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CONGRUENCE FOR REAL CURVES IN TORIC SURFACE
AND NEWTON POLYGONS '

TOSHIZUMI FUKUI ($8# ##t)

Department of Mathematics, Faculty of Science, Saitama University
255 Shimo-Okubo, Urewa 338-8570, Japan

We consider the dividing curves in real toric surfaces. This is determined by
polynomials with appropriate Newton polygon. We discuss some relation between
the Euler characteristic of its positive point locus and their complex orientations
under some conditions.

Introduction

Let f(z,y) = 3_ ai;z'y? be a real polynomial, and A(f) the Newton polygon
of f, that is, the convex hull of the set of points (%,7) with a;; # 0. In this
paper, we discuss some congruences related to zero sets of f and its Newton
polygon.

Obviously, the Newton polygon A(f) is an integral convex polygon. Here,
an integral polygon means a polygon whose vertices are integral points. A
polynomial f(z,y) is said to be non-degenerate, if the gradient of £, (z,y) =
2 (ij)ey 2i52'y7 has no zeros in (C — 0)2 for each face v of A(f). I fis
non-degenerate, then the zero locus of f in K2 (K = C,R) is nonsingular
except the origin.

If f is non-degenerate, the real and complex zero locus of f can be com-
pactified in a suitable toric surface P(K) (K = R, C) as nonsingular algebraic
curves, and we denote the compactifications by Z(R), Z(C). Then, by Har-
nack’s inequality, the number of the (connected) components of Z (R) is at
most g + 1, where g is the genus of Z(C). By custom, we set M = g+1,
and call Z an (M — i)-curve, if the number of components of Z (R)is M —1i.
In our situation, g is given by the number of integral points in the interior
of A(f), which is equals to 1 — $Voli (A(£)) + Vola(A(F)). (See Khovanskil?
for a proof of this fact.) Here, for a polygon A, Volz(A) denotes the area of
A, and Vol;(A) denotes the perimeter of the boundary of A, which coincides
the number of integral points in the boundary of A. We understand 1 is
the length of an integral segment which contains no integral points except its
ends.

By the proof of Harnack’s inequality appeared in the paper by G.Wilson??,
the number of connected components of Z (C) — Z(R) is at most.two. We say
Z is a dividing curve, or simply Z divides, if Z (C)—Z(R) is not connected. As
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noting ibid., an M-curve always divides, and an (M — )-curve never divides,
if i is odd. Assume that Z divides, and we denote Zy the closures of the
connected components of Z(C) — Z(R). Obviously, Z(R) = Z, N Z_, and
Z(C) = Zy U Z_. We orient Zy by their natural complex structure, and
orient Z(R) as boundaries of Z, or Z_. We call them complex orientations
of Z(R).

If A(f) is even, that is, the twice of some integral polygon, the inequality
f(a) > 0 makes sense for each o € P(R), and we denote P* = {a € P(R) :
*f(a) > 0}. We understand that P* is a compactification of the set BE :=
{(z,y) e R*~(0,0) : £f(z,y) > 0}. If A(f) is even and f is non-degenerate,
then each component of Z(R) is an oval, that is, a connected nonsingular
two-sided component of Z(R). We say that a component of the real zero
locus of f in P(R) is said to be a 0-oval, if it bounds a real disc. We consider
the following condition:

Condition (A). Each connected component of Z(R) is 0-oval.

We assume that Condition (A). Then, for each connected component C
of Z(R), we have a real disc bounded by C. We consider the union of all such
discs and denote it by S. Then P(C) — § is a component of P(C) - Z(R).
Without loss of generality, we may assume that this is a component of P~. We
understand that the connected component of P(R) —C contained in P (C)-S
is outside of the 0-oval C. Since each real disc in P(R) can be deformed to a
disc in R%, P* can be deformed into the first quadrant R3.

Under Condition (A), we say that an oval of Z(R) is even (resp. odd),
if it lies inside an even (resp. odd) number of other ovals of Z (R). We
denote the number of even (resp. odd) ovals by N* (resp. N7). Obviously,
x(PH)=N*t-N—.

Now we recall the following theorems:

Theorem 0.1 (Theorem 0.3%) Let f be a non-degenerate polynomial with
even A(f). Suppose that each component of Z(R) in some nonsingular toric
surface P(R) is a 0-oval. Then we have the following congruences.

(i) If Z is an M-curve, then N* — N~— = 1 Voh(A(f)) (mod 8).
(i) If Z is an (M — 1)-curve, then N* — N~ = $Vobh(A(f))£1 (mod 8).

(ii1) If Z is an (M — 2)-curve and does not divide, then
N* =N~ = 3 Voh(A(f)) (mod 8), L VobA(f)£2 (mod 8).

(iv) If Z divides, then Nt — N~ = 3 Voh(A(F)) (mod 4).

(i) is Gudkov®-Rokhlin!® type congruence. (ii) is Gudkov-Krachnov’-
Kharlamov'! type congruence and (iv) is Arnold! type congruence.
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Theorem 0.2 (Theorem 0.4%) Let f be a non-degenerate polynomial with
even A(f). Then we have the following inequality.

3= e(A() + 7 Voh(A() ~ van(a()

<X(P*) 1= 2 Voh(AN) + von(a(f),

where e(A) is the number of sides of a convez polygon A.
This is a Petrowsky!® type inequality.

The proof in the paper ® is basically the toric version of the proof due to
A Marin?3,

In this paper, we show more information for dividing curves. One of
consequences of our discussion is the following congruence: (See Proposition
7.6, also.) '

Theorem 0.3 Assume that A(f) is bi-even, that is, twice of some even poly-
gon, and each connected component of Z(R) is a 0-oval. If Z is an M -curve
and each even oval surrounds an odd number of other ovals, then

N* = N~ = —ZVoh(A(f)) (mod 16).

| =

When P = P? (the projective plane), this was obtained by T.Fidler?. To see
it, T.Fidler considered the congruence due to Guillou-Marin® for the complex
projective plane. When we consider this congruence for complex toric surfaces
which is reviewed in §1, we obtain similar result. We also mention some con-
sequences for a complex orientation of Z(R). In §3, we present Rokhlin’s for-
mula for dividing curves, and we see a fact we can expect: Roughly speaking,
we assert that, for a dividing curve, some condition on its complex orientation
determines the parity of § (N* — N~ — LVoly(A( f))) under suitable suppo-
sitions. We investigate this phenomena using Guillou-Marin’s congruence.
We present technical details in §4-6, and some of consequences are formulated
explicitly in §7.

1 Toric surface

In this section, we briefly recall the definition and some properties of toric sur-
face. See a survey paper by V.I.Danilov3, and books by W .Fulton®, T.0dals,
for detailed discussion. Set X = C, or R.




1.1 Definition

Let vo,vy,...,uqy = vy be a sequence of lattice points in Z?2 in counterclockwise
order such that the successive pairs generate the lattice Z2. For convenience,
we set va+1 = vi. Then we have v;_; + vy, + civ; = 0,1 < i < d for some
integer ¢;. Let C? (i = 1,...,d) be copies of C? with a complex coordinate
system (z;,w;). Then, we obtain a compact nonsingular toric surface P(C)
gluing C?’s by z;,, = z; “wy, wiyy = 270 (i =1, ...,d). We denote P(R) the
real part of P(C). _
Example 1: Set vy = (3),v1 = ), ve = (Z1),vs = v. P is the projec-
tive plane P2. And each nonsingular compact toric surface with d = 3 is
isomorphic to P2,

Example 2: Let a be a non-negative integer. Consider the toric surface
obtained by setting vy = (é),vl = ((1)),1)2 = (:i),vg = (_01),114 = vp. This
surface is called by Hirzebruch surface, and is denoted by F,. We remark
that each nonsingular compact toric surface with d = 4 is isomorphic to F,
for some a. In particular, Fy = P! x Pl.

Lemma 1.1 The Euler characteristic of P(C) is d, and the signature of P(C)
equals 4 — d. The Euler characteristic of P(R) is4 —d.

1.2  Divisors

Let D;(K) be the divisor of P(K) defined by wiy; = z; = 0 for i = 0,1,...,d.
We understand Dy = D,. Then, we have

C; ifi = j,
Di(C).D;(C)=q 1 iffi—j]=1,
0 otherwise.

The last two equalities are trivial by definition. To see the first equality, we
construct a small perturbation of D;(C). Let k; be the maximal integer with
2k; < |ci| and o, g, -+ Qu; pOsitive numbers with a; < @y < --+ < oy, - Let
D; denote the closure of the set {w; = Fe5(2:)} in P(C) where

efs(2) ife; >0,
Fes(2) = {f-?f«s(Z)'1 if ¢; <0and [f5(2)] > /]e],
efs(z) if ¢; <0 and |f5(2)] < /][,

and

fs() = VIS + o) i o] = 2k,

VIITTL (22 + )z — 1 = 6v/=T) i o] = 2 4 1.
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Here ¢ is a small positive number and ¢ is a real number close to 0. By
construction, we see Di(C).Di =gc;.

