プロジェクト名:線維芽細胞の形態変化に対する磁場の影響とメカニズム解明 プロジェクト代表者:若狭雅信(理工学研究科・教授)

1 はじめに

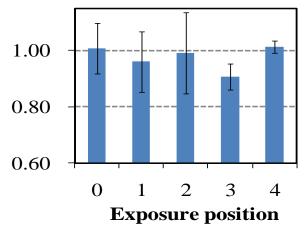
生物に対する磁場の影響(例えば、高周波電磁波の人体におよぼす影響や渡り鳥の方向認識など)は、化学・生物・物理の研究分野にまたがる、人類にとって重要な研究課題である。特に、磁場の健康利用を考えるとき、メカニズムを含む完全な理解が必要不可欠である。磁場が生物に影響をおよぼすとき、原因としては磁気エネルギー、異方性磁気力、電子スピン多重度に対する量子効果などが考えられるが、残念ながらメカニズムは殆ど解明されていない。そこで、本研究では、動物細胞のうち最も基本的かつ重要な、iPS 細胞の材料にもなる線維芽細胞(マウス由来の線維芽細胞(NIH3T3))に対する磁場の影響を、静磁場(-7T)、パルス強磁場(-30T, 2ms)および電磁波(9GHz および 0.7THz)を用いて研究することを目的とした。

2 結果と考察

(1) 超伝導磁石用の特殊インキュベータの開発

直径60ミリの超伝導磁石中の磁場空間で、線維芽細胞を1~3日間培養するために、右図のようなガラス製のインキュベータを作成した。インキュベータの回りは恒温水を循環することで、内部温度を37±1度)に制御する。また、インキュベータ内部を、水蒸気飽和のCO2/Air混合ガス(CO25%、Air 95%)を温度制御して循環することで、湿度100%、CO25%、Air 95%の一定環境を実現した。

このインキュベータ中には培養用の小型ウェルが5個設置でき,5Tに印加した超伝導磁石の中央に設置すると,各位置における磁束密度および磁場勾配は以下のようになる。


Magnetic flux density / T		0 M	1 Iagnetic	2 c field	3 direction	4	
0 -5	50	0	Dist	50 ance /	mm	100	150

Exposure position	Magnetic flux density (T)	Magnetic field gtadient (T/m)	Field-gradient product (T ² /m)
0	5.0	0	0
1	5.1	7	36
2	5.5	0	0
3	5.2	18	97
4	4.5	24	108

(2) 超伝導磁場下での線維芽細胞の増殖におよぼす磁場の影響

マウス由来の線維芽細胞(NIH3T3)を,DMEM (Dulbecco Modified Eagle's Medium)に FBS(fetal calf serum)を 10 %添加したメディウム中,本研究用に作成した小型ウェル(H 15.7 mm、 ϕ 19 mm)に 10^4 cells/mLの試料 1 mLを入れて,先に述べたような磁場および磁場勾配の条件下で 24 時間培養を行った。培養後の細胞数を磁場のない条件で培養した細胞数と比較して,細胞増殖に対する磁場の影響を検討した。各位置における相対細胞数を右図に示す。

磁東密度は高いが磁場勾配がないポジション0,1,2では5 Tとゼロ磁場で,細胞数は実験誤差の範囲で,差は認められなかった。しかし,磁東密度と磁場勾配が共に大きいポジション3では細胞数の減少が観測された。ただし,ポジション3より若干磁東路度が低く,磁場勾配が大きいポジション4(磁場×磁場勾配はほぼ同じ)ではほとんど変化がみられないので,磁東密度が重要なパラメータであることがわかる。まだ,測定回数が少ないので、今後より詳細検討が必要である。

	R(B)					
RUN	Exposure positon					
	0	1	2	3	4	
1	1.016	1.030	0.993	0.886	1.033	
2	1.092	1.014	1.133	0.873	1.014	
3	0.914	0.836	0.846	0.958	0.992	
average	1.007	0.960	0.991	0.906	1.013	
SD	0.089	0.108	0.143	0.046	0.021	

(3) 形態変化におよぼす磁場の影響:

超伝導磁場下で培養後、すみやかに細胞をリン酸緩衝ホルマリン溶液で固定化、ギムザ染色液で染色し、形態変化(密度、分岐、アスペクト比)におよぼす磁場の影響を観測した. 形態変化に関しては、特に磁場に対して平行もしくは垂直、場合によっては特定の角度方向に配向する可能性が高い。こうした配向とウエルの周辺効果は、磁場下での細胞増殖に大きな影響を与えると考えられるので、詳細な検討が必要であることがわかった。

3 論文および学会発表

(1) T. Yago, M. Wakasa, Nanoscale Structure and Diffusion Process of Ionic Liquid as Studied by the MFE Probe, J. Phys. Chem. C., 115, 2673-2678 (2011). (2) M. Gohdo, T. Takamasu, M. Wakasa, Photochemical Primary Process of Photo-Fries Rearrangement Reaction of 1-Naphthyl Acetate as Studied by MFE Probe, Phys. Chem. Chem. Phys., 13, 755-761 (2011). (3) M. Tanaka, T. Yago, Y. Sakaguchi, T. Takamasu, M. Wakasa, Magnetic Field Effects on Hydrogen Abstraction of Thiobenzophenone as a Probe of Microviscosity, J. Phys. Chem. B., 115, 1936-1943 (2011). (4) T. Yago, M. Gohdo, M. Wakasa, Hydrogen Bonding Effects on the Reorganization Energy for Photo-induced Charge Separation Reaction between Porphyrin and Quinone Studied by Nano-second Laser Flash Photolysis, J. Phys. Chem. B, 114, 2476-2483 (2010). (5) T. Maeyama, H. Matsui, T. Yago, M. Wakasa, Magnetic Field Effects on Photochemical Reaction in Masoporous Silicates of MCM-41 under High Magnetic Fields of up to 5 T, J. Phys. Chem. C., 114, 22190—22196 (2010). (6) M. Gohdo, M. Wakasa, Reexamination of the Photochemical Primary Process of Photo-Fries Rearrangement Reaction as Studied by MFE Probe, Chem. Lett., 39,106-107 (2010). (7) 松井弘貴・坂井貴文・<u>若狭雅信</u> "マウス繊維 芽細胞の成長に対する強磁場の影響" 第 91 回春季年会(神奈川大学 横浜キャンパス、2011 年 3 月 26 日-3 月 29 日