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Optical conductivity of Ce-based filled skutterudites
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A simple tight-binding model is constructed for the description of the electronic structure of
some Ce-based filled skutterudite compounds showing an energy gap or pseudogap behavior.
Assuming band-diagonal electron interactions on this tight-binding model, the optical conduc-
tivity spectrum is calculated by applying the second-order self-consistent perturbation theory
to treat the electron correlation. The correlation effect is found to be of great importance on
the description of the temperature dependence of the optical conductivity. The rapid disap-
pearance of an optical gap with increasing temperature is obtained as observed in the optical
experiment for Ce-based filled-skutterudite compounds.
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1. Introduction
In recent years, the filled skutterudite compounds with

chemical formula RT4X12 (R = rare-earth elements, T =
Fe, Ru and Os, and X = P, As, and Sb) have attracted
much attention because of several interesting physical
properties including a new type of heavy-fermion super-
conductivity observed in Pr-based compounds.1) In these
filled skutterudites, some Ce-based compounds have re-
ceived interest in relation to the Kondo insulators.2)

For CeRu4Sb12, for example, it was reported that the
(pseudo-)gap (∼ 10meV) opens in the spectra obtained
by several measurements: photoemission,3) optical con-
ductivity4) and inelastic neutron scattering,5,6) though
the temperature dependence of resistivity shows metal-
lic behavior.7) For CeOs4Sb12, a semiconducting behav-
ior in the temperature dependence of resistivity was re-
ported,8) and a gap formation (Eg ∼ 10meV) was ob-
served in the optical measurement9) at low temperatures.
In addition, a large peak at 70 meV, which is called a
mid-infrared (MIR) peak, was also observed. With in-
creasing temperature, the gap is gradually filled up. At
high temperatures, the peak structure loses its intensity
and the gap disappears.9) The overall structure of the op-
tical conductivity and the temperature dependence of the
spectrum are very similar to those of CeRu4Sb12 (MIR
peak at 0.1eV) in spite of the difference in the trans-
port properties.4) It should be noted that these overall
structures are also found in a typical Kondo insulator
YbB12

10) (Eg ∼ 20meV and MIR peak at 0.3 eV).
In fact, the overall band structure obtained by the

band calculation for CeOs4Sb12
11) is qualitatively sim-

ilar to that for CeRu4Sb12,12) though there is a dis-
crepancy that the gap opens in CeRu4Sb12 which shows
metallic temperature dependence in transport proper-
ties, whereas it does not open in CeOs4Sb12 whose resis-
tivity shows a semiconducting behavior. These discrep-
ancy is not yet resolved though the origin of the difference
in the transport properties might be clear with proceed-
ing of the refinement of the sample purity. Nevertheless,
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one can expect that similar structures of optical con-
ductivity spectra for both Ce-based filled skutterudite
compounds originate from similar band structures.

In this paper, we construct a simple tight-binding
model which reproduces the overall structure of the
band dispersion obtained by the band calculation for
CeRu4Sb12,12) and introduce the electron-electron inter-
actions in the tight-binding model. We investigate the
electron correlation effect on the temperature depen-
dence of optical conductivity spectra and try to compare
with the experiments.

2. Model and formulation
Excluding T sites in RT4X12, the crystal structure of

the filled skutterudites is regarded as the body-centered
cubic (bcc) structure consisting of X12 icosahedrons
with a rare-earth ion R at a center. In CeOs4Sb12 or
CeRu4Sb12, the f electron orbitals of Ce are expected
to hybridize with the f symmetry combination of the
p orbitals of each Sb12 cluster. Assuming an effective
overlap integral between f wave functions on nearby R-
sites through Sb12 clusters, we consider a tight-binding
model (with nearest-neighbor (ffσ)-bonds)13) consisting
of f symmetry wave functions on bcc lattice sites. By the
spin-orbit interaction, the 14-fold f states are split into
the total angular momentum J = 5/2 and J = 7/2 eigen-
states. Besides, under Th symmetry, the J = 5/2 states
are split into Γ5 and Γ67 states, and the J = 7/2 states
are split into two Γ5’s and Γ67.14) Although overlap inte-
grals (Slater-Koster parameters) for f electrons have been
obtained in ref. 15 without the spin-orbit interaction, we
need an expression in terms of Γα states for each J value.
This scheme was performed in ref.16 for YbB12 and we
follow the same procedure here. The resulting f bands,
which will be shown in the next section, are rather sim-
ilar to those above the Fermi level obtained by the LDA
band calculation.12)

