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1. Introduction

Anti de Sitter (AdS) spacetime is a maximally symmetric spacetime with a nega-

tive constant curvature. It naturally appears as a solution of Einstein equation with

a negative cosmological constant. It also appears in compactifications of higher di-

mensional supergravities in the Kaluza-Klein theory [1]. Recently interest in field

theories in AdS spacetime has been much increased due to their relevance to the

AdS/CFT correspondence in the string/M theory [2, 3, 4] (For a review see ref. [5].).

An important issue of field theories in AdS spacetime is their stability, which was

previously discussed in refs. [6, 7, 8]. (For recent studies on the stability see ref.

[9].) Another important issue is a choice of boundary conditions of fields at spatial

infinity. In ref. [10] boundary conditions are chosen such that the Cauchy problem

for field equations is well-defined by requiring the conservation of the scalar product

of fields.

The purpose of this paper is to study the stability of free massive antisymmet-

ric tensor fields of arbitrary rank n in AdS spacetime. The string/M theory and

supergravities contain antisymmetric tensor fields, which play an important role.

Therefore, their stability is an important issue. There are two types of theories of

antisymmetric tensor fields. One type of theories have an action with the second

order kinetic term of the Maxwell type and the other type of theories have an action

with the first order kinetic term of the Chern-Simons type [11]. (Equivalent theories

to the latter were studied in refs. [12, 13].) Both types of theories appear in super-

gravities [14]. In this paper we only consider the Chern-Simons type theories, which

are theories of n-th rank antisymmetric tensor fields in d = 2n+1 dimensions. As a

preparation for study of the stability we first obtain the general solution of the field

equation. Then we obtain conditions for the stability by studying the conservation

and the positivity of the energy. We also study scalar products of the solutions.

The conditions for the stability of scalar fields in AdS spacetime were obtained

in refs. [7, 8]. A free massive scalar field theory in d-dimensional AdS spacetime is

stable if the mass m satisfies

(
m

a

)2

> −
(

d − 1

2

)2

, (1.1)

where a−1 is the radius of AdS spacetime. More precisely, there exists a complete

set of solutions of the field equation whose energy is conserved and positive definite.
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Furthermore, when the mass satisfies

−
(

d − 1

2

)2

<
(

m

a

)2

< 1 −
(

d − 1

2

)2

, (1.2)

there exists another set of stable solutions satisfying a different kind of boundary

condition at spatial infinity. In the latter case the coefficient of the improvement

term in the energy-momentum tensor must take a particular value. Scalar fields can

be stable even if the mass squared is negative due to a positive contribution from

the kinetic term to the energy.

As in the scalar field case we find that there exists a complete set of solutions

for antisymmetric tensor fields whose energy is conserved and positive definite if the

mass is positive m > 0. There are three kinds of improvement terms in the energy-

momentum tensor for antisymmetric tensor fields of rank n ≥ 2. The coefficients of

these terms can take arbitrary values although they do not contribute to the energy.

The scalar products of the solutions are shown to be well-defined and conserved.

In contrast to the scalar field case, however, there is no other set of stable so-

lutions. The conservation of the energy allows another set of solutions satisfying

a different kind of boundary condition at spatial infinity as in the scalar field case

but their energy turns out to be divergent. Therefore, only one kind of boundary

condition is possible for antisymmetric tensor fields with the Chern-Simons type

action. A Chern-Simons type theory of the second rank atisymmetric tensor fields

in five-dimensional AdS spacetime was previously studied in ref. [15] in the context

of the AdS/CFT correspondence. By using a different approach it was found there

that only one kind of boundary condition is possible, which is consistent with our

result.

In the next section we introduce the first order action of antisymmetric tensor

fields in AdS spacetime and obtain the energy-momentum tensor. In sect. 3 the

general solution of the field equation is obtained in terms of the hypergeometric

functions. The conservation and the positivity of the energy are discussed in sects.

4 and 5 respectively. In sect. 6 we show that there exists a well-define and conserved

scalar product for the solutions. In Appendix we give a construction and useful

identities of spherical harmonics for antisymmetric tensors on the (d−2)-dimensional

sphere Sd−2.
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2. Antisymmetric tensor fields in AdS spacetime

We consider antisymmetric tensor fields in d-dimensional AdS spacetime. AdS

spacetime is a maximally symmetric spacetime and has the metric

gµνdxµdxν =
1

a2 cos2 ρ

[
−dt2 + dρ2 + sin2 ρ habdθadθb

]
, (2.1)

where µ, ν = 0, 1, · · · , d − 1 are d-dimensional world indices and the constant a−1

is the radius of AdS spacetime. The time coordinate t has a range −∞ < t < ∞,

which corresponds to considering the universal covering of AdS spacetime. The

radial coordinate ρ has a range 0 ≤ ρ < π
2

with the spatial infinity at ρ = π
2
. θa and

hab (a, b = 1, 2, · · · , d− 2) are coordinates and the metric of the (d− 2)-dimensional

unit sphere Sd−2. Non-vanishing components of the Christoffel connection are

Γ 0
0ρ = Γ ρ

00 = Γ ρ
ρρ = tan ρ,

Γ ρ
ab = − tan ρhab, Γ a

ρb =
1

sin ρ cos ρ
δa
b ,

Γ a
bc =

1

2
had (∂bhcd + ∂chbd − ∂dhbc) = γ a

bc, (2.2)

where γ a
bc is the Christoffel connection of Sd−2. The Riemann tensor is given by

