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Abstract

In order to take account of the spatial fluctuation beyond the dynamical mean
field theory (DMFT), the two-particle self-consistent theory is carefully reinvesti-
gated and is proved to be unable to reproduce the correct low energy scale in the
strong correlation limit. An improved theory is proposed which starts from DMFT
and is combined with the spin-fluctuation theory (SFT) in a phenomenological form.
The present theory therefore encompasses DMFT and SFT, and describes the quan-
tum critical behavior properly with the same exponent as SFT. The local quantum
dynamics is fully taken into account as in DMFT in contrast to the phenomenolog-
ical treatment in SFT.
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The most powerful method for the description of the strongly correlated elec-
tron systems (SCES) may be the dynamical mean-field theory (DMFT).[1] It,
however, lacks the effect of intersite spin fluctuations, which becomes impor-
tant, e.g. in the vicinity of the quantum phase transitions.[2] Several methods
were proposed to overcome this deficiency of DMFT by taking account of
the cluster instead of the effective impurity in DMFT,[3,4] but none of them
has succeeded in the description of the quantum critical phenomena (QCP)
because of the use of the finite size of the cluster. The extended DMFT is
proposed by Si and Smith[5] for the fermion-boson model, which can describe
the properties at QCP. The other successful approachs to QCP are the spin
fluctuation theories (SFT’s).[6,2] The SFT by Moriya was further developped
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in a form which is more phenomenological but flexible in use.[9] The two-
particle self-consistent theory (TPSC)[7] has been proposed to improve SFT.
We, however, recently proved that TPSC cannot reproduce the correct low
energy scale in the strong correlation limit of the single impurity Anderson
model (SIAM), and therefore cannot be a good candidate for an improved
theory.[8] The proof proceeds as follows. For the symmetric case of SIAM, the
TPSC equation for the spin sector

T
∑
ω

2Π0(iω)
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where ωc denotes a cutoff frequency of the order O(∆) (resonance width), and
we have used the low energy form for the poralization function Π0(ω). The
above equation determines the effective interaction Us in the spin channel and
the static susceptibility χs = 1/2(π∆ − Us) = 1/4TK . However, the above
equation (2) yields the Kondo temperature TK → (π/2)ωc exp(−π2/2) for
U → ∞ which is finite and does not vanish.

We then propose a theory which avoids the above defect and combines both
DMFT and SFT. This is done first by introducing the effective vertex Γ(ω) =
U/[1 + UΠ0(ω)] and expressing the local dynamical susceptibility approxi-
mately as (gµB = 1)

χL(ω) =
1
2
Π0(ω)

1 − Γ(ω)Π0(ω)
, (3)

where Π0(iω) = −T
∑

ε G(iε)G(iε + iω) and the Green’s function G(iε) is the
solution of DMFT. χL(0) diverges when and only when U → ∞ at T = 0,
which is the desired property for impurity. Actually, we modify this as

χ̃L(ω) =
1

χL(ω)−1 − iCω
, (4)

and determine the parameter C by the sum rule, eq.(1), to correct the low
energy scale as a fine tuning.

Next task is to construct the wave-vector-dependent dynamical susceptibility
χ(q, ω) by taking account of the 1/d corrections. In d → ∞ limit, χ(q, ω) can
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be calculated from the knowledge of the effective impurity[1] as

χ(q, iω) =
∑
εε′

[
χ0

q(iω)

1 − Γ(iω)χ0
q(iω)

]
εε′

, (5)

where

χ0
q(iω)εε′ = −∑

k

G(k, iε)G(k + q, iε′ + iω)δεε′ , (6)

and Γ(iω)εε′ = Γ(iε, iε′, iω) = [χ0
L(iω)−1 − χL(iω)−1]εε′ is the vertex function

which is local and the matrix of the Matsubara frequencies ε, ε′ and χL(iω) =∑
εε′ χL(iω)εε′ . G(k, iε) is the Green’s function in d → ∞.

For d < ∞, the calculation of χ(q, ω) is not easy, but it has a general form as

χ(q, ω) = [χL(ω)−1 − J(q, ω)]−1. (7)

Therefore, we rather adopt Moriya’s approach[9] and use the approximate
long-wavelength expansion form around the ordering vector Q:

χ(Q + q, ω) = [χ̃L(ω)−1 − JQ(T ) + Aq2]−1, (8)

and determin JQ(T ) by the sum rule similar to [1] but including the wave-
vector sum. If JQ(T = 0) is chosen so that χ(Q, ω = 0, T = 0)−1 = χ̃L(ω =
0, T = 0)−1−JQ(T = 0) = 0 (QCP), the specific heat, staggered susceptibility
and resistivity show T 3/2 behaviors at low temperatures[10] in accord with the
SFT.[9] An example for the Hubbard model[10] is shown in Fig. 1.

The present theory thus encompasses DMFT[1] and SFT[9], and describes the
quantum critical behavior properly with the same exponent as SFT.[8] The
local quantum dynamics is fully taken into account as in DMFT in contrast to
the phenomenological treatment in SFT. It could acquire a microscopic basis if
one would be able to calculate J(q, ω) microscopically up to O(1/d). Further-
more, a formula for calculating the self-energy from χ(q, ω) is not yet estab-
lished in the case of strong correlation except for the fermion-boson model.[12]
For d → ∞, the self-energy can be calculated with a rather good accuracy by
using the iterative perturbation theory[11]. An extension of it to the case with
orbital degeneracy would be a future issue[13].
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Fig. 1. Temperature dependence of C(T )/T of the Hubbard model at QCP is plotted.

5


