q]
= [k P(dhs,dfs, ... 1 Afp—1, ), Q] + [ho P(dhy, dfa, . . . y Afp—1, ), @
= hy[P(dhs,dfz, ... ,dfp-1,°), Q] — (P(dha, df2,... ,dfp-1,) A Q(dh1))
+holP(dhy, dfa, . dfp1, ), Q] — (P(dho,dfs, .. ,dfys,-) A Q(dho)
= —(P(dha, dfa, .. ,dfp1,) A Q(dh1)) — (P(dhs, dfas. .. ,dfp1,) A Q(dh2)

(From this it is easy to see the identity (2.5) holds.

The cases of P+ P and @ I @ are proved by similar calculations using (1) and
(4) in Proposition 4. O

Remark In a similar way, what we obtain from (3) in Proposition 4 is the following
relation.

The function

(@F PY(fur- s i - gpa) + (“DPP(dfs, .., df,)Qdgs, - ., dgpr1)(2:6)

is skew symmetric with respect to the all arguments. In particular, if f; = g; the
above function vanishes.

By the above two lemmas, we have most part of the following:

PROPOSITION 7 If (Q, P) is a Nambu-Jacobi pair and degP = p > 2, then
PHP=0, PFQ=0and@QFQ=0.

Proof For p > 2, the statement is obvious from Lemma 5 and Lemma 6. The case
p = 2 is treated separately.

Proof when p = 2. Assume A is a Nambu-Jacobi bracket. First, we prove P is
decomposable 2-vector at a point where ) # 0. As before, we consider P and @
are 2-vector and 3-vector of a vector space V. Since deg(@) = 3, by Lemma 5 and

Lemma 6, we have () - @ = 0 that is @) is decomposable. The condition P + @ is
fully skew symmetric means that

P(z, )AQ(z,-,) =0 forzeV™ (2.7)
Taking the value at (y, z,w) we have
P(2,5)Q(, 2,w) - P(z,2)Q(@,y,w) + Pz, w)Q(s,9,2) =0.  (2.8)
Regard @ as a linear map V* — A%V and fix a direct sum decomposition

V*=KelL (2.9)




Whére K =ker @ and L is a complementary subspace which is isomorphic to Im Q.
If w € K, from the above relation we have

P(z,w)Q(z,y,2) = 0. (2.10)
Given 0 # z € L, we can choose ¥, 2 such that Q(z,y, z) # 0. Thus, we have

P(z,w)=0 forany x€ LweK.
If we replace z by z+v, (v € K), in (2.10), we have

(P(a:,w) + P(vaw))Q($7ya z) = P(’u,w)Q(m,y, Z) =0 wek. (2'11)

From this we see that
P(z,y) =0 unless z,y€ L. (2.12)

Since rank Q = dim L = 3, rank P must be 2 and P is a decomposable 2-vector

hence PH P =0. . . .
Next we prove P - Q. Regard @ and P as linear maps A2V* = V, V* = V,

respectively. Since we have
P(ac,y)Q(a:, Z, ) - P(:II, Z)Q(x"% ) + P(“’) )Q(.’IJ, Y, z) =0, (2'13)

and as we saw above P maps K to 0. This means Im P C Im@. ;From this we

* i =0.
have P(z,-) A =0foranyzeV.Th1sshowsP}-Q .
3V;3f aiga; I))oinct2 a, Q =0 and a is in the closure of the set where @ # 0, the semi-

continuity of the rank assures that rank P < 2 and we have P+ P = 0,P-FQ@=0

in this case too. . . . . ]
Finally, we consider the point where Q vanishes identically on some neighbour

hood of the point. In this case Proposition 4 (3) says P is a 2-vector satisfying
P(z,y)P — P(z,") A P(y,") =0 for z,yeV”

is clearly shows that P is decomposable. . '
Tlu'sl‘lcnf: l;v}:e proved P~ P =0 and P Q = 0 hold everywhere. This finishes the

a
proof in the case where p = 2.

By the above Proposition 7, the identities in Proposition 4 are simplified as in
the following form for p > 2.

THEOREM 8 Let A= Q+ (1AP) bea bracket on a manifold M, which is
given by a (p + 1)-vector field @ and a p-vector field P where p > 2 and assume
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rank P < 2 is when p = 2. Then A is a Nambu-Jacobi bracket if and only if the
following conditions are satisfied.
For any functions fi, fo, ..., f, € C®°(M),

1) [P@fp1,-),Pl=0,

@) [P@Efp-1,),Q] =0,

(3) [Q(dfp; ')’P] = (—l)pQ(d(P(dfp))a ')7
4) [Q@f,,),Ql=0.

hold, where df,_, stands for dfy A ... A dfp_1.

