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The Image Input Microphone—A New Nonacoustic
Speech Communication System by Media
Conversion from Oral Motion Images to Speech

Keiichi Otani and Takaaki Hasegawa, Member, IEEE

Abstract—In this paper, we propose a new speech communica-
tion system to convert oral motion images into speech. We call this
system “The Image Input Microphone.” It provides high security
and is not affected by acoustic noise because it is not necessary to
input the actual utterance. This system is especially promising as
a speaking-aid system for people whose vocal cords are injured.
Since this is a basic investigation of media conversion from image
to speech, we focus on vowels, and conduct experiments on media
conversion of vowels. The vocal-tract transfer function and the
source signal for driving this filter are estimated from features
of the lips. These features are extracted from oral images in a
learning data set, then speech is synthesized by this filter inputted
with an appropriate driving signal. The performance of this
system is evaluated by hearing tests of synthesized speech. The
mean recognition rate for the test data set was 76.8%. We also
investigate the effects of practice by iterative listening. The mean
recognition rate rises from 69.4% to over 90% after four tests
over four days. Consequently, we conclude the proposed system
has potential as a method of nonacoustic communication.

I. INTRODUCTION

ECENTLY, the demand for communication systems that
permit speech input within various environments has
grown; for example in the areas of man/machine interfaces
and mobile communications. However, speech input has prob-
lems: 1) degradation caused by surrounding acoustic noise;
2) generation of acoustic noise to the environs; and 3) low
security because speech can be overheard. On the other
hand, lip reading, using vision to understand speech, is an
interesting alternative because actual utterance is not necessary
to input information. It has been reported that information
from articulators can be obtained by lip reading [1]. Thus, lip
reading is capable of overcoming the problems of speech input.
Several lip reading methods have been studied for speech
recognition using images [2], [3] and for auxiliary means of
speech recognition [4], [5]. The purpose of this work has
been speech recognition. Speech communication with these
methods are limited in ability, however, because recognition
depends on a limited number of prepared reference patterns.
Because of limited memory capacity and computation time, it
is hard to increase the number of reference patterns to improve
recognition. Moreover, even a few recognition errors seriously
degrade word recognition or sentence understanding when the
system is based on phoneme recognition.
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Fig. 1. The comparison between the conventional microphone and the image
input microphone.

On the other hand, media conversion techniques that al-
low conversion between communication media such as text,
image, and speech, have become more significant for hu-
man/machine interfacing and intelligent communication. For
example, speech recognition and synthesis using some set of
rules is media conversion between speech and text. This makes
speech coding possible at a very low bit rate. A facial motion
synthesis system, which converts speech or text to images
for a more natural man/machine interface has been reported
[6]. Such a method can be considered media conversion from
image to text. Nevertheless, media conversion from image to
speech which would help overcome the problems of speech
input has received little attention.

In this paper, we propose a new speech communication
system, “The Image Input Microphone” [7]-[9]. This system
converts oral motion images to speech without recognition,
so speech communication is not limited by the languages
used [7]-[9]. Because an actual utterance is not necessary
to input into this system, the system provides high security
and is not affected by acoustic noise. In addition, it shows
great promise as a speaking-aid system for the people whose
vocal cords are injured. In this paper, we show the speech
communication capability of the image input microphone. We
used five Japanese vowels in this basic investigation.

In Section II, we explain the principle of the image input
microphone. Then in Section III, we present the structure
of a proposed system that will allow speech synthesis from
oral motion images. Next, in Section IV, we discuss the
proposed system’s performance in handling five Japanese
vowels, and show that the proposed system is capable of
speech communication. Finally, in Section V, we present our
conclusions and areas for future research.