We remark that H,(P(K);Z) is generated by D;{(K)'s (i=1,...,d), and
the homology class represented by Z:;l vi 1 Di(K), T L Vi2Di(K) is zero in
H>(P(K); Z), where we write v; = (1) fori = 1,...,d. We set

vi2

Dii = {w; =0, +Imz; >0} U {ziv1 =0, FImw;, > 0}, and

Di(K) = J Di(K) (K =R,C), forIc{l,..d}.
: i€l

Then, D;(C).D;(C) = Zie, c; + 2#Ip, where #Ip is the number of double
points of D;(C). Note that —Dy;,....4} is the canonical divisor of P.

1.3  Sections of line bundles

Set D = 3"a;D;. Let O(D) be the sheaf of algebraic sections of the line
bundle [D] defined by the divisor D. Then, we have

I(P(K),0D) = & Kz

meZ2nAD

where Ap = {u€R?: (u,v;) > -a;, Vi}. (1)

If f(z,y) is a K-coefficient polynomial with A p = A(f), we can consider f
as a section of the line bundle [D}], using the isomorphism above, and the zero
locus of f defines an algebraic curve Z(K) in the toric surface P(K).

If A(f) is even, that is, twice of some integral polygon, then the inequality
f > 0 make sense on the toric surface P(R). In this case, we set

PE ={ac P(R): +f(a) > 0}.

The self-intersection number D(C)? is equal to 2Voly(Ap): See-the arti-
cles 3158 for its proof.

Let f(z,y) be a non-degenerate real polynomial, and V be the set of
primitive vectors supporting edges of A(f). We choose V1, .-, Uq 101 §1.1 so that
{v1,..,vq} D V. Then we can find a divisor D = Y. a;D; with Ap = A(f),
by (1). Let E; denote the side of A(f) supported by v;, for 1 = 1,...,d. If
A(f) is even, then D = 2D for some divisor D = S a;D;.

Throughout this paper, we assume that f (z,y) is a non-degenerate real
polynomial, and use the notation above.




2 Lemmas for self-intersection numbers

We prepare two lemmas.

Lemma 2.1 Let 4 and B be oriented surfaces with boundaries in P(R), and
v a tangent vector field of A with finite zeros in the interior of B. Assume
the boundaries A and OB intersect transversely, that v does not tangent to
OA and 0B, and that v looks outward (resp. inward) along both 8A and OB.
Let A be a small perturbation of A by the vector v/ —=1v.

() If the orientation of A agrees with that of B for each point of ANB, then
the intersection number of A and the interior of B is equal to —x(4ANB).

(i) If the orientation of A disagrees with that of B for each point of AN B,
then the intersection number of A and the interior of B is equal to x(4N
B).

Proof We first assume that the orientation of A agrees with that of B for
each point of A N B, Then, the desired intersection number is the sum of
indices of v/—1v, which is equal to ~x(4 N B). Changing the orientation of
B, we obtain (ii) from (i). a
See the paper by C.C.Pugh!7 for general treatment.

The self-intersection number of a surface embedded in an oriented 4-
manifold is its normal Euler number. :
Lemma 2.2 Let S be an immersed surface in an oriented 4-manifold M.
Assume that there are a point P € M, a coordinate neighborhood U near P,
and an orientation preserving complex coordinate system z = (z1,23) : U =
C? so that SNU = z7{z122 = 0} and that z(P) = 0. Here we understand that
C? is oriented by its natural complex structure. Letri,T; be positive numbers
satisfying ry < vy and {|2] < r2} C 2(U). Let pryr(r) be a C*°-function on
[0,00) such that pr (7)) =1 for 0 < r <1y, and that pr (1) =0 forT > ra.
We set

Se = (S=U)Uz" {z122 = ep(|z])}
S-=(S-U)uz"Hazm =ep(l2])}-

Here ¢ is a small positive number. Then the normal Euler number of S, (resp.

S_) is equal to the sum of the normal Euler number of S in M and 2 (resp. -

-2).
I learned this fact from O.Saeki. His proof is based on computation of linking
. number. Same proof of Lemma 2.2 can be found in the §5 of the paper by
Y.Yamada?®!. _

We call S (resp. S-.) a positive (resp. negative) smoothing of S at double
point P.

a

3 Rokhlin’s formula

Assume that Z is a dividing curve and Condition (A). Let ¢ be the number
of connected components of Z(R). We consider the orientation of Z (R) as
boundary of Z, (or Z_). We call an injective pair of ovals of Z, i.e. a pair
of ovals one of which lies iniside of the other, positive if the orientations of the
ovals induce an orientation of annulus bounded by them in P(R), and negative
in the opposite case, and we denote the number of positive pairs by II*T and
the number of negative pairs by II~. An odd oval of Z is called disoriented if it
forms a negative pair with the innermost of the ovals outside of it. The number
of disoriented ovals is denoted by d*, the number of positive pairs with disori-
ented outer ovals by D, and the number of negative pairs with disoriented
outer ovals by D~. We then have that I — I~ = N~ — 2(d* + D~ — D).
Denote B¢ the disc bounded by the oval C in P(R). Attaching small pertur-
bations of discs B¢’s in P(C) to Zy, we obtain surfaces Xy, which represent
Z-homology classes in Hy(P(C),Z). Then the self-intersection numbers of
X+ is equal to $Z(C).Z(C) — £ + 2(IT* — II™), because of Lemma 2.1. On
the other hand, since X4 represent the integral homology classes of D(C), we
have the self-intersection numbers of X + are that of D(C) which are equal to
3 Vola(A(f)). Therefore, we obtain

N™=2(d"+ D7 = D¥) =TI = " = 3¢~ 2Voh(A(F) =5 /2, (2)

where 7 is the virtual genus of D(C). This formula was originally formulated
by Rokhlin'® for dividing plane curves with even degree.

This gives some restriction about topology of dividing curve. It is an
interesting problem to construct dividing curves with prescribed topology.
Sometime this is a delicate problem.

Example: Let A be a convex hull of the three points (0,0), (6,0), (0,4), and
f be a non-degenerate polynomial with A(f) = A. Using Theorems 0.1, 0.2,

it I;T not difficult to see that the isotopy class of Z (R) is one the following
taple.

5 .
o2 7
3 4 3 2 1
t, 71 , 12 . 3 1 14 6
T \ 1l i 22 1 13 5
N N fll T2 4
f Tl 3
1 2
1
)




Here we use the standard notation appeared in the articles®!0. If Z divides,

then (iv) of Theorem 0.1 says some restriction about the isotopy type of Z(R),
and this is one of the following: :

5, 4. 3 2_1
9 2 23, =
17 11’ "1

11
This Rokhlin’s formula says that the isotopy type 2 is not appeared. More-

over, the formula says that the isotopy type with complex orientation is one
of the following:

1
2, 2, -6, 6.
1

3+,2'2
1+ 7+ 7 0 T F

+ 9= + 5= g4 - - +
2% 2 1+,2 1,1311__2,1_
1+ 1F

6, 6.

Here we follow the notation used by A.Marin'3. In this case, we can observe
that the parity of the number of disoriented ovals (or negative injective pairs)
is the parity of {(x(P*) — $Vola(A(£))). This observation will be generalized
in §7. Since M-curves with prescribed topology above exist, and M-curves
are dividing curves, we can claim the existence of the dividing curves whose
isotopy types are 22 and 16. The existence of dividing curves with other
isotopy types is not clear, and seems to be open.

4 Characteristic surfaces of P(C)

Let F' be an immersed surface in a closed oriented 4-manifold M. F is called
a characteristic surface if the Z/2-homology class of F is dual to the second
Stiefel-Whitney class w2 (M). This is equivalent to that the Z/2-valued inter-
section number F.z is equal to the Z/2-valued self-intersection number of z
for each z € Hy(M;Z/2).

Lemma 4.1 P(R) is a characteristic surface of P(C).

Proof It is enough to show that for each # the number of intersection points
of P(R) and a generic perturbation of -D;(C) is congruent with ¢; modulo
2. The intersection of D; with P(R) is empty, if ¢; is even; and one point
defined by (z;,w;) = (1,¢€0), if ¢; is odd. Since f5 has no multiple zeros, this
completes the proof. a
O.Saeki showed Lemma 4.1 in the following way. Let M be a branched
double covering of the 4-sphere S$* and R its ramification locus in M. Then
he showed that the Z /2-homology class of R is the Poincaré dual of wa (M).
Since the quotient space of P(C) by the natural complex conjugation is home-
omorphic to S* (see Lemma 2.8%), we obtain Lemma 4.1.
Lemma 4.2 Let J be the subset of {1,....,d} so thati € J is equivalent to
that both v; ;,v; 5 are odd. Then D;(C) is a characteristic surface of P(C).
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Proof 1t is enough to see D;(C).D;(C) = ¢; (mod 2) for each i. This is
direct computation. (Remark that successive numbers do not belong to J.)
a

Suppose that Z divides. Let F* be smoothings of Z, U P% in P(C). As
stating in T.Fidler*, the self-intersection number of F* in P(C) is obtained
by the following:

FEF* = %D(C).D(C) - x(P%). (3)

Here, we remark that 1 D(C).D(C) = Voly(A(¥)).