Proof By Proposition 7, the conditions in Proposition 4 reduce to the above for-
mulas. Conversely, assume that P and @) satisfy the above formulas. Then we have
the same conclusion as those of Lemma 6. Thus if p > 2, we have P+ P =0,P
Q=0,QF Q@ =0 by Lemma 5. If we assume P is decomposable when p = 2, we
can get the same conclusion by the argument of Lemma 7. Consequently, P and @
satisfy the conditions in Proposition 4. o

Since P + Q = 0 means P(df,_;, ) AQ = 0, in the case when P is non-zero, @ is
a multiple of P. Thus we have a vector field v satisfying () = v A P. It is desirable, in
this case, to find the conditions on P and v which imply the Fundamental Identity.
This will be done in the next section.

3 Associated Foliations

In this section, we investigate some geometric structure of Nambu-Jacobi manifold,
namely the associated foliation which is given by the characteristic distributions of
the structure. As is well-known, the Jacobi identity of a Poisson manifold implies
the integrability of the characteristic distribution of the Poisson structure. This
leads us to the foliation by symplectic leaves. This foliation is singular in general
in the sense that the dimension of the leaves varies from point to point. Simi-
larly on a Nambu-Poisson manifold we have a foliation and a contravariant volume
tensor(multi-vector field of highest degree on a manifold) on each leaf. Theorem 9
below may be considered as a geometric characterization of a Nambu-Poisson man-
ifold. We mean by the characteristic distribution of a p-vector field n the image of
the bundle map B, : AP 'T*M — TM where B,(a) = n{a,-).

Recall that the generalized divergence of 1 is defined as follows. Let V be a torsion
free affine connection on T'M. V gives amap V : (A?TM) — T'(T*M) @ T'(APT' M).
Let

c:T(T*M) @ (NPT M) — T(AP~IT M)
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' be the map given by the contraction of 1-forms and p-vector fields. The generalized This shows ¢, preserves Im B,. Clearly, the set of vector fields n(df; dfp—1,")
i divergence Divn associated with V is defined by for various functions span Im B,. Thus we may choose the {n(dfi, , df ’ p)—}l ,to

| be X%. TR
Divny = c(V(7))- (2) = (3). Since 7 is decomposable p-vector field, on a neighbourhood of each point
One of the definition of the Schouten bracket of multi-vector fields is given by the :hae,t U, we can choose a set of vector fields X;,X,..., X, X; € I'(ImBy)such
e formula

M 77=X1/\X2/\.../\Xp.
| ‘ [P,Q) =Div(P A Q) — (DivP)AQ — (-1’ PADiv@Q (3.1) Then we have
e
. where p is the degree of P. It is independent of the choice of connections. In what - ;
j . . - _qyi-t .

i follows, we choose once and for all a Riemannian connection on TM and the Div Dive Z_;( DTXA ADIVX) AL A X,

will be the one which is associated with this connection (See also [4]). - it . )
+ O DXL XA LKA ARG A LA,
THEOREM 9 Let 7 be a decomposable C* p-vector field on a C>-manifold M. i<j
Then the following statements are equivalent. SiI'lce Im B, is integrable, [X;, X;] is a linear combination of X;, Xy,... , X, at each
(1) The bracket {fi,...,fp}" = n(df1,... ,dfp) satisfies the Fundamental Identity. point of U. Thus Div7 is a (p—1)-vector field which is generated by X1, Xa,... , X,

i and hence a cross-section of the bundle /\p‘l(Im B,,). Define

‘ : (2) The characteristic distribution of n is integrable (in the sense of Sussmann and

| Stefan). Jy : (Im B,)* = AP (Im B,)

i .

‘i (3) On the open set U where 1) is non-zero, there eists a smooth 1-form -y which to be th(? bundle map given by Jy(e) = n(a,) = ian. Clearly it is a bundle
‘ ! satisfies the equalily isomorphism on U where 7 is non-zero. This assures that there exists a 1-form -y on

| U such that i,n = Div. '

\
|
il Divn =im.
“ , | 7 (3)=>(1). First we note the following formula.
| Proof (1) = (2). By an integrability theorem of Sussmann-Stefan, it is sufficient

| to prove that on a neighbourhood of each point in M, there exists a set of vector LEMMA 10 Let 8 be a (p — 1)-form and n a decomposable p-vector field on M.

