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Abstract

By applying the particle-number projection to the finite-temperature BCS theory, the S-shaped

heat capacity, which has recently been claimed to be a fingerprint of the superfluid-to-normal

phase transition in nuclei, is reexamined. It is found that the particle-number (or number-parity)

projection gives S-shapes in the heat capacity of nuclei which look qualitatively similar to the

observed ones. These S-shapes are accounted for as effects of the particle-number conservation

on the quasiparticle excitations, and occur even without the phase transition. The present study

illustrates significance of the conservation laws in studying phase transitions of finite systems.

PACS numbers: 21.90.+f,21.60.-n,05.70.-a
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While phase transitions are striking phenomena in infinite systems, it has been difficult

to establish them in finite systems such as atomic nuclei, because their signatures are often

obscured by the quantum fluctuations [1]. Since most nuclei have the superfluidity in their

ground states, i.e. at zero temperature, the superfluid-to-normal transition for increasing

temperature has been discussed theoretically [2–5]. Recently, high precision measurement

of nuclear level densities has been implemented [6], in which the level densities are extracted

from the γ-ray data with the help of the Brink-Axel hypothesis. Converting the micro-

canonical information to the canonical one, they have found that S-shapes appear in the

graphs of the heat capacity C as a function of temperature T . It has been argued that the

S-shapes are a fingerprint of the superfluid-to-normal phase transition, since such S-shapes

occur if continuity is taken between heat capacity in the superfluid phase (described by the

constant-T model) and that in the normal fluid phase (described by the backshifted Bethe

formula). Based on this picture, they estimated critical temperature from their experi-

mental data. Similar S-shapes come out in theoretical calculations including the quantum

fluctuations [3, 5].

The superfluid and the normal-fluid phases in nuclei are defined within the mean-field

picture; in the Bardeen-Cooper-Schrieffer (BCS) theory or in the Hartree-Fock-Bogoliubov

theory. In studying the superfluid-to-normal transition, linkage to the mean-field picture

should carefully be traced, even when the S-shapes are reproduced by calculations including

a variety of quantum fluctuations. Breakdown of a certain symmetry is often associated with

phase transitions. In respect to the superfluid-to-normal transition, the particle-number

conservation is violated in the superfluid phase while preserved in the normal-fluid phase,

within the mean-field theories. However, this is an approximate picture and the particle-

number conservation is not violated in actual nuclei, restored via the quantum fluctuations.

Since restoration of the symmetry sometimes plays an important role particularly in finite

systems, it is desired to investigate how the number conservation affects the heat capacity

of nuclei.

The so-called number-parity forms a subgroup isomorphic to S2 of the U(1) group accom-

panied by the particle-number. The number-parity projection in the finite-temperature BCS

(FT-BCS) theory [7] was developed more than two decades ago [8]. The full number projec-

tion at finite temperature is much more complicated task. There is a fundamental difficulty

in the variation-after-projection scheme, though an approximate solution has recently been
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suggested [9]. On the other hand, the number projection in the variation-before-projection

(VBP) scheme was formulated in Refs. [9–11]. In this paper, we apply the particle-number

projection as well as the number-parity projection in the FT-BCS theory, and qualitatively

investigate effects of the particle-number conservation in the heat capacity of nuclei. By the

VBP scheme, we view effects only of the projected statistics, without changing the excita-

tion spectra given by the BCS Hamiltonian, as a step of tracing effects of various quantum

fluctuations.

We mainly consider the 161,162Dy nuclei. Let us assume the following model Hamiltonian,

Ĥ = Ĥp + Ĥn , Ĥτ =
∑

k∈τ

εka
†
kak − gτ

4

∑

k,k′∈τ

a†ka
†
k̄
ak̄′ak′ (τ = p, n) , (1)

where k̄ indicates the time-reversal of the single-particle (s.p.) state k. The s.p. state k and

its energy εk are determined from the Nilsson model [12], by assuming the quadrupole defor-

mation from the measured E2 strength [13]. We take gp = 22/A and gn = 27/AMeV [14].

For the model space, we first define the Fermi energy εF for each nucleus by the arithmetic

average between the energy of the highest occupied Nilsson s.p. level and that of the lowest

unoccupied level, without the residual interaction. We then include all the s.p. levels sat-

isfying |εk − εF| < 7 MeV, for both protons and neutrons. The gτ values are related to the

model space; with the present choice we reproduce the pairing gaps of ∆τ ≈ 12/
√

A MeV.

Although the Hamiltonian in Eq. (1) is relatively simple, it will be sufficient for qualitative

study of the pairing phase transition. Note that the critical temperature of the deformed-to-

spherical shape phase transition is appreciably higher than that of the superfluid-to-normal

transition, and that the s.p. levels hardly change at T . 1 MeV [4].

