プロジェクト名:凹面レンズによる集束型マイクロ衝撃波の発生装置の開発 代表者:中村 匡徳 (工学部・准教授)

1. 研究目的

金属膜にレーザを照射すると、金属膜が熱弾性 膨張し、レーザと逆方向の媒質中に衝撃波が発生 する.この原理を応用すると、レーザ直径とほぼ 同じ幅の衝撃波を誘引することができる.しかし、 平面ガラスから生じる水中衝撃波の問題点として、 照射レーザ光強度を上げていくと薄膜が破断して しまう.そこで、凹面レンズを用いて衝撃波を集 束させ、衝撃波の高圧力化を図ることを目的とし た.

2. 方法

2.1 凹面レンズへの金属薄膜蒸着

平面レンズおよび曲率半径 3.24, 6.28, 12.92 mm の 3種類の凹面レンズ (エドモンドオプティクスジ ャパン)の4種のレンズを用意した.これらに対 して高周波イオンプレーティング装置 (SIP-650) を用い,凹面レンズの方端面に金属薄膜を蒸着し た.蒸着に用いた金属はチタン (Ti)である.カ プトンテープで一部を覆ったスライドガラスを同 じチャンバ内にいれ,テープで隠した部分と通常 に蒸着された部分とで段差をつくり,その高さを 測定すること膜厚とした.膜厚測定には三次元測 定機(三鷹光器,NH-3NT)を使用した.膜厚を 測定した結果,レンズ面にはおよそ 100 nm の Ti 薄膜が蒸着されていることがわかった.

2.2 水中衝撃波発生実験

実験系を Fig.1 に示す. 図中,レンズとセンサ を取り付けた部分については拡大図を破線部内に 示す.実験装置は衝撃波の発生装置と可視化装置 に大別される.

衝撃波発生装置はレーザA(Nd:TAG, New Wave Research 製 Soloß), ミラー, レンズ(f=250 mm, ア クロマートレンズ), 水槽(サイズ 180×120×220 mm)によって構成される.金属薄膜が成膜され てある面が下を向くように,凹面レンズを設置した.レーザAから水平方向に発射されたレーザは ミラーにより凹面レンズ方向に反射され,凹面レ ンズへと照射される.レーザの照射スポット径は レーザライメントペーパーにより測定し,約3 mm に集光し,凹面レンズへと照射した.これにより, 金属薄膜にレーザが照射され,水中衝撃波が生成 される.衝撃波発生用レーザの照射エネルギーは パワーメータ(Ophir 製, PE25)を用いて測定した.

衝撃波の可視化にはシャドウグラフ法を用いた. 可視化の装置はレーザ B (Nd:YAG, Quantel 製 Ultra),スペックルキラー (ナノフォトン製, SK-11),レンズ (f=250 mm,単レンズ),マイク ロズームレンズ (Z16, Leica MICROSYSTEMS), CMOS カメラ (IDT 製 XS-5)によって構成される. レーザ B からレーザを発射し,レンズ下端の衝撃 波が発生すると思われる位置を照射した.これに よって,発生する流体像を水槽に対してレーザ B の対面に設置した CMOS カメラによって撮影し

Fig. 1 Experimental equipment for shadowgraph imaging and pressure measurement of a shock wave radiated from the lens with a metallic film.

 $(0) 2.2 \mu \text{ III}$

Fig. 2 Shadowgraph images of the shockwave

た. なお、衝撃波を発生させるためのレーザAと 可視化用のレーザBとをタイミングコントローラ を用いて同期し、種々のタイミングにおいて撮影 を行った.

本実験では、0~320 GW/m²のレーザエネルギー 密度をレンズに入射して、衝撃波圧力を測定した. 圧力測定には圧力センサ(Müller Instruments, Müller-Platte Needle Probe)を用いた.この際、最 も高い圧力が捉えられるように、センサをレンズ の主軸に対して垂直な方向にセンサ位置を微調整 した.圧力測定時にはレーザAによる散乱光をフ ォトセンサで捉え、これをトリガーとし、圧力セ ンサからの圧力波形を計測した.取得した信号を ハイカット周波数 50 MHz のローパスフィルタを 通し、ノイズ処理を施した.ノイズ除去後の圧力 信号最大値を衝撃波圧力と定義し、試行 5 回の平 均を評価した.