The LDA bands below the Fermi level are rather com-
plicated. We found, however, that the top-most band (to-
tal width of 0.07eV) has a flat part of the width of about
0.02eV along Γ-N-P-Γ lines in the Brillouin zone, which
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Fig. 1. Schematic picture of the energy gap structure. (a) The

present model. (b) The typical situation of the Kondo insulator.

is comparable to that of the f-bands above the Fermi
level. This may be partly due to the mixing with the
f states above the gap since it contains a considerable f
components. Therefore, we express it by the simple tight-
binding band of f symmetry states composed of Sb12 p
orbitals. Note that the spin-orbit interaction can be ne-
glected in this Sb12 p band since it is very weak in the
p band. Under Th group, the f symmetry states with-
out the spin-orbit interaction are split into Au and two
Tu’s. In this paper, we assume that the Sb12 p band with
f Au symmetry lies below the Fermi level and the low-
energy optical excitation originates from the transition
from this to f bands above the Fermi level for CeOs4Sb12

or CeRu4Sb12. In analogy with semiconductors, the for-
mer and the latter correspond to the valence and the con-
duction band, respectively. It should be noted that the
gap which we consider in the present model is not the hy-
bridization gap in contrast to the gap observed in other
heavy fermion compounds classified into the Kondo in-
sulator / semiconductor, e.g. YbB12.10) The difference of
the (indirect) energy gap structure between the present
model and the typical Kondo insulator is schematically
shown in Fig. 1. In the present model, the 4f band (which
is schematically shown as an energy level in Fig. 1(a)) sits
above the valence band, and the gap opens between the
4f band and the valence band. On the other hand, in the
typical Kondo insulator, the gap is constructed by the hy-
bridization between the 4f level and the conduction band
(Fig. 1(b)). It should be noted that there should be some
hybridization between the 4f and the valence bands also
in the case (a). In the present calculation, therefore, we
assume the weak hybridization between the Sb12 p band
and f bands, hence our model lies between the cases (a)
and (b).

We consider the effective tight-binding model men-
tioned above as a free system without electron-electron
interactions and assume effective Coulomb and exchange
interactions as follows:19)

H = Hband + Hint, (1)

Hband =
∑

γ

∑
k,σ

Eγ
kc†γkσcγkσ, (2)

Hint = U
∑

γ

∑
i

nγi↑nγi↓ + U2

∑
γ<γ′

∑
i,σ

nγiσnγ′iσ̄

+U3

∑
γ<γ′

∑
i,σ

nγiσnγ′iσ

−J
∑
γ<γ′

∑
i,σ

c†γiσcγiσ̄c†γ′iσ̄cγ′iσ, (3)

where Eγ
k denotes the diagonalized tight-binding band

energy for the band γ. We denote the annihilation (cre-
ation) operator for the band γ in the site representation
as cγiσ (c†γiσ). Here the index σ denotes a pair of the
time-reversal states which we call spin hereafter. We as-
sume the the para state for the spin and omit the index
σ. In the Hamiltonian, we have introduced the above
form of electron interactions expressed by the param-
eters U , U2, U3 and J . They correspond to the intra-
band Coulomb interaction, the inter-band anti-parallel
spin Coulomb interaction, the inter-band parallel spin
Coulomb interaction, and the inter-band exchange inter-
action, respectively. In the interaction parts Hint of the
Hamiltonian, we assume band-diagonal electron interac-
tions, though the interactions are usually introduced be-
tween original electron orbitals before the diagonaliza-
tion of Eγ

k. Originally the way to introduce the electron
interactions in the tight-binding model is not unique. Be-
sides, in the present paper, we regard the interactions
as parameters to control the temperature dependence of
the optical spectrum. Thus, for simplicity, we introduce
the band-diagonal form of the interactions in the present
model.

In the Hamiltonian (3), the Coulomb interactions are
introduced in all bands since there is the hybridization
between the Sb12 p band and f bands, although the
strong electron-electron interactions should exist only be-
tween the f electrons in real systems. However, the equal
Coulomb interaction may act more strongly on the re-
gion of high density of states, so that the f-components
will be more affected than the others. For simplicity and
in order to reduce the number of parameters, the fol-
lowing relations are further assumed; U2 = U − J and
U3 = U − 2J .17) In this case, Hint can be expressed as

Hint =
U

2

∑
γγ′σσ′

∑
i

c†γ′iσ′c
†
γiσcγiσcγ′iσ′

− J

2

∑
γγ′σσ′

∑
i,σ

c†γ′iσ′c
†
γiσ̄cγiσ̄′cγ′iσ, (4)

which has a rotational symmetry in both the orbital and
the spin states.