We set eF is 1, if ¢; is odd and +f (t¥i1,t¥2) is positive for sufficiently
large positive t; 0, otherwise.

We remark that the orientation of the first quadrant induced by the coor-
dinate system (z,y) is agree with that induced by the restriction of the coorgii—
nate system (z;, w;) to the real part, since z = z;*~*'w;"! and y = 2} " "2w}*2.
Assume that ¢ is a small positive number. Set

Iit={iEIi:e?==1}.
Note that PN D; is a point, if ei* = 1; empty, if sf = (. Let C; be a small
circle centered at P; = P(R)ND;. Here P, is expressed by (z,y) = (tvie, tvi2)
for some sufficiently large positive ¢ for i € Ifnt. We may assume that C;
(t € I*) is in F‘Ii Set Z;+ a surface with boundary obtained by~ taking
positive smoothings at all double points of Z, U D;+. Note that Zrx has
an orientation induced by the natural complex structure of Z, and D; with
i € I*. This orientation of Z 1+ induces an orientation of C; with i € [E

nt"

This orientation agrees with that induced by the coordinate system (z,y). In
fact, since P; is very close to the point Q; defined by (z:,w;) = (1,0), it is
enough to see the same assertion at Q;. Near Q;, w = H:;l(z;-’ +a;)(z;—1) and
w; give a complex coordinate system of P(C) defined over real. If ¢; > 0, thep
the image of the embedding defined by C 3 w = (w,w;) = (w,ev/—1lw) € C?
is D;, near Q;. If ¢; < 0, then the image of the embedding defined by C 3
w = (w, w;) = (w,e/~1w) € C? is D;, near Q;. In any case, by elementary
computation, we have

(orientation of D;) + (orientation of R? induced by (z,v))
= orientation of C® near Q; (i € I%).
This shows the following:
Lemma 4.3 P*.D; = ei:h.

Suppose that the Z/2-homology class of F£ is that of Z?=1 b;f’:Di(C), where
b € {0,1}.




Lemma 4.4 The numbers bli,...,bf are ~btained by solving the following
equations:

1 .
bii_l + bEtC,' + b?-:(-l = E?: + '2— VOll(Ei) (mOd 2)1 for t= 17 3] d.

By Poincaré duality, these equations determine bli, cey bff. In particular, Con-
dition (A) implies that the Z/2-homology class of F* is that of D(C).
Proof By §1.2, F*.D; = b | +bfc; +bE, for i = 1,...,d. On the other
hand, since F* = P¥U Z,, F*.D; = ¥ + LVol,(E;) for i = 1,...,d. Then,
we have the first assertion. The remaining assertions are trivial. i a
Lemma 4.5 Let I'*, I~ be subsets of {1,...d} so that F1++ = F+~U D+ and
F_:=F"U D;- are characteristic surfaces. Here Dy = Uie[ D;, for I C
{1,...,d}. Then the Z/2-homology class of D+ + Dy~ is dual to w2(P(C)).
Proof Easy computation. O

At each double point of F[i;, we consider the orientations defined above.
Taking a positive smoothing of F}’; (resp. F;_) at each double points,_we
obtain a nonsingular characteristic surface of P(C), and we denote it by £ ;';
(resp. l:",‘_).
Lemma 4.6

FFE = Vob(A(N) + D (e + Vol (Ey)) + 2415 + 24 %, — x(P*),
iel£ .

where #If,’ is the number of double points of Dy, and #Ifjlt 1s the numbfzr
of elements of Iﬁt. Here E; is the side of A(f) supported by v; as defined in
81.

Proof Consequence of §1.2, Lemma 2.2 and (3). O

5 Guillou-Marin’s Congruences

We first review the Brown invariant.

5.1 Brown invariant

Let V' be a finite-dimensional vector space over Z/2 with non-degenerate
bilinear form . : V x V. — Z/2. A Z/4-quadratic is a map q : V — Z/4
with g(u + v) = ¢(u) + q(v) + 2u.v.

Example: Here are examples of Z/4-quadratics.

Py =(V =Z/2(v);vv = Liq(v) = £1),
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a

L=(V=2Z/2u)e Z/2(v);uu=vv =0,uv = 1;q(u) = q(v) = 0)
Ty =(V=2Z/2w)e® Z/2(v);uu =vw =0, uv = Liq(u) = q(v) = 2)
and their direct sum.

Since any indecomposable Z/4-quadratic is isomorphic to one of
Py, Ty, Ty, a Z/4-quadratic is isomorphic to some direct sum of Py, T6,Ty’s.
If q is isomorphic to aP. ® bP_ & cTo ® dTy, we define 8(q) by a — b+ 4d mod
8 and call it by the Brown invariant of g. We have that

?

1

expﬂ_(qk;‘/_"_l=2—‘“'+" Y exp M (4)

veV

Lemma 5.1 (i) If there is a subspace H with q(H) =0, dimH = 1dimV,

then B(q) = 0.
(i) Let q; : V — Z/4 (i = 1,2) be two Z/4-quadratics with respect to the
' same non-degenerate bilinear form .. Then g2(u) = qi(u) + 2u.z for

some z € V, and B(q2) = B(q1) — 2q1(z).

See E.H.Brown Jr.2 for proofs of (4), Lemma 5.1 and details on Brown invari-
ant.

5.2 Rokhlin form

Let F' be a nonsingular surface in an oriented 4-dimensional manifold M.
Suppose that the natural map H1(F;Z/2) — Hi(M;Z/2) is zero. Then any
curve C embedded in F bounds a membrane M in M. Here, a membrane
is a surface M in M, which bounded by C and normal to F along C, and
nowhere tangent to F. Let n(M) be the integer obtained by evaluating the
obstruction class to extend the normal bundle of the embedding C C F to
a subline bundle in the normal bundle of the immersion M C M by the
fundamental class of (M, C). Suppose that F' is a characteristic surface.
Then, ¢(C) = n(M) + 2M.F (mod 4) is determined by the Z/2-homology
class of C, and the induced map q : Hi(F;Z/2) - Z/4 is a Z/4-quadratic
with respect to the Z/2-valued intersection form of F. The map q is called
the Rokhlin form of F.

Theorem 5.2 (Guillou-Marin)
Signature of M = F.F +28(q) (mod 16),

where F.F is the self-intersection number of F in M.
See L.Guillou-A.Marin?, and Y.Matsumoto!*, for proof of Theorem 5.2 and
detailed discussion on the Rokhlin form.
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Lemma 5.3 Let F be a characteristic surface of M, and U an open set in
M which is homeomorphic to a 4-ball. Let z = (z1,22) : U = C? be a
complez coordinate system whose image is a 4-ball centered at the origin in
2. Suppose that FNU = 27212y = €*} for some positive number . Set
C =222 =€ 21 = 75}. Then, q(C) = 2.
Proof Set D* = {z € C:|z| < 1}. Let + denote a map of D? to C2
defined by ¢(z) = (ez,£%). Then the boundary of the image of 1 is z(C),
and the image of ¢ is a membrane of z(C). Consider the vector field v =
Re(z(% + 3‘2—_2)). By elementary computation, v is tangent to {2120 = €7}
and normal to the membrane. Since v has only non-degenerate zero at the
origin, we have ¢(C) = 2. a
Remark that the 1-cycle {z1z, = 2,2, = Z3} tend to the origin in C? and
finally vanishes when ¢ tends to 0.
Proposition 5.4 Let qp(r) be the Rokhlin form of P(R) in P(C). We have
2pr)(D1(R)) = D1(C)*  (mod 4), and B(gpr)) =4 —d (mod 8).
Proof By Lemma 4.1, P(R) is a characteristic surface. The first assertion
followed by the following: 7pr)(Di(R)) = Di(C)? = ¢; (mod 4). This will
be proved a discussion similar to our proof of Lemma 6.3. We next remark
that the self-intersection number of P(R) in P(C) is —x(P(R)), by Lemma
2.1. By §1.1, Lemma 4.1 and Lemma 5.2, we complete the proof. 0
Proposition 5.5 Let 9p,(c) be the Rokhlin form of D;(C) in P(C). We
“have gp,(c)y =0 (mod 4), and 2jesCi=4—d (mod 16).
Proof By Lemma 4.2, D;(C) is a characteristic surface. Since Dy has no
double points, we obtain that H(D;(C);Z/2) = 0. Thus gp,(cy = 0, and
the proposition holds, because of Lemma 4.3 and Theorem 5.2. o

6 Computation of Rokhlin form

Let ¢* be the Rokhlin form of ﬁ’ﬁ Then, by Lemma 4.6 and Theorem 5.2
we have the following congruence:

X(PE) = Volay(A(f)) +d — 4
+ D (ci+ Vol (B:) + 2(#1% + #1E, + B(¢%)) (mod 16). (5)

iefx

Thus, if we compute the Brown invariant B(g*), we obtain a congruence
for x(P%) modulo 16. In this section, we compute the Rokhlin form Q= .
and their Brown invariant 3(¢%) under some conditions. We first introduce
notation. Hereafter, we understand that Z, and D; (¢ € I*) are oriented
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by their natural complex structures. Set ZER) = Z(R) U Uiert Ci, and
P* = P* — ;o + B; where B; is the disc bounded by C; in P(R).

