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1 Introduction
Glucose is monosaccharide that provides a body with its primary
source of energy. Glucose comes from digesting carbohydrates
into a chemical easily converted to energy. When glucose levels
in the blood stream are not properly regulated, one might suffer
from a serious condition, such as diabetes [1]. One of the most
important hormones for glucose metabolism is insulin, because
it is used to treat diabetes. Insulin is secreted when β-cells fire in
the islets of Langerhans in the pancreas when the level of glucose
in blood rises [2]. It means that firing patterns of the β-cells can
predict the secretion of insulin. Namely, we can effectively treat
diabetes if we analyze the firing patterns of the β-cells.
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Figure 1: Two characteristic firing patterns observed from the
same β-cell of a mouse. (a) Pattern I (The amplitude of the mem-
brane potential slowly decreases with time.) (b) Pattern II (tonic
bursting).

In this project, we propose a simple mathematical model to
reproduce the firing patterns of the β-cells. From the β-cells,
two major firing patterns are observed. Figure1 shows these two
examples observed from the same β-cell of a mouse. In the ex-
periment, the glucose level is controlled at 5.6[mM]. The first
pattern (Fig.1(a)) shows that the amplitudes of membrane poten-
tial slowly decrease with time. The second pattern (Fig.1(b)) is
called tonic bursting.

In the following, we show that the proposed model with three
differential equations can effectively reproduce these two charac-
teristic firing patterns observed from the pancreatic β-cells.

2 Methods
Neurons in the brain and β-cells in the pancreas have similar
properties in voltage oscillation. Thus, bifurcation analysis plays
an important role in both systems. In a two-dimensional dynami-
cal system, two nullclines are defined by correspoinding differen-
tial equations. The bifurcations involving fixed points and limit
cycles are controlled by the shapes of nullclines. The limit cycle
decides the amplitude of the membrane potential.

The Morris-Lecar neuron model[4] is one of the popular neu-
ron model that is widely used. It is described by a set of two

nonlinear differential equations. The Morris-Lecar model has the
following form:

CMV̇ =−ḡL(V − VL) − ḡCa M∞(V − VCa) − ḡKN(V − VK) + I (1)

Ṅ =
N∞ − N
τN

(2)

M∞ = 0.5(1 + tanh ((V − V1)/V2)) (3)
N∞ = 0.5(1 + tanh ((V − V3)/V4)) (4)
τN = 1/(cosh ((V − V3)/2V4)) (5)

where V is the membrane potential; N ∈ [0,1] is the activation
variable for K+; and I is the current; the parameters VCa,VK, and
VL represent equilibrium potentials of Ca2+, K+ and leak currents;
ḡL, ḡCa and ḡK denote the maximum conductance of corresponding
ionic currents; N∞ and M∞ are steady-state activation; V1, V2, V3
and V4 are parameters.

Action potential and repolarization of the β-cell also depend
on the Ca2+ channels and K+ channels[5]. For this reason, it
is very natural to expect that we can obtain a possible model
for reproducing firing patterns of β-cells. However, it is not so
easy to treat the nullclines of the Morris-Lecar mode. Then, we
simply replaced the nullclines of Morris-Lecar model by a qubic
polynomial and an exponential function to reproduce the firing
patterns observed from the β-cell. The nullclines of the Morris-
Lecar model are shown in Fig.2(a) and (b).

In our model, we first used an approximation form of the null-
clines of the original Morris-Lecar model. Namely, we used
qubic polynomial and exponential functions as shown in Eqs.(6)
and (7). The nullclines of the proposed model are shown in
Fig. 2(c) and (d).