II. PRINCIPLE OF THE IMAGE INPUT MICROPHONE

Fig. 1 compares the conventional microphone and the
image input microphone. The conventional microphone con-
verts acoustic waves to speech. However, the image input
microphone converts images of oral motion to speech.
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Fig. 2. The principle of the image input microphone system.
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Fig. 2 shows the principle behind the image input micro-
phone. The proposed system is based on a model of the speech
production process. In speech processing, this model, which
separates speech into the source G(w) and articulation H(w),
is generally used. Speech waveform S(w) is obtained from
the equation

S(w) = G(w)H (w). €))

Usually, the source is approximated by a pulse train or a
white noise, and articulation is approximated by an all-pole
filter or a pole-zero filter. In the actual utterance, various
forms of articulation are performed by changing the conditions
of the vocal tract. That is, the vocal tract can be considered
an articulation filter. If the transfer function of this filter is
estimated from an oral image, we can synthesize speech by
driving this filter. The condition of the vocal tract is controlled
by movable articulators, i.e., the lips, tongue, velum, and
so on. In particular, the movable and visible parts, i.e., the
lips, tongue, and jaw, decide the condition of the vocal tract
directly because they have such a wide range of movement.
They also make the other less movable and invisible parts
change dependently. It is thought that the transfer function of
this articulation filter is estimated from features of the lips,
tongue, and jaw, which are extracted from oral images. On
the other hand, there are some utterances made with similar
mouth shapes, for example /b/, /p/ and /m/. However, people
have a superior information processing ability, so they should
be able to recognize synthesized speech in context.

In this paper, we focus on vowels in a basic investigation
of media conversion from oral motion images to speech. We
used a vocal-tract area function as the transfer function of the
articulation filter. The vocal-tract area function consists of a
cross-sectional area of each section of the vocal-tract and can
be obtained from PARCOR analysis of speech. The speech can
also be obtained from PARCOR synthesis [10]. In the proposed
system, each area of a vocal-tract area function is estimated
from features of the lips, tongue, and jaw. We can then obtain
the vocal tract filter from the estimated function. Finally, we
can synthesize speech by driving the estimated filter.

III. SYSTEM STRUCTURE

Fig. 3 shows a block diagram of the proposed system. The
system consists of three parts: a features extractor, an estimator
of the vocal-tract area function, and a speech synthesizer.
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Fig. 3. A block diagram of the proposed system.

We use both oral motion images and uttered speech as inputs
during the learning period. That is, during learning, both inputs
are used in constructing the estimation system. After that, only
the images are used for speech synthesis.

A. Features Extraction

Outline Detection Recently, outline detection methods based
on an energy minimizing model have been studied. In these
methods, the energy function is defined as the energy amounts
to minimum value when the estimated outline becomes an
appropriate one. In particular, “Snakes” [11] is used to try to
track the motion of an outline. A lip outline detection method
that uses knowledge of lips has also been reported [12]. We
carried out the outline detection using these energy-minimizing
models.

Estimated outline points v; = (z;,¥:)(¢ = 1,2,...,n)
are on a closed spline curve connected by NN discrete points
V= (X;.Y;)(j =1,2,...,N), where n > N. The outline
energy function E,, is defined as follows

Eout = Ein + Eimage + Elips 2)

where E;, is internal energy which represents the smoothness
of the outline; Ejyag. is image energy which represents the
fit between the outline and the features in the image such as
lines, edges, and so on; Fi;ps is knowledge of the lips energy
which represents the sufficiency of the outline obtained by
using knowledge of the lips. Each energy is defined as follows:

1) Internal energy: this energy determines the property of
a closed spline curve.

E int

N
S {alV; = Vi + 81V o1 - 2V, + Vi *)
j=1

N =

3

where Vi = V. The coefficients of the first and
second terms, « and (§, can control the smoothness of
the outline.

2) Image energy: this energy makes the outline change to
adapt to features in the image. In particular, this energy
causes the outline to be attracted to lines and edges.
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Eirage is defined as follows
4

where Wiine, Wedges Wair Tepresent the weights of these
energies; they are adjusted for convergence with an
adequate outline.

The line energy Ej;,. is defined as follows

FEimage = Wiine Eline + Wedge Fedge + Wair Edir

1 n
Eline = — I(vi) (&)
where I represents the luminance level of the image.
Depending on the sign of wyine, the outline is attracted
to a line whose luminance level is high or low.
The edge energy FE.q,. is defined as follows

1 n
Beage = =7 3_IVI(v) (©)
where V represents the spatial differential.
If the outline converges to an accurate edge, the
outline and the edge are mutually orthogonal. Then the
edge direction energy Ejg;, is defined as follows

1 n
Egi; = - ; | cos 6;] @
where 6; represents the angle between the outline at v;
and the edge as shown in Fig. 4. This energy prevents the
outline from converging with a wrong edge, for example
a wrinkle or a furrow.
Knowledge of lips energy: Ep is defined as follows

®

where wsym and wea) represent the weights of Egym
and E,,; they are adjusted for convergence with an the
adequate outline.