Let L* be the subspace of H\(F%;Z/2) generated by components
of Z(R), and V* the image of the natural map H\(F*;Z2/2) -
H\(F, Z(R); Z/2). Obviously, we have Hy (F;Z/2) ~ L* @ V*. We set

U* = Im{H,(P*;2/2) —» H (P%, Z£(R); Z/2)}, and
W= = Im{H,(Z+;2/2) - H\(Z+, Z%(R); 2/2)}.

By the isomorphism
H\(F*,Z%(R); 2/2) ~ H\(P*, Z*(R); 2/2) ® H,(Z;+, 2% (R); 2/2),

we consider U* @ 0 and 0@ W= are subspaces of V£. By abuse of language,
we denote them by U%, W#, respectively. We set

L* = {u € Hi(F£;2/2) : uv = 0,Yv € UX @ W),

If Z is an (M — i)-curve, then

dimW* =i + -;- > Vol(E:) + #IF - #1%,,
iel*
dimL* = M — i + #IE, - ho(P*), and
dim L* = 2dim L*,
where ho(P*) is the number of components of P%. Moreover, the restrictions

of the Z/2-valued intersection form . to U*, W=, and L* are non-degenerate.
Computing the Euler characteristic of F[i , we have

Hi(F5,2/2) ~ Ute l*owW*.

Thus, if we set G = B(q*|U*), 85 = B(¢*|W*), 5% = B(q*|L%), we have
the following:
Lemma 6.1 8(¢*) = 8% + B3 + BF.
Lemma 6.2 ﬁﬁ, =0,4. If Z is an M -curve and I* = 0, then ﬂ‘ﬂfv =0.
Proof Since Z;’; is orientable, the classification of Z/4-quadratics gives the
lemma. a

We next compute the Rokhlin form on LT @ U=.

Lemma 6.3 If a closed curve C in PT is boundary of a surface M in P(R),
then ¢=(C) = 2x(M N P¥) (mod 4). '
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Proof By III Remarque 3 in the paper by Guillou-Marin?, we use here the
method of vector fields. For a vector field v on M normal to C , consider
an extension ¥ of /—~Tv to some neighborhood of M. Since 0|C is a normal
vector field of the embedding C C F, the obstruction number to extend 7|C to
a normal vector field of the embedding M C P, (C) is the sum of its indices,
which is equal to —x(M). Thus, n(M) = 2(~x(M)). By Lemma 2.1, M.F =
x(M N F). Therefore, ¢¥(C) = 2(=x(M) + x(M N P£)) = —2x(M N PF).
a

Under Condition (A), by Lemma 6.3, we have the following: If C is an odd
oval surrounds an odd (resp. even) number of other ovals, then ¢*(C) =0
(resp. 2). If C is an even oval surrounds an odd (resp. even) number of other

ovals, then g=(C) = 0 (resp. 2). These conditions were first formulated by
T.Fidler?.

Lemma 6.4 Assume that D;(R) is in P%. Then D} is o membrane of
Di(R), and we have n(D;(R)) = ¢;. Thus,

g% (Di(R)) = ¢; + 2Z,.D} +2D;+ D} (mod 4).

Proof In order to compute n(D;(R)), we present here a discussion on count-
ing “the number of half twists of the normal bundle of C in F in the restriction
to C' of a trivialization of the normal bundle of the membrane in the ambi-
ent 4-manifold,” due to Y.Matsumoto'¢. See III Remarque 2 of the paper
Guillou-Marin®. To avoid the term 2Self(C) in the definition of the Rokhlin
form at the bottom of page 132 of the paper by Y.Matsumoto!*, we take
the orientations of fibers of the normal bundle of the membrane opposite to
that defined ibid.. Considering that the coordinate system (Zit1,Wipy) gives
a trivialization of the normal bundle of D} in PA(C), we obtain the num-
ber of half twists of the normal bundle of C in P(C) is equal to ¢;. Since
D} .Ff = Z,.D} + Dy+.Df, we complete the proof. a

Lemma 6.5 If % Vol (E;) is even, then Z,..D}f = 1 Vol (E;) (mod 2).
Proof Replacing D} by D in the proof above, we obtain that ¢t (D;(R)) =
Ci+2Z2,.D7 +2D;+.D (mod 4). Thus,

Z,.Df + Dy+.D} = Z,.D7 + D+.D;  (mod 2), (6)

and 3Vol,(E;) + Dr=.Di(C) = (Zy + D;+).D;(C) is even. Since 1Vol, (E))
is even, so is D;+.D;(C), and Z,.Df = }Voli(E;) (mod 2), because of (6).
a

Remark 6.6 By definition of D, it is easy to see f),i-.D;" =k + xr£(i -
1)+ xr=(i+1). Here, x;(j) =1, if j € I; 0, otherwise, for I C {1,...,d}.
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Lemma 6.7 Condition (A) implies BF = 0. If A(f) is bi-even, that is,
twice of some even polygon, then Condition(A) implies I~ = 0 and By =
4 —d - $Voh(A(f)).

Proof The first sentence is trivial, since U+ = 0. We assume that A(f)
is bi-even. Then, D = 4D, where D = ¥ :D;. Remark that D(C)? =
(3)2D(C)? = LVola(A(f)). By Lemma 4.4, the Z/2-homology class of F+
is zero. By Lemma 4.1, F~ is characteristic, and I~ = §. Let z be the
Z/2-homology class of D(R) in U~ C H\(F~; Z2/2), and qg : U~ — Z/4 the
Z/4-quadratic defined by qr(D;(R)) = D;(C)?* (mod 4) for I C {1,...,d}
with D/(R) C P~. Since z.D;(R) = iVoll(Ei) for D;(R) ¢ P~, we obtain
iU~ (u) = qr(u)+2z.u foru € U™, and thus B(q|U~) = B(gg) -qr(D(R)) =
4—d— $Vola(A(f)) (mod 8), by (ii) of Lemma 5.1 and Lemma 5.4. a

A similar argument shows the following '

Lemmma 6.8 Let € be a closed curve in P*, and My is the closure of the
union of some components of P(R)—Uf=1 D;(R)—C whose boundary contains
C. Let I be a subset of {1,...,d} so that CU Uier Di(R) is the boundary of
Mo. Then q*(C) = 2x(MoNPF)+ ¥ ;e s (ci+2Z4 . D +2D,2. D7) +2#I3.
Here #Ig is the number of double points of D+ .

We omit the detailed proof, since we do not use it later.

Thirdly we compute the Brown invariant BF. To do this we need some
definitions and suppositions. Remark that D;(R) is a subset of P(R) so that
P(R) - D;(R) is orientable. We suppose the following: :

Condition (B). There is a deformation D' of D J(R) in P(R) so that
Z(R)ND' =0. :

Remark that Condition (A) implies Condition (B). Because L*.L* = 0,
we remark that g(L%) C {0,2}. Let L¥ be the set of components C of Z(R)
with ¢¥(C) = 2. Since Z, is an oriented surface, Z(R) has an orientation
as boundary of Z,. This orientation is called a complex orientation of Z(R).
Next we consider an orientation of P(R) — D’. This induces an orientation of
P* —~ D', and thus induces an orientation of Z (R) as boundary of P* - D"
We call this orientation a real orientation of Z(R).

We say that LT is even (resp. odd) oriented, if the number of components
in L.zi of which the real and complex orientations are disagree are even (resp.
odd).

Lemma 6.9 For 8%, the followings hold.
(i) If ¢=(L*) =0, then BF = 0.

(ii) If LE is even (resp. odd) oriented, then ,Bf =0,4 (resp. 2,-2).

[ | 5]




Proof (i) is a consequence of (i) of Lemma 5.1. (ii) is a consequence of a
combinatorial discussion. The key facts are Lemma 5.1(i) and the following:
Let V' be a 2-dimensional Z/2-vector space generated by u and v, ie. V =
Z/2(u)®Z/2(v), . a nondegenerate bilinear form with u.u =0, v.v = uw = 1,
and q:V — Z/4 a Z/4-quadratic. If g(u) = 2, then the Brown invariant of ¢

is £2. : a
Lemma 6.10 (i) If A(f) is bi-even, then the number of elements of LT is
even. _ _

(1) If Condition (A) holds, then the number of elements of LY is even.
Proof (i): Replacing Z, by Z_ in the discussion above, we obtain a con-
gruence similar to (5). Trivially each terms in the right side in (5) does not
change except 8(¢*). By Lemma 6.2, ﬁﬁ, (mod 4) do not change. By Lem-
mas 6.4-6.8, ﬁg do not change either. Note that the complex orientation of
Z(R) induced from Z_ is opposite to that from Z,.. If the number of elements
of LT is odd, then L5 must change. This is a contradiction.