In the present model, it is noted that the electron cor-
relation effect beyond the Hartree-Fock approximation
does not appear in the ground state at T = 0. In order
to take account of the correlation effect, we apply the self-
consistent second-order perturbation theory (SCSOPT)
to the present model with the local approximation for the
self-energy part of the Green’s function. It is expected
that the SCSOPT is sufficient to investigate the correla-
tion effect in the low-energy and low temperature region.
Using the density of states (DOS) Dγ(ν) for each band
γ, the local Green’s function is expressed as follows;

Gγ(ε + iδ) =
∫

dν
Dγ(ν)

ε + iδ − ν − Σγ(ε + iδ)
, (5)

Dγ(ν) =
1
N

∑
k

δ(ν − Eγ
k), (6)
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Fig. 2. Second-order perturbation terms of the self energy Σ̃γ (ε+
iδ) for the γ component. The solid line denotes the full local

Green’s function. Dashed lines indicate electron-electron inter-
actions: U , U2, U3 or J.

where N is the number of sites and δ → 0+. The self
energy Σγ(ε + iδ) consists of the constant Hartree term
and the second-order perturbation term Σ̃γ(ε + iδ). The
former is neglected here since it can be regarded as al-
ready included in the band calculation. The latter is cal-
culated from the full local Green’s function as shown in
Fig. 2. In these diagrams, the solid line denotes the full
local Green’s function Gγ(ε + iδ) which is determined
self-consistently together with the self-energy.

The number density of electrons is denoted by nγ :

nγ = 2
∫

dεργ(ε)f(ε), (7)

ργ(ε) = − 1
π

ImGγ(ε + iδ), (8)

where f(ε) is the Fermi distribution function : f(ε) =
1/(eβ(ε−µ)+1) and β = (kBT )−1. The chemical potential
µ should be determined so that ntotal(=

∑
γ nγ) is equal

to the given total density of electrons. In the practical
calculation, we set the chemical potential at T = 0 in
the middle point between the top of the valence band
and the bottom of the conduction band, and we use the
fixed value of the chemical potential at any temperature
for simplicity.

According to the linear response theory, the optical
conductivity is obtained from the current-current corre-
lation function (eq.(A·1) in Appendix). In deriving the
formula, we neglect k and γ dependence of the velocity
matrix element of the current operator. The transition
of electrons in the optical absorption is the direct one
conserving the momentum. We, however, found that the
formula eq.(A·1) can not reproduce the experiments at
all because a sharp threshold behavior appears at the
direct gap edge (see Fig. A·1 in Appendix). We there-
fore assume that the momentum conservation is violated
in the real system because of imperfections and phonon-
assisted transitions. By these simplifications, the current-
current correlation function is reduced to the joint-DOS-
type form.18) In the present paper, we use the following
expression for the optical conductivity by omitting con-
stant factors:

σ(ω) ≡
∑
γ,γ′

∫
dεργ (ε)ργ′

(ε + ω)
f(ε) − f(ε + ω)

ω
. (9)

There is a problem that the joint-DOS-type form does

not give the correct spectrum for ω → 0 at T > 0. In
the present study, however, we use the joint-DOS-type
form of the optical conductivity since we treat the system
with the gap and investigate the overall structure of the
spectrum.

3. Results

Figure 3 shows the band dispersion and the total DOS
we use in the case without interactions. The bands above
the Fermi level (indicated by the dashed line) are the f
bands constructed by the tight-binding model with the
two-center integral (ffσ) = 0.005 Ry. In order to repro-
duce the band dispersions obtained by the LDA band
calculation, we choose EΓ5 = 0.870 Ry and EΓ67 = 0.867
Ry for J = 5/2. The band structure just above the Fermi
level corresponds to J = 5/2 and that in the high-energy
region corresponds to J = 7/2. J = 7/2 states have ma-
trix elements for the crystalline electric field (CEF) term
(O2

6 − O6
6) in the Th group, but we neglected them for

simplicity since the J = 7/2 states lie at high energies.
E

Γ
(1)
5

, E
Γ

(2)
5

and EΓ67 are chosen as 0.894 Ry, 0.902 Ry
and 0.889 Ry, respectively. These values are chosen in-
dependently from the CEF parameters since there might
be contributions due to hydridization from implicit sur-
rounding orbitals (not included in the present model ex-
plicitly). For the valence band corresponding to Sb12 p
band with the Au symmetry, the value of (ffσ) is set
equal to 0.002 Ry and the energy level to 0.857 Ry. The
hybridization between the Sb12 p band and f bands is in-
troduced by (ffσ)′, which is set equal to 0.003 Ry. There
is an indirect gap between Γ and H points in accord with
the LDA band. The position of the direct gap differs from
the Γ point in the LDA band, but as will be seen later,
we consider the indirect gap as most important.

