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Abstract

Background: We developed a method to make a various high quality random peptide fibraries for
evolutionary protein engineering based on a combinatorial DNA synthesis.

Results: A split synthesis in codon units was performed with mixtures of bases optimally designed
by using a Genetic Algorithm program. it required only standard DNA synthetic reagents and
standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS) is simply
realized by adding 2 mix-and-split process to normal DNA synthesis protocol. Superiority of
MLSDS method over other methods was shown. We demonstrated the synthesis of
oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence
coding 120 amino acids containing few stop codons.

Conclusions: Owing to the flexibility of the MLSDS method, it will be able to design various
"rational" libraries by using bioinformatics databases.

Background

The combinatorial synthesis method has been demon-
strating its effectiveness in discovering novel functional
molecules. Examples of this method in the field of evolu-
tionary protein engineering are selections of a novel func-
tional peptide from a random library on solid support [1],
phage display [2] or in vitro virus {synonym for RNA-pep-
tide fusion or mRNA-display) [3-5]. The efficiency of the
methods depends on the screening technique employed
and the library quality. In the display methods, a library
of polynucleotide templates must be prepared in order to
obtain a random peptide library. A primitive random
library of such templates is (NNN), (N = equimolar mix-
ture of A, T, G and C). This library leads to premature
short peptides and a particular bias of the amino acid

15

composition, which makes the effective searchable
sequence space biased. A slightly improved library NNK
or NNS (K/ S = equimolar mixture of T and C/ G and C)
has been conventionally used. Several methods have been
developed for a more improved library. Various "rational”
libraries in which the nucleotide mixtures were optimized
for a target amino acid composition by using a computer
calculation have been developed [6-8].

Removal of stop codons to obtain long ORFs is important
for the evolutionary design of a novel protein starting
from a random library. Several methods based on random
block-ligation were reported [9,10]. Two high quality
libraries that lead to the successful evolutionary protein
design  were as  follows: the trinucleotide
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phosphoramidites (3NPs) method using twenty pre-syn-
thesized trimers of nuclectide phosphoramidites [11-14],
and the pre-selecting method using an mRNA display
with a C-terminus affinity tag in order to remove stop
codons [15].

We report in this article on a convenient method for the
construction of a high quality library based on combina-
torial DNA synthesis. This library has few stop codon and
has an optimized amino acid composition for various
purposes. A random library based on the split synthesis
[1] is made routinely in combinatorial chemistry, but a
few methods [16,17] and a few applications {18,19] have
been reported for oligonudeotides synthesis. They were
used for mutagenesis and the products did not have high
quality for evolutionary protein engineering. We applied
the split synthesis to oligodeoxyribonucleotide synthesis
and developed a new procedure, based on the synthesis of
designed codon mixtures using multi-line DNA synthesiz-
ers. Our method, Multi-Line Split DNA Synthesis
(MLSDS), requires only standard reagents and three or
four synthesizers for DNA synthesis. MLSDS can make
various "rational" libraries of huge diversity with few stop
codons.

Results and Discussions

Adaptive design to the target amino acid composition
Scheme of the MLSDS method is shown in Fig. 1 and
Table 1, and described in detail in Methods section.
MLSDS is able to remove not only stop codons but also
particular codons. It is able to design the codon composi-
tion. We incorporated the effect of the single nucleotide
deletion during a general oligonucleotide synthesis [20]
into the design.

Designed biased libraries are useful for creating various
novel proteins such as a functional peptide without Cys
[21] or an engineered protein without Met [22]. Unnatu-
ral codons and unnatural amino acid [23] will be also
incorporated in desired composition. It will be able to
incorporate various results of analysis of bioinformatics
databases in order to make an initial library with higher
evolvability in experimental protein evolution. The opti-
mum amino acid composition in the library may be dif-
ferent for each target protein. For example, when we want
to explore the global protein sequence space exhaustively,
the uniform amino acdd composition may be the best.
When we want to explore only a proven region in the pro-
tein sequence space, the use of the average amino acid
composition among natural proteins [24] might be better
for many aspects. When we want to design a protein with
some specific properties, a library with increased or
decreased fraction of specific amino acid should be con-

structed for each segmental region on the polypeptide
chain.
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[ 1: DNA Synthesizer
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Figure |

