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Abstract
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∗ e-mail: madoka@mit.edu
† e-mail: tanii@post.saitama-u.ac.jp



1. Introduction

It was proposed that the type IIB string theory compactified on AdS5 × S5 has

a dual description by the N = 4 super Yang-Mills theory in the large N limit

[1, 2, 3]. This conjecture of the AdS/CFT correspondence has been supported

by comparison of spectra, correlation functions and anomalies calculated in both

of the supergravity and the Yang-Mills theory. (For a review, see ref. [4].) The

AdS/CFT correspondence was also studied in various other spacetime dimensions.

At first the correspondence was studied for theories with high supersymmetries such

as N = 4. To apply it to more realistic models one has to consider theories with

lower supersymmtries.

One of the ways to obtain the AdS/CFT correspondence for lower supersym-

metric cases is to modify supergravity solutions by adding a perturbation. In ref.

[5] a perturbation of the three-form flux was added to the AdS5 × S5, which breaks

N = 4 to N = 1. This perturbation corresponds to fermion mass terms of the three

N = 1 chiral multiplets in the N = 4 super Yang-Mills theory and polarizes D3

branes into 5-branes [6, 7]. Similar constructions of the AdS/CFT correspondence

with lower supersymmetries were discussed in refs. [8, 9, 10, 11].

The general form of a three-form flux perturbation to the AdS5 × S5 solution

which preserves N = 1 supersymmetry and satisfies the Bianchi identity and the

linearized field equation was obtained in ref. [12]. It contains an arbitrary holo-

morphic function and an arbitrary harmonic function of the coordinates for the

directions transverse to the D3-branes. It was argued that the holomorphic function

corresponds to a superpotential in the dual super Yang-Mills theory. When the

holomorphic function is quadratic in the transverse coordinates, the three-form flux

coincides with that of ref. [5].

The purpose of the present paper is to obtain the general form of a three-form

flux perturbation to the AdS5 × S5 solution which preserves N = 2 supersymmetry.

We use the result of the N = 1 case [12] and require further that the second

supersymmetry is preserved. We find that the arbitrary holomorphic function in

the N = 1 case is restricted to a quadratic function of the transverse coordinates.

This is a special form of the perturbation studied in ref. [5], which has one vanishing

mass. It would be interesting to study a relation of our result to other works on

soft breaking of N = 4 to N = 2 in the Coulomb branch [13, 14, 15]. In order

to discuss the corresponding dual field theory and its RG flows we need to find
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out an exact solution with non-vanishing three-form flux. In addition, it would be

also interesting to discuss the brane representations and massive vacua using S-dual

transformations.

2. Unperturbed solution

The field content of the type IIB supergravity in ten dimensions [16, 17] is a metric

gMN , a complex Rarita-Schwinger field ψM , a real fourth-rank antisymmetric tensor

field with a self-dual field strength FMNPQR, a complex second-rank antisymmetric

tensor field with a field strength GMNP , a complex spinor field λ and a complex

scalar filed τ = C + ie−Φ. We denote ten-dimensional world indices as M,N, · · · =

0, 1, · · · , 9 and local Lorentz indices as A,B, · · · = 0, 1, · · · , 9. The fermionic fields

satisfy chirality conditions Γ̄10DψM = ψM , Γ̄10Dλ = −λ, where Γ̄10D = Γ0Γ1 · · ·Γ9

is the ten-dimensional chirality matrix. We choose the ten-dimensional gamma

matrices ΓA to have real components.

The field equations of this theory have a solution with the AdS5 × S5 metric

[18, 19]

gMNdxMdxN = Z− 1
2 ηµνdxµdxν + Z

1
2 δmndxmdxn, (1)

where M = (µ, m) (µ = 0, 1, 2, 3; m = 4, 5, · · · , 9), Z = R4

r4 and r2 = xmxnδmn.