(ii): Since Z(R) is boundary of Z7,, (ii) is trivial. m

7 Consequences

We discuss some consequences come from the discussion above. Throughout
this section, we assume that Z is a dividing curve.

7.1 Projective plane

First we consider the case P = P? (the projective plane). Let A be the convex

hull of the three points (0,0), (2k,0), (0,2k), and v; = (3),v: = (Z}), v = (}).

Let f be a non-degenerate real polynomial with A(f) = A. Then, D = 2D
with D = kD,. Suppose that Condition (A) holds.
Proposition 7.1 In the case k is even, we have the followings.

(i) If Z is an M-curve and Ly =0, then N* — N~ = —k*> (mod 16).
(it) If LT is even (resp. odd) oriented, then
Nt — N- =k (resp. k> +4) (mod 8).
(iti) If Ly is even (resp. odd) oriented, then
N* — N~ = k2 (resp. k> +4) (mod 8).

Proof In this case, we have I* = {2}, = 0. By (5), Lemmas 6.1, 6.4 and
6.5, we obtain x(P*) = 2k* +2k +28}, + 26}, and x(P~) = 2k* -1 +28,, +
208, +2By. By §1.1, Lemmas 6.2, 6.7, and 6.9, these complete the proof. O
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Proposition 7.2 In the case k is odd, the followings hold.
(i) If Z is an M -curve and LI =0, then N* = N— =1 (mod 16).
() If LY is even (resp. odd) oriented, then N+ —N- = 1 (resp. 5) (mod 8).

(i) If LT is even oriented and Z,.D3 is even (resp. odd), then

N* =N~ = ~1 - 2k (resp. 3 — 2k) (mod 8).

(iv) If Ly is odd oriented and Z,.DY is even (resp. odd), then
N* — N~ =3-2k (resp. —1—2k) (mod 8).

Proof In this case, we have I* = 0,1~ = {2}. By (5), Lemmas 6.1, 6.4 and
6.5, we obtain x(P+) = 2k% — 1+ 265, + 287, and X(P™) =2k +2k +2 +
28 +26f + 2[3;. §1.1, Lemmas 6.2, 6.7 and 6.9 complete the proof. a

T. Fidler* showed the congruences (i) of Proposition 7.1 and (1) of Propo-
sition 7.2 above.

7.2 Hirzebruch surfaces

We next consider the case P = F, (the Hirzebruch surface). Let A be the
convex hull of the four points (0,0), (2k;, + 2ak,,0), (2k1, 2k3), (0, 2k3), and
v = (9,0 = (ZHvs = (°),u = (5)- Let f be a non-degenerate real
polynomial with A(f) = A. Then, D = 2D with D = (&, + aks)Dy + ky D3,
and, the Z/2-homology class of F* is that of (aef + &y + ak2)D2(C) + (e +
k2)D3(C).

Proposition 7.3 Assume that as.§=+k1 +aks = €§:+k2 =0 (mod 2). Then,
the followings hold. '

(i) If Z is an M -curve and L¥ = 0, then
X(P*%) = 2ky(2k; + aks) +26%  (mod 16).
(1) If L5 is even oriented, then x(P¥) = 2ky(2k, + aks) + 26E  (mod 8).
(i) If LF is odd oriented, then x(P%) = 2ky(2k; + aky) + 26% +4 (mod 8).

If ki = k; =0 (mod 2), then Condition (A) implies B =0, and B; =
(2k, +aks)ka/2.

Proof By assumption, I* = §. By (5), Lemmas 6.1, 6.2, 6.7, and 6.9, we
obtain (i) -(iii). The last statement is a consequence of Lemma, 6.7. o
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7.3 Other toric surfaces

It is possible to obtain some consequence for other toric surface. We first

present this by an example. Let A be the convex hull of the three points

(0,0), (6k,0),(0,4k), and vy = (%),v2 = (Z}), v = (C3)va = (ZY),vs =

(%),ve = (}). Let f be a non-degenerate real polynomial with A(f) = A.
Then, D = 2D with D = k(3D, + 6D3 + 4D, + 2Ds). Note that Dy(C) is a
characteristic surface. Assume that Condition (A) holds.

Proposition 7.4 In the case k is even, we have the following:

(*) If Z is an M-curve and L7 =0, then N* = N~ = =6k (mod 16).
(i1) If L3 is even (resp. odd) oriented, then N* —N~ =0 (resp.4) (mod 8).
() If L7 is even (resp. odd) oriented, then Nt —N— =0 (resp.4) (mod 8).

Proof In this case, we have It = {2},7~ = 0. By (5), Lemmas 6.1, and 6.7
we obtain x(P*) = 12k? — 1+ 28, + 287 + 26}, and x(P~) = 12k> + 2 +
28w + 281 + 20y . §1.1, Lemmas 6.2, 6.7 and 6.9 complete the proof. a
Proposition 7.5 In the case k is odd, we have the following:

(i) If Z is an M-curve and LT =0, then N* =N~ =6 (mod 16).
() If LT is even (resp. odd) oriented, then N*— N~ = 6 (resp.2) (mod 8).
(i) If Ly is even (resp. odd) oriented, then N* —N~ = 2 (resp.6) (mod 8).

Proof In this case, we have I* = §,I- = {2}. By (5), Lemmas 6.1, and

6.7, we obtain x(P*) = 12k% + 2 + 267, + 28} + 26, and x(P~) = 12k +

28w + 267 + 2[3;. §1.1, Lemmas 6.2, 6.7 and 6.9 complete the proof. =~ O
For general case, we can state the following

Proposition 7.6 Assume that A(f) s bi-even and Condition (A) holds.
Then we have

() If Z is an M-curve and Ly = 0, then

N* = N~ = -1Voh(A(f)) (mod 16).
(1) If L] is even oriented, then N* — N~ = =3 Vob(A(f)) (mod 8).
(iti) If Ly is odd oriented, then N* — N~ = —5Vob(A(f)) +4 (mod 8).

Proof In this case, we have I~ = 0. By (5), Lemmas 6.1, 6.2, 6.7, 6.9, and
§1.1, we complete the proof. a
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Proposition 7.7 Assume that A(f) is bi-characteristic, that is, D(C) rep-
resents a class which is Poincaré dual to w2(P(C)), and Condition (4) holds.
Then we have

(i) If Z is an M-curve and Ly = 0, then
N* = N= = Vob(A(f)) +d~4 (mod 16).

(i) If LT is even oriented, then N* — N~ = Vob(A(f)) +d—4 (mod 8).
(iit) If LT is odd oriented, then N* — N~ = Vob(A(f)) +d (mod 8).

Proof In this case, we have I* = 0. By (5), Lemmas 6.1, 6.2, 6.7, 6.9, and
§1.1, we complete the proof. a
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Abstract

We investigate topological properties of the foliation which is associated with an
exact Poisson manifold and shows that there are many examples of exact Poisson
structures on closed manifolds.

1 Introduction

A Poisson manifold is a pair (M,II) of a C®°-manifold and a 2-vector field on it, which

satisfies
[IL,II] = 0,

where [, ] denotes the Schouten bracket. B
We call the condition [II,II] = 0 for a 2-vector field IT the Poisson condition and II the
Poisson bi-vector . The Poisson bracket {f, g} of f,g € C®°(M) is defined by

{f g} =II(df, dg).
It satisfies the following well- known property.

(1) (f,9)={f,9} f,g€ C®(M) gives a Lie algebra structure (over R) of C°°(JV[?,
that is, the pairing {f, g} is skew-symmetric bilinear on both components and it
satisfies the Jacobi identity

{f:{g:h}} + {9, {h, F}} + {h. {f,9}} = 0,
(2) {f,gh} ={f,g}h + g{f,h} holds for f,g,h € C®(M).
For any 2-vector field IT on M, we define a homomorphism of bundles
I=In:T"M - TM
which, at each point z € M, is given by

Ix(og) = (g, ") = d0, I, o € Ty M.
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Here, we used the notation of interior product to express a contraction of tensors.