Scheme of the MLSDS method. The case of three-lines
is shown. Uppermost three boxes indicate the state in the
DNA synthesizers after the first three synthetic cycles, that
is, partial mixtures of triplet codons attached to the CPGs. 1,
2 and 3 denote Ist, 204 and 3rdletter mixture in the lne-1
DNA synthesizer, respectively. Their A'T:G:C mixing ratios
are designed with the GA program so that |23 gives a partial
mixture of triplet codons without any stop codons. In the
same way, 456 and 789 denote corresponding partial mix-
tures of triplet codons in the line-2 and the line-3 DNA syn-
thesizers, respectively. The equimolar mixture of 123, 456
and 789, which is obtained after split-and-mix procedure,
can be designed to give approximately the target amino acid
composition without stop codons. Examples of 1,2,.....,9 are
shown in Table |.
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Table I: Exarnples of molar mixing ratio of bases for MLSDS libraries

Library name

No Cys Natural
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Among these wide spectra of requirements, we designed
DNA libraries that code peptide libraries having various
characteristics and have no stop codons. Examples are: a
library with the average amino acid composition of natu-
ral proteins [24], which is named "Natural" library in this
article, the uniform amino acid composition; and the uni-
form composition except [Cys] = 0. A library encoding
only four kinds of amino acid (a c-Fos mutant library
[26]) was also designed. Designed molar mixing ratios of
A:T:G:C for some of these libraries are shown in Table 1.
Another interesting example was obtained when the target
composition was "Uniform except [Met] = 0 and [Term] =
0". The designed molar mixing ratio of A:T:G:C gave the
high fitness F value (0.96 on three lines splits) and gave
no stop codon even if the effect of a point deletion was
included in the GA calculation. A Met-less random library
may be the best starting library for global search of the
protein sequence space. This speculation is supported by
the report [22] stating that a mutant dihydrofolate reduct-
ase generated by the replacement of all Met had much
higher enzymatic activity than the wild type.

Internal deletion problem in the oligonucleotides synthe-
sis process is important. It destroys the codon-based
design, leading to stop-codon generation and undesirable
amino acid composition. Our program incorporated dele-
tion effects into the GA calculation and succeeded to min-
imize the deletion problem. Moreover it was reported that
contamination of deletion products could be decreased
on a denaturing PAGE for DNA of this length {15].

We also investigated the practical number of DNA synthe-
sizers. For this purpose, we calculated the final correlation
coefficient between the designed and the various target
compositions with up to 6-line DNA synthesizers. As
shown in Fig. 2, the final correlation coefficient (= the
final fitness) became saturated at about 3- or 4-lines on
this program. Our GA program is not the best for obtain
best F value but suitable for designing actual synthesizing
operations. These results showed MLSDS method gave a
high quality library even with three DNA synthesizers.

|

Final fitness

-#— Uniform
—+—Natural
-~ No Met
- No Gys

0.2

0.0

1 2 3 4 5 &
Number of DNA Synthesizer

Figure 2

Dependence of the final fithess on the number of
DNA synthesizers for various libraries. Ordinate: final
fitness (=correlation coefficient). Abscissa: line number of
DNA synthesizers. Libraries are "Uniform”, "Natural”, "No
Met" and "No Cys".

When we took the natural abundance as the target amino
acid composition, we got a highest fitness value F = 0.99
{on three lines) in the GA calculations. This is reasonable,
because the average amino acid composition among nat-
ural proteins highly correlates to the number of synony-
mous codons in the standard genetic code table {25].