Then we have the following equality.

:‘}f
: fields X such that
It (a) at each point of M, X spans Im B, N »
(b) the local 1-parameter subgroup of diffeomorphisms generated by a vector 7B, )7l = (=1)n(ap ?77
il field belonging to X leaves Im B, invariant. - +n(B,-) ADivy + (=1)P(Divn)(B)n (3.2)
;‘ We discuss every thing locally. Let ¢y(—¢ < t < &) be a local 1-parameter subgroup Proof of lemma: Takine th . .
\ ' of diffeomorphisms generated by a vector field n(dfi,.. . ,dfp-1, -). By (1), we have + laking the contraction on both sides of

‘: Lﬂ(dflv" ,dfp—l,')n = O'

1‘ we haw

:i ! This means (¢;)«n = 7. Thus for n(dg1,. .. ,dgp-1, -) in Im B, we have o Div(n(8,) .

I iv(n(B,)) = (=1~ (Divn)(B) + (= 1)**n(dp)- :
oo s dop ) N m(B) + (~1)*~'n(dp) (3.3)
1 = ((‘pt)*n)(((p:)—l(dgl)7 sty ((p:)_l(dgp—l)’ ) °

“ =n(d(g1o@; "), ,d(gp-10¥7 ")) [7(8,),n] = Div(n(B,-) A n) — (Divn(B,-))n +n(B,-) ADivy

W\ = (~LP(Divn)(B)n + (~1)Pn(dB)n + (6, ) A Div,

;u 12 13




Note that 1(8,-) A n = 0 holds by the decomposability. O

We continue the proof of Theorem. Since 1 A n(dfi,. .. ydfp-1,") = 0 on U, we
have

0 = i (m An(dfy,. .., dfp-1,"))
=@NﬂAﬂﬁ%uwﬂ}u0+04yﬂﬂhnwﬂ}hﬂﬂ
= (Divny) An(dfs, ... dfp-1-) — (Div)(dfi,- .- ,dfp—1))
= (=1P [n(dfy, .. -, dfp-1,):7]-

We used Lemma above for 8 =dfy A ... Adfp-1.

Ifa € M\U, ne =0 and the right hand side of the above lemma is equal to 0
and thus [n(dfi,. .., dfp-1,"): M = 0.

Consequently, we have

[n(dfb . )dfp—la ')7 77] =0
on the whole M and the bracket {...}" satisfies the Fundamental Identity. O

Now we are going to investigate the foliation associated with a Nambu-Jacobi
structure. Let A = Q + (1 A P) be a Nambu-Jacobi bracket on a manifold M,
which is given by a (p + 1)-vector field @ and a p-vector field P. Then by Theorem
8 (1) of preceding section, [P(df1,...,dfp-1, ), P] = 0. Thus P is a Nambu-Poisson
tensor and its characteristic distribution is integrable, giving a generalized folia-
tion(Theorem 9). We denote this foliation by Fp. Exactly the same thing holds
for the (p + 1)-vector field Q. Thus we have two foliations Fp and Fg of M. First
we restrict our attention to the case when P is non-zero or it may be said that we
consider the foliations of the open set of M where P is non-zero. By Proposition 7,
P+ @ = 0. This is equivalent to

P(dfh"' 7dfp—17') /\Q = 07

for any (p—1) functions dfi,...,dfp—1. Ona neighbourhood of & point where P # 0,
we have functions dfy, ..., df, such that P(dfy,..., df,) # 0. Thus the set of vector
fields {X1,...,Xp} where X; = P(dfy,... ,df;,...,df,) is linearly independent at
each point. From the above relation, @ is a multiple of X;’s and consequently, there
is a vector field v such that Q = v A P. A partition of unity argument assures that
we may consider v a global one. :

PROPOSITION 11 The vector field v preserves the associated foliation Fp. In
fact, there ezists a function ¢ such that L,P = ¢P holds.
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Proof By Theorem 8, we have

0= [P(dfp—17'):Q] = [P(d-fp——b')ﬂv/\P]
= [P(dfp—la')av]/\P+v/\ [P(dfp—17'):P]
= [P(dfp_h'):v]/\P

because [P(df,_;), Pl =0. But [P(df,_;,-),v] A P = 0 is expressed as
—(LoP)(df 1y )) A P = (P(Ludfpr, ) AP =0
and (P(L,df,_;,")) A P = 0 because of the decomposability of P. Thus we have
(LuP)(dFp-1,)) AP =0
for arb.itrary (p — 1)-form df,_,. Again by the decomposability of P, we see L, P is
a multiple of P. Thus we have a function ¢ satisfying L, P = ¢ P. The equation
[U7P(dfp-—1: )] = ()OP(dfp—h ) + P(Lvdf —1)
shows that v preserves foliation Fp. a
We have the converse.