3. 結果と考察

3.1 衝撃波の可視化実験

曲率半径 3.24 mm の凹面レンズに対して,80 GW/m² のレーザを照射した際における衝撃波の シャドウグラフ像を Fig. 2 に示す.レンズ下流側 に線状に画像強度の高い(白色)部分が認められ た.これは局所的に密度変化が生じていることを 示しており,衝撃波の特徴である.レーザ A の照 射後から撮影までのタイミングを遅くするにつれ, この線状の白色部がより下流側で観察された.そ の結果からこの線状部分の移動速度を見積もると, ほぼマッハ数1 であった.このことからこの白い

Fig. 3 Mach number of the wave in the downstream of lenz at various radii of the curvature of lenz

Fig. 4 Relationship between laser intensity and underwater shock wave intensity at various radii of curvature

Fig. 5 A change in the shockwave intensity along its distance from the radiation point.

線状のものが衝撃波であると判断した.また,Fig. 3 に示すように、この結果は凹面レンズの曲率半 径が変わっても同様であった.

3.2 照射レーザ光強度と水中衝撃波強さとの関係 照射レーザ光強度を0-200 GW/m2 まで40 GW/m2 間隔で上げた.その平均と標準誤差を Fig.4 に示 す.衝撃波測定位置は全ての条件においてレンズ 下流側4 mmの地点である.図より、曲率半径が 小さいほど、生成される水中衝撃波強さはより高 いことがわかる.また、各曲率において、照射レ ーザ光強度に対してほぼ線形的に水中衝撃波強さ は増加していることがわかる.しかし、曲率半径 が小さくなるほど、その傾きは急峻となり、照射

Fig. 6 A change in the attenuation coefficient against the radius of curvature of lens.

レーザ光強度を上げていくと、平面ガラスとの差 はより大きくなっていることが確認された.

3.3 水中衝撃波伝播距離と衝撃波強さとの関係

レンズの曲率によって水中衝撃波の集束性がど のように変化することを調べるために,圧力セン サを衝撃波伝播方向に動かしていき,衝撃波の強 さ測定を行った.その結果をFig.5に示す.図よ り、曲率半径が小さいほど、生成される衝撃波の 最高値が大きくなることが分かる.これは、曲率 半径が小さいものほど衝撃波が集束し、その結果 としてより高圧力になっていると推察される.

衝撃波の集束性を定量化するために、衝撃波が 減衰する部分を指数近似し、その係数を減衰係数 とした.ただし、各曲率における減衰係数は媒質 の粘性による減衰と集束による減衰が含まれてい るため、平面ガラスの結果から得られる減衰係数 をそれぞれから減じることにより、拡散による減 衰を評価した.曲率半径に対する減衰係数の変化 をFig.6に示す.曲率半径が小さくなるにしたが って、減衰係数の絶対値が大きくなり、衝撃波が より減衰していることがわかる.

以上 Fig. 5 と Fig. 6 の結果より,曲率半径が小 さくなると,衝撃波が集束することで衝撃波圧力 の最大値が大きくなるが,集束後は衝撃波が拡散 することにより,曲率半径が小さいものほど衝撃 波圧力が大きく減衰することがわかった.

4. まとめ

凹面レンズに金属薄膜を蒸着することで、水中 衝撃波の集束化を図った.その結果、平面形状か ら生成される衝撃波よりも高圧力化が実現でき、 曲率半径 3.24mmの凹面レンズを用いた実験では 最大で約3.3 MPaを達成した.これは、同じ照射 レーザ強度において、平面ガラスから生じる水中 衝撃波強さのおよそ1.65 倍であった.しかし、集 束点通過後は平面レンズから生じた水中衝撃波よ りも広がってしまい、減衰が大きかった.

以上、本研究より、凹面レンズを用いることに より、水中衝撃波を集束させ、高圧化することが できることがわかった.ただし、曲率半径が小さ くなるほど、水中衝撃波は集束され高圧力化が見 込めるが、その分集束点通過後の減衰も大きくな ることが示唆された.