Synthesis of MLSDS libraries

We synthesized a "Natural" library and a "Uniform except
[Cys] = 0" library mentioned in the previous section. In
Table 2 the compositions of the actually synthesized DNA
libraries are listed in comparison with the target composi-
tions. They were high quality libraries (F = 0.85 and 0.66,
respectively) without stop codons in full-length DNAs.
The deletion rate was about 0.3% per coupling. For the
total DNAs including deletants, F = 0.90 and 0.60,
respectively.
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Table 2: Comparison of the amino acid compositions of the actually synthesized DNA libraries (the full length library) with the target

composition

Library name Natural No Cys c-Fos e, g'-
Target Actual Target Actual Target Actual
Ala 8.9% 11.4% 5.3% 6.7% 0.0% 0.0%
Arg 47 3.5 53 59 30.0 29.7
Asn 44 35 53 43 0.0 0.0
Asp S8 86 53 59 Q.0 040
Cys 28 25 0.0 0.0 0.0 0.0
Gln 39 2.1 5.3 55 200 19.6
Glu 6.2 6.9 53 55 20.0 250
Gly 78 2.0 53 8.2 0.0 0.0
His 20 12 53 2.7 0.0 0.0
lle 4.6 3.9 53 59 0.0 0.0
{eu 75 3.7 53 43 0.0 0.0
Lys 70 6.2 53 47 30.0 279
Met 17 1l 53 35 0.0 0.0
Phe 35 4.0 53 5.1 0.0 0.0
Pro 4.6 25 53 24 0.0 0.0
Ser 7.4 8.1 53 1.6 0.0 0.0
Thr 6.0 5.8 53 6.7 0.0 0.0
Trp 1.1 1.8 53 8.2 0.0 0.0
Tyr 35 4.4 53 47 0.0 0.0
Val 6.9 6.9 5.3 82 0.0 0.0
Term 0.0 0.0 0.0 0.0 0.0 0.0
Number of sequenced codon - 568 - 255 - 219
Correlation coefficient - 0.85 - 0.66 - 1.00
Sum of absolute errors - 26.9% - 28.1% - 5.66%

“Term" denotes stop codons. In each target composition, {Term] = 0. "Natural": the library with the natural abundance (the average composition in
207 natural proteins) [18]; “No Cys": the fibrary with uniform composition except [Cys] = 0; "c-Fas e, g'-": a c-Fos mutant library containing only 4

kinds of amino acid as same as in Ref.[26].

We also synthesized MLSDS products composed of lim-
ited kinds of amino acid. It has been regarded that such a
peptide can be synthesized only by 3NP method. A
mutant c-Fos library that contained only four kinds of
amino acid was synthesized, which was equivalent to a
library synthesized by 3NP method [26]. It was a high
quality library (F = 1.00) (Table 2). So far, fifteen libraries
with various amino acid compositions were successfully
synthesized.

In order to make long ORFs, we assernbled 8 units of the
oligomers. Stem sequences of them did not have any stop
codons. A DNA library encoding 120 amino acids plus
nine 5'- and 3'-flanking semi-random di-peptides (thus,
total 138 amino acids) was constructed (Fig. 3).

The diversity of the synthesized library is about 1016 judg-
ing from the mass (data of A,q) and purity (data of
PAGE) of synthesized DNA. With an in vive selection,
there is a diversity limit by the transformation step. But
with an in vitro selection, there is no such limitation. Thus
exploration of huge sequence space by in vitro virus [3-5]

or related techniques {28,29] will become possible,
depending on the experimental cost.

Comparison of MLSDS with other methods

So far, a really random library has been generated by four
methods. Other methods do not give a really random
library, because they can not provide a library in which all
the 20 amino acids are encoded at all sites. A comparison
of library quality for three methods is shown in Table 3.

An application of 3NPs method to mutagenesis of anti-
bodies [27] or coiled-coils {30} gave good results. Twenty
kinds of 3NPs mean one codon per one amino acid, but
the codons are degenerate. Thus 3NPs method makes
many tRNAs useless. The translation efficiency was calcu-
lated based on the codon usage, giving maximum 4-fold
decrease in Triticum aestivum. It was reported that the reac-
tion efficdency of 3NPs was far from uniform. The
sequence data of synthesized DNA using an equimolar
mixture of 19 kinds of 3NPs (without Cys) showed 12-
fold (maximum) difference in composition [27] or more
[12]. The coupling yield was affected by the mixing ratio
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Table 3: The comparison between the target amino acids composition and the actual composition of various libraries.