THEOREM 12 Let P be a regular Nambu-Poisson tensor of degree p > 2, which

wet 'a;isume decomposable when p = 2. Suppose that there exists a vector field v which
satisfies

L,P = oP

forj some smooth function ¢. Define (p + 1)-vector field Q by Q@ = v A P. Then the
pair (Q, P) is a Nambu-Jacobi pair, namely the bracket

A=Q+1AP
defines a Nambu-Jacobi structure.

PrO(?f Since we are assuming the decomposability of P, it is sufficient to verify the
conditions (1)-(4) of Theorem 8.

Condition (1) is our assumption. Condition (2) asserts that [P(dg,-),Q] = 0
holds for any dg = dg; A --- A dgp—;. This is easily verified as follows by using
[P(dg,-),P] = 0 and the decomposability of P;
[P(dg,'),’l}/\P] = [P(dg7 ')7U]AP+U/\ [P(d97 ))P]
= —(pP(dg,") + P(L,(dg),")) A P = 0.

We verify Condition (4), first.
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Since @ =vAPis decomposable, from the view point of Theorem 9, it is enollllgh
to see the integrability of the characteristic distribution Fg of @ on open set where
Q # 0. Locally, we can write P and @ as follows.

P=hXiA-AX,, Q=hAXiA--ANXp

where X; is a local vector field of the form P(dfi A--- A fifi A A dfp) a,n((ii ti}zl is
5 function. The vector fields X;,- - , Xp,v generate the dlS'l:;l‘lbuthIl :’FQ an ; ey
form a involutive system since Fp is integrable by assumption and since we have

the following:

[’U,P(dg, )] = Lv((P(dg9 ))
= P(pdg + L,dg,").

Thus Fg is integrable and we have (@, Q] = 0. .
To verify Condition (3), we must prove the equality

[QdF; ), PI( ) = (-1PQE(P(ES)), ) (3.4)

for df = dfi A--- N dfp. . - .
F.ifrst We1 calculate the left hand side of this equality. Using

Q(df7) = (U A P)(df)
= P(iv(df), )+ (_1)pP(df)U

and a general formula
Div(P(a)) = (—1)*#*(Div P)(a) + (—1)%E*P(da), (3.5)
we calculate as follows:

= [P(io(df), ), P} + (- 1F°[P(df)v, P] | .
= Div(P(iy(df,")) AN P) — Div(P(i,(df)),") P -I;)P(zq,§df), ) ADiv P
—1)PP(df)v, Pl + (-1 o A P((P(@S)), --) .
= _(F—(l)” (Div P)(iu(df))) P + (-1 P(d(in(@f))) P + P(in(df), ) ADiv P
+ (~1)PPAf)v, P} + (1o A P((PF)), ). (3.6)
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Now we use the assumption that there exits a 1-form such that Div P =i, P (The-
orem 9). Then the above (3.6) is equal to

(=2)(iyP)(&o(df)))P + (—1)PP(d(i (@) P + P(is(df)) A (i, P)
+ (—=1PP(df)[v, P+ (—1)""'v A P(d(P(df)),")
= iy (P(iu(df))) P + (1) P(d(iu(df)))P + P(ivdf) A (irP)
+ (=17 P(df)lv, P+ (-1)*v A P(d(P(dS)),")
= —iy(P(iodf) A P) + (—1)° P(din (df))P
+ (=P P(df)pP + (~1)""v A P(d(P(df)),")
= (=1PP(Lo(af))P + (1)’ P(af)pP + (=1)"*'v A P(d(P(df)),)
= (=1 L(P(df)P + (-1 (Lo P)(df)P
(—=1PP(@f)(pP) + (-1)"*'v A P(d(P(df)),")
= (-1 v A P((P(df)),") + (—1)" Lo(P(df))P.