In the FT-BCS theory, we introduce the auxiliary Hamiltonian

Ĥ ′ = Ĥ ′
p + Ĥ ′

n , Ĥ ′
τ = Ĥτ − λτ N̂τ , (2)

where λτ stands for the chemical potential and N̂τ the number operator, N̂τ =
∑

k∈τ a†kak.

The quasiparticle (q.p.) operators are obtained from the Bogoliubov transformation,

αk = ukak − vka
†
k̄
, (3)

with u2
k + v2

k = 1, and the q.p. energy is given by

Ek =
√

ε̃2
k + ∆2

τ ; ε̃k = εk − gτv
2
k − λτ , ∆τ =

gτ

2

∑

k∈τ

ukvk . (4)
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The density operator in the FT-BCS theory is

ŵ0 =
e−Ĥ0/T

Tr(e−Ĥ0/T )
; Ĥ0 =

∑

k

Ekα
†
kαk . (5)

Here Tr denotes the grand-canonical trace in the model space. The thermal expectation value

of an observable Ô is calculated by 〈Ô〉0 = Tr(ŵ0Ô). Equation (5) is an approximation of

Ĥ ′ in the Boltzmann-Gibbs operator e−Ĥ′/T by (const. + Ĥ0). The entropy is defined by

S = −Tr(ŵ0 ln ŵ0). The FT-BCS equation, which determines the uk and vk coefficients in

Eq. (3), is obtained so as to minimize the grand potential Ω = 〈Ĥ ′〉0 − TS for each T [7].

The chemical potential λτ is fixed by the particle-number condition 〈N̂τ 〉0 = Nτ , where Nτ

is the particle number in the model space corresponding to the specific nuclide.

Introducing the particle-number projector,

P̂τ =
1

2π

∫ π

−π
dϕ e−iϕ(N̂τ−Nτ ) , (6)

we define the density operator in the projected statistics,

ŵP =
P̂pP̂ne−Ĥ0/T P̂pP̂n

Tr(P̂pP̂ne−Ĥ0/T )
. (7)

The thermal expectation value in the number-projected statistics is obtained by 〈Ô〉P =

Tr(ŵPÔ). The integration over ϕ in Eq. (6) takes account of a certain part of the two-body

correlations beyond the mean-field approximation. In practical calculations, the ϕ integral

is replaced by a discrete sum:

P̂τ =
1

M + 1

M∑

m=0

e−iϕm(N̂τ−Nτ ) , (8)

where M stands for the number of the s.p. states and ϕm = 2πm/(M + 1). If we set M = 1

instead of the number of the s.p. states in Eq. (8), P̂τ is reduced to the number-parity

projector [9],

P̂ ′
τ =

1

2

∑

ϕ=0,π

e−iϕ(N̂τ−Nτ ) . (9)

Correspondingly, ŵP and 〈Ô〉P become those of the number-parity projection, which we

shall denote by ŵP′ and 〈Ô〉P′ = Tr(ŵP′Ô). In this paper we distinguish the unprojected,

the number-projected and the number-parity-projected expectation values by the suffices as

〈Ô〉0, 〈Ô〉P and 〈Ô〉P′ , respectively.
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We here calculate heat capacity by C = d〈Ĥ〉/dT , which is obtained by numerical differ-

entiation of 〈Ĥ〉 for various T , in practice. In Fig. 1, the heat capacities with and without

projection (C0, CP′ and CP) are depicted for 162Dy. There occur two discontinuities in C(T ),

corresponding to the superfluid-to-normal transitions for protons and neutrons. This is con-

firmed by ∆p and ∆n, which rapidly vanish at the respective critical temperature Tc. This

signature to the transition does not disappear by the projection because it is implemented

after variation. Although such discontinuities are unrealistic, the present purpose is to in-

vestigate effects of the projection mainly at T < Tc. We have Tc ≈ 0.5 − 0.6 MeV in the

present calculation, slightly lower for protons than for neutrons. In the normal fluid phase,

the projections do not make important differences; difference of the number-parity-projected

result from the unprojected one is even almost invisible. At T < Tc, we find that there is a

certain effect of the projection on C(T ), either the number-parity or the number projection;

an S-shape appears when we apply the number or the number-parity projection. It is noted

that, in the number-parity projection, the zero-point of the energy may influence CP′ , since

〈N̂τ 〉P′ is displaced from Nτ depending on T because of the incomplete projection (after

variation). To suppress this influence, we use (εk − εF) instead of εk in the Hamiltonian of

Eq. (1).