A. Uniform Type

Method 3NPs mRNA display MLSDS
Reference, Library {291, 96T 1. 6 [18], Random This work, No Cys
Target value Equimolar 19 amino acids Equimolar 20 amino acids Equimolar [9 amino acids
Correlation coefficient ® 043 0.56 0.66
Sum of absolute errors ® [%] 54.5 237 28.1
Percentage of stop codon ND ¢ 0.46 0.00
Percentage of cassettes containing stop codon ND ¢ 8.33 0.00
B. Doping Type
Method 3NPs mRNA display MLSDS
Reference, Library 29}, 100z [18], B-Cassette polar This work, c-Fos', e, g-
Target value Biased Polar amino acid Biased
Correlation coefficient * 0.94 0.56 1.00
Sum of absolute errors ® {%] 424 737 5.66
Percentage of stop codon ND ¢ 0.3%9 0.00
Percentage of cassettes containing stop codon ND © 6.25 0.00

The values were calculated using the data of full-length (without deletion) libraries. Values of 3NPs and mRNA display method were calculated with
some assumptions. In mRNA display method, the value of stop codons were estimated from data described in the article and some assumptions;

one cassette did not have two or more stop codons and stop codons appeared equally in every position. The target composition of B-Cassette
polar is assumed that polar amino acids are equi-molar and the others are 0%.

aCorrelation coefficient is calculated using target and actual amio acids compaosition including stop codons contribution. And it is assumed that stop

codons were not appeared in full-length libraries of 3NPs method.

b Sum of absolute values of difference between each target and actual amino acid.

<ND is abbreviation of no data.

of 3NPs and by the context, showing 8-fold (maximum)
difference for the same 3NP [27]. Thus it will be difficult
to correct reaction efficiencies by adjusting the mixing
ratio. The correlation coefficient between the target com-
position and the actual composition was about 0.4 (for
uniform 19 kinds of amino acids) [27] (Table 3). Dimer-
phosphoramidites [17] method is a varation of 3NPs
method, using pre-synthesized amidites, and had the
same problems. In fact, the bias was observed {17].

A pre-selecting method using an mRNA display [15] was
fruitful in evolutionary protein design. Novel peptide
aptamers were evolved starting from a long ORF random
library [31,32]. But this method could not remove all the
stop codons. It gave limited library diversity. This method
has low flexibility in amino acid composition. For exam-
ple it is difficult to generate a "Uniform except [Met] = 0"
library. The correlation coefficient between the target

composition and the actual composition were not so high
(Table 3). '

The Y-Ligation Block Shuffling (YLBS) method [9] has
high potentiality in the evolutionary design of peptides. It
has problems on deletion and reaction bias of RNA ligase.

19

MLSDS produced libraries with high quality as shown in
Table 3. Above-mentioned problems are not so severe for
MLSDS method, because it uses only standard phosphor-
amidites and is free from any biochemical bias such as in
mRNA display and in YLBS. It was reported that the differ-
ence in the reaction efficiency of equimolar mixture of
four kinds of mono-phosphoramidites was only about 1-
5 % [33,34]. MLSDS can create any specific amino acid
composition as same as 3NP method, and a MLSDS
library is made at lower cost than that made with other
methods.

Conclusions

We applied the split synthesis to oligodeoxyribonucle-
otide synthesis and developed a new procedure, Multi-
Line Split DNA Synthesis (MLSDS), based on the synthe-
sis of designed codon mixtures using three-line DNA syn-
thesizers. MLSDS can make various "rational” libraries of
huge diversity with few stop codons by using bioinformat-
ics databases. Combination of an MLSDS library with a
screening method for huge diversity will accelerate the
protein evolution in vitro.
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Figure 3

Production of 2%, 4%, and 8% length library. Lane-M:
Size marker. 10 base ladder (left) and 100 base ladder (right).
Lane-S: Initial synthesized library (87 mer). Lane-U: Initial
single-unit library (94 mer) made by PCR amplification. Lane-
2U: Double-unit library (138 mer) made by ligation product
of digested |U. Lane-4U: quadruple-unit library (240 mer)
Lane-8U: octuple-unit library (444 mer). PAGE was done
with 5 % polyacrylamide, TAE buffer (pH 8.0), 8 M urea,
65°C and stained with SybrGreen | and visualized with a fluo-
rescence imager (Bio-Rad FX).