This can be seen to be equal to the right hand side of (3.4), since we have

(=1)?Q((P(df)), )= (=1)P(v A P)(d(P(df)),---)
= (=1Pu(d(P(@f))P + (=1)" v A P(P(S)),")-

Thus, the pair (@ = v A P, P) satisfy the conditions (1)—(4) and the bracket is a
Nambu-Jacobi pair. O

Next we consider a Nambu-Jacobi structure @ + 1 A P where @ is regular, that
is @ is nowhere zero. In this case we obtain the following:

THEOREM 13 Let (Q be a Nambu Poisson tensor or degree q(> 2). We assume
when q = 2, @ is decomposable. Let o be a 1-form which is closed on the leaves of
So. That is Q(da,:) = 0. Put P = Q(a,-). Then (Q,P) makes a Nambu-Jacobi
pasr.

Conversely, if (Q,P) is a Nambu-Jacobi pair and @ is regqular, there exists a
1-form a which is closed along the leaves of @ such that P = Q(a,-).

Proof We first verify the condition J¥Q = 0. Namely, we prove

[P(df -1 ')J Q] = [Q(a A d.fp__l, '), Q] =0,

Using the decomposability of @ and the formula (3.5) for Div(Q(a)), we calculate
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QR(ig(dg,)da) = 0 follows from da = 0 on Fq.

Iif! follows:
/i a8 foTow Now we prove the converse. Namely, assuming (@, P) is a Nambu-Jacobi pair on
Div(Q(aAdf,_1,-) AQ)
hji [QaAdf,_y,), Q] = Div Pl d ADivQ M and @) is non-singular, we prove that there exists a 1-form a such that P = Q(a, -)
il —Div(QaAdf, 1, ) ANQ+QlaNdfpy, ) A Di and Q(da) = 0. By assumption (@, P) satisfies the following:

= (— 1)1"+1 (DivQ)(aAdf,_1,: JAQ - _

+ ( 1)p+1Q(da/\dfp_l> )/\Q—l—Q(a/\dfp_l, )/\DIVQ (1) [P(dfp—h ))P] =0,

(2) [P(dfp—la ')7 Q] =0,
3) [@dfy;-), Pl = (-1)PQA(P(dS,)), ),
(4) [Q(dfm ')7 Q] =0
If we consider @ as a bundle map APT*M — TM, Im @ is a (p+ 1)-dimensional

L he open set where
| Clearly, this is equal to 0 where @ = 0. On the other hand, on t
| Q # 0, we have a 1-form 7 such that Div @ = Q(v,-) and the above is equal to

(—1)FQy A e A dfprs) A Q+ QA df 1) AQ()

= —i (Qandf, 1) ANQ)=0. sub-bundle of TM. @ is also considered as a non-zero cross section of A?*1Tm Q
PO = 0. and gives a natural isomorphism (Im @)* —+ A?Im Q. Let By : A’ Im @ — (Im Q)*
Thus :}vle provedo‘{e @ ' denote the inverse isomorphism. Since we have P(dfy A ... Adfp—1,)) AQ = 0,
i Secondly, we pr ' Im P C Im Q) (see Proposition 7). Thus P is a cross section of the bundle A? Im Q.
A [P(dfp-1,), P1=0 Put o/ = Bg(P) and choose a 1-form o so that a projects to o/ under the natural
. for any functions fi,. .., fp—1. We use the abbreviated notations that p =¢—1 and surjection T*M — (Im @)*. Then we can see that

dfp i =dfi A... Ndfp-y a8 before. Then we calculate as follows; Q") =Q(d,-) = P.

‘;ﬁ [P(dfp_l, Y, Pl=[Pdfp-1,7) Q(a,")] Now by a characterization of Nambu-Poisson tensor field, there exists a 1-form
1 = [P(df p-1,")5 Ql(a) + Q(Lp(dfp » )a) (3.7 on M, satisfying DivQ = Q(v,-). Since @Q(e,-) = P is also a Nambu-Poisson
‘ I o) = 0 is verified as tensor field, there exists a 1-form A on the open set where Q(a,-) # 0, satisfying
ﬁ;j | As we showed above, [P(df,_1,); QJ(a) = 0 and Q( P@f,_1»" Div(Q(a,")) = Q(a, A,-). By the condition [@Q(a,df,_;,-),Q] = 0, and the decom-
“ | follows. posability of ), we have

‘} [ Q(LP(df _)Ol ) 0= —(Div(Q(a, dfp—h ))Q + Q(O[, d.fp—l) ) A Div Q.