Rµν
τ
σ = −a2

(
δτ
µgνσ − δτ

νgµσ

)
. (2.3)

Our conventions for the curvature tensors are Rµν
τ
σ = ∂µΓ τ

νσ + Γ τ
µλΓ

λ
νσ − (µ ↔ ν),

Rµν = Rτµ
τ
ν , R = gµνRµν . For other properties of AdS spacetime see, e.g. ref. [5].

We consider a free theory of a complex antisymmetric tensor field Bµ1···µn of rank

n in d-dimensional AdS spacetime for d = 2n + 1. The Chern-Simons type action

[11] is

S =
∫

ddx
[
(−1)

1
2
(n+1) 1

(n!)2
ϵµ1···µ2n+1B∗

µ1···µn
∂µn+1Bµn+2···µ2n+1

−m

n!

√
−gB∗

µ1···µn
Bµ1···µn

]
, (2.4)

where ϵµ1···µ2n+1 is the totally antisymmetric tensor and ∗ denotes the complex con-

jugation. The reality of the action requires that the mass m is real. When m = 0,

the action consists of only the kinetic term, which do not depends on the metric but
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is invariant under general coordinate transformations. This is an action of a topo-

logical field theory. We do not discuss the stability of the m = 0 case since there is

no local degrees of freedom and the energy is zero. The field equation derived from

this action is

(−1)
1
2
(n+1) 1

n!
ϵµ1···µ2n+1∂µn+1Bµn+2···µ2n+1 − m

√
−gBµ1···µn = 0. (2.5)

We define the energy-momentum tensor of the theory as a variation of the action

with respect to the metric. To do this we need an action for general metric, which

reduces to the original action (2.4) for the AdS metric (2.1). We use the action

S ′ =
∫

ddx
[
(−1)

1
2
(n+1) 1

(n!)2
ϵµ1···µ2n+1B∗

µ1···µn
∂µn+1Bµn+2···µ2n+1

− µ

n!

√
−gB∗

µ1···µn
Bµ1···µn +

α

n!a
RB∗

µ1···µn
Bµ1···µn

+
β

n!a
RµνB

∗µ
µ2···µnBνµ2···µn +

γ

n!a
RµντσB

∗µν
µ3···µnBτσµ3···µn

]
, (2.6)

where α, β and γ are arbitrary constant parameters. The parameter µ is chosen as

µ = m − [d(d − 1)α + (d − 1)β + 2γ] a (2.7)

so that this action coincides with eq. (2.4) for the AdS metric. The last three

terms in eq. (2.6) containing the curvature tensors are generalizations of the well-

known Rφ2 term in the scalar field theory. These terms give improvement terms

in the energy-momentum tensor. Note that we do not need to introduce the term

RµτνσB
∗µν

µ3···µnBτσµ3···µn since it is related to the last term in eq. (2.6) by the Bianchi

identity of the Riemann tensor. From eq. (2.6) we obtain the energy-momentum

tensor as

Tµν = − 2√
−g

δS′

δgµν

=
2

n!
[nm + (d − 1)βa + 2γa] (B∗

(µBν))

− 1

n!
[m − 2(d − 1)αa] gµν(B

∗B)

+
2α

n!a

(
DµDν − gµνD

2
)

(B∗B)

+
β

n!a

[
2DσD(µ(B∗

ν)B
σ) − D2(B∗

(µBν)) − gµνD(τDσ)(B
∗τBσ)

]

− 4γ

n!a
DτDσ(B∗

(µ
τBν)

σ), (2.8)

5



where (B∗B) = B∗
µ1µ2···µn

Bµ1µ2···µn , (B∗
µBν) = B∗

µρ2···ρn
Bν

ρ2···ρn , etc. There is no

contribution from the kinetic term.

The energy is defined as follows [6]. The energy-momentum tensor (2.8) satisfies

DµT
µν = 0 for arbitrary α, β and γ when the field equation is used. We can

construct a conserved current

∂µ

(√
−gT µ

νξ
ν
)

= 0 (2.9)

for each Killing vector ξµ satisfying Dµξν + Dνξµ = 0. The energy is the charge of

this current for a timelike Killing vector ξµ = (1, 0, · · · , 0)

E = −
∫

dd−1x
√
−gT t

t, (2.10)

where the integral is over (d − 1)-dimensional space.