Since the proton and neutron degrees-of-freedom are separated in the Hamiltonian of

Eq. (1), we have C = Cp + Cn, where Cτ = d〈Ĥτ 〉/dT . We present Cn(T ) for 162Dy in

Fig. 2(a), so as to simplify discussions. There is no qualitative difference between Cp(T ) and

Cn(T ). It is noticed that, while Cn,0 = d〈Ĥn〉0/dT increases almost linearly at (0.2 MeV .
)T < Tc, an S-shape comes out both in Cn,P′ = d〈Ĥn〉P′/dT and Cn,P = d〈Ĥn〉P/dT in

this temperature region. In order to view effects of the projections more clearly, we also

show ∆En,P = 〈Ĥn〉P− 〈Ĥn〉0 and ∆En,P′ = 〈Ĥn〉P′ − 〈Ĥn〉0 as a function of T , in Fig. 2(b).

Obviously, the slope in ∆En,P(T ) is equal to the difference of Cn,P from Cn,0, and likewise for

∆En,P′(T ). In this respect, the S-shape in the number-parity-projected case comes from the

decrease of ∆En,P′(T ) at 0.2 . T . 0.35 MeV as well as the increase at 0.35 . T . 0.5 MeV.

This behavior does not change by the full particle-number projection, although ∆En,P(T )

shifts downward to a certain extent, compared with ∆En,P′(T ). We also plot in Fig. 2(c)

the expectation value of the q.p. number 〈N̂n〉, where N̂n =
∑

k∈n α†kαk. In Fig. 2(c), the

number-parity-projected result is almost indistinguishable from the fully number-projected

result at T . 0.5 MeV, and from the unprojected one at T & 0.5MeV. At T ≈ 0, we have
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FIG. 1: Heat capacity C vs. temperature T for 162Dy. The dashed line is obtained by the FT-

BCS calculation without projection, while the solid and dotted lines are with the number and the

number-parity projections, respectively.

〈N̂n〉 ≈ 0 as it should be. As T goes up slightly to about 0.2 MeV, excitation to the 1 q.p.

states gives rise to increase of 〈Ĥ〉0, and yields dominant contribution to Cn,0. However, this

is fictitious, resulting from the violation of the number or the number-parity conservation.

Since the 1 q.p. states are removed, 〈Ĥ〉P′ tends to stay at its T = 0 value, giving the

decrease of ∆En,P′(T ) and delaying the rise of Cn,P′(T ). As T grows further, excitation to

the 2 q.p. states starts contributing to 〈Ĥ〉0, and also to 〈Ĥ〉P′ . If more and more q.p.’s are

excited, the q.p. number distributes broadly, and the lack of the odd number-parity states

is no longer important. Then ∆En,P′ becomes vanishing again, and Cn,P′ also approaches

Cn,0. This feature is inherited in the number-projected result. Thus the occurrence of the

S-shape in C(T ) is accounted for as effects of the number (or number-parity) conservation

on the q.p. excitations.

In 161Dy, the proton degrees-of-freedom are almost the same as in 162Dy. Cn(T ), ∆En(T )

and 〈N̂n〉 in 161Dy are presented in Fig. 3. In the graph of Cn(T ), we find an S-shape

somewhat similar to that in 162Dy, as a result of the projection. However, the S-shape in the

projected result is less conspicuous, particularly around T = Tc(≈ 0.6 MeV). It is remarked

that similar even-odd difference is observed in the experiments [6]. Moreover, we view small
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FIG. 2: Thermal properties of the neutron part of 162Dy: (a) Cn, (b) ∆En, (c) 〈N̂n〉, as functions

of the temperature. See Fig. 1 for conventions.
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but non-vanishing values at low T (0.05 . T . 0.2 MeV) in the projected results (see inset to

Fig. 3(a)). These even-odd differences are again accounted for in terms of the q.p. excitation

picture. Since the neutron number is odd in 161Dy, the q.p. number should be 1 at T ≈ 0,

which is not taken into account in the unprojected result. Therefore, ∆En is higher by about

∆n(≈ 1 MeV) at T ≈ 0 than in 162Dy. As T goes up, ∆En,P′ decreases, because excitation

to the 2 q.p. states predominantly contributes to 〈Ĥ〉0, which is eliminated in 〈Ĥ〉P′ . For

T & 0.5 MeV, many q.p. states mix up and the lack of even number q.p. states becomes less

important. This leads to ∆En,P′ ≈ 0. However, since ∆En,P′(T = 0) is higher than in 162Dy,

∆En,P′ ≈ 0 at T & 0.5 MeV implies that ∆En,P′ does not go up to a great extent at T ≈ Tc,

making the upper bend in the S-shape of Cn,P′(T ) weak. Although ∆En,P shifts downward,

the full number projection gives analogous behavior. The structure in Cn(T ) at low T is

also connected to the q.p. excitation. While there is only a single 0 q.p. state present in

the even systems, there are several 1 q.p. states having close energy to one another. Hence,

excitation from the lowest-lying 1 q.p. state to the higher-lying 1 q.p. states is possible even

at low T . Note that this effect is only the cases for the projected statistics. To illustrate this

mechanism, the q.p. number corresponding to the three Nilsson s.p. levels adjacent to εF

and that for the next nearest six levels (three higher and three lower levels) are separately

depicted in the inset to Fig. 3(c). Although 〈N̂n〉P or 〈N̂n〉P′ stays unity at T . 0.3 MeV,

we view that excitation among the s.p. states occurs, giving small but non-negligible heat

capacity.