The rank of the linear map I, is called the rank of II at z and it is denoted by rank
II;. If the rank IT; is constant on the whole manifold, (M,II) is called regular. In this
paper, we are mainly concerned with regular Poisson manifolds. '

One of the geometric aspects of a Poisson manifold (M, 1) is the fact that the distri-
bution (plane field) given by

Image(I;) C T, M

is integrable ( [9]), and hence it defines a smooth foliation, at least when (M, II) is regular.
We denote this foliation (integrable distribution) by F = Fy. It is called the characteristic
foliation of (M,TI), and its leaves are called symplectic leaves, since II restricted to each
leaf naturally defines a symplectic structure on it. A

In section2, we review some basic facts about the Schouten bracket, especially its rela-
tionship with the generalized divergence of a multi-vector field. We also give a necessary
and sufficient condition for a plane field defined by a regular 2-vector field to be inte-
grable, in terms of the Schouten bracket and the generalized divergence. In sections 4, 9,
we consider exact Poisson manifolds. A Poisson manifold (M, 1) is called an ezact Pois-
son manifold ( [9]), if there exists a vector field Z such that [Z,1I] = —II ( [1]). We ask
ourselves which codimension one foliation of a closed 3-manifold has such exact Poisson
manifold structure. In section 5 , we will give an explicit construction of exact Poisson
structure whose characteristic foliation has exceptional leaves.

All the manifolds in this paper are assumed C®. APTM denotes the p-th exterior
space bundle of the tangent bundle of M and I'(APTM) denotes the set of smooth section
of it, that is the space of p-vector fields.

2 Generalized Divergence and the Schouten Bracket

Let M be a smooth manifold and P a p-vector field, that is, P € T'(AP(TM)), (p>0).
Let

c: T((T*M)) @ T(AP(TM)) — T(AP~D (T M)

"denote the contraction.

DEFINITION 1 Let V be a connection (covariant differenciation) on M and P a
p-vector filed. Then the (p — 1)-vector field Divy P given by

DivyP = ¢(VP)

is called a generalized divergence of P associated with the connection V.

It is shown that if V is the Levi-Civita connection of a Riemannian metric and P = X
is a vector field, DivyX coincides with the usual divergence divX with respect to the
Riemannian volume £, that is, LxQ = (divX)Q holds ( Lx denotes the Lie derivation).

Although the generalized divergence of a p -vector field depends on the choice of the
connection V, we often omit V from the notation and write DivP for DivyP. It is not
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always true that Div? = Divo Div = 0. It is proved, however, if one chooses a connection
which preserves a volume form that Div? = 0 holds. In fact, if V preserves a volume form
{2, one can see the following relation of Div and d(= exterior differential) holds.

d(Q(P)) = (-1)PQ(DivP).
One of the definition of the Schouten bracket [P, Q] is the following ( [6]).

DEFINITION 2 Let Div be a generalized divergence associated with a torsion free
connection of a manifold M. Let P € T(AP(TM)),Q € T'(AP(TM)) be p-vector field and
g-vector field on M, respectively. The (p + q — 1)-vector field [P, Q] defined by

[P, Q] = Div(P A Q) — (Div(P) A Q + (—=1)PP A Div(Q))

is called the Schouten bracket of P and Q.

It is proved that [P, Q] is well-defined, namely, it is independent of the choice of torsion
free connection involved.

The following is a list of some basic properties of the Schouten bracket ( [9]). Here,

f,g are smooth functions and P, @, R are a p-vector field, a g-vector field and an r-vector
field, respectively. Also, we use the interior product notation for the contraction.

1. For f,g € C®(M), [f,g] =0,

2. [/, Q] = 14Q, more generally, [fP, Q] = (~=1)PP A (ig Q) + f[P, Q),

3. [pQ]=(-1)M[Q,P],

4. Let P =X be a vector field, then [X,Q] = LxQ (the Lie derivative),
5. [P,QAR]=[P,QIAR+ (-1)P"DIQ A [P, R],

6. Div[P,Q] = ~[DivP,Q] — (-1)P[P, DivQ], when Div? =0,

7

[P,1Q, Rl = (=1)7'[[P, Q], R] + (—-1)*~D(a=1[Q, [P, R]]
(generalized Jacobi identity).

Integrability of a plane field |

Let IT be a 2-vector field on M. Assume the rank of [T is equal to 2/ (0 < 2{ < dim M)
everywhere on M. Recall that II defines a distribution F; which gives the following
subspace of T, M;

Fraz = {Iz(ag, ) € TyM|og € T*M}.

In this subsection, we prove the following

THEOREM 1  The distribution Fpi defined by a reqular 2-vector field II whose rank
is 21, is integrable if and only if [II,1'] = [I,IIA --- ATI] = O holds. :
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We first prove following formllia.
LEMMA 2  Ifrank II = 2!, then
[I,T1"] = —2DivIl A TT,
where Divll is defined by choosing any torsion free connection on TM.

PROOF Since IIATIL = 0, we have
[T, '] = —DivII A TI' — II A DivlL. (1)

Plugging the following

Divll' = DiwIl AT + TTA Dawll ! 4 (11, 1T (2)
into the above (1), we have _
[II,11] = —2DswII AT — T2 A Divll' ™! — IT A [IT, I 1. (3)
Again plugging (2) for [ — 1 into (3) above we obtain
—3DwII ATIY — TI® A DiwIT =2 — T2 A [IL, 1 2) — TT A [T, 1Y) (4)
Repeating this we have
-1

[IL,II] = —IDivII AT — S I A (I, T4 (5)

=1

2
Using [II, IT%] = k [IL, I ATIF~Y  fork > 1, we get %[H,H] AT = ~1 DinTI ATEL. From
this, we obtain
LT = [, ] ATI" ! = —2DivII A TIL

O

Proof of Theorem 1 Let the distribution Fp be of codimension ¢ and defined by
a local equation
ap = =04 =0.

Then we have
H(aj7')=ov J=1...,¢

Taking the covariant derivative, we have
(VII)(ey, ) + (Ve -) = 0.
Then by a contraction, we have

Divll() + M(day) = 0. (6)
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Thus, if {1 ... a,} satisfies the Frobenius integrability condition, II{da;) = 0 and we have
Divll(ay) = 0.

This shows that Divll is a vector field tangent to Fy; and DivIl A II' = 0, since rank
IT= 2. ' '

Conversely, if DivIIAIT! = 0, taking a contraction (o, DivIIAILY), we can see Diwvll(a;y)
= 0 and hence by (6), we get II(de;) = 0 for each j. This means that each de; should be

of the form .
> ok A By
_ . k=1
for some 1-forms {f ;}. This shows {a1,...,a,} satisfies the Frobenius condition. O

We get the following well-known fact.

Corollary 3  Let (M,1I) be a regular Poisson manifold. Then the characteristic distri-
bution is integrable.

PROOF Let rank II = /. Since [II,II] = 0, [H,Hl] = 2[ILII] A -1 = 0. Thus, the
result follows. O

3 Exact Poisson Manifolds of Special Kind

If a Poisson manifold (M, II) has a vector field Z satisfies LzII = [Z,11] = —1II, it is called
an ezact Poisson manifold and Z is called a homothetic vector vector field of (M, II). From
the view point of the Poisson cohomology, such a manifold is a Poisson manifold whose
Poisson bi-vector field II represents 0 in H% p(M). Recall that the Poisson cohomology.
is a cohomology whose p-th cochain group is T'(APT'M) and the coboundary operator
o : T(APTM) — T'(APTIT M) is given by o(P) = —[II, P] ( [9]).

It is not difficult to give examples of exact Poisson manifolds which are non-compact.
The following two are standard ones.

Example 1 (Cotangent Bundle) ‘

Let (T*M,d)) be the standard symplectic structure of the cotangent bundle of a
manifold M, where X is the Liouville form. Let II be the 2-vector field on 7*M such that
dA(IT) = II, considering dA as an isomorphim T*M — TM.

Note that this means Irf(d\) =II. Let Z =TI(),-) be the vector field on T*M. Then

LzIl = [H()‘a )1H] = —U(H()‘7 )) = ;O'(IH(/\)) = IH(_d/\) = -IL

Thus, (T*M,II, Z = TI(},)) is an exact Poisson manifold. Here, we used the formula;
o(I(a)) = —I(da), for any form « ( [9]).
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Example 2 ( Lie Poisson structure.)

Let (g*,II) be the Lie Poisson structure on the dual space of a Lie algebra g. The
Poisson bi-vector field IT is defined as follows. We have an identification T* gf = g* x g**
by translations. If T*g* > p, q are represented under this identification as p=(o,x),q=
(e, y), then II is given by

o (p,q) = o[z, 9]).

Let Z be the radial vector field on g*. Namely, Z, is a tangent vector which corresponds
to the curve e*-« in g*. We regard p, g as the constant 1-forms. In other words, we consider
pas a l-form on g*, given by o — (o, z), where z € g = g** is constant.

Then we have

Lz(1(p,9) = Lz(a(fz, 1)) = 5 emolta((z, 1) = o((z,3]) = (p,q).

On the other hand,

Lz((p,q)) = (LzII)(p,q)+(Lzp,q) + I(p, Lzq)
= (LzID)(p,q), '

since p and g are constant vector fields.
From these we have

(LzI0)(p, q) = I(p, q).

This shows (g*,II, —Z) is an exact Poisson structure.

Of course, the homotheic vector field in the above is not unique. In fact if Z,7' are
both homothetic vector field for TI, then clearly the Lie derivative L_II vanishes. Thus
the set of homothetic vector field of a Poisson structure forms an affine subspace of the
vector space of all the vector fields, whose associated vector space is the space of vector
fields which preserve the Poisson bi-vector field. Recall that any Hamitonian vector field
I(df), f € C*®°(M) preserves II.