3. Solutions of the field equation

We shall obtain the general solution of the field equation (2.5). It is more con-

venient to rewrite the field equation in another form. Applying ∂µ1 to eq. (2.5) we

obtain a constraint

Dµ1B
µ1···µn = 0, (3.1)

where Dµ is the covariant derivative in AdS spacetime. Applying the differential

operation in the first term of eq. (2.5) to eq. (2.5) again and using eq. (2.5) in the

second term we obtain the second order equation

[
DµD

µ + n(n + 1)a2 − m2
]
Bµ1···µn = 0. (3.2)

We first solve these equations and then substitute the solutions into the first order

equation (2.5) to obtain further conditions.

By the constraint (3.1) the components Bta2···an and Btρa3···an are not independent

but can be expressed by Ba1···an and Bρa2···an . The field equation (3.2) for [µ1 · · ·µn] =

[a1 · · · an], [ρa2 · · · an] gives

L1B
a1···an − 2(−1)nn

sin3 ρ cos ρ
∇[a1Ba2···an]ρ = 0,

L2B
ρa2···an − 2

tan ρ
∇a1B

a1a2···an = 0, (3.3)
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where ∇a is the covariant derivative on Sd−2 using the Christoffel connection γ a
bc in

eq. (2.2). The differential operators L1 and L2 are defined as

L1 = −∂2
t + ∂2

ρ +
4n − 1

sin ρ cos ρ
∂ρ +

∇a∇a + 3n(n − 1)

sin2 ρ
+

4n2 −
(

m
a

)2

cos2 ρ
,

L2 = −∂2
t + ∂2

ρ +

(
4 tan ρ +

4n − 3

sin ρ cos ρ

)
∂ρ +

∇a∇a + 3n2 − 7n + 3

sin2 ρ

+
(2n + 1)2 −

(
m
a

)2

cos2 ρ
− 4. (3.4)

It can be shown that when eqs. (3.1) and (3.3) are satisfied, then the remaining

components of eq. (3.2) are automatically satisfied.

We decompose the antisymmetric tensor field into transverse and longitudinal

modes by using spherical harmonics Y (l)
a1···an

(θ) for antisymmetric tensor fields on

Sd−2. The spherical harmonics are transverse ∇a1Y (l)
a1···an

= 0 and are eigenfunctions

of the Laplacian ∇a∇a on Sd−2 with the eigenvalue −[l(l+d−3)−n]. The quantum

number l takes values l = 0, 1, 2, · · · for n = 0 and l = 1, 2, 3, · · · for n ≥ 1. In

the Appendix we sketch how to construct Y (l)
a1···an

and give some useful identities.

Using the spherical harmonics the components of the antisymmetric tensor field are

decomposed as

Ba1···an(x) = R1(t, ρ)Y (l)a1···an(θ) + R2(t, ρ)∇[a1Y (l)a2···an](θ),

Bρa2···an(x) = sin ρ cos ρR3(t, ρ)Y (l)a2···an(θ) + R4(t, ρ)∇[a2Y (l)a3···an](θ),

Bta2···an(x) = R5(t, ρ)Y (l)a2···an(θ) + R6(t, ρ)∇[a2Y (l)a3···an](θ),

Btρa3···an(x) = R7(t, ρ)Y (l)a3···an(θ) + R8(t, ρ)∇[a3Y (l)a4···an](θ), (3.5)

where Y (l)a1···an = ha1b1 · · ·hanbnY
(l)
b1···bn

and ∇a = hab∇b. The factor sin ρ cos ρ in

front of R3 is for later convenience. Substituting eq. (3.5) into the constraint (3.1)

for [µ2 · · ·µn] = [a2 · · · an], [ρa3 · · · an], R5, · · ·, R8 are expressed in terms of R1, · · ·,
R4 as

∂tR5 =
1

n
(l + n − 1)2R2 − (sin ρ cos ρ∂ρ + 2n) R3,

∂tR6 = −
(
∂ρ + 2 tan ρ +

2n − 1

sin ρ cos ρ

)
R4,

∂tR7 = − 1

n − 1
(l + n)(l + n − 2)R4,

∂tR8 = 0. (3.6)
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Other components of the constraint (3.1) are then automatically satisfied. R1, · · ·,
R4, in turn, are determined by solving eq. (3.3). To solve eq. (3.3) it is convenient

to change the variable as

v = sin2 ρ. (3.7)

Let us first consider R1. We define the function f1(v) by

R1(t, ρ) = N̄1(t)v
1
2
κ(1 − v)

1
2
λf1(v), (3.8)

where

N̄1(t) = N1e
−iω1t + Ñ1e

iω1t (3.9)

and N1 and Ñ1 are complex constants. The transverse part of the first equation in