The symmetrical energy FEgyn, represents the sym-
metry of the outline. Since the outline of the lips is
considered symmetrical, this energy is used to detect
the outline. Egyr, is defined as follows

Esym

Elips = wsymEsym + WoralForal

N

= 23" [{ul@) - ful-2)}? - (i) — fl=2)}*]

T w
®

=0

where w represents the width of the outline of the lips,
and f,(z) and fi(z) respectively represent the outlines
of the upper and lower lips. (see Fig. 5).

It is thought that the luminance level of the oral region,
except for the tongue and teeth, is lower than that of
the region of the skin. For this reason, we performed
binarization with an appropriate threshold to detect the
oral region. Oral region energy FE,., is defined to
include this region as follows

> go(z.y)

z,y€O0

Eoral = - (10)

edge direction

Fig. 4. Edge direction energy.
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Fig. 5. Symmetrical energy.

Fig. 6. The oral features.

where O represents the region within the outline, and
go is as follows:

1 I(.’D, y) S Toral

gO(x>y) = {0 I(.’L’,y) > Toral (11)

where T, represents a threshold obtained by DTSM
[13].

Using these energy functions, oral and face outlines are de-
termined from oral motion images. The outline points V; are
initialized by manual operation in the first frame. To minimize
the energy function makes each V; move to the point from
among eight neighbors that requires the minimum energy until
it converges with the energy function. The converged outline is
obtained by spline interpolation of V ;. The converged outline
is then used as the initial outline in the next frame. Values for
V; are obtained to divide the outline into N parts equally. In
this system, N (we used the number of N from three to six
in the experiments that we will discuss later) depends on the
size of the outline.

Oral Features After outline detection, the oral features were
extracted from the outlines as shown in Fig. 6. The oral
outline’s area A, height H, width W, aspect ratio A = W/H,
Jjaw opening J, and the mean luminance level of its pixels G,
were used as the oral features.

B. Estimation of the Vocal-Tract Area Function

In the proposed system, the vocal-tract area function, which
is equivalent to the vocal-tract transfer function, is estimated
from the oral features.

PARCOR analysis, which is a method of analyzing and
synthesizing of speech, is often used for speech coding [14].
With a transmitter, some PARCOR coefficients and a gain
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Fig. 7. Correlation coefficients between the areas of each section of a
vocal-tract area function obtained from speech (columns) and the oral features
extracted from oral motion images (rows). The size of each box represents
the value of the correlation coefficient, and black and white represent positive
and negative correlation, respectively.

parameter obtained from speech are sent to a receiver. At the
receiver, a synthesis filter and a driving signal respectively
are obtained from the received PARCOR coefficients and gain
parameter. After that, speech is synthesized by driving the
filter with the signal. On the other hand, it is well known that
we can compute a vocal-tract area function from PARCOR
coefficients [10]. The area of each section is computed from
PARCOR coefficients recursively. Similarly, we can compute
PARCOR coefficients from the area of each section.

To estimate the vocal-tract area function, we investigated
the relation between vocal-tract area functions obtained from
speech and the oral features extracted from oral motion images.
We set the number of sections of the vocal-tract area function
at ten. Then A represents the area of the glottis and Ag
represents the area of the lips. Fig. 7 shows an example of
correlation coefficients between the area of each section of
such a function and the oral features. In this figure, absolute
values of correlation coefficients range from about 0.1 to 0.8.
We can see that there are significant correlations between the
area of each section of this function and these features.

Therefore, we can estimate the area of each section and the
gain parameter by multiple regression equations of the oral
features. These equations were computed from the learning
data set.

A =RF (12)
where
A=[4 4 Ay )T (13)
To TA0 THO TWo Txo TJo TGo
r 7‘ T ... ... ...
R= | 4T s
7‘9 TAg. THQ ... .. ... rGg
F=(1 A H W ) J G (15)

Since the area of each section must be greater than zero, we
prepared each appropriate threshold, then each threshold was
set to the minimum value of each area.