Now, we are interested in the following problem:

Problem : What kind of codimension one foliation does appear as an underlying
foliation of an exact Poisson manifold which is compact ?

We will consider this problem in the case when M is a closed 3-dimensional manifold.

First we note that every orientable foliation of dimension 2 is an underlying foliation
of a Poisson structure. In fact, let (M, F) be a foliation whose leaves are 2-dimensional.

and let I € I'(A2F) be a non-zero cross section. Then it is naturally considered as a
2-vector field on M.

It is easily checked that the image of I coincides with . The Poisson condition on

IT is satisfied since in this dimension, it is equivalent to the integrability of F (see Section
2).
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Exact Poisson Structure of Skpecial Kind

In this subsection, we give two examples of exact Poisson manifolds which we call ‘spe-
cial’. The underlying manifolds are closed ones and quotient manifolds of 3-dimensional
Lie groups.

Example 3  Let Xj, X3, X3 be the right invariant vector field of G = SL (2, R) corre-

. 1/ -10 01 0 0 . . .
sponding to 3 ( 01 > , ( 0 0 ) , ( 10 ) respectively. They satisfy the following

* bracket relations;

(X1, Xo] = =Xy, [X1,X3]=X3, [Xo,X3]=2X].

The 2-vector field IT = X; A X, satisfies the Poisson condition [II, II] = 0 and it defines a
Poisson structure. If we choose a uniform discrete subgroup I of G = SL (2, R), we obtain
an induced Poisson structure on M = G/T" = SL(2, R)/T" which is a closed manifold. The
underlying foliation Fy7 is known as an Anosov foliation spanned by X; and X5. It is
known that each leaf of this foliation is dense in M.

Let Z = X; + aX>, (a is a constant) then

1 ~
L1=[Z1] = é‘[Xl,Xl/\/\.‘z]
= %XIA[Xl,XQ] =-X; ANXy=-II

Thus (M,II, Z) is a closed exact Poisson manifold.
Similarly, we have the following second example.

Example 4 Let G be a simply connected 3-dimensional solvable Lie group whose Lie
algebra is generated by X7, Xs, X3 with the relations

[X1,X2] = —Xo, [X1,X3]=X3, [X2 X3]=0.

Like as in the case of Example 3, let II = X; A X3, Z = Xj + aX, be the right
invariant fields on G. By the same computation, we see that II defines an exact Poisson
structure and Z is a homothetic vector field. Also, if we choose a uniform discrete subgroup
I', we obtain an exact Poisson structure on a closed 3-dimensional manifold. In this case,
M = G/T is a T?-bundle over S' and the foliation is a suspension of a dense linear foliation
of T?, hence the leaves of Fr are all dense again.

Note that, in both of the above examples, the symplectic leaves of the characteristic
foliations are generated by the vector fields X, Xo with the relation [X;, X5] = —Xo,
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which generate the Lie algebra of 2-dimensional affine group GA. From this, we can see
that the leaves are the orbits of a locally free actions of G A.

We call the Poisson manifold which is obtained as in the above examples special exact
Poisson manifold.

One of the property of the homothetic vector field of a special Poisson manifold is
that its divergence (with respect to the canonical volume form) vanishes everywhere. In
fact, let Q2 be the volume form on M, such that Q(X; A X5 A X3) = 1. Then by an easy
computation we can see Lz{2 = 0 which is, by definition, equal to (divZ)Q and (divZ) = 0.

In the following , we prove that this property characterizes the special exact Poisson
manifolds.

THEOREM 4 Let (M,I1, Z) be an ezact (regular) Poisson manifold, where M is a
closed 3-dimensional. Suppose that the homothetic vector field Z is divergence free with
respect to some volume form 2 on M and tangent to Fy. Then (M, 11, Z) is diffeomorphic
to a special ezact Poisson manifold.

PROOF Choose a Riemannian metric on Mwhose associated volume form is equal to
0. We will use the generalized divergence with respect to the Riemannian connection of
this metric. By assumption, Z AIl =0, DivZ = divZ = 0, hence, we have

—II = [Z,11] = Div(Z ATl) ~ DivZ ATl + Z A Divll = Z A DinlL

This shows that Z and Divll are two vector fields tangent to the leaves of Fp, which are
linearly independent at each point of M. Taking Div of both sides of (Z,1]] = —II (see
Section 2), we have

[Z, DiwIl] = — Divll.

This shows that there exists an locally free action on M of the 2-dimensional affine
group GA. Since divZ = 0, by the assumption and div(DivIl) = Diw?Il = 0 holds, we
have LzQ = Lp;,nQ = 0. Thus the action of GA preserves the volume Q. Now a theorem
of Ghys ( [2]) concerning the rigidity of the action of GA on 3-manifolds says that this
action is smoothly conjugate to one of the standard ones. That is, it is equivalent to a
natural action of GA on one of the quotient manifolds G/T in the examples of this section.
This means that there is a diffeomorphism ¢ : M — G/T sending Z to X; and DivIl to
X, O :

Remark In the next section, we prove that the homothetic vector field Z will always
tangent to the foliation in the case of codimesion one Poisson structure. So, in the above
theorem, in fact, one can drop the assumption Z is tangent to Fir.
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4 Exact Poisson Structure on Closed 3-manifolds

In this section, we consider regular Poisson structures and find some topological conditions
of an exact Poisson manifold .
We start with the following

LEMMA 5  Let (M,I1,Z) be an exzact Poisson mam'fold. Then the homothetic vector
field Z preserves the foliation Fp.

PROOF Let the foliation Fy; be defined locally by Pfaffian forms
ai, ...,
which span Kerlr. The relation (o, ) = 0 leads to the following equation
(LzID)(es) + II(Lzoy,-) = 0.
Since (LzI)(ew) = —II(a;,-) = 0, we have
I(Lzoy,-) =0, (t=1,...,q).

Thus each Lza; is a functional linear combination of ¢, ..., og. Now let X be a local
vector field which is tangent to the leaves. Then we have

ai(LzX) = Lz(ci(X)) = (Lzew)(X) =0, (i=1,...9).
Thus LzX is also tangent to the leaves. This means Z preserves the foliation Fy. O

By the above lemma, the subset of M, where Z is transverse to Fy, is an open saturated
subset (the subset which is a union of leaves ) of M. :

LEMMA 6 Let (M,II,Z) be a codimension one exact Poisson manifold. That is, M
is an exact Poisson manifold such that Fr is a codimension one foliation. Let U be an
open saturated subset of M, where Z is transverse to the foliation Fri. Then the foliation
Fulu restricted on U is defined by a closed 1-form.

PROOF Take a 1-form o which satisfies I(a) = 0. and o(Z) =1 on U. It is easy to
see that
da=LzaANa.

By Lemma 5, Lz« is a functional multiple of o, hence we have da =0 on U. O

LEMMA 7 Let (M,]11,Z) be an ezact Poisson manifold. If L is a leaf of Fr such that
Z 1is tangent to L, then L is a non-compact.
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PROOF Take a leafwise symplectic 2-form w on M such that (w, Iy (w) = II. If rank
II =2k

F=wnAw, (k-times)
restricts to a volume form on each leaf. Since the pairing (w*, I1%) is a non-zero constant
and LzITF = —kII¥, (L 7w, IT%) is also a non-zero constant. Thus the restriction (Lzw®)|g
of Lzw* to L is a non-zero multiple of (w¥|;). Since Z is tangent to L, this shows
(divZ)| k), = C(the divergence with respect to the volume w* |L. ) for some non-zero
constant C. This is impossible when L is compact. O

LEMMA 8 Let (M,II,Z) be a codimesion one ezxact Poisson manifold, where M is
a closed manifold. Then the subset of M, which is the union of leaves where the homothetic
vector field Z is tangent to each leaf is a non-empty closed saturated set.

PROOF Closedness of the set is clear. If it is empty, Z is transverse to Fy; everywhere
on M and Z ATI* is nowhere zero(2k is the rank of II). Let 2 be a volume form on M
dual to Z ATIF ( ie. Q satisfies Q(Z A IT) = 1). Then it is easily seen that divaZ = —1
which is impossible on a closed manifold M. O

Let (M,II, Z) be an exact Poisson manifold of a closed manifold, which is of codimesion
one. We put rank IT = 2k. As we have seen in Lemma 7, the homothetic vector field Z
Is not tangent to a compact leaf L. Assume that Z is transverse to a compact leaf L,
since the 1-parameter subgroup ¢; generated by Z preserves the foliation F11, the union
Ue R®:(L) consists of compact leaves which are diffeomorphic to L. If U,c r®:(L) is not
whole M, there exists a leaf which is the limit leaf of a subset of U,e R®t(L), which itself
should be compact and Zis transverse .to it. This implies that it has to be contained in
Ure ().