(3.3) gives
[
4v(1 − v)∂2

v + 2 (2κ + 4n − 2(κ + λ + 1)v) ∂v + ω2
1 − (κ + λ)2

+
(κ − l + n)(κ + l + 3n − 2)

v
+

(λ − 2n)2 −
(

m
a

)2

1 − v

]
f1(v) = 0. (3.10)

We choose the parameters κ and λ as

κ = l − n, (λ − 2n)2 =
(

m

a

)2

(3.11)

so that the v−1 and (1 − v)−1 terms in eq. (3.10) vanish. There are two possible

values of λ

λ = λ± ≡ 2n ± |m|
a

. (3.12)

Then, eq. (3.10) becomes a hypergeometric equation
[
v(1 − v)∂2

v + (c1 − (a1 + b1 + 1)v) ∂v − a1b1

]
f1(v) = 0, (3.13)

where

a1 =
1

2
(λ + l − n − ω1),

b1 =
1

2
(λ + l − n + ω1),

c1 = l + n. (3.14)

The solution which gives Ba1···an regular at ρ = 0 is a hypergeometric function

f1(v) = 2F1(a1, b1, c1; v)

=
Γ(c1)

Γ(a1)Γ(b1)

∞∑

n=0

Γ(a1 + n)Γ(b1 + n)

Γ(c1 + n)

vn

n!
. (3.15)
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The equation for R4 can be solved similarly. We put

R4(t, ρ) = N̄4(t)v
1
2
(l−n+1)(1 − v)

1
2
(λ+1)f4(v), (3.16)

where

N̄4(t) = N4e
−iω4t + Ñ4e

iω4t (3.17)

and λ satisfies the second equation in (3.11). The longitudinal part of the second

equation in (3.3) gives a hypergeometric equation on f4. The solution which gives

Bρa2···an regular at ρ = 0 is

f4(v) = 2F1(a4, b4, c4; v), (3.18)

where

a4 =
1

2
(λ + l − n − ω4),

b4 =
1

2
(λ + l − n + ω4),

c4 = l + n. (3.19)

The equations for R2 and R3 are slightly more complicated since they are coupled

equations. The longitudinal part of the first equation and the transverse part of the

second equation in (3.3) become

LR2 +
2n

v
R3 = 0,

LR3 +
2(l + n − 1)2

nv
R2 = 0, (3.20)

where

L = −∂2
t + 4v(1 − v)∂2

v + 4(2n − v)∂v

− l(l + 2n − 2) − (n − 1)(3n + 1)

v
+

4n2 −
(

m
a

)2

1 − v
. (3.21)

These equations can be diagonalized by defining new functions R̂2 and R̂3 as

R̂2 = −(l + n − 1)R2 + nR3,

R̂3 = (l + n − 1)R2 + nR3. (3.22)
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Eq. (3.20) then becomes
[
L − 2

v
(l + n − 1)

]
R̂2 = 0,

[
L +

2

v
(l + n − 1)

]
R̂3 = 0. (3.23)

Putting

R̂2(t, ρ) = N̄2(t)v
1
2
(l−n+1)(1 − v)

1
2
λf2(v),

R̂3(t, ρ) = N̄3(t)v
1
2
(l−n−1)(1 − v)

1
2
λf3(v), (3.24)

where

N̄2(t) = N2e
−iω2t + Ñ2e

iω2t,

N̄3(t) = N3e
−iω3t + Ñ3e

iω3t, (3.25)

these equations become hypergeometric equations on f2 and f3. The solutions which

give Ba1···an and Bρa2···an regular at ρ = 0 are

f2(v) = 2F1(a2, b2, c2; v),

f3(v) = 2F1(a3, b3, c3; v), (3.26)

where

a2 =
1

2
(λ + l − n + 1 − ω2),

b2 =
1

2
(λ + l − n + 1 + ω2),

c2 = l + n + 1,

a3 =
1

2
(λ + l − n − 1 − ω3),

b3 =
1

2
(λ + l − n − 1 + ω3),

c3 = l + n − 1. (3.27)

Thus we have obtained the general solution of the second order equation (3.2).

We now consider the first order equation (2.5). Substituting eq. (3.5) into eq. (2.5)

and using eq. (A.11) and the second order equation (3.2) we find that eq. (2.5) is

satisfied if the functions R’s satisfy

m

a
R4 = (−1)

1
2
n(n−1)n − 1

l + n
sin ρ cos ρ ∂tR1,

m

a
R3 = (−1)

1
2
n(n+1)+ 1

2
l + n − 1

n

(
∂tR2 +

n

sin2 ρ
R5

)
. (3.28)
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These equations are satisfied if ω1 = ω4, ω2 = ω3 and N̄i satisfy

d

dt
N̄1 = (−1)

1
2
n(n−1) l + n

n − 1

m

a
N̄4,

d

dt
N̄3 = (−1)

1
2
n(n+1)+ 1

2
a

m

[
1

2

(
(l + n − 1)2 −

(
m

a

)2

− ω2
2

)
N̄3

−2(l + n)(l + n − 1)N̄2

]
. (3.29)

By these relations N̄4 and N̄3 are related to N̄1 and N̄2 respectively and independent

degrees of freedom are reduced from four to two.

