様式2

プロジェクト名:ボルト締結部における不可視疲労き裂の同期超音波測定

プロジェクト代表者:加藤 寛(理工学研究科・教授)

1 はじめに

ボルト締結部あるいはリベット締結部などの 機械的締結部における安全性確保の点から,機 械的締結部における疲労寿命の予測が重要とな っているが,これらの締結部ではき裂の発生起 点が覆われており,き裂の発生初期段階を目視 で検出することはできない.本研究は,稼働中 の機械的締結部の予寿命を非破壊的に評価する 方法の開発を研究目的としている.このため, 表面弾性波を用いた微小き裂検出・評価法の開 発を行った.次いで,疲労試験機の荷重周期に 同期させて超音波を発信させる同期超音波測定 法の開発を行った.

2 実験方法

2.1 試験片の製作

厚さ4 mmのアルミニウム合金 A2024-T3 平板 から疲労試験片を製作した. 試験片の端部近傍に 直径6 mmの穴を開け,高力ボルトで締結した. なお締結トルクは5 Nm とした. なお,試験片を 引張った際の曲げを低減するため,疲労試験機に 取り付ける位置に厚さ4 mmのAl合金板を当て金 として貼り付け,疲労試験に供した.

2.2 疲労試験

疲労試験は、応力振幅 20 MPa、応力比 0.05(引 張-引張型)、荷重周波数 10 Hz で行った. この条 件において,試験片の予測寿命は約 45 万回であっ た.

2.3 超音波測定

表面弾性波 (SAW) 測定を,中心周波数 20 MHz の集束型超音波探触子を用い,局所水浸法で行っ た.すなわち,探触子を厚さ約 70 µm のラテック ス膜製の水袋に挿入し,試験片表面に押し付けた. 縦波が試験片表面の法線に対して 30 °の角度で進 入し,試験片表面で表面弾性波 (レーリー波) に 変換された.その後,試験片表面を伝搬していき, ボルト穴縁で反射してきた.

同期超音波測定は以下の手順で行った. (1) 疲労試験機の制御部から荷重信号を取り出し, ファンクションジェネレータに入力する.

(2) ファンクションジェネレータから,所定の時間だけ遅延させて,パルス信号を発信させ,超音波発信器に入力する.

(3) 超音波発信器から超音波探蝕子に励起信号を 入力し,超音波を発振させる.

(4) 表面弾性波を試験片表面に伝搬させ、反射してきた波を再び探蝕子で受けて超音波発信器に入力する.

以上の操作を必要な回数だけ繰り返した.

本実験では、遅延時間を、疲労サイクル1周期 を 360°とする遅れ角度で表示した。

同期測定とともに,疲労試験機を停止させて超 音波測定する,その場測定も行った.

3. 結果及び考察

3.1 同期測定及びその場測定で得られた波形の 比較

所定の疲労回数ごとに同期測定を行い、その後、 引き続いてその場測定を行った.同期測定で得ら れた波形の例を図1に示す.疲労回数の増加に従 って、ボルト穴近傍の擦れ領域(フレッティング 域)における散乱波強さが次第に増加していき、 その後、き裂からの反射波と思われる波Cが立ち 上がって増大していった.

疲労回数に伴うボルト穴前方のフレッティング 域における散乱波の最大強さ(ピーク強さ)の変 化を図2に示す.疲労回数の増加に従って、ピー ク強さは徐々に増加していき、ある段階で急激な 変化を示した.同期測定の結果とその場測定の結 果を比較した結果、同期測定のほうが早い段階で

図2 疲労回数に伴うピーク強さの変化

波強さの急激な増加を示した.

3.2 疲労サイクル中の反射波強さの変化

同期測定により得られた,フレッティング域で のピーク強さ及び平均強さの疲労サイクル中の変 化を図3に示す.また,これらの強さと見かけの 応力レベルとの関係を図4に示す.最初の段階で は応力レベルに従って徐々に増加していき,最大 を示した後に徐々に減少していった.これに対し, 疲労の中盤以降では,最大値に達した状態でしば らく一定の値を示した後,減少していった.この 結果より,疲労サイクルに従う超音波波形の周期 的な変化が測定され,この変化がき裂の開閉口に 関係することが示唆された.

4 おわりに

ボルト締結部を有する Al 合金平板の疲労試験 を行いながら,表面弾性波(SAW)を用いた超音 波測定を行い,以下の結果を得た.

(1) 疲労過程中にボルト穴近傍に疲労き裂が発生 し、それに伴って、SAW 反射波形中に疲労き裂か らの反射波と思われる波が出現した. このことか ら、SAW 測定によりボルト穴近傍に発生する疲労 き裂の早期発見が可能であることが示された.

(2) 同期測定により,疲労サイクル中の,疲労き 裂からの反射波強さと応力レベルとの関係が明ら かにしなり,応力サイクル中の疲労き裂の開閉口 挙動を反射波強さの変化から推定可能であること が示唆された.

図1 疲労回数に伴う SAW 反射波波形の変化