C. Speech Synthesis

The proposed system synthesizes speech by the PARCOR
vocoder [14]. We can compute PARCOR coefficients from the
area of each section

Am—l - Am

ki =
Am—l + Am

(16)
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where A,, represents the area of the mth section and k,,
represents the PARCOR coefficient of the mth order. Speech
is synthesized by driving the synthesis filter, which is obtained
from the PARCOR coefficients, using the driving signal. For
the PARCOR vocoder, we use the pulse train as the driving
signal of voiced speech [14]. We set the pitch period of the
pulse train at the mean value previously calculated for the
speaker’s pitch periods. Thus the pulse train e(n) is obtained
as follows [14]

_ [o(I/N)? n=0,I2],... an
e(n) = —eUNPE 0,100,

where o represents the gain parameter, I represents the pitch
period of the pulse train, N represents the length of the
analysis window. We performed De-emphasis on the output
signal of the synthesis filter.

IV. PERFORMANCE EVALUATION

We carried out simulations of speech synthesis from oral
motion images of five Japanese vowels. We took oral motion
images, to be used as input signals with a CCD camera with 30
Hz sampling in sufficient lighting keeping the distance fixed at
about 20 cm from the camera. The resolution of the sampled
images were 64 x 60, and the sampled images were quantized
as eight bits per pixel, so they were 256-level gray images.
At the same time, we took the uttered speech samples by
10 kHz sampling and they were quantized as eight bits. We
performed pre-emphasis on the speech to get rid of effects
on the glottal wave and on the radiation impedance. Each
sample was uttered by a male Japanese speaker clearly and
slowly. The length of each pattern was 3 s and the data set
consisted of eleven different patterns. We took two kinds of
data sets, i.e., a learning set and a test set. We computed the
multiple regression equations from the learning set. The test
set was used for speech synthesis. The frame length of speech
was 33.3 ms due to the sampling rate of oral motion images.
We updated the speech parameters, PARCOR coefficients, and
gain parameter every pitch period by linear interpolation. The
pitch period was 7.9 ms, which was the mean value of that
of the speaker.

A. Evaluation of Spectral Envelopes

We show some examples of vocal-tract area functions in
Fig. 8. These examples show that the estimated functions are
in general agreement with the computed ones. In particular,
/a/ and /o/ show reasonable agreement between the estimated
functions and the computed ones. Estimation of the vocal-tract
area function by multiple regression equations of features of
the lips is clearly a useful method.

In addition, we show examples of spectral envelopes in Fig.
9. The synthesized speech is in general agreement with the ut-
tered speech in terms of formant frequencies. It is well-known
that formant frequencies are significant in the perception of
vowels. We show an example of a sound spectrogram /aeiou/
in Fig. 10. The upper illustration represents uttered speech
and the lower represents synthesized speech. We can see that
the upper and the lower have similar formant frequencies.
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Fig. 8. Vocal-tract area functions of five Japanese vowels. Solid lines
represent the estimated vocal-tract area functions and broken lines represent
area functions computed form uttered speech.

Fig. 11 shows an example of the estimated gain parameter
of the uttered /aeiow/. The tendency of the gain parameter of
synthesized speech is similar to that of uttered speech. For
an objective evaluation of this system, we investigated the
mean LPC cepstral distortion. It was 4.7 dB and its standard
deviation was 0.71. Therefore, it is likely that the proposed
system can synthesize audible speech with respect to vowels.

B. Communications Possibility

Our main interest in this paper is to determine the ability of
the proposed system to communicate by speech. For an sub-
jective evaluation of this system, we carried out hearing tests
to evaluate the performance of its speech communication. We
presented random sequences of eight patterns to ten subjects,
and investigated the recognition rate. Each pattern consisted
of five Japanese vowels for a total of forty synthesized vowels
per subject. The subjects were not familiar with synthesized
speech.

Table I shows the recognition rates of the five Japanese
vowels. The mean recognition rate of the test set was 76.8%.
Thus, the speech synthesized from oral motion images of five
Japanese vowels was audible. Hence the proposed system can
communicate by speech with respect to vowels.

To further investigate recognition tendencies, we created a
confusion matrix of the experimental results as shown in Table
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Fig. 9. Spectral envelopes of five Japanese vowels. Solid lines represent
synthesized spectral envelopes and broken lines represent uttered ones.
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Fig. 10. An example of a sound spectrogram /aeiou/. The upper illustration
represents uttered speech and the lower represents synthesized speech.