4. Conservation of the energy

We first consider the conservation of the energy as a condition for the stability.

From eq. (2.9) the time derivative of the energy (2.10) is given by

d

dt
E =

∫
dd−2θ

√
−ggρρTρt

∣∣∣
ρ= π

2

, (4.1)

where the integral is over Sd−2. Tρt can be written as

n!Tρt = 2nm(B∗
(ρBt)) +

2α

a
(∂ρ − tan ρ) ∂t(B

∗B)

− β

a sin ρ cos ρ
∂t

(
B∗

a1···an
Ba1···an

)

+
β

a

(
∂ρ − tan ρ − n − 1

sin ρ cos ρ

)
∂t

(
B∗

ta2···an
Bta2···an

)

+
β

a

(
∂ρ − tan ρ +

n

sin ρ cos ρ

)
∂t

(
B∗

ρa2···an
Bρa2···an

)

+2(n − 1)
β

a

(
∂ρ − tan ρ +

n + 1

2 sin ρ cos ρ

)
∂t(B

∗
tρB

tρ)

− 4γ

a sin ρ cos ρ
∂t

(
B∗

ta2···an
Bta2···an

)
+ 4γa(B∗

(ρBt))

+
4γ

a

(
∂ρ − tan ρ +

n + 1

sin ρ cos ρ

)
∂t(B

∗
tρB

tρ) + ∇a(· · ·)a. (4.2)
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Here, ∇a(· · ·)a represents total derivative terms on Sd−2, which vanish in the integral

(4.1). Substituting eq. (3.5) into eq. (4.1) it is divided into three independent parts

d

dt
E =

1

n!

∫
dΩ

[
Ė1

∣∣∣Y (l)
a1···an

∣∣∣
2
+ Ė2

∣∣∣Y (l)
a2···an

∣∣∣
2
+ Ė3

∣∣∣Y (l)
a3···an

∣∣∣
2
]∣∣∣∣

ρ=π
2

, (4.3)

where dΩ = dd−2θ
√

h is the volume element of Sd−2 and

∣∣∣Y (l)
a1···an

∣∣∣
2

= ha1b1 · · ·hanbnY (l)∗
a1···an

Y
(l)
b1···bn

. (4.4)

Ė1, Ė2 and Ė3 depend only on R1, (R2, R3) and R4 respectively.

To evaluate the right hand side of eq. (4.1) we need boundary behaviors of the

functions Ri for ρ → π
2
. They can be obtained from the behavior of the hypergeo-

metric function 2F1(a, b, c; v) for v → 1. When λ−2n is not an integer, we find that

near the boundary R’s behave as

R1(ρ, t) ∼ N̄1(t)
[
A1(cos ρ)λ

(
1 + O(cos2 ρ)

)
+ B1(cos ρ)−λ+4n

(
1 + O(cos2 ρ)

)]
,

R̂2(ρ, t) ∼ N̄2(t)
[
A2(cos ρ)λ

(
1 + O(cos2 ρ)

)
+ B2(cos ρ)−λ+4n

(
1 + O(cos2 ρ)

)]
,

R̂3(ρ, t) ∼ N̄3(t)
[
A3(cos ρ)λ

(
1 + O(cos2 ρ)

)
+ B3(cos ρ)−λ+4n

(
1 + O(cos2 ρ)

)]
,

R4(ρ, t) ∼ N̄4(t)
[
A4(cos ρ)λ+1

(
1 + O(cos2 ρ)

)
+ B4(cos ρ)−λ+4n+1

(
1 + O(cos2 ρ)

)]
,

(4.5)

where

Ai =
Γ(ci)Γ(ci − ai − bi)

Γ(ci − ai)Γ(ci − bi)
, Bi =

Γ(ci)Γ(ai + bi − ci)

Γ(ai)Γ(bi)
(4.6)

with ai, bi and ci given in eqs. (3.14), (3.19) and (3.27). We see that the value of

λ determines boundary behaviors of the solutions. The case in which λ − 2n is an

integer is discussed at the end of this section.

Let us first consider Ė1. We obtain

Ė1 =
(

tan ρ

a

)4n−1
[
2α

a
(∂ρ − tan ρ) +

4nα − β

a sin ρ cos ρ

]
∂t|R1|2

=
1

a4n
∂t

∣∣∣N̄1

∣∣∣
2

[
−A2

1

(
2(2λ − 2n + 1)α + β

)
(cos ρ)2λ−4n

−2A1B1

(
2(2n + 1)α + β

)
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+B2
1

(
2(2λ − 6n − 1)α − β

)
(cos ρ)−2λ+4n

+C(cos ρ)2λ−4n+2 + D(cos ρ)2 + E(cos ρ)−2λ+4n+2

]∣∣∣∣∣
ρ=π

2

. (4.7)

The last three terms represent higher order terms than the first three respectively.