Methods

A random MLSDS library was synthesized as follows. A
standard DNA synthesis method was used in three lines of
DNA synthesizer running in parallel. The randomized
regions were combinatorialy synthesized in codon units.
Triplet codons were synthesized separately in the three
synthesizers as an elongation reaction of oligonucleotides
on beads made of controlled pore glass (CPG). CPG beads
were mixed together manually, and then splitted again
into three reaction tubes manually and the next triplet
codons were synthesized (Fig. 1).

20
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The sequence of a 87 mer library was 5'-GAT GAG GCG
AAG ACG NAC TGS (123/456/789),5 NAC TGS GAG GCT
GGCTGC CAC-3', where N and S denote A/T/G/C and G/
C, respectively. The A'T:G:C mixing ratio in each letter of
three codon groups 123, 456, and 789 was shown in Table
1. These values were calculated as described below. Both
flanking regions contain the recognition sequences of
type-1Is restriction enzymes BbsI and Bbvl, respectively. In
order to make longer sequences, we ligated 2 to 8 units of
oligomers at the cohesive ends (the underlined sequences
shown above) generated by the restriction enzyme treat-
ment. The assembly method was as described in Ref. [16].
The italicized sequence shown above represents the
assembly unit (random region of 45 bp and flanking
semi-random linking region of (6+6)/2 bp).

The synthesized DNA libraries were amplified by PCR
using KOD Dash polymerase (TOYOBO), inserted into
pCR2.1TOPO vector (Invitrogen) and cloned, avoiding
doning bias. The clones were sequenced.

Computer calculations to determine the optimum molar
mixing ratio of four bases in the codon synthesis step were
performed by using Mathematica (Wolfram Research).
We made a GA program for this purpose. Firstly, the target
amino acid composition, pr= (P, Pras Prar--r Pror), Was
established, where normally p,; = 0 for stop codons. Sec-
ondly, we calculated an expected amino acid (plus stop
codons) composition, p = (py, Py Pss--r Pap)r from the
molar mixing ratio of the bases, x = (xy, Xy, *5,...cr %121,
where 12L is equal to 4(number of bases) x 3(number of
codon letters) x L{number of synthesizer-line}. For exam-
ple, the mixtures for the first letter and the second letter of
the first DNA synthesizer have the molar mixing ratio [A}]:
[T1: [G]: [C] =25 : %5 1 x5 xyand x5 x5 X, © ¥, Tespectively.
And for example, when L = 3, the expected alanine com-
position p; is given by:

L F3%g R Xy5%a0
Pl T3t x e + + + “+ + -+ + +
3 by by )+ b xy +xg) (g Fxpg + x5 +0i6) (a7 g + 39 +320)

Xag¥3a

(1)
}
(a5 + 36 + Xag + %26} (¥ag + %30 + %31 +%37)

for the full-length sequence without deletion.

We solved an integer-programming problem (6-valued
12L-dimensional optimization problem) having the solu-
tion x; as integer (0,1,2,3,4,5). The reason for 6-digits
"integer" was to simplify the DNA synthesizer handling
and also to simplify the calculation. As the fitness F of x in
the GA, we took a correlation coefficient between the
expected (or designed) amino acid composition and the
target amino acid composition:

N N LoN N 12
F{x‘:(NPT'P’EPT,iEPi)/{(NPT- - praY ) —(Zpi)')} . (2)
=1 fy

=1 =1
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where N = 21 for our normal case. The optimum x, which
gave the maximum fitness F, was calculated using a simple
GA program.

It was reported the deletion rate during a general oligonu-
cleotide synthesis is about 0.5% per coupling [20}, and
our data (about 0.3% per coupling) were compatible with
this value. We incorporated the effect of the single nucle-
otide deletion into the GA calculation. We considered
only the affect of a point deletion in a synthesized oligo-
nucleotide because the deletion rate is low enough. When
a point deletion occurs in the 5' constant region, all the
amino acids in the random region are the frame shifted
ones. When the event occurs at the i-th site of the random
region, it affects the composition in the all downstream
from the i-th site, and so on. We incorporated all these
effects into the calculation of the composition. Details are
described in Additional file 1.
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