I1. This table shows that /o/ and /e/ tend to be occasionally
confused with /a/. We explain these tendencies as follows:
although we do not show it in Table II, 68% of the confusion of
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Fig. 11. An example of the estimated gain parameter of the uttered /aeiou/.

TABLE 1
RECOGNITION RATES OF FIVE JAPANESE VOWELS
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TABLE II

CONFUSION MATRIX OF FIVE JAPANESE VOWELS
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/o/ with /a/ is due to /o/ being included in two specific patterns.
We found that the spectral envelopes of the confused /o/ were
similar to those of /a/ with respect to formant frequencies. We
think that the visible vocal-tract area is large when /a/ is uttered
so synthesized speech can be estimated accurately. However
/o/, which has a small visible area, is not precisely estimated
because of insufficient resolution. In our experiments, the
tendency was to estimate /o/ as /a/ in this case. On the other

hand, when /e/ was recognized as /a/, we found that the

recognition error was most common in three specific subjects.
Their errors accounted for 92% of the errors recognizing /e/
as /a/. Because the subjects were not familiar with synthesized
speech, we think that the subjects who recognized /e/ as /a/ at
the first hearing tend to recognize /e/ as /a/. While the subjects
who recognized correctly at the first hearing tend to recognize
correctly. Consequently, it is most probable that the proposed
system will achieve nonacoustic communication if there is
practice before use of the proposed system.

C. The Effects of Practice

In Section IV-B, we discussed recognition by people who
are not familiar with synthesized speech. However, if the
proposed system is applied as a speaking-aid system, we must
investigate the effects of practice by iterative listening. We
carried out the hearing test described in Section IV-B on four
subjects each day for five days. We varied the sequence of
patterns presented every day. Fig. 12 shows the effects of
practice by iterative listening. Needless to say, we did not
give the correct answers to the subjects after each experiment.
At the first hearing, the mean recognition rate was 69.4%,
however, it steadily increased as the tests were repeated. As a
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Fig. 12. The effects of practice by iterative listening.

result, it was over 90% after four days, and it seemed to level
off at that point.

Thus, prior practice with the synthesized speech increases
the recognition rate. Consequently, the proposed system will
be able to communicate by speech more effectively with
people familiar with the system. So this system can be applied
to speaking-aid communication systems.

V. CONCLUSIONS

We proposed a new speech communication system that
converts oral motion images into speech. We call this system
“The Image Input Microphone.” The system provides high
security and is not affected by acoustic noise because it is not
necessary to input the actual utterance.

In the proposed system, the vocal-tract area function, which
is equivalent to the transfer function of the vocal tract, is
estimated from the features of oral images. The gain of
source signal is also estimated. The synthesis filter is obtained
from the estimated vocal-tract area function, and speech is
synthesized by driving this filter with the driving signal whose
gain is estimated. Since we found that there are correlations
between the oral features and the areas of each section of
the vocal-tract area function, the vocal-tract area function is
estimated from multiple regression equations of these features.
Similarly, the gain parameter was estimated in the same way.

We created the proposed system with five Japanese vowels
on a computer, and carried out the following experiments.
First, speech was synthesized using this system, and we
investigated the spectral envelopes of the synthesized speech,
which were in good agreement with the spectral envelopes
of uttered speech in terms of formant frequencies. Based
on this result, it seemed likely that audible speech could be
synthesized by the proposed system with respect to the vowels.
Next, we carried out hearing tests to investigate the system’s
communication ability. The mean recognition rate was 76.8%
for the five Japanese vowels. We also investigated the effects
of practice by iterative listening. When the test subjects heard
the samples for the first time the mean recognition rate was
69.4%. After four repetitions over four days, however, it
had risen to over 90%, at which it seemed to level off.
Therefore, the proposed system seems capable of nonacoustic
communication. In particular, it was shown that the system
will be able to communicate with people who have had prior
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practice with the synthesized speech. The proposed system
seems applicable to a speaking-aid system.

Our future research will focus on applying the proposed
system to speech which includes consonants, investigating how
the proposed system applies to other speakers, and estimating
the vocal-tract transfer function in the spectral domain.
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