When we choose λ = λ+, the first term automatically vanishes. For the second

and the third terms to vanish we have to require either (i) B1 = 0 or (ii) A1 = 0,

2(2λ−6n−1)α−β = 0. On the other hand, when we choose λ = λ−, the third term

vanishes automatically and we have to require either (iii) A1 = 0 or (iv) B1 = 0,

2(2λ − 2n + 1)α + β = 0. It can be shown that the conditions (i) and (ii) are

equivalent to (iii) and (iv) respectively. It is enough to consider two cases (i) and

(iv) and set B1 = 0. For B1 = 0 only C term survives among the higher order terms.

In the case (i) it vanishes automatically. In the case (iv) we further need to require

2λ− − 4n + 2 > 0, i.e., |m| < a.

The conditions for Ė2 and Ė3 to vanish can be obtained in a similar way. It first

requires B2 = B3 = B4 = 0. The remaining terms are

Ė2 = − 1

2na4n
[2(2λ − 2n + 1)α + β] (cos ρ)2λ−4n∂t|N̄2A2 − N̄3A3|2

+
1

8n2ω4
2a

4n
[2n(2λ − 2n + 1)α + (2λ − n)β + 4γ] (cos ρ)2λ−4n

×∂t|(λ − l − 3n + 1) ˙̄N2A2 + (λ + l − n − 1) ˙̄N3A3|2

+
1

4n2ω2
2a

4n

(
2γ +

nm

a

) (
N̄2A2 + N̄3A3

)∗

×
[
(λ − l − 3n + 1) ˙̄N2A2 + (λ + l − n − 1) ˙̄N3A3

]
+ c.c.,

Ė3 = − 1

ω2
1a

4n
∂t

∣∣∣N̄4

∣∣∣
2
A2

4(cos ρ)2λ−4n 1

n − 1
(l + n)(l + n − 2)(λ − 2n)

×
[
2n(2λ − 2n + 1)(λ − 2n)α + (2λ − n)(λ − 2n)β

+ (4(λ − 2n) − 2) γ − nm

a

]∣∣∣∣
ρ=π

2

. (4.8)

For λ = λ+ all these terms vanish automatically. For λ = λ− we have to require the

coefficients to vanish, which fixes the parameters α, β and γ.

To summarize, the conservation of the energy leads to one of the two possibilities

(I) λ = λ+, Bi = 0,

(II) λ = λ−, Bi = 0, |m| < a. (4.9)
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In the case (II) the coefficients of the improvement terms must be chosen as

α = − n

2(λ − n)(2λ − 2n + 1)

m

a
,

β =
n

λ − n

m

a
,

γ = −n

2

m

a
. (4.10)

The conditions Bi = 0 require ai = 0 or bi = 0, which lead to the quantization of ωi

ω1 = ±(2k1 + λ + l − n),

ω2 = ±(2k2 + λ + l − n + 1),

ω3 = ±(2k3 + λ + l − n − 1),

ω4 = ±(2k4 + λ + l − n), (4.11)

where ki are non-negative integers. Then, the hypergeometric functions in eqs.

(3.15), (3.18), (3.26) can be expressed by the Jacobi polynomials as in the scalar

field theory [8].

The above analysis does not immediately apply to the case λ − 2n = N for an

integer N . Let us consider the N > 0 case. (The N < 0 case is equivalent to the

N > 0 case.) This occurs only when we choose λ = λ+. In such a case the coefficients

Ai in eq. (4.6) are divergent for generic values of ωi since ci − ai − bi = −N . To

make Ai finite we have to choose ωi such that ci −ai = −k′
i or ci − bi = −k′

i for non-

negative integers k′
i. The conservation of the energy requires Bi = 0 as above, which

restrict the values of k′
i to k′

i = N,N + 1, · · ·. Redefining ki = k′
i − N = 0, 1, · · · we

recover the values of ωi in eq. (4.11). Therefore, the results obtained for non-integer

λ − 2n is also valid for integer λ − 2n.

5. Positivity of the energy

We next consider the second condition of stability, i.e., the positivity of the energy.

The integrand of the energy (2.10) is

−
√
−gT t

t = 2m
√

h
(

tan ρ

a

)2n−1 [
n(B∗

t Bt) −
1

2
gtt(B

∗B)
]

+∂ρ

[√
h

(
tan ρ

a

)2n−1 1

a

{
(∂ρ − tan ρ)

[
2α(B∗B) + β(B∗

t B
t)

]
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+

(
∂ρ − tan ρ +

2n − 1

sin ρ cos ρ

) [
β(B∗

ρB
ρ) + 4γ(B∗

tρB
tρ)

]

− 1

sin ρ cos ρ

[
β(B∗

aB
a) + 4γ(B∗

taB
ta)

]}]
+
√

h∇a(· · ·)a. (5.1)

We see that the contributions from the α, β and γ terms in the action (2.6) are total

derivative. Substituting eq. (3.5) into eq. (5.1) it is divided into three independent

parts

E =
1

n!