The constant R is a radius of AdS5 and S5. The fifth-rank field strength has non-

vanishing components

Fµνρσm =
1

κZ2
ϵµνρσ∂mZ,

Fmnpqr = −Z
1
2

κ
ϵmnpqrs∂

sZ, (2)

where κ is a coupling constant. This solution represents a supergravity configuration

produced by D3-branes located at xm = 0. More generally, the warp factor Z can

be an arbitrary function of xm which is harmonic except at points where D3-branes

exist. We will consider the general Z but assume that the density of D3-branes

vanishes for r → ∞ and therefore Z → R4

r4 for r → ∞.

We are interested in how many supersymmetries are preserved by this solution

and by a solution with a perturbation of GMNP discussed later. They are found by
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studying vanishing of local supertransformations of the fermionic fields ψM and λ.

The supertransformations of the fermionic fields [16, 17] in these backgrounds are

δψM =
1

κ
DMϵ +

1

16 · 5!
iFP1···P5Γ

P1···P5ΓMϵ − 1

96
GNPQ

(
ΓM

NPQ − 9δN
MΓPQ

)
ϵ∗,

δλ =
1

24
GMNP ΓMNP ϵ, (3)

where the transformation parameter ϵ is a complex spinor satisfying the chirality

condition Γ̄10Dϵ = ϵ. To study the supertransformations for the above backgrounds

it is convenient to represent the ten-dimensional gamma matrices as

Γµ = γµ ⊗ 1,

Γm = γ̄4D ⊗ γm, (4)

where γµ and γm are the SO(3,1) and SO(6) gamma matrices respectively. The

chirality matrices are defined as

γ̄4D = iγ0γ1γ2γ3, γ̄6D = iγ4γ5γ6γ7γ8γ9, (5)

which are related to the ten-dimensional one as Γ̄10D = −γ̄4Dγ̄6D.

The above solution (1), (2) without a perturbation has 32 supersymmetries [18,

19]. This can be seen as follows. The supertransformation δλ automatically vanishes,

while the vanishing of δψM requires

D̃Mϵ = 0, (6)

where we have defined

D̃µ = ∂µ − 1

8Z
∂mZγµγ

m(1 + γ̄4D),

D̃m = ∂m − 1

8Z
∂nZ (δn

mγ̄4D − γm
n(1 + γ̄4D)) . (7)

For solutions of eq. (6) to exist the integrability condition

[D̃M , D̃N ]ϵ = 0 (8)

must be satisfied. Using the expression (7) it is easy to show that eq. (8) is satisfied

for an arbitrary ϵ. Therefore, all of 32 supersymmetries are preserved [18, 19]. From

the four-dimensional field theoretical point of view in the AdS/CFT correspondence
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16 of them are Poincaré supersymmetries while other 16 are conformal supersym-

metries. Thus, we have N = 4 supersymmetry in four dimensions. More explicitly,

the solutions of eq. (6) with the chirality γ̄4D = −1 have a form

ϵ = Z− 1
8 η, (9)

where η is an arbitrary constant spinor with the chirality γ̄4D = −1. These solutions

correspond to Poincaré supersymmetries. The solutions with the chirality γ̄4D = +1

depend on xµ and correspond to conformal supersymmetries.

3. Three-form flux with N = 2 supersymmetry

By introducing a perturbation of the three-form flux Gmnp the N = 4 supersym-

metry of the unperturbed supergravity background is broken to lower N . In ref.