Concerning the valence band, there is a rather flat part
between N and P points. This is an effect of the hy-
bridization (ffσ)′ between the valence band and the 4f
band above EF and yield a peak in the DOS. The total
valence band width assumed in the present calculation is
rather narrow than that estimated from the band calcu-
lation.11) As mentioned in the previous section, we have
regarded the present band with the narrow width and the
above-mentioned peak at 0.855 Ry as corresponding to
the sharp peak structure at the top of the valence band
obtained from the band calculation, and the contribu-
tions from the bands below it are neglected. It may be
allowed since the main contribution to the low-energy ex-
citation spectrum of the optical conductivity originates
from the bands near the gap.

In the present calculation, we set U = 0.05eV and
J = 0.03eV. We choose these values to reproduce the
temperature dependence of the optical conductivity in
the experiment. Though the DOS does not have any tem-
perature dependence within the Hartree approximation,
the strong temperature dependence shows up if the cor-
relation effect is included. Figure 4(a) shows the temper-
ature dependence of the total DOS ρ(ε) (it is noted that
the chemical potential is set to the origin in the figures of
the total DOS). The sharp peaks lose their intensity and
their structures become smooth as the temperature in-
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Fig. 3. The total DOS (left) and the band structure (right) for
the non-interacting system. The Fermi level is indicated by the

dashed line.

creases. Note that the temperature-dependent spectrum
of the DOS cannot be obtained without taking account of
the correlation effect. The temperature dependence near
the gap is shown in Fig. 4(b). One can see that the gap
is filled up with increasing temperature and it turns into
the pseudogap at the high temperatures comparable to
the gap size. The peak structures near the gap lose their
intensity and they shift to the center of the gap. In the
present model we use, the gap at T = 0 is equal to about
0.02 eV. Thus it is recognized that the gap is filled in at
much lower temperature than that corresponding to the
gap size itself. At the high temperatures corresponding
to the gap size, the gap structure disappears.

The temperature dependence of the optical conduc-
tivity is shown in Fig. 5. The spectrum has a large peak
near ω � 0.1 eV and the (indirect) gap which reflects the
DOS gap at 0.02eV. With increasing temperature, the in-
traband contribution (the Drude part) appears and the
spectrum has finite intensity in the gap region. The large
peak loses its intensity with increasing temperature. At
the highest temperature we calculated (kBT = 0.030 eV,
which is higher than the room temperature), the gap and
the peak structures disappear completely. In the optical
experiment for CeRu4Sb12,4) the gap is filled up with
increasing temperature and it disappears completely at
300K as shown in the inset of Fig. 5. In the experimental
data, one can see also the decrease of the intensity of the
MIR peak with increasing temperature.

In order to see the correlation effect in the tempera-
ture dependence of the optical conductivity more clearly,
we show a comparison of spectra calculated by using the
SCSOPT and the Hartree-Fock (HF) approximation in
Fig. 6. Note that the figure shows the interband con-
tribution σinter(ω) which consists of the part γ �= γ′ of
the summation in eq.(9). Obviously the rapid decrease
of the intensity corresponding to the MIR peak can not
be obtained within the HF approximation. of the optical
conductivity calculated by using the HF approximation
originates from only the Fermi distribution function, the
large peak of the spectrum does not show any remarkable
change with increasing temperature.
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4. Summary and Discussion

We have calculated the density of states and the opti-
cal conductivity for the simple tight-binding model, in-
cluding local Coulomb and exchange interactions by SC-
SOPT; thereby the correlation effect on the temperature
dependence of optical conductivity spectra has been in-
vestigated. The intensity in the gap region grows rapidly
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Fig. 6. Comparison of the interband contributions of optical con-

ductivity spectra calculated by using (a) the SCSOPT and (b)
the Hartree-Fock (HF) approximation.

and the large peak above the gap shifts to the lower
energy with increasing temperature and the gap disap-
pears at high temperatures; the gap is filled at the lower
temperature than that corresponding to the gap size it-
self. In the optical measurement for CeOs4Sb12

9) and
CeRu4Sb12,4) the gap structure disappears at a lower
temperature than the gap size. The rapid disappearing of
the gap and the shift of the peak structure cannot be ob-
tained without the correlation effect. Thus it is concluded
that the correlation effect is important to explain the
temperature dependence of the optical conductivity spec-
tra obtained by the experiments for the Ce-based filled
skutterudites : CeOs4Sb12 and CeRu4Sb12. In the pho-
toemission experiment for CeRu4Sb12,3) the temperature
dependence of the photoemission spectrum was investi-
gated. In their result, the pseudo-gap is filled with in-
creasing temperature. The temperature-dependent DOS
spectrum cannot be explained without the correlation
effect as mentioned repeatedly.