To reproduce the two patterns shown in Fig.1, we also intro-
duced movement of the nullclines with time to control the ampli-
tude of the limit cycle. To realize this property automatically, we
introduced the third differential equation to move the second (or
u-) nullcline:

v̇ = a1(v + a2)3 + a3(v + a2)2 + a4(v + a2) + a5 − u, (6)
u̇ = 0.7e0.07(v−w+86) − 130 − u, (7)
ẇ = c1v − c2u − c3w, (8)

where u, v and w are dimensionless variables, and
a1, a2, a3, a4, a5, c1, c2 and c3 are also dimensionless param-
eters. The variable v represents the membrane potential of the
β-cell. The role of w is to move the u-nullcline in the u-v phase
plane. We tried several parameters and choose the most proper
parameters for the u-nullcline to perform the two firing patterns
of β-cells.

2.1 Pattern I
As shown in Fig.1(a), the amplitude of the membrane potential
slowly decreases with time.To realize this feature, we set param-
eters for the variable w in Eq.(8) to make the value of w decrease
slowly with time, which means that the u-nullcline moves slowly
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Figure 2: The nullclines of the Morris-Lecar neuron model. (a) V-nullcline shows the membrane potential and (b) N-nullcline shows
the fraction of open channel. (c) v-nullcline and (d) u-nullcline of the proposed model.

(a) v for Pattern I (b) w for Pattern I (c) v for Pattern II (d) w for Pattern II

Figure 3: Reproduced time series of v for (a) Pattern I and (c) Pattern II. The variable w (b) for Pattern I decreases gradually in time,
and (d) for Pattern II is changed periodically.

to the leftward in the u-v phase plane. Then, the limit cycle
will slowly shrink to an equilibrium point. We set a1 = −0.001,
a2 = 7, a3 = −0.05, a4 = 1.3, a5 = 30, c1 = 0.0025, c2 = 0.0007
and c3 = 0.002 for Pattern I.

2.2 Pattern II
The feature of the pattern shown in Fig. 1(b) is that the mem-
brane potential of a β-cell exhibits periodic bursting. To realize
this feature, we set a1 = −0.003375, a2 = −5, a3 = −0.1, a4 =

6, a5 = 100, c1 = 1/2000, c2 = 1/5500 and c3 = 1/500 for this
pattern. In this pattern the value of variable w changes repeatedly
in a limited range. It means that the u-nullcline moves leftwards
and rightwards repeatedly to make the state of equilibrium point
periodically changed and to generate a limit cycle. Then, the
model automatically performs the Hopf bifurcation repeatedly.

2.3 Results
Simulation results to reproduce the pattern I is shown in Fig.3(a)
and (b). As the value of w changes (Fig.3(b)), the amplitude
of membrane potential(v) gradually decreases with time as in
Fig.3(a). This result indicates that the proposed model can au-
tomatically perform the Hopf bifurcation.

In the case of the pattern II, the simulation results are shown
in Fig.3(c) and (d). In this pattern, the value of w changes in
a limited range (Fig.3(c)). Due to this prperty, the u-nullcline
moves leftwards and rightwards repeatedly. Figure 3(c) shows
that the membrane potential exhibit tonic bursting.

3 Conclusions
In this report, we proposed a simple mathematical model of the
pancreatic β-cell. In particular, we emphasize how to reproduce
two characteristic firing patterns of β-cells. The basic part of the
proposed model consists of the Morris-Lecar neuron model. In
the conventional mathematical models, the value of a parameter

is changed to perform bifurcation. However, in our model, to
automatically change parameters, we control the movement of
the u-nullcline. As a result, the proposed model automatically
performs bifurcation, and reproduces two major firing patterns
of the pancreatic β-cell.

Our model is a simple mathematical model that can reproduce
the two major firing patterns observed from the β-cells. It con-
sists only three differential equations and has eight parameters.
Namely, the proposed model can reduce the computational costs
when simulating a β-cell mass comparing to conventional mod-
els. The point of this research is that an extra differential equation
realize the movement of the u-nullcline to perform Hopf bifurca-
tion automatically. This point can be used in other mathematical
model. Finally, we analyzed the bifurcation for several parame-
ters that decide the movement of nullcline. In particular, the pa-
rameter c1, c2 and c3 in the third differential equation are parame-
ters which control the movement of u-nullicne. We can modulate
the firing patterns using this bifurcation analysis in our model.
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