0 p—1? . o T .

i = Qldipgf, ) T traf, ., oda,) = Qipgg, yda) = Qe P(dfpy, b But we have the following

W‘W‘] The most right term vanishes since if write @ = X1 A ... A X, this is equal to Div(Q(a,dfp_1,-))

““1 q . = (“1)p_1 Div(Q(a, '))(dfp—l) + (—l)p'lQ(a,ddf 1)

i S (1) da(P(dfpo1s ) X)XL Ao s AXGA - N Xq = (=1)P'Q(a, A, df_y).

“ ‘ i—1

Thus we have

“ ‘ and since a is closed on Im Q. B .
i “ Next, we prove (=17 Qe M, df,1)Q = Qa,df ,_1,") ADIVQ
i dg,), P = (~1PQ(d(P(dg),”)  for dg=dgiA...Adgp. =Q(a,df, 1, ) A Q(r,")
i (Q(dg, ). P = = i (Qer df 1) A Q)+ Qs dFp1,7)@:
it \ This is shown as follows. . . Qe df )A@=0by the d bility, thi QoA —,) =
i ince Q(a 15 e decomposability, this means Q(a, ') =
“‘ \ [Q(dg, "), Q)] = [Q(di, .g, Q]Q(;& + Q(LQ)(dg,.)a, ! If we use the fpor;nula d ! !
M = Q(diQ(dg,.)Ol + 'L.Q(dg,-) &) = 1Q(dg, )&
\

= Q(d(Q(dg, @) = (—1)PQ(d(P(dg))- Div(Q(e, ")) = —(Div@)(e, ) — Q(da, ),
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we have Q(da,-) = —Q(a,y — A,-) = 0. This is what we wanted to show. O

Examples

By Theorem 12 and Theorem 13, we obtain concrete examples of Nambu-Jacobi
manifolds. Here, we have a few of them.

1. We consider the Reeb foliation of S as the underlying foliation. There exists a
2-vector field P which is non-singular on each leaf and tangent to it. We can assume
every thing is invariant under the natural S*-action on S3. Let v be the vector field
on S® which is obtained from this action. Then L,P =0 and (Q = vA P,P)is a
Nambu-Jacobi pair by Theorem 12. () vanishes exactly along the toral leaf.

2. Let § be the Anosov foliation on the circle bundle over a closed surface of
genus g > 2. The leaves are diffeomorphic to either B2 or cylinder S! x R. Since
both types of leaves are dense, there is no non-trivial vector field transverse to §.
Therefore the only possible Jacobi pair is trivial one, namely it is (0, P).

3. Let A:T™— T™ be a hyperbolic toral automorphism. The mapping torus M,
of A has a foliation foliated by the weak unstable manifolds. Let ¢ denote a natural
tensor field which gives a volume tensor field along each leaf. Let o be the 1-form on
My =T"x%[0,1]/ ~— S, which is the pull-back of df by the projection M, — S*.
Then « is closed and (@, P = Q{a,-)) is a Nambu-Jacobi pair. P defines a foliation
foliated by strong unstable manifolds.

4. For any Nambu-Poisson structure @ on M, (Q,Div Q) is a Nambu-Jacobi pair.
Here Div is a divergence associated with a connection which preserves a volume
form of M. If DivQ = Q(v,-), we have Q(dy,-) = — Div? @ and Div? = 0 since we
assumed the connection preserves a volume form. Thus by Theorem 13, we have
the result.

On a Nambu-Jacobi manifold for which the tensor fields P and @ are both non-
singular, we have a regular foliation g and its subfoliation Fp. By our theorem,
on each leaf of Fg there exits a non-singular vector field and the subfoliation Fp
is defined by a closed 1-form on the leaf. These impose a rather strong restriction
on the foliated structure of such a Nambu-Jacobi structure. It seems an interesting
topological question to find which manifold has such a foliated structure.

4 Appendix
In this appendix, we prove Proposition 4. :
We denote the bracket defined by a p-vector field P by {...}F. Namely,

{f,....5p}* = P(df,...,df,). The bracket {...} = {...}9""P = Q+1AP
determined by a ¢(= p + 1)-vector field @ and a p-vector field P, is by definition is
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the following:

q
Ui dad = A 32+ Y (0 5 fa s By, £)P.
Jj=1

q
=Qdfs,...,df) + > (-1 f;P(dfs,...,dF;, ... , df,)

=1

We would like to write down the Fundamental Identity for this bracket in terms of
the brackets of Q and P and find the relations which @ and P satisfy.