As expected from the q.p. excitation picture, the above results are insensitive to nuclide,

except that C(T ) at low T (. 0.3 MeV) for odd nuclei somewhat depends on the s.p. levels

around εF. This has been confirmed by calculations for neighboring Dy isotopes [15]. The

q.p. excitation mechanism is so generic that it should not depend on the nuclear shapes,

which has also been confirmed by calculations for Sn isotopes [15].

The number (or number-parity) conservation thus gives rise to the S-shapes in the heat

capacity and their even-odd differences. Since it is explained within the q.p. excitation

picture, the S-shaped heat capacity does not seem straightforwardly linked to the superfluid-

to-normal transition. To investigate this point further, we try the following calculation:

instead of solving the FT-BCS equation at each T , we keep using the solution at T = 0 for

ε̃k and ∆τ , and therefore for uk and vk. By this treatment the nucleus stays in the superfluid

phase at any T . The T -dependence enters only via the explicit one in the Boltzmann-Gibbs
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FIG. 3: Thermal properties of the neutron part of 161Dy: (a) Cn, (b) ∆En, (c) 〈N̂n〉. Cn at

0.07 < T < 0.35MeV is amplified in the inset to (a). In the inset to (c), 〈∑k∈SP1n
α†kαk〉 (red

lines) and 〈∑k∈SP2n
α†kαk〉 (blue lines) are also presented as well as the total q.p. number (black

lines), where SP1n is composed of the Nilsson s.p. level with εF and the neighboring two (one

higher and one lower) levels, while SP2n consists of the next neighboring six (three higher and

three lower) levels. See Fig. 1 for other conventions.
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FIG. 4: Heat capacities for 162Dy: (a) Cn and (b) C, with ε̃k and ∆τ fixed to be the T = 0 values.

operator. Resultant Cn and C = Cp + Cn are shown in Fig. 4 for 162Dy, and in Fig. 5 for

161Dy. We have the S-shapes even without the phase transition. The even-odd differences

in C are also viewed in this artificial model.

The observed S-shapes in C(T ) are deduced from the energy-dependence of the level

densities [6]. We have confirmed that the present calculations with projection are quali-

tatively consistent with the measured level densities, whether or not Ĥ0 is T -dependent.

However, the present results indicate a mechanism of the S-shapes in C(T ) different from

the connection picture of the two phases, which was assumed in Ref. [6]. Still, one should not

immediately conclude that the S-shapes are irrelevant to the transition. The Tc value in the
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FIG. 5: Heat capacities for 161Dy: (a) Cn and (b) C, with ε̃k and ∆τ fixed to be the T = 0 values.

present FT-BCS calculations is close to the temperature region where the S-shapes appear,

as in the experiments, which may suggest that the S-shapes might have correlation to the

transition, even though their connection is not straightforward. For instance, suppose that

the mixing of many q.p. states, which causes the upper bend of the S-shape in C(T ), also

drives the phase transition in the BCS approximation, the S-shapes are indirectly correlated

to the transition. In practice, relation of the S-shapes in C(T ) to the superfluid-to-normal

phase transition has not yet been clear enough. It is desired to inspect carefully how in-

dividual quantum fluctuations affect the heat capacities of nuclei. We just point out here

that the number conservation should play a certain role in producing the S-shapes, even
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though it may not be a full explanation. It is emphasized that effects of the conservation

laws should not be discarded in discussing phase transitions in finite systems.

In summary, we have reexamined the heat-capacity of nuclei, applying the particle-

number projection to the finite-temperature BCS theory. While the S-shapes in the heat

capacity have been claimed to be a fingerprint of the superfluid-to-normal phase transition,

it is found that the particle-number projection gives S-shapes in the heat capacity of nu-

clei analogous to the observed ones. The even-odd difference in the heat capacity is also

produced by the projection. Except low T part of odd nuclei, the number-parity projection

gives similar heat capacity to the full number projection, if the s.p. energies are appropri-

ately shifted. These S-shapes are accounted for in terms of the quasiparticle excitations, and

occur even without the transition. Although the observed S-shapes could still correlate to

the phase transition, their relation should be inspected carefully. The present study reveals

significant role of the particle-number conservation in the heat capacity of nuclei.
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