[12] the conditions on Gmnp for unbroken N = 1 supersymmetry were studied. The

supersymmetry parameter is expanded as ϵ = ϵ0 + ϵ1 + · · ·, where ϵ0 is a solution

of eq. (6) for the unperturbed background and ϵ1 is the first order correction due to

the perturbation. Substituting it into eq. (6) ϵ1 is determined by ϵ0. To proceed it

is convenient to define complex coordinates zi (i = 1, 2, 3) from xm

z1 =
1√
2
(x4 + ix7), z2 =

1√
2
(x5 + ix8), z3 =

1√
2
(x6 + ix9). (10)

It was required in ref. [12] that one of the four Poincaré supersymmetries ϵ0 =

Z− 1
8 η, where η is a constant spinor satisfying

γ 1̄η = γ 2̄η = γ 3̄η = 0, (11)

is preserved. Here, ī denote indices of z̄i, while i denote those of zi. Using the

expression γ̄6D = (1 − γ1γ 1̄)(1 − γ2γ 2̄)(1 − γ3γ 3̄) it is easy to see that this ϵ0 has

the chirality γ̄4D = −γ̄6D = −1 appropriate for the Poincaré supersymmetry. Then,

this N = 1 supersymmetry restricts the form of Gmnp as [12]

Gijk = 0,

Gijk̄ =
2

3
ϵ̂k̄

pq∂−2∂p∂[iφ∂j]∂qZ + ϵ̂ij
l̄∂k̄∂l̄ψ,

Gij̄k̄ =
1

12
ϵ̂j̄k̄

l
(
2∂i∂lφZ − αϵ̂il

k̄∂k̄Z − 4∂[iφ∂l]Z
)
,

Gīj̄k̄ =
1

6
ϵ̂īj̄k̄δ

ll̄∂lφ∂l̄Z, (12)
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where φ(z1, z2, z3) is an arbitrary holomorphic function, α is an arbitrary constant

and ψ is an arbitrary harmonic function.∗ In eq. (12) ϵ̂ij
k̄ and ϵ̂īj̄

k are totally

antisymmetric in their indices and take constant values 0, ±1 regardless of index

positions, and ∂2 = 2δīi∂i∂ī is the Laplacian. The three-form flux (12) also satisfies

the Bianchi identity as well as the linearized field equation.

We shall obtain conditions on Gmnp for unbroken N = 2 supersymmetry. We

require that in addition to ϵ0 = Z− 1
8 η the second supersymmetry with the parameter

ϵ0 = Z− 1
8 γ1γ2η (13)

is also preserved. This ϵ0 satisfies

γ1ϵ0 = γ2ϵ0 = γ 3̄ϵ0 = 0 (14)

and has the chirality γ̄4D = −1. Comparing eqs. (11) and (14) it is easy to see

that the conditions for the second supersymmetry are obtained from eq. (12) by the

replacements

1 ↔ 1̄, 2 ↔ 2̄, α → α′, φ(z1, z2, z3) → φ′(z̄1, z̄2, z3), ψ → ψ′ (15)

for new α′, φ′ and ψ′.

We now require that the expression (12) and that with the replacements (15) are

compatible each other. Let us first consider G123. From the expression (12) we have

G123 = 0. From the other expression we have G123 = 1
6
∂2

3φ
′Z, which is obtained

from G1̄2̄3 in eq. (12) by the replacements (15). Thus we obtain a condition

G123 : ∂2
3φ

′ = 0. (16)

Similarly, we obtain conditions

G22̄1 + G33̄1 : ∂2̄∂3φ
′ = 0,

G11̄2 + G33̄2 : ∂1̄∂3φ
′ = 0,

G1̄2̄3 : ∂2
3φ = 0,

G2̄21̄ + G33̄1̄ : ∂2∂3φ = 0,

G1̄12̄ + G33̄2̄ : ∂1∂3φ = 0,

G12̄3̄ : ∂2
1φ = ∂2

2̄φ
′,

G1̄23̄ : ∂2
2φ = ∂2

1̄φ
′. (17)