For the brackets {- .- }* and {-+-}9 of degree p and .
JPQ and P - Q as follows. 8166 p and g, respectively, we defined

JEQ(f, .. Jo-1591,-.., 90

= {fb---afp—h {gl)-"agq}Q}P"’{{fh'--;fp—l;gl}Pag2)-'-agq}Q
_{gh {fla"-7fp—1a92}P7g31-'-7gq}Q_ "'_{917"')gq—la{fl)-"7fp—1agq}P}Q
= [P(dfl AR /\dfp—la )7Q](dgl7 7dgq)

(P F Q)(fh °afp—l;g()>' - :gq)
q
= Zo(—l)‘?{fla R )fp—h gj}P{g()7 v 7§j7 s 7gq}Q
]:

= (P(dfy,...,dfp-1,") A @)(dgo, . .. ,dg,)

The usual Fundamental Identity for {..}= Q+1AP : L )
ey =1... is the foll
for any C* functions f,,..., fo1,41,..., g, on A{([ . ) owing identity

{fla v 7fq—1, {gh v 7g¢1}}
q
= Z(_l)i_l{{fh e )fq—-lagi}7gla s 7§i7 v 7gq}
i=1

?n this appendix, however, for our notational convenience, we adopt the following
equivalent equation as the Fundamental Identity.

{{fl;"' 7fq}7g2a---agq}
q
=Z;{f17"'aﬁ—17{.ﬂ7927---agq}afj+17--- 7fq} (4-1)
J:

We now start the computation. Since by definition,
g
e dad =1 132+ Y0 Ay L F ALs
i=1
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the left hand side of (4.1) is calculated as follows.

{{f1>---7fq}ag2a---7gq}
= {{f17~°-1.fq})92)“')gq}Q+{f17"'7fq}{927"'7gq}P

q
+ Z(—l)k_lgk{{fh oo ’fq}ag2; ce 7gAk,7 s )gq}P
k=2
q
= {{fh cee 7fq}Q +Z("1)i—lfi{fh e )fi) ey fq}Pag27 R 7gq}Q

=1

+ {fla R afq}Q{927 T 7gq}P
q
+ Z(_l)i—lfi{fla s B F¥ {9205 90)T

i=1

q
+ Z(_l)k_lgk{{fla v 7fq}Q7 g2,.-- )jk) v )gq}P

k=2
q q
+ ZZ(—l)H_kgk{fi{fh s f@ “o 7fq}P7g27 vee )§k7 ce )gq}P
k=2 i=1

= {{fh' .. )fq}Qag%' . 7gq}Q
q
+ Y (D7H{{ S I ORI L I
i=1
q
+ Z(_l)i_l{fh ceey fi) e 7.fq}P{fi,g2, e 7gq}Q
i=1
+{f1,. - F} g2 90}
q
S il B S g 000}
i=1

q
+ Z(_l)k_lgk{{fh (RS fq}Qa g2, .- 7gk) cee 7gq}P

k=2
q q
+ ZZ(_]-)H-kgkfz{{fla s f’b e 3fq}P, g2,-.- )gk1 s 7gq}P
k=2 i=1

q q ‘
+ZZ(_1)z+kgk{f17 f'l' i )fq}P{fiag2a- .. 7gAk:' .. agq}P

k=2 i=1
This is the left hand side of (4.1) expressed in terms of fi’s, gi’s and their brackets
with respect to {...}¥ and {...}%.
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" 1I)n a similar way, we calculate the right hand side of the Fundamental Identity

g
‘Zl{fly--'yf:i—la{f:i)g%'-' 7gq}7fj+17' . 7fq}
§=

q
= Z;{fl,- . -,fj—l){fi)g% see 7gq}Q7fj+17' .. ,fq}
j=

g
+z;{f1) ve 7.f7'—17fj{g27 v 7gq}P7fj+17 s 7fq}
j=

q q
+jzl{fl, s )fj-—l) Z(_l)k—lgk{fj7 g2,.-. 7§k7 .o )gq}Pa fj+17 KRN fq}
= k=2

q
= z;{fli' .. 7fj—1>{fj)g27 v agq}Q7fj+17° .. 1fq}Q
j=

g j-1
+ ; Z(—l)z_lfi{fla ey fiy cee 7fj-—-la {fj7g27 v 7gq}Q)fj+17 R 7fq}P

j=1 i=1

q
+Z(—1)f-1{fj,gz, s 0} Fia e
j=1

q q
+30 3 O el fue e i1 i

J=1 i=j+1

q
+Z;{f1) .. '7]‘:1'—17‘]‘:7'{927' .. 7gq}P7fj-l—1:' .-
j=

Jot"