∫
dΩ

[
E1

∣∣∣Y (l)
a1···an

∣∣∣
2
+ E2

∣∣∣Y (l)
a2···an

∣∣∣
2
+ E3

∣∣∣Y (l)
a3···an

∣∣∣
2
]
. (5.2)

E1, E2 and E3 depend only on R1, (R2, R3) and R4 respectively.

E1 is evaluated as

E1 = m
∫

dρ
(

tan ρ

a

)4n+1 1

sin2 ρ
|R1|2 + ∆E1, (5.3)

where ∆E1 is total derivative terms

∆E1 =
∫

dρ∂ρ

[(
tan ρ

a

)4n−1 1

a

{
2α

(
∂ρ − tan ρ +

2n

sin ρ cos ρ

)
− β

sin ρ cos ρ

}
|R1|2

]

=
[
− 1

a4n
[2(2λ − 2n + 1)α + β]

∣∣∣N̄1

∣∣∣
2
A2

1(cos ρ)2λ−4n + O((cos ρ)2λ−4n+2)
]∣∣∣∣

ρ= π
2

.

(5.4)

The integral of the bulk term in eq. (5.3) is convergent for λ = λ+ as seen from the

boundary behavior of R1 in eq. (4.5). However, it is divergent for λ = λ−. Therefore,

the choice λ = λ− is not allowed and only λ = λ+ is possible. In the case of scalar

fields discussed in refs. [7, 8] the mass term in the energy is also divergent but it

is canceled by a divergent contribution from the kinetic term. Both of λ = λ+ and

λ = λ− are possible in the scalar field theories. In the present theory there is no

kinetic term in the energy since the kinetic term of the action is a topological term.

For λ = λ+ the bulk term in eq. (5.3) is obviously positive definite when m > 0.

The boundary term ∆E1 vanishes since it has a positive power of cos ρ.

Similarly, E2 and E3 are given by

E2 = m
∫

dρ
(

tan ρ

a

)4n+1 1

sin2 ρ

[
1

n
(l + n − 1)2 |R2|2

+n

(
cos2 ρ |R3|2 +

1

sin2 ρ
|R5|2

)]
+ ∆E2,
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E3 = m
∫

dρ
(

tan ρ

a

)4n+1 1

sin4 ρ

[
n(n − 1)

1

sin2 ρ
|R7|2

+
n

n − 1
(l + n)(l + n − 2)

(
|R4|2 + |R6|2

)]
+ ∆E3, (5.5)

where the boundary terms are

∆E2 = − 1

4na4n

[
[2(2λ − 2n + 1)α + β]

∣∣∣N̄2A2 − N̄3A3

∣∣∣
2
(cos ρ)2λ−4n

− 1

nω4
2

[2n(2λ − 2n + 1)α + (2λ − n)β + 4γ]

×
∣∣∣(λ − l − 3n + 1) ˙̄N2A2 + (λ + l − n − 1) ˙̄N3A3

∣∣∣
2
(cos ρ)2λ−4n

+O((cos ρ)2λ−4n+2)
]∣∣∣∣

ρ=π
2

,

∆E3 =
[
(l + n)(l + n − 2)(λ − 2n)2

(n − 1)ω4
4a

4n
[2n(2λ − 2n + 1)α + (2λ − n)β + 4γ]

×
∣∣∣ ˙̄N4

∣∣∣
2
A2

4(cos ρ)2λ−4n + O((cos ρ)2λ−4n+2)
]∣∣∣∣

ρ=π
2

. (5.6)

For λ = λ+ the bulk integrals in eq. (5.5) are convergent and are positive definite

when m > 0. The boundary terms ∆E2 and ∆E3 vanish in the same way as ∆E1.

It is thus proved that the energy is well-defined and positive definite for the

case (I) in eq. (4.9) if the additional condition m > 0 is satisfied. The case (II) in

eq. (4.9) is not allowed since the energy is divergent. Therefore, there exists only

one complete set of solutions corresponding to the case (I) for antisymmetric tensor

fields with the Chern-Simons type action.