∗ In ref. [12] the constant α is required to vanish by the Bianchi identity. However, we do not
agree with this result and leave α non-vanishing.
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The component G11̄3 + G22̄3 vanishes in both of the two expressions and gives no

condition. These conditions fix the forms of φ and φ′ as

φ = m1(z
1)2 + m2(z

2)2 + 2az1z2 + b1z
1 + b2z

2 + b3z
3,

φ′ = m2(z̄
1)2 + m1(z̄

2)2 + 2a′z̄1z̄2 + b′1z̄
1 + b′2z̄

2 + b′3z
3, (18)

where m1, m2, a, a′, bi and b′i are arbitrary constants. We further obtain conditions

G1̄23 : ∂2
1̄ψ = ∂2

2ψ
′,

G12̄3 : ∂2
2̄ψ = ∂2

1ψ
′,

G311̄ : ∂1̄∂2̄ψ = −∂1∂2ψ
′, a = −a′. (19)

By a linear transformation zi → U i
jz

j (i, j = 1, 2) with a unitary matrix U we can

set a = −a′ = 0.

So far we have not used a particular form of Z. We now examine the remaining

conditions first by using the asymptotic form Z ∼ R4

r4 for r → ∞ to fix the coefficients

in eq. (18) and α, α′. We then check that the conditions are satisfied also for r < ∞.

From the equation for G11̄3̄ we obtain

G11̄3̄ : −1

6
∂1∂2φZ +

1

12
(α∂3̄Z + 2∂1φ∂2Z − 2∂2φ∂1Z)

=
1

6
∂1̄∂2̄φ

′Z − 1

12
(α′∂3̄Z + 2∂1̄φ

′∂2̄Z − 2∂2̄φ
′∂1̄Z) . (20)

The equation for G22̄3̄ gives the same condition. Substituting the asymptotic form

Z ∼ R4

r4 and eq. (18) into eq. (20) we find α′ = −α and b1 = b2 = b′1 = b′2 = 0. The

remaining conditions become

G11̄2̄ : ∂1∂3̄ψ
′ =

1

12
(α∂2̄ + 2b3∂1)Z,

G33̄1̄ : ∂2∂3̄ψ
′ = − 1

12
(α∂1̄ − 2b3∂2)Z,

G1̄2̄3̄ : ∂2
3̄ψ

′ =
1

6
b3∂3̄Z,

G233̄ : ∂1̄∂3̄ψ = − 1

12
(α∂2 − 2b′3∂1̄)Z,

G122̄ : ∂2̄∂3̄ψ =
1

12
(α∂1 + 2b′3∂2̄)Z,

G123̄ : ∂2
3̄ψ =

1

6
b′3∂3̄Z. (21)
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Comparing the equation obtained by applying ∂3̄ to the first equation in eq. (21)

and that obtained by applying ∂1 to the third equation we find α = 0. Then, eq.

(21) determines ψ, ψ′ as

∂3̄ψ =
1

6
b′3Z + f(z1, z2, z3),

∂3̄ψ
′ =

1

6
b3Z + f ′(z̄1, z̄2, z3), (22)

where f and f ′ are arbitrary functions of each variables. Substituting eq. (22) into

the z̄3 derivative of eq. (19) and using the asymptotic form Z ∼ R4

r4 we obtain

b3 = b′3 = 0.

As a result of these analyses at asymptotic region r ∼ ∞ we obtain

φ = m1(z
1)2 + m2(z

2)2,

φ′ = m2(z̄
1)2 + m1(z̄

2)2. (23)

We have to check that eqs. (19), (20) and (21) are satisfied even for r < ∞. Substi-

tuting eq. (23) into eq. (21) we find that their right-hand sides vanish. The general

solution of these equations are

ψ = f(z1, z2, z3)z̄3 + g(z1, z̄1, z2, z̄2, z3),

ψ′ = f ′(z̄1, z̄2, z3)z̄3 + g′(z1, z̄1, z2, z̄2, z3), (24)

where f , f ′, g and g′ are arbitrary functions of each variables. The conditions in eq.