7gq}Q7-f:f+17'"7fi)"‘:fq}P

 fa}?

g j-1
+Z§;(_1)i_lfi{f1; e 7fia oo 9f_7'—1; fj{g27 (R )gq}Pa f:i—i-l) . 7fq}P

q
+z;('"1)j—lfj{92a--- 93 s Fise s F}F
j=

q q
+2 Z (_1)i—1fi{fla v 7fj—l;fj{g27 eve 7gq}P)fj+17 LR 7fi, v 1fq}P

J=1 i=j+1
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q q
+ZZ( 1)k—1{f1) 7fj—1,gk{fj,g2a"'7§k7"’7gq}P’-fj+1""’fq}Q
j=1 k=2
g j-1 N P P
( 1)k+zfz{f1a af'i,-"7fj—1agk{fjag27"'7gAk7"‘7g’J} ,f:j—|—1,---7fq}

i=1

(—1)j+kgk{fj7g27" . 7§k1"' 7gq}P{.f17° e 7f:1'7" . 7fq}P

+

M@

1k

.
I
I}
)

_|.

M=
MQ

-
Ed

|
[\

.
w ||

q ~
+ZZ Z (_1)k+ifi{f17-- . 7fj——lagk{f:7'192a s 7gk1-- . 7gq}P7fj+17' . 7fi7- .. afq}P

j=1 k=21i=j+1

Further by applying the Leibniz rule, these are calculated as follows:

g
= Z{fh- .. afj—l:{f:iag%' X agq}Qa.fj-{-l)' . ,fq}Q

+ZZ( 1)z_1f'l,{f17 7fi: R 7fj—17{fj7g27 s 7gq}Q7 f:7'+19 s 7fq}P

j=1 i=1

+z(—1)j—l{ijg27' .. ’gq}Q{flr . 7]?:7'7' . )fq}P

+Z Z( 1)Z_lfz{f17 7fj—17{fjag2)'-'7gq}Qafj+17'"7.fi:-"afq}P

j=1i=j+1

+Efj{f1’ . -afj—1>{g27 s )gq}P7fj+1’ s 7-fq}Q
j=1

q
3 (e P} 20098
j=1

q j-1 .
+ZZ(—1)2_1fsz{fl, . 7f117 KR afj—l: {927 (RN 7gq}P7 fj+17 ey fq}P

j=1 i=1

q j—1 )
+ Z Z(—l)i—lfi{g2) s 7gq}P{f17 R 7fi7 vy fq}P
j=1 =1

q ~
+Z(_1)j_1fj{g27 e 7gq}P{f17 oo afj) v 7fq}P

+Z Z ( l)z—lfz.fj{fh ,fj—l,{g27---,gq}P,fj—}—l,---,fz’,---,fq}P

j=1 i=j+1
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q q
+Z Z (_—1)i—1fi{g27 cee 7gq}P{f17- . w.fi) cee 7fq}P
j=1 i=j+1
q q
+Z Z(_l)k_lgk{fla cevy fj—l) {fj’g2: e ’§k7 R )gq}Pafj+1) R 7fq}Q
7=1 k=2
q q
+Z Z(_l)k_l{fj)g27 cee agk’ e ng}P{fla e 7fj-lagka .fj—l-la “es afq}Q
j=1 k=2
Jq q _1 . ~
+Z ( 1)k+zfigk{f17 ey fi, cee 7](:7"—17 {fja927° .. )gk: v 1gq}P7fj+1) oo 7fq}P

k=

.,

[y

.
[\
-,

il
=

-1

( 1)k+zfz{f.7192a ey Gk - - )gq}P{fly- x afi)" . ’f..i—hgk’ff""h toe "fq}P

1

(_1)j+kgk{fj;g27- . 7§k7- .. 7gq}P{f17' . ').f:i)' .. :fq}P

N.

+
-

<

||

[ay
.

Il

_I..
AN
M- IM-= M= M-

- 07

( 1)k+1fzgk{f17 o Ji- {f:i:g% Y TR 7gq}P’fj+1’ Tt ’fi’ T "fq}P

1
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