In the present study, it has been shown that the large
peak corresponding to the MIR peak originates from the
optical transition to the J = 5/2 states from the va-
lence band. Thus, there should be the another peak cor-
responding to the transition to the J = 7/2 states at
higher energy regions. In fact, in the present result, we
can obviously see a peak structure corresponding to the
transition to the J = 7/2 state at about 0.5 eV in Fig. 5.
When we consider that the large peak (MIR peak) near
0.1 eV observed in experimental data for CeOs4Sb12 and
CeRu4Sb12 originates in the optical transition from the
valence band of X12 clusters to the conduction band con-
sisting of dispersive f J = 5/2 bands, it can be expected
that there is another peak structure corresponding to
the transition to f J = 7/2 bands. In the experimental
result for CeRu4Sb12,4) there is a peak around 1 eV (in-
set of Fig. 5). For CeOs4Sb12,9) there seems to be also a
peak structure near 1 eV. According to the band calcula-
tion,11) the magnitude of the spin-orbit splitting can be
estimated as 0.02 ∼ 0.03 Ry, i.e. a few hundreds meV.
Thus the peak position near 1eV in the experimental

spectrum is too high and one can not simply conclude
that it originates from the transition to J = 7/2 band.
Although this problem cannot be readily explained by
the present study, it should be reconciled whether there
is a possibility that the transition to J = 7/2 corresponds
to the peak structure near 1 eV in the optical conduc-
tivity spectrum for CeOs4Sb12 or CeRu4Sb12 both from
experimental and theoretical sides. In order to discuss
the detail structure of the spectrum, however, we need
a further study with a more elaborated band-structure
model.

Finally, we comment that a similar theoretical scheme
adopted in the present paper was recently applied to the
optical spectra of the typical Kondo insulator YbB12

20)

with a lot of common features, indicating an underlying
shared structures in both materials.
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Appendix: Comment on the joint-DOS-type op-
tical conductivity

In this Appendix, we comment on the comparison of
the optical conductivity spectrum obtained from the lo-
cal DOS (eq.(9)) and that obtained from the direct opti-
cal transition. When the momentum conservation is as-
sumed in derivation of the optical conductivity, we ob-
tain the following expression for the optical conductivity
with the direct optical transition (assuming velocity ma-
trix elements to be constant and neglecting the vertex
correction again):

σdirect(ω) ≡ 1
N

∑
k

∑
γ,γ′

∫
dεργ

k(ε)ργ′
k (ε + ω)

× f(ε) − f(ε + ω)
ω

, (A·1)

ργ
k(ε) = − 1

π
Im

1
ε + iδ − Eγ

k − Σγ(ε + iδ)
, (A·2)

where we omit the constant factor in defining σdirect(ω).
In contrast to σdirect(ω), we denote here the joint-DOS-
type optical conductivity expressed by eq.(9) as σlocal(ω).
The comparison of σlocal(ω) and σdirect(ω) for the non-
interacting case is shown in Fig. A·1. The gap appearing
in σlocal(ω) reflects the indirect gap and it is less than the
direct gap reflected in σdirect(ω), but the overall structure
including positions of large peaks is consistent with each
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in the case without interactions (see text). Inset shows the total
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other.
For T > 0, the gap of DOS is smeared out by the

many-body effect. In this case, the Drude part for γ =
γ′ becomes as σγ

Drude(ω → 0) = 2τ
π ργ(0) from (A·1)

if ργ
k(ε) = − 1

π Im 1
ε − Eγ

k + i/(2τ ) , although it becomes

(ργ(0))2 from (9). Therefore, it should be noted that the
joint-DOS-type form of the optical conductivity does not
give the correct spectrum for ω → 0 at T > 0 and ργ(0) >
0. Despite this deficiency, σlocal(ω) can explain the gross
feature of the observed spectra at finite frequencies in
the realistic situations.
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