(19) then require

∂2
1̄g = ∂2

2g
′, ∂2

2̄g = ∂2
1g

′, ∂1̄∂2̄g = −∂1∂2g
′. (25)

The conditions that ψ and ψ′ in eq. (24) are harmonic are

∂2g(z1, z̄1, z2, z̄2, z3) = −∂3f(z1, z2, z3),

∂2g′(z1, z̄1, z2, z̄2, z3) = −∂3f
′(z̄1, z̄2, z3). (26)

The functions f and f ′ do not appear in Gmnp as one can see by substituting eq. (24)

into eq. (12). We only need to consider g and g′. Eq. (26) means that ∂2g and ∂2g′

are independent of z̄1, z̄2 and z1, z2 respectively. These conditions are automatically

satisfied when g and g′ satisfy eq. (25). The functions g and g′ need not be harmonic.

Finally, we have to consider eq. (20). Substituting eq. (23) into eq. (20) we obtain
(
m1z

1∂2 − m2z
2∂1 + m2z̄

1∂2̄ − m1z̄
2∂1̄

)
Z = 0. (27)
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This means that Z is invariant under SO(2) rotation of (
√

m1 z1,
√

m2 z2) and

(
√

m2 z̄1,
√

m1 z̄2). Therefore, Z must be a function of SO(2) invariant variables

r2 = 2 (z1z̄1 + z2z̄2), m1(z
1)2 + m2(z

2)2, m2(z̄
1)2 + m1(z̄

2)2 and m1z
1z̄2 − m2z

2z̄1.

Let us summarize the result. The general form of the three-form flux Gmnp which

preserves the N = 2 supersymmetry at the first order of the perturbation is given

by eq. (12) with α = 0, φ in eq. (23) and ψ replaced by g(z1, z̄1, z2, z̄2, z3) satisfy-

ing eq. (25) for some function g′(z1, z̄1, z2, z̄2, z3). Thus, φ, which is an arbitrary

holomorphic function in the N = 1 case [12], is severely restricted to a quadratic

function in the N = 2 case. Such N = 2 preserving perturbation is possible only

when the warp factor Z satisfies eq. (27).

In our analysis at the first order of the perturbation we did not need the condition

m1 = m2 to obtain the N = 2 supersymmetry. At higher orders [20] we would need

the condition m1 = m2 since these parameters correspond to masses of two N = 1

chiral multiplets, which should be combined into an N = 2 hypermultiplet. This is

indeed the case in the field theory side. To see this let us consider two N = 1 chiral

supermultiplets (A1, ψ1) and (A2, ψ2), where A1, A2 are complex scalar fields and

ψ1, ψ2 are Weyl spinor fields, with the action

S =
∫

d4x
[
−∂µA

∗
1∂

µA1 − ∂µA
∗
2∂

µA2 − iψ1σ
µ∂µψ̄1 − iψ2σ

µ∂µψ̄2

−m2
1A

∗
1A1 − m2

2A
∗
2A2 −

1

2
m1

(
ψ1ψ1 + ψ̄1ψ̄1

)
− 1

2
m2

(
ψ2ψ2 + ψ̄2ψ̄2

)]
. (28)

Here we have used the two-component spinor notation in ref. [21]. S is invariant

under the N = 1 supertransformation

δAi =
√

2ϵψi, δψi =
√

2iσµϵ̄∂µAi −
√

2miϵA
∗
i (i = 1, 2). (29)

The exact N = 2 supersymmetry of course requires m1 = m2. However, even for

m1 ̸= m2, it is also invariant under the second supertransformation

δA1 =
√

2ϵψ2, δψ1 =
√

2iσµϵ̄∂µA2 −
√

2m1ϵA
∗
2,

δA2 = −
√

2ϵψ1, δψ2 = −
√

2iσµϵ̄∂µA1 +
√

2m2ϵA
∗
1 (30)

at the first order in m1, m2. Thus, the condition m1 = m2 is needed only in quadratic

and higher order terms for the N = 2 supersymmetry.
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