Thus, we can conclude that (M, I, Z) has no compact leaves. Therefore, for example, -

there is no exact Poisson structures on S since every codimension one foliation of $3 has
a compact leaf doffeomorphic to T2 ( [7]). Also, we saw Z is not everywhere transverse to
Fu- Moreover in the case of special exact Poisson manifold, the homothetic vector field
is everywhere tangent to leaves on the whole manifold. Hence it is natural to ask the
following question:

Question : Are there any examples of (M, I, Z) on which Z is tangent to the leaves
of 711 on one part and transverse to them on the other part?

The following theorem shows there is no such example on a closed manifold provided
(M,11, Z) is codimension one.

THEOREM 9  Let (M,II,Z) be an ezact Poisson structure of a closed manifold,
which we assume regular and codimension one. Then the homothetic vector field 7 is
tangent to the foliation Fy; everywhere on M.
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PROOF To the contrary, we assume that there exits an open subset of M, where Z is
transverse to Fr;. Let M = UUU’ the partition into two part; on U, Z is transverse to Fp
and on U’, Z is tangent to F7;. By Lemma 5, both U and U’ are saturated sets. By Lemma
8, U’ is non-empty. Let F be a leaf contained in U’. Since Fy has no compact leaves
or dense leaves, F' contains an exceptional minimal set. Let E denote it. By a theorem
of Sacksteder( [8]), if a codimension one foliation is of class C?, exceptional minimal set
contains a leaf which has a contracting holonomy. Take such a leaf I contained in E.
Choose a point z € L and then take a transverse small arc I &~ (—1,1) through z, where 0
corresponds to z. The contracting holonomy gives a germ of a map ¢ : (—e¢,¢) — (—1,1)
at 0. The intersection I N E is a Cantor set and I N U is a union of open intervals. Let
{®¢} be the 1-parameter subgroup of Z. Since ¢; maps a leaf into a leaf, we can choose
and fix a small ¢o so that ¢y, induces a local diffeomorphism ¢ of I at z. ( consider I as
the set of plaques near z).

Clearly, ¢ fixes I N E and preserves the open intervals of I N U. It follows easily that
the germs of ¢ and 4 at commute each other. Since ¢ has fixed points accumulating to z,
by a lemma of Kopell ( [5]), 1 can not be of class C?, contradicting our assumption that
the foliation is ¢ . This proves the theorem. O

In the above theorem, we have in fact proved the following

THEOREM 10 Let (M,F be a codimesion one smooth foliation of a closed manifold
without compact leaves. If Z is a vector field on M, whose 1-parameter group preserves
F, then Z is everywhere tangent to leaves of F.

5 A Construction of Exact Poisson Manifolds

In this section, we will give an explicit example of an exact Poisson structure which is
different previous ones. The manifold we will constuct is a closed 3-dimensional manifold
and the underlying foliation of the Poisson structure is so-called Hirsch foliation( [4]).

We begin with describing such a type of codimension one foliations.

Let g be an orientable 2-dimensional compact manifold whose boundary is a circle.
Make a product S* x $¢ and choose an embedding j : S! — S! x &y whose image
intersects each {t} x Tg, (¢ € S!) exactly at 2-points. Thus the composition

p0j151—>51,

where p: S! x ©g — S! is the projection to the first factor, is a double covering. We
choose j so that this double covering is the natural one and Image j is in the interior
of S!x 5. Delete a small open tubular neighbourhood on Image j from S' x £g. Let
N denote the resulting manifold. It is worthwhile to note that N is also obtained as a
mapping torus of a diffeomorphism of a 3-times punctured surface £; and is a fiber bundle
over S'. There is a codimension one foliation on N defined by the fibers of this bundle.
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Let 0;,IN denote the “nterior boundary’ of N. We will fix the trivialization of the bundle
OinN — S! as the boundary of the tubular neighbourhood of Image j. Similarly, let Qg N
denote the ‘exterior boundary’ and we will fix a trivialization ez N — S! as the boundary
of S x .

Let ¢ be an element of DiffS!. Then we have a diffeomorphism

b=¢xid:S' x S! = St x §!

which gives a diffeomorphism
f 0N = OezN.

Identifying the boundary tori of N through f, we obtain a closed 3- manifold M. AS
has a naturally defined C* codimension one foliation F, which is induced from that of
N. The foliation Fy4 obtained in this way, is called a Hirsch foliation.

It is easy to see that the leaves of F; are all non-compact. If ¢ = idg:, for example,
all the leaves of Fy are dense in M. One can also choose ¢ so that F4 has exceptional
leaves ( [4]).

In order to construct an exact Poisson structure on M, we note the following simple

lemma.

LEMMA 11  Let Q be a volume form on £, and  a 1-form satisfying dn = Q. Let Z
be the vector field which is determined by

QZ,) =mn, (1zQ = n).
Then
LzQ=10.
PROOF By a well-known formula, we have LzQ =dizQ+izdQ=dn=0. O

In te next lemma, we use the following notations. Let Up (resp.U;) be an ‘exterior
'(resp. ‘interior’) collar neighbourhood of the unit circle in the Euclidean plane. (r,6) is
the standard polar coordinate on R? — 0. Let 0%, = Cp U Cy U Cy denote the union of
circles where Cq is the fiber of the exterioir boundary of NV while C; and Cs are those of
the interior boundary of N.

LEMMA 12 On X, we have a 1-form 1 which satisfies the following;
(1) dn is a volume form of &1,

(2)  On the neighbourhood of Cy, n is diffeomorphich to (1/2)r2dB|y, and on some neigh-
bourhood of Cy,Ca, n is diffeomorphic to (1/2)r%df|y,.

PROOF

We choose on L; a volume form Q which is described as follows. First, around the
boundary Cp, we consider a collar neighbourhood which is diffeomorphic to Up. And
similarly, around C; and Cs, we consider collar neighbourhoods diffeomorphic to U;.
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Then, we introduce the Euclidean volume form on these collar neighbourhoods by the
above identification. We extend thsese forms to a volume form Q on the whole £, in such a
way that they are unchanged in smaller neighbourhoods of the boundary; i.e. Q = rdrAf
near the boundary. This Q is an orientation we consider on £;. If it is needed, we multiply
{2 by a suitable positive function then may assume

/ Q=m.
S

(€2 again should be unchanged in a small neighbourhood of the bounddary). On the other
hand, let 5’ be any 1-form on £; which is equivalent to (1/2)r2d8|y, near Cy and to
(1/2)r2d0|y, near C; and Cy. We have

d’l’]’ — 7]I
Y o

=u/#+/i#+/n’

Co Cy Ca

=~ d6+/ d9 = .
St St

(Note that the orientation of C; is determined by taking the interior product ixQ by an

“outward normal X.)

Then the difference Q—dn' is a closed 2-form whose support is contained in the in the
interior of ¥;. By the above calculation it represents zero in H fompact(l nt2)). Namely,
there exists a 1-form 7n” whose support is in IntY; which satisfies Q —1n' = dn.”

Put

n=n+n".
Then 7 satisfies the required conditions (1) and (2). O
Now, we are going to construct an exact Poisson structure on M.
Let IIp be the 2-vector field on ¥ such that (2,1I3) = 1 and Z; be the vector field

such that
17,82 =1n.

Then, using Lemma 11, we have

0 = LZO<Q7H0> = <LZ0Q:H0> + (QaLZoHO)
= (diZOQ,H0> + (Q,LZOH0> =1+ (Q,LZOHQ).

From this we have
Lz, 11y = —1Ip.

Now it is not difficult to get a 2-vector field IT and homothetic vector field Z on M.
To see this notice that N is obtained from

[0, 1] X 21
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by pasting {0} x £, and {1} x £, by diffeomorphism & : X; — ¥, which is an involution.

Taking 5
Consider the obvious liftings of Iy and Zy onto the [0,1] x £;. Then the fields we are
considering on the top and the bottom of the product manifold fit togeter under the

diffeomorphism k. This gives N a well-defined 2vector filed and vector fields. Finally,
pasting the boundary of by a diffeomorphism

n+ k*n) instead of » if necessary, we can assume everything is k-invariant.
n ] v, ) g

“ O N = Oog N,

we obtain a 2-vector field II and the homothetic vector field Z on (M, F). By our con-
struction, (II, Z) clearly satisfies the relation LzII = —IL

This finishes our construction of an exact Poisson structure on M whose undelying
foliation is a Hirsch type foliation.

Remark It seems an interesting question if a similar construction is possible in higher
dimensions. That is: Is it possible to construct an exact Poisson manifold starting from
a higher dimensional symplectic manifold with boundary in stead of £y, and proceed
similarly to the above construction?

Of course the following procedure is possible. Let (M, 11y, Z)), (Ms,1I3, Z5) be two
exact Poisson manifolds. Let us denote the liftings IIy,1ls, Z; and Z; to the product
manifold by the same letters. Then we obtain an exact Poisson manifold (M x My, I +
I, Z1 + Z5).
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