6. Scalar product

Finally we consider a scalar product of the fields. The scalar product of two

solutions B1µ1···µn and B2µ1···µn is defined as

(B1, B2) =
∫

dd−1x
√
−gJ t (6.1)

by using the time component of the conserved current

Jµ = −i
(
B∗

1ν1···νn
F µν1···νn

2 − F ∗µν1···νn
1 B2ν1···νn

)
. (6.2)
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The integral in eq. (6.1) is convergent since
√
−gJ t = O

(
(cos ρ)2λ−4n+1

)
for ρ → π

2

and 2λ − 4n + 1 > −1 for λ = λ+ and m > 0. The scalar product (6.1) is also

conserved
d

dt
(B1, B2) = −

∫
dd−2θ

√
−gJρ

∣∣∣
ρ=π

2

= 0 (6.3)

since
√
−gJρ|ρ=π

2
= O((cos ρ)2λ−4n+2)|ρ=π

2
= 0 for λ = λ+ and m > 0. Therefore we

have a well-defined conserved scalar product.
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cation, Culture, Sports, Science and Technology, Japan, Priority Area (#707) “Su-
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Appendix: Spherical harmonics on Sd−2

In this Appendix we sketch how to construct spherical harmonics for antisymmet-

ric tensor fields on Sd−2 following the approach in refs. [16, 17, 18]. See also ref. [19].

We embed a (d − 2)-dimensional unit sphere Sd−2 in (d − 1)-dimensional Euclidean

space Rd−1 with the Cartesian coordinates xi (i = 1, 2, · · · , d − 1). The metric of

Rd−1 is given by

ds2 = δijdxidxj

= dr2 + r2hab(θ)dθadθb, (A.1)

where r =
√

δijxixj is a radial coordinate and θa (a = 1, 2, · · · , d − 2) are angular

coordinates parametrizing the unit sphere Sd−2 with the metric hab.

Let us consider antisymmetric tensors Ti1···in in Rd−1 which satisfy

ni1Ti1···in = 0, ∂i1Ti1···in = 0, (A.2)

where ni(θ) = r−1xi is a unit vector normal to the sphere. In the polar coordinates

(r, θa) these conditions become

Tra2···an = 0, ∇a1Ta1···an = 0, (A.3)
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where ∇a is the covariant derivative on Sd−2. Therefore, restricting to the unit

sphere they represent transverse tensors on the sphere. The relation between Ti1···in

and Ta1···an is

Ta1···an = rn ∂ni1

∂θa1
· · · ∂nin

∂θan
Ti1···in . (A.4)

In the Cartesian coordinates spherical harmonics for such transverse antisym-

metric tensors for n ≥ 1 are given by

Y
(l)
i1···in(θ) = r−lC[i1···inj1](j2···jl)x

j1xj2 · · ·xjl . (A.5)

Here, C[i1···inj1](j2···jl) is a constant coefficient, which is antisymmetric in i1, · · · , in, j1

and symmetric in j2, · · · , jl, and is traceless with respect to any pair of the indices.

Spherical harmonics for n = 0 are given by

Y (l)(θ) = r−lC(j1···jl)x
j1 · · ·xjl , (A.6)

where C(j1···jl) is symmetric in j1, · · · , jl and is traceless with respect to any pair of

the indices. Note that l takes values l = 0, 1, 2, · · · for n = 0 and l = 1, 2, 3, · · · for

n ≥ 1. One can easily check that these tensors indeed satisfy the conditions (A.2).

Applying the Laplacian ∆d−1 = δij∂i∂j in Rd−1 we find

∆d−1Y
(l)
i1···in = − l(l + d − 3)

r2
Y

(l)
i1···in . (A.7)

On the other hand, in the polar coordinates we have

∆d−1Y
(l)
a1···an

=

[
1

r2
∇a∇a +

(
∂r +

d − n − 2

r

) (
∂r −

n

r

)
− n

r2

]
Y (l)

a1···an

=
1

r2
(∇a∇a − n) Y (l)

a1···an
. (A.8)

In the last line we have used the fact that Y (l)
a1···an

, which is related to eqs. (A.5),

(A.6) by the relation (A.4), has r dependence rn. Comparing eqs. (A.7) and (A.8)

we obtain eigenvalues of the Laplacian on Sd−2

∇a∇aY
(l)
a1···an

= −[l(l + d − 3) − n]Y (l)
a1···an

. (A.9)

Useful identities, which can be easily derived from eq. (A.9) are

∇a∇a∂[a1Y
(l)
a2···an] = −[l(l + d − 3) − d + n + 2]∂[a1Y

(l)
a1···an],

∇a1∇[a1Y
(l)
a2···an] = − 1

n
(l + n − 1)(l + d − n − 2)Y (l)

a2···an
. (A.10)
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There is a duality relation between Y (l)
a1···am

and Y (l)
a1···ad−m−3

, which we use in sect.

3. By appropriately choosing the coefficients C’s in eqs. (A.5) and (A.6) the relation

can be written as

Y (l)a1···am =
(−1)

1
2
(m+1)(d−m−2)

(l + m)(d − m − 3)!

1√
h
ϵa1···a2n+1∂am+1Y

(l)
am+2···ad−2

. (A.11)

One can easily check that both hand sides of this equation are transverse and have

the same eigenvalue of ∇a∇a. The normalization factor on the right hand side is

determined by repeated applications of this relation.
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